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Section 0. Introduction.

Most of the results described in this paper have been obtained
Jointly with R. Phillips and B. Osgood in the series of papers [OPS,
1,2,3]. The problem with which we will be concerned is, as it was
coined by M. Kac [KA], “hearing the shape of a drum”. Put another
way what can be said about an i5ospectral set of planar regions. Here
and more generally:an isospectral set of ‘compact Riemannian man-
ifolds M (possibly with bounhda'ry) is a set of such manifolds which
all have the same spectrum f6i the Laplace-Beltrami operator (with
Dirichlet boundary conditions if M has boundary). For the basic
problem of planar “drums” it is possible, as far as is known to date,
that such isospectral sets consist of one element only, i.e. the drum is
determined from its spectrum. However, in the more general setting of
Riemannian manifolds such uniqueness fails. For example in dimen-
sions greater than 4 isospectral sets may even contain l-parameter
families of nonisometric manifolds, see Gordon and Wilson [G-W]. In
dimension 2, Vigneras [V] and more recently Sunada [SU] has given
examples of isospectral sets of arbitrary large cardinality. Our main
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602 SARNAK

result is the compactness of isospectral sets of Riemannian manifolds
in dimension 2, precisely.

Theorem 0.1 [OPS 1,2,3]:
(A) An isospectral set of closed (i.e. no boundary) Riemannian two
manifolds is compact in the C'*° topology.
(B) An isospectral set of planar drums is compact in C°.
We explain the C* topology on metrics used above. Firstly, in
(A) and (B) above it is known [KA] that the spectrum determines the
topology of the underlying manifold so it suffices to topologize the
space of all Riemannian structures on a given manifold M. This we
do for general compact M. Fix on M a smooth Riemannian metric o,
which is used as a background metric. The space G = G*°(M) is the
space of all C* metric tensors on M with the usual C'* topology. Let
D = D>™(M) be the group of smooth diffeomorphisms of M (which
take OM — OM smoothly if 8M # ¢). D acts on G by pullback of
metric. The quotient space (with its quotient topology)

R(M) = G*=(M)/D=(M) (0.1)

consists of the space of Riemannian metrics (up to isometry) on M.
It is Hausdorff and gives the natural C* topology on the space of
metrics. A class in R(M) will be denoted by [g]. Convergence in
/R(M) may be described as follows

[l
v

[9]n — [g]
iff there are g, € [gjn, g € [g] such that
gn— g in GZ(M).

Using Theorem 0.1 and the rigidity techniques of Guillemin-
Kashdan [G-K] we will show in Section 2 finiteness of isospectral sets
under certain assumptions. It seems plausible that in two dimensions
isospectral sets are finite. We discuss this and related questions in
Section 2. We turn now to the basic tool in our analysis which is the
height function on R(M).
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Section 1. Heights.

As above let (M, o) be a compact manifold with smooth Rieman-
nian metric . Let A denote the Laplace Beltrami operator acting on
functions on M. Let 0 < Ay < A; < A;... denote the eigenvalues
of A. The notion of the determinant of the Laplacian, det’' A, was
introduced in Ray and Singer [R-S] in the context of analytic torsion.
More recently it appears in Polyakov’s string model [PO] as part of
the integrand of a Feynman integral. Formally

det’A = [ M.
A;#0

To give meaning to this product we use the standard zeta regulariza-

tion. Let
Z(s) = A (1.2)
Aj#0
This converges absolutely for Re(s) large. Z(s) has the integral rep-
resentation

Z(s) = ﬁ/:o TR'(em)t’% (1.3)

which follows from term by term integration. From the well known
small time asymptotics for TR'(e2*) [GI 1], one easily deduces the
meromorphic continuation of Z(s) to the complex plane. The zero of
I'(s)~! at s = 0 ensures that Z(s) is regular at s = 0. Formally from

(1.1) and (1.2) we have logdet’' A = —Z'(0) and so we define det’ A
by e ' ) :
' det’' A = ¢=Z(0), (1.4)
The height of (M ,r}) denoted h(o) is defined to be
h(c) = —logdet’A = Z'(0). (1.5)

From its definition the height is clearly an isospectral invariant. The
reason for the name height should become clear from the following
analysis as well as the fact that it is related to certain height functions
"in the theory of arithmetical geometry, see the Appendix.

