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Dear Jeff,

Thanks for your letter and for pointing out to me this lovely number theoretical side
of Apollonian packings. I looked in some detail at your paper “Apollonian circle packings;
number theory” Journal of number theory, 100, (2003), 1-45 with Graham, Mallows Wilks
and Yan. Here are some comments and answers to some of the open questions raised at the
end of the paper, as well as my take on the diophantine properties of such packings.

Denote by F the Descartes form

F (x1, x2, x3, x4) = 2(x2
1 + x2

2 + x2
3 + x2

4) − (x1 + x2 + x3 + x4)
2 (1)

and by OF the corresponding orthogonal group of matrices preserving F . Let A ≤ OF (Z) be
your Apollonian packing group, that is the group generated by S1, S2, S3, S4 where the Sj’s
are the reflections

S1 =

⎡
⎢⎢⎣

−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ S2 =

⎡
⎢⎢⎣

1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ S3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1

⎤
⎥⎥⎦ S4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1

⎤
⎥⎥⎦
(2)

Given four disjoint mutually tangent circles in the plane whose curvatures are ξ = (a, b, c, d)t,
a, b, c, d ∈ Z, the set of curvatures of all four mutually tangent circles in the integral Apollo-
nian packing determined by ξ, coincides with the orbit Aξ ⊂ Z

4 ·Aξ is contained in the affine
cone C given by

C : F (x) = 0 . (3)

We restrict to ξ primitive (i.e. (a, b, c, d) = 1) which is preserved by A and yields a primitive
integral Apollonian packing.

The salient features of A which are implicit in your paper are

(i) On the one hand A is small being of infinite index in OF (Z) and its limit set as a
subgroup of OF (R) = OR(3, 1) acting on hyperbolic 3-space H

3, has Hausdorff dimension
α = 1.30 . . . (This limit set is equal to the complement in the plane of the union of all
the open disks of the packing). On the other hand A is Zariski dense in OF .

(ii) A contains subgroups which are lattices in OR(2, 1)’s, that is arithmetic Fuchsian groups
for which the theory of integral quadratic forms can be applied. These subgroups are
conjugates of A1 = 〈S2, S3, S4〉, A2 = 〈S1, S3, S4〉, A3 = 〈S1, S2, S4〉, A4 = 〈S1, S2, S3〉.

(iii) A contains rank 1 unipotent subgroups (but not of rank 2). For example the element
S2S1 exploited in your proof of Theorem 6.2 is such an element.

The first problem that your paper addresses is the determination and counting of the
number of distinct integral Apollonian packings. This is done with your root quadruples
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which are the “smallest” members of a given integral packing O = Lξ. The second problem
concerns the patterns of integer curvatures (x1, x2, x3, x4) in a given packing O.

The following refer to the open questions at the end of your paper.

Q.3: This asks for the number Nr(T ) of root quadruples of height at most T . That is the
number of (a, b, c, d) with F (a, b, c, d) = 0 and satisfying

⎧⎪⎪⎨
⎪⎪⎩

a ≤ 0 ≤ b ≤ c ≤ d
a + b + c + d > 0
a + b + c ≥ d
a2 + b2 + c2 + d2 ≤ T 2 .

(4)

Proceeding as you do in your Theorem 2.2, let (w, x, y, z)t = J0(a, b, c, d)t with

J0 =
1

2

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦

Then (4) becomes that of counting integers satisfying

w2 = x2 + y2 + z2

0 < w ≤ T/
√

2

1 + x
w

+ y
w

+ z
w

≤ 0 ≤ 1 + x
w
− y

w
− z

w
≤ 1 − x

w
+ y

w
− z

w

≤ 1 − x
w
− y

w
+ z

w

and
1 +

x

w
+

y

w
− z

w
≥ 0 .

