Local behavior of Hodge structures at infinity.

P. Deligne

This article is an expanded version of a letter to D. Morrison, inspired by his article [3]. I give a description of "very degenerating" variations of Hodge structures, which is well adapted to the variations arising in the mirror fairy tale. I also try to ascertain how "motivic" this description is.

0. Introduction

In [3], D. Morrison describes some of the results of [1] in a Hodge theoretic language. One ingredient is the variation of Hodge structures defined by a family of Calabi—Yau manifolds near a point (in a completed parameter space) of "maximal degeneracy". We interpret "maximal degeneracy" as leading to the appearance of variations of mixed Hodge structures of a special type (Hodge-Tate), and give a description of such mixed variations in terms of invertible holomorphic functions. The logarithmic derivatives of those functions are what appears in Morrison's paper.

I thank E. Cattani for a very helpful letter directing me to parts of [2] I had missed, and the referee for suggesting many improvements.

1. Notations

For V a polarized variation of Hodge structures of weight w on a complex variety S, we use the following notations.

 $V_{\mathbb{Z}}$: underlying local system of free abelian groups. For $R = \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathcal{O}$ (sheaf of holomorphic functions), $V_R := V_{\mathbb{Z}} \otimes R$.

 $\mathbb{Z}(k)$: $(2\pi i)^k \mathbb{Z}$, viewed as a Hodge structure of type (-k, -k)

Also: the corresponding constant variation.

 ψ : $V_{\mathbb{Z}} \otimes V_{\mathbb{Z}} \to \mathbb{Z}(-w)$: the polarization form, symmetric for w even and alternating for w odd.

At each point $s \in S$, the Hodge structure of the fiber V_s of V at s is given by a decomposition

$$V_{s\mathbb{C}} = \bigoplus_{p+q=w} V_s^{p,q}$$

with $V_s^{q,p}$ the complex conjugate of $V_s^{p,q}$. The Weil operator C: multiplication by i^{p-q} on $V_s^{p,q}$, is real and the form

$$(2\pi i)^w \psi(Cx,\bar{y})$$

is hermitian symmetric and positive definite.

The holomorphic vector bundle with integrable connection having $V_{\mathbb{C}}$ as sheaf of horizontal sections is identified with its sheaf $V_{\mathcal{O}}$ of holomorphic sections. We denote

 ∇ : its connection.

F: the Hodge filtration. At each point, $F_s^p = \bigoplus_{a \geq p} V_s^{a,b}$. It is a holomorphic filtration and $\nabla F^p \subset \Omega^1 \otimes F^{p-1}$ (Griffiths transversality).

Typical example

Let $(X_s)_{s \in S}$ be a family of nonsingular projective varieties parametrized by S, i.e. a projective and smooth map $f: X \to S$ (with $X_s = f^{-1}(s)$). Take

$$V_{\mathbb{Z}} := R^w f_* \mathbb{Z}$$

modulo torsion. It is the local system of the

$$H^w(X_s)$$
/torsion,

and $V_s^{p,q} = H^{p,q}(X_s)$.

For X_s purely of dimension n, and w = n, on the primitive part of $H^n(X_s)$ (the kernel of the cup-product with the first Chern class of the given ample line bundle), a polarization form is given by

$$(-1)^{n(n-1)/2} \frac{1}{(2\pi i)^n} \int x \cup y.$$

The construction of a polarization form on the whole of the cohomology is by reduction to that case, applied to linear sections of X_s .

2. Asymptotics

Let D be the open unit disc, and $D^* := D - \{0\}$. We take $S = D^{*n}$ $(n \ge 1)$ and recall known results on the behavior of V_s for $s \to 0$. To the extent possible, our references will be to the survey paper [2].

2.1. Monodromy

Let T_j be the monodromy of $V_{\mathbb{Z}}$ around $s_j = 0$. The T_j commute and are known to be quasi-unipotent. For simplicity, we assume they are even unipotent. We define

$$N_i := -\log(T_i)$$

(note the minus sign). Sign convention, explained for n=1: T is the effect of pushing an element of $(V_{\mathbb{Z}})_s$ horizontally along the path $\exp(2\pi i u)s$ ($0 \le u \le 1$).

2.2. Canonical extension

For any complex local system $H_{\mathbb{C}}$ on D^{*n} , with unipotent monodromy, we continue to write $H_{\mathcal{O}}$ for the *canonical extension* of the vector bundle $H_{\mathcal{O}}$ to D^n . It is characterized by the property that, in a local basis near 0, the matrix of 1-forms defining the connection has logarithmic poles along the $s_j = 0$, with nilpotent residues.

Consider on $H_{\mathcal{O}}$ the new connection

(2.2.1)
$$\nabla^{c} = \nabla \frac{-1}{2\pi} i \sum N_{j} \frac{ds_{j}}{s_{j}}.$$

The horizontal sections for ∇^c are the sections of the form $\exp(\log s \cdot N/2\pi i)h$ for h ∇ -horizontal. The connection ∇^c has no monodromy and turns $H_{\mathcal{O}}$ into a constant bundle. We will say *constant* to mean horizontal for ∇^c . The canonical extension of $H_{\mathcal{O}}$ is obtained by extending it as a constant bundle.

The construction of ∇^c depends on the choice of coordinates near 0, while the canonical extension does not. In fact, the constant vector bundle attached to $H_{\mathcal{O}}$ should be viewed as living on the tangent space T_0 of D^n at 0. Local coordinates s'_j (with s'_j/s_j invertible) define (a) an isomorphism φ between a neighborhood of 0 in D^n and a neighborhood of 0 in T_0 , (b) a constantification of $H_{\mathcal{O}}$. If we use φ to transplant the local system $H_{\mathbb{C}}$ and the constantification of $H_{\mathcal{O}}$ to T_0 , the result is independent of the local coordinates used.

If a filtration F of the canonical extension $H_{\mathcal{O}}$ is given, the corresponding *nilpotent orbit* is the constant filtration of $H_{\mathcal{O}}$ which coincides with F at 0. Again, to be coordinate free, it should live on T_0 .

