Notes on Booker's Paper

by

Peter Sarnak*

$(2002)^{\dagger}$

The main calculation is carried out in a different notation (to check it!)

Consider the case of ρ being a 2-dimensional odd irreducible Galois representation.

$$
L(s, \rho)=\sum_{n=1}^{\infty} \lambda_{\rho}(n) n^{-s}, L(s, \tilde{\rho})=\sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) n^{-s}
$$

For $\alpha \in \mathbb{Q}^{*}$ set

$$
\begin{gathered}
L(s, \rho, \alpha)=\sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n \alpha) n^{-s}, \text { etc. } \\
\Lambda(s, \rho)=(2 \pi)^{-s} \Gamma(s) L(s, \rho)
\end{gathered}
$$

then

$$
\Lambda(s, \rho)=\epsilon N^{\frac{1}{2}-s} \Lambda(1-s, \tilde{\rho}) .
$$

Set

$$
\begin{gathered}
F(z)=\sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n z) \text { for } z \in \mathbb{H} \text { and } \\
G(z)=\sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e(n z) \text { for } z \in \mathbb{H} .
\end{gathered}
$$

A standard calculation of Hecke shows that $\Lambda(s, \rho)$ is entire iff

$$
\begin{equation*}
F(z)=\frac{\epsilon}{\sqrt{N} z} G\left(\frac{-1}{N z}\right) \tag{1}
\end{equation*}
$$

To examine the possible poles of $L(s, \rho, \alpha)$ consider the relation (1) (we assume that $\Lambda(s, \rho)$ is entire) when z approaches the "cusp" α and hence $-\frac{1}{N z}$ approaches the "cusp" $-1 / N \alpha$.

[^0]Set $z=\alpha+i y, \quad y \downarrow 0$.

$$
\begin{equation*}
\frac{-2 \pi i}{N(\alpha+i y)}=\frac{-2 \pi i}{N \alpha}\left(1-\frac{i y}{\alpha}-\frac{y^{2}}{\alpha^{2}}\right)+O\left(y^{3}\right) \tag{2}
\end{equation*}
$$

In particular,

$$
\Re\left(\frac{-2 \pi i}{N(\alpha+i y)}\right)=\frac{-2 \pi y}{N \alpha^{2}}+O\left(y^{3}\right)
$$

and hence for $\eta>0$ arbitrarily small (and $\lambda_{\tilde{\rho}}(n)=O_{\epsilon}\left(n^{\epsilon}\right)$),

$$
\begin{equation*}
\sum_{n \geq y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N(\alpha+i y)}\right)=O(y) \tag{3}
\end{equation*}
$$

We have from (1) and (2)

$$
\begin{align*}
& (\alpha+i y) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n \alpha) e^{-2 \pi n y} \\
& =\frac{\epsilon}{\sqrt{N}} \sum_{n \leq y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N(\alpha+i y)}\right)+O(y) . \tag{4}\\
& =\quad \frac{\epsilon}{\sqrt{N}} \sum_{n \leq y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N \alpha}\right) e^{-2 \pi n y / N \alpha^{2}}\left(1+\frac{2 \pi i n y^{2}}{N \alpha^{3}}\right) \\
& \quad+O\left(y^{1-2 \eta}\right) \\
& =\frac{\epsilon}{\sqrt{N}} \sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N \alpha}\right) e^{\frac{-2 \pi n y}{N \alpha^{2}}}\left(1+\frac{2 \pi i n y^{2}}{N \alpha^{3}}\right)+O\left(y^{1-2 \eta}\right) . \tag{5}
\end{align*}
$$

Set

$$
\begin{align*}
H(y)= & (\alpha+i y) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n \alpha) e^{-2 \pi n y} \\
& -\frac{\epsilon}{\sqrt{N}} \sum_{n=1}^{\infty} \lambda_{\rho}(n) e\left(\frac{-n}{N \alpha}\right) e^{\frac{-2 \pi n y}{N \alpha^{2}}}\left(1+\frac{2 \pi i n y^{2}}{N \alpha^{3}}\right) . \tag{6}
\end{align*}
$$

Then according to (5) we have that

$$
\left.\begin{array}{l}
H(y)=O\left(y^{1-2 \eta}\right) \text { as } \quad y \downarrow 0 \tag{7}\\
\text { and clearly } H(y) \text { is rapidly }
\end{array}\right\}
$$

decreasing as $y \rightarrow \infty$.
Hence,

$$
\begin{equation*}
\widetilde{H}(s)=\int_{0}^{\infty} H(y) y^{s} \frac{d y}{y} \text { is holomorphic in } \Re(s)>1+2 \eta . \tag{8}
\end{equation*}
$$

Note that if we set

$$
H_{1}(y)=\sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n \alpha) e^{-2 \pi n y}
$$

and

$$
H_{2}(y)=\sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N \alpha}\right) e^{\frac{-2 \pi n y}{N \alpha^{2}}}
$$

then

$$
H(y)=\alpha H_{1}(y)+i y H_{1}(y)-\frac{\epsilon}{\sqrt{N}} H_{2}(y)+\frac{\epsilon i y^{2}}{\sqrt{N}} H_{2}^{\prime}(y)
$$

The idea now is that if $L(s, \rho, \alpha)$ has a pole at s_{0} with $0<\Re\left(s_{0}\right)<1$ (say a simple pole and no other poles) then

$$
H_{1}(y) \sim A y^{-s_{0}} \quad \text { as } \quad y \downarrow 0 .
$$

From (7) it follows that

$$
\frac{\epsilon}{\sqrt{N}} H_{2}(y) \sim \alpha A y^{-s_{0}}
$$

(since the other terms in $H(y)$ are $O(1)$.)

