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Abstract. In this paper we use Hodge theory to define a filtration on the

Chow groups of a smooth, projective algebraic variety. Assuming the gen-

eralized Hodge conjecture and a conjecture of Bloch-Beilinson, we show that
this filtration terminates at the codimension of the algebraic cycle class, thus

providing a complete set of period-type invariants for a rational equivalence

class of algebraic cycles.
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1. Introduction

Some years ago, inspired by earlier work of Bloch, Beilinson (cf. [R]) proposed
a series of conjectures whose affirmative resolution would have far reaching conse-
quences on our understanding of the Chow groups of a smooth projective algebraic
variety X. For any abelian group G, denoting by GQ the image of G in G⊗ZQ, these
conjectures would have the following implications for the Chow group CHP (X)Q:

(I) There is a filtration

CHp(X)Q = F 0CHp(X)Q ⊃ F 1CHp(X)Q(1.1)

⊃ · · · ⊃ F pCHp(X)Q ⊃ F p+1CHp(X)Q = 0

whose successive quotients

(1.2) GrmCHp(X)Q = FmCHp(X)Q/F
m+1CHp(X)Q

may be described Hodge-theoretically.1

The first two steps in the conjectural filtration (??) are defined classically: If

ψ0 : CHp(X)Q → H2p(X,Q)

is the cycle class map, then

F 1CHp(X)Q = kerψ0 .

Setting in general

FmCHp(X) = CHp(X) ∩ FmCHp(X)Q ,

∗Research partially supported by NSF grant DMS 9970307.
1In fact, assuming the existence of the conjectural category of mixed motives Beilinson proposed

such a description — cf. (3.9) below. In (??) we use the index range m = 0, 1, . . . , p.
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then if
ψ1 : F 1CHp(X)→ Jp(X)

is the Abel-Jacobi map we have that

F 2CHp(X)Q = image of {kerψ1 → CHp(X)Q} .
These two constructions are usually aggregated by saying that:

F 2CHp(X)Q is the kernel of the Deligne class mapping

CHp(X)Q → H2p
D (X,Q(p)) ,

which we shall denote by

Z → [Z]D
where Z ∈ Zp(X).

The second of the implications of Beilinson’s conjectures is

(II) If X is defined over Q̄, then

(1.3) F 2CH2(X(Q̄))Q = 0 .

More precisely, if X is defined over a number field k and we set

FmCHp(X(k))Q =

{
filtration induced from FmCHp(X)Q by
the natural map CHp(X(k))→ CHp(X)

}
then

F 2CHp(X(k))Q = 0 .
There have been several proposed definitions of the filtration (??), in particular

by H. Saito-Jannsen and by Murre (cf. [S], [J] and [M]). In an earlier work [G-G1]
on the tangent space to the space of cycles, we have proposed a definition of the
induced filtration on TCHp(X)Q that is compatible with the infinitesimal version
of each of previous two proposed definitions; it has the additional properties that
the associated graded

GrmTCHp(X) = FmTCHp(X)Q/F
m+1TCHp(X)Q

has a Hodge-theoretic description compatible with what is expected in (??), and
that the infinitesimal version of (??) is valid.

In this paper we shall propose a definition of a filtration (??) that has the
property (??) and whose infinitesimal version is consistent with that in our earlier
work. Although the construction of the FmCHp(X) for 0 5 m 5 p makes no
assumptions, the proof that the construction “stops” at p = m and that rational
equivalence is captured as in (??) depends on the generalized Hodge conjecture
(GHC) and the Beilinson conjecture (??).

The construction will be in terms of Hodge theory; we will define Hodge-theoretic
objects Hm, 0 5 m 5 2p together with maps from subspaces Km of CHp(X)Q

(1.4) ϕm : Km → Hm

such that
ker {ϕ0, . . . , ϕ2m−2} = FmCHp(X)Q

for m = 1, . . . , p. The maps ϕ0 and {ϕ1, ϕ2} will capture the usual fundamental
class and Abel-Jacobi map. The assertion that

ϕ2p : F pCHp(X)Q → Hp
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be injective will be a consequence of the GHC and Beilinson’s conjecture (??).
The approach we have taken in this paper is geometric and concrete — in effect,

we propose a Hodge-theoretic definition of FmCHp(X) and an algorithmic test to
determine if a class [Z] ∈ FmCHp(X). We are grateful to the referee for suggesting
a reformulation of our construction in terms of the derived category and M. Saito’s
theory of mixed Hodge modules (cf. [M,S] and [A].) The outline of this approach
appears in the appendix.

We shall restrict our discussion to the situation when X is defined over Q̄. The
essential geometric ideas appear already in this case. There is work by M. Saito, J.
Lewis and others dealing with related constructions in the general case (cf. [R-M.S],
[L] and the references cited therein).

For a codimension-p cycle Z ∈ Zp(X), we denote by [Z] ∈ CHp(X) the corre-
sponding rational equivalence class.

The material below was presented by the first author in his lectures at Banff [G]
and at the conference [Conference AG2000 held in Azumino, Japan – July 2000].

2. Spreads; explanation of the idea

Before describing our construction we begin with some heuristic remarks. The
first is:

Even if one is only interested in the complex geometry of X, in
higher codimension the field of definition of X and its subvarieties
must enter the picture.

This is certainly suggested by the Beilinson conjecture (??), and it is clearly evident
from the infinitesimal study of the space of cycles and Chow groups in [G-G1].
Other than the complex numbers, the fields we shall consider will always be finitely
generated over Q. Because we are working modulo torsion, and because of the
elementary fact:

If X and a cycle Z on X are defined over a field k, and if L/k is a
finite extension such that Z ≡rat 0 over L, then for some non-zero
integer m there is a rational equivalence mZ ≡rat 0 over k,

it is really the transcendence level of k that is critical (this is again consistent with
(??)).

For any field k there is a smooth projective variety S, defined over Q and unique
up to birational equivalence, with

Q(S) ∼= k .

If both X and an algebraic cycle Z ⊂ X are defined over k, then the critical notion
is that of the spread given by a picture

(2.1)

Z ⊂ Xy y
S = S

Here both Z and X are defined over Q, and we may take X to be smooth and
projective. The diagram (??) is not unique; it is only defined up to ambiguities as
discussed below. Roughly speaking, if X and Z are defined by a set of equations

Fλ(a, x) =
∑
I

aλIx
I = 0
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where the coefficients aλI ∈ k, and if

Gi(a) = 0

are a set of equations with Q coefficients that define the relations over Q that the
aλI satisfy, then S is defined by

Gi(s) = 0 s = (· · · , sλI , · · · )

and the spread (??) by
Fλ(s, x) = 0, s ∈ S .

