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Abstract

Let W ⊂ GL(V ) be a complex reflection group and A (W ) the set of the mirrors of the
complex reflections in W . It is known that the complement X(A (W )) of the reflection
arrangement A (W ) is a K(π, 1) space. For Y an intersection of hyperplanes in A (W ),
let X(A (W )Y ) be the complement in Y of the hyperplanes in A (W ) not containing Y .
We hope that X(A (W )Y ) is always a K(π, 1). We prove it in case of the monomial
groups W = G(r, p, `). Using known results, we then show that there remain only three
irreducible complex reflection groups, leading to just eight such induced arrangements
for which this K(π, 1) property remains to be proved.

1. Introduction

An arrangement in a vector space V is a finite set of homogeneous hyperplanes in V . For integers
` > 2, 0 6 k 6 ` and r > 1, we define A k

` (r) to be the arrangement in the complex vector space
C` (coordinates y1, . . . , y`) consisting of the first k coordinate hyperplanes ya = 0 (1 6 a 6 k)
and of the hyperplanes yi = ζyj for i 6= j and ζ an rth root of unity.

For A an arrangement in a complex vector space V , we define X(A ) to be the complement
in V of the union of the hyperplanes in A . We say that the arrangement A is of K(π, 1) type,
or a K(π, 1)-arrangement, if X(A ) is a K(π, 1), that is, if the homotopy groups πi of X(A ) are
trivial for i > 2 or equivalently if the universal covering of X(A ) is contractible. Our main result
is the following.

Theorem 1. The arrangements A k
` (r) are of K(π, 1) type.

For V a finite-dimensional complex vector space, an element s of GL(V ) is a complex reflection
if its fixed point set is a hyperplane. This hyperplane is called the mirror of s. If W ⊂ GL(V ) is
a complex reflection group, that is, a finite subgroup of GL(V ) generated by complex reflections,
the arrangement A (W ) is the set of mirrors of the complex reflections in W . The arrangements
so obtained are the reflection arrangements. Note that for ` > 3, r > 2 and 0 < k < `, the A k

` (r)
are not reflection arrangements.

If X ⊂ V is the intersection of some hyperplanes belonging to an arrangement A in V , the
arrangement A X induced by A on X is the set of the traces on X of the hyperplanes in A not
containing X. The arrangements induced by A are the arrangements so obtained.

The K(π, 1)-property is not generic among all arrangements. A generic complex
`-arrangement A for ` > 3 is an `-arrangement with at least `+ 1 hyperplanes and the property
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that the hyperplanes of every subarrangement B ⊆ A with |B| = ` are linearly independent. It
follows from work of Hattori [Hat75] that generic arrangements are never K(π, 1).

By Deligne [Del72], complexified simplicial arrangements are K(π, 1). Likewise for complex
fiber-type arrangements; cf. [FR85] and [Ter86]. As restrictions of simplicial (respectively fiber-
type) arrangements are again simplicial (respectively fiber-type), the K(π, 1)-property of these
kinds of arrangements is inherited by their restrictions. However, we emphasize that, in general,
a restriction of a K(π, 1)-arrangement need not be K(π, 1) again; see [AMR18] for examples of
this kind.

Along with the previously known instances of K(π, 1) restrictions of reflection arrangements,
it follows from Theorem 1 that only a small number of restrictions of rank 3 or 4 of arrangements
associated to some non-real exceptional groups remain unresolved. This provides strong evidence
towards the following statement.

Hope. Any arrangement induced from a reflection arrangement A (W ) is a K(π, 1).

This Hope reduces to the case of arrangements induced from reflection arrangements A (W ),
for W ⊂GL(V ), such that V is an irreducible representation of W . In what follows we, sometimes
tacitly, only consider this case.

The Hope is true for W the complexification of a real reflection group. Indeed, after
reduction to the case where the intersection of all mirrors is reduced to {0}, such an A (W )
is the complexification of a simplicial arrangement [Bou68, V 3.9]. The property of being the
complexification of a simplicial arrangement is stable by induction and one applies Deligne
[Del72].

All reflection arrangements A (W ) are of K(π, 1) type. This theorem is due to Fadell and
Neuwirth [FN62], Brieskorn [Bri73], Nakamura [Nak83] and Orlik and Solomon [OS88] in special
cases, and to Bessis [Bes15] in the general case.

It follows from Theorem 1 that the arrangements induced from the reflection arrangements
A 0

` (r) and A `
` (r) are K(π, 1)-arrangements.

