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ARITHMETIC QUANTUM CHAOS*

PETER SARNAK

SECTION 1. BACKGROUND

These lectures are aimed at a general audience. A detailed and up to date account
of Quantum Chaos (Q.C.) can be found in the proceedings of the recent conference
“Chaos and Quantum Physics” [G-V-Z] and in Gutzwiller’s article [GU]. The math-
ematical problems associated with Q.C. are very difficult and one must be satisfied
with proving partial results and gaining insight into the truth. Our main focus will
be on problems of Q.C. associated with arithmetic hyperbolic manifolds. For these
we can bring to bear techniques from analytic number theory and arithmetic. This
allows us to resolve some of the problems and also gain understanding of the key
issues. It turns out that some of these key issues are intimately connected with
well known problems in the analytic theory of L-functions. In much of theoretical
physics the theory revolves around certain well understood examples (harmonic os-
cillator, hydrogen atom...). With time as more is established about the spectra of
arithmetic hyperbolic manifolds we hope that they become central models for Q.C.
The new results (see Section 3) described in these lectures have been obtained in
separate collaborations with H. Iwaniec, W. Luo and Z. Rudnick.

The basic problem of Q.C. is to understand the quantization of a classical Hamil-
tonian system whose dynamics are “chaotic.” By this we mean that the flow when
restricted to a fixed energy surface (H = constant) is ergodic and has (at least)
almost everywhere positive Liapunov exponents [SI1]. In particular one wants to
understand the semi-classical limit & — 0 of the quantized system. The correspon-

dence principle is concerned with the relation between the quantum mechanics and

*Expanded version of the Schur lectures Tel-Aviv 1992 and Blythe lectures Toronto 1993.
Supported in part by NSF Grant DMS-9102082.
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its classical counterpart in the semi-classical limit. In what follows we will primarily
restrict ourselves to Hamiltonians which are geodesic flows on compact Riemannian

manifolds. Precisely let X be such a manifold with metric

ds? = g;;dz*dz’ . (1.1)
The Hamiltonian H(z,£) is defined on the cotangent bundle T*(X) by

H(z,£) = g"&:¢; - (1.2)

It gives rise to the geodesic flow on T*(X). Let A denote the Laplace-Beltrami

operator on functions on X.

8= _1\/'3 ai* (ﬂg‘%) \£3)

where g = det(gi;). By the standard quantization procedure, see for example
[L-L]), —k®A corresponds to a quantization of H. The stationary eigenstate (or

eigenfunctions, modes or wave functions) equation reads
—ﬁQA‘l,bk = A\e¥k - (1.4)

It is well known that the eigenvalues 0 = Ag < A; < Az ... are discrete and that the
¥&’s can be chosen to be an orthonormal basis (0.n.b.). From (1.4) we see that for
the geodesic flow the semi-classical limit /# — 0 is in this case the same as the large
eigenvalue limit Az — co. Hence the basic problem in this case is to understand the
behavior of Ax and % as k — oo and especially their relation to the geodesic flow
(correspondence principle). It is this form of the problem that we will examine.

If the classical flow is completely integrable (see [A-A] for definitions) then the
k — 0 limit for eigenvalues and eigenfunctions is quite well understood, see Colin-
de-Verdiere [CD1]. In this case the quantization condition was given by Bohr-
Sommerfeld and Einstein. If p,¢ are generalized coordinates, H(p,q) the Hamil-

tonian and T an invariant torus for the full set of integrals of the motion then the
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quantization condition is (see [CD1])
/ p.dg = 2wh(ne + pe/4) (1.5)
R

where ny € Z and p¢ € Z is the Keller-Maslov index. The 7,’s are a Z basis for
the homology cycles in H;(T,Z). The corresponding approximate eigenfunctions
or quasimodes, which are constructed in deducing (1.5), localize onto T as h — 0.

Moreover their eigenvalues are
E,. = H(h(n + p/4)) (16)

where I = k(n + p/4) are the action variables for the quantized torus.

We illustrate the above with the well known whispering gallery effect. Let X be
an ellipse in the plane. This is a manifold with boundary, a case which we also allow
especially in connection with the numerical investigations in Section 2. The classical
mechanics corresponds to a billiard ball in the ellipse which undergoes linear motion
in the interior and angle of incidence equals angle of reflection at the boundary. The
quantum system is the eigenvalue problem for the Laplacian with (say) Dirichlet
boundary conditions. The billiard in this example is integrable. Indeed if C is a
confocal ellipse (or hyperbola) as shown in Figure 1.1 then a billiard tangent to o

will remain so forever.

Figure 1.1
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In phase space these vectors tangent to C give us an invariant torus T. For a
quantized such torus the quasimodes localize onto T and hence their projection
onto X are localized as is apparent in Figure 1.2, which is an eigenstate for the
circle taken from McDonald and Kaufman [M-K].

o X e

Fit- 2} #9558, Intensity distribution | ... | ¥x,5) in positive qua-
e g e e B,
The existence of such localized modes near the boundary of a smooth convex region
explains the whispering gallery effect: that sonorous vibrations have a tendency
to cling to the boundary of a convex surface. For details see Rayleigh [RAY] and
Keller-Rubinow [K-R].

It was recognized early on (see Einstein [EI]) that if H is not integrable then such
quantization conditions (as i — 0) are not available and perhaps do not exist. This
in fact was the key stumbling block of the old quantum theory [PA, Chapter 10].
This applies especially if the classical mechanics is chaotic. For the case at hand
viz the geodesic flow on T*(X) it is well known [SI1, A-A] that if X has negative

sectional curvature then the classical flow is ergodic, Anosov... and in particular

chaotic. Almost every orbit is dense but on the other hand there are a countably
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infinite number of unstable periodic orbits as well as orbits of arbitrary complexity.

For comparison, we recall the strong influence that a stable periodic orbit has
on the spectrum. Suppose that dim X = 2 and that ¥ is a stable closed geodesic
of length L. That is the linearized Poincaré map about [A-A] has eigenvalues
i e~ with 0 < 6 < 7. The following theorem is due to Babich-Lazutkin [B-L]
and Ralston [R].

Theorem 1.1. Let v be as above then there are eigenvalues ym of the Laplacian

satisfying

o = 21rm+91{2+1rp0 4 O(m-11?)

where po = 0,1 depending on the behavior of the Jacobi fields along ~.

Thus ~ accounts for an arithmetic progression of 1/A;’s. To see what part of the

spectrum this comprises recall Weyl’s Law with remainder due to Hérmander [HO|

#{7 12 < T} = C, Vol(X)T™" + O(T"* ') asT—o0. (1:7)
where ¢! = Z"w“le"(% 4+ 1) and n = dimX. Hence we see that for n = 2

such a stable closed geodesic accounts for about T' of the T? eigenvalues. As with
the integrable case the method of proof of Theorem 1.1 gives at the same time
quasimodes u,,(z) which localize onto 7 as m — co. We normalize um(z) to have

L2-norm equal to one, so that

dpm = |um(z)[?dv(z),dv(z) = (/9dz (1.8)

are probability measures. Then gy, — v the singular arc-length measure as m — oo.
This is an instance of the correspondence principle. On the other hand if v is an
unstable periodic orbit as is the case for all closed geodesics when the curvature is
negative, then its influence on the spectrum (even as h — 0) is unclear. This is one

of the central problems of Q.C.
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In general we may define probability densities as in (1.8) with 1 replacing um.
We denote by pj the corresponding probability measure on X. The quantum me-
chanical interpretation that i is the probability density of a particle in the state
2r, is well known [L-L]. The question of whether subsequences of pu; can localize
and what are the possible weak star limits of these measures has been raised on

many occasions. In contrast to the integrable case we have the following beautiful

result of Shnirelman [SHN], Zeldtich [Z] and Colin-de Verdeire [CD2].

Theorem 1.2 (Quantum Ergodicity). Assume that the geodesic flow is ergodic

then for a subsequence Ax; of Ax of full density
dux; — dV/VOK(X) .
The meaning of full density is that
#{kj | Ay ST}~ #{k | X\ < T}

as T — oo. Thus the Theorem asserts that almost all of the square moduli of the
eigenfunctions become equidistributed (hence the name Quantum Ergodicity). In
fact their Theorem is stronger. It is concerned with measures on 77(X) the unit

cotangent bundle to X. They show how to associate with ¢ a measure fiz on

T} (X) such that for all f(z,£) = f(z) i.e. £ independent functions

[ Tl ey B [ f@)dp(z) . (1.9)
T*(X) X

Their theorem asserts that fi; converge to y the Liouville measure for almost all
Ar’s. Along the way it is shown using Egorov’s Theorem [E| that any limit of the
fir must be invariant under the geodesic flow. Besides the Liouville measure, the
arc length measure on a closed geodesic or volume form on an invariant torus are
the simplest examples and as we have seen they can occur as such limits. We will

call any limit point of the yi’s a quantum limit. Whether in the case of a negatively
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manifold a closed geodesic can be the support of a quantum limit is not answered
by Theorem 1.2. This question has been raised by Colin-de-Verdiere on a number of
occasions [CD2-CD3]. It is closely related to scarring which will be defined below.

