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Local behavior of Hodge structures
at infinity.

P. Deligne

This article is an expanded version of a letter to D. Morrison, inspired by
his article [3]. T give a description of “very degenerating” variations of
Hodge structures, which is well adapted to the varialions arising in the
mirror fairy tale. I also try to ascertain how “motivic” this description is.

0. Introduction

In [3], D. Morrison describes some of the results of [1] in a Hodge theoretic lan-
guage. One ingredient is the variation of Hodge structures defined by a family of
Calabi—Yau manifolds near a point (in a completed parameter space) of “maximal
degeneracy”. We interpret “maximal degeneracy” as leading to the appearance of
variations of mixed Hodge structures of a special type (Hodge-Tate), and give a de-
scription of such mixed variations in terms of invertible holomorphic functions. The
logarithmic derivatives of those functions are what appears in Morrison's paper.

I thank E. Cattani for a very helpful letter directing me to parts of [2] I had
missed, and the referee for suggesting many improvements.

1. Notations

For V a polarized variation of Hodge structures of weight w on a complex variety
S, we use the following notations.

Vz: underlying local system of free abelian groups. For R = Q, R, C, ¥ (sheaf of
holomorphic functions), Vg := Vz @ R.

Z(k): (2mi}*Z, viewed as a Hodge structure of type (—k, —k)
Also: the corresponding constant variation.
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Y: Vz®Vz — Z(—w): the polarization form, symmetric for w even and alternating
for w odd.

At each point s € S, the Hodge structure of the fiber V, of V at s is given by a
decomposition

Vic= @® Ve

pa=w
with V;"¥ the complex conjugate of V9, The Weil operator C: multiplication by
=% on V77, is real and the form

(2m1)¥$(Cz, 7)

is hermitian symmetric and positive definite.

The holomorphic vector bundle with integrable connection having Vi as sheaf
of horizontal sections is identified with its sheaf V5 of holomorphic sections. We
denote

V: its connection.

F': the Hodge filtration. Ateach point, F¥ = @ Vet Itis a holomorphic filtration
e p

and VF? C Q' @ FP~! (Griffiths transversality).
Typical example

Let (X,)ses be a family of nonsingular projective varieties parametrized by S, i.e.
a projective and smooth map f: X — S (with X, = f~!(s)). Take

Vz .= RYf.Z
modulo torsion. It is the local system of the
HY(X,)/torsion,

and VP! = HP(X,).

For X purely of dimension n, and w = n, on the primitive part of H"( X} (the
kernel of the cup-product with the first Chern class of the given ample line bundle),
a polarization form is given by

1
_1yn{n—1)/2
(et [ouy,

The construction of a polarization form on the whole of the cohomology is by re-
duction to that case, applied to linear sections of X ;.
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2. Asymptotics

Let D be the open unit disc, and D* := D — {0}. We take S = D** (n > 1) and
recalt known results on the behavior of V, for s — 0. To the extent possible, our
references will be to the survey paper [2).

2.1. Monodromy

Let T); be the monodromy of Vz around s; = 0. The T; commute and are known to
be quasi-unipotent. For simplicity, we assume they are even unipotent. We define

N; := - log(T)

(note the minus sign). Sign convention, explained for n = 1: T is the effect of
pushing an element of (Vz}; horizontally along the path exp(2riu)s (0 < u < 1).

2.2. Canonical extension

For any complex local system H¢ on D*", with unipotent monodromy, we continue
to write Ho for the canonical extension of the vector bundle Hp to D™, It is char-
acterized by the property that, in a local basis near 0, the matrix of 1-forms defining
the connection has logarithmic poles along the s; = 0, with nilpotent residues.

Consider on Hp the new connection

c w1, .dsJ-
(2:2.1) VE=Vo—i) ] i
The horizontal sections for V° are the sections of the form exp(log s - N/ 2wi)h
for h V-horizontal. The connection V¢ has no monodromy and turns Hy into a
constant bundle. We will say constant to mean horizontal for V¢, The canonical
extension of Ho is obtained by extending it as a constant bundle.