We shall sometimes write (??) as a family

{Zs ⊂ Xs}s∈S
where our original Z ⊂ X is Zs0 ⊂ Xs0 with s0 being a generic point of S. Although
the spread (??) is not unique, its infinitesimal structure over the generic point is
specified and has a very natural description (cf. [G-G1]).

The basic idea is to organize the Hodge-theoretic invariants of the spread (??),
with the ambiguities in these invariants arising from the ambiguities in the spread
construction factored out, and assign these to the cycle Z ⊂ X. As will be explained
below, assuming the GHC and the Beilinson conjecture (??), the Leray filtration
and the VHS associated to (??) will lead to a filtration FmCHp(X)Q where, when
for example X is defined over Q̄, the filtration level of a class [Z] ∈ CHY p(X)Q
will be related to the minimal transcendence degree of cycles in that class. More-
over, again from properties of the VHS associated to (??) the successive quotients
GrmCHp(X)Q will have a Hodge theoretic description and, assuming (??), taken
together will capture rational equivalence modulo torsion.

Before turning to specifics, we offer three remarks. The first is that this whole
structure is quite visible and has rich geometric content at the infinitesimal level
(loc. cit). The second is that the use of spreads has been “in the air” for some
time (e.g., cf. Schoen [S] where he refers to a construction of Nori); our main
point is to systematize their use as described below. The third remark is that our
construction is not yet satisfactory in several respects, among them that the “final”
Hodge theoretic object has yet to be constructed (see section 5 below).

3. Construction of the filtration on CHp(X)Q

Now we assume that X is defined over Q (or over a number field); for any finitely
generated subfield k ⊂ C as usual we denote by X(k) the points of X defined over k.
Any cycle Z ∈ Zp(X(k)) then has a spread

Z ⊂ X × S

defined over Q, where as above Q(S) ∼= k. We have

Z ∈ Zp((X × S)(Q)) ;

this cycle is well-defined modulo cycles W ∈ Zp((X × S)(Q)) such that πS(W) is
supported on a proper subvariety of S that is also defined over Q. In general, these
ambiguities in our constructions will occur over proper subvarieties of S that are
defined over Q. We are also working modulo finite field extensions; i.e., modulo
finite coverings S̃ → S defined over Q.



HODGE-THEORETIC INVARIANTS FOR ALGEBRAIC CYCLES 5

If Y ⊂ X is a subvariety of codimension p−1 and defined over k, and if f ∈ k(Y ),
then the pair (Y, f) spreads over S to give{

Y ⊂ X × S
F ∈ Q(Y) ,

and divF is well-defined modulo ambiguities as above. It follows that:

Z ≡rat 0 on X(k)⇔ Z ≡rat W on (X × S)(Q)
where W is as above,

and
the Deligne cycle class

[Z]D ∈ H2p
D (X × S)

and is specified by Z modulo the ambiguities

{[W]D : W as above} .

The Deligne class [Z]D may be decomposed into

ψ0(Z) ∈ Hgp(X) ⊂ H2p(X × S)Q

and, if this vanishes, the Abel-Jacobi image

AJpX×S(Z) ∈ Jp(X × S) .

The ambiguities are

{ψ0(W) : W as above} ⊂ Hgp(X × S)

and {
AJpX×S(W) : W as above and W ≡hom 0

}
.

We may write
ψ0(Z) = [Z]0 + · · ·+ [Z]2p

where
[Z]m ∈ Hgp(X × S) ∩

(
H2p−m(X)Q ⊗Hm(S)Q

)
.

Similarly, we may decompose the Abel-Jacobi image into the pieces (here cohomol-
ogy is with C coefficients)

AJpX×S(Z)m ∈
H2p−1−m(X)⊗Hm(S)
F p(num) + integral

=: Jp(X × S)m

where F p(num) is the pth Hodge filtration of the numerator and “integral” is the
image of

H2p−1−m(X,Z)⊗Hm(S,Z)→ H2p−1−m(X)⊗Hm(S) .
In the following all equalities are modulo torsion and modulo ambiguities. We

will define a filtration (??) which, assuming the GHC and (??), will have exactly
p steps. Let Z ∈ Zp(X(k)). The first two steps in the filtration (??) have been
defined, and it is an observation that

(3.1) [Z]0 = 0⇔ [Z] ∈ F 1CHp(X(k)) ,

and

(3.2) [Z]0 = [Z]1 = 0 and AJpX×S(Z)0 = 0⇔ [Z] ∈ F 2CHp(X(k)) .
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The geometric interpretations of (??) and (??) will be given at the beginning of
section 4 below.

Suppose now that inductively F 0CHp(X), F 1CHp(X), . . . , FmCHp(X) have
been defined and have the properties

(3.3) [Z] ∈ F iCHp(X)⇔

{
[Z]0 = · · · = [Z]i = 0

AJpX×S(Z)0 = · · · = AJpX×S(Z)i−1 = 0 .

A second observation is

(3.4)

{
[Z]0 = · · · = [Z]m+1 = 0

AJpX×S(Z)0 = · · · = AJpX×S(Z)m−1 = 0

}
⇒ AJpX×S(Z)m is defined .

We may then define
(3.5)
Fm+1CHp(X)Q =

{
[Z] : [Z] ∈ FmCHp(X)Q and [Z]m = 0, AJpX×S(Z)m−1 = 0

}
.

In order to justify this definition we have the result
Assume the GHC. Then the [Z]m are well-defined for m 5 p and

(3.6)
[Z]0 = · · · = [Z]p ≡ 0 modulo ambiguities ⇒ [Z]i ∈ ambiguities for i = p+ 1 .

Similarly, if (??) holds then the AJpX×S(Z)m are well-defined for
m 5 p− 1 and

(3.7) AJpX×S(Z)0 = · · · = AJpX×S(Z)p−1 ≡ 0 modulo ambiguities

⇒ ApX×S(Z)i ∈ ambiguities for i = p .

A corollary is
If [Z] ∈ F p+1CHp(X)Q, then assuming (??) we have that [Z] = 0.

The reason is that, by (??) and (??) we may choose W belonging to the ambiguities
as above so that

[Z + W]D = 0 .
The relationship between the transcendence level and the filtration we have de-

fined on CHp(X)Q is expressed by:
(3.8) If Z ∈ Zp(X(k)) where tr deg k 5 m, then assuming the GHC and (1.3)

and working modulo torsion we have that

[Z] ∈ Fm+1CHp(X)⇒ [Z] = 0 .

