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I. Summary

It is classical that an arithmetic automorphic form takes arithmetic values on

moduli points of complex-multiplication (CM) elliptic curves. Here, arithmetic

means in Q̄. This is a wonderful result that says that a highly transcenden-

tal function takes arithmetic values at arithmetically defined points. Through

deep work of Shimura and others it has been extended to arithmetic auto-

morphic forms on Shimura varieties. These results may formulated purely

Hodge-theoretically using Mumford-Tate domains parameterizing polarized

Hodge structures of weight one whose generic point has a given Mumford-

Tate group. The purpose of this talk is to discuss how these results might be

extended to a non-classical, higher weight case.

It is now well known that automorphic forms should be interpreted in terms

of representation theory. Very roughly speaking they correspond to irreducible

summands Vπ of a representation of M(A) in L2(M(Q)\M(A)) whose infinite

component is a discrete series representation of the real Lie groupM(R). These

Vπ are the “cuspidal” automorphic representations. Here, M is a reductive

algebraic group defined over Q and A = R ⊕
∏
p

′Qp are the adeles. Those

M that give rise to cuspidal automorphic representations constitute a special
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class of reductive Q-algebraic groups such that M(R) has a discrete series

representation in L2(M(R)).

On the Hodge-theoretic side, the Q-algebraic groups that are Mumford-Tate

groups G of polarized Hodge structures, and the different ways in which a given

G may appear as such, have recently been classified (cf. the reference below to

the joint work with Mark Green and Matt Kerr). A consequence of that work

is

(∗) The Mumford-Tate groups coincide exactly with the reduc-

tive Q-algebraic groups G such that L2(G(R)) contains discrete

series representations.

These G then have cuspidal automorphic representations and a natural ques-

tion is

What is the Hodge-theoretic meaning of the representation

Vπ?

It has been known for some 40 years that the infinite component of Vπ

“should” correspond to automorphic cohomology Hd(X,Lλ) where X = Γ\D

with Γ an arithmetic subgroup of G and where

• D = G(R)/H is a Mumford-Tate domain;

• Lλ → D is a homogenous vector bundle corresponding to the weight

associated to the Harish-Chandra parameter associated to Vπ;1

• d = dimC K/H where K ⊂ G(R) is a maximal compact subgroup, and

where d = 0 (automorphic forms) occur only in the very special case

when D fibres holomorphically over an Hermitian symmetric domain.

1In this talk we shall be mainly concerned with the case when H = T is a compact maximal
torus and Lλ → X is a line bundle.
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However, the geometric and arithmetic meaning of cuspidal automorphic rep-

resentations, realized as automorphic cohomology when d > 0, has remained

mysterious, to say the least. Recently, motivated by the result (*) and work

of H. Carayol, it has been possible to

• define some conditions under which an automorphic cohomology class

α in Hd(XU , L̃λ) may be said to be “arithmetic”. Here, U ⊂ G(Af )

is a compact open subgroup of G(Af ) where Af are the finite adeles,

XU = G(Q)\D × G(Af )/U is the “adelification” of X and L̃λ → XU

is the natural extension of Lλ → Γ\D;

• in the case of D = SU(2, 1)/T , realized as a Mumford-Tate domain

for polarized Hodge structures of weight three and Hodge numbers

1, 2, 2, 1,∗ define an arithmetic cohomology class α ∈ H1(XU , L̃λ) where

λ corresponds to a degenerate limit of discrete series;

• define a Stein manifold W ⊂ D ×D and a line bundle Eλ → W such

that for each point p ∈ W there is an “evaluation”

α(p) ∈ Eλ,p ⊗ T ∗pW ;

• if p = (p′, p′′) ∈ W ⊂ D ×D corresponds to a a pair of CM polarized

Hodge structures, then Eλ,p ∼= Q̄⊗Q C

T ∗pW
∼= Q̄m ⊗Q C

have arithmetic structures and main result is the

∗Here SU(2, 1) is the simple real Lie group associated to the Q-algebraic group associated
to a central simple algebra of dimension 9 over an imaginary quadratic field in which Γ is a
co-compact subgroup.
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Theorem. α(p)εQ̄⊗ Q̄m is arithmetic.