The central question then in the chaotic case is whether individiual eigenfunctions
localize or scar or show any relation to the classical dynamics or do they as has been
suggested by Berry [B1] behave like random waves. See Heller [HEL2] and Berry
[B1] for discussions on the models for random waves. As a test of the random wave
model note that the analogue of the central limit theorem [S-Z] would require that
the distribution function of the ;’s tend to a Gaussian. Also the analogue of the

Law of the Iterated Logarithm [S-Z] would require that

ll%kllco = v/1og Ak (1.10)

We will look again at quéstions concerning the behavior of eigenfunctions after
presenting the numerical experiments. We turn now to the fine structure of the
distribution of the eigenvalues. Assume n = 2 and Weyl's Law is normalized to
read

N(T)=#{j |\ ST}~T. (111)

So on average the eigenvalues occur with unit spacing. In Figure 1.3 some examples
of 50 such spectral lines (high in the spectrum) are given. The Figure except for
column (b) is taken from Bohigus-Giannoni [B-G]

All data have been scaled to have mean level spacing one. The Poisson Column
corresponds to random numbers i.e. a Poisson process. Notice they have clusters
and near degeneracies and gaps. The SL2(Z) spectrum comes from an arithmetic
chaotic system and is described in detail in Sections 2 and 3. Note it has similar
features to the Poisson. The next column are the experimental levels of the heavy
nuclei [B-G]. These are a lot more regular or rigid in the sense that the number in

a small interval is close to the expected number. The same is true for the chaotic
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Figure 1.3

Sinai billiard, see Figure 2.5 in Section 2 for the description. The imaginary parts
of the zeros of the Riemann zeta function (Section 4) are very rigid as is clear from
the second to last column.

There are many statistics that we may use in order to study the finer aspects
of the distribution of the levels. The statistic we examine is the Number variance
T2(), L) (see Dyson-Mehta [D-M] where this and the related spectral rigidity are
introduced in connection with the study of the spectral lines of heavy nuclei). The
number variance measures the average deviation from the expected number, of the

number of energy levels in intervals of length L. For the local averaging we use

A
PPOL) = % : (N(z + L) — N(z) — L)%dz . (1.12)

In order to explain the expected behavior of $? we recall some standard models for

the A\’s.

(i) Poisson: The A; follow a Poisson process that is 4; = Aj+1 — A; has a Poisson
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distribution and the p;’s are independent of each other. The left hand column in
Figure 3.1 is a sample of such a sequence.

(ii) G.O.E. (Gaussian Orthogonal Ensemble) The A;’s are the eigenvalues of a
random symmetric N X N matrix (N — oo) which have been rescaled to satisfy
(1.11). That is on the space of real symmetric matrices whose elements we denote
by B = (B;;) we put the Gaussian Orthogonal measure

du(B) = CNexp{-% S B - Y B} [[ B (1.13)

j i<k i<k

4 is invariant under the action of the orthogonal group B — PBP'. From (1.13)

one gets the joint distribution of the eigenvalues. From the latter, though it is by

no means straightforward, one can compute the expectation of the number variance

as well as other statistics such as the level spacing distribution. See Mehta’s book
[ME] for details.

(iii) G.U.E. (Gaussian Unitary Ensemble) Same as in (ii) except that real sym-

metric matrices are replaced by complex Hermitian ones.

For each of the above models one computes the expectation for £?(L):

(i) E%""C."ISSQN (L) =L
(i1) For L large
¥2 (L) = %(logzarL ty+1—12/8)+0I).
)  ForL large
S%us(L) = —5(og2rL +7+1)+ OL™).

Here « is Euler’s constant. Note that the number variance is much smaller for (ii)
and (iii) than it is for (i). We express this by saying that the spectrum in (ii) and

(1ii) 1s rigad.
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After Wigner, Dyson, Mehta, Bohigas, Berry, Tabor and others it is now believed
that for integrable systems the eigenvalues follow the Poisson behavior while for
chaotic systems they follow the GOE distribution. Put another way the spectrum
of an integrable system is random while that of a chaotic system is rigid! Berry

[B2] has given convincing heuristic arguments using trace formulae for the following

universal behaviors of £2(), L).

2
2 ) |
Mon Lk u{:m»é

Figure 1.4

For 1 << L << Lpax ~ VA (recall we are assuming n = 2 for simplicity) the

universal behavior is

(i) Z*(L) = T&o1sson(L) if the geodesic flow is integrable.

(ii) Z2(L) = % yp(L) if the geodesic flow is chaotic.

For L > Lyax nonuniversal oscillations take over as indicated in Figure 1.4. There
are similar conjectures for the closely related spectral rigidity [B2].

This completes our discussion of general background, we turn now to numerical
experiments on the behaviors of eigenfunctions and eigenvalues of chaotic systems.
In Section 3 we describe results concerning the eigenvalues and eigenfunctions of
arithmetic hyperbolic manifolds. In Section 4 we review the theory of L-functions

and relate them to the problems of Q.C. In Section 5 we outline some proofs.
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SECTION 2. REPORT ON NUMERICAL EXPERIEMENTS

Our report on numerical experiments concerning the spectra of chaotic systems
have been done by various groups: Heller, Bohigas Schmit, Steiner Aurich Steil,
Hejhal and Rackner. They have used different methods to compute the eigenvalues
and eigenfunctions. Indeed ingeneous methods are needed in order to compute such
large eigenvalues for these problems. The reader should consult the original articles

cited below for details.

2.1. The Stadium.

A chaotic system in the plane is the billiard in a Bunimovich Stadium which is

shown with a perodic orbit in Figure 2.1.

Figure 2.1

Bunimovich [BUN] has shown that this billiard dynamics is both ergodic and
chaotic. It has a certain mixed aspect to it in that there are non isolated fami-
lies of periodic orbits — the bouncing balls in Figure 2.2. While these are of measure
zero they do have a strong influence on the spectrum (see Proposition 3.1). In
[HEL1, HELZ2] (see also [M-K]) Heller has numerically investigated the eigenfunc-
tions in detail. He finds numerous behaviors as shown in Figure 2.3. Gerard and
Leichtnam [G-L] have extended Theorem 1.2 to this case of a nonsmooth boundary.

So almost all of the ui’s must be equidistributed. However there are modes which
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are clearly associated with the bouncing balls in Figure 2.2. The most intriguing
discovery of Heller is the scarring on unstable periodic orbits see Figure 2.4. His
definition of a state scarring on a closed orbit is that [¢x(z)|? deviate significantly
from its expected value, along the periodic orbit. Usually he has in mind that there
is an enhanced probability around the orbit. Such scarring however is not expected

to survive as A — 0.

Figure 2.2

We are more interested in effects which persist as Ay — 0 and so we define the

following stronger form of scarring;:

Definiton 2.1. A subsequence pi; is said to strongly scar on A C X if py; has
limit p and sing supp(p) = A.

By singular support we mean in the measure theoretical sense, i.e. write g = y; + o
with du; << dV and duy L dV. Then sing supp(p) is by definition the support of
p2. The singular support is created by |¢i(z)|> behaving singularly on A. We will
return in Section 3 to the question of strong scarring for certain chaotic systems.
A domain with similar properties to those of the stadium is the Sinai domain in
Figure 2.5. Its levels as computed by Bohigas-Giannoni [B-G] were illustrated in

Figure 1.3.
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Figure 2.3. Density plot of |®(z)|? for eigenstates of the stadium (Black signifies
high density) for eigenvalues v/A = k, where going from top to bottom, k = 110.389,
119.413, 119.417, 119.451, 119.499, 119.512, 119.512, 119.525, 119.547, 119.587,
119.637, 119.672, 119.691, 119.701, 119.740, 119.802, 119.809, 119.839.
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unstable periodic orbits corresponding to the scars.
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Figure 2.5
Section 2.2. Hyperbolic Surfaces.

As mentioned in Section 1 surfaces of negative Gaussian curvature K give rise
to chaotic dynamical systems. Among these the ones most extensively studied
are surfaces with constant curvature. These may be realized as I'\H?, where I’ <
SL2(R) is a discrete subgroup and H? is the non-Euclidean upper half plane with line
element ds = |dz|/y. We can also use the disk model for H? viz U = {z | |z| < 1}
with ds = 2(1—|z|?)7!|dz|. In this case the discrete group is a subgroup of SU(1,1).
In Figure 2.6 a fundamental domain, for the discrete group I' generated by 71, 72,
v3, 74, may be taken to be the intersection of the exteriors of the semi circles (see
Katok [K] for details). The quotient is a so called hyperbolic orbifold (because I
acts with fixed points) of genus 1. Another example is the family of Hecke groups
whose fundamental domains are given in Figure 2.7. These are hyperbolic triangles
in H? with angles {r/m,7/m,0}, m > 3. The group generated by the reflections
Ri, Ry, R; as shown, is discrete. It has the Hecke group I'y, generated by [_01 3]

1 2cosw/m
2 [0 1

modular group SL3(Z) and is of special interest. Note that Iy, \H? is not compact.

], as an index two subgroup. The case m = 3 is the classical

Aurich and Steiner [A-S| have computed the eigenstates for the group whose
fundamental domain in U is the octagon in Figure 2.8. With the sides identified
as indicated X = I'\H? is a genus 2 hyperbolic surface. Figures 2.9, 2.10, and 2.11

give plots of the density |¢;(z)|? for states with the energy indicated. They found
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similar behaviors for all the eigenstates — that is there is no scarring or localiza-
tion. In Figure 2.12 the cummulative distribution function for these eigenstates are

displayed. Clearly these are Gaussian as predicted by the random wave model.

Figure 2.8

The final set of results were done by Hejhal’s group (se [H-R]). They concern
the eigenfunctions for the modular group I' = SLz(Z). Its fundamental domain
was shown in Figure 2.7 with m = 3. Since I'\H? is not compact in this case, the
existence of discrete spectrum (that is L? eigenfunctions) is not obvious. Thereisa
continuous spectrum given by Eisenstein series (see Section 4). For this T, Selberg
[SEL-2] showed that there are also an infinite number of embedded eigenvalues; in
fact that in suitable sense most the spectrum consists of bound states (or cusp forms
as they are called in this setting). Figures 2.13 shows the nodal lines for the cusp
form with r = \/,\_:1_/4 = 125.13840. Figures 2.14 and 2.15 give density plots
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Figure 2.9. The intensity 1»(z)? of the eigenstate at energy A = 2000.695 is shown
in the Poincaré disc, whose boundary z = 1 is presented by the circle. The intensity
is plotted in black, if it is above the threshold value —In(cv/2)/27 with ¢ = 0.6.
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Figure 2.10. The same as in Figure 2.9 for the eigenstate at energy A = 2003.117.