In other words, if tr deg k 5 m then the complete set of Hodge-theoretic invariants
of Z is captured by [Z]0, . . . , [Z]m, AJpX×S(Z)0, . . . , AJ

p
X×S(Z)m−1.

If in addition to (??) we assume Beilinson’s proposed description

(3.9) GrmCHp(X) = ExtmMM

(
Z, H2p−m(X)(p)

)
of the associated graded to the filtration on the Chow groups,2 then the following
converse to (3.8) may be established:
(3.10) Every cycle [Z] in FmCHp(X) is a sum of cycles defined over fields of

tr deg 5 m. We need to use tr degm if, and only if, [Z]m 6= 0.
This discussion may be summarized by the picture of CHp(X) in Figure 1.

2Here, MM stands for the conjectural category of mixed motives.
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Figure 1

Here we have dropped the superscript p on AJpX×S(Z)i. The regions to the left
of the vertical lines define the FmCHp(X)Q, with the region between successive
vertical lines being the associated graded. The region to the left of the slanted
line under the ith bracket represents where the invariants of the class in CHp(X)
represented by a cycle of transcendence level i lies. Here we recall our assumption
that X is defined over Q or over a number field. In general there will be a similar
but more complicated picture.

The Hodge-theoretic maps (??) of the introduction are defined as follows: For
each field k we use the spread construction to construct maps as indicated by the
following companion diagram to Figure 1

ϕ0 ϕ1 ϕ3 · · · ϕ2p−1

0 ϕ2 ϕ4 ϕ2p

If k ⊂ k′ is a subfield, then Zp(X(k)) ⊂ Zp(X(k′)) and there are dominant maps
S′ → S, diagrams

Z′ ⊂ X × S′y y
Z ⊂ X × S

and maps
H∗(X × S)→ H∗(X × S′) .

These maps are injective since the map

H∗(S)→ H∗(S′)

is injective by virtue of S′ → S being dominant. Thus, none of the information in
our invariants is lost when we consider a cycle as being defined over a larger field.

If Z is defined over fields k1 and k2, then by a standard construction k1 and k2

generate a field k and the invariants of Z ∈ Zp(X(ki)) for i = 1, 2 are injected into
those of Z ∈ Zp(X(k)). Thus the condition

[Z] ∈ FmCHp(X)Q
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is independent of the field over whichX is defined. The subspaces Km are defined by
the vanishing of ϕ0, · · · , ϕm−1, and the Hodge-theoretic objects Hm are the pieces
of H2p(X × S) and Jp(X × S) depicted above. As mentioned in the introduction,
we do not yet have a satisfactory construction of a final Hodge-theoretic object.

If Z ∈ Zp(X(k)) is a cycle with [Z] ∈ FmCHp(X), then the successive invariants{
[Z]m, and if this vanishes

AJpX×S(Z)m−1

have Hodge-theoretic descriptions as generalized “periods.” The first few cases of
this will be worked out in the next section. There we will also give the corresponding
arguments that, assuming the GHC, the ambiguities can be removed. We shall also
give the argument justifying the above statement.

4. Interpretations and proofs

In this section we shall give the geometric interpretation of our constructions in
the first few special cases. We shall also give the proofs of (3.6)–(3.8) in the first
few cases, especially the case just beyond the classical one of the usual fundamental
class and Abel-Jacobi map. The essential ideas already appear in these cases, and
we feel that presenting the argument in this way allows one to better isolate the
essential geometric/Hodge-theoretic content without having complicated indicial
notations obscure the basic geometric points.

p = 1. Let Z ⊂ X(k) be a divisor with spread

Z ⊂ X × S .
According to our general construction, the condition that ψ0(Z) = 0 is that

[Z]0 = 0 in H2(X)⊗H0(S) .

When S is connected, this is just the condition that the usual fundamental class be
zero (mod torsion). If we think of X(k) as an abstract variety defined over k, this
is independent of the embedding k ↪→ C.

If ψ0(Z) = 0, then the next invariants are given by

[Z]1 ∈ H1(X)⊗H1(S) ,

and if this is zero then by

AJ1
X×S(Z)0 ∈ J1(X × S)0 .

As always, working modulo torsion the divisors Zs ∈ Z1(Xs) are homologous to
zero, and thus there is defined a map

(4.1) ϕ1 : S → J1(X) .

The induced map
(ϕ1)∗ : H1(S)Q → H1(J1(X))Q

may be identified with [Z]1, and thus the condition [Z]1 = 0 is that (??) be constant
on each component of S.3 If this is the case, then assuming that S is connected

AJ1
X×S(Z)0 ∈ J1(X × S)0

∼= J1(X)

3If S is not connected, then J1(X×S)0 ∼= ⊕J1(X) where the direct sum is over the components
of S. It will simplify this illustrative discussion if we henceforth make the blanket assumption

that S be connected.
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is given by AJ1
X(Zs) = AJ1

X(Z). The vanishing of

[Z]0, [Z]1, and AJ1
X×S(Z)0

is then equivalent to the vanishing of the usual Deligne class

[Z]D ∈ H2
D(X,Q(1)) ,

for every complex embedding of the field over which Z is defined.
Remark that in this case the ambiguities are given by

[Z]2 ∈ Hg1(X × S) ∩
(
H0(X)⊗H2(S)

) ∼= Hg1(S) ,

and
AJ1

X×S(Z)1 ∈ J1(X × S)1
∼= J1(S) .

Since it is known that Z → [Z]D captures rational equivalence, they play no essen-
tial role in this case.

p = 2. First we observe that the above discussion giving the interpretation of the
first three invariants in the case p = 1 extends to an analogous interpretation of

[Z]0, [Z]1, and AJpX×S(Z)0

for all p. If p = 2, and if these all vanish then the first non-classical invariant is

[Z]2 ∈ H2(X)⊗H2(S) mod ambiguities.

Assuming that X is a surface and setting

H2(X)Q = H2
tr(X)⊕Hg1(X)

where H2
tr(X) is the transcendental part of H2(X), the ambiguities are in Hg1(X)⊗

Hg1(S), and so keeping the same notation we consider

[Z]2 ∈ H2
tr(X)⊗H2(S) .

Only the (2, 2) part of this is relevant, and the piece in H2,0(X) ⊗ H0,2(S) is
conjugate to the piece

(4.2) [Z](0,2)
2 ∈ H0,2(X)⊗H2,0(S) ∼= Hom

(
H0
(

Ω2
X/C

)
, H0

(
Ω2
S/C

))
.

In fact, [Z](0,2)
2 is just the globalization of the trace mapping

TrZ : Ω2
X/C → Ω2

S/C .