Using those results and the trivial fact that for dimV 6 2 any arrangement is of K(π, 1) type,
one gets our Hope in all but finitely many cases. More precisely, by Theorem 1, our discussion
above and from the classification of the irreducible complex reflection groups, our Hope reduces
to 13 instances when the underlying reflection group is of exceptional type. Following [OS82], we
label the W -orbit of Y ∈ L(A (W )) by the pair (Gn, T ), where Gn is the relevant reflection group,
in the Shephard–Todd numbering [ST54], and T is the type of the reflection subgroup of Gn fixing
pointwise the intersection of mirrors Y we are considering. In our cases, the type T determines Y
up to Gn-conjugacy. The 13 instances are (G29, A1), (G31, A1), (G32, C(3)), (G33, A1), (G33, A

2
1),

(G33, A2), (G34, A1), (G34, A
2
1), (G34, A2), (G34, A

3
1), (G34, A1A2), (G34, A3) and (G34, G(3, 3, 3));

see [OS82, § 3, Appendix]. The cases (G32, C(3)) and (G34, G(3, 3, 3)) can be handled as follows.
The lattices of intersections of (G32, C(3)) and (G34, G(3, 3, 3)) are both isomorphic to the
lattice of A (G26); cf. [OT92, Appendix D]. Viewed projectively, the arrangement A (G26) is
the extended Hessian configuration of 21 lines in P2(C); cf. [OT92, Example 6.30]. It is classical
that this configuration, as a set of 21 lines, is determined by its combinatorics, i.e. by the
isomorphism class of the corresponding lattice: the arrangements (G32, C(3)) and (G34, G(3, 3, 3))
are linearly isomorphic to the reflection arrangement A (G26). Therefore, since A (G26) is a
K(π, 1)-arrangement, so are the restrictions (G32, C(3)) and (G34, G(3, 3, 3)). Moreover, since the
localization of a K(π, 1)-arrangement is again K(π, 1) (cf. [Par93, Lemma 1.1]) and since G33

is a parabolic subgroup of G34 [OS82, Table 11], the three instances stemming from G33 are

527

https://doi.org/10.1112/S0010437X19007796 Published online by Cambridge University Press



N. Amend, P. Deligne and G. Röhrle

localizations of the corresponding restrictions from G34. So, verifying our Hope reduces to the
remaining eight restrictions in the list above.

2. Method of proof

A reasonable topological space X, for instance a manifold or a CW complex, is a K(π, 1) if and
only if it is connected (hence, by definition, not empty) and if for some (equivalently, any) base
point o ∈ X, the homotopy groups πi(X, o) are trivial for i > 2. The long exact sequence of
homotopy groups implies the following result.

Lemma 2.1. Suppose that X is connected and that f : X → Y is a fibration. Then, if Y is a
K(π, 1) and if some connected component of some fiber f−1(y) is a K(π, 1), so is X.

We fix k, `, r as in Theorem 1. We simply write A for the arrangement A k
` (r) in C`. The

coordinates of C` are denoted y1, . . . , y`.
Let us consider another copy of C`, with coordinates x1, . . . , x`. Let V be the quotient of this

vector space C` by its diagonal subspace C. The action of the symmetric group S` on C` passes
to the quotient. So do the linear forms xi − xj . The arrangement A`−1 on V is the set of the
hyperplanes xi− xj = 0 of V . It is the reflection arrangement A (S`) defined by the action of S`
on V . It is of K(π, 1) type and the fundamental group of X(A`−1) is the pure braid group on `
strands.

The zi := xi − x` (1 6 i 6 ` − 1) form a system of coordinates on V . In this system of
coordinates, the arrangement A`−1 is the arrangement A `−1

`−1 (1) consisting of the coordinate
hyperplanes zi = 0 and of the hyperplanes zi = zj for i 6= j.

Our deus ex machina is the composite map

f : C` (coordinates yi) −→ C` (coordinates xi) −→ V, (2.2)

where the first map in (2.2), or rather its graph, is given by

xi = y1 · · · yk yri . (2.3)

It is equivariant for the subgroup Sk × S`−k of S`, acting on C` and on V : the coordinates
y1, . . . , yk, as well as yk+1, . . . , y`, play symmetric roles.

The inverse image by f of the union of the hyperplanes in A`−1 is the union of the hyperplanes
in A . Indeed, the inverse image of the hyperplane xi − xj = 0 is the union of the coordinate
hyperplanes ya = 0 for 1 6 a 6 k, and of the hyperplanes yi = ζyj for ζ an rth root of unity.

In the coordinate system (zi) of V , the map (2.2) is given by

zi = y1 · · · yk (yri − yr` ). (2.4)

It induces a map, still denoted by f ,

f : X(A ) −→ X(A`−1). (2.5)

Theorem 2. The map f : X(A ) −→ X(A`−1) realizes X(A ) as a smooth fiber space over
X(A`−1).