2.3. Nilpotent orbit

For a polarized variation V on D^{*n} , the nilpotent orbit theorem states that

686 P. Deligne

(a) The Hodge filtration F extends to the canonical extension $V_{\mathcal{O}}$ as a filtration (still denoted F) by locally direct factors ([2] 2.1 (i)),

(b) The corresponding nilpotent orbit is again, in a neighborhood of 0, a variation of Hodge structures of weight w polarized by ψ ([2] 2.1 (ii)).

Conversely, let $(V_{\mathbb{Z}}, F_{\text{nilp}})$ be a polarized variation of Hodge structures on D^{*n} which is a nilpotent orbit: the filtration F_{nilp} is assumed constant (for ∇^c , see (2.2)). Let F be a new filtration of $V_{\mathcal{O}}$ on D^n , agreeing with F_{nilp} at s=0, and obeying transversality:

$$\nabla F^p \subset \Omega^1 \otimes F^{p-1}$$
.

Assume further that $\psi(F^p, F^{w-p-1}) = 0$ for all p. Then $(V_{\mathbb{Z}}, F)$ is, near 0, a variation of Hodge structures on D^{*n} , polarized by ψ . See [2], 2.8.

2.4 Weight filtration

There exists on $V_{\mathbb{Q}}$ a unique increasing filtration W, the weight filtration, such that $N_iW_k\subset W_{k-2}$ and that for any positive linear combination

$$N = \sum \lambda_j N_j$$

 $(\lambda_j > 0)$, N^k induces an isomorphism from $Gr^W_{w+k}(V_{\mathbb{R}})$ to $Gr^W_{w-k}(V_{\mathbb{R}})$. Further, $(V_{\mathbb{Z}}, W, F_{\text{nilp}})$ is a variation of mixed Hodge structures ([2] 2.3).

The construction of W is compatible with passage to the dual, as well as to tensor products. It follows that if ψ is a polarization form, then W_{w-i} and W_{w+i-1} are mutually orthogonal, and ψ induces a perfect pairing $Gr^W(\psi)$ between $Gr^W_{w-i}(V)$ and $Gr^W_{w+i}(V)$. Further, the induced pairings, and

$$Gr^W(N): Gr_k^W(V) \to Gr_{k-2}^W(V)$$

have positivity properties reminiscent of those of the cohomology of a nonsingular projective variety of dimension k, with the cup-product pairing to H^{2k} , the role of N being played by the cup-product with the first Chern class of an ample line bundle. In the terminology of [2] 1.16, $(V, W, F_{\rm nilp})$ is polarized by ψ and N. The reason for this analogy is not understood.

3. Warning

In general, W and the original Hodge filtration F do not define a mixed Hodge structure in a neighborhood of 0. Consider, for instance, a general pencil $f: X \to \mathbb{P}^1$ of hypersurfaces of degree d in \mathbb{P}^M . The fiber $X_{(\lambda,\mu)}$ at the point with projective coordinates (λ,μ) is the hypersurface with equation

$$\lambda F + \mu G = 0$$

(F,G) general forms of degree d). Let S be the set of critical values of f. On \mathbb{P}^1-S , we consider the variation

$$V_{\mathbb{Z}} = R^{M-1} f_* \mathbb{Z},$$

and restrict it to a punctured disc D^* centered at a critical value (λ_0, μ_0) .

We assume that

(a) M is even, hence X_z is of odd dimension w = M - 1.

The cohomology $H^w(X_z,\mathbb{Z})$ is torsion-free, primitive (i.e. annihilated by cup product with the hyperplane section class) and the polarization form is given by the cup product. One knows that the global monodromy, image of $\pi_1(\mathbb{P}^1-S,z)$, is Zariski dense in the corresponding symplectic group. Provided that $H^w(X_z,\mathbb{Z}) \neq 0$, i.e. $d \neq 1, 2, N$ is nilpotent of rank one. The weight filtration is

$$0 \subset W^{w-1} = \operatorname{Im}(N) \subset W^w = \ker(N) = V_{\mathbb{Z}}.$$

(b) $M \ge 4$ and d is large enough, so that $V_{\mathbb{C}} \ne F^{(w-1)/2}$.

If (W, F) were a mixed Hodge structure on D^* , Gr_{w-1}^W , being one-dimensional, would have to be of type ((w-1)/2, (w-1)/2):

$$Im(N) \subset F^{(w-1)/2}.$$

By analytic continuation, any image of Im(N) by the global monodromy group would still be in $F^{(w-1)/2}$. Those images span V, by Zariski density of the global monodromy group in the symplectic group, contradicting (b).

4

We now consider a case where (W,F) is a mixed Hodge structure. Fix a base point $s_0 \in D^{*n}$, let G be the group of automorphisms of $V_{s_0\mathbb{Q}}$ respecting the form ψ , and let G^0 be the connected component of the identity of G, viewed as a linear algebraic group: it is a special orthogonal group for w even, a symplectic group for w odd. The filtrations W, F and F_{nilp} correspond to isotropic flags:

$$W_{w-i}^{\perp} = W_{w+i-1}$$
$$(F^{i})^{\perp} = F^{w-i+1}$$

and similarly for $F_{\rm nilp}$. The subgroups of $G^0_{\mathbb C}$ stabilizing them are parabolic subgroups.

Proposition 4.1. If the parabolic subgroups $P(F_{nilp})$ and P(W) defined by F_{nilp} and W satisfy

(4.1.1) Lie
$$P(F_{\text{nilp}}) + \text{Lie } P(W) = \text{Lie } G_{\mathbb{C}}$$

then, near 0, (W, F) is a mixed Hodge structure, with the same Hodge numbers as $(W, F_{\rm nilp})$.

Remark. As the

$$\exp\left(\sum u_j N_j\right) \in G_{\mathbb{C}}$$

respect W and permute transitively the F_{nilp} taken at various points, the validity of (4.1.1) does not depend on the point s_0 at which it is considered.

Proof. The map

$$u \to s_0 \exp(2\pi i u)$$

maps a product of upper half-planes to D^{*m} . The pullback of the local system $V_{\mathbb{Z}}$ is a trivial local system, and we can consider the Hodge filtration F at $s_0 \exp(2\pi i u)$ as a filtration $\phi(u)$ of the fixed vector space $V_{s_0\mathbb{C}}$.