Suppose now that [Z]0 = [Z]1 = [Z]2 = 0 and that AJ2
X×S(Z)0 = 0. In particular,

[Z](0,2)
2 = 0. Then our final invariant is

AJ2
X×S(Z)1 ∈ J2(X × S)1 mod ambiguities.

Now

J2(X × S)1 =
H2(X)⊗H1(S)

F 2(num) + integral
.

The part of J2(X×S)1 coming from Hg1(X)⊗H1(S) is contained in the ambiguities.
Assuming still that X is a surface we consider the piece

(4.3)
H0,2(X)⊗H1(S)

integral
∼=

Hom
(
H0
(

Ω2
X/C

)
, H1(S)

)
integral

coming from the unambiguous part of J2(X × S)1. We denote by

AJ2
X×S(Z)(0,2)

1
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the part of AJ2
X×S(Z) corresponding to (??). We shall give a geometric description

of AJ2
X×S(Z)(0,2)

1 .
Let λ be a closed curve (loop) in S parametrized by 0 5 s 5 2π. For each s ∈ λ

we may choose a 1-chain γs in X with

∂γs = Zs .

As s turns around λ we have from Z2π = Z0 that

∂ (γ2π − γ0) = 0 ,

and since [Z]1 = AJ2
X×S(Z)0 = 0 we will have

γ2π − γ0 = ∂∆

for some 2-chain ∆ in X. Setting

Γ =
⋃
s∈λ

γs −∆

we have by construction that
∂Γ = Zλ

is that part of Z lying over λ.
Let now ω ∈ H0(Ω2

X) and consider the integral∫
Γ

ω .

If λ = ∂Λ is a boundary, then an argument using Stokes’ theorem and the fact that
ω
∣∣
ZΛ

= 0 gives ∫
Γ

ω =
∫

Λ

TrZω

= 0 .

Thus we may define an element AJ2
X×S(Z)(0,2)

1 of (??) by〈
AJ2

X×S(Z)(0,2)
1 (ω), λ

〉
=
∫

Γ

ω

where λ ∈ H1(S,Z).
If we have a different choice γ̃s with ∂γ̃s = Zs, then

γ′s = γs + δs .

Since δ2π − δ0 = ∂∆′ for some 2-chain ∆′, setting

Γ′ =
⋃
S∈λ

δs −∆′ ,

we have for Γ̃ =
⋃
s∈λ γ̃s −∆−∆′ that∫

Γ̃

ω =
∫

Γ

ω +
∫

Γ′
ω

where in (4.3) ∫
Γ′
ω ∈ “integral”

since ∂Γ′ = 0.
As explained in [G-G1], we may consider this construction as “integrating” the

differential equations that define the subspace TZ2
rat(X) ⊂ TZ2(X).
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Dealing with the ambiguities in the case p = 2 requires non-trivial Hodge-
theoretic considerations and makes essential use of the fact that Z ⊂ X × S is
a spread. Assuming still that X is a surface, the first ambiguity is

[Z]3 ∈ Hg
(
H1(X)⊗H3(S)

)
.

Suppose that X and Z are given by{
Fi(x) = 0 (defines X)

Gλ(x, a) = 0 (defines Z ⊂ X)

where the Fi(x) ∈ Q[x1, . . . , xN ], Gλ(x, a) ∈ Q[x1, . . . , xN , . . . , aλI , . . .] and where
the aλI ∈ k satisfy

Hα(a) = 0, Hα ∈ Q[. . . , aλI , . . .] .

Then X × S and Z are given in (x, s)-space by
Fi(x) = 0

Gλ(x, s) = 0

Hα(s) = 0 .

.

We adjoin to these the equation of a linear space Λ defined over Q∑
i

λνi xi = 0 λνi ∈ Q .

We set XΛ = X ∩Λ, and ZΛ = Z∩Λ. Assume DimXΩ = 1; then the spread of XΛ

is XΛ × S. Choosing Λ generically, we may assume that the projection of ZΛ to S
is contained in a proper subvariety W ⊂ S because η(ZΛ) < Dim(S); W is defined
over Q, and for simplicity of exposition we assume it to be smooth.

By the Lefschetz theorem, H1(X) injects into H1(XΛ) and we thus have a dia-
gram

[Z]3 ∈ Hg
(
H1(X)⊗H3(S)

)y ∩
↓

[ZΛ]Z ∈ Hg
(
H1(XΛ)⊗H3(S)

)
.

In the diagram

H1(X)⊗H1(W ) −−−−→ H1(X)⊗H3(S)

∩
↓

∩
↓

H1(XΛ)⊗H1(W ) −−−−→ H1(XΛ)⊗H3(S)

we may lift [ZΛ]Z to a Hodge class in H1(X)⊗H1(W ), which by the HC is repre-
sented by a cycle W ∈ Z1(X×W ).4 Denoting by i : X×W → X×S the inclusion,
we see first that

[i(W)]0 = [i(W)]1 = [i(W)]2,tr = 0
where [i(W)]2,tr is the part of [i(W)]2 in H2

tr(X) ⊗ H2(S), and then that by con-
struction

[i(W)]3 = [Z]3 .
Modifying Z by minus i(W) thus kills the ambiguity [Z]3. The ambiguity

[Z]4 ∈ Hg
(
H0(X)⊗H4(S)

) ∼= H0(X)⊗Hg2(S)

4In this case we do not need the HC; the usual Lefschetz (1, 1) theorem applies.
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may be treated similarly, using the HC for Hg2(S).
In these constructions there is the issue of the field of definition of the cycles,

such as W, that are produced by the GHC. This requires a separate argument, and
we shall illustrate the type of idea that is involved. Suppose that X is defined over
k and L/k is a finite extension. Then the norm map NL/k induces a commutative
diagram

CHp(X(L)) −−−−→ Hp
(

ΩpX(L)/k

)
yNL/k yNL/k

CHp(X(k)) −−−−→ Hp
(

ΩpX(k)/k

)
where on the RHS the norm map acts on the coefficients of the differential forms.
Suppose now that γ ∈ Hp

(
ΩpX(k)/k

)
gives a Hodge class in Hp

(
ΩpX(k)/k

)
⊗ C ∼=

Hp
(

ΩpX/C

)
that is represented by an algebraic cycle Z. By using the spread con-

struction, Z will be algebraically equivalent to a cycle Z ′ defined over a finite
extension L of k. Then NL/k(Z ′) is defined over k and has fundamental class equal
to mγ where m = deg[L : k].

Turning to the Abel-Jacobi part of the ambiguities, still assuming that p = 2
and that X is a surface, by the preceding argument we may assume that Z ⊂ X
satisfies

[Z]0 = · · · = [Z]4 = 0 .