We now investigate the properties of the height function h :
R(M) — R. Unlike the individual eigenvalues A; : R(M) — R, it
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is a smooth function. Its most important property is that of being 5
proper function (in certain cases). In general we know very little about
h, so for the rest of this section M is taken to be a two-dimensiona]
manifold. We use £, , instead of M to stand for a fixed topological
surface which is a compact surface of genus p with n distinct open
disks removed. Thus Yp,o is a closed surface of genus p, while for
n 21, 9%, . consists of n circles. When dealing with surfaces with
boundary, our aim has been to capture the classical case of “planar
drums”. These all have flat metrics (i.e. zero Gauss curvature K in
the interior of ) on %, ,. So when considering more generally T, ,,.
n 2 1 we restrict ourselves to flat metrics in R(Z, ,,). We denote this
subspace of flat metrics by

'R,F(EP,“) (1.5)

(when n = 0 the symbol F and flatness is to be ignored). The set
of planar drums of connectivity n is a closed subspace of ‘RF(EO,H).
We need to further normalize the metrics. If a given metric o on ¥
is scaled by 7% i.e. o' = 9?0, 7 € R, then the eigenvalues are scaled
down and one can easily check from (1.2) and the definition of A that

M) = {ﬁégllogfy—l—h(a) Rt

222 —1)logy + h(o) if O = 4.
Here y is‘?-ithe;.Eule{.;number. So unless the coefficient of log~ is zero
we need to normalize the metrics. We do so as follows:

Area,(X) =1 if ¥ is dosed (1.8)
length,(0Z) =1 if 8% # ¢. ’

The resulting space of normalized Riemannian metrics on & will be
denoted by

Re(E). (19)
A key ingredient in the study of the height on ,Rp(Z) is the

Polyakov-Alvarez [AL, PO] variation formula. For ¢ € C*(X) and
o € G(X) the variation formula gives the variation 6,( h(e??c)). When
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integrated this gives rise to the following relation between the heights
of conformal metrics [OPS 1]: Under the normalization 1.8

h(*a) = = { /|v¢]2dA+/K¢-dA+/ k¢ds}

== ./az: Ondds + h(o) (1.10)

where V, dA ... etc. are all in the o metric. Since in case 9% # ¢ we
are assuming the metrics to be flat i.e. ¢ and e?%¢ are flat, the above

formula simplifies since then k£ = 0, ¢ is ¢ harmonic and Ondds is

ax
independent of ¢.

(1.10) allows us to study the height in conformal classes of metrics
and to identify the extremal metrics for the height.

Definition 1.1.

(A) For ¥ closed we say a metric u on ¥ is uniform if it is of constant
curvature.

(B) For 9% # ¢ a metric u on ¥ is uniform if it is flat on ¥ and if 8%
has constant geodesic curvature in the u metric.

Examples of uniform metrics are S? with its round metric, flat tori on
Y1,0 and hyperbolic metrics on I, 5, p > 2. These are all of them for
closed surfaces. The unit disk

K = {z : |z| <1} with its usual metric is uniform, in fact the only one
up to scale on. Yg,1. Flat cylinders give all uniform metrics on g 2-
On Xj ., a flat torus with n- d15]01nt dlsks of radius equal 1/ (27rn)
removed ;gives a umform metnc

Theorem 1.1 [OPS 1]. It a conformal class of metrics in ¢Rp(Z)
there is a unique uniform metric (of type A if 0L = ¢ and type B
otherwise) and it is the unique global minimum.of the height function
in the conformal class.