If one wants to view $V_{\mathcal{O}}$ as a constant vector bundle as in 2.2, $\phi(u)$ is to be replaced by $\exp(-uN)\phi(u)$. In particular, if we write F_{nilp} for F_{nilp} at s_0 ,

$$F_{\text{nilp}} = \lim \exp(-uN)\phi(u).$$

Here the limit is taken as the infimum of the $\text{Im}(u_j) \to \infty$, i.e. $s_0 \exp(2\pi i u) \to 0$. From (4.1.1), it then follows that for $\text{inf Im}(u_i)$ large, the pair of filtrations

$$(W, \exp(-uN)\phi(u))$$

is conjugate to (W, F_{nilp}) by $g \in G(\mathbb{C})$ close to 1. In particular,

$$\dim\left(W_a\cap F^b_{\mathrm{nilp}}\right)=\dim\left(W_a\cap\exp(-uN)\phi^b(u)\right).$$

As $\exp(-uN)\phi(u)$ is close to $F_{\rm nilp}$, this equality of dimensions implies that the filtration induced by $\exp(-uN)\phi(u)$ on

$$Gr_a^W(V_{s_0\mathbb{C}})$$

tends to that induced by F_{nilp} . As N_j respects W and acts trivially on

$$Gr_a^W(V_{s_0\mathbb{C}}),$$

the filtrations $\phi(u)$ and $\exp(-uN)\phi(u)$ induce the same filtration on $Gr_a^W(V_{s,\mathbb{C}})$. For $\inf \operatorname{Im}(u_j)$ large enough, this induced filtration defines a Hodge structure of weight a; a, being close to the Hodge filtration $Gr_a^W(F_{\operatorname{nilp}})$. It follows that (W, F) is mixed Hodge, with the same Hodge numbers as $(W, F_{\operatorname{nilp}})$.

5. Variant

Fix some Hodge structures H_{α} and some horizontal tensors t_{α} , integral of type (0,0), in some tensor powers

$$\bigotimes^{a(\alpha)} V_{\mathbb{Z}} \otimes \bigotimes^{b(\alpha)} V_{\mathbb{Z}}^{\vee} \otimes H_{\alpha}.$$

One can then repeat 4.1 and its proof with G replaced by the subgroup fixing the t_{α} .

6

We now assume that the mixed Hodge structure $(V_{\mathbb{Z}}, W, F_{\text{nilp}})$ is *Hodge-Tate*, i.e. such that

(6.1)
$$Gr_k^W$$
 is $\begin{cases} \text{of type } (\ell, \ell) & \text{for } k = 2\ell \\ 0 & \text{for } k \text{ odd.} \end{cases}$

This should be viewed as an assumption of maximal degeneracy. It means that $W_{2k}=W_{2k+1}$ and that the filtrations $F_{\rm nilp}$ and W are opposite in the sense that the map $F_{\rm nilp}^p\oplus W_{2p-2}\to V_{\mathcal O}$ is an isomorphism for all p. If we set

$$V_{\text{nilp}}^{(p)} = F_{\text{nilp}}^p \cap W_{2p},$$

 $V_{\mathcal{O}}$ is then the direct sum of the $V_{\text{nilp}}^{(p)}$, with

$$F_{\mathrm{nilp}}^p = \bigoplus_{a \geq p} V_{\mathrm{nilp}}^{(p)}, \ W^{2p} = W^{2p+1} = \bigoplus_{a \leq p} V_{\mathrm{nilp}}^{(p)}.$$

The assumption (4.1.1) holds and 4.1 is in fact easier to prove in this case. In terms of the nilpotent orbit trivialization of $V_{\mathcal{O}}$, the filtrations W and F_{nilp} are constant. As W and F_{nilp} are opposed, and F and F_{nilp} coincide at 0, W and F remain opposed in a neighborhood of 0:

(6.2)
$$V_{\mathcal{O}} = \bigoplus V^{(p)} \quad \text{with}$$

$$F^{p} = \bigoplus_{a \geq p} V^{(a)}, \ W^{2k} = W^{2k+1} = \bigoplus_{a \leq k} V^{(a)},$$

implying that $(V_{\mathbb{Z}}, W, F)$ is mixed Hodge and Hodge-Tate. We will assume D^{*m} has been shrunk so that $(V_{\mathbb{Z}}, W, F)$ is mixed Hodge on the whole of D^{*m} .

Our aim is to classify, i.e. to give another description, of variations such as the above.

7

In the category of mixed Hodge structures $\operatorname{Hom}(\mathbb{Z}(0),\mathbb{Z}(1))=0$ (notations: see 1): an extension of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)$ has no nontrivial automorphism as extension. The extensions are classified by \mathbb{C}^* :

(7.1)
$$\operatorname{Ext}^{1}(\mathbb{Z}(0), \mathbb{Z}(1)) = \mathbb{C}^{*},$$

with $q \in \mathbb{C}^*$ corresponding to the extension

$$0 \to \mathbb{Z}(1) \xrightarrow{\alpha} H \xrightarrow{\beta} \mathbb{Z}(0) \to 0.$$

690 P. Deligne

(7.2)
$$H_{\mathbb{C}} = \mathbb{C}^{2}, \quad \text{basis} \quad e_{0}, e_{1}$$

$$W_{-2} = \mathbb{C}e_{1}, \quad F^{0} = \mathbb{C}e_{0}$$

$$H_{\mathbb{Z}} = 2\pi i \mathbb{Z} \cdot e_{1} + \mathbb{Z} \cdot (e_{0} + \log q e_{1}) \subset H_{\mathbb{C}}$$

$$\alpha(2\pi i) = 2\pi i e_{1}, \quad \beta(e_{0}) = 1$$

Note that the choice of the determination of $\log q$ does not matter.

Equivalent description: $H_{\mathbb{Z}}$ has a basis f_0 , f_1 with $\alpha(2\pi i) = f_0$, $\beta(f_1) = 1$, $F^0 \subset H_{\mathbb{C}}$ the kernel of $x + \frac{\log q}{2\pi i} y \colon H_{\mathbb{C}} \to \mathbb{C}$.