The construction of V¢ depends on the choice of coordinates near 0, while the
canonical extension does not. In fact, the constant vector bundle attached to Hp
should be viewed as living on the tangent space Ty of D™ at 0. Local coordinates
s;- (with s;. /s; invertible) define (a) an isomorphism ¢ between a neighborhood of
0 in D™ and a neighborhood of 0 in Ty, (b) a constantification of Hp. If we use ¢
to transplant the local system H¢ and the constantification of Hp to Ty, the result
is independent of the local coordinates used.

If a filtration F of the canonical extension Ho is given, the corresponding nilpo-
tent orbit is the constant filtration of H» which coincides with F at 0. Again, to be
coordinate free, it should live on Tj,.

2.3. Nilpotent orbit

For a polarized variation V on D*", the nilpotent orbit theorem states that
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(a) The Hodge filtration F' extends to the canonical extension Vp as a filtration
(still denoted F') by locally direct factors {[2] 2.1 (i}),

(b) The corresponding nilpotent orbit is again, in a neighborhood of 0, a variation
of Hodge structures of weight w polarized by v ([2] 2.1 (ii)).

Conversely, let (Vz, Frip) be a polarized variation of Hodge structures on D**
which is a nilpotent orbit: the filtration Fy;)p, is assumed constant (for V<, see (2.2)).
Let F be a new filtration of V» on D", agreeing with Fy;ip at s = 0, and obeying
transversatity:

VFP C Q'@ FP-l,

Assume further that ¢(F?, F*~?~1) = 0 for all p. Then (Vz, F) is, near 0, a vari-
ation of Hodge structures on D*", polarized by . See [2], 2.8.

2.4 Weight filtration

There exists on Vg a unique increasing filtration W, the weight filtration, such that
N;W, C Wi_; and that for any positive linear combination

N = Za\ij

(A; > 0), N* induces an isomorphism from Gr¥¥, (V&) to Gr}Y_, (VR). Further,
{(Vz, W, Fip) is a variation of mixed Hodge structures ((2] 2.3).

The construction of W is compatible with passage to the dual, as wetl as to ten-
sor products. It follows that if + is a polarization form, then W,,_; and W, are
mutually orthogonal, and  induces a perfect pairing Gr" () between Gr?¥_.(V)
and Gr?, +:(V). Further, the induced pairings, and

GrW(N): GrlY (V) = Grl (V)

have positivity properties reminiscent of those of the cohomology of a nonsingular
projective variety of dimension k, with the cup-product pairing to H2*, the role of N
being played by the cup-product with the first Chern class of an ampie line bundle.
In the terminology of [2] 1.16, (V, W, Fyap) is polarized by 1 and N. The reason
for this analogy is not understood.

3. Warning

In general, W and the original Hodge filtration £’ do not define a mixed Hodge struc-
ture in a neighborhood of 0. Consider, for instance, a general pencil f: X — P!
of hypersurfaces of degree d in PM. The fiber X (M) @t the point with projective
coordinates (A, i) is the hypersurface with equation

AF +puG =0
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(F, G general forms of degree d). Let S be the set of critical values of f.OnP!-§
we consider the variation

’

Vz = RM-'f, 7.

and restrict it to a punctured disc D™ centered at a critical value (Ao, o).

We assume that

(@) M iseven, hence X, is of odd dimensionw = M — 1.

The cohomology H™(X,, Z) is torsion-free, primitive (i.e. annihilated by cup
product with the hyperplane section class) and the polarization form is given by the
cup product. One knows that the global monodromy, image of m; (P! ~ S, 2), is
Zariski dense in the corresponding symplectic group. Provided that H¥(X,, Z) #
0,ie. d# 1,2, N is nilpotent of rank one. The weight filtration is

0C WY =Im(N) Cc WY = ker(N) = Vg.

(b) M > 4 and d is large enough, so that Vi # F(w=1)/2
If (W, F) were a mixed Hodge structure on D*, Grl¥_ |, being one-dimensional,
would have to be of type ((w — 1)/2, (w — 1)/2):
Im(N) ¢ Flw-1/2,

By analytic continuation, any image of Im(NV) by the global monodromy group
would still be in F{(“=1/2_ Those images span V, by Zariski density of the global
monodromy group in the symplectic group, contradicting (b).