20 Sarnak

Figure 2.11. The same as in Figure 2.9 for the eigenstates at energy A = 10001.092.
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Figure 2.12. The cumulative distribution of the amplitudes A,, is shown in compar-
ison with the theoretical expectation I(A4) = 1 — exp(—A42/2) (full line).
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with r = 125.313840 and r = 500.283548. The results are similar to the previous
compact quotient examples. There is no localization and the random wave model
seems to apply. The distribution functions of ¢ for various A are given in Figure
2.16. They exhibit a clear Gaussian behavior. Hejhal and Rackner give convincing

heuristic arguments for a local Gaussian behavior and they are led to

Conjecture 2.1 ([H-R]). The distribution functions of the eigenfunctions oi(z)
of X = T\H? tend to a Gaussian with mean 0 and standard deviation Vol (X Y,

as k — oo.

Section 2.3. Fine structure of the spectrum.

Figure 2.17 displays the first 250 even (i.e. invariant by z — —7Z) eigenvalues of
SLy(Z) as computed recently by Steil [SL]. Previously, in his seminal computations
Hejhal [H3] had determined the first 50 eigenvalues. Perhaps the most important
point to note is that the spectrum is simple. In fact Steil has now checked this
up to the 3000® eigenvalue. The conjecture that the spectrum is simple has some
important applications (see Theorem 3.15 for example). This spectrum is perhaps
one of the most fundamental in number theory.

The number variance has been computed for the various examples discussed in
Sections 2.1 and 2.2. In Figure 2.18, £?(L) is depicted for the Bunimovich Stadium
and the semicircle billiard table [B-G]. The latter is integrable and as the results
show T2(L) follows the expected Poisson. For the stadium it follows the G.O.E. as
expected. Note however that in the nonuniversal range the number variance for this
example must increase substantially because of the family of bouncing ball billiards

— see Proposition 3.1.*

To describe the numerical results for the spectral statistics for I'\H? we need to

introduce the notion of an arithmetic group. These are the main objects of these

*Indeed this effect for the stadium has been confirmed recently in a physical experiment, see
[G-H-L-L-R-R-S-W].
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55.23229925600
§5.37409277935
55.61692633822
&R 23748384737
56.65882031164
56.89369689292
§7.06541326358
57.54010430420
57.79524385295
§7.99643152172
58.65093981625
58.78091445622
58.82020155454
50.11324417177
59.70160912149
$9.93123655675
60.06709808489
60.46483819309
60.79740986912
60.82214006249
61.22103389976
61.8021202170¢
62.07168153918
62.20759315100
62.62501774403
62.97730391627
63.04910103639
63.19843639284
63.80322442707
64.10919880514
64.12517778026
64.21323387188
64.70981984483
65.00356195228
65.40390680728
65.40735293304
65.77666511886

65.96209734837
66.23574908504
66.49100365587
67.04422392500
67.07029649539
67.34625908379
67.47742355856
68.13572078797
68.19151768676
68.27566473746
68.29637718449
68.88149627021
69.08836116230
69.25485308280
69.42656454672
69.92125375716
70.24290169136
70.32378254992
70.61572950727
71.01078372428
71.15704698684
71.37166757678
71.48995730929
71.70131027275
72.16797776854
72.23058701293
72.24874572552
72.38643028876
72.96286750763
73.12415395515
73.41907786242
73.49242967097
73.97080822746
74.10428030133
74.20416356027
74.43067661438
74.65128108423
74.93071791065
75.05855945306
75.45071957389
75.69209661168
76.12814986165
76.16884742696
76.27239358714
76.38882231717
76.61676668703
77.06049358257
77.21088762760
77.24214580553
77.61781292814

77.98611704475
78.09252647365
78.20534347109
78.35339464386
78.37255228557
78.77823131287
78.95781318301
79.32224355438
79.33458819255
79.61334421892
79.89490171062
80.10361509406
80.26065640791
80.39368178281
80.87049505509
80.93955181528
81.10357062734
81.29439559126
81.32100656490
81.85612290670
82.02948035834
82.10306654087
82.14287108044
82.28298775627
82.70770750481
82.83179772306
83.03064561177
£3.29192431362
83.56890078312
83.64002134805
83.91873587258
83.99881€47469
84.24704551101
84.39590)126839
84.77616371669
84.95024943562
84.95302975945
85.18848146530
85.20248644734
85.86252245475
85.86681912405
85.89707240986
85.92906122834
85.97613707223
86.57446409475
86.64637508745
86.85380347476
86.93039800832
86.95561068340
87.44469721193

87.73649308039
87.76149544734
88.08154565610
88.16357318690
88.25453029914
88.51022821226
88.67026672751
88.96066800616
88.97436581691
89.437686176597
89.5058275C141
89.54555368712
89.73343982086
89.80719411036
90.11362514641
90.41193016587
90.57861477668
©0.70318734469
90.71234986439
90.95544578325
91.36718953829
91.39575276806
91.50982677824
91.63598281491
91.72529956741
91.84395089639
$2.22025421815
92.36721794299
92.40899986691
92.78138740376
92.80189710505
93.07650975800
93.17186123241
93.46660516698
93.52238846484
93.54648940473
93.95631302682
94.18768303829
94.34175882653
04.39891249484
94.53732604252
94.60616740451
95.00492646164
95.18552860102
95.20790727963
95.30834305580
95.51585265716
95.69239631435
95.97201251932
96.04840199713

Figure 2.17. The first 200 even eigenvalues r for SLy(Z), r? + 1/4 = X [from Steil

SL]).
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L

Figure 2.18

notes and the reason for the choice of the title. Firstly I' = SLy(Z) is the most
important example of an arithmetic lattice I" in SL;(R ). Rather than give the usual
definition [BO] we give an equivalent one, which is a characterization in terms of

the traces of elements of I', due to Takeuchi [TA]. Let
L(T) ={tr(7) [y €T} . (2.1)

(A) T is arithmetic iff

(a) K = Q(L(T)) is a finite extension of Q and £(T) C O = the ring of integers
of K.

(b) If ¢: K — C is an embedding such that ¢(t?) # ¢? for some ¢ € £(T') than
#(L(T)) is bounded in C.
(B) T is derived from a quaternion algebra iff £(T") satisfies A(a) and (b). If ¢ is
an embedding of K in C, ¢ # identity, then ¢(L(T')) is bounded.

For example using this, one can check that the Hecke groups I',, defined at the
beginning of Section 2.2 are arithmetic only when m = 3,4,6. The group defined
in Figure 2.6 is also arithmetic.

Examples of lattices derived from quaternion algebras are the following: Fix

a>0,b€ Z,and let

e zo+z1v/a z2+T3va| 5 2 _ 1.2 2_}
T =4 b o) m L Ve |t = aal - baf + abal =1 (2.2)
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(see S. Katok [K]).

Schmit [SCH| has computed £?(\,L) for both arithmetic and nonarithmetic
triangle groups (see also [B-G-G-S], [B-S-S]). In Figure 2.19 the results for an arith-
metic triangle group are shown. Surprisingly £? is close to Poisson in the universal
range. Other arithmetic triangles have been studied and they all have the same
behavior. This includes the modular group I' = SL3(Z) for which one can see the
Poisson like behavior from the energy level plot in Figure 1.3. On the other hand
in Figure 2.20, the number variance, computed by Schmit for a nonarithmetic tri-
angle, is shown. Unlike the arithmetic case this as expected follows the G.O.E.
distribution in the universal range. A similar behavior has been found for other

nonarithmetic lattices.

° 3
0 1 2 3 4 S L]

Figure 2.19: £%(L) for an Arithmetic Triangle

This completes our brief report on the numerical experiments. Summarizing the
findings we have: At least for n = 2, the random wave model for the eigenfunc-
tions appears to apply for both arithmetic and nonarithmetic hyperbolic surfaces.
However only for the nonarithmetic surfaces do the eigenvalues behave according
to random matrix theory. For the arithmetic surfaces the spectrum appears to be
Poissonian. In the next section we state a series of results which explain these

behaviors for arithmetic surfaces.
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0

Figure 2.20: £2 for a Nonarithmetic Triangle

SECTION 3. ARITHMETIC MANIFOLDS

Before describing our results for arithmetic manifolds we make some remarks
concerning the number variance for the stadium and similar manifolds. From the
numerical results, viz Figure 2.18 we see that ¥?(), L) follows G.O.E. However we
cannot expect that for L >> Lyax,Z2(L) will oscillate in a bounded way about
T2(),Lyax ). The reason is that the stadium has a family of “bouncing balls” (see
Figure 2.2).These form a 1-parameter family of periodic billiards with a common
period. Even though these points are of measure zero in phase space they affect
the spectrum according to the following Proposition. It concerns the case without

boundary but the effect in the case of the stadium should be similar.*

Proposition 3.1. Let X be a compact 2-dimensional Riemannian manifold (with-
out boundary). Assume that for some T' > 0 the geodesic flow ¢;: S;(X) — ST(X)
satisfies dim{v | ¢7v = v} = 2. We also assume that this set satisfies some further

standard technical conditions (see the proof in Section 5). Then for ) large,

1 Area(X) 1/4
XA |N(y) - - y|dy >> A4,

*It is, see footnote page 23.
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In particular
Z2(A\, L) >>AY2 forL~ ).