The first ambiguous part of AJ2
X×S(Z) is

AJ2
X×S(Z)2 ∈ J2(X × S)2 =

H1(X)⊗H2(S)
F 2(num) + integral

.

As above, we may choose a linear space Λ such that (up to isogeny)

We choose Ω so Dim(XΩ) = 1. Writing

H1(XΛ) = H1(XΛ)inv ⊕H1(XΛ)ev

where H1(X)→ H1(XΛ)inv is an isomorphism, the induced map

H1(XΛ)→ H1(X)

is in HomHg(H1(XΛ), H1(X)) and by the Hodge conjecture is represented by a
cycle

Y ∈ CH1 (XΛ ×X) .

Let W ⊂ S be a smooth hypersurface with πS(ZΛ) ⊂W , again because Dim(ZΛ) <
Dim(S). In the diagram

XΛ ×X ×W
π13 ↙ ↓ π12 ↘ π23

XΛ ×W XΛ ×X X ×W
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we set
W = π23∗ (π∗13(ZΛ) · π∗12Y ) ∈ Z1(X ×W )

whose fundamental class belongs to H1(X)⊗H0(W ). Then

i(W) ∈ Z2(X × S)

has
AJ2

X×S (i(W))2 = AJ2
X×S(Z)2

and no other non-zero Abel-Jacobi components. We may thus replace Z by Z−i(W)
to remove this ambiguity. A similar argument kills off AJ2

X×S(Z)3.
We now turn to (3.8), and shall give the argument of the first non-trivial case of

the following stronger statement:
If tr deg k = m, then we may modify Z by an ambiguity W with
codimπS(W)
= 1 such that

[Z + W]m+1 = · · · = [Z + W]2p = 0 .

Moreover, if all [Z]i = 0 we may modify Z by an ambiguity W so
that

AJpX×S(Z + W)m = · · · = AJpX×S(Z + W)2p−1 = 0 .

Proof: The first non-trivial case is when tr deg k = 1 and p = 2 = dimX. We then
have

[Z]2 ∈ H2(X)⊗H2(S) .
Denote by SH a general hyperplane section S ∩H, assumed to be defined over Q.
Then by the Lefschetz theorem

H0(SH)→ H2(S)

is onto, and there exists a Hodge class on X × SH that maps to [Z]2.5 By the HC
(which in this case is known), there exists W ∈ Z1(X × SH) so that

[i(W)] = m[Z]2
for some positive integer m. Moreover, we may assume that W is defined over Q,
and then we may use −i(W) to remove the ambiguity [Z]2. �

An argument similar to those given above, together with an argument we have
sketched behind the idea to keep things defined over Q, may be used to establish
(??)–(3.8).

A sketch of the proof of (3.10) goes as follows: The cycle Z ⊂ X × S induces a
map

Z∗ : CH0(S)→ CHp(X)
which preserves the filtrations and therefore induces transfer maps

GrmCH0(S)→ GrmCHp(X)

ker
{
Grm−1CH0(S)→ Grm−1CHp(X)

}
→ GrmCHp(X)/image GrmCH0(S)

ker
{
Grm−2CH0(S)→ Grm−2CHp(X)

}
→ GrmCHp(X)/image of previous map

...

5We general t, we use the surjectivity of Ht−1(SH)→ Ht+1(S).
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which eventually surjects onto GrmCHp(X).6 Let SΛ be a linear section of S
defined over Q and with dimSΛ = m. It is a consequence of (??) and the Lefschetz
theorem that the natural map

F kCH0(SΛ)→ F kCH0(S)

is surjective for k 5 m. Thus every 0-cycle in F kCH0(S) is rationally equivalent to
a sum of 0-cycles supported on SΛ, and therefore is defined over a field of tr deg 5 m.
Since X,S and Z are defined over Q, it follows that Z∗(W ) is defined over k for
any 0-cycle W on S that is defined over k. This establishes the first assertion in
(3.10), and the second follows by closer analysis of the argument just given.

To conclude this section we want to relate our invariants to the arithmetic cycle
class of η(Z) of Z ∈ Zp(X(k)). Recall that from the work of Bloch-Gersten-Quillen
we have (modulo torsion)

(4.4) CHp(X(k̄)) ∼= Hp
(
KM
p

(
OX(k̄)

))
where KM

p

(
OX(k̄)

)
is the sheaf associated to the pth MilnorK-groupsKM

p

(
OX(k̄),x

)
,

x ∈ X(k̄). There is a map

Λpd log : KM
P

(
OX(k̄),x

)
→ Ωp

X(k̄)/Q,x

which induces

(4.5) Hp
(
KM

P

(
OX(k̄)

))
→ Hp

(
Ωp
X(k̄)/Q

)
.

Comparing (??) and (??) and noting that for any given Z we may work over a
finite extension, still denoted by k, we have the arithmetic cycle class

η(Z) ∈ Hp
(

ΩpX(k)/Q

)
⊂ Hp

(
ΩpX/Q

)
.

Since X is defined over Q, the sequence

0→ Ω1
k/Q ⊗ OX(k) → Ω1

X(k)/Q → Ω1
X(k)/k → 0

splits canonically. It follows that

Hp
(

ΩpX/Q

)
∼= ⊕Hp

(
Ωp−mX/C

)
⊗ ΩmC/Q .

We write correspondingly

η(Z) = η0(Z) + η1(Z) + · · ·+ ηp(Z)

where
ηm(Z) ∈ Hp

(
Ωp−mX/C

)
⊗ ΩmC/Q .

On the other hand we have

[Z] ≡ [Z]0 + · · ·+ [Z]p mod ambiguities

where
[Z]m ∈ H2p−m(X)⊗Hm(S) .

6It is a consequence of (??) that we need only go down two steps.
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There are natural maps

(i) H2p−m(X)⊗Hm(S)→ Hp
(

Ωp−mX/C

)
⊗H0

(
ΩmS/C

)
(ii) H0

(
ΩmS/C

)
→ ΩmS/C,s0 (s0 = generic point of S)

(iii) ΩmS/C,s0 → Ωmk/Q

and we have:
(4.6) Under the composition of the maps (i)–(iii) above we have

[Z]m → η(Z)m .

Moreover, the map

[Z] mod amgibuities → η(Z)

is injective; i.e., η(Z) = 0 imples that [Z] ∈ ambiguities.