The proof of this result is work in progress, completed except for checking

some details. It consists of interpreting some quite deep calculations of Carayol

(Compositio Math, 121: 305-335, 2000) in the Hodge-theoretic context of

Mumford-Tate domains as discussed in a joint work [GGK]. (Available at

http://www.math.wustl.edu/∼matkerr/MTgroups.pdf)

Conclusion: In this special case, the solid arrow gives a connection between

algebraic
geometry

Hodge theory
arithmetic 

representation

theory

In the classical case the dotted arrows may be filled in leading to an exten-

sive, deep and rich story. In the non-classical case the direct extension of this

story seems not to be possible. But, at least in some cases, it seems feasible

that the connection given by the top arrow may be done.
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II. Hodge theoretic background

• VZ ∼= Zb is a lattice, V = VZ ⊗Z Q, VC = V⊗Q C

• Q : V ⊗ V → Q, Q(u, v) = (−1)nQ(v, u)

• S = ResC/RC∗; a real Lie group isomorphic to R>0 × S1, z = reiθ ∈ S.

Definition. A polarized Hodge structure of weight n is given by

ϕ : S→ GL(VR)

such that ϕ(r) = rnIdVR , ϕ preserves Q up to scaling, and such that Hodge-

Riemann bilinear relations are satisfied.

Over C we have the eigenspace decomposition of ϕ(S)

VC = ⊕
p+q=n

V p,q, V q,p = V̄ p,q

where

V p,q = {v ∈ VC : ϕ(z)v = zpz̄q · v}.

Then the Hodge-Riemann bilinear relations are (HRI) Q(V p,q, V p′,q′) = 0 p′ /= n− p

(HRII) ip−qQ(V p,q, V̄ p,q) > 0.

The Hodge filtration is F p = ⊕
p′≥p

V p′,q′ . Then (HRI) is Q(F p, F n−p+1) = 0.

We shall sometimes write Vϕ for the pair (V, ϕ).

Definition. The Mumford-Tate group M̃ϕ ⊂ GL(V ) is the smallest Q-algebraic

subgroup of GL(V ) such that ϕ(S) ⊂ M̃ϕ(R).
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Mumford-Tate groups are the basic symmetry groups of Hodge theory, en-

coding the Q-structure and the possible Hodge structures. We will work pri-

marily with Mϕ := M̃ϕ ∩ Aut(V,Q), given up to a finite group by modding

out the scalings rn IdV .

Definition. (i) The period domain D is the set of all polarized Hodge

structures with given Hodge numbers hp,q = dimV p,q.

(ii) The compact dual Ď is the set of Hodge filtrations {F p} satisfying

(HRI) and where dimF p =
∑

p′≥p h
p′,q′ .

(iii) The Mumford-Tate domain DM ⊂ D is the Mϕ(R) orbit of ϕ ∈ D. We

also have DM ⊂ ĎM .

Remark. If ϕ is generic, then Mϕ = Aut(V,Q). The other extreme is when

ϕ is a complex-multiplication (CM) Hodge structure. When Vϕ is simple this

means that End(Vϕ, Q) := L is a purely imaginary quadratic extension of

a totally real field with dimQ L = dimV . Then M̃ϕ
∼= L∗ and Mϕ are the

elements of norm one in the multiplicative group L∗.

Running example. VZ = Z2 = column vectors and Q =
(

0 1
−1 0

)
. Then

VC = C2 and

Ď = P1

∪ ∪

D = H =
{[

τ
1

]
: Im τ > 0

}
.

We note that

H = SL2(R)/ SO(2)
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where for g =
(
a b
c d

)
∈ SL2(R)

g

τ
1

 =

aτ+b
cτ+d

1

 .
Moreover,

SO(2) =


 cos θ sin θ

− sin θ cos θ

 = isotropy group of
[
i
1

]
.

