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The main calculation is carried out in a different notation (to check it!)

Consider the case of p being a 2-dimensional odd irreducible Galois representation.

)= oMM, Lisp) = 3 As(min

For a € Q* set

(s, p, Z/\p yn~=%, etc.
n=1
A(s,p) = (2m) " I'(s) L(s, p)
then )
A(s,p) = eN2°A(1—s,p).
Set .
Z/\p ) for z € H and
Z As( ) for z € H.

A standard calculation of Hecke shows that A(s, p) is entire iff
€ -1
F(z) = G| — 1
N (N) W

To examine the possible poles of L(s, p, ) consider the relation (1) (we assume that A(s,p) is
entire) when z approaches the “cusp” « and hence —ﬁ approaches the “cusp” —1/Na.
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Set z = a + 1y, ylO.

—2mi —2mi 1y y? 3
= 1 — <2 L o)
N(a 4+ 1)  Na ( ) + o)

In particular,

R (ﬁ) = 2L o)

N(a + iy)
and hence for n > 0 arbitrarily small (and A\;(n) = O.(nf)),

X e (i) ~ 0w

We have from (1) and (2)

00
Oé 4 ’Ly § )‘p na —27rny
n=1

Set
) 6—27rny

Then according to (5) we have that
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H(y) = O(y')as yl0
and clearly H(y) is rapidly

decreasing as y — 00.

Hence,

H(s) = / H(y)y® dy is holomorphic in R(s) > 1 + 27. (8)
0 Yy

Note that if we set -
Hi(y) = 3 A (n) e(na) e 2.
n=1

and
Ha) = Y e (1) 5
then -
H(y) = aHy(y) + iy Hi(y) — ﬁ Hy(y) + j—yﬁﬂxy»

The idea now is that if L(s, p, a) has a pole at sp with 0 < R(sg) < 1 (say a simple pole and no
other poles) then
Hy(y) ~ Ay™ as y 0.

From (7) it follows that
€

— H. ~ oAy~
JN 2(y) Y
(since the other terms in H(y) are O(1).)
But then
iyH (y) ~ idy "
while

2
£y Hi(y) ~ —sgi Ay~

VN «

So these last can cancel only if sy = 1.

To formalize this (since L(s, p, @) and L(s, 5, —1/Na) may have many poles) we compute H (s)
from (6). We find that
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H(s) = al(s,p,a) +iA(s + 1,p,0)

~ 2\ s 1€ ~ 1 2\s+1
— My (N0 = T (st DA+ 15— ) (Na) T (9)

where

A(s,p, ) = (2m)*T(s) D Ap(n)e(nfym™.

From Brauer and the passage from additive to multiplicative characters we have that A(s, p, 3)
and A(s, p, #) are merormorphic and have no poles in R(s) > 1 and —1 < R(s) < 0.

Now suppose that A(s, p, @) has a pole at s = sy with 0 < R(sg) < 1. Say

A(s,p,a) == m + .-

with £ > 1 and Ay # 0.

Since H(s) is holomorphic in R(s) > 1 and the 2" and 4" terms in (9) are as well, we have

that ) B
(NO(Q)SA<S,p~,— ): 0 + .-

with By satisfying
OéAO = —. (10)

Now consider the potential pole at s = sy — 1 of H (s). At such a point the 1°* and 3" terms in
(9) don’t have poles. The 2"¢ and 4" have expansions

1Ap

iN(s+1,pa) = 4o

B4 L) = o S

and :
€l B(] i
—_— S « o e
avV/N " (s—(so— 1))
respectively.
Since these must cancel we have that
B
idy = 200 (11)
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Thus, from (10) and (11) we see that so = 1.

Thus, the only pole that A(s, p,«) can accommodate is at sp = 1. The passage to A(s, p ® x)
shows that the same is true for these twisted L-functions. Since p is irreducible, these don’t have
poles at s =1 (or on R(s) =1 or R(s) = 0). Thus, A(s, p ® x) is entire.

The case of even Galois representations can be analyzed in a similar fashion. Say, p is self-dual
for example and that

A(s,p) = 7 5T? (f

2) L(s,p) = eN2"°A(1 —s,p).

Then Hecke’s argument leads to

Z A, (n)y'? Ko(2mny) cos(2mnz)

= €eF(—-1/Nz).
iff A(s,p) is entire.

Now proceed with an analysis of the behavior of F(z) as z — « on the (.h.s. above and

—1/Nz — —= on the right. T haven’t carried out the details.

June 11, 2004:gpp.



