NOTES ON BOOKER'S PAPER

by

Peter Sarnak^{*} $(2002)^{\dagger}$

The main calculation is carried out in a different notation (to check it!)

Consider the case of ρ being a 2-dimensional odd irreducible Galois representation.

$$L(s,\rho) = \sum_{n=1}^{\infty} \lambda_{\rho}(n) n^{-s}, L(s,\tilde{\rho}) = \sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) n^{-s}$$

For $\alpha \in \mathbb{Q}^*$ set

$$L(s,\rho,\alpha) = \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n\alpha) n^{-s}, \text{ etc.}$$
$$\Lambda(s,\rho) = (2\pi)^{-s} \Gamma(s) L(s,\rho)$$

then

$$\Lambda(s,\rho) = \epsilon N^{\frac{1}{2}-s} \Lambda(1-s,\tilde{\rho}).$$

Set

$$F(z) = \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(nz) \text{ for } z \in \mathbb{H} \text{ and}$$
$$G(z) = \sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e(nz) \text{ for } z \in \mathbb{H}.$$

A standard calculation of Hecke shows that $\Lambda(s, \rho)$ is entire iff

$$F(z) = \frac{\epsilon}{\sqrt{N}z} G\left(\frac{-1}{Nz}\right) \tag{1}$$

To examine the possible poles of $L(s, \rho, \alpha)$ consider the relation (1) (we assume that $\Lambda(s, \rho)$ is entire) when z approaches the "cusp" α and hence $-\frac{1}{Nz}$ approaches the "cusp" $-1/N\alpha$.

^{*}Department of Mathematics, Princeton University and the Courant Institute of Mathematical Sciences.

[†]The paper "Poles of Artin *L*-functions and the strong Artin conjecture" has now appeared in the Annals of Math., **158**, (2003), 1089-1098.

Set $z = \alpha + iy$, $y \downarrow 0$.

$$\frac{-2\pi i}{N(\alpha + iy)} = \frac{-2\pi i}{N\alpha} \left(1 - \frac{iy}{\alpha} - \frac{y^2}{\alpha^2} \right) + O(y^3)$$
(2)

In particular,

$$\Re\left(\frac{-2\pi i}{N(\alpha+iy)}\right) = \frac{-2\pi y}{N\alpha^2} + O(y^3)$$

and hence for $\eta > 0$ arbitrarily small (and $\lambda_{\tilde{\rho}}(n) = O_{\epsilon}(n^{\epsilon})$),

$$\sum_{n \ge y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N(\alpha + iy)}\right) = O(y)$$
(3)

We have from (1) and (2) \propto

$$(\alpha + iy) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n\alpha) e^{-2\pi ny}$$
$$= \frac{\epsilon}{\sqrt{N}} \sum_{n \le y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N(\alpha + iy)}\right) + O(y).$$
(4)

$$= \frac{\epsilon}{\sqrt{N}} \sum_{n \le y^{-1-\eta}} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N\alpha}\right) e^{-2\pi n y / N\alpha^{2}} \left(1 + \frac{2\pi i n y^{2}}{N\alpha^{3}}\right) + O\left(y^{1-2\eta}\right)$$
$$= \frac{\epsilon}{\sqrt{N}} \sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N\alpha}\right) e^{\frac{-2\pi n y}{N\alpha^{2}}} \left(1 + \frac{2\pi i n y^{2}}{N\alpha^{3}}\right) + O\left(y^{1-2\eta}\right) .$$
(5)

Set

$$H(y) = (\alpha + iy) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n\alpha) e^{-2\pi ny} - \frac{\epsilon}{\sqrt{N}} \sum_{n=1}^{\infty} \lambda_{\rho}(n) e\left(\frac{-n}{N\alpha}\right) e^{\frac{-2\pi ny}{N\alpha^2}} \left(1 + \frac{2\pi i ny^2}{N\alpha^3}\right).$$
(6)

Then according to (5) we have that

$$H(y) = O(y^{1-2\eta}) \text{ as } y \downarrow 0$$

and clearly $H(y)$ is rapidly
$$\left.\right\}$$
(7)

decreasing as $y \to \infty$.

Hence,

$$\widetilde{H}(s) = \int_0^\infty H(y) y^s \frac{dy}{y} \text{ is holomorphic in } \Re(s) > 1 + 2\eta.$$
(8)

Note that if we set

$$H_1(y) = \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n\alpha) e^{-2\pi n y}$$

and

$$H_2(y) = \sum_{n=1}^{\infty} \lambda_{\tilde{\rho}}(n) e\left(\frac{-n}{N\alpha}\right) e^{\frac{-2\pi n y}{N\alpha^2}}$$

then

$$H(y) = \alpha H_1(y) + iy H_1(y) - \frac{\epsilon}{\sqrt{N}} H_2(y) + \frac{\epsilon i y^2}{\sqrt{N}} H_2'(y).$$

The idea now is that if $L(s, \rho, \alpha)$ has a pole at s_0 with $0 < \Re(s_0) < 1$ (say a simple pole and no other poles) then

$$H_1(y) \sim Ay^{-s_0}$$
 as $y \downarrow 0$.