4

We now consider a case where (W, F') is a mixed Hodge structure. Fix a base point
50 € D™, let G be the group of automorphisms of V0@ respecting the form 1, and
let GO be the connected component of the identity of G, viewed as a linear algebraic
group: it is a special orthogonal group for w even, a symplectic group for w odd.
The filtrations W, F and Fhilp correspond to isotropic flags:

ij_;' = wHi-1
(F?.')J. - Fw—i'l‘l

and similarly for Fy,;j,. The subgroups of G,?: stabilizing them are parabolic sub-
groups.

Proposition 4.1. If the parabolic subgroups P( Faiip) and P(W) defined by Fup
and W satisfy

(4.1.1) Lie P(Fyip) + Lie P(W) = Lie G,

then, near 0, (W, F) is a mixed Hodge structure, with the same Hodge numbers as
(Wa 12 nilp)~
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Remark. As the
exp (Zuij) € G¢

respect W and permute transitively the Fhilp taken at various points, the validity of
(4.1.1) does not depend on the point s¢ at which it is considered.

Proof. The map
u — spexp(2miu)

maps a product of upper half-planes to D*™ . The pullback of the local system Vz is
a trivial local system, and we can consider the Hodge filtration F at soexp(2miu)
as a filtration ¢(u) of the fixed vector space V.

If one wants to view Vp as a constant vector bundle as in 2.2, ¢(u) is to be re-
placed by exp(—u/N)@(u). In particular, if we write Fhitp for Frip at sg,

Frilp = lim exp(—uN)$(u).

Here the limit is taken as the infimum of the Im(;) — oo, i.e. s exp(2miu) — 0.
From (4.1.1), it then follows that for inf Im(u;) large, the pair of filtrations

(W, exp(—ulN)g(u))
is conjugate to (W, Frip) by ¢ € G(C) close to 1. In particular,
dim (W N F,,) = dim (Wan exp(~uN)g*(u))
As exp(—ulN)(u) is close to Fy;p, this equality of dimensions implies that the
filtration induced by exp(—uN)¢(u) on
Grg! (Vasc)
tends to that induced by Fy;)p. As N; respects W and acts trivially on
Gry! (Vo)

the filtrations ¢(u) and exp(—uN)¢(u) induce the same filtration on Gr¥ (V, ¢}
For inf Im(u;) large enough, this induced filtration defines a Hodge structure of
weight ¢; a, being close to the Hodge filtration Gr} ( Fyiyp). It follows that (W, F)
is mixed Hodge, with the same Hodge numbers as (W, Fhilp).

5. Variant

Fix some Hodge structures H, and some horizontal tensors to, integral of type
(0,0), in some tensor powers

a(a) b(a)
QRvze X Vy ® Ha.

One can then repeat 4.1 and its proof with G replaced by the subgroup fixing the ¢, .
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6

We now assume that the mixed Hodge structure (Vz, W, Fuilp) is Hodge-Tate, i.e.
such that
ft ,€) fork=2¢
(6.1) Gy g5 OTwPe(L ) for
0 for k odd.
This should be viewed as an assumption of maximal degeneracy. It means that

War = Wik and that the filtrations Frup and W are opposite in the sense that
the map F:“p @ Wap_2 = Vo is an isomorphism for all p. If we set

V(P) — F.'P

nilp nilp n W2'P’

Vo is then the direct sum of the Vn(i’l’z), with

—_ ) 20 _ 2+l _ (r)

Fy = 2 V) we = e o 2 Vi

The assumption (4.1.1) holds and 4.1 is in fact easier to prove in this case, In

terms of the nilpotent orbit trivialization of Vp, the filtrations W and Fhiip are con-

stant. As W and F;, are opposed, and F and Fyiip coincide at 0, W and F remain
opposed in a neighborhood of 0:

Vo=aV®  with

FP = @ V(a'), WZk — W2k+l = @ ‘/'(a)1
azp a<k

(6.2)

implying that (Vz, W, F) is mixed Hodge and Hodge-Tate. We will assume D*™
has been shrunk so that (Vz, W, F'} is mixed Hodge on the whole of D*™,

Our aim is to classify, i.e. to give another description, of variations such as the
above.

