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Dear Enrico:

Below is the symplectic pairing that I mentioned to you in Zurich. There is nothing deep
about it or the analysis that goes with it. Still its existence is consistent with various themes.
To put things in context, recall that the phenomenological and analytic results on the high
zeroes of a given L-function and the low zeroes for families of L-functions, suggest that there
is a natural spectral interpretation for the zeroes as well as a symmetry group associated
with a family [Ka-Sa]. In particular for Dirichlet L-functions L(s, χ), χ2 = 1, the symmetry
predicted in [Ka-Sa] is a symplectic one, ie Sp(∞). So we expect that in a suitable spectral
interpretation, the linear transformation whose spectrum corresponds to the zeroes of L(s, χ),
should preserve a symplectic form. It should be emphasized that this by itself does not put the
zeroes on the line. Such a symplectic pairing is a symmetry which is central to understanding
this family of L-functions. On the other hand, the existence of an invariant unitary (or
hermitian) pairing for the operator, as suggested by Hilbert and Polya would of course put
the zeroes on a line. However, I think the existence of the latter is not very likely. In the
analogous function field settings there are spectral interpretations of the zeroes and invariant
bilinear pairings due to Grothendieck. The known proofs of the Riemann Hypothesis (that
is, the Weil Conjectures in this setting) do not proceed with any magic unitary structures
but rather with families and their monodromy, high tensor power representations of the latter
and positivity [De].

One can look for a symplectic pairing in the well-known spectral interpretation of the zeroes
of ζ(2s) in the eigenvalue problem for X = SL(2,Z)\H. Indeed the resonances (or scattering
frequencies) through the theory of Eisenstein series for X are at the zeroes of ξ(2s), ξ being
the completed zeta function of Riemann. Lax and Phillips have constructed an operator
B (see [La-Ph]) whose spectrum consists of the Maass cusp forms on X together with the
zeroes of ξ(2s). The problem with finding a symplectic pairing for the part of the spectrum
corresponding to ξ(2s) is that I don’t know of any geometric way of isolating this part of
the spectrum of B. The space L2(X) as it stands is too big. Nevertheless, this spectral
interpretation of the zeroes of ξ(2s) is important since it can be used to give reasonable zero-



free regions for ζ(s), see [Sa ]. Moreover, this spectral proof of the nonvanishing of ζ(s) on
<(s) = 1 extends to much more general L-functions where the method of Hadamard and de
la Valleè Poisson does not work (at least with our present knowledge) [Sh].

Assuming the Riemann Hypothesis for L(s, χ), Connes [Co] gives a spectral interpretation
of the zeroes. I recall his construction below. Like the spectral interpretation as resonances,
Connes’ space is defined very indirectly - as the annihilator of the complicated space of
functions (it is very close to the space considered by Beurling [Be]). We can look for invariant
pairings for his corresponding operator. Note that for an even dimensional space a necessary
condition that a transformation A of determinant equal to 1, to preserve a standard symplectic
or orthogonal pairing is that its eigenvalues (as a set) be invariant under λ −→ λ−1. In fact,
if the eigenvalues are also distinct, then this is also a sufficient condition. On the other hand,
if A is not diagonalizable then there are other obstructions (besides the “functional equation”
λ −→ λ−1) for preserving such pairings.

The set up in [Co] is as follows: Let χ be a nontrivial Dirichlet character of conductor q and
with χ(−1) = 1 (one can easily include all χ). For f ∈ S(R) and even and x > 0 set

Θf(x) :=

(
x√
q

)1/2 ∞∑

n=1

f

(
nx

q

)
χ(n) . (1)

According to Poisson Summation and Gauss sums we have

Θf

(
1

x

)
= Θ �

f(x) . (2)

Hence Θf(x) is rapidly decreasing as x −→ 0 or x −→ ∞. Consider the vector space W
of distributions D on (0,∞) (with respect to the multiplicative group) with suitable growth
conditions at 0 and ∞ for which

D(Θf) =

∫ ∞

0

D(x) Θf(x)
dx

x
= 0 , (3)

for all f as above.

