Density theorem

Methods

Continued method

F. Carlson. Auxiliary function. \(M_j(s) = \sum_{n=1}^{\infty} \frac{f(n)^s}{n^s} \)

Jauregui formula for circle, then Littlewood's formula ending with weights depending on one side the zeros in a rectangle.

\[
\frac{2}{\pi} \int_0^\infty \frac{\sin x}{x} \, dx = \int_0^\infty \frac{f(x+it)}{x} \, dt
\]

\[
f(s) = \sum_{m=1}^{\infty} m^{-s} + \ldots + O(1)
\]

\[
f(s) \quad M_j(s) = 1 + \sum_{\pm} \frac{a_n}{n^s} + \ldots + R.
\]

essentially, either by geometric and arithmetic mean

inequality: \(V \), by length: \(u \) \(\leq \frac{1}{4} \frac{\|u\|^2}{\|u\|} \)

get integral

\[
\int_0^\infty \left| f(s) M_j(s) - 1 \right|^2 \, dt
\]

of other power, using approx

Carlson \(N(s, T) = O(T^\frac{1}{2} \log^6 T) \)

Taylor marches, approximate functional equation

\[
\lambda(s) = 4^s \quad \text{Carlson}
\]

\[
\lambda(s) \approx \frac{4}{3-2\sigma} \quad \text{Taylor marches}
\]
we have a well-spaced set of
\[M < \frac{d}{2} \sum_{j} \mu_{j} \]

if replacing

\[\sum_{j} \phi(s_{j}) \]

integrated over circle

\[\frac{\pi}{a^{2}} \int_{|z - n| < \frac{a}{2}} |\phi(s_{j})|^{2} \, ds \]

could also write

\[\phi(s) = \phi_{1}(s) + \phi_{2}(s) \]

when \(|\phi_{1}(s_{j})| + |\phi_{2}(s_{j})| \geq \frac{1}{2} \)

\[\frac{1}{2k} \] at least

\[M \leq 2 \sum_{v, i} \left(\sum_{j} \phi_{v}(s_{j}) \right)^{k_{v}} \]

out back advantage of higher powers easier

costants much simpler to determine

\[M(i) \] as points \(s_{j} \) for which

\[|\phi_{i}(s_{j})| \geq \frac{1}{2\pi} \]

\[\phi_{i} \leq \sum_{i} M(i) \]

\[M(i) \leq (2\pi) \sum_{\nu} \frac{k_{\nu}}{k_{i}} |\phi_{i}(s_{j})| \]
\[
\int f(z)^p \quad \int h(z)^q
\]

and later also convex theorem with \(\int f(z)^p \quad \int h(z)^q \quad 0 < a < 1 \)

\[
\sum_{x_i} \frac{x^2_i}{x^2_1} \quad a_n \quad a - 0 - i \quad a \quad a
\]

\[
\sum_{x_i} \frac{x^2_i}{x^2_1} \quad a_n \quad a^2 \quad a^2
\]

\[
= 0 \left(T - x^2_1 - 2a \right) + 0 \left(x^2_1 - x^2_2 \right)
\]

equation: used inequality \(\frac{1}{T} \) and \(m + \delta \)

with small \(\delta \) and either mean-value theorem

\(f(0) > f(1) \) or \(\max \: f(x) = f(0) \).

\[\text{Results:} \quad \text{I could have obtained same by (1) using lines other than } 0 = \delta, \]

(2) using the result only set of expressions directly.

In 1945, in engineering:

\[
\log \left| -u_1 + \ldots + u_n \right| \leq k \sum a_i \ldots \ln u_1 \ldots u_n
\]

\[
+ A \sum_{k_1} \left(u_1 \right)^{k_1}
\]

Advantages: can break up \(f(x) = h(x) - 1 \)

into parts and choose each \(k_i \) (as an even integer)

such that it gives the best bound for the relevant part.

Can use a smaller \(\delta \) in relation to \(T \) (see \(\delta \))

with some arbitrary but fixed \(\delta \). Also easier to

utilize result of about exp. terms (where away fast

for which \(\sum_{m=0}^{\infty} m^{-3} = O \left(\frac{1}{m^3 - 2} \right) \); even \(\delta \).

then \(\left| M_1 (z) \right| \left| G \left(\frac{1}{2} \right) \right| \left| C \left(\frac{-\delta}{2} \right) \right| \left| k, k \geq \frac{7}{6} \right| \)
obtained results somewhat sharper than Ingham using more primitive machinery of expo... also could show that \(\pi(x) \) for \(x \) sufficiently close to \(\infty \) is \(\approx x + 0.5 \); all of Ingham's results followed although (and with as good proofs of how) \(\gamma \), and the conjecture \(\sum_{n \leq x} \frac{\ln \frac{x}{n}}{n} = O(\sqrt{x}) \)

if \(T \approx N \cdot \frac{T}{\delta} \) are small.

(holds for \(k \) an integer. \(\delta \), would imply \(\pi(x) \approx x + 0.5 \).)