The theorem is proven by extremizing h(@) in (1.10) subject to

e®ds, depending on whether
an

PH
0% = ¢ or not. Existence of the minimum is the trickier part espe-

cially if ¥ is Do = S2% or Yo,1 = K. In fact for S? Theorem 1.1 is
equivalent to the following sharp form of an inequality of Moser [MO]:




For ¢ € C*(5?)

10g/;2 ¢‘i‘:° _4] v ¢|2 f qsdA“ (1.11)

where dAy, Vy correspond to the K = 1 metric on S2. Moreover
equality holds in (1.11) iff ¢ = 2log |V’| + B where V : §%2 — $2 is a
Mébius transformation and 8 € R. (1.11) was proved by Onofri [ON]
using work of Aubin [AU] but it can be derived directly from Moser’s
inequality [OPS 1].

In the case of the unit disk K, Theorem 1.1, via (1.10) above, is
equivalent to the inequality:

For ¢ € C=(K)

1ogfaxe < _4] |v¢|2d“’"dy / ¢ (1.12)

with equality iff ¢ = log |7'|+ 8 where T : K — K is a Mbius transfor-
mation and # € R. (1.12) is the so-called first Milin-Lebedev inequal-
ity [D] (which is usually stated in terms of power series). Theorem 1.1
gives it geometric meaning i.e. of all plane simply connected domains
of fixed boundary length the circle has maximum determinant for

Laplacians. A geometric proof of (1.12) as well as sharpenings of it to
2T

. cases when ¢ sa.t1sfies the extra hypothesis of ?eifdg = 0 (which
r": are needed for the proof of Theorem 0.1) is gwen in [OPS 1]. Yet

another proof of (1 12) and its sharpenings under / e?e'™?dg = 0

for m < n has been given by Widom [WI] using Szegd’s theory [SZ].

Let M, (%) denote the subspace of ¢ Rp(X) con51st1ng of uniform
metrics. It is closed and in view of Theorem 1.1 it is homeomorphic
to the moduli space of conformal structures on I. As is well known
this space is finite dimensional, of dimension 6p — 6 + 3n if (p,n) #
(0,0),(0,1) and (0,2). The dm:lens:ons in these three cases are 0,0
and 1 respectively.

For A C ¢R(Z,,,) we say A is weakly precompact in W if the
following holds: For any sequence [g], € A there is a subsequence
[g]n; satisfying
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(1) there are gn; € [g]n; of the form gn; = un;e 26n;

My(E) and ¢n; € C°(X).
(2) un; — uin G°(T) and ¢p; is bounded in W*(X); the Sobolev «

space on ¥ relative to our background metric.

i where [u]n; €

Similarly for A C ¢Rp(EZpn), » = 1, being weakly precompact
in W<. In this case the ¢n;’s are u,; harmonic so we could, and will,
use the Sobolev norms on 9% for the functions ¢.

By the usual embedding arguments weakly precompact in W¢
implies usual precompactness in a smaller We' and a set which is W<
weakly precompact for all o is precompact in o Rr(Z). We can now
state the basic property of the heights in the cases pn = 0.

Theorem 1.2 [OPS 2,3].

(A) A subset of ¢R(E,,,) of bounded height is W' weakly precom-
pact.

(B) A subset of ¢Rp(Zo,n), » = 1, of bounded height 1s W1 weakly
precompact.

Theorem 1.2 is deduced from the following weaker but still central
fact which shows that h is a proper function on the finite dimensional

space M, ().
Theorem 1.3 [OPS 2,3]. For pn =0

h(u) > 00 as uw— OIMy(Zpn)-

We 'outline a derivation of Theorem 1.2 from Theorem 1.3. Let
AC O’R(E) be of bounded height. Let [¢], be a sequence in A. If [u],
corresponds to [g],,, ag'in Theorem 1.1 then h([u],,) is bounded above.
Hence by Theorem 1.3 {[u],} lies in a compact. We may therefore
extract a subsequence uy,; € [t]n; such that u,; — uin G, We then
have the representation for suitable dn; € [g]n;"and ¢n; € C=(X)

= 2¢n;
Gn; = Up;€ 7" .

