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Fig. 6 | The heptagon-kagome device. a, Resonator layout (dark blue)
and effective lattice (light blue) for a circuit that realizes two shells of the
heptagon-kagome lattice. Orange circles indicate three-way capacitive
couplers. b, Photograph of a physical device that realizes the layout

and effective graphs in a. The device consists of 140 CPW resonators
with fundamental resonance frequencies of 8 GHz, second harmonic
frequencies of 16 GHz and a hopping rate of —136.2 MHz at the second
harmonic. Four additional CPW lines at each corner of the device couple
microwaves into and out of the device for transmission measurements.

Device measurements

We have constructed a device to realize a finite section of the heptagon-
kagome lattice. It consists of one central heptagon and two shells of
neighbouring tiles, and is shown schematically in Fig. 6a, where each
resonator has been approximated by a single line, and the lengths have
not been held fixed. The resonators are 7.5 mm long with a fundamental
resonance frequency of 8 GHz and a second harmonic of 16 GHz. The
second harmonic of this device realizes the heptagon-kagome lattice
with a hopping rate of —136.2 MHz. (The fundamental modes of the
device obey a different tight-binding model owing to the asymmetry
of the mode function within each resonator??. See the Methods for
details.)

To minimize parasitic systematic frequency differences between
resonator geometries, each resonator type was fabricated individually,
and the corresponding resonant frequencies were measured.
Commercial microwave simulation packages were unable to achieve the
required level of absolute or relative accuracy, so the resonator lengths
were then fine-tuned empirically to remove the residual offsets at the
level of 30 MHz. For the device shown in Fig. 6b, the average differ-
ence between the fundamental frequencies of resonators with different
shapes is approximately 0.13% (10 MHz), limited by intrinsic reproduc-
ibility within a fabrication run®® and wire-bonding or parasitic capaci-
tances sensitive to variations between fabrication runs. Each individual
shape has a fabrication-induced reproducibility of 0.036% (2.9 MHz),
consistent with previous work®. In addition to the lattice itself, the
circuit contains four measurement ports, visible in each corner, which
are used to interrogate the lattice.

Theoretical transmission curves for 15 different disorder realizations
are shown in Fig. 6¢, along with a plot of the experimental transmitted
power near the second harmonic frequency of the device. These
theoretical curves reproduce most of the qualitative features of the data,

Short stubs protruding inward from the outermost three-way couplers are
high-frequency \/4 resonators, which maintain a consistent loading of the
sites in the outer ring, ensuring uniform on-site energies. ¢, Experimental
transmission (S,) for the device in b is shown in dark blue. The red curves
show theoretical transmission for an ensemble of theoretical models
including small systematic offsets in the on-site energies and realistic
disorder levels, demonstrating reasonable agreement between theory and
experiment.

including the onset of peaks, the location and Fano-like lineshapes of
the highest-frequency peaks, and the markedly larger linewidth of the
modes near 16.2 GHz which have the largest overlap with the coupling
ports. This device therefore demonstrates that hyperbolic lattices can
be produced on chip by using CPW resonators, and it paves the way to
the study of interactions in hyperbolic space and to simulation of new
models with non-constant curvature.

Because of the combination of systematic and random disorder, in
practice the flat band will no longer be completely degenerate and will
hybridize slightly with the rest of the spectrum. For this heptagon-
kagome device, the systematic shape-dependent disorder causes the
largest effects: about 0.12]¢| for the worst shapes and about 0.07|¢| for
typical ones. Random disorder contributes at about the 0.04|| level.
Using graph-theoretic studies beyond the scope of the discussion here,
we have have shown that the bulk gap for the heptagon-kagome lattice
is about 0.4|t| and that the lower-lying eigenvalues seen in finite-size
numerics are whispering-gallery-like edge modes which are very
strongly confined to the boundary*. Therefore, the gapped flat band
of the heptagon-kagome lattice is noticeably broadened, but is able to
survive in the experimental realization. These graph-theoretic studies
also revealed the existence of closely related and readily realizable
lattices with gaps as large as |¢| for which the hierarchy of energy scales
is favourable.

Conclusion

We have shown that lattices of CPW resonators can be used to pro-
duce artificial photonic materials in an effective curved space, including
hyperbolic lattices which are typically prohibited as they cannot be
isometrically embedded, even in three dimensions. In particular, we
conducted numerical tight-binding simulations of hyperbolic analogs
of the kagome lattice and demonstrated that they display a flat band
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W, is contained in o(W,). This follows from G, being amenable. If T, acts freely on
the vertices of W}, i.e. any element y # 1 in I, fixes none of the vertices of W}, then
the quotient W, /T, is a multigraph whose spectrum is contained in o(W,). If [, acts
without fixing any edges, then the quotient is a graph. We examine each case &« = a,b
in turn.

FIGURE 13. Finite planar quotients of W},. a: The infinite graph
W,,. Four sample involution symmetry points are indicated by black
dots. b: The quotient obtained with respect to the automorphism g:
rotation about O or O’ by . New edges induced by the quotient are
indicated in red. In this case, no loops or multiple edges appear. c:
The quotient with respect to op. In this case, two loops appear. d: The
quotient with respect to reflection about the central axis. Infinitely
many multiple edges appear. e, f: The quotient with respect to o
and o/, when O and O’ are four unit cells apart. This quotient is a
planar graph which is (—1, 1) gapped.

Consider first Wy, Its automorphism group is generated by four types of elements.

(i) Translations t(n) by n unit cells. The quotients W} /{t(n)) for n > 2 are the
hamburger graphs W,(n) shown in Fig. 14b.
(i) The involution oo rotating about a central point O by 7. Two example points
O and O’ are shown in Fig. 13a. The quotient W} /{c o) is the graph shown in
Fig. 13b.
(iii) The involution op rotating about a central point P by 7z. Two example points P
and P’ are shown in Fig. 13a. The quotient W}/{op) is a multigraph, shown in
Fig. 13c.
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FIGURE 2| A selection of different 3D shapes for regular fullerenes (distribution of the pentagons D, are set in parentheses). ‘Spherically’ shaped
(icosahedral), for example, (a) Cyo-1, (b) Cgo-1p,, and (c) Cogo-1j, (Dp =12 x 1); barrel shaped, for example, (d) C;4-D3p, (Dp =6 X 2); trigonal
pyramidally shaped (tetrahedral structures), for example, (e) C;149-T4 (Dp =4 x 3); (f) trihedrally shaped Cy49-D; (Dp =3 x 4); (g) nano-cone or
menhir Cs,-C; (Dp =547 1); cylindrically shaped (nanotubes), for example, (h) Cz5-Dsp, (i) Cy155-Deg. (i) Cgag-Dsg (Dp =2 x 6). The fullerenes
shown in this figure and throughout the paper have been generated automatically using the Fullerene program.®

properties, not least of which is their deep connections
to algebraic geometry.!”

Fullerenes have the neat property that the graphs
formed by their bond structure are both cubic, planar,
and three-connected, for which all faces are either
pentagons or hexagons. Because of this, the math-
ematics describing them is in many cases both rich,
simple, and elegant. We are able to derive many prop-
erties about their topologies, spatial shapes, surface,

as well as indicators of their chemical behaviors,
directly from their graphs.
Planar connected graphs fulfil Euler’s polybe-
dron formula,
N-E+F=2 (1)

with N = |V| being the number of vertices (called the
order of the graph), E=|&| the number of edges, and
F=|F| the number of faces (for fullerenes these are

98 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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