But then

$$
i y H_{1}(y) \sim i A y^{-s_{0}+1}
$$

while

$$
\frac{\epsilon}{\sqrt{N}} i \frac{y^{2}}{\alpha} H_{2}^{\prime}(y) \sim-s_{0} i A y^{-s_{0}+1}
$$

So these last can cancel only if $s_{0}=1$.
To formalize this (since $L(s, \rho, \alpha)$ and $L(s, \tilde{\rho},-1 / N \alpha)$ may have many poles) we compute $\widetilde{H}(s)$ from (6). We find that

$$
\begin{align*}
\widetilde{H}(s) & =\alpha \Lambda(s, \rho, \alpha)+i \Lambda(s+1, \rho, \alpha) \\
& -\frac{\epsilon}{\sqrt{N}} \Lambda\left(s, \tilde{\rho},-\frac{1}{N \alpha}\right)\left(N \alpha^{2}\right)^{s}-\frac{i \epsilon}{\alpha \sqrt{N}}(s+1) \Lambda\left(s+1, \tilde{\rho},-\frac{1}{N \alpha}\right) \cdot\left(N \alpha^{2}\right)^{s+1} \tag{9}
\end{align*}
$$

where

$$
\Lambda(s, \rho, \beta)=(2 \pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n \beta) m^{-s}
$$

From Brauer and the passage from additive to multiplicative characters we have that $\Lambda(s, \rho, \beta)$ and $\Lambda(s, \tilde{\rho}, \beta)$ are merormorphic and have no poles in $\Re(s) \geq 1$ and $-1<\Re(s)<0$.

Now suppose that $\Lambda(s, \rho, \alpha)$ has a pole at $s=s_{0}$ with $0<\Re\left(s_{0}\right)<1$. Say

$$
\Lambda(s, \rho, \alpha)=\frac{A_{0}}{\left(s-s_{0}\right)^{k}}+\cdots
$$

with $k \geq 1$ and $A_{0} \neq 0$.
Since $H(s)$ is holomorphic in $\Re(s)>1$ and the $2^{\text {nd }}$ and $4^{\text {th }}$ terms in (9) are as well, we have that

$$
\left(N \alpha^{2}\right)^{s} \Lambda\left(s, \tilde{\rho},-\frac{1}{N \alpha}\right)=\frac{B_{0}}{\left(s-s_{0}\right)^{k}}+\cdots
$$

with B_{0} satisfying

$$
\begin{equation*}
\alpha A_{0}=\frac{\epsilon B_{0}}{\sqrt{N}} \tag{10}
\end{equation*}
$$

Now consider the potential pole at $s=s_{0}-1$ of $\widetilde{H}(s)$. At such a point the $1^{\text {st }}$ and $3^{r d}$ terms in (9) don't have poles. The $2^{\text {nd }}$ and $4^{\text {th }}$ have expansions

$$
i \Lambda(s+1, \rho, \alpha)=\frac{i A_{0}}{\left(s-\left(s_{0}-1\right)\right)^{k}}+\cdots
$$

and

$$
-\frac{\epsilon i}{\alpha \sqrt{N}} s_{0} \frac{B_{0}}{\left(s-\left(s_{0}-1\right)\right)^{k}}+\cdots
$$

respectively.
Since these must cancel we have that

$$
\begin{equation*}
i A_{0}=\frac{\epsilon i B_{0} s_{0}}{\alpha \sqrt{N}} \tag{11}
\end{equation*}
$$

Thus, from (10) and (11) we see that $s_{0}=1$.
Thus, the only pole that $\Lambda(s, \rho, \alpha)$ can accommodate is at $s_{0}=1$. The passage to $\Lambda(s, \rho \otimes \chi)$ shows that the same is true for these twisted L-functions. Since ρ is irreducible, these don't have poles at $s=1$ (or on $\Re(s)=1$ or $\Re(s)=0)$. Thus, $\Lambda(s, \rho \otimes \chi)$ is entire.

The case of even Galois representations can be analyzed in a similar fashion. Say, ρ is self-dual for example and that

$$
\Lambda(s, \rho)=\pi^{-s} \Gamma^{2}\left(\frac{s}{2}\right) L(s, \rho)=\epsilon N^{\frac{1}{2}-s} \Lambda(1-s, \rho) .
$$

Then Hecke's argument leads to

$$
\begin{aligned}
F(z) & :=\sum_{n=1}^{\infty} \lambda_{\rho}(n) y^{1 / 2} K_{0}(2 \pi n y) \cos (2 \pi n x) \\
& =\epsilon F(-1 / N z) .
\end{aligned}
$$

iff $\Lambda(s, \rho)$ is entire.
Now proceed with an analysis of the behavior of $F(z)$ as $z \rightarrow \alpha$ on the $\ell . h . s$. above and $-1 / N z \rightarrow-\frac{1}{N \alpha}$ on the right. I haven't carried out the details.

June 11, 2004:gpp.

[^0]: *Department of Mathematics, Princeton University and the Courant Institute of Mathematical Sciences.
 ${ }^{\dagger}$ The paper "Poles of Artin L-functions and the strong Artin conjecture" has now appeared in the Annals of Math., 158, (2003), 1089-1098.