- A careful analysis (especially in the 3g o and ¥q; cases where ¢,
needs further adjusting by the action of Mobius (X)) using (1.10) and
the fact that the heights are bounded, allows one to bound the ¢,; in
the Sobolev space claimed.
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The proof of Theorem 1.3 is rather complicated especially for the
case n > 1. For Ly and Xy, there is of course nothing to prove.
For 1,0 and ¥g 2 the moduli space and heights are easily described
and computed explicitly, see the Appendix. From the formulas the
result is verified directly. For £,,, p > 2, the result was derived
by Gava-Ieng-Jagaraman-Ramachandran [G-I-J-R] and Wolpert [WO)]
using the Selberg zeta function. These authors were examining the
boundary behavior of the determinant in connection with the Tachyon
divergence of the Bosonic string [WO]. In these cases the degeneration
of a hyperbolic surface is well known [BER]. The way it can degenerate
is rather simple and basically comes from the development of long
collars with short closed geodesics. We will give a direct method of
analyzing the height in such cases. For the general X, , case the
boundary of M,(%, ) is apparently much more complicated. Here
are some techniques developed in [OPS 3] to deal with these cases.

The following insertion Lemma often allows one to decompose
a degenerating family of metrics into simpler parts and to examine
the height on each. Let ¥ be a general surface and ¥(¢) denote
this surface with metric 0. Suppose ¥ is decomposed into ; and
22 by some curve I' lying in 3. In this way ;, Q, become spaces
with the induced metric. By the minimax principle it follows that
if Ay < Ay < A;... are the eigenvalues for £(o) and if those for
together with Qy are p; < pg < pz...then

" (TR R I)‘J‘ < pj.
Hence at least formauy? ;
ML >1 o h(E(0)) 2 h(Q) + k(%)
i

Unfortunately this inequality is not true in general but it is approxi-
mately true under certain conditions. We say a curve I' in (o) is a
Ct—-K quasi-collar if I" has a neighborhood N in ¥ which is isometric
with g;;dz’dz? on {z | 1 < |z| < 2} where z(V) =z, 2® = y and

(1) K71 < gij(2) < K,

(2) llgijllce < K,

(3) under the isometry I' goes over to |z| = 1.

e e i 8
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Insertion Lemma 1.4 [OPS 3]:
If I' decomposes (o) into ©; and Q, where I' has a C¢ — K
quasi-collar with £ > 11 then

h(E(0)) 2 h() + ~(Q2) +0(1)

where the 0(1) term depends only on K.

To illustrate this technique consider again Theorem 1.3 for the
cases ¥p 5, p > 2. A typical degeneration of the hyperbolic surface is
as follows:

{=length
of closed geodesic

FIGURE 1.1
Here the degeneration is coming from ¢ — 0, Q; and Q, are
converging. The curves I'; and T'; inserted have C'' — K quasi-collars
with K bounded and so by the lemma

h(S(0)) 2 h(C) +h() + h(Q2) + 0(1).

Since h(€) and h(§¥) are bounded we need only check that h(C) —
co. For C' we can compute the height directly as in Appendix 1 and
one obtains the precise asymptotics of h(C) as £ — 0. The above
analysis can be pushed further to give directly ‘the asymptotics of
h(u) as u — OM (%, ,) without use of the Selberg Zeta function, see
the thesis of Lundelius [LU].

Returning to the case of T, ,,, n > 3 the proof proceeds in three
steps [OPS 3].

(1) An explicit description of the space My(Z,,5) is developed. From
this one determines the form of degeneration of these uniform
metrics.
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(2) Given a degenerating sequence of such metrics one tries to insert
a family of C'! — K quasi-collars (with X fixed) which decompose
¥ into domains of smaller connectivity. If this is possible then
one can proceed inductively.

(3) If the insertion cannot be done then through a notion of “valu-
ation” [OPS 3] we are able to get an explicit enough handle on
the height to verify that it — oo directly.

