Note on Quantization

Pierre Deligne

The present notes do not pretend to any originality. We have tried to present
different aspects of what quantization can mean, including the case of odd variables.
Complex polarizations are not considered.

§1.

Let (M,w) be a symplectic manifold of dimension 2d. We will use the vague words
“big” and “small”. For this, we need some notion of size ~ 1 on M. For instance M
could carry a Riemannian metric, with curvature of size at most ~ 1 and injectivity
radius of size at least ~ 1. The symplectic form should be of size ~ 1, and fi is a
small number. The 2-form which really matters is w/h.

Our sign convention for the Poisson bracket corresponding to w is the following:
the Hamiltonian vector field X(f) defined by a function f is given by X(f)g =
{f.9}, and df = ~ixw. H M = R? with coordinates p, ¢ and if w = dpadg, then
{p.a}=1

A quantization of M consists of a complex Hilbert space H and of a rule to
attach to functions f on M operators f* acting on H. The rule f — f* should be
C-linear; for f real, f* should be Hermitian and, in a sense I will not try to make
precise, f ~— f" should almost be a homomorphism: 1" should be the identity and
for slowly varying functions f and g,

(1.1) (fa)" ~ [ mod O(f).

If (1.1) did hold exactly, the f* would mutually commute. The symplectic structure
controls the failure of commutativity

(1.2) [f* 9" ~—iA{f, g} mod O(A?).
Formula {1.2) can be rewritten
(1.2y (X(N)g)" ~GE/R)[f,g"]  mod O(R).

The symplectic vector field X{f), if it is well behaved at infinity, exponentiates to
an automorphism exp(X(f)) of (M, w), with Taylor’s formula reading

exp(X(f))*g = exp(derivation X{f))(g).
367
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Formula (1.2)’ should hold in its integrated form

(1.3) (exp(X{(f))"9)" ~ exp((1/f}f")g" exp(-(2/R)f") ~ mod O(A).

We don’t care about the exact rule f — f*. It matters mainly mod O(K).
From the deformation quantization point of view, (1.1) is the first term in an
expansion (x-product)

(L1’ 1" = (o) +alf.9) h+ cal £ g) B2+

with ¢;(f, g} given by a C-bilinear differential operator in f and g. The formula (1.2)
becomes ¢ (f,g) — c1(g, f) = —i{f,g}. If one considers quantizations H(#%),with fi
tending to 0, {1,1) can be an asymptotic expansion in A. If one redefines f — f*
to be f*+dy(f)* A+ - with d;(f) a linear differential operator in f, (1.1} changes
to an equivalent #-product.

Assumption (1.1) means that } almost localizes on M: an element h of H
can be decomposed as a sum Y h; of elements localized in small regions U; of
M: if £ € U;, f~h; is approximately f(x) - h;. Because of the noncommutativity
(1.2), localization does not make sense for regions smaller than expressed by the
uncertainty principle ApAg ~ 27h.

If we were only to assume (1.1) and (1.2}, a multiple H™ of a quantization H
of M would again be a quantization. A “finite multiplicity” assumption is that if
f is a C* function with compact support on M, the operator f* is of trace class.
If this holds, I would expect that for some integer m (more precisely, one for each
connected component of M}, one has

(") ~m [ fa)da

where, in Darboux local coordinates, dz is the product of the dp; dg;/2xk (Liouville
measure). We want m = 1:

(1.4) Te(f*) ~ f fla)dz

§2. Example: Cotangent Bundles

The basic example of almost localization, in the sense meant above, is when M is
a cotangent bundle T*V and X the space of half-densities on V. If f is peaked at
z, say in a Gaussian fashion, and if g is a real function, with dg slowly varying,
then fe'9/% is localized around (z,dg.) in M. If f is slowly varying, then f - €9/%
is localized around the section = — dg. of M — V, laying over the support of f.

The operator f* has a natural definition when f is affine linear on the fibers of
T*V over V. If f is the pull-back of a function on V, f* is multiplication by f. If f
is linear on each cotangent space, hence identified with a vector field £ on V, then
f* = —ihL . For those f, (1.2) holds exactly. To define f* for more complicated
functions requires auxiliary choices.