Variations of mixed Hodge structures H over S that are extensions of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)$ are similarly classified by invertible holomorphic functions. The extension H defined by q has $H_{\mathcal{O}} = \mathcal{O}e_0 \oplus \mathcal{O}e_1$, with basis e_0 (spanning F^0) and e_1 (spanning W_{-2}) and integral lattice and structure maps α , β as in (7.2). The connection is given by

(7.3)
$$\nabla = d + \begin{pmatrix} 0 & 0 \\ -\frac{dq}{q} & 0 \end{pmatrix}$$

We now take $S = D^{*n}$. Let n_i be the order of q along $s_i = 0$:

$$T_i(\log)q = \log q + n_i \cdot 2\pi i$$
.

The constant sections of $H_{\mathcal{O}}$, in the sense of 2.2, are spanned by e_1 and

$$e_0 + \log(q/\prod s_j^{n_j})e_1.$$

It follows that F extends to the canonical extension of $H_{\mathcal{O}}$, remaining a supplement to W_{-2} , if and only if q belongs to the group $\mathcal{O}^*_{\mathrm{mer}}(D^{*m})$ of invertible holomorphic functions on D^{*m} , meromorphic along the $s_j=0$. The filtration F is constant with respect to the trivialization of $H_{\mathcal{O}}$ given in 2.2 if and only if q is a monomial $a \cdot \prod s_i^{n_i}$. The nilpotent orbit attached to H (cf. 1.3) is again an extension of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)$. Its invariant is the monomial q_0 such that q/q_0 is holomorphic invertible on D^m with value 1 at 0.

The definitions given do not require the choice of which is i and which is -i in \mathbb{C} . If one is willing to make that choice, one could rather say that the extensions of \mathbb{Z} (type (0,0)) by \mathbb{Z} (type (-1,-1)) are parametrized by \mathbb{C}^* . Formulas (7.2) (7.3) should be changed as follows

$$(7.2)^* H_{\mathbb{Z}} = \mathbb{Z}e_1 + \mathbb{Z}\left(e_0 + \frac{\log q}{2\pi i}e_1\right) \subset H_{\mathbb{C}}$$

$$\alpha(1) = e_1 \quad \beta(e_0) = 1$$

$$(7.3)^* \text{replace } -\frac{dq}{q} \quad \text{by } -\frac{1}{2\pi i}\frac{dq}{q}$$

More generally, for A and B free abelian groups, viewed as purely of type (p, p) and (p-1, p-1), one has for the corresponding constant local system on S

(7.4)
$$\operatorname{Ext}^{1}_{\operatorname{mixed Hodge}}(A, B) = \operatorname{Hom}(A, B) \otimes \mathcal{O}^{*}(S)$$

The underlying vector bundle with connection $(H_{\mathcal{O}}, \nabla)$ of the extension with class E is

(7.5)
$$H_{\mathcal{O}} = A_{\mathcal{O}} \oplus B_{\mathcal{O}}$$

$$\nabla = d - \frac{1}{2\pi i} d \log E$$

For $S=D^{*m}$, the filtration F extends to the canonical extension, remaining opposite to W at 0, if and only if

$$E \in \operatorname{Hom}(A, B) \otimes \mathcal{O}^*_{\operatorname{mer}}(D^{*m}).$$

The group $\mathcal{O}^*_{\mathrm{mer}}(D^{*n})$ contains the group of monomials $\{a\cdot\prod s_j^{n_j}\}$, and retracts to it by a unique homomorphism nilp such that $f/\operatorname{nilp}(f)$ is holomorphic at zero, where it takes the value 1.

Let F_{nilp} be the constant filtration (2.2) agreeing with F at 0. The nilpotent orbit $(H_{\mathbb{Z}}, F_{\text{nilp}})$ is again an extension of A by B. Its invariant is nilp(E), in

$$\operatorname{Hom}(A, B) \otimes (\operatorname{monomials}).$$

8

With SS6 as the motivating example, we now consider on D^{*m} variations of mixed Hodge structures $(V_{\mathbb{Z}}, W, F)$ of Hodge-Tate type (6.1) such that (8.1), (8.2) below hold.

8.1.

 $Gr_{2k}^W(V_{\mathbb{Z}})$ is a constant local system.

In (8.1), W denotes the filtration of $V_{\mathbb{Z}}$ induced by the filtration W of $V_{\mathbb{Q}}$. We will identify the constant local system

$$Gr_{2k}^W(V_{\mathbb{Z}})$$

with its constant value: a free abelian group. The conditions (8.1) imply that the monodromy is unipotent.

8.2.

F extends to the canonical extension of $V_{\mathcal{O}}$, and, at 0, the filtrations F and W are opposed.

By (8.1) (8.2), the quotient

$$W_{2k}(V_{\mathbb{Z}})/W_{2k-4}(V_{\mathbb{Z}})$$

is an extension of $Gr_{2k}^W(V_{\mathbb{Z}})$ (type (k,k)) by $Gr_{2k-2}^W(V_{\mathbb{Z}})$ (type (k-1,k-1)) of the type considered in 7. It has an extension class

$$E_k \in \operatorname{Hom}(Gr_{2k}^W(V_{\mathbb{Z}}), Gr_{2k-2}^W(V_{\mathbb{Z}})) \otimes \mathcal{O}_{\operatorname{mer}}^*(D^{*m}).$$

Let E be the sum of those classes

(8.3)
$$E \in \operatorname{End}(Gr^W(V_{\mathbb{Z}}))_{-2} \otimes \mathcal{O}_{\operatorname{mer}}^*(D^{*m}).$$

As in (6.1), the weight and Hodge filtration of V_O define a direct sum decomposition $V_O = \oplus V^{(p)}$. One has

$$V^{(p)} \xrightarrow{\sim} Gr_{2p}^W(V_{\mathcal{O}}) = Gr_{2p}^W(V_{\mathbb{Z}}) \otimes \mathcal{O},$$

giving

$$(8.4) V_{\mathcal{O}} \simeq Gr^{W}(V_{\mathbb{Z}}) \otimes \mathcal{O}.$$

Lemma 9. The isomorphism (8.4) transforms the connection ∇ of $V_{\mathcal{O}}$ into the connection

$$\nabla = d - \frac{1}{2\pi i} d \log E$$

The connection ∇ of $V_{\mathcal{O}}$ respects W, induces the trivial connection on

$$Gr^W(V_{\mathcal{O}}) = Gr^W(V_{\mathbb{Z}}) \otimes \mathcal{O}$$

and maps F^p to F^{p-1} . It is hence given by a 1-form with values in endomorphisms of degree -2 of $Gr^W(V_{\mathbb{Z}})\otimes \mathcal{O}$. To compute it, it suffices to compute the induced connections on the quotient W_{2k}/W_{2k-4} , and we apply (7.5).