Since this analysis becomes rather delicate, we do not pursue it
further here. :

The reader will have noticed that in Theorems 1.2 and 1.3 the
cases pn # 0 are excluded. In fact these results are false in these cases!
Khuri [KH] in her thesis has shown that the function A : My(Zpn) —
R is not a proper map if np # 0. She shows that there are curves
7(t) with () — dM,(Z) on which h(7(t)) remains bounded from
above (and even h(v(t)) —» —co if (p,n) # (1,1)). An example of
such a curve in Y11 is the family u, given by the following: Let
L, =17 +itZ be a lattice in R2. From the flat torus R?/L, remove the
disk {z | |z] < 1}. The resulting metric u¢ is uniform and normalized
on ¥; ;. For this curve h(7(t)) is bounded above as t — oco. The
insertion Lemma above and related techniques are used heavily in
this analysis.

" Section 2. The Isospectral Problem.

. We nowfeindwigat_erhdw the pr&perties of the height function, espe-
cially Theorem 1.2, when combined with the ‘heat invariants’ lead to
Theorem 0.1. First let’s recall what these local heat invariants are.

Quite generally for a compact manifold M with metric o Jet k(t,z,y)
be the fundamental solution of the heat equation

e+ Au =0 (2.1)
on [0,c0] x M. Then
TR(e?) = Z g Ant :f Kl z,z)ds. (2.2)
n=0 M

The asymptotics of k(t,z,z) as t | 0 are well known [M-S] and in-
volve certain universal (depending on dimension) polynomials in the
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curvatures and its covariant derivatives at z [GI 1]. Integrating these
local invariants over M gives the small time asymptotics for TR(e®?).
For example if (M, o) is of dimension 2 and closed then

TR(e®!) ~ % f:aj(a)tj as t]0. (2.3)

i=0

Here a; = / U;dA with U; a universal polynomial of degree 2; in K
M
and A.

A M i
ag = E, ay = X—(G—), az = '@ /M szA etc. (24)
For a flat surface with boundary dM we have
TRt i/2
TR(e®) ~ < Zﬁa,-(g)tf as t10 (2.5)
J=

with a;(o) integrals of polynomials in k(s) and k'(s) over M, s being
arc length. The first few a;’s are [M-S]

_zi o — _E(BM) _ x(M
411.', 1= 8\/7_1' y Q2= 6

ag =

PRl I 1
=—— [  k%*(s)ds, . = k3(s)d
¥z Jy N = | s

'
IR

_ 37 4 1 12
as = W aMk (s)ds TN -/;M(k (s)) ds, etc.

The functions aj(o) are of course isospectral invariants and are
well suited for bounding curvature. Thus for example Melrose [ME]
shows that one can prove the compactness of the curvature functions
k(s)in C*°(dT) (OX being parametrized by arc length s) for isospec-
tral sets of planar domains using only the heat invariants. From a;
and as above one can easily get a bound on k(s) in the Sobolev 1 norm.
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What Melrose shows is that the 2j + 1 heat invariant in (2.5) is of
the form

Q‘2j+1/ |k7(s)|*ds -|—f (lower order derivatives of k) ds (2.6)
oz E)>

where the constant asjy; # 0 (this being the crucial point). With
(2.6) it is straightforward to bound k in the higher Sobolev norms
inductively. Note that in (2.6) above it seems rather difficult to
evaluate the lower order terms explicitly. Luckily only the nonvanish-
ing of the leading terms is needed.

We need a similar evaluation of the leading terms of aj(c) in
(2.3). In [OPS 2] we showed that the highest derivative terms of a;
(which recall is an integral of a polynomial in A and K ) is

¢ fM (A"?—’K)z dA (2.7)

where

7T 8r (452 -1)(25 - 3)
Again the important point is that C; #0.
Subsequently Gilkey [GI 2] has evaluated the leading terms of the
F heat invariant for closed manifolds of arbitrary dimensions > 3.
This will be used later..

