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Device measurements
We have constructed a device to realize a finite section of the heptagon- 
kagome lattice. It consists of one central heptagon and two shells of 
neighbouring tiles, and is shown schematically in Fig. 6a, where each 
resonator has been approximated by a single line, and the lengths have 
not been held fixed. The resonators are 7.5 mm long with a fundamental  
resonance frequency of 8 GHz and a second harmonic of 16 GHz. The 
second harmonic of this device realizes the heptagon-kagome lattice 
with a hopping rate of −136.2 MHz. (The fundamental modes of the 
device obey a different tight-binding model owing to the asymmetry 
of the mode function within each resonator22. See the Methods for 
details.)

To minimize parasitic systematic frequency differences between  
resonator geometries, each resonator type was fabricated individually,  
and the corresponding resonant frequencies were measured. 
Commercial microwave simulation packages were unable to achieve the 
required level of absolute or relative accuracy, so the resonator lengths 
were then fine-tuned empirically to remove the residual offsets at the 
level of 30 MHz. For the device shown in Fig. 6b, the average differ-
ence between the fundamental frequencies of resonators with different 
shapes is approximately 0.13% (10 MHz), limited by intrinsic reproduc-
ibility within a fabrication run23 and wire-bonding or parasitic capaci-
tances sensitive to variations between fabrication runs. Each individual 
shape has a fabrication-induced reproducibility of 0.036% (2.9 MHz), 
consistent with previous work23. In addition to the lattice itself, the 
circuit contains four measurement ports, visible in each corner, which 
are used to interrogate the lattice.

Theoretical transmission curves for 15 different disorder realizations 
are shown in Fig. 6c, along with a plot of the experimental transmitted  
power near the second harmonic frequency of the device. These  
theoretical curves reproduce most of the qualitative features of the data, 

including the onset of peaks, the location and Fano-like lineshapes of 
the highest-frequency peaks, and the markedly larger linewidth of the 
modes near 16.2 GHz which have the largest overlap with the coupling 
ports. This device therefore demonstrates that hyperbolic lattices can 
be produced on chip by using CPW resonators, and it paves the way to 
the study of interactions in hyperbolic space and to simulation of new 
models with non-constant curvature.

Because of the combination of systematic and random disorder, in 
practice the flat band will no longer be completely degenerate and will 
hybridize slightly with the rest of the spectrum. For this heptagon- 
kagome device, the systematic shape-dependent disorder causes the 
largest effects: about 0.12|t| for the worst shapes and about 0.07|t| for 
typical ones. Random disorder contributes at about the 0.04|t| level. 
Using graph-theoretic studies beyond the scope of the discussion here, 
we have have shown that the bulk gap for the heptagon-kagome lattice  
is about 0.4|t| and that the lower-lying eigenvalues seen in finite-size 
numerics are whispering-gallery-like edge modes which are very 
strongly confined to the boundary46. Therefore, the gapped flat band 
of the heptagon-kagome lattice is noticeably broadened, but is able to 
survive in the experimental realization. These graph-theoretic studies  
also revealed the existence of closely related and readily realizable  
lattices with gaps as large as |t| for which the hierarchy of energy scales 
is favourable.

Conclusion
We have shown that lattices of CPW resonators can be used to pro-
duce artificial photonic materials in an effective curved space, including 
hyperbolic lattices which are typically prohibited as they cannot be 
isometrically embedded, even in three dimensions. In particular, we 
conducted numerical tight-binding simulations of hyperbolic analogs 
of the kagome lattice and demonstrated that they display a flat band 
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Fig. 6 | The heptagon-kagome device. a, Resonator layout (dark blue) 
and effective lattice (light blue) for a circuit that realizes two shells of the 
heptagon-kagome lattice. Orange circles indicate three-way capacitive 
couplers. b, Photograph of a physical device that realizes the layout 
and effective graphs in a. The device consists of 140 CPW resonators 
with fundamental resonance frequencies of 8 GHz, second harmonic 
frequencies of 16 GHz and a hopping rate of −136.2 MHz at the second 
harmonic. Four additional CPW lines at each corner of the device couple 
microwaves into and out of the device for transmission measurements. 