For y > 0, let Uy be the translation on the space of distributions UyD(x) = D(yx). Clearly,
Uy leaves the subspace W invariant and yields a representation of R∗

>0. By (2) if D ∈ W
then so is RD := D(1/x). Thus R acts as an involution on W . To see which characters (ie
eigenvectors of Uy) x

s, s ∈ C, of R∗, are in W , consider

∫ ∞

0

Θf(x) x
s dx

x
= qs/2 L(s +

1

2
, χ)

∫ ∞

0

f(y) ys+ 1

2

dy

y
. (4)
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Now f ∈ S(R) and is even, hence

I =

∫ ∞

0

f(x) xs+ 1

2

dx

x
=

∫
1

0

f(x) xs+ 1

2

dx

x
+ g(s) ,

where g(s) is entire. Moreover, for N ≥ 0

I =

∫
1

0

N∑

n=0

a2n x
2n xs+ 1

2

dx

x
+ a holomophic function in <(s) > −N + 1 ,

=

∞∑

n=0

a2n

2n− 1

2
+ s

+ hol in <(s) > −N + 1 .

(5)

Thus for general such f , I has simple poles at s = 1

2
− 2n.

According to (4) and (5) we have that xs(Θf) = 0 for all f iff

s = iγ where ρ =
1

2
+ iγ is a nontrivial zero of L(s, χ) . (6)

If the multiplicity of zero of L(s, χ) at ρ = 1

2
+ iγ is mγ ≥ 1, then differentiating (4) mγ − 1

times shows that
xiγ , (log x) xiγ , . . . , (log x)mγ−1 xiγ (7)

are in W .

The involution R of W ensures that xiγ ∈ W iff x−iγ ∈ W (and similarly with multiplicities).
Of special interest is γ = 0. We have from (2) that for j odd

∫ ∞

0

(log x)j Θf (x)
dx

x
= −

∫ ∞

0

(log x)j Θ �

f(x)
dx

x
. (8)

Hence if f = f̂ and j is odd ∫ ∞

0

(log x)j Θf(x)
dx

x
= 0 . (9)

If f = −f̂ then ∫ ∞

0

f(x) x1/2
dx

x
= 0 . (10)
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So from (4) we see that if f = −f̂ then

∫ ∞

0

Θf(x) (log x)j dx

x
for j = 0, 1, . . . , m0 . (11)

Combining (9) and (11) we see that

W0 = span {1, log x , (log x)2 , . . .} ∩W

= span {1, log x . . . , (log x)m0−1}
(12)

is even dimensional.

Hence m0 is even (of course this also follows from the functional equation for L(s, χ)).

In order to continue we need to specify the precise space of distributions that we are working
with. To allow for zeroes ρ of L(s, χ) with <(ρ) 6= 1

2
one needs to allow spaces of distributions

which have exponential growth at infinity. This can be done and one can proceed as we do
here, however to avoid such definitions we will assume the Riemann Hypothesis for L(s, χ)
(anyway, this is not the issue as far as a symplectic pairing goes). This way we can work
with the familiar tempered distributions. We change variable, setting x = et so that our
distributions D(t) satisfy ∫ ∞

−∞

D(t) Θf (et) dt = 0 . (13)

The group Uy now acts by translations τ ∈ R,

Uτ D(t) = D(t + τ) . (14)

If now V is the space of such tempered distributions satisfying the annihilation condition (13)

for all f (which is a topological vector space), then for D ∈ V , its Fourier transform D̂(ξ) is

supported in
{
γ |ξ

(
1

2
+ iγ, χ

)
= 0

}
. Since D̂ is also tempered it is easy to describe D̂ and

hence the space V . It consists of all tempered distributions D of the form

D(t) =
∑

γ

mγ−1∑

j=0

aj,γ (D) tj eiγt . (15)

The representation (15) is unique and the series converges as a tempered distribution ie.

∑

|γ|≤T

mγ−1∑

j=0

|aj,γ(D)| � TA (16)
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for some A depending on D.

The action (14) on V gives a group of transformations whose spectrum consists of the numbers
eiγτ with multiplicity mγ . The subspaces Vγ of V given by

Vγ = span
{
eiγt, teiγt, . . . , tmγ−1 eiγt

}
(17)

are Uτ invariant. The action taking the form

eiγτ




1 τ τ 2 . . . τmγ−1

1 2τ
. . .

. . .

