SOME CHALLENGES FOR

COMPUTING AUTOMORPHIC FORMS

AND THEIR L-FUNCTIONS

PETER SARNAK

ICERM NOV 2015

AUTOMORPHIC FORMS ON GLn:

ALL KNOWN L-FUNCTIONS ARE (OR ARE EXPECTED TO BE) L-FUNCTIONS OF AUTOMORPHIC CUSP FORMS ON

G = GLn.

H := L_cusp (G(Q))G(A), X)

X A DIRICHLET CENTRAL CHARACTER.

- DECOMPOSE THE REGULAR REPRESENTATION

 OF GIA) ON H INTO (COUNTABLY

 MANY) IRREDUCIBLES OF GIA); THAT.
- · EACH TT IS A CUSPIDAL AUTOMORPHIC FORM (REPRESENTATION).

LET AUT (G) DENOTE THE SET OF SUCH

RAMANUJAN CONJECTURE:

The GIRT temp FOR ALL U.

G(Qv)temp COMES WITH ITS FELL
TOPOLOGY AND THE UNRAMIFIED
REPRESENTATIONS; T(Qv), ARE AN
OPEN/COMACT SUBSET (U + 00).

· LET $T = TT G(Q_{U})_{temp}$ BE THE RESTRICTED PRODUCT W.R.T THE $T(Q_{U})_{S}$

THE IS INJECTIVE AND DISCRETE.

(multiplicity one, J-5-PS, MORENO, BRUMLEY)

NOTE: IF WE PUT THE PRODUCT TOPOLOGY ON T THEN ONE CAN SHOW THAT THAT THE

LANDSCAPE TO BE COMPUTED:

(1) TO FIND SEPARATING OPEN SETSA
IN T CONTAINING EXACTLY ONE to
AND THEN FOR EACH SUCH A
DECREASING SEQUENCE OF NBH'S OF to
S.T. UDUZDUZ ...; NUjetor

(2) IF TO IS ALGEBRAIC (SAY IN THE SENSE OF CLOZEL) TO DETERMINE TU EXACTLY FOR U UP TO SOME SIZE.

STANDARD L-FUNCTIONS, CONDUCTOR

AND ROOT NUMBER

W.R.T. THE STANDARD REPR. OF G IN GL, (4)

L(S, TG) IS A POLYNOMIAL OF
DEGREE 1) (AT MOST) IN GS, (U=00 IT 13 A PRODUCT OF M-GAMMA FUNCTIONS).

 $\Lambda(s,\pi):=\mathrm{TT}\,L(s,\pi_{\sigma})$

 $\Lambda(1-5, \hat{\pi}) = E(\pi) N_{\pi} \Lambda(5, \pi)$

TT IS THE CONTRAGREDIENT TO TT, NHEIN 15 THE CONDUCTOR OF TI E(T) THE ROOT NUMBER (| E(T) | = 1).

ANALYTIC CONDUCTOR C(TT)

 $\log c(\pi) := \log N_{\pi} + \sum_{i=1}^{n} Re \left(\prod_{i=1}^{n} l_{i}^{2} + \frac{\lambda_{i} l_{i} l_{i}}{2} \right)$

 $L(s, T_{oa}) = T \Gamma_{iR} \left(\frac{s + \lambda_{j}'(T_{oa})}{2} \right)$ WHERE

(IWANIEC - S , RUBINSTEIN).

· C(TT) IS A NATURAL HEIGHT FUNCTION (5) ON AUT (G).

Mn(x) = | \(\int \text{TTE AUT (G)} : \(\cap(\pi) \text{ \text{X}} \) |

15 FINITE, AND IS AT MOST POLY, (X) (BRUNLEY)

PROBLEM 1: PROVE AN ANALOGUE OF SCHANUEL

 $M_n(x) \sim A_n x^{B_n}$ as $X \to \infty$.

(known for M=1, N=2 BRUNLEY-MILICEVIC)

· ASSUMING GRA THE POINTS THE FIRST (Log C(m)) WELL SPACED, KNOWING THE FIRST (Log C(m)) The's APPROXIMATELY DETERMINES TT.