The Sinai billiard (Figure 2.5) and Buminovich stadium have such families. So does
a flat torus or more generally any case with integrable geodesic flow. For the case
of the flat torus the lower bound implied by Proposition 3.1 gives a lower bound for
the counting of lattice points in a circle radius v/A. In this case this lower bound is
the well known Hardy-Landau Theorem [H-L]. Concerning the statistics of the level
spacings for integrable Hamiltonians some interesting progress has been by Sinai
[SI2] and Blecher [BL] for surfaces of revolution and by Uribe and Zelditch [U-Z]
for Zoll surfaces.

We turn to the number variance for arithmetic surfaces. The following lower
bounds show that these are highly nonrigid. Let T denote the average of £2 over
L,ie.

- i [p~
ST L) =7 fo ST, A, £)dE . 3.1)

The behavior of T is similar to £? except for being a little smoother. In particular

lower bounds for & imply ones for X2.
Theorem 3.2 (Luo-Sarnak [L-S]). LetI' < SL,(R) be arithmetic then
2 VA

=2
Didsd —_— —_— AN
T (T,A L) >> Tog M2’ for =y << L << Lyax ~ VA

Theorem 3.3 ([L-S]). IfT is derived from a quaternion algebra then
BT L) > 212

for  AMA<<L<<)?/logh.

Remarks 3.4.
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(1) For L = V/A/log A which is just inside the universal range, Theorem 3.2
asserts that

=2 L
pN AL . 3.2
(F'-' 7 ) >> IOgL ( )

This is close to establishing and consistent with the Poisson behavior which was
found numerically.

(2) Theorem 3.3 gives in the more restricted case of I' derived from a quaternion
algebra, an effective lower bound for Y2 in the range L € [A\1/4,2}/2 /1log A]. It shows

that in this range the spectrum is nonrigid and hence not the conjectured G.O.E.

The feature of arithmetic groups that is at the root of the nonrigidity of the
spectrum is the high multiplicity of the length spectrum. The high multiplicity
was observed by Selberg and Hejhal [H1] in their derivation of a lower bound for
|N(X) — )| for certain groups derived from quaternion algebras. This has been
pointed out again in Bogomolny et al [B-G-G-S] and Steiner etal [A-S-S]. For us
the key property of arithmetic groups in this connection is the following bounded
clustering property (B-C) which may be easily deduced from Takeuchi’s characteri-
zation given in Section 2. For I' < SLy(R) an arithmetic lattice there is C(T') < o0
such that

ILT)N[m,m+1)|<C(T) formeZ. (3.3)

This (B-C) property is technically difficult to work with, which is the reason for
Theorem 3.2 being weaker than Theorem 3.3.* We will outline a proof of Theorem
3.9 in Section 5. While Theorem 3.2 explains the nonrigidity of the spectrum for the
arithmetic quotients we emphasize that we have no upper bounds for the number
variance.

We turn now to the behavior of the eigenfunctions for arithmetic quotients.
Firstly we will also allow higher dimensional hyperbolic manifolds and specifi-

cally n = 3. Examples of arithmetic hyperbolic 3-folds are gotten from quadratic

*The (B-C) property may well be a geometric charcterization of arithmeticity.
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forms as follows: Let F(z) = F(z1,Z2,3,74) be an integral quadratic form in
4 variables, which over R has signiture (3,1). For ¢ = %1 chosen appropriately
the hyperboloid V = {z | F(z) = €} consists of two sheets. The line element
ds® = F(dz;,dz,,dzs,dz,) restricted to V(R) gives a model of hyperbolic 3-space.
The orthogonal group of F denoted GF acts on V as isometries and the quotient
Xr = Gp(Z)\V(R), where Gr(Z) consists of all 4 x 4 integral matrices preserv-
ing F, gives a hyperbolic 3-manifold. If F is anistropic over Q (that is, F (z)=0
for z € Q* = z = 0) then it is known that XF is compact [CA]. An example is
Fo(z) = 22 + 7} + 22 — 7z3. It is anisotropic, as may be seen by considering Fo
modulo 8.

In general when studying eigenfunctions by trace like or spectral expansions, one
is limited to investigating sums of these quantities over quite large energy ranges.
This makes the investigation of individual eigenfunctions very difficult. For general
manifolds we don’t know how to go beyond this natural barrier but in the arith-
metic quotient case this can be done. The key point here is the analytic use of
certain arithmetically defined operators, called Hecke operators. These arise from
correspondences on the manifold X. By a correspondence C of order r > 1 on X
Wwe mean a map z 5 {z1,... ,2zr}of X - X x X ... x X/X where I is the permuta-
tion group of r-letters and where z;j(2) are locally isometries of z (The z;’s are not
individually globally defined but as a set they are). In particular a correspondence
of order 1 is an isometry of X. If X = I'\S with S a Riemannian space and I a
subgroup of the isometry group G of S, then we may obtain such a correspondence
as follows: Given § € G for which § 'T'6 N T = B is of finite index in both I' and
§~1T¢, let Cs be given by

Tz % {Téa;z,... ,ybarz} (34)

T
where I' = |J Ba; is a coset decomposition.
=1
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C; is then a correspondence on X. To such a Cs we associate a Hecke operator
Ts: LZ(X) — L3(X)

Tsf(z) =) f(8a;z) . (3.5)

=1
It is easily checked that T is well defined and moreover since éo; € G, Ts

commutes with the Laplacian A. The set of such T’s generate an algebra which
is of most significance when the commensurator COM(T) = {§ € G | §7'T'6 N
T is finite index in both}, is large. For G = SLg, or SO(n, 1) (or any other semisim-
ple Lie group for that matter) Margulis [M] has shown that COM(T') is dense in
G(R) iff T is arithmetic. In fact if I' is not arithmetic then COM(T')/T is a fi-
nite group. Hence being arithmetic is equivalent to having an infinite family of

correspondences.

Examples 3.5. (i) For T' = PSLy(Z) in PGL;(R), COMT) = PGL»(Q). If

n>1 6, = [g 2] € COM(T) and it gives rise to the classical Hecke operators
T,: L*(T'\H?) — L*(T'\H?) defined by (see [SER])
az+b
Lfz)= Y, f6=Y (5. (3.6)
S§€T'\R(n) bn}o_d d
Gd>—0ﬂ

Here R(n) = {(‘; 3) ,ad —bc=n,a,b,c,d € Z}.

The T,’s satisfy

Ty = Z AT /a2 - (3.6")
d|(n,m)

Moreover they commute with A and they are self adjoint on L?*(T'\H?). In choosing
the eigenfunctions ¢x of A we may therefore assume that these are also eigenfunc-
tions of the Hecke algebra. According to the numerical results discussed at the
beginning of Section 2.3 this assumption about ¢; being a Hecke eigenform is prob-
ably automatic since the spectrum is in all liklihood simple. In any case it is this

basis of eigenstates that is of interest in arithmetic.
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(ii) The examples I' 3 of (2.2) are called quaternion groups. Let A be the quater-
nion algebra over Q (one can of course work over more general number fields as well)
generated linearly by 1, w, Q, wQ), where w? = ¢, Q2 = b, WQ + OQw = 0. Then
La,p corresponds to R(1) = {a € A(Z) | N(a) = 1}, N(e) being equal to a@ where
a =z —z,w—220 — 23w if @ = 2o + 21w + 220 + z3wN. Just as with example
(i) above we can use the set R(1)\R(n), where R(n) = {a € A(Z) | N(a) = n},
to define a correspondence Cr:T'y 3\H — T, 3\H. One can also form the Hecke
operators T, (see Eichler [EI]).

We say I' is a congruence group if I" is a subgroup the unit group of a quaternion
algebra and T' contains I'(g) for some g, where I'(g) = {¢ € T | & = 1(mod g¢)}. For
these we have a commutative self adjoint Hecke algebra. In this case we will always
assume that the basis of eigenfunctions @i are also Hecke eigenfunctions.

In connection with the behavior of the eigenfunctions our first result is that

strong scarring on closed geodesics does not occur.

Theorem 3.6 (Rudnick-Sarnak [R-S]).

Let X be a congruence arithmetic manifold of dimension 2 or 3 then there is no
strong scarring on closed geodesics or more generally proper geodesic submanifolds.
Precisely, if the singular support of a quantum limit v is contained in a finite union
of points, or closed geodesics or closed totally geodesic surfaces (in the case n = 3)

then the singular support must be the empty set (that is v is absolutely continuous).

In particular this answers the question of Colin de Verdiere (see page 16) at least
for congruence groups and Hecke bases. The above Theorem is a first step towards

the following conjecture which rules out localization.

Conjecture 3.7 ([R-S]) Quantum Unique Ergodicity. ¥ K < 0 and n = 2
or 3 then up — dV/Vol(X) as k — oo. That is the ui’s become (individually)
equidistributed.
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Further evidence for this conjecture in special cases will be given in Section 4
where its relation to the Lindelhof-Hypothesis in the theory of L-functions, will be
explained. This relation leads to the following quantitative form of the conjecture

for hyperbolic surfaces: For ¢ > 0,

2 — 1 —1/44¢
[ 6P sae) = Gy [ FMl) +0us O @D

One can show that the exponent —1/4 in (3.7) cannot be replaced by anything
smaller (cf. the question in [CD-3, pp. ]). Conjecture 3.7 if true is remarkable
since it asserts that at the quantum level one has unique ergodicity (the conjecture
extends to the fiz’s in (1.9) and asserts the uniqueness of such quantum limits)
while classically unique ergodicity (i.e. uniqueness of invariant measures for the
Hamiltonian flow) is never satisfied by chaotic systems. The proof of Theorem 3.6
is based on X having a large family of correspondences and the ¢’s being Hecke
eigenforms, see Section 3.

All of the above is consistent with the experiments and the random wave model.
To examine this further we investigate the sizes of the eigenfunctions. For a general

compact X we define

Definiton 3.8. For 2< p < oo let

il
alax Jﬁﬁ: for A € Spec(A) .