On T*V, we have a canonical 1-form «: in local coordinates ¢* on V, giving
local coordinates (p;,¢*) on T*V, a is 5 p;dg’. The trivial unitary line bundle L,
with the connection —iae/h: Vf = df — i{a/k)f, is a prequantization line bundle:
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its curvature is —iw/fi, for w the symplectic form de. A real function g on V' defines
the Lagrangian section L(g): z — (dg), of T*V. The pull-back to L{g) of ei9/" is a
horizontal section of L.

For any symplectic manifold M, let Ay or simply A be the fiber space over
M whose fiber A,, at m € M is the space of Lagrangian (= maximal isotropic)
subspaces of the tangent space T, of M at m. To take into account the Maslov
index story, it is best to take prequantization line bundles as living on A. They
should satisfy (a) (b) below.

(a) The curvature 2-form R is the pull-back from M of —iw/#:
V? = —iw/h.

In particular, on each fiber A, of A — M, (L, V) is flat. One has m(A,,) = Z and
(b} the monodromy of (£, V) on A, is multiplication by 1.

Remarks: (i) In the same way that a Hamiltonian vector field X(f) acts on a
prequantization line bundle, with the action depending on f, and not only on X (f),
it also acts on (£, V) as above: X (f) is symplectic, hence lifts to A, the question
is local on A, and locally on A (£, V) is the inverse image of a prequantization line
bundle on M. If we exponentiate, we see that exp(X(f)) acts by an automorphism
of (M,w, L, V). The infinitesimal action on sections of L is given by

(2.1) x5y = Vxi —if/h

(ii) To make sense of (b}, we should make precise our sign convention identifying
m1{Am) with Z. For the symplectic vector space R?, with the form dpadg, the
generator is given by the path

0 —— line spanned by (q,p) = (cos®,sind) (0<@<m).

(iii) Let V be a symplectic vector space, and Ap be the space of Lagrangian linear
subspaces of V. If §) and S in Ay intersect transversally, one defines as follows
a preferred homotopy class of paths from S; to S». Identify 52 to 5y by s2 —
w(s2, s1). Choose a basis e; of S; and let e] be the dual basis of S3. The path is

# —— subspace spanned by (cos 8)e; + (sin f)e] (0<f<m/2).

It depends only on the quadratic form for which the basis {¢;) is orthonormal. The
choice of this quadratic form running over a contractible set, the homotopy class
of the path does not depend on the cheice. If V' is of dimension 2d, the preferred
path from S; to 95, followed by the preferred path from Ss to 51, is d times the
preferred generator of m; (Ag).

We now come back to the case where M is a cotangent bundle T"V. Let
A® C A be the subbundle with A% C A, consisting of those Lagrangian subspaces
L of T, intersecting transversally the vertical subspace of T}, (tangent to the fibers
of T*V — V). If we pull back the prequantization line bundle on T*V to A?, it
extends uniquely to LA on A satisfying the conditions (a), (b).
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Let L be a Lagrangian subvariety of M. Let s be the section of A over L: x —»
tangent space of L at z. The section s has values in A® if and only if L is locally
of the form L(g). As L is Lagrangian, s*L, is flat and it makes sense to speak of a
slowly varying section of s*£ on L. Generalizing the f - ¥9/% considered previously,
to a slowly varying half-density « on L with values in s*£ corresponds [u] in K,
with

22) Nllf? ~ ]S "y

It is localized near Supp(u) C S C M = T*V.

A function f defines an automorphism exp(X(f)) of (M,L,V) (Remark (ii)
above), and an automorphism exp(—(i/%)f*) of H. Those automorphisms should
(almost) preserve the construction u — [uf:

(2.3) lexp(X (£)) u] ~ exp((i/) ).