7

In the category of mixed Hodge structures Hom(Z(0), Z(1)) = 0 (notations: see
1): an extension of Z (0) by Z(1) has no nontrivial automorphism as extension. The
extensions are classified by C*:

(7.1) Ext!(Z(0),Z(1)) = C*,

with g € C* corresponding to the extension

0-2(1) - H -2 2(0) = 0.



690 P. DELIGNE

He = Cz, basis eg, &y
W_z = Ce;, F° = Cep
Hy =2niZ-e) +Z-(eg+log gey) C He
a(2ri) = 2rie;, Pleo) =1

(7.2)

Note that the choice of the determination of log ¢ does not matter.

Equivalent description: Hyg has a basis fp, fi witha(273) = fo, 8(fi) =1, F® C
Hg the kernel of z + '—;Er—l‘l y: He = C.

Variations of mixed Hodge structures H over S that are extensions of Z(0) by
Z (1) are similarly classified by invertible holomorphic functions. The extension H
defined by g has Hp = Oeg @ Oe,, with basis ep (spanning F°) and e, (spanning
W_2) and integral lattice and structure maps «, 8 as in (7.2). The connection is
given by

(7.3) V=d+ (_OQ g)
q

We now take S = D", Let n; be the order of g along s; = 0:
T;(log)g=log g+n;-2mi.

The constant sections of He, in the sense of 2.2, are spanned by e; and

eo + log(q/ Hs}")el.

It follows that F extends to the canonical extension of Hp, remaining a supplement
to W_», if and only if ¢ belongs to the group O}, ..( D*™) of invertible holomorphic
functions on D*™, meromorphic along the s; = 0. The filtration F is constant with
respect to the trivializationof He givenin 2.2 ifand onlyif ¢ is a monomial a-[ s7°.
The nilpotent orbit attached to H (cf. 1.3) is again an extension of Z (0) by Z(1). Its
invariant is the monomial gg such that q/go is holomorphic invertible on D™ with
value 1 at 0.

The definitions given do not require the choice of which is < and which is —¢ in
C. If one is willing to make that choice, one could rather say that the extensions of
Z (type (0,0)) by Z (type (-1, —1)) are parametrized by C*. Formulas (7.2) (7.3)
should be changed as follows

1
(7.2)* Hy=Ze,+Z (eo 428 ,qel) C Hg
271
a(l)=e Pleg) =1
(7.3) replace — . by - 571 ¢
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More generally, for A and B free abelian groups, viewed as purely of type (p, p)
and (p — 1, p — 1), one has for the corresponding constant local system on S

(7'4) Ethlnixed Hodge(A: B) = Hom(A, B) Q0" (S)

The underlying vector bundle with connection { Hp, V) of the extension with class
Eis

Ho =Ao® Bo

V =d-3tdlog E

2

(7.5)

For § = D*™, the filtration F' extends to the canonical extension, remaining
opposite to W at 0, if and only if

E € Hom(A, B) @ O%,_.(D™).

mer

The group O},..(D*™) contains the group of monomials {a - [] s}” }, and retracts
to it by a unique homomorphism nilp such that £/ nilp(f) is holomorphic at zero,
where it takes the value 1.

Let Fyjlp be the constant filtration (2.2) agreeing with F' at 0. The nilpotent orbit
(Hz, Frip) is again an extension of A by B. Its invariant is nilp(F), in

Hom(A, B) ® (monomials).

8

With SS6 as the motivating example, we now consider on D*™ variations of mixed
Hodge structures (Vz, W, F) of Hodge-Tate type (6.1) such that (8.1), (8.2) below
hold.

8.1

Gr¥¥ (Vz) is a constant local system.

In (8.1), W denotes the filtration of Vz induced by the filtration W of V. We
will identify the constant local system

Gri (Vz)

with its constant value: a free abelian group. The conditions (8.1) imply that the
monodromy is unipotent.
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8.2.

F extends to the canonical extension of Vp, and, at 0, the filtrations F and W are
opposed.
By (8.1) (8.2), the quotient

Wor(Vz)/Wak—_a(Va)

is an extension of Gr¥¥ (V) (type (k, k)) by Gr¥ _,(Va) (type (k — 1,k — 1)) of
the type considered in 7. It has an extension class

Ex € Hom(Gri(Vg), Grit_s(Va)) ® Ofer(D™™).
Let E be the sum of those classes
(8.3) E € End(Gr% (Vg)) -2 ® OF . (D*™).