1




, (18)

in the apparent basis. Thus Uτ is not diagonalizable if mγ > 1 for some γ. The span of
the subspaces Vγ is dense in V . So the action Uτ on V , for what it is worth, gives a spectral
interpretation of the nontrivial zeroes of L(s, χ). While one expects for these L(s, χ)’s that all
their zeroes are simple, there are more general L-functions (eg those of elliptic curves of rank
bigger than 1) which have multiple zeroes. Thus the possibility of multiple zeroes especially
at s = 1

2
must be entertained and it is instructive to do so. In any case, since multiple

zeroes mean that this action Uτ is not diagonalizable, we infer that there cannot be any direct
unitarity that goes along with it.

There is however a symplectic pairing on V preserved by Uτ . It is borrowed from symν ρ,
where ρ is the standard two dimensional representation of SL2 (via (18) above) when ν is
odd. We pair Vγ with V−γ for γ > 0 and separate the even dimensional space V0.

For D,E ∈ V set

[D,E] :=

m0−1∑

j=0

(−1)j aj,0 (D) am0−1−j,0(E)(
m0−1

j

) +
∑

γ>0

γe−γ2

mγ−1∑

j=0

(−1)j

(
mγ−1

j

) ·

·
(
aj,γ(D) amγ−1−j,−γ (E) − amγ−1−j,−γ (D) aj,γ(E)

)
.

(19)

There is nothing special about the factor γe−γ2

it is put there for convergence.

The bilinear pairing [ , ] on V × V is symplectic and Uτ invariant. That is

(i) [D,E] = −[E,D]
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(ii) It is nondegenerate: for D 6= 0 there is E s.t. [D,E] 6= 0.

(iii) [UτD,UτE] = [D,E] for τ ∈ R.

The verification of these is straight forward. Note that if m0 > 0 and being even, one checks
that the transformations (18) cannot preserve a symmetric pairing. Thus the symplectic
feature is intrinsic to this spectral interpretation of the zeroes of L(s, χ).

It would be of some interest to carry out the above adelically as in Connes’ papers and also
for other (say GL2) L-functions, especially where for example an orthogonal rather than
symplectic invariance is expected [Ka-Sa]. Another point is that it would be nice to define
the pairing [ , ] directly without the Fourier Transform (ie without first diagonalizing to
Jordan form). If we assume RH as we have done as well as that the zeroes of L(s, χ) are
simple then such a definition is possible. Set H(t) = e−t2/2 then for D and E in V , H ∗D(t)
and d

dt
(H ∗ E) (t) are almost periodic functions on R. Up to a constant factor we have that

[D,E] = M

(
(H ∗D)(t)

d

dt
(H ∗ E) (t)

)
. (20)

Here for an almost periodic function f(t) on R, M(f) is its mean-value given by

M(f) = lim
T−→∞

1

2T

∫ T

−T

f(x) dx .

With best regards,
Peter Sarnak

Added February, 2002:

The Hilbert-Polya idea that there is a naturally defined self-adjoint operator whose eigenvalues
are simply related to the zeroes of an L-function seems far-fetched. However, Luo and I [Lu-Sa]
have recently constructed a self-adjoint nonnegative operator A on

L2

0(X) =

{
ψ ∈ L2(SL(2,Z)|H)|

∫

X

ψ(z) dv(z) = 0

}
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whose eigenvalues are essentially the central critical values L
(

1

2
, φ

)
as φ varies over the (Hecke-

eigen) Maass cusp forms for X. In particular, this gives a spectral proof that L
(

1

2
, φ

)
≥ 0.

The fact that L
(

1

2
, φ

)
cannot be negative (which is an immediate consequence of RH for

L(s, φ)) is known and was proven by theta function methods (see [Kat-Sa], [Wal]). The
operator A comes from polarizing the quadratic form B(ψ) on L2

0(X) which appears as the
main term in the Shnirelman sums for the measures φ2

j(z) dv(z), where φj is an orthonormal
basis of Maass cusp forms for L2(X). Denote by λj the (Laplace) eigenvalue of φj. It is
known, see page 688 in [Se] that

∑

λj≤λ

1 ∼ λ

12
as λ −→ ∞ .

The quadratic form B(ψ) comes from the following: For ψ ∈ L2
0(X) fixed;

∑

λj≤λ

|〈φ2

j , ψ〉|2 ∼ B(ψ)
√
λ

as λ −→ ∞.

Incidentally the family of L-functions L(s, φ) as φ varies as above, has an orthogonal O(∞)
symmetry in the sense of [Ka-Sa], see also [Ke-Sn].
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