Then

M̃τ =


GL2 τ /= quadratic imaginary

Q(τ)∗ if τ is quadratic imaginary

A Mumford-Tate domain

DM = M(R)/H

is a homogeneous complex manifold. We have

DM = M(R)/H

∩

ĎM = M(C)/P

where P is a parabolic group. In the standard example

P =
{
g =

(
a b
c d

)
: b+ c+ i(a− d) = 0

}
is conjugate to

{(
α β
0 α−1

)}
. Given a character

λ : P → C∗
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there is a holomorphic, homogeneous line bundle

Ľλ = M(C)×P C

over Ď, and we denote by Lλ → D its restriction to D. In the standard

example a character is given by

λk(g) = αk

and we denote by

Lk → H

the corresponding homogeneous line bundle. From

d

(
aτ + d

cτ + d

)
=

dτ

(cτ + d)2

we infer that the canonical bundle

ωH = L2.

Over a Mumford-Tate domain DM one has the Hodge bundles
FP → DM

Vp,q = Fp/Fp+1.

These are Hermitian vector bundles, using the Hodge-Riemann bilinear rela-

tions to define metrics in the fibres. They are also homogeneous vector bundles

arising from representations of P . In the standard example

V1,0 = L1,
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so that

ωH = (V1,0)⊗2.

The reductive Q-algebraic groups M that can be realized as Mumford-Tate

groups, and the different ways in which a givenM can be realized, have recently

been classified (cf. the reference in the summary). As noted in the summary,

a consequence is, assuming M is semi-simple:

(∗) M can be realized as a Mumford-Tate group if, and only if, L2(M(R))

contains discrete series representations.

We will discuss this below. For the moment we wish to note a major dif-

ference between the classical case of weight one and the general higher weight

case. Namely, in the latter case a Mumford-Tate domain

D = M(R)/H

will contain positive dimensional maximal compact subvarieties. One of these

is given by

Y0 = K/H

where K ⊂ M(R) is a maximal compact subgroup. One set of such is given

by

U =

 Y = gY0 where g ∈M(C)

and gY0 ⊂ D

 .

It is a Stein manifold; we shall return to it later.

Except in the case when D fibres holomorphically over an Hermitian sym-

metric domain B and a few other exceptional but interesting cases, U is the
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whole set of deformations of Y in D and

U ⊂ G(C)/K(C).

Example. SU(2, 1)/T is a Mumford-Tate domain for polarized Hodge struc-

tures of weight three and with Hodge numbers h3,0 = 1, h2,1 = 2, h1,2 = 2,

h0,3 = 1.2 The form Q gives an isomorphism C3 ∼= Č3, and using this we may

identify Ď with the incidence correspondence {(p, l) : p ∈ l} in P2× P̌2. More-

over, Q defines a unit ball B ⊂ C2 ⊂ P2, and when this is done the picture of

D is

B

p

l

That is

D = {(p, l) ∈ P2 × P̌2 : p ∈ l, l ∩B /= φ, p ∈ P2\Bc}. 3

Then U ∼= B ×Bc is given by the picture

L ,

q

2The Mumford-Tate group M̃ϕ at a generic point ϕ is U(2, 1).
3Here, Bc is the ball B with the conjugate complex structure, realized geometrically as the
lines L such that L ∩Bc = φ.
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and the corresponding maximal compact subvariety Y (q, L) ∼= P1 is given by

the set of (p, l) ∈ D in the picture

L .

q

l

p

There are three open orbits of SU(2, 1) acting on Ď (think of the two open

orbits of SL2(R) acting on P1). In addition to the non-classical one D pictured

above, there are two more D′, D′′ = D
′c that fibre over the ball and its

conjugate. For example D′′ has the picture

l
p

and the map D′ → B is given by (p, l)→ p.