As in (6.1), the weight and Hodge filtration of Vp define a direct sum decom-
position Vo = &V {?). One has

VP 2 Grl (Vo) = Grit (V) 0 O,
giving
(8.4) Vo ~Gr% (V) ® 0.

Lemma 9. The isomorphism (8.4) transforms the connection V of Vo into the con-
nection

1
V=d->—dlogE

The connection V of Vp respects W, induces the trivial connection on
Gr¥ (Vo) = Gr¥ (V) @ ©

and maps F? to FP~1. It is hence given by a 1-form with values in endomorphisms
of degree ~2 of Gr"(Vz) ® O. To compute it, it suffices to compute the induced
connections on the quotient Woy /Way_4, and we apply (7.5).

10

If we replace F by Fyp, the constant filtration (2.2) agreeing with F at 0, one ob-
tains the nilpotent orbit (Vz, W, Fy,) attached to (Vg, W, F). By 887, the corre-
sponding invariant E((Vg, W, Fyp)) is deduced from E = E((Vg, W, F)) by ap-
plying

(10.1) nilp: Op (D*™) = {as]' ...s0m)
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The group of monomials is an extension of Z™ (the exponents) by C". If one
projects further to Z™, the information retained is the Gr" (1 — T}) = Gr" (V;):
by reduction to the case of extensions of Z by Z(1), one checks that, applying v;,
the order along s; = 0, one has

(10.2) Gr¥ (1 - T) = Gr (N;) = —vwi(E) € End(Gr¥ (V)2
The integrability of V can be written
(10.3) dlog EAdlog E=0 in  End(GY(Vz))-4© Q%

For (Vz, W, Fyilp). i.e. for the dominant part Ej, it corresponds to the commutativ-
ity of the Gr% (N;).
Let us consider pairs
(Vz, W, Fyip), E)

of a mixed Tate nilpotent orbit (Vz, W, Fpip), whose invariant will be denoted Ey;p,
and of

Ee GT'W(VZ) 2 ® (Dmer(‘Dmn)iI

such that

dlog Endlog E=0 and
Eqilp = nilp(E).

We turn those pairs into a category by defining a morphism f from

((VZa W: Fnilp): E)

to
((Vz! W lep) E)
to be
f: Vg2 Vg,
compatible with W and Fyip, and such that
oG (f) =G (f)oE

Theorem 11. To (Vg, W, F') as in 8§88, let us attach
(a) the corresponding nilpotent orbit (Vz, W, Fyip),

(b) E € End(Gr ( )) 2 ® Omer(D*m)
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This construction is an equivalence from the category of variations (Vg, W, F)
as in S88 to the category of pairs as above.

Remark. The functor of the theorem is compatible with tensor products, if the £ of

Vz® V; is defined to be E®Idy. + Idy QE’. It is also compatible with duals (with
E going to the opposite of its transpose) and, combining the two, with inner Hom.

Proof. A morphism of V to V' is a section of Hom(V, V")z in W; and F°. Thus,
to show that the function is fully faithful, it suffices to show that a global section v
of Vz isin Wy and F? ifitis in W, in F and if its image & in Gr{’ (V) is killed
by E: Eo trivial in Gr¥,(Vg) ® O*.

Being globat and horizontal, v is constant, in the sense of (2.2). Let v(®) be its
component in V(%) (6.2). Via the isomorphism of V (©} with Gr¥ (Vz) ® O, it cor-
responds to & in Gr¥ (Vz). By Lemma 9, as E7 is trivial, v(°) is horizontal. The
two constant sections v and v(%) coincide at 0, as v is in F3,_. It follows that they
are equal, and v = v(©) ¢ F?,

It remains to show that any ((Vz““p, Wiilp, Frilp), E) is the image by the functor

of some (Vg, W, F). The sought after Vp, with its weight and Hodge filtration, and
connection, is

Vo=Gr" (V") @ 0
1
Its canonical extension is GrW (Vz“"") ® O on D™, and the constantification (2.2}

gives )
¢: Gr¥ (Vg @ 0 = Vo

with Gr""(VZ'“lp ) mapping to constant sections. The map ¢ is horizontal if, at the
Source, one uses