0 otherwise

My()) = {

There are general bounds for M,(A) which are derived from local considerations
(and in particular do not depend on the geometry of X ) due to Seger and Sogge
[S-S]:

Theorem 3.9. Let é(p) = max{n]% -1-1 0}. Then

0(1(9)/2), Antl) < g< @

n—1

Mq(x) = {

—1)(2—d")/d' 2(n+1)
oEAls-NBMr) 29T



Arithmetic Quantum Chaos 37
1431
where s ty=1

In particular
Mo(2) = 0(\*T) . (38)

The point in Theorem 3.9 is that for general 2 < ¢ < oo it gives a better bound
than Iwhat one would get by simply interpolating between (3.8) and M>(A) = O(1).
The improvement is closely related to the restriction theorem, see Stein [ST]. As
mentioned above Theorem 3.9 is local and while it is sharp for the n!-sphere it pre-
sumably is far from the truth when K < 0 (i.e. the Q.C. regime). Even for the
n-torus X = R™/Z" where the eigenfunctions are exponentials, M,(}) is not com-
pletely understood because of the multiplicities of the eigenvalues. For X = R?/Z?
we have My()) = 1/#()) where p(}) is the multiplicity of A\. From elementary

properties of sums of two squares it follows that for this X

p(A) =0, (A°) foralle >0

My (A) = 0.(A°) foralle >0. (3.9)
Also u(A) is unbounded. It is less obvious that
M,()) < V5 (3.10)

which is due to Zygmund [Z]. This last estimate shows that on R%/Z? every quantum

limit is absolutely continuous. For n > 3 a bound like (3.10) for some p > 2 is not

2(n+1)
n—3 ?

known. However Bourgain [BO] has recently shown that for n > 4 and p >
M,y(A)) << A"T "%+ Moreover in this range these estimates are essentially
£

sharp.

Returning to the chaotic case the following is our main conjecture.

Conjecture 3.10. Forn=2and K <0

Mow(X) = 0.()) foralle >0.



38 Sarnak

Some comments about this conjecture are in order. Firstly the conjecture is con-
sistent with the random wave model (see 1.10). In fact it emerges from random
wave considerations in much the same way as the Ramanujan conjecture (see 4.25)
emerges from random matrix theory (see the comments at the end of this section).
Thus we may view Conjecture 3.10 as the eigenfunction analogue of the Ramanujan
conjectures. In the same way Conjecture 2.1 may be viewed as the eigenfunction
analogue of the Sato-Tate conjectures (see [SA3]). There is further basis for Con-
jecture 3.10 in the arithmetic quotient case. We show in Section 4 that it implies
the Lindelof Hypothesis for the Riemann zeta function as well as certain other L-
functions. Thus if true the conjecture is very deep. It also puts these analytic
questions about L-functions in a new context. The next theorem gives a partial
result towards Conjecture 3.10. It gives the first improvement over the “convexity
bound” (3.8) (recall that when dealing with congruence groups we are assuming ¢’s

are Hecke eigenforms).

Theorem 3.11 (Iwaniec-Sarnak [I-S]). If'\HZ is a congruence quotient then
(a) Moo(X) = O (A3/%4+¢) for £ > 0.
(b) Meo(};) > c+/loglog A; for ¢ > 0 and infinitely many j’s.

Remarks 3.12.

(i) Part (b) of Theorem 3.11 shows in particular that the ¢;’s are not uniformly
bounded which is by no means obvious. It is consistent with the large deviations
that occur for random waves — viz (1.10). The proof of (b) proceeds by using the
eigenvalues of the Hecke operators as weights in sums over the spectrum (see Section
5). In this way one is able to investigate the individual eigenfunctions beyond what
the usual trace methods yield. In fact the proof shows that the eigenfunctions are
large at a certain dense set of arithmetical points of X. For I' = SL2(Z) these

points are the “C.M.” points {z € H? | az? + bz + ¢ = 0,a,b,c € Z}. The point
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p = €™/3 is such a point and it clearly an enhanced point in Figure 2.15.

(i1) The proof of the upper bound (a) employs polynomials in the Hecke eigenval-
ues as weights in certain spectral sums (see Section 5). Thus by arithmetical means
we are able to go beyond the local bound (3.8). It would be much more satisfactory
to bring in the chaotic dynamics as the global ingredient (rather than arithmetic) to
establish a result like (a). However at present no technique is known to do so. Part
(a) actually leads to non-trivial bounds for the zeta function (see Section 4) on the
line Re(s) = 1/2 (by the same method used to show that Conjecture 3.10 implies
the Lindelof-Hypothesis). While better results are known for the zeta function this

does place Theorem 3.11 (a) in context.

(iii) The proof of Theorem 3.11 applied for Hecke eigenbases only. In general it

is easy to see that the multiplicity p()) of eigenvalue X satisfies

u(A) £ (Mos(V)* - (3-11)

Hence the main Conjecture 3.10 implies that
(X)) = 0g(2®) .« (3.12)

Unfortunately for arithmetic hyperbolic surfaces we know of no better bound for
p(A) than

u(2) = O(A?/log A) (3.13)

which follows from Berard [BD]. This is a sad state of affairs since recall that for
' = SLy(Z), u()) < 1is most likely true (see the beginning of Section 2.3).

All of the above results are consistent with the random wave model for eigen-
functions. However for n = 3 and T arithmetic the eigenfunctions can display

much more drastic variations. At least a certain subset of the eigenfunctions do
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not behave like random waves. Let XF be the hyperbolic 3-fold associated to the

quadratic form F' as on page 32.

Theorem 3.13 (Rudnick-Sarnak [R-S]).

Let Xr be as above, then for6 < p <
My(4j) 2 Cp{q_ﬂ-a{z;:

for ¢, a positive constant and infinitely many j’s.

The proof of Theorem 3.13 uses Siegel Theta Functions [SHI] and will not be
discussed further here. The subsequence of eigenfunctions exhibiting this singular
behavior of being very large on a dense set of arithmetical points, are “theta lifts”
from SL; [R-S]. That theta lifts can be singular in other aspects and for other groups
is not a new phenomenon. For example the failure of the Ramanujan Conjectures
for GSP, [KU, H-PS] or SO(n,1) n > 4 [B-L-S]. However the fact that these ¢;’s
are so singular is quite unexpected. The lower bound in (3.13) is not compatible
with (1.10) and so these theta lifts do not behave like random waves. The reason
for the behavior in Theorem 3.13 is beautifully illustrated in the following special
example.

Let F, be the form defined on page 32 and let Vy = {z | Fo(z) = -1}, T = Gr(2),
Y = T'\V(R).

Theorem 3.14 ([R-S]).
Let P = (2,1,1,1) € Y. Of the N()) (= cX*/2 + O(})) eigenfunctions with

A; < A at most O()) do not vanish at P.

The fact that so many eigenfunctions vanish at P is what forces those that do not,
to be very large at P. Once the L°°-norm is shown to be as large as indicated,

one can deduce from the fact that ¢; is an eigenfunction, that its L? norm is large
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for the range of p indicated. The special feature of P, is that Vp(Z) (that is the
integral points of Vp) consists of a single I' orbit. This is very special. It is an
interesting problem to explain the geometric source (rather than arithmetical) for
these singular eigenfunctions as well as the vanishing at P. Recall that this is
an example of a chaotic Hamiltonian with 3 degrees of freedom and there are no

caustics or focusing.

Before ending this Section we report briefly on some recent developments con-
cerning existence of bound states (that is cusp forms) for noncompact but finite area
surfaces I'\H?. Some years ago [SA2] we made the conjecture that the existence of
infinitely many such forms is intimately tied to the arithmeticity of I'. For exam-
ple consider the triangles T}, in Figure 2.7. We seek nonconstant L?-solutions to
Au+ \u =0, 8,u = 0 on 8T}, (that is Neumann boundary conditions). According
to the arithmeticity remarks on page 27, our Conjecture concerning the existence
of such solutions asserts that unless m = 3,4, 6 there should be no such solutions.
For m = 3,4,6 Selberg [SEL2] proved that such cusp forms exist in abundance.
Numerical experiments by Hejhal [H3] have confirmed that for m # 3,4,6 no cusp
forms exist for A up to about 3600. The above conjecture emerged from the theory
developed in Phillips-Sarnak [P-S1] concerning the behavior of cusp forms under
deformation of T. It was shown that the nonvanishing of certain L-functions (pre-
cisely, Rankin-Selberg L-functions — see Section 4 for definitions) at special points
ensures that such a form is dissolved generically in the moduli space. This nonvan-
ishing condition, which may be viewed as a form of Fermi’s Golden Rule [PS2, PS3],
is especially Golden here since one can show by techniques from number theory that
many of these special values are not zero. Recent developments by LUO [LU] give
the strongest results to date on nonvanishing. Wolpert [W] has made further sig-
nificant progress by developing the above theory for singular deformations of I'’s

degenerating to the boundary of moduli space. For example one striking application
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of his theory, due to Judge [JU], is the following:

Theorem 3.15 (Judge). Assume that the spectrum of To(D)\H?, D = 1,2,4 is
simple on new-forms, then for all but a countable number of m € (2, 00) the triangle

T, has a finite number of bound states.

In the above, [o(D) = {7y € SL2(Z) | v = [i g

splits into a space of new-forms and old forms [A-L). The assumption about the

] with D|C}. L*(To(D)\H?)

simplicity of the new form spectrum for To(1) = SL3(Z) is the same one that
we have mentioned previously in Section 2.3. Again we see the importance of this
multiplicity question. In Phillips and Sarnak [PS-4] a related result is proven under
the much milder assumption that a positive proposition of the eigenvalues are of
bounded multiplicity. Such information is a consequence of the A;’s having a Poisson
level spacing. What is needed here are upper bounds on the number variance!