A consequence of Theorem 2 is that the fibers of f : X(A ) −→ X(A`−1) are non-empty
smooth affine curves. The connected components of such a curve are again smooth and affine
and hence are K(π, 1). Indeed, the only Riemann surface which is not a K(π, 1) is the sphere.
As X(A ) is connected and X(A`−1) is a K(π, 1), Theorem 1 is a consequence of Theorem 2 and
Lemma 2.1.

The proof of Theorem 2 is given in the next section, where we use the following lemma.
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Lemma 2.6. Let M and B be C∞-manifolds, N a closed submanifold of M and f : M −→ B
a morphism. If f is proper, submersive, and with a restriction to N submersive, then, locally
on B, f : (M,N) −→ B is isomorphic to a projection (M0 × B,N0 × B) −→ B. A fortiori,
f : M −N −→ B is a smooth fiber bundle.

For N empty, the lemma first appeared without proof in [Ehr47, Proposition 1]. For the sake
of completeness, we now explain the folklore proof of Lemma 2.6 in the case when N is empty
and then explain how to extend it to the general case.

The question being local on B, we may assume that B is of the form ]−1, 1[` (coordinates
ti, . . . , t`) and we proceed by induction on `, the case ` = 0 being trivial. The vector field ∂t` on
B can be lifted to a vector field X on M . Indeed, such a lifting exists locally on M and one uses
a partition of unity to get a global lifting from local liftings. As df(X) = ∂t` , by integrating X,
we obtain isomorphisms between the fibers of f at (t1, . . . , t`−1, 0) and (t1, . . . , t`−1, t`). These
isomorphisms identify M −→ B with the pull-back by ]−1, 1[` −→ ]−1, 1[`−1 of the restriction
of M −→ B to ]−1, 1[`−1 × {0} ⊂ B. One concludes using the induction hypothesis.

The proof of Lemma 2.6 is identical: one just needs to choose the lifting X of ∂t` to be
tangent to N .

3. Proof of Theorem 2

The fiber Fz at z ∈ X(A`−1) of f : X(A ) −→ X(A`−1) is given, in C`, by the equations

y1 · · · yk(yri − yr` ) = zi (i = 1, . . . , `− 1). (3.1)

Any of these equations implies that y1, . . . , yk 6= 0. Their system is equivalent to the first equation

y1 · · · yk(yr1 − yr` ) = z1, (3.2)

supplemented by the equations

1

z1
(yr1 − yr` ) =

1

zi
(yri − yr` ) (2 6 i 6 `− 1), (3.3)

which are homogeneous of degree r in the yi.
Let us compactify C` into P`(C). In P`(C), we will use the homogeneous coordinates y0, y1,

. . . , y`, y0 = 0 being the equation of the hyperplane at infinity added to C`. To compactify the
fiber Fz, it suffices to take the projective variety F z defined by the homogeneous equations (3.3),
and by (3.2) made homogeneous, that is,

y1 · · · yk(yr1 − yr` ) = z1 y
k+r
0 , (3.2′)

an equation homogeneous of degree k + r in the yi.
It will be convenient to define z` := 0. With this notation, (3.3) tells that the yri − yr` are

proportional to the zi− z` and it follows that all yri − yrj are proportional to the zi− zj : for some
u, yri − yrj = u(zi − zj).

To compute the intersection of this compactification F z with the hyperplane at infinity H∞,
it suffices to put y0 equal to 0 and to view y1, . . . , y` as projective coordinates for the hyperplane
at infinity. We obtain kr`−2 + r`−1 distinct points, as follows. One of the factors at the left-hand
side of (3.2′) must vanish. If yi = 0 (1 6 i 6 k), the yrj = yrj − yri are proportional to the zj − zi
and we get the r`−2 points with coordinates

(yi = 0, yj = (zj − zi)1/r)

(to be taken up to multiplying by a common rth root of unity).
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If yr1−yr` = 0, all yri −yrj must vanish. We get the r`−1 points ‘all yi are an rth root of unity’,
again taken up to multiplication by a common rth root of unity.

Lemma 3.4. The compactification F z of the fiber Fz of f at z defined by the `−1 equations (3.2 ′)
and (3.3) is a complete intersection curve, smooth at infinity, and meeting transversally the
hyperplane at infinity H∞.

Proof. If F z had an irreducible component of dimension >1, the intersection of this component
with H∞ would be of dimension >0, contradicting the finiteness of F z ∩H∞. It follows that F z,
being defined by ` − 1 equations, is a complete intersection curve. By Bezout, the number of
points in F z ∩H∞, each counted with its intersection multiplicity, is (k+ r)r`−2. It follows that
each intersection multiplicity is one. As F z and H∞ are local complete intersections, this implies
that F z is smooth at each point of F z ∩H∞ and that the intersection is transversal. 2

It follows from Lemma 3.4 that F z is simply the closure of Fz in P`(C) and that the curve F z is
generically reduced, that is, generically smooth, as a non-reduced component would intersect H∞.