Also was able to show also this instrument for detecting zeros was to look at high derivatives of \(\log \zeta(s) \) on the line \(2 + it \)

if \(s = 1 + it \) is a zero. then \(\left(\frac{e^{it}}{s} \right) \)

could not get large.

Anything based on little words formula could not give anything better than

\[
N(i, T) = O(T^{2(1-\delta)} \log T).
\]

Namely if \(\xi(x) = 0 \) we have

\[
\xi(x) M_\xi(x) - 1 = -1 \quad \text{with means}
\]

\[
\sum \frac{x}{m^2} + R \quad \left(\text{if remainder } \leq \frac{1}{2} \right)
\]

\[
\sum \frac{x}{m^2} \text{ } \sum \frac{\text{Remainder}}{m^2} \leq \frac{1}{2}
\]

This can be used as our detecting device.
\[\int \frac{dy}{f(y)} \leq \frac{1}{g(y) \cdot \sin \alpha} \int \frac{dy}{f(y)} \leq \frac{1}{g(y) \cdot \sin \alpha} \int \frac{1}{f'(y)} \, dy \]

\[\alpha = 0 \text{ on boundary} \]

\[V = \frac{\sin \alpha \cdot t}{e^t} \]

\[\cos \left(\frac{\pi t}{2T} \right) - e^{-\frac{\pi t}{2T}} \left(\frac{\pi}{2T} \right) \]

\[\frac{e^{-\frac{\pi t}{2T}}}{\sqrt{T}} \cdot 2 \pi \sum V(\phi) \]

\[\sin \frac{\pi t}{2T} \cdot e^{-\frac{\pi t}{2T}} \]

\[e^{-\frac{\pi t}{2T} \left((\sigma - \tau) - \frac{\pi t}{2T} (\sigma - \tau) \right)} \]

\[e^{-\frac{\pi t}{2T} \left((\sigma - \tau) - \frac{\pi t}{2T} (\sigma - \tau) \right)} \]

\[\sum_{n \leq 2T} \log \left| f(a + it) \right| \, dt + \sum_{n \leq 2T} \left(\frac{\pi}{4T} (\sigma - \alpha) - \frac{\pi}{4T} (\sigma - \alpha) \right) \]

\[= \sum_{n \leq 2T} \frac{\pi}{4T} \cos \frac{\pi \alpha}{2T} \left(e^{-\frac{\pi \alpha}{4T}} - e^{-\frac{\pi \alpha}{4T}} \right) \]

\[\sum_{n \leq 2T} (\beta - \alpha) \]

\[\sum_{n \leq 2T} (\beta - \alpha) \]

\[\sum_{n \leq 2T} \frac{1}{2\sqrt{2}} \int_{-2T}^{2T} \log \left| f(a + it) \right| \, dt + \frac{1}{\pi \sqrt{2}} \int_{-2T}^{2T} \left(e^{-\frac{\pi t}{4T}} - e^{-\frac{\pi t}{4T}} \right) \]
Density Heisenberg

Combining methods, approx new rep. of \sum_{α}

Carlson, Janesics

Little woods lemma

$N(0, T) = 0(1)$

$\delta(0, T) \approx 2(\delta(0, T) \approx 2(\gamma T)$

$\delta(0) \approx 0.4$

e^{-20}

Titchmarsh

$1 + 20 \approx 1 + 20$

If $\delta(s) = O(\delta(s))$

$\frac{3}{2 - e^{-5}}$

(Kunitas, 1969)

Turan, Halasz 1968

$\frac{2}{\delta}$

For $|t| > 1$

$x \to \infty$

Immobility, Abel sum, Cesaro

$\frac{1}{\zeta(s)} M_{\sigma}(s) = 1 + \sum \frac{a_n}{n^s} + R(0)$

$\sum \frac{1}{n^s}$

$R(w) \frac{1}{\sin \pi \sigma} e^{-\pi \sigma x}$

$\log x \sum \frac{1}{n^s} \sum \frac{1}{n^s}$

$\int_{\delta}^{1 - 20} \int_{\delta}^{1 - \sigma} e^{-x}$

$1 - \sigma$
\[N(T, \sigma) = Q(T^2 (1-\sigma)) \]

Terms in square sign if \(s_j = \beta_j + i \gamma_j \) real

\[\left(\sum \frac{\gamma_j}{\gamma_j} \right) (2 + i \gamma_j) \] for large \(\gamma \)

\[\left(\frac{\gamma}{\gamma} \right) \]

establish that one term is large in the range \(2 \gamma \leq \gamma \leq 5 \gamma \)

\[\phi(s_j) = \frac{1}{\epsilon(s_j - 1)} M_j \epsilon(s_j - 1) \]

\[\phi(s_j) = 1 \] could approximate \(\phi \) by integral over \(s\)-contour

\[\sum \phi(s_j) \]

\[\phi(s_j) = \mu(s) + \mu(s) + \mu(s) \]

\[\leq \frac{1}{\text{at least one } |\mu(s)| \geq \frac{1}{\epsilon}} \]

\[\sum \]