Hence
Nr(T ) =

∑
0 < w < T√

2

∑
x2 + y2 + z2 = w2

( x
w ,

y
w , z

w )∈F

1

where F is the subset of S2 cut out by

(ξ, η, ζ) , ξ2 + η2 + ζ2 = 1

1 + ξ + η + ζ ≤ 0 ≤ 1 + ξ − η − ζ ≤ 1 − ξ + η − ζ ≤ 1 − ξ − η + ζ
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1 + ξ + η − ζ ≥ 0 .

Note that F has non-empty interior (for example
(−12

17
, −9

17
, −8

17

) ∈ F0). Apply Duke’s equid-
distribution theorem (Invent., 92, (1988), 73-90) to the inner sum to get

Nr(T ) =
∑

0 < w < T√
2

⎛
⎝area(F)

4π

∑
x2 + y2 + z2 = w2

1 + ◦(w2)

⎞
⎠ . (5)

Hence,

Nr(T ) ∼ area(F)

4π
c1 T 2 (6)

where c1 is the constant in your (2.9).

Concerning the counting function NA(T ) of the number of elements of A with Frobenuis
norm at most T (your Theorem 5.3). As suggested by Gamburd, one can use the Lax-Phillips
result (Journal Funct. Anal., 46, (1982), 280-350) to give an asymptotic of the form

NA(T ) = cT α + O(T α−δ) (7)

for some δ > 0.

Here c is given in terms of the base eigenfunction φ0 of the Laplacian on the quotient
A\H

3, where H
3 = SOF (R)/S O3(R). Given the form of (7) it is hard to imagine proving it

without using the spectral theory of A\H
3.

The spectrum consists of numbers 0 < λ0 < λ1 ≤ λr < 1 and a continuous spectrum
[1,∞) (Here λ0 = α(2−α)). I expect, and it would be nice to verify, that λ1(A\H

3) ≥ 1, that
is there are no exceptional eigenvalues for A. The Lax-Phillips Theorem applies to counting
the images in H

3 under A of a point w ∈ H
3 in a ball of radius R about z ∈ H

3. With
appropriate choices of w and z this is the same as NA(T ) with T an explicit function of R.
The remainder term in (7) depends on the gap between λ1 and λ0.

When doing a similar count but with congruence conditions on elements of A (such as
in needed in the affine sieve for A in Bourgain-Gamburd-Sarnak [B-G-S 2007]), one needs a
uniform spectral gap. Let A(q) = {γ ∈ A : γ ≡ I mod q} be the principal “congruence”
subgroup of A of level q. Let λ0(q) = λ0(A) < λ1(q) . . . ≤ λrq(q) < 1 be its discrete spectrum.
In [B-G-S] it shown that there is a fixed ε0 > 0 such that

λ1(q) ≥ λ0(A) + ε0
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(7′)

for all square free q ≥ 1.

This infinite volume spectral theory should also allow one to derive an asymptotics as
in (7) for the counting function NO(T ) of the number of circles of curvature at most T
in an Apollonian packing O (as in your Theorem 5.2). This requires developing the spectral
counting method for an orbit of A on the cone C instead of the hyperboloid H

3. One difficulty
here is that the stabilizer in A of (a, b, c, d) on the cone is either a rank 0 or rank 1 parabolic
subgroup (while in OF (Z) it is of rank 2). In the similar situation of infinite area quotients
of SOR(2, 1) this analysis on a cone is carried out in A. Kontorovich’s thesis-Columbia 2007.

Q. 4: You ask for the biggest β(β ≤ 1) such that the number of distinct curvature of size at

most T , in a given integral packing O, is at least T β+o(1) as T −→ ∞. The following
shows that β = 1.