It s iﬁlportant to observe ‘that the local heat invariants alone
do not suffice t6 ensiire the compactness in R(X) of isospectral sets.
For example for planar domains the family shown below in Figure
2.1 clearly has all its local heat invariants uniformly bounded (i.e. k
bounded in C*°(8X)) yet the family degenerates.
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Similarly the family in Figure 2.2 (or 1.1) has all heat invariants
bounded and it degenerates.

FIGURE 2.2

What is remarkable is that the height (which is not local i.e. is not
an integral over ¥ of local quantities) supplies the missing isospectral

invariant in proving compactness. To see this consider say the closed
surface case. The first heat invariant (2.4) fixes the area A(c) while

the third fixes

The height is fixed and so b

/ K?dA.
T

(2-8)

y'Theorem 1.2 the isospectral family is

bounded in W1(Z}; That is we can write the metrics in the isospectral

set as

e*%u

with ¢ bounded in W!(X) and u in a compact set in G(X), also [u] €
M (). We therefore have the bounds

and

/(A¢)28_2¢d14(1£) <<1
£

/ ewdA(u) <<1
n
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f Vo|PdA(u) + f |62 dA(u) << 1.
I b)]

It is then easy to see that ¢ is uniformly bounded and hence that
¢ is bounded in W?(3). Proceeding with the heat invariants and
(2.7) inductively one obtains the C*° compactness of the isospectral
sets for closed ¥. The compactness in ¢Rp(3,,,) of isospectral sets, is
deduced in a similar way from Theorem 1.2 (B) and Melrose’s result
2.6. The result for ¢Rp(Z, ) implies the result for planar domains
viz Theorem (0.1)B.

The compactness theorem gives us global information about an
isospectral set. What remains is the local analysis, especially the
question of the existence of local isospectral deformations. Guillemin
and Kashdan [G-K] have shown that a negatively curved closed surface
is isospectrally rigid, i.e. any l-parameter family g, € G(Z,,) which
is isospectral is an isometric family i.e. the projection of g, in R(%, ,)
consists of a single point. Using their techniques and Theorem 0.1 we
can show

Theorem 2.1.

Let I C R(Z,,,) be an isospectral set of metrics of curvatures
K < —¢p < 0 (variable curvatures) then I N F is finite for any closed
finite dimensional subspace F' of R(X, ,).

This strongly suggests that I is in fact finite but so far this has
defied proof. A special case of Theorem 2.1 is that an isospectral
set m M (EP o) is finite (by the result of Vigneras' mentioned at the
outset such a ‘set’Tr may be. arbitrarily large). This fact was proven by
McKean [MC] using entl_rely different methods viz the trace identities
in SL(2, R) of Fricke-Klein [F-K].

The following is an outline of a proof of Theorem 2.1. Assume
for simplicity that I N F is contained in a fixed conformal class of
metrics (the general case can be dealt with using the techniques in
[G-K]). If |[I N F| = co then it follows from the compactness and
above assumptions that there are functions p, € C*®(X), p, # 1 with
prn — 1in C®°(X) and a gy € I N F such that

pio, €INF.

Using the trace of the wave operator and especially the analysis of
its singularities [G-K] it follows that the set of lengths of the closed
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geodesics of the metrics p2o, are all independent of n. Writing
pPn =1+ €, we have €, # 0. Let v, = €n/||€r||ce. Since F is finite
dimensional we can choose a subsequence of {vn} which converges to
a nonzero limit v. By checking the variations of the lengths of closed

geodesics one finds that, since p2a, all have identical lengths for their
closed geodesics, we must have

/va’so =0, (2.9)
1

for every closed geodesic v in the o, metric. However Guillemin and
Kashdan have shown that 2.9 implies v = 0. This gives a contradic-
tion.

Returning to the general metrics on ¥ and especially the planar
domains we unfortunately know very little about local rigidity. The
following is a basic problem.