Proof: Only the last statement needs proof. Since the map

H0
(

ΩmS/C

)
→ ΩmS/C,s0

is injective, if η(Z)m = 0 then

[Z]m ∈ Hgp(X × S) ∩
(
H2p−m(X)⊗Hm(S)

)
has no component in H0,p−m(X)⊗Hm,0(S). Hence it gives a map

H2p−m(X,Q)→ Hm(S,Q)

whose image lies in Hm−1,1(S)⊗· · ·⊗H1,m−1(S), and is therefore a Hodge structure
of weight m−1. It then follows from the Lefschetz theorems and GHC that [Z]m ∈
ambiguities. �

For X defined over Q, we have defined a filtration FmCHp(X) on the Chow
groups. For a general X we have remarked that the definition of FmCHp(X) given
above may be extended by considering the spread

(4.7)
Z ⊂ Xy y
S = S

of pairs Z ⊂ X where Z is a codimension-p subvariety of X and both are defined
over a field k with Q(S) ∼= k, and using the degeneration of the Leray spectral
sequence associated to (4.7) when we use the intersection homology along the fibres
of X→ S (cf. [R-M, S]). There is also a filtration on Hp

(
ΩpX/Q

)
induced from the

filtration
FmΩpX/Q = image of

{
ΩmC/Q ⊗ Ωp−mX/Q → ΩpX/Q

}
(as proved in [E-P], the spectral sequence associated to this filtration also degen-
erates at E2). It may be verified that the arithmetic cycle class preserves these
filtrations; i.e.,

(4.8) η : FmCHp(X)→ FmHp
(

ΩpX/Q

)
.

When X is defined over Q, this is clear from (4.6).
What is not the case is that the filtration on Chow groups is induced from the

filtration on the image of the arithmetic cycle class mapping. This is clear since
the arithmetic cycle class η(Z) does not “see” the AJX×S(Z)m part of [Z]D.
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5. Remarks and examples

As illustrated in the preceeding section, the quantities [Z]0, . . . , [Z]p and
AJpX×S(Z)0, . . . , AJ

p
X×S(Z)p−1 may be expressed as period integrals, both in the

intuitive sense and in the precise sense given in [K-Z]. The conditions that

(5.1) [Z]0 = · · · = [Z]m = 0 , AJpX×S(Z)0 = · · · = AJpX×S(Z)m−1 = 0

are therefore constructive and — at least in principle — computable in the same
sense that the classical Abel’s theorem and its converse gives “computable” condi-
tions that a divisor on an algebraic curve be the divisor of a rational function. The
test we are proposing that a cycle Z ∈ Zp(X) satisfy

Z ≡rat 0

depends for p = 2 on choosing a field of definition k for Z and checking the con-
ditions (??) for 0 5 m 5 p. If k ⊂ k′ is a subfield, then as noted above there are
maps

[Z]m → [Z′]m, AJpX×S(Z)m → AJpX×S(Z′)m
which, modulo torsion, are injective.

This mechanism is quite clear for the relative variety X = (P2, T ) discussed below
and in section 9(iv) of [G-G1]. In this case the maps (with the evident notation)

Hm(k)→ Hm(k′)

reduce to the standard maps

K2(k)→ K2(k′) .

For (P2, T ) there is a “final object”

K2(C) = lim
k
K2(k) .

In general, this final object is missing and is an important gap in our construction.
Also, for (P2, T ) the maps (??) are surjective (analogue of Jacobi inversion). In
general they cannot be surjective, and other conjectures of Beilinson (cf. [R]) provide
possible qualitative descriptions of the images.

We now give some simple applications and examples of our construction. For
the first example we observe that for any field k as above (i.e., k is of characteristic
zero and finitely generated over Q) the Hodge number

hq,0(k)

may be defined to be dimH0(ΩqS/C) for any smooth variety S defined over Q and
with Q(S) ∼= k. Then, as always assuming the GHC and (1.3) and working modulo
torsion, we have

(5.2) Let X be a regular algebraic surface defined over Q and Z ∈ Z2(X(k)) a
0-cycle where {

degZ = 0

h2,0(k) = 0 .

Then Z ≡rat 0. We may replace the assumption that X be regular with the
two assumptions {

AlbX(Z) = 0

h1,0(k) = 0 .
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We now give some simple examples that illustrate our invariants together with a
more or less familiar general principal that follows from them. Let X be a smooth
curve defined over Q and p1, . . . , pN points chosen generically. If k is the field of
definition of p1, . . . , pN , then we may take

S = XN

and the spread Z ⊂ X ×XN of Z =
∑
i nipi is given by

Z =
∑
i

n1∆1,i+1 ⊂ X ×XN

where ∆ij is the diagonal xi = xj in XN+1. It is clear that

[Z]0 =

(∑
i

ni

)
·
(
generator of H2(X)⊗H0(XN )

)
.

Next, using Poincaré duality H1(X) ∼= H1(X)∗ there is a canonical element

δ ∈ H1(X)⊗H1(X)∗

corresponding to the identity, and we denote by δi the element δ in the ith slot and
zero elsewhere. Then

[Z]1 =
∑
i

niδi .

This is never zero, corresponding to the fact that
If (p1, . . . , pN ) ∈ XN is Q-Zariski dense in XN , then for any ni 6= 0∑

i

nipi 6≡rat 0 .

If the pi are not chosen generically and we let

W ⊂ XN

be the Q-Zariski closure of (p1, . . . , pN ) (assumed smooth), then we may take

S = W

Z =

(∑
i

ni∆1,i+1

)
· (X ×W )

and

[Z]1 = image

{∑
i

niδi → H2(X)⊗H1(W )

}
.

As a simple example, if X is a plane cubic defined over Q and L ⊂ P2 is a general
line, then for

Z = X · L = p1 + p2 + p3

we have
W ∼= X ×X ⊂ X ×X ×X

by
(p, q)→ (p, q, third point of pq ·X) .

Now the mapping
3
⊕
i=1

H1(X)→ H1(W ) ∼= H1(X)⊕H1(X)



18 MARK GREEN AND PHILLIP GRIFFITHS

is given by
(α, β, γ)→ (α− γ, β − γ)

and then
δ1 + δ2 + δ3 → (0, 0)

giving
[Z]1 = 0

which geometrically reflects the fact that as we vary L the cycle L · X remains
constant in CH1(X). The general principle is:

We cannot obtain a rational equivalence on points on X unless
there are algebraic relations on the coordinates of the points (this
is clear), and this condition is reflected cohomologically.

As another example we let X be a regular surface defined over Q and
(p1, . . . , pN ) ∈ XN

W = Q-Zariski closure of (p1, . . . , pN )

δ ∈ H2(X)⊗H2(X)

as above. Then as before

[Z]2 = image

{∑
i

niδi → H2(X)⊗H2(W )

}
,

and

[Z]2 = 0⇔

 The position of W ⊂ XN

imposes cohomological
relations on the ∆1,i+1

 .