Let ξ = (a, b, c, d) be an element in O with a �= 0 which we fix for the time being.
Consider the curvatures that are gotten from the orbit A1ξ. All these points (a, x2, x3, x4),
are in the conic section of C by x1 = a and hence satisfy F (a, x2, x3, x4) = 0. The point
is that A1ξ consists of a positive fraction of all the integral points (x2, x3, x4) satisfying
F (a, x2, x3, x4) = 0. In terms of the action of A1 in the plane, given the configuration of circles
corresponding to ξ, the group A1 is the Schottky group generated by the reflections in the
three circles perpendicular to the circles corresponding to {a, x2, x4}, {a, x3, x4} and {a, x2, x3}
respectively. This action preserves the circle corresponding to a and acts discontinuously on
its interior and exterior. A fundamental domain for this action being a triangle bounded
by circles perpendicular to the a circle and with angles (0, 0, 0) at the vertices. That is A1

acts as a Fuchsian triangle group with hyperbolic area equal to π. In order to examine the
diophantine properties of A1ξ we proceed as you do in the proof of your Theorem 4.2.

F (a, x2, x3, x4) = 2(a2 + x2
2 + x2

3 + x2
4) − (a + x2 + x3 + x4)

2

= g(y) + 4a2
(8)

where
y = (y2, y3, y4) = (x2, x3, x4) + (a, a, a) (9)

and
g(y) = y2

2 + y2
3 + y2

4 − 2y2y3 − 2y2y4 − 2y3y4 . (10)

Moreover the affine action of A1 on the affine variables (x2, x3, x4) is conjugated via (9) to a
linear action Γ (independent of a) preserving g. That is Γ ≤ Og(Z) and it is of small index in
the latter since V ol(Γ\Og(R)) = π with the hyperbolic metric normalization. By inspection
Γ is generated by the reflections⎡

⎣ −1 2 2
0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣ 1 0 0

2 −1 2
0 0 1

⎤
⎦ and

⎡
⎣ 1 0 0

0 1 0
2 2 −1

⎤
⎦ . (11)



Appolonian Packings Letter - J. Lagarias 6

Moreover since ξ = (a, b, c, d)t is primitive y(ξ) = (b + a, c + a, d + a) is a primitive point on
the quadric

g(y) = −4a2 (12)

The orbit A1ξ
t is equal to

(a, Γy(ξ) − (a, a, a))t . (13)

To further examine the values that yj assumes for y ∈ Γy(ξ), it is convenient to change
variables and bring the action to the more familiar one that you use in Theorem 4.2.

Let
y2 = A, y3 = A + C − 2B, y4 = C (14)

or
A = y2, C = y4, B = (y4 + y2 − y3)/2 . (15)

Note that for y integral and satisfying (12), B in (15) will be in Z. Hence the change of
variables (14), (15) preserves integrality as well as primitivity. The form g becomes the
familiar one

4(B2 − AC) = 4�(A, B, C) (16)

and (12) becomes
� (A, B, C) = −a2 . (17)

The action of Γ is conjugated to a subgroup Γ̃ of O�(Z) and it is generated by the
reflections

⎡
⎣ 1 −4 4

0 −1 2
0 0 1

⎤
⎦ ,

⎡
⎣ 1 0 0

0 −1 0
0 0 1

⎤
⎦ and

⎡
⎣ 1 0 0

2 −1 0
4 −4 1

⎤
⎦ . (18)

As was well known to Gauss, the spin double cover of SO�(Z) is realized as the image of
GL2(Z) and is realized as the image of GL2(Z) under the homomorphism

ρ :

(
α β
γ δ

)
−→ 1

(αδ − βδ)

⎡
⎣ α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδ δ2

⎤
⎦ (19)

with kernel ±I.

Hence ρ−1(SO�(Z)∩ Γ̃) contains

[
1 −2
0 1

]
and

[
1 0

−2 1

]
and hence contains the princi-

pal congruence subgroup Λ(2) of SL2(Z). In fact ρ−1(SO�(Z)∩ Γ̃) = Λ(2) since the words of
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even length in the generators (18) are in SO�(Z) and hence the area of the quotient of H by

this group is 2π (according to our previous remark that the group Γ̃ is a Schottky group with
fundamental domain of area π) which is the area of Λ(2)\H. We are interested in the values

assumed by one of A, C or A+C−2B as (A, B, C) varies over the orbit Γ̃(A0, B0, C0)
t. Using

this extra choice of any one of the three, it is easy to see that these values are at least those of
A where (A, B, C) ranges over the slightly bigger orbit ρ(GL2(Z)) (A0, B0, C0)

t. Hence from
(19) we conclude that;