COMPUTATIONAL LANDSCAPE

N=1: PRIMITIVE DIRICHLET CHARACTER 3-WELL UNDERSTOOD.

M=2: FOR ALGEBRAIC FORMS WELL STUDIED (CREMONA, H. COHEN, W. STEIN

AND THESE ARE WELL UNDERSTOOD EXCEPT FOR FINITE EVEN GALOIS

· FOR TRANSCENDENTAL TT'S

6

SOLVE THE EIGENVALUE PROBLEM WITH FOURIER EXPANSION (COLLOCATION)
HEJHAL,

USING THE TRACE FORMULA
GOLOVSHANSKI - SMORTOV, BOOKER-STROMBERGSSON

M > 3: ALGEBRAIC TT'S:

(A) M=3 AND TT'S CORRESPONDING TO THE COHOMOLOGY OF THE MANIFOLDS $X_{N} = \Gamma_{N} \frac{G(iR)}{K},$

I'N A CONGRUENCE SUBGROUP; A.ASH,

(1) FOR M=4 AND TI'S WHICH COME FROM GSP4 THERE 15 A LOT OF WORK BRUMER, ... PARAMODULAR CONJECTURE. IN GENERAL IF TO COMES FROM GENERY

AND IS NOT KNOWN TO CORRESPOND TO AN AUTOMORPHIC FORM, ONE CAN (AT LEAST IN PRINCIPLE) PROCEED BY USING KNOWN CASES OF FUNCTORIALITY (ARTHUR, ...) TO TRANSFER TO A SHIMURA VARIETY WHERE ONE CAN ATTACH TO IT A GALOIS REPRESENTATION.

COUPLED WITH THE ORIGINAL TO ONE HAS TWO GALOIS REPRENTATIONS, WHICH IF THEY AGREE AT ENOUGH PLACES (IN TERMS OF THEIR CONDUCTORS) AGREE AT ALL PLACES (FALTINGS).

GENERAL TI', NECESSARY CONDITIONS:

THE APPROXIMATE FUNCTIONAL EUN

FOR L(S, TT) AT DIFFERENT S'S, LEADS TO

EQUATIONS FOR THE to'S WHICH WHEN GIVEN

A BOUND FOR C(TT) YIELDS REGIONS IN T

WHICH PROVABLY FREE OF to'S, AS WELL

AS NBH'S IN T WHICH ARE LIKELY TO

CONTAIN A POINT to.

(BOOKER, BIAN, S.D. MILLER, FARMER-KOVESOLATIS-LEUMEDRELL,)

THIS IS AN EFFICIENT MEANS OF

GETTING A FIRST APPROXMATION TO THE LANDSCAPE. 8

THE USE OF THE APPROXIMATE FUNCTIONAL EQUATION DOES NOT BY ITSELF PROVE THE EXISTENCE OF ANY IT, OR L-FUNCTION FOR THAT MATTER.

TO DO SO ONE HAS TO GO TO THE SOURCE, NAMELY TO THE SPECTRAL THEORY OF GIONGIA). THAT ONE CAN DO SO IN PRINCIPLE AT LEAST FOR TI'S THAT ARE EVERY WHERE UNRAMIFIED WAS SHOWN BY MIN LEE (2015) "APPROXIMATE CONVERSE THEOREM"

ANOTHER WAY WHICH I THINK IS COMPUTATIONALLY MORE EFFICIENT IS TO USE THE TRACE FORMULA.

LAPID AND OTHERS HAVE SHOWN HOW
TO USE ARTHUR'S TRACE FORMULA ANALYTICALLY
AND IT IS TIME TO DO SO COMPUTATIONALLY.
BASIC STEP IN PRINCIPLE IS TO FIND.

h,, h, on T, h, < Xu(t) < h2.