From (7) it follows that

$$\frac{\epsilon}{\sqrt{N}} H_2(y) \sim \alpha A y^{-s_0}$$

(since the other terms in H(y) are O(1).)

But then

$$iyH_1(y) \sim iAy^{-s_0+1}$$

while

$$\frac{\epsilon}{\sqrt{N}} i \frac{y^2}{\alpha} H_2'(y) \sim -s_0 i A y^{-s_0+1}$$

So these last can cancel only if $s_0 = 1$.

To formalize this (since $L(s, \rho, \alpha)$ and $L(s, \tilde{\rho}, -1/N\alpha)$ may have many poles) we compute $\tilde{H}(s)$ from (6). We find that

$$\widetilde{H}(s) = \alpha \Lambda (s, \rho, \alpha) + i \Lambda (s+1, \rho, \alpha) - \frac{\epsilon}{\sqrt{N}} \Lambda (s, \tilde{\rho}, -\frac{1}{N\alpha}) (N\alpha^2)^s - \frac{i\epsilon}{\alpha\sqrt{N}} (s+1) \Lambda (s+1, \tilde{\rho}, -\frac{1}{N\alpha}) \cdot (N\alpha^2)^{s+1}$$
(9)

where

$$\Lambda(s,\rho,\beta) = (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \lambda_{\rho}(n) e(n\beta) m^{-s}.$$

From Brauer and the passage from additive to multiplicative characters we have that $\Lambda(s, \rho, \beta)$ and $\Lambda(s, \tilde{\rho}, \beta)$ are merormorphic and have no poles in $\Re(s) \ge 1$ and $-1 < \Re(s) < 0$.

Now suppose that $\Lambda(s, \rho, \alpha)$ has a pole at $s = s_0$ with $0 < \Re(s_0) < 1$. Say

$$\Lambda(s,\rho,\alpha) = \frac{A_0}{(s-s_0)^k} + \cdots$$

with $k \ge 1$ and $A_0 \ne 0$.

with B_0 satisfying

Since H(s) is holomorphic in $\Re(s) > 1$ and the 2^{nd} and 4^{th} terms in (9) are as well, we have that

$$(N\alpha^2)^s \Lambda(s,\tilde{\rho}, -\frac{1}{N\alpha}) = \frac{B_0}{(s-s_0)^k} + \cdots$$
$$\alpha A_0 = \frac{\epsilon B_0}{\sqrt{N}}.$$
(10)

Now consider the potential pole at $s = s_0 - 1$ of $\widetilde{H}(s)$. At such a point the 1st and 3rd terms in (9) don't have poles. The 2nd and 4th have expansions

$$i\Lambda(s+1,\rho,\alpha) = \frac{iA_0}{(s-(s_0-1))^k} + \cdots$$

and

$$-\frac{\epsilon i}{\alpha\sqrt{N}}s_0 \frac{B_0}{(s-(s_0-1))^k} + \cdots$$

respectively.

Since these must cancel we have that

$$iA_0 = \frac{\epsilon i B_0 s_0}{\alpha \sqrt{N}} \tag{11}$$

NOTES ON BOOKER'S PAPER

Thus, from (10) and (11) we see that $s_0 = 1$.

Thus, the only pole that $\Lambda(s, \rho, \alpha)$ can accommodate is at $s_0 = 1$. The passage to $\Lambda(s, \rho \otimes \chi)$ shows that the same is true for these twisted *L*-functions. Since ρ is irreducible, these don't have poles at s = 1 (or on $\Re(s) = 1$ or $\Re(s) = 0$). Thus, $\Lambda(s, \rho \otimes \chi)$ is entire.

The case of even Galois representations can be analyzed in a similar fashion. Say, ρ is self-dual for example and that

$$\Lambda(s,\rho) = \pi^{-s} \Gamma^2\left(\frac{s}{2}\right) L(s,\rho) = \epsilon N^{\frac{1}{2}-s} \Lambda(1-s,\rho).$$

Then Hecke's argument leads to

$$F(z) := \sum_{n=1}^{\infty} \lambda_{\rho}(n) y^{1/2} K_0(2\pi n y) \cos(2\pi n x)$$
$$= \epsilon F(-1/Nz).$$

iff $\Lambda(s, \rho)$ is entire.

Now proceed with an analysis of the behavior of F(z) as $z \to \alpha$ on the $\ell.h.s.$ above and $-1/Nz \to -\frac{1}{N\alpha}$ on the right. I haven't carried out the details.

June 11, 2004:gpp.