Question 2.2: Are planar domains isospectrally rigid; i.e., is ev-
ery l-parameter family of isospectral planar domains necessarily an
isometric family?

If as we expect the answer to 2.2 is yes then in view of the com-
pactness we should expect isospectral sets of planar domains to be
finite.

To end this section we describe some progress that has been in 3
dimensions. The main result is the following due to Chang and Yang.

Theorem 2.3 [C-Y]: Let M be a compact closed 3 manifold then
in a fixed ‘conformal class of metrics any isospectral set is compact in

Some cases of this thebrem were established in Brooks-Perry-
Yang [B-P-Y]. The proof of Theorem 2.3 does not make use of the
height function. One of the difficulties with using the height in di-
mensions greater than 2 is that one does not have the simple Polyakov
variational formula (1.10), see Parker-Rosenberg [P-R]. On the other

hand in 3 dimensions the first heat invariant is

kdV, (k being the

scalar curvature) which, unlike in dimension 2 \?there it is indepen-
dent of metric, turns out to be very useful. It allows one to bound
the ”conformal factor” in W!. To get bounds in W?2 of the conformal
factor the non-local invariant \; is used in an ingenuous way together

W
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with the next heat invariants. To then obtain the bounds in higher
Sobolev norms inductively they use the evaluation, due to Gilkey, of
the highest derivative term of each heat invariant.

It is interesting that this Chang-Yang method allows one to give
a proof of Theorem 0.1 for ¥, , without using the height. However
in all other cases, i.e. Z,n, pn = 0, (p,n) # (0,0), this approach
cannot succeed in proving Theorem 0.1. The reason is that it is easy
to construct degenerating families like those in Figures 1.1, 2.1 and
2.2 satisfying:
(1) Each of the local heat invariants is uniformly bounded above.
(2) For some fixed n > 0 and integer &

<M <A< <A <L

The obvious question for these higher dimensional closed mani-
folds is:

Question 2.4: Are isospectral sets in R(M) always compact?
Concerning this question it should be noted that the families con-
structed in Gordon-Wilson apparently all lie in a compact in R(M),
[G-W].

Finally there is a recent excellent account of the inverse spectral
problem in geometry, by Guillemin [GU]. The reader will find there
a host of results and relations between the isospectral problem and
problems in dynamical systems related to billiards and geodesic flows.
The con.nectlon between these comes from the analysis of the wave
equation and propa.ga.tmn of singularities [GU].

Appendix. :

During the course of the proof of Theorem 1.3 we needed the
asymptotics of h at the boundary of M (Ep a) for (p,n) = (0,2) and
(1,0). In these and some few other cases the height can be computed
explicitly.

The simplest case where this can be done is for the simplest Rie-
mannian manifold - the unit circle S*. The eigenvalues of its Laplacian
are n? with n = 0,41, 42,.... Hence its Z function from 1.2 is

Z(s) = 2((2s) (A1)

e P o et o e
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where ((s) is the Riemann zeta function. Using the definition (1.5)
and a well known evaluation for ¢(s) we have

h(S') = 4¢'(0) = —21og(2n). (A.2)

Next consider the more interesting case of the height on Mu(Z1,0)
i.e. on the space of area 1 flat metrics on a torus. As is well known
from the theory of elliptic curves this space is parametrized by

H/T where H= {z|Im(z)> 0}

and I' = PSL(2, Z). Each point z € H/T gives rise to a flat torus R%/L
where L is the lattice y(1, z), 4 a scalar so chosen the R2/L has area 1.
With this identification z — M, (Z1,0) corresponds to Im(z) — oo
with z in the usual fundamental domain for I'. The eigenvalues of
R%/L are

(2n]e]) (4.3)
where £ € L*, the lattice dual to L in R%. Hence

Z(s) =y (arlel) . (4.9)

LcLe

This series is a so-called Eisenstein series. It is usual to set

E(z,8) = Z’ |7’n_+y;—2F (A.5)
then (‘ .. . _‘ .
TZ(sy=(27) 2 E(z2, s). (A.6)