It is this principle, and its extension to the case where X is defined over a general
field (see below), that has been used in a number of circumstances to show that

Z 6≡rat 0 .

As another illustration, in section 2 above we mentioned related work of M. Saito
and others; in [R-M.S] one may find a general theory that has the following conse-
quence:

(5.3) Let Y1, Y2 be smooth algebraic curves of genus = 1, and on the surface
X = Y1 × Y2 consider a 0-cycle

Z = [p1 − q1]× [p2 − q2]

where pi, qi ∈ Yi. Assume that Yi, qi are defined over k and that p1, p2 are
algebraically independent over k. Then

0 6= [Z] ∈ F 2CH2(X) .

The fact that {
ψ0(Z) = 0

ψ1(X) = 0
(ψ1 = AlbX)

is true for any pi, qi. When k = Q we may see that our invariant

ϕ3(Z) 6= 0
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as follows: The 0-cycle Z has spread

Z ⊂ X × S1 × S2

↓
S1 × S2

where the Si are curves defined over Q and with Q(Si) = k(pi) being the field of
definition of pi. Choose ωi ∈ H0(Ω1

Yi/C) with ωi(pi) 6= 0 and set ω = ω1 ∧ ω2 ∈
H0(Ω2

X/C). Then as noted above a part of [Z]2 is given by

TrZω ∈ H0
(

Ω2
S1×S2/C

)
,

and by our construction this is non-zero.
A related 0-cycle was given by Faber-Pandharipande and studied in [G-G2]: Let

Y be a smooth of genus g = 1 and on X = Y × Y set

ZK = K1 ×K2 − (2g − 2)∆K

where Ki is a canonical divisor on the ith factor and ∆K is a canonical divisor on
the diagonal. Then {

degZK = 0
AlbX(ZK) = 0

so that
[ZK ] ∈ F 2CH2(X) .

Faber-Pandharipande showed that [ZK ] = 0 if g = 2, 3 (the case g = 2 is trivial
since [ZK ] = 0 whenever Y is hyperelliptic), and in [G-G2] it is proved that

(5.4)
[ZK ] 6= 0 if g = 4

and Y is general.

Remark that the condition Y be general is necessary, since (??) implies that
[ZK ] = 0 if Y is defined over a number field. The proof of (??) consists in consid-
ering the spread

(5.5)
ZK ⊂ X

↓
S

of the pair (ZK , X) where S is (a finite covering of) the moduli space of curves
genus g. Associated to (??) is an infinitesimal invariant

δνZK

constructed from the analogue of [Z]2 but where now the surface X varies also. A
geometrically motivated but technically intricate calculation using Shiffer variations
shows that δνZK 6≡ 0.

To construct the analogue of the invariants defined above when X is not defined
over Q, one must take a spread analogous to (??) and use properties of the VHS
associated to the intersection homology along the fibres of X→ S.

We have defined Hodge theoretic invariants of a cycle Z ∈ Zp(X) when X is
smooth and projective. It is reasonable to assume that this construction can be
extended to more general situations; e.g., when X = (P2, T ) is the relative variety
discussed in section 9(iv) of [G-G1]. Anticipating this we will suggest what these
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invariants will be in this case. For this, we let P2 − T ∼= C∗ × C∗ have coordinates
(x, y) and write Z ∈ Z2(P2, T ) as

Z =
∑
i

ni(xi, yi) .

The spread of Z will be written as

Z(s) =
∑
i

ni (xi(s), yi(s)) , s ∈ S .

Here, Z is defined over k with Q(S) ∼= k, and we let D ⊂ S be the divisor of points
s ∈ S where Z(s) ∈ T and set S0 = S −D. Our descriptions are as follows:

[Z]0 =
∑
i

ni .

Assuming [Z]0 = 0 then

[Z]1 is the induced map
H1(S0,Z)→ H1 (C∗ × C∗,Z),

Here, we are thinking of C∗ × C∗ as the Albanese variety of (P2, T ) and the above
map is induced from the Albanese map

s→
(∫

γs

dx

x
,

∫
γs

dy

y

)
∈ C/Z(1)⊕ C/Z(1)

where ∂γs = Zs and C/Z(1) ∼= C∗. Explicitly, this map is

s→

(∏
i

xi(s)ni ,
∏
i

yi(s)ni
)
.

If [Z]1 = 0 then this map is constant (assuming S is connected) and

AJX×S(Z)0 =

(∏
i

xi(s0)ni ,
∏
i

yi(s0)ni
)
.

The interesting invariants are [Z]2 and AJX×S(Z)1. The former is the trace map

H0
(

Ω2
P2/C(log T )

)
→ H0

(
Ω2
S/C(logD)

)
(recall that ω = (dx/x) ∧ (dy/y) generates H0

(
Ω2

P2/C(log T )
)

). For the later, as
discussed in (loc. cit.) this is given by the regulator

λ→
∫

Z(λ)

log x
dy

y
− log y(s0)

dx

x

where λ is a closed loop in S0 and Z(λ) is the corresponding closed curve in P2−T
traced out by Z(s), s ∈ λ. If λ = ∂Λ is a boundary, then since [Z]2 = 0 the integral
above is ∫

Z(Λ)

ω =
∫

Λ

Trω = 0 .

In closing we would like to discuss the conjecture (cf. [B], [Re] and the references
cited therein) that for a flat vector bundle

(5.6) E → X
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we have

(5.7) cp(E) ∈ F pCHp(X) , p = 2 .

Assuming that X is defined over Q, it is reasonable to hope that the spread

E→ X × S
of (??) has a connection θE whose curvature ΘE vanishes on each X × {s}. If
Pp(A1, . . . Ap) is the invariant polynomial giving the pth Chern class, then since in
de Rham cohomology

cp(E) = Pp (ΘE, . . . ,ΘE)
it follows that

(5.8) [cp(E)]0 = · · · = [cp(E)]p−1 = 0 mod torsion.

To establish (??) it must be shown that, modulo torsion,

(5.9) AJX×S(cp(E))0 = · · · = AJX×S (cp(E))p−2 = 0 , p = 2 .

Using the interpretation given in section 4 above, the first step in (??) follows from
the important work of Reznikov [Re].

However, for p = 3 the remainder of (??) does not seem to follow from [Re].
In fact, in general E → X × S is not flat and so the secondary Chern classes may
not be defined. Using our proposed definition of F pCHp(X), the conjecture (??)
has to do with the behaviour of cp(E) and AJX×S(E) on the Künneth components
of H2p(X × S) and H2p−1(X × S). The first of these are Hodge classes, and so
assuming the HC the issue is roughly the following: Let Y ⊂ X×S be an irreducible
subvariety of dimension p and where, setting Ys = X × {s} for generic s ∈ S,

dimYs = p−m , m = 0, . . . , p− 1 .