The set of values assumed by one of A, C or A+C − 2B as (A, B, C) varies over the orbit

Γ̃(A0, B0, C0)
t contains the set of primitive values of the binary quadratic form;

φA0,B0,C0 (ξ, η) = A0ξ
2 + 2B0 ξη + C0η

2 with (ξ, η), = 1 . (20)

Thus the set of values assumed by one of x2, x3, x4 where x = (a, x2, x3, x4) varies over the
orbit A1(a, b, c, d)t contains the set of numbers

φA0,B0,C0 (ξ, η) − a with (ξ, η) = 1 ,

where

A0 = b + a, C0 = d + a , B0 =
a + d − c

2
. (21)

As is well known (probably first due to Landau) the number of distinct primitive values
assumed by such a φA0,B0,C0 (note that B2

0 − A0C0 = −a2 < 0 so is not a square) in the
interval [−T, T ] is at least c1T/

√
log T as T −→ ∞ (here c1 > 0 and depends on φA0,B0,C0).

Afortiori the number of distinct integers of size at most T which are the coordinates of some
x ∈ Aξt is at least c1T/

√
log T and hence θ = 1 in your question 3.

This just falls short of your positive density conjecture (page 25). To prove that one needs
to mix the actions of A1, A2, A3 and A4 more seriously and needs a further idea. Your strong
density conjecture (page 31) asserting that for a given integral Apollonian packing, the set
of curvatures that is achieved is what is predicted by congruence obstructions, possibly with
finitely many exceptions, lies much deeper and is a very appealing problem!

Q.1: This concerns the congruences satisfied by the integers in an orbit O = Aξt.

It is natural to first determine the images of A under reduction into OF (Z/qZ), for q ≥ 1 an
integer. For this it is convenient to pass to the spin simply connected double cover of SOF , or
what is essentially the same thing, to work with the spinor norm 1 subgroup of SOF and in
particular the intersection of A with the spin norm 1 group in SOF (Zp) (here Zp denotes the
p-adic integers). All this is discussed in detail in Cassel’s book “Rational Quadratic Forms”.
Once these images are known explicitly their orbits on the cone C(Zp) are easy to determine.
Since A is Zariski dense in OF it follows from the general theorems of Matthews-Vaserstein
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and Weisfeiler (Proc. London Math. Soc., 48, (1984), 514-532) that there is a finite set of
primes S = S(A) (which can be determined effectively and your Theorem 6.2 indicates that
S(A) = {2, 3, 5}) such that for p /∈ S the image of A is dense in the spinor norm 1 subgroup
of SOF (Zp) and is dense in SOF (Zp) iff the SiSj’s generate the finite group SOF (Zp)/(Spin
norm 1 (Zp)). The corresponding images of A in SOF (Z/qZ), for q having its prime factors
outside S, are the corresponding product groups over the primes dividing q. At the “ramified”
primes p ∈ S a further analysis needs to be done in order to see the stabilization. In any
case, once one has the above information the corresponding orbits on the cones C(Zp) and
C(Z/qZ) can be determined. This analysis needs to be done explicitly and in detail for the
group A in order to study the finer diophantine questions connected with integral Apollonian
packings such as those about the prime factors of the curvatures which is what I discuss next.