III. Representation theory

Let MR be a real semi-simple Lie group that contains a compact maximal

torus T . Then the weight lattice Λ, set of roots Φ and Weyl group W are

defined. Given a choice Φ+ of positive roots we set

ρ = 1
2

∑
α∈Φ+

α.
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Theorem (Harish-Chandra). Let λ ∈ Λ with λ+ ρ regular. Then there exists

a unique discrete series representation

π : MR → Hπ ⊂ L2(MR)

whose character Θπ = Θλ+ρ is given by

Θλ+ρ |T= (−1)e
∑

w∈W E(w)ew(λ+ρ)∏{
α∈Φ
(λ+ρ,α)>0 (eα/2−e−α/2)

where e = dimCMR/K. Moreover, λ1 and λ2 determine the same discrete

series representation if, and only if,

w(λ1 + ρ) = λ2 + ρ

for some w ∈ WK.

Theorem (Schmid). Let D = M(R)/T . If (λ + ρ, α) < 0 for all α ∈ Φ+,4

then the L2-cohomology groups

Hq
(2)(D,Lλ) = 0 for q /= d := dimCK/T

and Hd
(2)(D,Lλ) is a discrete series representation with character Θλ+ρ.

Standard example. In this case d = 0. Then for k = 2

H0
(2)(H,Lk) =

 f(τ) holomorphic in H and for τ = x+ iy∫∫
H
|f(x+ iy)|2yk dxdy

y2
<∞

 .

4One says that λ+ ρ is anti-dominant. This can always been achieved by a suitable choice
of positive Weyl chambers.
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The corresponding section of Lk is

ψf = f(τ)(dτ)k/2.

It is a general fact that sections of the bundles Lλ → D lift to functions on

M(R). In this case, the function, usually denoted by ϕf , corresponding to ψf

is given by

ϕf (g) = (ci+ d)−kf(g · i)

where g =
(
a b
c d

)
∈ SL2(R).

For k = 1 there is also a limit of discrete series given by f(τ) holomorphic

in H and with norm supy>0

∫∞
−∞ |f(x+ iy)|2dx. The results of Carayol we shall

use below will be concerned with a degenerate limit of discrete series, and not

with a proper discrete series representation. But these form a context for this.

In general, for λ as above Schmid proved that Hq(D,F) = 0 for q > d and

any coherent sheaf F, that

Hd
(2)(D,Lλ)→ Hd(D,Lλ)

is injective with dense image, and that for a maximal compact subvariety

Y ⊂ D with ideal sheaf I and normal sheaf N, Ň ∼= I/I2, the restriction maps

Hd(D,Lλ)→ Hd(OY ⊗ Lλ)→ 0

Hd(D, I⊗ Lλ)→ Hd(Lλ ⊗ Ň)→ 0

Hd(D, I2 ⊗ Lλ)→ Hd(Lλ ⊗ Sym2 Ň)→ 0

...
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give an “expansion” of Hd(D,Lλ) around Y . When restricted to Hd
(2)(D,Lλ)

this gives the “K-expansion” of the restriction of the unitary representation π

to the maximal compact subgroup K.5

Let now Γ ⊂ M be an arithmetic group. Then a classical and very impor-

tant question is the decomposition of the unitary M(R) module L2(Γ\M(R)).

For arithmetic reasons to be explained below, one is interested in the part

L2
0(Γ\M(R)) that is given by cuspidal L2-functions on Γ\M(R), which will be

seen to correspond to the main object of arithmetic interest, viz the cuspidal

automorphic representations. It is known that L2
0(Γ\M(R)) is contained in the

discrete part of the specturm of L2(Γ\M(R)); for the purposes of this lecture

one may think of it as equal to the discrete part.

As noted above, the discrete series in L2(M(R)) are realized by L2-cohomology.

This suggests that a central object of interest should be the automorphic co-

homology

Hd
(2)(X,Lλ)

where X = Γ\D.

This suggestion does not mean that automorphic cohomology should appear

directly in L2(Γ\M(R)) when Lλ and T (Γ\D) is trivialized up on M(R).