To end this Section we make some remarks about the reversal of the use of
random matrix theory. While the random matrix model does not apply to the
Laplace eigenvalues for arithmetic surfaces it is appropriate for the spectrum of
the Hecke operators (page 36). In [SA3] we showed that the Wigner semicircle level
density corresponds to the Sato-Tate conjecture for the Hecke ei genvalues. Moreover
Friedman [FR] has shown that for random regular graphs, which are the appropriate
models for these Hecke operators, the eigenvalues satisfy bounds which correspond
to the Ramanujan Conjectures [SA1]. Given this it is perhaps not too surprising
that one can reverse the philosophy and use these Hecke correspondences to give
explicit constructions of graphs which mimick random ones in many respects. This
was done some time ago by Lubotzky-Phillips-Sarnak [L-P-S] and independently
by Margulis [M2]. These explicit graphs are known as Ramanujan graphs and have

found many practical applications [SA1].
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SECTION 4: L-FUNCTIONS

We begin with Riemann’s zeta function
oo
(&)= n*=Jla-p)". (41)
n=1 P
The infinite “Euler” product is over the primes and the above definition and identity

holds for Re(s) > 1. Besides the Euler product {(s) has an analytic continuation

and functional equation. Set

£(s) = 72T (s/2)¢(s) -

Then
£(s) =¢(1-5). (4.2)

The Riemann hypothesis, R-H, asserts that all the nontrivial zeros (i.e. those with
0 < Re(s) < 1) lie on Re(s) = 1/2. This remains one of the major unsolved
problems. A problem of importance in number theory is to estimate ((s) along the

line Re(s)=1/2. The Lindelof hypothesis, L-H, asserts that
o [
((5 +1it) =0 (1 +t|)° ,e >0. (4.3)

One can easily deduce the bound {(3 +it) = O(|t|*/4) using convexity arguments
(in particular the Phragmen-Lindelof principle [T]) together with the functional
equation (4.2). Weyl (or at least his method) was the first to go beyond the convexity
bound by using exponential sums. He showed that ((3 + it) = O(|t|*/). More
recently Bombieri and Iwaniec [B-I] obtained ((1/2 + it) = O.(|t|*/*6**). One
reason to believe the L-H is that it follows from R-H by the convexity argument
applied to log ((s) [T].

More generally one can consider Euler products of higher degree. By an Euler

product of degree k we mean an L-function (this is the name given to a generalized
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zeta function) of the form

=) k
L(s) = Z % = H H(l - -f.:tj-,,,p_")“1 ; (4.4)

n=1 p j=1
We assume that a; = 1 and that

an = 0,(n°) ,6>0. (4.5)

As with the zeta function we require that L(s) have an analytic continuation and

functional equation of the form

(1 —3) =§&(s) (4.6)
where .
&(s) = @* (T[T +ir) L(s) (47)
1=1
Q > 0, L = L.

Such L-functions include Dirichlet L-functions (see [DA]) as well as L-functions
associated with automorphic forms [LA]. It is in the latter form that we will need
them below. They have also been considered recently by Selberg [SEL3] and
Piatetsky-Shapiro [P]. An interesting problem in connection with these Euler prod-
ucts is to show that except for simple change of variables and deformations [C-G]
there are only a countable number of such Euler products. Such would have to be
the case if they all come from automorphic forms. As with the zeta function these
L-functions have a R-H. That is all their nontrivial zeros should lie on Re(s) = 3.
Also, as before, the R-H implies the L-H in the ¢, Q and r aspects. That is:

Lindelof-Hypothesis 4.1. Fore >0

0) L(5 +it) = Ociqul(it] + 1*

(i) L( +ito) = Octor(@°)
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1 k
(i) L(; +ito) = Oc,t,,o(N(r)*) where N(r) = [[1 +Irs1) -
j=1

The standard convexity argument which relies on the functional equation but not
on the Euler product leads to

Proposition 4.2. Fore > 0,

0) L(5 +it) = Ocyriq((ftl+ 1)/+°)
(i) L(5 +its) = Ouyrsa(@/*+*)
(i) L(5 + ito) = Oc o, N()H4*) .

The recent results of Iwaniec [[2] and Duke-Friedlander-Iwaniec [D-F-I] establish
improvements (in the exponent) over the convexity bound in all three aspects, for
all Euler products of degree at most 2 (coming from automorphic forms).

We now discuss the relation between these L functions and the previous lectures
and in particular Conjectures 3.7 and 3.10. The relation emerges on considering

I' = SLy(Z) and its congruence subgroups. The continuous spectrum for T\H? is
furnished by the Eisenstein series E(z,s) which are defined by:

E(z,s)= ), (¥(72)° (4.8)

1€l \r

re={(3 T)Imez}

This converges for Re(s) > 1. Since y*® satisfies

where

A(y’)+s(1—s)y*=0
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it follows that

AE(z,s)+ s(1 — s)E(z,8) =0. (4.9)

Thus E(z, s) are eigenfunctions of A, however they are not in L?(T"\H). For Re(s) =
1/2 they are almost in L?(I'\H) and furnish the extended states (i.e. continuous
spectrum). We may see this from the Fourier expansion; since E(z,s) = E(z+1,3)
we develop E in such an expansion in e2™"%. A straightforward calculation (see

[SA1]) yields

E(z,s) =y* + ¢(s)y*~*

2y*/ s—1/2
+E(-2;)-Zn 01-25(n)K,—y2(2n|nly)cos(2mnz) (4.10)

oo
n=1

where £(s) is defined in (4.2) and

£(2s—1
¢(s) = “'(‘EE"Q—;)—)
oyv(n) = Zd"
d|n

4 (4.11)
K,(t)= -/Dl et <k ¥ cosh(vu)du .

The series (4.10) is rapidly convergent and from it we can easily deduce its mero-
morhic continuation in s. Also we see that E(z,1 + it) is almost square integrable
on I'\H. The orthogonal compliment, of the span E(z,1 + it) together with the

constant function, consists of the cuspidal space [SEL2, HE2]

LA(T\H) = {f € IXT\H) | /0 Hlaails =0 doraay) .

The spectrum of A on LZ(T'\H) is discrete and we may choose an o.n.b. ¢;(z)
of such eigenfunctions. These are the cusp forms for SL2(Z) mentioned in the

previous sections. We may choose them to be eigenfunctions of the Hecke operators
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T., n > 1. Write

Ad;+ Ajp; =0
Tnd; = Aj(n)d;
ni(n) = Aj(n)/v/n . (4.12)

The ¢;’s and E(z, % +it) play the same role and we may test our conjectures on the
Eisenstein series (whatever can be proven for ¢; can also be proven for E(-,1/2+it)).
Consider the M () problem for E(z,1/2 + it). Since E(-,1/2 + it) is not square
integrable we cannot L?-normalize it. One way to get around this, which we choose
to do here, is to consider the local analogue. That is we normalize E on a compact
subset of I'\H?. Thisis equivalent to cutting off the zeroth coefficient of E(z,1/2+it)

in the cusp. Define E4(z,s) where A is a large constant by

E(z, ify<A,zeT\H
Eaz9)={ g oraka (413)
E(z,s)—y*—¢(s)y!™* fy>A.
Then E4 € L*(T'\H). An important calculation [SEL2] yields
1 .. .,dzdz ¢ 1 .
Ea(z, = +1t)|® =2logA — —(=+1t
Jog At + 0P S = 21084~ S 41
__g; A2 — p(L 4+ i) A-20
+¢(‘.+* ) ‘¢(2+" ) . (414)

2t
Now %(% +it) involves the Gamma function and the zeta function at 1+ 2:t. Hence

well known estimates for zeta [T] lead to

1 . ,dzd
1<< / |Ea(z, 5 + i) o2 << (14 [t])° - (4.15)
T'\H 2 Yy e

That is E4 is essentially L?-normalized. Consider now

Meo(}) = Mec(1/4+ 1) = max | Ea(z, 5 + )] (4.16)
Forz =v/—1:=1
S c2 -8 _ 4Ck(3)

(c,d)=1
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where k = Q(v/—1) and (i(s) is its (Dedekind) zeta function. In fact Ck(s) =
L(s, x4)C(s) with

L(s,x4) = X:fj) = H(l - X4(P)P-")_1
1 ifp=1(4)
xa(p) =4 -1 ifp=3(4)
0 ifp=2.

Thus (x(s) is an Euler product of degree 2 in the sense defined at the beginning of

this Section. Again we need well known estimates for ((s) on Re(s) = 1.
1+pE)° << C(1 +1t) << (1+t])°. (4.18)
With this and (4.17) we see that the main Conjecture 3.10 implies
ck(% +it)= O.(1+ Jt])° - (4.19)

That is it implies the L-H for this classical zeta function. We note also that the

convexity bound for (x(s) via Proposition (4.2)(ii) reads
;2 .
E(i, 5 + it) = O ((t] + 1)'/**¢) .

This is essentially the same as the general bound (3.8). By considering E evaluated
at other CM points (see page 55) one can show that Conjecture (3.10) implies L-H
for (x(s) where k is any imaginary quadratic number field from which the L-H for
¢(s) may also be deduced.