Inner products are given as follows. Fix (S;,u;) (i = 1,2) as above, and as-
sume that S; and S, intersect transversally. Let # be an intersection point. The
Lagrangian subspaces s;(x) and sy(z) of T M intersect transversally, and the pre-
ferred class of paths y from s;(z) to s»(z) (Remark (iii) above) gives an isomorphism
Yt Lsyizy * Lgyizy- The symplectic structure puts sy (z) and s5(z) in duality, iden-
tifying the line of half-densities of S} at x with the dual of the similar line for S,.
The inner product (u;{x), v"uz(z)) is hence just a number. The stationary phase
approximation gives

(2.4) (fu) fual) ~ Y (2miR)Y (u (), 7" ua(2))
€51 NS,
for M of dimension 2d.
Our convention for inner products {a, b} is: antilinear in a, linear in b.

§3.

The flat case is when M is an affine space, with a translation invariant symplectic
form. In the flat case, one can define a quantization as the data of f — f*, just for f
a linear function, with (1.2) holding exactly. The purely imaginary linear functions
form a Lie aigebra for the bracket —ik{f, g}, and we want a unitary representation
f = f° of this Lie algebra, with i* = i .Id. It is more convenient to ask for a
unitary representation of the corresponding Lie group. Formula (1.4) becomes a
request for irreducibility. Weyl’s quantization f — f*, for a general f, is given by

(3.1) exp(€)” = exp(£")

for £ a purely imaginary linear function, a general f* being deduced from (3.1)
by considering f as a superposition of exp(f), by Fourier transform. For Weyl
quantization, formula (1.4) holds exactly.

Understood in those terms, quantization in the flat case is unique, up to isomor-
phism. If M is the cotangent bundle of an affine space V, §2 gives its Schrodinger
model as L*(V): if ¥} is the vector space of translations of V, one has M = Vo x Vs
for f (the pull-back of) a function on V, f* is multiplication by f. For ¢ a lin-
ear form on Vg, identified with a vector v € Vp, £* is —ikd,, and exp(if)” is
Y(z) — Y(x + hv).

This uniqueness assertion depends on the assumption that the flat symplectic
variety M is of finite dimension.
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Remark. In the flat case, the data on A of a prequantization line bundle defines
a quantization H, as defined above, up to unique isomorphism. This is made
plausible by the fact that the group of automorphisms of

{(affine symplectic space M, L4, V)
and of
{affine symplectic space M, H, f — f*)

are the same extension of the affine symplectic group (Sp x translations) by U(1).

The relation between L, and the quantization H can be fixed as follows. Let
Ho be the C-vectors in H for the action of the Heisenberg group. In the
Schrodinger model these are the Schwartz functions on V. Let H_o, 2 H be
the dual of Hoo. A linear Lagrangian subspace L of M defines a section s;, of Ay,
A g7 La-valued half-density v on L, of the form (translation invariant half-density).
{flat section s*L,), defines ju] in H_., and the inner product formula (2.4) holds
exactly, to give the inner product of continuous superpositions of [u]. Formula
(2.3) holds exactly, for f quadratic and u as above. In particular, if a linear form
¢ vanishes on L, one has £*[u] = 0.

§4.

We now go over to the superworld. A super Hilbert space is a mod 2 graded
complex vector space H with an even sesquilinear form (u,v), antilinear in v and

linear in v, for which
(v,u) = (_Up(u)p(v)(u’ v)7,

with a positivity and a completeness condition. As positivity condition, we take

(v,u) >0 for weven, u#0

(41) —i(u,u) >0 for wodd, u#0.

This positivity condition is stable under tensor product if ( , ) for H'@ H" is defined
by
(uf ® u”,'v’ ® 'U”) — (_l)p(u”)p(u‘)(uf, U')(u",’u”),

in accordance with the sign rule. The adjoint T of an operator T is defined by
(4.2) (Tu,v) = (=17 (3, To).

The physicists don’t like (4.1), and prefer to work with the ordinary mod 2
graded Hilbert space with the inner product { , ) defined by

43 (u,v) = {u,v) for wu,v even
(43) (u,v) = i{u,v) for u,v odd.

The adjoint T is related to the corresponding ordinary adjoint T* by

Tt =T*  for T even

(4.4)
Tt =T for T odd.
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The definition (4.2) has the unsettling effect that the eigenvalues of an odd
self-adjoint operator are in i'/2R. However, the eigenspaces being neither even nor
odd, there is not much wish to consider them.