 $\sum_{\pi \in AUT} (h_2(t_{\pi}) - h_1(t_{\pi})) < 1$

SO THAT # { TTE AUT (G): THEU} (DETERN)

FORMULA VIA OPTIMIZATIONS (SEE BELOW)

PROBLEM 2: GIVE A COMPUTATIONALLY EFFICIENT PROCEDURE TO COMPUTE THE LANDS CAPE. PERHAPS ORDERING THE TI'S BY THEIR ANALYTIC CONDUCTOR.

COMPLEXITY OF CONPUTING ZEROS: (REST IS JOINT WITH M. RUBINSTEIN)

GIVEN IT AND ASSUMING THAT WE CAN COMPUTE TU EFFICIENT LY (SAY IN POLY(LOG U) STEPS) WHAT IS THE COMPLEXITY FOR COMPUTING THE ZEROS OF L(S,T) NEAR S=\frac{1}{2}?

TO BE CONCRETE LET $E: Y^2 = x^3 + ax + b$ BE AN ELLIPTIC CURVE / Q, a, $l \in \mathbb{Z}$ THE DISCRIMINAT D = D(E) 15 SAY

SQUAR E-FREE.

WHAT IS THE COMPLEXITY FOR COMPUTING

(1) E(E) THE ROOT NUMBER

(2) THE RANK OF E (ASSUME BSD).

(3) THE ZEROS OF LIS, E) NEAR S=\frac{1}{2}.

RE(P)'S IN POLY (LOGP) STEPS (SCHOOF).

RIEMANN'S GOLD STANDARD:

USING THE APPROXIMATE FUNCTIONAL EQUATION (OR RIEMANN-SIEGEL) FOR ANY TO FOR WHICH ONE COMPUTE TUEFFICIENTLY, ONE CAN COMPUTE L(S,TI)
FOR S NEAR 1/2, IN OG(C(T)) (STEPS,
AND AS ACCUMATELY AS DESIRED.

The toot number, tank
and zeros near 1/2 can be computed
in NE steps.

PROBLEM 3: TO BREAK THE
SQUARE-ROOT BARRIER, IS THERE AN
ALGORITHM TO COMPUTE THESE QUANTITIES
IN NE STEPS WITH 0 < 1/2 ?

REMARK: IN THE t-ASSECT, EG

FOR S(之+it) ONE CAN BREAK THE

C(t) BARRIER (SCHÖNAGE, HEATH-BROWN, ODLY) ko,

HIARY: $\alpha = 4/13$, VISHE $\alpha = 7/16$ FOR

L(12+it, T), TON GL2 — t aspect).

· IN WHAT FOLLOWS WE ASSUME GRH. 12

WHAT CAN BE COMPUTED IN SUBEXPONENTIAL (IN log NE) TIME?

theorem (not implemented yet):

There is a Las-Vegas algorithm which for 2>0 computes

(i) $M_E(T_1) < M_E(T_2) ... < M_E(T_k)$ WHERE $0 \le T_1 < T_2 ... < T_k$; $k \gg \exp\left(\frac{-1}{\kappa^2}\right) \frac{69}{2\pi}$

(ii) E(E) (= parity of $M_E(T_i)$)

IN NE steps.

LAS-VEGAS MEANS THAT THE

ALGORITHM IF IT WORKS GIVES A VERIFIABLY CORRECT

ANSWER. KATZ-S CONJECTURES FOR THE DISTRY

OF LOW LYING ZERUS FOR THIS FAMILY IMPLY THAT

THE ALGORITHM WILL WORK FOR MOST E'S AND

WE BELIEVE ALL E'S ONCE NE IS LARGE.

THE METHOD USES THE EXPLICIT FORMULA
FOR L(S,E).

WITH "COMPLEXITY &" THIS ALLOWS US TO COMPUTE

FOR HEJ(R) WITH Support & C (- Klog NE octor NE)

- · NOTE THAT THE DENSITY OF ZEROS Y'(E) NEAR O IS (Log NE)/2T.
- ONE LOCALIZES AND PERIODIZES THIS
 BAND LIMITED INVERSION PROBLEM
 LEADING TO:

 LEADING

M ODD INTEGER $(M \approx \frac{\log N_E}{2\pi r})$

M=2k+1, A ∈ O(M) WITH EIGENVALUES

eigleig: ..., eigk, eigh, eigh, det A.