The derivative of E(z, s) w.r.t. s at s = 0 was evaluated by Kronecker
and is known as Kronecker’s limit formula, see [WE]. He showed

E(2,0)= -1,
22 =toa(var vt (A7)

where 7(z) is the Dedekind Eta function

7](3) — miz/12 H(l _ e21r|'nz)‘ (AS)
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‘We conclude that
h(z) = —log(y|n(2)[*). (4.9)

From the rapidly convergent integral (A.8) we find
h(z) = %y —logy +0(1) as y — oo. (A.10)

This proves Theorem 1.3 for £1 ¢ and is a key ingredient in the proof of
the other cases. For Zj 2, M,(Z,2) consists of flat cylinders [0, a]x §?
ie. 0 <z <a,0<6 < 2r (we use a slightly different normalization
of the boundary length). The eigenvalues and eigenfunctions of A are
computed by separating variables, one finds

1 ! 1 1
==y — =2
Z(S) 2 g Im + nz|23 2C( S)
and hence from (A.5)

h(e) = ~log(V2r In(Z)P). (411)

From this and the behavior of (iy) as y — 0 and oo (the behavior
at 0 is obtained from y%|n(z)| being T' invariant) we see b — oo as
a — 0 or a — oco. (Moreover we get the precise asymptotics). These
of course correspond to the degenerations of u in M,(Zg ). Hence
Theorem 1.3 for Yo,2 is-also established by direct calculation.

From (A.1]) we can deduce the behavior of & for the collars in
Figure 1.1. Such a hyperbolic collar is after a change of coordinates
isometric to i

ds? = sin™? ¢(dp? + d¢?) (A.12)

where 0 < p < £ and is a periodic variable and £ < ¢ < 7 — £. Thus
this metric is conformal to the flat metric on a cylinder with explicit
conformal factor (sin¢)~2. Using (1.10) the height of the collar is
easily evaluated.

We end by describing the relation of k to some other measures
of complexity. In the arithmetic theory of heights, the height mea-
sures the arithmetic complexity of points defined over a number field
[LA] and is a basic tool in proving finiteness results. Faltings [FA] de-
veloping Arakelov’s theory of heights has introduced a discriminant

———
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function which measures in some sense the degeneration of the surface
much like the height function k. For elliptic curves Faltings evaluates
his §-function explicitly and comparison of his results in Section 7
of his paper and (A.9) above shows that § and A coincide on the
moduli space of elliptic curves. For higher genus surfaces this is no
longer true. In fact Bost, [BO] using variational methods developed
by Quillen [Q] and Belavin-Knishnik [B-K], has shown that § is re-
lated to determinants of Laplacians, but not for the uniform metric in
a conformal class, but rather the so-called Arakelov metric [BO]. For
algebraic purposes the Arakelov metric seems more appropriate while
for our analytic purposes we are forced in view of Theorem 1.1 to
use the uniform metric (in genus 1 the Arakelov and uniform metric
coincide). In any event it is clear that the height is a natural measure
of the complexity of a manifold. Further confirmation of this is the
following finite analogue of the theory.

Let X be a finite graph with |X| = n vertices. The Laplacian on
functions on vertices of X is defined by

Af(v)=d(v)f(v) - Y f(w) (4.13)

wrev

where d(v) is the degree of the vertex v i.e. the number of edges
eminating from v and w ~ v means w joined to v. A is a non-
negative symmetric matrix and 0 is a simple eigenvalue of A iff X is
connected which we now assurne is tl-le:_ case. Let
det'A =[] A (A.14)
A0

as in 1.1. This time the product is finite. The complexity of X
denoted K(X) [BO] is by definition the number of spanning trees in
X. A spanning tree in X is a connected subgraph of X which is a

- tree and which contains all vertices of X. That det’ A measures the

complexity of X is one of the oldest theorems in graph theory. It is
due to Kirchhoff [BO] and is also known as the matrix tree theorem:

Theorem: det' A = nK(X).
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