10

If we replace F by $F_{\rm nilp}$, the constant filtration (2.2) agreeing with F at 0, one obtains the nilpotent orbit $(V_{\mathbb{Z}}, W, F_{\rm nilp})$ attached to $(V_{\mathbb{Z}}, W, F)$. By SS7, the corresponding invariant $E((V_{\mathbb{Z}}, W, F_{\rm nilp}))$ is deduced from $E = E((V_{\mathbb{Z}}, W, F))$ by applying

(10.1)
$$\operatorname{nilp} \colon \mathcal{O}_{\operatorname{mer}}^*(D^{*m}) \to \{a \, s_1^{n_1} \dots s_m^{n_m}\}$$

The group of monomials is an extension of \mathbb{Z}^m (the exponents) by \mathbb{C}^* . If one projects further to \mathbb{Z}^m , the information retained is the $Gr^W(1-T_i)=Gr^W(N_i)$: by reduction to the case of extensions of \mathbb{Z} by $\mathbb{Z}(1)$, one checks that, applying v_i , the order along $s_i=0$, one has

(10.2)
$$Gr^W(1-T_i) = Gr^W(N_i) = -v_i(E) \in \operatorname{End}(Gr^W(V_{\mathbb{Z}}))_{-2}$$

The integrability of ∇ can be written

(10.3)
$$d \log E \wedge d \log E = 0$$
 in $\operatorname{End}(G^W(V_{\mathbb{Z}}))_{-4} \otimes \Omega^2$.

For $(V_{\mathbb{Z}}, W, F_{\text{nilp}})$, i.e. for the dominant part E_0 , it corresponds to the commutativity of the $Gr^W(N_i)$.

Let us consider pairs

$$(V_{\mathbb{Z}}, W, F_{\text{nilp}}), E)$$

of a mixed Tate nilpotent orbit $(V_{\mathbb{Z}}, W, F_{\text{nilp}})$, whose invariant will be denoted E_{nilp} , and of

$$E \in Gr^W(V_{\mathbb{Z}})_{-2} \otimes \mathcal{O}_{\mathrm{mer}}^*(D^{*n}),$$

such that

$$d \log E \wedge d \log E = 0$$
 and $E_{\text{nilp}} = \text{nilp}(E)$.

We turn those pairs into a category by defining a morphism f from

$$((V_{\mathbb{Z}}, W, F_{\mathrm{nilp}}), E)$$

to

$$((V_{\mathbb{Z}}, W', F'_{\mathrm{nilp}}), E')$$

to be

$$f\colon V_{\mathbb{Z}}\to V'_{\mathbb{Z}},$$

compatible with W and F_{nilp} , and such that

$$E' \circ Gr^W(f) = Gr^W(f) \circ E$$

Theorem 11. To $(V_{\mathbb{Z}}, W, F)$ as in SS8, let us attach

- (a) the corresponding nilpotent orbit $(V_{\mathbb{Z}}, W, F_{\text{nilp}})$.
- (b) $E \in \operatorname{End}(Gr^W(V_{\mathbb{Z}}))_{-2} \otimes \mathcal{O}_{\operatorname{mer}}^*(D^{*m}).$

This construction is an equivalence from the category of variations $(V_{\mathbb{Z}}, W, F)$ as in SS8 to the category of pairs as above.

Remark. The functor of the theorem is compatible with tensor products, if the E of $V_{\mathbb{Z}} \otimes V_{\mathbb{Z}}'$ is defined to be $E \otimes \operatorname{Id}_{V'} + \operatorname{Id}_{V} \otimes E'$. It is also compatible with duals (with E going to the opposite of its transpose) and, combining the two, with inner Hom.

Proof. A morphism of V to V' is a section of $\operatorname{Hom}(V,V')_{\mathbb{Z}}$ in W_0 and F^0 . Thus, to show that the function is fully faithful, it suffices to show that a global section v of $V_{\mathbb{Z}}$ is in W_0 and F^0 if it is in W_0 , in $F^0_{\operatorname{nilp}}$ and if its image \bar{v} in $\operatorname{Gr}_0^W(V_{\mathbb{Z}})$ is killed by $E \colon E\bar{v}$ trivial in $\operatorname{Gr}_{-2}^W(V_{\mathbb{Z}}) \otimes \mathcal{O}^*$.

Being global and horizontal, v is constant, in the sense of (2.2). Let $v^{(0)}$ be its component in $V^{(0)}$ (6.2). Via the isomorphism of $V^{(0)}$ with $Gr_0^W(V_{\mathbf{Z}})\otimes \mathcal{O}$, it corresponds to \bar{v} in $Gr_0^W(V_{\mathbf{Z}})$. By Lemma 9, as $E\bar{v}$ is trivial, $v^{(0)}$ is horizontal. The two constant sections v and $v^{(0)}$ coincide at 0, as v is in F_{nilp}^0 . It follows that they are equal, and $v=v^{(0)}\in F^0$.

It remains to show that any $((V_{\mathbb{Z}}^{\text{nilp}}, W_{\text{nilp}}, F_{\text{nilp}}), E)$ is the image by the functor of some $(V_{\mathbb{Z}}, W, F)$. The sought after $V_{\mathcal{O}}$, with its weight and Hodge filtration, and connection, is

$$V_{\mathcal{O}} = Gr^{W}(V_{\mathbb{Z}}^{\text{nilp}}) \otimes \mathcal{O}$$
$$\nabla = d - \frac{1}{2\pi i} d \log E.$$