Rather, when say Γ is co-compact there is a formula

Hq(Γ\D,Lλ) =
∑

π∈M̌(R)

mπ(Γ)Hq(n, Hπ)−λ

5For the standard example, the K-type is the direct sum of the irreducible SO(2) modules
with weights k + 2, k + 3, . . . .
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expressing automorphic cohomology in terms of Lie algebra cohomology where

n = ⊕ (negative root spaces) and π runs over the irreducible unitary repre-

sentations of M(R). It is then a theorem that only the discrete series Hπ’s

contribute to the above sum (cf. the references cited in Carayol).

Classical example. WhenX = Γ\H where Γ is commensurable with SL2(Z),

then

H0(X,Lk) ∼=


holomorphic functions f(τ) such that

f(γ · τ) = (cτ + d)kf(τ) for all

γ =
(
a b
c d

)
⊂ Γ

 .

Usually one puts in the condition that “f(τ) is bounded at the cusps” to obtain

a classical automorphic form. The condition to be in H0
(2)(X,Lk) means that

f(τ) is a cusp form. Note the function ϕf on SL2(R) now drops to a function

on Γ\ SL2(R). It is cuspidal if f(τ) is a cusp form.

For arithmetic reasons, it is better to replace SL2 by GL2, so that for a

suitable Γ′ ⊂ GL2(Z)

Γ\H = Z(GL2(R)) · Γ′\GL2(R)/O(2).

In fact, in general it is better to consider the Mumford-Tate groups M̃ϕ, so

that the groups of interest are reductive instead of being semi-simple. We will

finesse this point.

In the classical case, it known that there is an “adelification”

(∗∗) Z(GL2(A)) ·GL2(Q)\GL2(A)/U

where U = O(2)× Uf with

Uf ⊂ GL2(Af )
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being a compact open subgroup. Here A are the adeles and Af are the finite

adeles. The algebra of Hecke operators acts on the space of automorphic forms

defined on (∗∗), and the deep arithmetic properties of classical automorphic

forms are revealed through this action.

In general, there is an adelification

XU = Z(M̃(A))M̃(Q)\M̃(A)/U

of X, an extension L̃λ → XU of Lλ → X, and automorphic cohomology groups

Hd
(2)(XU , L̃λ)

in the adelic setting may be defined. Until the recent work of Carayol, so far

as I know nobody had ever actually “seen” this group in a non-classical case.

We will give Carayol’s explicit formulae for this in the case of H1(X,Lλ) where

Γ ⊂ U(2, 1) is co-compact.

If Γ ⊂ M is co-compact and acts freely on D, which may be assumed by

passing to a finite index subgroup of Γ, then for λ sufficiently large

(\) dimHq(X,Lλ) =


0 q /= d

(volX)Cλ q = d

where Cλ = |λ|dimX + · · · is like the leading coefficient in a Hilbert polynomial.

Thus, there is a lot of automorphic cohomology — the issue is: What does it

mean? What is its arithmetic and/or algebro-geometric significance?
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If Γ is arithmetic but not assume to be co-compact, then so far as I am

aware it is not known if in general

dimHq
(2)(X,Lλ) <∞,

or that if |λ| � 0 the analogue of (\) is true (it is known that vol(X) <∞).

The results of Carayol deal with the opposite extreme to when |λ| � 0;

namely to a degenerate limit of discrete series. But in his case there are no

holomorphic or anti-holomorphic forms, so it is a truly non-classical case.

IV. Arithmetic automorphic cohomology

Can one give meaning to the statement that “an automorphic cohomology

class α ∈ Hp
(2)(X,Lλ) is arithmetic”. Here arithmetic has the following mean-

ing:

We are to be given a complex vector space EC with a “natural” Q̄-structure;

i.e., there should be a Q̄-vector space E such that

EC = C⊗Q E.

Then e ∈ EC is algebraic if it is in E ⊂ EC. The meaning of “natural” will

hopefully be clear from the context in which it is used below.