For the cusp forms ¢; the Moo()) conjecture is also related to the L-H but for
another Euler product of degree 2. Let ¢; be as in (4.11) then in view of (3.6'),
L(s, ;) is an Euler product of degree two, where

Lsd) =3 B _T[a-mep— +772)" . @)

m=1 P
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The Gamma Factor that goes with the functional equation is (see [BU])

s  irj..,8 1rj 1 5
- — — ] e o T = ,\ .
I‘(2 +3 )I‘(2 ; ), where 5 ey j

This time Conjecture (3.10) implies the L-H in the r; aspect for L(s, ¢;j), with
s = 1/2. The analogue of (4.17) with E replaced by ¢; was recently derived in S.
Katok and Sarnak [K-SK]: Let ¢; be an even Hecke-Maass cusp form for SL2(Z)
then

la;(1)[?$;(i) = 48v/2mp;(—4)p;(1) (421)
where a;(1) is the first Fourier coefficient of ¢;(z), pj(m) is the j-th Fourier co-
efficient of the Shimura correspondent F; of ¢;. Fj is a form of weight 1/2. In
his thesis K. Khuri-Madkisi [MA] has shown that |p;(d)[* is essentially equal to
L(¢; ® xd,1/2) (see Waldspurger [WA], Kohn-Zagier [K-Z], Shimura [SH] for the
corresponding statement for holomorphic modular forms). Morever combining the

results in Iwaniec [[1] and Hoffstein-Lockhart [HN-L] we have

i laj(1)12 e
e oy << il* . (4.22)

The upshot is that the My, conjecture for z =i is equivalent to the L-H in the r;
aspect for L(¢;,1/2).

Conjecture 3.7 when restricted to I' = SL3(Z) is also related to questions about
L functions, but this time of degree 4. Associated to each ¢; as above is an Euler
product of degree 4 known as the Rankin-Selberg L-function. It is defined by

oo (m 2
5658 65,0) = p(2) 3 T (423)
Again (3.6') may be used to show that L(4;® ¢;,s) is an Euler product of degree
4. It has an integral representation (see [BU))
£(5) = la (V=" T2(s/2)T(5 +in)T(5 = ir)L(s,6; ® ;)

— 27 *T(s)((25) fp \H|¢j(z)|2E(z,s)dzfy ;

(4.24)
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In as much as 7—°T'(s)((2s) E(z, s) is analytic in C (except for simple polesat s =0
and s = 1) and that it satisfies a functional equation s — 1 — s, we see that £(s)
satisfies the same properties. Thus L(s,¢; ® ¢;) is an Euler product of the type
described at the beginning of this section. We should mention the issue of (4.5)
being satisfied for L(s,¢; ® ¢;) or L(s, ¢;). This is the statement

nj(n) = Oc(n) (4.25)

and is known as the Ramanujan Conjecture [SA1]. The best estimate to date
towards this widely believed conjecture, is due Bump-Duke-Hoffstein-Iwaniec [B-D-
H-T) and reads |n;(p)| < 2p®/?® for p a prime. In any event the L-H in the r-aspect
for L(s,$; ® ¢;) together with (4.21), (4.23) and Stirling’s series for I'(s) implies
that for a fixed ¢

dzdy
v

51 Pl P (4.26)

:
[ esaPEC 5+t
T\H
This in turn implies that for a fixed A € C§>(T'\H) which is in the space of Eisenstein
series (i.e. in the span of E(z,1/2 +it),t €R)

(2 dzxdy
/F MOCROS

We expect that (4.27) holds equally well with the Eisenstein series E(z,1/2 + it)

= 0.4 (A7/4) . (4.27)

replaced by a cusp form ¢¢(2)- but in this case we don’t have a direct relation to
I-functions. However we can prove that (4.26) is valid in the mean with either
the Eisenstein series or cusp forms. More precisely let k € C§°(T'\H) satisfying
Jr\g P(2)dv(2) = O, then for & >0

> |

2
h(z)dpj(z)] << AM/Ere (4.28)
A<a JT\H &,k

This should be compared with Theorem (1.2) (Quantum ergodicity) which is equiv-

alent to the statement that for any smooth h of mean zero

> | f L h(z)du;(2)| = o(N() - (4.29)

A; <A
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For X = SLy(Z)\H, (4.29) was established by Zelditch [Z2]. He has recently
[Z3] extended this as follows: If X is a compact manifold of (possibly variable)
negative curvature then for m > 1 and h as above

3| [ baMus()|" = O(gyyam) -

A; <A

The proof of (4.28) uses in a crucial way that the ¢;’s are Hecke eigenforms and
also estimates on Kloosterman sums via use of the Kuznietzov trace formula [KU].
In any event it is the above line of reasoning with L-functions and the average
result (4.28) that leads one to Conjecture 3.7 and (3.7). Note that the individual
equidistribution (against the continuous spectrum) would already follow from a
bound of the form L(3 + ito,¢; ® ¢;) = O(|A;]*/4~¢) for some § > 0. That is we
need to beat convexity for this L-function in the r aspect.

The connections between the analytic theory of L-functions and the problems of
the first three Sections show the importance of developing the analytic theory of
general L-functions. For many purposes improving the convexity bound is enough.
Needless to say a more geometric or dynamical approach to the problems described

in the first three Sections could have a profound effect on the theory of L-functions.
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SECTION 5. OUTLINE OF SOME PROOFS

In this Section we outline proofs of some of the theorems mentioned in Section
3. Details can be found in the papers cited. We begin with a proof of Proposition
3.1 which is a simple consequence of Duistermaat-Guillemin trace formula [D-G].
The technical condition that we are assuming is that the fixed point set for the
geodesic flow at time T, which we denote by Zr C §*(X), is a disjoint union
Zy 17U Zy 1 ...UZ; 7 where Z; T is a clean intersection [D-G]. Also we are assuming
that (say) dim Z; 7 = 2. According to the formula of Duistermaat and Guillemin
if ¢ is equal to 1 in a neighborhood of Ty and supported in a sufficiently small

neighborhood of Tp and smooth then
Zé(z- N~eoz? 4+’ asro . (5.1)

We will also assume that ¢y # 0, a property which can be checked for our given X.
Let
Vol(X
Ni(t)= Y 1:=— ( YolX) 2 | s(t) . (5.2)
X<t

Then we can write (5.1) as

" et

—oo

Since Ty # 0 it follows that

] ” é(z —1)dS(t) ~ coz*/?

Vol(X)

tdt + dS(t)) ~ cozl? . (5.3)

or
/ ” ¢'(z — t)S(t)dt ~ —coz'/? . (5.4)

The following calculus lemma is easily established.

Lemma 5.1. Let S(t) be a locally integrable function on R satisfying S(t) = O(|t|).

Assume that for some Schwartz function v we have

|/:0 S(ty(z — t)dt| >> z'/?
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then
1 2X
k] / 1S@)|dt >> X1/2 .
X Jx

The condition that S(t) = O(¢|) in our case is Weyl’s Law (1.7). It follows that if

N(A)= Y 1and EQ\) = N(A) — X)) then
A; <A

1 22
-;/ |E(u)|du >> AM/*
A

and

22
3 [ 1B@Pa =300 >> 27
A

This proves Proposition 3.1 and the comments following it.

We turn next to Theorems 3.1 and 3.2. The starting point is the exact form of
the trace formula for X = I'\H2, that is the Selberg Trace Formula [SEL1, H1]. It
reads

Z h(r;) - Vd(r\ﬂ) h(r)r tan h(xr)dr

—Cco

-3 S e e 9
{vo} k=1 %) N(vo)~*/

where A\; = 1 + rf, g is a smooth even function of compact support and h is
its Fourier transform. The sum on the right hand side extends over all primi-
tive hyperbolic conjugacy classes of I' and N(7) is related to trace(y) = ¢(v) by
N(¥)/? 4+ N(y)7*/2 = t(v). Geometrically log N(v) is the length of the closed
geodesic on I'\H created by 7.
For t > 0 define S(t) by

Vol(l"\H) -

Sit)=#{0<r; <t}- (5.6)

Theorem 3.1 (and similarly Theorem 3.2) follows by a change of variables from

2U 2T
T ] (S(t + u) — S(t))?*dtdu >> (5.7)

T
(log T)?
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where U ~ 1/logT.

Now the left hand side of the trace formula is, except for the finite number of terms

with r; € R, essentially equal to

/:o h(r)dS(r) . (5.8)

For u > 0 we have
oo [="<] v+u dS‘
/ (S(v +u) — S(v))h(v)dv = / j —dzh(v)dv
0 0 v dr

oo ds z4u
=/_md—xj; h(v)dvdz .

In view of (5.8) the last can be expressed in terms of the right hand side of 5.5. In
this way one can derive the following approximate formula, which is a variant of
Proposition 18.11 in Hejhal [H1]: For 10 < B <2logt,0<u<t,ga fixed test

function,

] ey — £)(S(v + u) — S(v))dv
[t—v|<Lt/2

= gl Z ﬂ’(f)g(f/;r_:og Nf) (eitlog N; ei(t+u) log Ng) & Og(te) (5-9)

eP=1<N,LePH?
fec(D)

where

pO= Y 1.

{7}
N(v)=N,

Note that (5.9) yields an approximate formula for a smoothed form of S(t). From
it we can deduce lower bounds for £2. Without such strong smoothing we have no
useful approximation by Dirichlet polynomials which is what makes upper bounds
for S or £2 so illusive. In the case that I' is arithmetic we can use the B-C property
(3.3) to study the mean modulus squared of the right hand side of (5.9) With this
knowledge applied to the left hand side of (5.9) one gets the lower bounds in (5.7)

on using Cauchy’s inequality. To see how the B-C property is used first note that if
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the traces in I are well spaced (that is [¢(7) — t(y')| = & whenever t(y) # #(7')) as is
the case if T is derived from a quaternion algebra, then we can appeal to the sharp
form of the Hilbert inequality [M-V] to study the mean square. For the general
arithmetic T’ the following Lemma from [L-S] is used:

Lemma 5.2. Let 0 < ¢; < t; < t3... satisfy |{t;} N [n?%,(n +1)?]| < C for all
n € N. Let a; > 0, then there is D > 0 such that for R > 1

28]

2R Yal
f | > sty (53— —52)dr2DR Y & +O(VN } af).

E 4N ;<N t; <N

With this we get a lower bound for 5.7 from the diagonal sum in Lemma 5.2.