Its canonical extension is $Gr^W(V_{\mathbb{Z}}^{\mathrm{nilp}})\otimes \mathcal{O}$ on D^m , and the constantification (2.2) gives

$$\phi \colon Gr^W(V_{\mathbb{Z}}^{\mathrm{nilp}}) \otimes \mathcal{O} \to V_{\mathcal{O}}$$

with $Gr^W(V_{\mathbb{Z}}^{\mathrm{nilp}})$ mapping to constant sections. The map ϕ is horizontal if, at the source, one uses

$$\nabla_0 = d - \frac{1}{2\pi i} d \log E_{\text{nilp}}.$$

The vector bundle with connection

$$\operatorname{Gr}^W(V^{\operatorname{nilp}}_{\mathbb Z})\otimes \mathcal O, \ \nabla_0$$

is the one underlying

$$(V_{\mathbb{Z}}^{\mathrm{nilp}}, W^{\mathrm{nilp}}, F_{\mathrm{nilp}}).$$

The sought after $(V_{\mathbb{Z}}, W, F)$ is given by

$$V_{\mathbb{Z}} = \phi(V_{\mathbb{Z}}^{\text{nilp}}) \subset V_{\mathcal{O}}.$$

Applying the functor, it gives back $(V_{\mathbb{Z}}^{\text{nilp}}, W^{\text{nilp}}, F_{\text{nilp}})$. To check that it gives back E, it suffices to check it on the quotients W_{2k}/W_{2k-4} . This case in turn reduces to that of extensions of \mathbb{Z} by $\mathbb{Z}(1)$, which is left to the reader.

12

We now apply Theorem 11 in the situation of SS6. To a polarized variation V on D^{*m} , with (V, W, F_{nilp}) of Hodge-Tate type, we attach the corresponding polarized nilpotent orbit (V, F_{nilp}) and $E \in \text{End}(Gr^W(V_{\mathbb{Z}}))_{-2} \otimes \mathcal{O}^*_{\text{mer}}(D^{*m})$.

The fact that ψ is a morphism $V \otimes V \to \mathbb{Z}(-w)$, and hence induces a morphism $(V_{\mathbb{Z}}, W, F) \otimes (V_{\mathbb{Z}}, W, F) \to \mathbb{Z}(-w)$, translates into

(12.1)
$$\psi(Ex, y)\psi(x, Ey) = 1 \quad \text{in} \quad \mathcal{O}_{\text{mer}}^*(D^{*m})$$

for $x \in Gr_k^W(V_{\mathbb{Z}})$, $y \in Gr_\ell^W(V_{\mathbb{Z}})$ and $k + \ell = 2$. Conversely, given

- (a) a polarized nilpotent orbit (V, F_{nilp}) with (V, W, F_{nilp}) of Hodge-Tate type,
- (b) $E \in \operatorname{End}(Gr^W(V_{\mathbb{Z}}))_{-2} \otimes \mathcal{O}^*_{\operatorname{mer}}(D^{*n})$ with $d \log E \wedge d \log E = 0$, E compatible with E_0 attached to $(V, W, F_{\operatorname{nilp}})$: $E E_0$ holomorphically trivial at 0, and E obeying (12.1), we obtain by 11 a mixed variation (V, W, F). By (12.1), $\psi \colon (V_{\mathbb{Z}}, W, F) \otimes (V_{\mathbb{Z}}, W, F) \to \mathbb{Z}(-w)$ is a morphism. If we forget W, $(V_{\mathbb{Z}}, F)$ admits $(V, F_{\operatorname{nilp}})$ as nilpotent orbit. By 2.3, $(V_{\mathbb{Z}}, F)$ is a polarized variation near 0.

13. Example

Let E be a family of elliptic curves parametrized by D^* , and consider the variation $H_1(E_s)$ ($s \in D^*$). Assume the monodromy is unipotent and nontrivial. In that case, one can uniquely write

$$E_s = \mathbb{C}^*/q(s)^{\mathbb{Z}},$$

with q(s) holomorphic invertible on D^* and tending to 0 with s. We are in the situation of (4.1) and the mixed variation $(H_1(E_s), W, F)$ is the extension of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)$ with invariant q(s).

In this case, the mixed Hodge structures $(H_1(E_s), W, F)$ are subquotients of the homology of algebraic varieties: they are "motivic". Indeed, the extension of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)$ with invariant q ($q \neq 1$) is the homology (H_1) of $\mathbb{P}^1(\mathbb{C}) - \{1, q\}$ with the points 0 and ∞ identified. To check this, apply (P. Deligne, Théorie de Hodge III, Publ. Math. IHES 44 (1974), pp. 5–78, construction 10.3.8).

More generally, for a family of polarized abelian varieties A on D^{*m} , and their H_1 , 4.1 applies and the resulting mixed Hodge structures are motivic.

I do not expect this to hold in general. Let V be a direct factor of $H^w(X_s)$, for X a family of projective nonsingular varieties over D^{*n} . The nilpotent orbit

$$(V, W, F_{\text{nilp}})$$

should be motivic but, even if (V, W, F_{nilp}) is Hodge-Tate, the (V_s, W, F) should not always be. If they were, it would conflict with another conjecture: for an iterated

extension E of $\mathbb{Z}(0)$ by $\mathbb{Z}(1)^n$ by $\mathbb{Z}(2)$, defining extension classes

$$q_{2,i} \in \operatorname{Ext}^{1}(\mathbb{Z}(0), \mathbb{Z}(1)^{n}) = \mathbb{C}^{*n}$$

$$q_{2,i} \in \operatorname{Ext}^{1}(\mathbb{Z}(1)^{n}, \mathbb{Z}(2)) = \mathbb{C}^{*n},$$

if E is motivic, then $\prod\{q_{1,i},q_{2,i}\}\in K_2(\mathbb{C})$ is trivial. As a consequence,

$$\sum \frac{dq_{1i}}{q_{1i}} \wedge \frac{dq_{2i}}{q_{2i}} = 0$$

in $\Omega^2_{\mathbb{C}/\mathbb{Q}}$ and, in the case n=1, q_1 and q_2 are algebraically dependent over \mathbb{Q} . Let us consider the family of quintic threefolds

$$\sum_{1}^{5} X_{i}^{5} - 5\lambda \prod_{1}^{5} X_{i} = 0.$$

Let G be the multiplicative group of 5-uples of fifth roots of 1 with $\prod_{i=1}^{5} \zeta_{i} = 1$. It acts on each quintic in the family: $(X_{i}) \mapsto (\zeta_{i}X_{i})$, with the quotient of G by the diagonal (all ζ_{i} equals) acting faithfully. Let V be the part of H^{3} fixed by G. By the computations of [1], V is of rank 4 and the monodromy group is Zariski dense in Sp_{4} : it contains a unipotent transformation u with u-1 of rank one (monodromy around $\lambda = \zeta$, for $\zeta^{5} = 1$), and one with u-1 of rank 3, i.e. one Jordan block (monodromy around $\psi = \infty$). As the Zariski closure of the monodromy is known to be semi-simple, and contained in Sp_{4} , this leaves no choice.