In a quantization of a supermanifold M, to functions f on M should correspond
operators f*, acting on a super Hilbert space H, with f* of the same parity as f.
If f is real, one should have f* = f*f. Because of (3.4), if M is a supermanifold,
the physicists will declare to be “real” the real even f, and the i~1/25 for 5 real.
With this rule, if a; and ap are odd and “real”, ia1as is “real” (as well as real,
being even). Example: on R"!, with coordinates (z,7), if we put § = i /2y, the
vector fleld 8y + 468, is a multiple of a real vector field:

g + 160, = i/2(B, + 1d;).

§5.

Let now M be a super affine space, with a translation-invariant symplectic form.
In imitation of §3, we define a quantization as the data of a super Hilbert space K,
and of £ — {£* associating to a linear function on M an operator on H, with £ and
" of the same parity. The quantization £ — £ should be linear, real: £~ = (£)f
for £ real, map 1 to Id, and obey

(5.1) (6", m") = —ih{f,g}".

One should also require some irreducibility.
The condition (5.1) requires that for real linear odd functions £, the Poisson
bracket {£,£} (a constant) be negative:

(5.2) 1,8} <0.

Indeed, [£*, 0] = 2042 = 247" = 20~ ¢ must be —ih{f,£}. The sign in {5.2) is
due to the choices of sign in (4.1) (leading to (4.4)) and (5.1), the latter repeating
(1.2).

As in §3, one extends ¢ — £ to polynomial functions by requiring that for a
product of even or odd linear functions, one has

(&1 ) = (1/a) > £y oy {0 € Sn)

with + given by the sign rule. In particular, & is + if the ¢; are all even, and (o)
if they are all odd.

£6.

Let W be a real vector space with a positive definite symmetric bilinear form B.
Let M be the affine space defined by ITW: it is of dimension (0,dim W), and linear
forms on W are odd functions on M. Define a Poisson bracket by

(6.1) {¢&,m} = =B~ ¢, m)

for {,m e W+,
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If e; is an orthonormal basis of W, with dual basis €', and if e’ is viewed as an
odd function on M, the Poisson bracket (6.1) is given by the super symplectic form

(6.2) w=1Y"de'de'.

On W*, let Q be the quadratic form $B1(£,£). If Hisa mod 2 graded mod-
ule over the (mod 2 graded) Clifford algebra C(W*, Q), with the modute structure
written cl{f) for £ € W™, (5.1) holds for

(6.3} e = (ih)M2el(8).

For dim W = 1, one can take H = (C even)®(C odd), with cl{e!) = (1/?/5 1/3/5).

For the obvious Hilbert space structure of H, and the corresponding super Hilbert
space structure, one has then cl(e')* = cl(e') and for any ¢ in V*,

(6.4) o = (et

A general W can be written as an orthogonal direct sum of lines, and the
corresponding tensor product of super Hilbert spaces is a Clifford module for which
(6.4) holds, if £° is defined by (6.3). If H, is a graded submodule with the induced
Hilbert space structure, (6.4) continues to hold for J;. This proves the existence of
a super Hilbert space H with a Clifford module structure, irreducible as a graded
module, for which (6.4} holds when ¢ is defined by {6.3).

We now assume W of even dimension. There are the two isomorphism classes of
H as above, exchanged by the parity change H — H® L, for L a (0, 1)-dimensional
super Hilbert space. Let (e!,...,e"} be an orthonormal basis (for B~'), and
[€},...,€e"] be the corresponding density on M. Another orthonormal basis would
give the same, or the opposite density. The choice of the density [e',...,e"] picks
out one of the two isomorphism classes of H: the one for which the following
analogue of {1.4) holds. For any f on M, the supertrace Tr(f") is given by

(6.5) Tr(f) = ﬁ,“/?/[el,...,en]f

Justification:  writing H{ as a tensor product, one reduces to the case n = 2.
For n = 2, cl(e')cl(e?) has square —1/4 and eigenvalues +i/2. It follows that
{erea)™ = i(efed — esel) = efes = ificl(e;)cl(ez) has eigenvalues Fh/2, hence
supertrace /.

§7.