Appealing a second time to the B-C property for arithmetic groups we have

Y ulto) << xw( 3 ;.;2@0))”2 (5.10)

[tol<X [to]<X
where to runs through numbers which are the traces of primitive conjugacy classes
and p(t) is the number of distinct such classes with trace to. The left hand side is
asymptotic to X?/log X by the Prime Geodesic Theorem [SEL1, H1] and hence

> ulto)? >>X*/(log X)* . (5.11)

[to]<X

One can show that the order of magnitude of the left hand side of (5.11) is in fact
X3 /(log X)?. The lower bound (5.11) leads eventually by the above reasoning to
the lower bound in Theorem 3.1. In the case that I' is nonarithmetic we have no
control of the off diagonal contributions in Lemma (5.2) (i.e. no B-C property) nor
a sufficient understanding of the left hand side of (5.11) which presumably is of
order X/log X.

Next we outline the proof of Theorem 3.6. The idea is to exploit the nonlocal
aspect of the Hecke correspondences (3.5). Let p be a quantum limit for a con-

gruence quotient X = I'\H", n = 2,3, that is 4 is a limit of a subsequence of the
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|#;(2)|2dV(z). Recall that we are assuming that ¢; is an eigenform of a suitable
subalgebra of the Hecke algebra. Let A = sing supp(g). The key is the following

separation lemma.

Lemma 5.3. If A is non empty and is contained in a finite union of geodesic
subspaces as described in Theorem 3.6 then there is a correspondence C of X and

2 € X\A such that CzN A consists of exactly one point.

The proof of this Lemma will not be given here. It may be found in Rudnick-Sarnak
[R-S]. The proof is algebraic and uses the structure of the Hecke operators and the
theory of representation of numbers by binary quadratic and Hermitian forms. To
see how Lemma 5.3 is used to establish the Theorem, let T¢ be the Hecke operator
associated to the correspondence C. (The Lemma actually also ensures that T¢ is

in the suitable Hecke subalgebra). ¢; is an eigenfunction of T¢ so we may write

M(C)3(2) = $5(2a(2) + D 65(2x(2)) (5.12)

k=2
where C is degree r. We have separated out z;(z) so that CZ N A = z(2) := w.
The eigenvalues A;(C) satisfy

MO <7 (5.13)

Let U be a small neighborhood of w in F := union of the finite number of geodesic
subspaces in which A lies. Let B(U,¢) = {£ | d(¢,U) < €}. By Lemma 5.3 we can

find U; a neighborhood of 2 and ¢ > 0 such that for 0 < e < &g

B(UI,E)nA= ¢
2j(B(Uy,e))NA=¢ forj=2,...,r

z1(B(U1,¢€)) = B(U,e) . (5.14)
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From (5.12) and Cauchy’s inequality
[ leaE@)PdeE = JIRZGREG
B(U,,z) B(U,e)

(o [

1

y 2dv 3 § 2dv .
OO+ f“(m) 16,(6)Pdv(6))

It follows from this and (5.13) on letting j — oo that for all £ < &

u(B(U,e)) £ r(ru(B(Ur, ) + p(z2(B(U1,€)) + ... p(2+(B(U1), €))) -

If 1 is absolutely continuous w.r.t. dv outside A then the r.h.s. of the last inequality
tends to 0 as ¢ — 0. That is we have p(U) = 0. This however contradicts the fact

that w € A = AN F and so Theorem 3.6 follows.

Finally we discuss the spectral inequalities that lead to Theorem 3.11. To explain
the ideas we consider only the case X = I'\H? with I' = SL;(Z), pretending X is
compact. So we ignore the continuous spectrum. We use Selbergs theory of point

pair invariants [SEL1]. Let

k=L [ 99w)

TJ: Jw-—t
9(u)=Q(e* +¢7" -2)

o (5.15)
h(r) = [ e'™g(u)du

where we view h as the source function, h should be even and holomorphic in
IIm(r)| < 1/2 + 63, for some &; > 0 and also |h(r)| << (14 |r])~%, § > 2. We form

the spectral expansion

> ku(rz,w)) =Y h(r;)éi(2)8;(w) (5.186)
Y€l j=0
where
|- wl|?
u(z,w) =

Tm(z)Im(w)
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and ¢; and r; as in (5.5). A useful choice of h is as follows; let T > 1 and

xr xT
9 cosh - cosh <

L R e e e b (517)
then
9() = %—Eﬁ% (5.18)
For this h we have
(i) h(r) >0 for reRUIR (5.19)

(i) R(r) >1,T<r<T+1.

A simple analysis concerning the behavior of k(z,z) as T — oo shows that the left
hand side of (5.16) is v(z)T + O(T*/?), where v(z) = |{y € T | vz = z}|. Hence
from (5.19) (i) and (ii) we have

> 1) << T. (5.20)
T<r; <T+1

This yields ||¢;]lec << A}/* which is the local bound 3.8. To go beyond this would
require shortening the sum in (5.20). This however renders the geometric side to
be no longer local and to have an exponential number of terms. This is very hard
to deal with in general and remains a natural barrier. However in the case that we
have corresondences and in particular the Hecke operators T, as for SLy(Z) we can

break this barrier. Firstly apply T, to both sides of 5.16 (in the variable z2).
Assuming as we are that the ¢;’s are Hecke eigenforms as in (4.11) and using 3.6

we get

3 Kz w) =) h(ri)Ai(n)g;(2)é5(w) - (5.21)

~YER(n) j=0
Let

M(z,n,8) = #{v € R(n) | u(yz,2) < 6} . (5.22)
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In this (and the more general case of quaternion algebras) one can estimate M(z,n,d)

from above according to the following Lemma — see Iwaniec-Sarnak [I-S]:

Lemma 5.4. Fore >0
M(z,n,8) << (6 + 8 /*)n'*e +n° .
£

The main reason one is able to do this is that the conditions defining R(n) and M are
a quadratic equation with linear inequalities. A. Zaharescu has recently improved
the bound above by replacing 6!/ by §'/2. With Lemma 5.4 and a careful analysis
of k(z,w) one shows [I-S]

Lemma 5.5.

z k(yz,z) << (T + nT**)n" .
YER(n) ‘

With this the relation n;(n)n;(m) = ¥ n;(%%) (see (4.11) and (3.6')) and (5.21)

d|(n,m)
one deduces the following weighted inequality.

Theorem 5.6. Let ¢ >0, N, T > 1. For any a, € C we have

IO anni(m)|| <<NT Y laul? + NPT Y faal?

T<r; <T+1 n<N n<N n<N

One can then choose the weights o, to highlight a particular |¢;(z)|?>. The obvious
choice of a, = m has the difficulty that we don’t have a lower bound for
Y |n;(n)]?. One has to be more careful in choosing the weights, see [I-5]. In any
;\Sre};t this can be done and leads to Theorem 3.11 (i).
To prove (ii) of the same Theorem we again appeal to (5.21) but with a different
choice of h. Let g, kh, k be chosen with ¢ > 0, h > 0, k > 0 and ¢ of compact

support in [—1,1]. It is easily seen that such a choice is possible. For T > 1 set
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hr(r) = k(r/T) and let g7, kT be the corresponding transforms. The idea is to

choose z in the relation

SR/ TA M) = Y krlyz,2)
i

YER(m)

to be a fixed point of many correspondences. Let S(X) = {z € '\H | az’ + bz +c =
0,(a,b,c) =1,a,b,c € Z} be the set of “C.M.” points in X. The following Theorem

is proven in [I-S].

Theorem 5.7.
(a) Let z € S(X), D = b*> — 4ac and P = {primes p | (4—;2) =1}. Kn has its
prime factors in P and is divisible by a certain fixed integer depending only on D

then

S 1@ M) >> T2 Y dr(%)

ri<T dn
where 7(n) is the number of divisors of n.
(b) For any n < 2T we have
Y i) << (Q_d)T? +n®+T.
Tj sT d|n
The point is that the coefficient of T2 in (a) can be substantially larger than the
one in (b). This can be seen by choosingn = [] p. Doing so leads to Theorem

p<Y,p€E
3.11 (ii) and shows that the ¢;’s are at least that large on the C.M. points.
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SECTION 6. CONCLUSION

To summarize, both the theoretical and experimental discussions have centered
around the quantization of the geodesic flow of an arithmetic hyperbolic manifold.
For these, at least in dimension two, the large energy limit (or equivalently 2 — 0)
the quantum eigenstates appear to behave like random waves with little structure
beyond what is minimally necessary. There is no localization of the eigenstates and
few if any of the chaotic features of the classical Hamiltonian appear at the quantum
level, even in the semiclassical limit. Strong scarring onto periodic orbits does not
occur and quantum unique ergodicity is expected. A weaker type of persistent
enhancement of the eigenstates occurs at certain arithmetical points of the manifold.
The fine analysis of the size and distribution of the eigenfunctions leads to some
basic conjectures which are closely related to the classical Lindelof Hypothesis for
the Riemann zeta function and which are natural eigenfunction analogues of the
classical Ramanujan and Sato-Tate conjectures which concern eigenvalues. It is
interesting that these conjectures as well as the random wave model do not apply
universally to three dimensional arithmetic hyperbolic manifolds. The reason being
that a certain infinite subset of the eigenstates which are “theta lifts” exhibit a
singular behavior. The level spacing distribution for the eigenvalues of all arithmetic
manifolds also exhibit a singular behavior. They do not follow the expected G.O.E.
statistics and in dimension two appear to be following a Poisson like behavior, which
is what is associated with integrable systems.

We expect that the basic eigenfunction behavior found for the arithmetic surface
cases is typical of the quantization of the general chaotic system. The techniques
that we have described in these lectures, which go beyond the local theory and
which make some progress towards the basic conjectures mentioned above, are very
special to arithmetic manifolds relying heavily on the correspondences carried by

such a manifold. It is highly desirable to find methods which bring in the dynamics,
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rather than arithmetic, into the analysis. There is clearly still much to be done and

learned.
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