1
VQ =d- % d log Enﬂp.
The vector bundle with connection
G (vy®) 0 0, Vo

is the one underlying . )
(Vzmlp, Wmlp, Fnilp)-

The sought after (Vz, W, F) is given by
Vz = $(Vz") C Vo.
Applying the functor, it gives back (Vz?‘"", wrile| F\un). To check that it gives back

E, it suffices to check it on the quotients Woy /Way_4. This case in turn reduces to
that of extensions of Z by Z(1), which is left to the reader.
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12

We now apply Theorem 11 in the sitation of SS6. To a polarized variation V' on
D™, with (V, W, Fyi,) of Hodge-Tate type, we attach the corresponding polarized
nilpotent orbit (V, Friip) and E € End{(Gr¥ (Vz))_, ® O%..(D*™).

The fact that 1 is a morphism V@V — Z({—w), and hence induces a morphism
(Vz, W, F}® (Vg, W, F) — Z(—w), translates into

(12.1) P(Ez,y)yp(z, Fy) =1 in O o (D™™)

forz € GrlV (Vg),y € GrlV (Vg) and k + € = 2.

Conversely, given

(a) a polarized nilpotent orbit (V, Fyip) with (V, W, Fyijp) of Hodge-Tate type,

(0) E € End(Gr¥W (Vg))—2 ® O (D) withd log EAdlog E = 0, E
compatible with Ey attached to (V, W, Fi;i5): E — Ep holomorphically trivial at
0, and £ obeying (12.1), we obtain by 11 a mixed variation (V, W, F). By (12.1),
¥ (Vz, W, F) @ (Vz, W, F) — Z(—w) is a morphism. If we forget W, (Vz, F)
admits (V, Fyiip) as nilpotent orbit. By 2.3, (Vz, F)) is a polarized variation near 0.

13. Example

Let E be a family of eliptic curves parametrized by D*, and consider the variation
H\(E;) (s € D*). Assume the monodromy is unipotent and nontrivial. In that
case, one can uniquely write

E, = U/Q(S)Za

with ¢{s) holomorphic invertible on D* and tending to 0 with s. We are in the sit-
uation of (4.1) and the mixed variation (H,{E,), W, F) is the extension of Z{0) by
Z(1) with invariant ¢(s).

In this case, the mixed Hodge structures (H, (E;), W, F) are subquotients of the
homology of algebraic varieties: they are “motivic”. Indeed, the extension of Z(0)
by Z (1) with invariant ¢ (g # 1) is the homology (H,) of P}(C) — {1, g} with the
points 0 and oo identified. To check this, apply (P. Deligne, Théorie de Hodge III,
Publ. Math. IHES 44 (1974), pp. 5-78, construction 10.3.8).

More generally, for a family of polarized abelian varieties A on D*™, and their
H,, 4.1 applies and the resutting mixed Hodge structures are motivic.

I do not expect this to hold in general. Let V' be a direct factor of H*{X,), for
X a family of projective nonsingular varieties over D*". The nilpotent orbit

(V? W1 Fl'lilp)

should be motivic but, even if (V, W, F;1,) is Hodge-Tate, the (V;, W, F) should
not always be. If they were, it would conflict with another conjecture: for an iterated
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extension E' of Z (0) by Z(1)™ by Z(2), defining extension classes

g2, € Ext! (Z(0),Z(1)") = C
g2, € ExtY(Z(1)", Z2(2)) = C*n,

if E'is motivic, then [T{g1,1, 42,:} € K>(C) is trivial. As a consequence,

dqi;  dgy;
yo i dani_
q1: q2i

in Q%/Q and, in the case n = 1, ¢, and ¢, are algebraically dependent over Q.
Let us consider the family of quintic threefolds

5 5
> XF - sAT] x: =o.
1 1

5
Let G be the multiplicative group of 5-uples of fifth roots of 1 with [ ¢ = 1. It

1

acts on each quintic in the family: (X;) — (¢;X;), with the quotient of G by the
diagonal (all {; equals) acting faithfully. Let V' be the part of H* fixed by G. By the
computations of (1], V is of rank 4 and the monodromy group is Zariski dense in
Spy: it contains a unipotent transformation « with » — 1 of rank one (monodromy
around A = ¢, for ¢° = 1), and one with  — 1 of rank 3, i.e. one Jordan block
{monodromy around ¥ = co). As the Zariski closure of the monodromy is known
to be semi-simple, and contained in Sp,, this leaves no choice.