Short stubs protruding inward from the outermost three-way couplers are 
high-frequency λ/4 resonators, which maintain a consistent loading of the 
sites in the outer ring, ensuring uniform on-site energies. c, Experimental 
transmission (S21) for the device in b is shown in dark blue. The red curves 
show theoretical transmission for an ensemble of theoretical models 
including small systematic offsets in the on-site energies and realistic 
disorder levels, demonstrating reasonable agreement between theory and 
experiment.
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˨ᆀ ćĒ āĎčēÿćčăĂ ćč ࿁Ш˨ᆀЩܥ �ĆćĒ ĄĎċċĎĖĒ ĄđĎČ ೪ᆀ Āăćčą ÿČăčÿĀċăܥ �Ą ᆀ͏ ÿāēĒ ĄđăăċĘ Ďč
ēĆă ĕăđēćāăĒ ĎĄ ˨ᆀܡ ćܥăܥ ÿčĘ ăċăČăčē ྱ ܍ Ѳ ćč ᆀ͏ ʟėăĒ čĎčă ĎĄ ēĆă ĕăđēćāăĒ ĎĄ ˨ᆀܡ ēĆăč
ēĆă ĐĔĎēćăčē ˨ᆀФ ᆀ͏ ćĒ ÿ ČĔċēćąđÿďĆ ĖĆĎĒă ĒďăāēđĔČ ćĒ āĎčēÿćčăĂ ćč ࿁Ш˨ᆀЩܥ �Ą ᆀ͏ ÿāēĒ
ĖćēĆĎĔē ʟėćčą ÿčĘ ăĂąăĒܡ ēĆăč ēĆă ĐĔĎēćăčē ćĒ ÿ ąđÿďĆܥ �ă ăėÿČćčă ăÿāĆ āÿĒă ྯ Ҳ И 
ćč ēĔđčܥ

�ΩΧζγΥ ܥމއ �ćčćēă ďċÿčÿđ ĐĔĎēćăčēĒ ĎĄ ˨ᅆܥ ÿܤ �Ćă ćčʟčćēă ąđÿďĆ˨ᅆܥ �ĎĔđ ĒÿČďċă ćčĕĎċĔēćĎč ĒĘČČăēđĘ ďĎćčēĒ ÿđă ćčĂćāÿēăĂ ĀĘ ĀċÿāĊ
ĂĎēĒܥ Āܤ �Ćă ĐĔĎēćăčē ĎĀēÿćčăĂ ĖćēĆ đăĒďăāē ēĎ ēĆă ÿĔēĎČĎđďĆćĒČ ࿁Ⴑܤ
đĎēÿēćĎč ÿĀĎĔē ೲ Ďđ ೲᆣ ĀĘ ྾ܥ �ăĖ ăĂąăĒ ćčĂĔāăĂ ĀĘ ēĆă ĐĔĎēćăčē ÿđă
ćčĂćāÿēăĂ ćč đăĂܥ �č ēĆćĒ āÿĒăܡ čĎ ċĎĎďĒ Ďđ ČĔċēćďċă ăĂąăĒ ÿďďăÿđܥ āܤ
�Ćă ĐĔĎēćăčē ĖćēĆ đăĒďăāē ēĎ ࿁ᄺ ܥ �č ēĆćĒ āÿĒăܡ ēĖĎ ċĎĎďĒ ÿďďăÿđܥ Ăܤ �Ćă
ĐĔĎēćăčē ĖćēĆ đăĒďăāē ēĎ đăʢăāēćĎč ÿĀĎĔē ēĆă āăčēđÿċ ÿėćĒܥ �čʟčćēăċĘ
ČÿčĘ ČĔċēćďċă ăĂąăĒ ÿďďăÿđܥ ăܡ Ą ܤ �Ćă ĐĔĎēćăčē ĖćēĆ đăĒďăāē ēĎ ࿁ᄹ
ÿčĂ ࿁ᄹኜ ܡ ĖĆăč ೲ ÿčĂ ೲᆣ ÿđă ĄĎĔđ Ĕčćē āăċċĒ ÿďÿđēܥ �ĆćĒ ĐĔĎēćăčē ćĒ ÿ
ďċÿčÿđ ąđÿďĆ ĖĆćāĆ ćĒ ШҭѲИ ѲЩ ąÿďďăĂܥ