Classically, it is well known that one may define arithmetic automorphic

forms f(τ), and then f(τ) is arithmetic if τ gives a CM polarized Hodge struc-

ture. There are deep extensions of this, due especially to Shimura, to certain

Mumford-Tate domains parametrizing weight one polarized Hodge structures.

Here, we note a general result about CM polarized Hodge structures.



HODGE THEORY AND REPRESENTATION THEORY 19

If (V,Q, F p
C) gives a CM polarized Hodge structure, then the

vector spaces F p
C and V p,q

C = F p
C ∩ F

q
C have natural arithmetic

structures.6

The reason is that there is a finite algebraic extension L′ of the reflex field of

the CM field such that

F p
C = C⊗L′ (F p

C ∩ VL′)

is defined over L′. Thus it makes sense to say that a section of a Hodge bundle

has an arithmetic value at a CM point.

Note. There is a slightly subtle point here. For a classical automorphic form

f(τ) of weight k to be arithmetic (up to scaling) may be defined as saying

that it is a simultaneous eigenfunction for the Hecke operators, or that the

coefficients of its Fourier expansions at the cusps be in a fixed algebraic number

field. Usually one takes the latter definition, the former implies it. Then f(τ)

has values in the CM field at a CM point τ ∈ H. The fibre Lk,τ then also has

an arithmetic structure, and f(τ)(dτ)k/2 is arithmetic in the above “Hodge-

theoretic” sense.

So what to do with automorphic cohomology in higher degrees? 7

Step A. The result stated in the summary is based on four steps. For the first

there is a general integral-geometric method due to Eastwood-Gindikin-Wong

6The compact dual Ď is a homogeneous, rational projective variety defined over Q. It is a
subvariety of a product of Grasmannians, and to say that F pC is arithmetic means that its

Plücker coordinates are in Q.
7The obvious difficulty is that we cannot “evaluate” a higher degree cohomology class α at
a point. In the present situation, as noted above we may evaluate α at a point Y ∈ U,
the space of maximal compact subvarieties of D. But except in the case when D fibres
over an Hermitian symmetric domain, it does not seem possible to put a natural arithmetic
structure on the fibre Eλ,E . So one is forced to adopt a more subtle process, to be described
below in the special case of SU(2, 1).
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([EGW]), cited in both of the references given in the summary, that converts

sheaf cohomology on a complex manifold in a global, holomorphic object.8

Briefly, given a complex manifold N and holomorphic vector bundle

E→ N,

assume given a Stein manifold Z and holomorphic submersion

Z → N

with contractible Stein fibres. Then there is an isomorphism

(\\) Hq(N,E) ∼= Hq
DR(Γ(Ω•π ⊗ Eπ), dπ)

where (Γ(Ω•π⊗Eπ), dπ) is the complex of global, relative holomorphic differen-

tial forms with values in Eπ = π−1(E) and dπ is the induced exterior derivative.

Step B. In the paper [EGW], this result is applied to the picture

B

p
P

p l

l

1

22

1

L

Figure 1

8This is a variant of the Penrose transform.
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where Z ⊂ D × D consists of all pairs of points (p1, l1; p2, l2) ∈ D × D such

that p1 /= p2 and  L ∩ B̄c = φ

l1 ∩ l2 ∈ B.

Applying (\\) to the projection π1 : Z → B converts H1(D,Lλ) into the

global holomorphic object on the RHS of (\\). In fact, [EGW] go further in

that, in the particular case at hand and for certain λ’s, there is a “holomorphic

harmonic theory” so that the de Rham cohomology classes on the RHS of (\\)

have natural unique holomorphic representatives.

Step C. As previously noted, the picture

P

l

defines another open SU(2, 1)-orbit D′ ⊂ Ď, and the map

πB : D′ → B

∈ ∈

(P, l) → P

gives a holomorphic fibration over the ball, which is an Hermitian symmetric

domain, with P1’s as fibres. Setting

X ′ = Γ\D′

W = Γ\Z,
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Carayol considers the picture

W
π1

~~}}
}}

}}
}} π′

""EE
EE

EE
EE

X X ′

πB
��

Γ\B

Figure 2

where π′ and πB are defined by π′ (Fig. 1) = (P, l2)

πB(P, l2) = P.