Near A = oo, the nilpotent orbit is of Hodge-Tate type, so that £ givesrise to an
iterated extension of Z(~—3) by Z(—2) by Z(—1) by Z(0). Let g (resp. g¢») be the
class of the resulting extension of Z(—3) by Z(—2) (resp. of Z(-2)by Z{—1)).If,
for every value of A near oo, ¢, and g, are algebraically dependent over Q, a Baire
category argument and analytic continuation show that F(q1,¢2) = 0 identically
for some polynomial F.

For all but finitely many points (¢, ¢9) on the algebraic curve F(g1,¢2) = 0,
in a neighborhood of (g, ¢3), the equation F(qy, ;) = 0 amounts to 72/¢8 =
©(q1/97) for some function ¢ depending on (¢7,93). We write [q?, ¢7] for that
function. It maps 1 to 1, and its oo-jet at 1, peo[q?, ¢9], depends algebraically on
(41, 43). i.e. for each k, the k-jet w[q?, 49] does so.

The co-jet wo (g7, ¢9] carries the following information. Fix A near oo, giving
rise to (¢7, ¢3). Fix on V a new integral basis e; (0 < i < 3), with e; in FT N W_,;
and projecting in Gr¥,(V) ~ Z( ~1) to the integral generator. In this new basis

3
Vie 1s the split mixed Hodge structure @ Z(—z). The co-jet (o, (42, ¢7] tells how, in
0

this basis, the Hodge filtration changes with ), up to a reparametrization A — ().
Let P(V) be the projective space of rays in V. The symplectic form % gives
on P(V) a “null-system” of lines, corresponding to the Lagrangian subspaces of V.
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The variable Hodge filtration F' gives a curve I' in P(V): the trajectory of F3, At a
general point of I', the tangent line is a null line, corresponding to F2. The weight
filtration gives an isotropic flag w. The previous discussion gives: for eachy € T,
let us consider the relative position of the co order jet I, of ' at v, and of w. Here,
“relative position” is an element of the quotient by Sp(4) of the space of pairs (co-
order jet of curve, isotropic flag). For variabte -, this relative position is controlled
by a @oo[go, ¢1], hence stays on a 1-dimensionat algebraic subspace. If we analyt-
ically continue and come back to -y, we see that (I, w') is again in this subspace,
for a Zariski dense set of w’, hence for all w’. As the space of all isotropic flags
is 4-dimensional, there is a 3-dimensional space of w’ such that all (I, w") are in
the same relative position. The co-jet [, is hence stable by a subgroup H of Sp(4),
fixing vy, and of dimension > 3. The curve I" spans P(V), hence cannot be point-
wise fixed. It must be an orbit of H, hence is an algebraic curve. Contradiction: no
algebraic curve has a group of automorphisms of dimension > 3, all fixing a point
7.

14. Example

The following occurs in the study of mirror symmetry.
Let V' be a polarized variation of Hodge structure on D**, of the following type:

(14.1) weight —3 (like an H3), Hodge numbers h?4
(p=0,-1,-2,-3): 1,n,n,1

(14.2) polarization form 4 of discriminant 1

(14.3) umpotentmonodromy, and associated nilpotent orbit of Hodge-Tate type.
Rank of the Gr/¥ (Vz) (i =0,-2,—4,-6): 1,n,n, 1. The form % is a perfect du-
ality between Gr ; and Gr¥¥ 26—y

(14.4) For 1 abasis of Gr{’ (Vz), the N;(1) form a basis of GrY%,(Vy).

Fix a basis 1 € Gr§’ (Vz). By definition of the weight filtration and (14.4),
Gr¥ (V). as a module over the polynomial algebra Q[NVy, ..., N,], is generated
by 1. As a quotient of Q[/Vy, ..., Ny], it inherits an algebra structure, with unit 1
and with N; = multiplication by N;(1). The integral graded module Gr" (V3) is
a subalgebra: as Gr™ (Vz) = 0 for i # 0, —2, —4, —6, it suffices to check that it is
stable by multiplication by v € Gr}¥ (Vg), i = 0 or —2 which is clear: G¥ (Vz) =
Z -1 and, if L is the free module spanned by Ny, ..., N,,

L =5 Gry (Vg): €= £0).