Let O = Aξt be the orbit corresponding to an integral Apollonian packing and let
f ∈ Z[x1, x2, x3, x4] be an integral polynomial. Define the saturation number r(O, f) of
the pair of (O, f) to be the least number r such that {x ∈ O : f(x) has at most r prime
factors} is Zariski dense in the affine cone C. The general saturation theorem of [B-G-S] ap-
plies here and asserts that the saturation number is finite. In particular for f(x) = x1x2x3x4

it follows from that paper that there is an r < ∞ such that for any Apollonian packing O
the set of mutually tangent quadruples of circles all of whose curvatures have at most r-prime
factors is Zariski dense in C. The general local to global conjectures in [B-G-S] will predict an
exact value for r(O, x1x2x3x4) once the congruence analysis of the last paragraph is carried
out. One cannot have all of x1, x2, x3 and x4 prime. Indeed for a Zariski dense set of such
quadruples all the xj ’s would then have to be odd. However the Descarte equation F (x) = 0
has no such solutions mod 16. Moreover parity considerations together with the primitivity
of (x1, x2, x3, x4) show that for any Descarte quadruple, two of the coordinates are odd and
two are even. Thus the best that one can do in terms of creating x’s with xj ’s prime, is to
have two of them prime. Interestingly one can show that the set of such quadruples with two
circles prime is Zariski dense in C. Or in a different terminology r(O, x1x2) = 2. In particular
any integral Apollonian packing has infinitely many circles whose curvatures are prime and
also infinitely many “twin primes”, i.e. pairs of tangent circles whose curvatures are primes.

To produce such circles in O = Aξt choose ξ1 in O with ξ1 = (a, b, c, d) and a �=
0. According the discussion in Q.4 leading to (21) the numbers x2, x3, x4 occurring in
xt = (a, x2, x3, x4)

t ∈ A1ξ
t
1 contain the numbers of the form

A0ξ
2 + 2B0ξη + C0η

2 − a (22)

where ξ, η vary through integers with (ξ, η) = 1 and (A0, B0, C0) = 1 and B2
0 − A0C0 =,−a2

are fixed. It follows that (A0, 2B0, C0, a) = 1 and we can apply Iwaniec’s Theorem (Acta
Arithmetica XXIV, (1974), 435-459) to conclude that there are infinitely many primes of the
form (22). To be precise, Iwaniec proves this without the restriction (ξ, η) = 1 but one can
modify the proof to accommodate this constraint. The number of primes produced whose size
is at most T , is at least C1T/(log T )3/2. It follows that the set of (ξ, η) for which (23) is prime,
is Zariski dense in the affine plane (ξ, η). Hence the set of points (a, x2, x3, x4) ∈ A1ξ

t
1 for

which one of x2, x3, x4 is prime, is Zariski dense in the conic section F (a, x2, x3, x4) = 0. This
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establishes the first part, that there are infinitely many circles in O whose curvature is prime.
To each fixed p of the infinitely many values for which (say) x2 above is prime, we consider the
orbit of ξp = (a, p, cp, dp) under A2. As above the points xt = (x1, p, x2, x3) ∈ A2ξ

t
p with (say)

x1 prime is Zariski dense in the conic section F (x1, p, x2, x3) = 0. This produces a Zariski
dense set of points x in O with x1 and x2 both prime.

The above argument shows that every circle in an integral packing O is tangent to infinitely
many circles whose curvatures are prime. By the nerve of O, I mean the graph whose vertices
are the circles in O and whose edges correspond to tangency. Consider the subgraph of the
nerve whose vertices are the circles with odd curvatures. From the fact that each Descarte
quadruple has two even and two odd circles, one sees that this odd subgraph O of the nerve has
no cycles. It is easy to see that it is connected and is an infinite tree with every vertex having
infinite degree. Now consider the subgroup P of the odd graph whose vertices are circles with
prime curvatures.∗ By our arguments above P is an infinite union of its connected components
and each component is isomorphic to the odd graph O. It would be interesting to investigate
the densities and distributions of these components. The graphs O and P for the packing
(-6,11,14,23) are depicted on the cover page. The pictures are copied from David Austin’s
feature column of the AMS March 2006.

Best regards,

Peter Sarnak

March 19, 2008: gpp.

∗We assume that 2 is a curvature in O or for this purpose that 2 is not a prime.