�ĎčĒćĂăđ ʟđĒē ˨ᅆܥ �ēĒ ÿĔēĎČĎđďĆćĒČ ąđĎĔď ćĒ ąăčăđÿēăĂ ĀĘ ĄĎĔđ ēĘďăĒ ĎĄ ăċăČăčēĒܥ
ܱćܲ �đÿčĒċÿēćĎčĒ ഓШЩ ĀĘ č Ĕčćē āăċċĒܥ �Ćă ĐĔĎēćăčēĒ ˨ᅆФ়ഓШЩু ĄĎđ  ܔ ѳ ÿđă ēĆă

ĆÿČĀĔđąăđ ąđÿďĆĒᅆШЩ ĒĆĎĖč ćč �ćąܥ ܥĀފއ
ܱććܲ �Ćă ćčĕĎċĔēćĎč ࿁ᄹ đĎēÿēćčą ÿĀĎĔē ÿ āăčēđÿċ ďĎćčē ೲ ĀĘ ྾ܥ �ĖĎ ăėÿČďċă ďĎćčēĒೲ ÿčĂ ೲᆣ ÿđă ĒĆĎĖč ćč �ćąܥ ܥÿމއ �Ćă ĐĔĎēćăčē ˨ᅆФ়࿁ᄹু ćĒ ēĆă ąđÿďĆ ĒĆĎĖč ćč

�ćąܥ ܥĀމއ
ܱćććܲ �Ćă ćčĕĎċĔēćĎč ࿁ᄺ đĎēÿēćčą ÿĀĎĔē ÿ āăčēđÿċ ďĎćčē  ĀĘ ྾ܥ �ĖĎ ăėÿČďċă ďĎćčēĒ 

ÿčĂ ᆣ ÿđă ĒĆĎĖč ćč �ćąܥ ܥÿމއ �Ćă ĐĔĎēćăčē ˨ᅆФ়࿁ᄺু ćĒ ÿ ČĔċēćąđÿďĆܡ ĒĆĎĖč ćč
�ćąܥ ܥāމއ
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FIGURE 2 | A selection of different 3D shapes for regular fullerenes (distribution of the pentagons DP are set in parentheses). ‘Spherically’ shaped
(icosahedral), for example, (a) C20-Ih, (b) C60-Ih, and (c) C960-Ih (DP = 12× 1); barrel shaped, for example, (d) C140-D3h (DP = 6× 2); trigonal
pyramidally shaped (tetrahedral structures), for example, (e) C1140-Td (DP = 4× 3); (f) trihedrally shaped C440-D3 (DP = 3× 4); (g) nano-cone or
menhir C524-C1 (DP = 5+ 7× 1); cylindrically shaped (nanotubes), for example, (h) C360-D5h, (i) C1152-D6d , (j) C840-D5d (DP = 2× 6). The fullerenes
shown in this figure and throughout the paper have been generated automatically using the Fullerene program.35

properties, not least of which is their deep connections
to algebraic geometry.19

Fullerenes have the neat property that the graphs
formed by their bond structure are both cubic, planar,
and three-connected, for which all faces are either
pentagons or hexagons. Because of this, the math-
ematics describing them is in many cases both rich,
simple, and elegant. We are able to derive many prop-
erties about their topologies, spatial shapes, surface,

as well as indicators of their chemical behaviors,
directly from their graphs.

Planar connected graphs fulfil Euler’s polyhe-
dron formula,

N − E + F = 2 (1)

with N = || being the number of vertices (called the
order of the graph), E= || the number of edges, and
F = | | the number of faces (for fullerenes these are
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