The form induced by ¥ can be recovered from the linear form £ on Gr 6(Vz)
t(v) == (1, v). Indeed, for £ € Gr%,(Vz), A € Gr¥,(Vz), one has

B(8,A) = —p(1,8)) = —£(£N).
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The algebra structure, and ¢, can be recovered from the symmetric trilinear form
#(z, ¥, 2) = t{zyz) on L = Gr¥(Va): the algebra is

Zoleol'az,

the first Z spanned by 1, the second by 1’ with £(1') = 1. The product of ¢ € L with
A€ LY is M¢) - 1’ while that of z, y € L is the linear form z = @z, y, 2).
We now consider the extension classes

Eqo € Ext' (Grgl (Vg), GY (Vo)) = Lo O

mer

D®™) = Hom (LY, 02

mec(D™™))
E1 € Ext! (Gr!(Va), Gr¥(va)0) = LV ® LY @ O7,,.(D")

= Hom (L@ L, 0% _ (D)
Bz € Ext! (G, (V2) , Gr¥%(V2)) = L ® O}, (D*) = Hom (LY, 0, (D™))

The valuation of the £, along z; = 0 are given by N; (10.2). For Ey, recalling
that L = Z", we find Ep = (q*, ..., ¢7") and the g; form a system of local coor-
dinates near 0. For A = (ay,...,a,) € LY = 2", we write ¢* := [Tg}". We have
then
Eo: Ae—s g
Ey:&,me— ¢~ Uy, with Uy, invertible on D",
Ez: de— g™,

compatibility with 1 imposes Ep()) = Ey(A), Ey (¢, m) = Ey(m, £).

Let us expand the U, ,, as an infinite product, extended over the A € LY, A =
(@ar,...,a,), witha; > 0, A #0.

Uem = com H(l — g?)s(bmA)
A
with ¢, a constant, bimultiplicative in ¢, m and e(£, m, A) complex, biadditive in
£, m. The integrability condition 10.3 reduces to
e(eia €4, /\))‘a == e(ea, €5, A))‘i'l
Thus we obtain an expansion

E, (f, m) — ct’mq—f.m H(l _ q)A(E)A(m)e(A)_
A

In the mirror story, Z, L, LV, Z become the H®, H2, [, H® of a Calabi—Yau
threefold, the basis of L some basis of H? contained in the ample cone, and A runs
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over the cohomology class of rational curves (in H*), with e(A), the number of ra-
tional curves in a given class, suitably defined.

For the components of F; in the given basis of L = Z™", and the dual basis of
LY, this gives

cii H(qa)-(e.e,)a H (1 _ Hﬁ“)em'\m ,

A

having as logarithmic derivative

e Y Ab
- z {(Ciej)a + Z MAidida [Tg; } .

A 1-11 q: ’
15. Integrality

dq,
Gu

For the degenerating elliptic curve 1.13 over D* (coordinate z), the formal power
series ) a, 2" Taylor expansion of ¢ as a function of z has a purely algebraic sense:
if the coefficients c, of an equation for £ are expanded as formal power series in
Z: €y = ) Canz", then the a, are polynomials in the Ca,m. Further, the story
makes sense in any characteristic, and is compatible with reduction modulo p. 1
expect similar integrality to hold in general,

Bibliography

(1] Ph.Candelas, X. C. de la Ossa, P. 8. Green and L. Parkes, A pair of Calabi—Yau manifolds as an
exactly soluble superconformal theory. Nuclear Phys. B359 (1991) 21-74. Reprinted in: Essays
on Mirror Manifolds, ed. S. T. Yau, pp. 31-95. International Press, Hong Kong 1992.

(2] E.Cattani and A. Kaplan, Degenerating variations of Hodge structures, in Théorie de Hodge,
Astérisque 179-180 (1989) pp. 67-96.

[3] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathe-
maticians, J. Amer. Math. Soc. 6 (1993) 223-247.

P. Deligne

School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540

March, 1993