Now ΘE

∣∣
Y

=: ΘE,Y is not flat, but we do have that

(5.10) Θm+1
E,Y = ΘE,Y ∧ · · · ∧ΘE,Y︸ ︷︷ ︸

m+1

= 0 .

It follows that, for EY = E
∣∣
Y

we have modulo torsion

cq(EY ) = 0 for q = m+ 1 .

Passing to an integer multiple if necessary,

AJY (cq(EY )) = Jq(Y )

is then defined. For m = 0, EY is flat and we are in the case considered by Reznikov.
However, for m = 1 the bundle EY is not flat but is what we may call m-flat.

In general, let W be a smooth algebraic variety and F →W on m-flat holomor-
phic vector bundle with curvature ΘF satisfying

Θm+1
F = 0 .

Then, modulo torsion

(5.11) cq(F ) = 0 q = m+ 1

and in this range
AJW (cq(F )) ∈ Jq(W )

is defined. Moreover, for q = m + 2, AJW (cq(F )) is rigid in the sense that it is
constant on connected components in the moduli space of m-flat bundles. This
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follows from the result proved in [Gri] that for a family Ft → X of holomorphic
bundles with F0 = F

d

dt
(AJW (cq(Ft))t=0 = Pq(η,ΘF , . . . ,ΘF︸ ︷︷ ︸

q−1

)

where η ∈ H1
∂̄
(Hom(F, F )) gives the Kodaira-Spencer class representing dFt/dt

∣∣
t=0

.
Thus we may ask if, in addition to (??), we have modulo torsion

(5.12) AJW (cq(F )) = 0 q = m+ 2

for F →W on m-flat bundle. It is our feeling that this general result would imply
(??).

Finally we would like to mention the relation between our proposed filtration
on CHp(X)Q and those suggested by H. Saito-Jannsen and Murre. Regarding
the latter, assuming the GHC it can be shown that these filtrations agree, thus
providing a Hodge-theoretic interpretation for Murre’s filtration. Regarding the
former, there is an heuristic argument that{

mth-step of
S-J filtration

}
⊆
{

mth-step of the
filtration defined above

}
.

This heuristic argument depends on the GHC and global properties of VHS/intersection
homology analogous to what is required to extend our construction to varieties de-
fined over arbitrary fields.

Appendix: Reformulation of the construction

The following is extracted from the referee’s report.
It was known for quite a while that (as yet conjectural) formalism of mixed

motives provides a canonical filtration on Chow groups CHi(X) of any (smooth
proper) algebraic variety X over an arbitrary field k. In this paper the authors
define, by means of Hodge theory, a certain filtration on CHi(X) in the situation
when k = C. Their filtration coincides with the “motivic” once we assume the two
extra conjectures relating the motivic and Hodge pictures, namely, (i): the Hodge
conjecture, and (ii): the assertion that the composition of maps

(1) CHi(YQ) ↪→ CHi(Y )→ H2i
D (YC,Q(i))

is injective for every smooth proper variety YQ over Q (the right arrow is the class
map for Deligne cohomology).

I believe that the construction in this paper can be summarized as follows. Nota-
tion: H is the category of mixed Q-Hodge structures, DH its derived category. For
an algebraic variety Z over C we denote by C(Z) := RΓ(Z,Q) ∈ DH the complex
of Q-cochains of Z with its mixed Hodge structure Hi(Z) := Hi(Z,Q) ∈ H. The
Deligne cohomology for arbitrary Z are defined as Ha

D(Z,Q(b)) := HomDH(Q(0),
C(Z)(b)[a]) (if Z is proper and smooth this is the usual Deligne cohomology); the
class map from Chow group to Deligne cohomology is always well-defined.

I believe that the only Hodge-to-motivic assumption relevant to the story is the
following conjecture (iii) (a corollary of (i), (ii) above) which says that the arrow
(1) is injective for any smooth YQ regardless if it is proper or not.

So let X be our smooth proper variety over C. It is defined over a subring of C
finitely generated over Q. So, considering X as a smooth affine scheme (of infinite
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type) over Q, one can write X = lim−→XSα where Sα is a smooth affine scheme over

Q and XSα is a smooth proper Sα-scheme. Here Sα = Spec Rα where Rα ⊂ C,
∪Rα = C. The presentation X = lim−→XSα is essentially unique.

Set Hi(XS) := lim−→H
i((XSα)C) ∈ lim−→H; similarly, C(XS) := lim−→C((XSα)C ∈

D lim−→H and Hα
C(XS ,Q(b)) := lim−→H

a
D((XSα)C, Q(b)) = Hom(Q(0), C(XS)(b)[a]).

Since CHi(X) = lim−→CH
i(XSα) the class maps for XSα yield the one

(2) CHi(X)→ H2i
D (XS ,Q(i)) .

One can compute the Deligne cohomology by means of Morihiko Saito’s theory of
Hodge complexes. Namely, one has Ha

D((XSα)C,Q(b)) = Hom(Q(0), Rπα∗Q(b)[a]),
the morphisms are taken in the derived category of mixed Hodge complexes on
(Sα)C and πα : (XSα)C → (Sα)C. The Leray spectral sequence for πα provides a
canonical filtration on H2i

D (XS ,Q(i)) shifted by 2i. The filtration F on CHi(X)
considered in the note is the pull-back of this filtration by map (2).

If X is defined over Q, X = (XQ)C (which is actually the case considered
in the main body of the note) then there is no need to invoke Saito’s theory:
the old Deligne’s mixed Hodge theory is sufficient. Indeed, we can assume that
XSα = XQ × Sα, so by Künneth C(XSα) = C(X) ⊗ C(Sα), and the filtration on
the Deligne cohomology comes from the filtration (τ≤C(XQ))⊗ C(Sα) on C(XSα)
where τ is the canonical filtration. Notice that a usual computation shows that
every successive quotient GraH2

D(XS ,Q(i)) can be represented canonically as an
extention of HomH(Q(0), H2i−a(X) ⊗ Ha(S)(i)) = HomH(Ha(S), H2i−a(X)) by
Ext1

H(Q(0), H2i−a(X)⊗Ha−1(S)(i)) = Ext1
H(Ha−I(S), H2i−a(X)(i)) where Ha(S)

is the projective limit of the homology groups of (Sα)C.
Conjecture (iii) asserts that (2) is injective, and also that F coincides with the

“motivic” filtration.
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