A super symplectic flat space M as in §5 can be decomposed as M+ x M ™, with
M+ even and M~ odd, as in §6. The tensor product of quantizations of M+ and
M~ gives one for M. If M* is the cotangent bundle of an affine space V, and if
M~ is obtained as in §6 from an even-dimensional quadratic vector space W, this
tensor product can be realized as the space of L?-densities on V with values in a
Clifford module for W, and an analogue of (1.4), (6.5) holds.
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8.

Let V be a manifold and W be an orthogonal vector bundle on V, with a connection
V respecting the structural symmetric bilinear form B. We take M to be the
fiber product over V of T*V and IIW. For any supermanifold §, a S-point of M
{Supersymmetry 2.8), that is a morphism from S to M , can be identified with the
data of an S-point f: S — V of V, of an even section of F*Ty, and of an odd
section of f*W. A local coordinate system {g°) on V and a local basis (ey) of W
give a local coordinate system (g, p;, %) on M.

We assume that W is even dimensional, oriented and Spin. It gives rise to a
bundie of super Hilbert spaces Hy on V, reproducing point by point what we got
in §6, and the connection V on W gives one on Hy .

Let 3 be the super Hilbert space of half-densities on V with values in Hy. To
any function f on M, of degree <1 on the fibers of M/V, when p; is viewed as of
degree 1 and 4* as of degree 1/2, one associates an operator f* as follows.

{a) For (the pull-back of) a function f on V, f* is multiplication by f.
(b} For the odd function defined by a section e of WY,

et = (k) 2cl(e)

as in (6.3). This is extended as in §5 to define f~ for any function f on ITW.

(c) If f is a function on T*V, linear on each fiber of T*V/V and identified with a
vector field F,
= —iavVp.

In (c), if z in H is the product of a section h of Hy by a half-density v,
Ve(x) =Veh) v+ h-Le(v).

The super vector space of operators f, for f of degree <1 on the fibers of
M/V, is stable under bracket. By (1.2), the bracket of operators corresponds to a
Poisson bracket, which we now compute.

For functions on ITW, it is as in §6: functions on V commute with functions
on IIW and for £, m odd linear functions, identified with sections of W", one has

{&,m} = =B~1(4,m).

For f a function on T*V, linear on the fibers and corresponding to a vector field F
on V, {f, }is Vr on functions on ITW.

It remains to compute [f*, g"] as being of the form ~ifi{f,g}" when f and ¢
are linear functions on T*V, corresponding to vector fields £ and G. We have

[fA:gA] = [“ith’ —iﬁ‘vG] = (_iﬁ)2 (VIF’,G] + R(F3 G))
= —ifi ({f,9}3.,, — inR(F, G))

for {, }r-v the Poisson bracket on T*V and F the curvature 2-form of W , with
values in SO(W) (which acts on Hy ).

Let S? be the matrix of § € SO(W), relative to a local basis e Of W: Sis
(z*) — (5%5z®). Let e be the dual basis, and move the indices up and down



NOTE ON QUANTIZATION 375

using B. The action of $ on Hy is then the Clifford multiplication by S,ge®e?
(sum on a and ) in the Clifford algebra. This follows from

[Sape®e”, €] = Saple®[e?, €] — [e%,e7]e®)  (superbrackets)
= 1S.p(ebP T — b27eP) = —S,pb*e? = — 58P = S(e7)

for the Lie algbra action.
If we apply this to the curvature, and if ¥* are the odd functions on M corre-
sponding to the e®, this gives {f*,g"] = —ihi{f,g}" for

{fug} = {f:g}T‘V - R(F! G)G,B¢Q¢B

This Poisson bracket corresponds to the following symplectic 2-form €. Let
ar-y be the canonical 1-form pdg on T*V, as well as its pull-back to M. Let omw
be the 1-form on ITW whose inverse image by a section ¥ is 1(v, V¥). If (eq) is 2
local basis of W, and if the connection is given by the endomorphism-valued 1-form
g

V(z%eq) = (dz® + v gzP e,

one has
anw = $va(dy™ + v g9°).

With these notations,
Q =dap-v + dany.

If (e, )} is an orthonormal basis, one has

dany = 1> (dp™ +7°59°%)7 + ) R pyp%4P.
a o3