He then shows, through a detailed and intricate calculation, that an analogue

of (\\) applied to the right side of the picture leads to an isomorphism

(\\\) H1(X,Lλ) ∼= H0(X ′,Lλ′).

Here, the RHS are essentially classical Picard automorphic forms, and thus

the vector space H0(X ′,Lλ′) has an arithmetic structure.

It seems that it was not this arithmetic structure that Carayol was inter-

ested in; his perspective was from representation theory and the Langlands

program. For a particular value of λ, the archimedean component of the

adelic object H1(XU , L̃λ) is related to a degenerate limit of discrete series,

which is a particular representation of SU(2, 1) that is inaccessible to the stan-

dard Shimura-variety approaches to the program. The fact that D,D′ and B

are Mumford-Tate domains did not seem to be relevant to his work.
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Carayol’s proof of (\\\) was by ingenious representation-theoretic and co-

homological calculations. At the end of the day, one finds the very explicit

formula

ωα = f(P, l2)l1(p2)−adπ1x(P )

where for p, p0 distinct points we have for the x-coordinate of p

x(p) =
det′(p, p0)

det′(p, p2)det′(p0, p2)
,

and where for a point q with l2(q) 6= 0 we set

det′(•, •) = l−1
2 (q)det(•, •, q).

Here, everything is expressed in a particular homogeneous coordinate system

but the end result is independent of the choice. The integer “a” is due to

Lλ
∼= OP2(a)� OP̌2(b).

Aside from the to me extraordinary formula for ωα — the first time one has

“held an automorphic cohomology class in ones’ hand” — the point is that

the observation:

If f(P, l2), l1(p2), P are arithmetic, then ωα is arithmetic.

Here, dπ1x(P ) is in T(P,l2)D
′, which has an arithmetic structure if D′ is realized

as a Mumford-Tate domain and (P, l2) ∈ D′ is a CM point. Moreover, f(P, l2)

is the value at (P, l2) ∈ D′ of the section in H0(X ′,Lλ′) of the line bundle

Lλ′
∼= OP2(a′)� OP̌2(b′). From the Leray spectral sequence,

H0(X ′,Lλ′) ∼= H0(Γ\B,R0
πB
Lλ′)
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together with the discussion above about the arithmetic structures in the fibres

at CM points of bundles constructed by linear algebra from the Hodge bundles,

once we realize B as a Mumford-Tate domain we will have an arithmetic

structure in the fibre of Lλ′ at (P, l2).

Step D. The final step if Hodge-theoretic. Namely, it is the result

There exist realizations of D, D′ and B as Mumford-Tate do-

mains, where B parametrizes polarized Hodge structures of weight

one (abelian varieties), and a pair of CM points (ϕ1, ϕ2) ∈ Z ⊂

D ×D such that in Fig. 2 π′(ϕ1, ϕ2) ∈ D′

πBπ
′(ϕ1, ϕ2) ∈ B

are CM points.

This result is somewhat subtle, in that there are many realizations of D and D′

as Mumford-Tate domains, two realizations of B as a Mumford-Tate domain

for weight one polarized Hodge structures, and it is non-trivial to make choices

so as to have CM points “line up”.

From the results in [GGK], chapter V, it follows that the coordinates in

P2× P̌2 of any lift of ϕ1, ϕ2 and the point P ∈ B has arithmetic coordinates if

f(P, l2) does.
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Conclusion: In the special case of a non-classical Mumford-Tate domain

D = SU(2, 1)/T , we may define an arithmetic structure in the automorphic

cohomology group H1(X,Lλ) where X = Γ\D. Moreover, in the manner

described above we may evaluate an automorphic cohomology class at points

(ϕ1, ϕ2) ∈ Z ⊂ D × D. When this is done, an arithmetic cohomology class

takes arithmetic values at a pair of CM points.