Near $\lambda=\infty$, the nilpotent orbit is of Hodge-Tate type, so that E gives rise to an iterated extension of $\mathbb{Z}(-3)$ by $\mathbb{Z}(-2)$ by $\mathbb{Z}(-1)$ by $\mathbb{Z}(0)$. Let q_1 (resp. q_2) be the class of the resulting extension of $\mathbb{Z}(-3)$ by $\mathbb{Z}(-2)$ (resp. of $\mathbb{Z}(-2)$ by $\mathbb{Z}(-1)$). If, for every value of λ near ∞ , q_1 and q_2 are algebraically dependent over \mathbb{Q} , a Baire category argument and analytic continuation show that $F(q_1, q_2) = 0$ identically for some polynomial F.

For all but finitely many points (q_1^0,q_2^0) on the algebraic curve $F(q_1,q_2)=0$, in a neighborhood of (q_1^0,q_2^0) , the equation $F(q_1,q_2)=0$ amounts to $q_2/q_2^0=\varphi(q_1/q_1^0)$ for some function φ depending on (q_1^0,q_2^0) . We write $\varphi[q_1^0,q_2^0]$ for that function. It maps 1 to 1, and its ∞ -jet at 1, $\varphi_\infty[q_1^0,q_2^0]$, depends algebraically on (q_1^0,q_2^0) , i.e. for each k, the k-jet $\varphi_k[q_1^0,q_2^0]$ does so.

The ∞ -jet $\varphi_\infty[q_1^0,q_2^0]$ carries the following information. Fix λ_0 near ∞ , giving rise to (q_1^0,q_2^0) . Fix on V a new integral basis e_i $(0 \le i \le 3)$, with e_i in $F^i \cap W_{-2i}$ and projecting in $Gr_{-2i}^W(V) \simeq \mathbb{Z}(-i)$ to the integral generator. In this new basis V_{λ_0} is the split mixed Hodge structure $\bigoplus_{0}^3 \mathbb{Z}(-i)$. The ∞ -jet $\varphi_\infty[q_1^0,q_2^0]$ tells how, in this basis, the Hodge filtration changes with λ , up to a reparametrization $\lambda \mapsto \varphi(\lambda)$.

Let $\mathbb{P}(V)$ be the projective space of rays in V. The symplectic form ψ gives on $\mathbb{P}(V)$ a "null-system" of lines, corresponding to the Lagrangian subspaces of V.

The variable Hodge filtration F gives a curve Γ in $\mathbb{P}(V)$: the trajectory of F^3 . At a general point of Γ , the tangent line is a null line, corresponding to F^2 . The weight filtration gives an isotropic flag w. The previous discussion gives: for each $\gamma \in \Gamma$, let us consider the relative position of the ∞ order jet Γ_{γ} of Γ at γ , and of w. Here, "relative position" is an element of the quotient by $\mathrm{Sp}(4)$ of the space of pairs (∞ -order jet of curve, isotropic flag). For variable γ , this relative position is controlled by a $\varphi_{\infty}[q_0,q_1]$, hence stays on a 1-dimensional algebraic subspace. If we analytically continue and come back to γ , we see that (Γ_{γ},w') is again in this subspace, for a Zariski dense set of w', hence for all w'. As the space of all isotropic flags is 4-dimensional, there is a 3-dimensional space of w' such that all (Γ_{γ},w') are in the same relative position. The ∞ -jet Γ_{γ} is hence stable by a subgroup H of $\mathrm{Sp}(4)$, fixing γ , and of dimension ≥ 3 . The curve Γ spans $\mathrm{P}(V)$, hence cannot be pointwise fixed. It must be an orbit of H, hence is an algebraic curve. Contradiction: no algebraic curve has a group of automorphisms of dimension ≥ 3 , all fixing a point γ .

14. Example

The following occurs in the study of mirror symmetry.

Let V be a polarized variation of Hodge structure on D^{*n} , of the following type:

(14.1) weight
$$-3$$
 (like an H_3), Hodge numbers h^{pq} $(p = 0, -1, -2, -3): 1, n, n, 1$

- (14.2) polarization form ψ of discriminant 1
- (14.3) unipotent monodromy, and associated nilpotent orbit of Hodge-Tate type. Rank of the $Gr_i^W(V_{\mathbb{Z}})$ (i=0,-2,-4,-6):1,n,n,1. The form ψ is a perfect duality between Gr_{-i}^W and $Gr_{-(6-i)}^W$.

(14.4) For 1 a basis of
$$Gr_0^W(V_{\mathbb{Z}})$$
, the $N_i(1)$ form a basis of $Gr_{-2}^W(V_{\mathbb{Z}})$.

Fix a basis $1 \in Gr_0^W(V_{\mathbb{Z}})$. By definition of the weight filtration and (14.4), $Gr^W(V_{\mathbb{Q}})$, as a module over the polynomial algebra $\mathbb{Q}[N_1,\ldots,N_n]$, is generated by 1. As a quotient of $\mathbb{Q}[N_1,\ldots,N_n]$, it inherits an algebra structure, with unit 1 and with $N_i =$ multiplication by $N_i(1)$. The integral graded module $Gr^W(V_{\mathbb{Z}})$ is a subalgebra: as $Gr^W(V_{\mathbb{Z}}) = 0$ for $i \neq 0, -2, -4, -6$, it suffices to check that it is stable by multiplication by $v \in Gr_i^W(V_{\mathbb{Z}})$, i = 0 or -2 which is clear: $G_0^W(V_{\mathbb{Z}}) = \mathbb{Z} \cdot 1$ and, if L is the free module spanned by N_1, \ldots, N_n ,

$$L \xrightarrow{\sim} Gr_0^W(V_{\mathbb{Z}}) \colon \ell \to \ell(1).$$

The form induced by ψ can be recovered from the linear form t on $Gr_{-6}^W(V_{\mathbb{Z}})$: $t(v):=\psi(1,v)$. Indeed, for $\ell\in Gr_{-2}^W(V_{\mathbb{Z}})$, $\lambda\in Gr_{-4}^W(V_{\mathbb{Z}})$, one has

$$\psi(\ell,\lambda) = -\psi(1,\ell\lambda) = -t(\ell\lambda).$$

The algebra structure, and t, can be recovered from the symmetric trilinear form $\phi(x,y,z):=t(xyz)$ on $L=Gr_{-2}^W(V_{\mathbb{Z}})$: the algebra is

$$\mathbb{Z} \oplus L \oplus L^{\vee} \oplus \mathbb{Z}$$
,

the first $\mathbb Z$ spanned by 1, the second by 1' with t(1')=1. The product of $\ell\in L$ with $\lambda\in L^\vee$ is $\lambda(\ell)\cdot 1'$ while that of $x,y\in L$ is the linear form $z\mapsto \phi(x,y,z)$.