The same argument shows the following result.

Lemma 3.5. For k+ 1 6 i 6 `, the curve F z is smooth at each of its intersection points with the
hyperplane yi = 0.

Proof. It suffices to show that the number of intersection points is (k+r)r`−2. As the hyperplanes
yi = 0 (k+1 6 i6 `) play symmetric roles, it suffices to consider the case of the hyperplane y` = 0.
Equations (3.3) tell us that (yr1, . . . , y

r
`−1) is proportional to (z1, . . . , z`−1), while by (3.2′) they

cannot be all zero, as otherwise y0 would be zero too. If we fix the indeterminacy ‘multiplication
by a common constant’ by requiring y`−1 to be a specified root of z`−1, (3.3) tells that each
yi (1 6 i 6 ` − 2) is an rth root of zi. This gives r`−2 possibilities, while (3.2′) leaves k + r
possibilities for y0. 2

Lemma 3.6. The curve F z is smooth.

Proof. By Lemma 3.4, it suffices to show that Fz is smooth. By (3.2), Fz does not intersect the
hyperplanes yi = 0 for 1 6 i 6 k. By Lemma 3.5, it hence suffices to check that in the open set
where none of the yi vanishes, Fz is smooth. Locally on (C∗)`, we can take as local coordinates
the Yi = yri . In these local coordinates, (3.3) tells us that Fz is on the surface Yi = azi + b
(coordinates a, b). In the coordinates a, b, the equation (3.2) becomes

k∏
i=1

(azi + b)1/r · az1 = z1

for some branches of the rth roots. It follows that a 6= 0 and that Fz is contained in the curve of
the plane (a, b),

ar
k∏

i=1

(azi + b) = 1.

One concludes by invoking the following well-known result.

Lemma 3.7. If F (a1, . . . , an) is a homogeneous polynomial of degree d > 1, the hypersurface
F (a1, . . . , an) = 1 is non-singular.
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By homogeneity, the hypersurfaces F = c are, for c 6= 0, all isomorphic. By Sard’s theorem,
almost all are non-singular. One could rather use the Jacobian criterion: at a point where F = 1,
Euler’s identity

Σai∂iF = dF = d

shows that not all ∂iF can vanish.
If we now let z vary in X(A`−1), we obtain a family of smooth complete intersection curves

in the projective space P`(C) completing C`, transversal to the hyperplane at infinity. The total
space is contained in P`(C)×X(A`−1) and one applies Lemma 2.6 to it. 2

4. Complements

The projective completion F z of the fiber Fz of the fiber bundle f : X(A ) −→ X(A`−1) is a
smooth complete intersection in P`(C), of multidegree (k+ r, r, . . . , r). As F z is defined by `− 2
homogeneous equations, its complement U is the union of ` − 2 smooth open affine varieties of
dimension `, so that H1

c (U) = 0 and H0(P`(C))
∼
→ H0(F z): so F z is connected. To see this, one

could rather make an iterated application to the Lefschetz hyperplane theorem, again for H0.
The canonical line bundle of a complete intersection Y of degrees (d1, . . . , d`−1) in P`(C) is

isomorphic to the restriction to Y of O(Σdi− `−1). In our case, it follows that the degree 2g−2
of the canonical line bundle of the curve F z is given by

2g − 2 = (k + (r − 1)(`− 1)− 2)(k + r)r`−2.

The fiber Fz is the complement in F z of (k + r)r`−2 points. Its fundamental group is hence a
free group with N generators, where

N = 2g + number of removed points − 1

= (k + (r − 1)(`− 1)− 1) (k + r)r`−2 + 1.

Each curve F z contains at infinity the point (0, 1, . . . , 1). If M −→ X(A`−1) is the total
space of the family of the F z (contained in P`(C) × X(A`−1)), this common point gives us a
section s of the fiber bundle M −→ X(A`−1). The vertical tangent bundle, restricted to this
section, is a trivial line bundle, because any line bundle on X(A`−1) is trivial. Let v be, along s,
a nowhere-vanishing section of the vertical tangent bundle. Pushing s in the direction of v,
one obtains a C∞ section of X(A ) −→ X(A`−1). The fundamental group of X(A ) is hence a
semi-direct product of the fundamental group of the basis by the fundamental group of the fiber:
a semi-direct product of the braid group on ` strands by the free group on N generators.
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