We now consider the extension classes

$$E_{0} \in \operatorname{Ext}^{1}\left(Gr_{0}^{W}(V_{\mathbb{Z}}), G_{1}^{W}(V_{\mathbb{Z}})\right) = L \otimes \mathcal{O}_{\operatorname{mer}}^{*}D^{(*n)} = \operatorname{Hom}\left(L^{\vee}, \mathcal{O}_{\operatorname{mer}}^{*}(D^{*n})\right)$$

$$E_{1} \in \operatorname{Ext}^{1}\left(Gr_{-2}^{W}(V_{\mathbb{Z}}), Gr_{-4}^{W}(V_{\mathbb{Z}})0\right) = L^{\vee} \otimes L^{\vee} \otimes \mathcal{O}_{\operatorname{mer}}^{*}(D^{*})$$

$$= \operatorname{Hom}\left(L \otimes L, \mathcal{O}_{\operatorname{mer}}^{*}(D^{*n})\right)$$

$$E_2 \in \operatorname{Ext}^1\left(Gr^W_{-4}(V_{\mathbb{Z}}), Gr^W_{-6}(V_{\mathbb{Z}})\right) = L \otimes \mathcal{O}^*_{\operatorname{mer}}(D^*) = \operatorname{Hom}\left(L^{\vee}, \mathcal{O}^*_{\operatorname{mer}}(D^{*n})\right)$$

The valuation of the E_k along $z_i=0$ are given by N_i (10.2). For E_0 , recalling that $L=\mathbb{Z}^n$, we find $E_0=(q_1^{-1},\ldots,q_n^{-1})$ and the q_i form a system of local coordinates near 0. For $\lambda=(a_1,\ldots,a_n)\in L^\vee=\mathbb{Z}^n$, we write $q^\lambda:=\prod q_i^{a_i}$. We have then

$$E_0 \colon \lambda \longmapsto q^{-\lambda}$$

$$E_1 \colon \ell, m \longmapsto q^{-\ell \cdot m} \ U_{\ell,m}, \quad \text{with } U_{\ell,m} \text{ invertible on } D^n.$$

$$E_2 \colon \lambda \longmapsto q^{-\lambda};$$

compatibility with ψ imposes $E_0(\lambda) = E_2(\lambda)$, $E_1(\ell, m) = E_1(m, \ell)$.

Let us expand the $U_{\ell,m}$ as an infinite product, extended over the $\lambda \in L^{\vee}$, $\lambda = (a_1, \ldots, a_n)$, with $a_i \geq 0$, $\lambda \neq 0$.

$$U_{\ell,m} = c_{\ell,m} \prod_{\lambda} (1 - q^{\lambda})^{e(\ell,m,\lambda)},$$

with $c_{\ell,m}$ a constant, bimultiplicative in ℓ , m and $e(\ell,m,\lambda)$ complex, biadditive in ℓ , m. The integrability condition 10.3 reduces to

$$e(e_i, e_j, \lambda)\lambda_a = e(e_a, e_i, \lambda)\lambda_i$$

Thus we obtain an expansion

$$E_1(\ell,m) = c_{\ell,m} q^{-\ell,m} \prod_{\lambda} (1-q)^{\lambda(\ell)\lambda(m)e(\lambda)}.$$

In the mirror story, \mathbb{Z} , L, L^{\vee} , \mathbb{Z} become the H^0 , H^2 , H^4 , H^6 of a Calabi-Yau threefold, the basis of L some basis of H^2 contained in the ample cone, and λ runs

over the cohomology class of rational curves (in H^4), with $e(\lambda)$, the number of rational curves in a given class, suitably defined.

For the components of E_1 in the given basis of $L = \mathbb{Z}^n$, and the dual basis of L^{\vee} , this gives

$$c_{i,j} \prod (q_a)^{-(e_i e_j)_a} \prod_{\lambda} \left(1 - \prod q_a^{\lambda_a}\right)^{e(\lambda)\lambda_i \lambda_j},$$

having as logarithmic derivative

$$-\sum_a rac{dq_a}{q_a} \left\{ (e_i e_j)_a + \sum_\lambda rac{e(\lambda) \lambda_i \lambda_j \lambda_a \prod q_b^{\lambda_b}}{1 - \prod q_b^{\lambda_b}}
ight\}.$$

15. Integrality

For the degenerating elliptic curve 1.13 over D^* (coordinate z), the formal power series $\sum a_n z^n$ Taylor expansion of q as a function of z has a purely algebraic sense: if the coefficients c_{α} of an equation for E are expanded as formal power series in z: $c_{\alpha} = \sum c_{\alpha,n} z^n$, then the a_n are polynomials in the $c_{\alpha,m}$. Further, the story makes sense in any characteristic, and is compatible with reduction modulo p. I expect similar integrality to hold in general.

Bibliography

- [1] Ph. Candelas, X. C. de la Ossa, P. S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B359 (1991) 21-74. Reprinted in: Essays on Mirror Manifolds, ed. S. T. Yau, pp. 31-95. International Press, Hong Kong 1992.
- [2] E. Cattani and A. Kaplan, Degenerating variations of Hodge structures, in *Théorie de Hodge*, Astérisque 179-180 (1989) pp. 67-96.
- [3] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993) 223-247.

P. Deligne School of Mathematics Institute for Advanced Study Princeton, NJ 08540