= {21, .., 2m}, |2|=1, 0 < 0, 5 ... & 0, 5 T.

WE ARE GIVEN THE (ELEMENTARY SYMMERIC) POWER SUMS IN THE ROOTS €R $S_m = \sum_{j=1}^m z_j^m$

for 0 < m < < M.

PROBLEM 4: WHAT CAN ONE SAY ABOUT THE Zi's, det A, ALLOWING POLY (M) COMPUTATIONS KNOW WITH THE INFORMATION (XX), IE COMPLEXITY & ?

IF $P_A(x) = det(xI-A) = x^M + a_1x + ... + a_M$ THE $a_{M}=\det A$, $a_{M-\ell}=(\det A)a_{\ell}$.

- FROM NEWTON'S IDENTITIES WE CAN RECOVER am, m < &M FROM (xx).
- · IF X= 1/2 THEN THIS ALLOWS US BY THE THE SELF-RECIPROCALITY TO RECOVER PA AND ALL THE ROOTS, THAT IS RIEMANN'S GOLD STANDARD.
- · IF < < 1/2 THE SYSTEM IS UNDERDETERMINED.

- · IN FACT IF THE B'S ARE EQUALLY

 SPACED (PICKET FENCE) AND XX12. THEN

 ONE CANNOT RECOVER INFORMATION ABOUT

 ANY INDIVIDUAL B; INCLUDING det A.
- . WHAT WE EXPLOIT ARE THE FLUCTUATIONS IN THE DISTRIBUTION OF THE ZEROS FROM BEING A PICKET FENCE, ALBEIT THAT THERE ARE SMALL DUE TO THE RIGIDITY OF THE ZEROS ACCORDING TO THE SYMMETRY TYPE $O(\infty)$, FOR TYPICAL $O(\infty)$.
- · OUR PROBLEM 4, IS REALLY ONE IN

 REAL (RANDOM) ALGEDRAIC GEOMETRY.

 OVER THE COMPLEX NUMBERS KNOWING

 XM OF THE COEFFICIENTS OF PA(X)

 TELLS US LITTLE ABOUT THE ZEROS

 (EXCEPT IF THERE ARE LARGE ONES).

 THE CONDITION 12, 1=1 15 A STRONG

 CONSTRAINT ON THE OTHER COEFF

 GIVEN THE FIRST XM OF THEM.

ONE IS REALLY STUDYING THE HAAR-INDUCED MEASURES ON THE LEVEL SET

 $\alpha_m(\theta) = b_m, \quad m \leq \ll M$ IN THE M-TORUS.

· LIMITS: USING THIS ONE CAN SHOW THAT FOR A TYPICAL &, ONE CANNOT WITH &
WITH &
1/2 RESOLVE ALL THE ZEROS
OF & A TO ANY ACCURACY BETTER THAN M = (Log NE)/2TT).
THIS USES J. VINSON'S THESIS NHICH GIVES THE MINIMAL SPACING FOR THE ZEROS OF A TYPICAL SUCH A.

THE ALGORITHM FOR E(E) IS
SUBEXPONENTIAL IN NE. IF NE IS
SQUARE-FREE THEN

E(E) = M(NE); THE MOBIUS FUNCTION.

THAT IS WE HAVE A SUBEXPONENTIAL ALGORITH TO COMPUTE M(NE). THIS IS DONE WITHOUT FACTORING NE (COMPUTING M(N) IS BELIEVED TO BE AS HARD AS FACTORING NE).

OUR ALGORITHM EXPLOITS COMPUTING G(E) FOR SMALL p's (MUCH SMALLER THAN N_E) TO GAIN INFORMATION ABOUT THE PARITY OF THE NUMBER OF PLACES WHERE E HAS BAD REDUCTION.

- ONE CAN LET & GO TO O WITH NE AND COMPARE WITH THE SPEED OF THE BEST FACTORING ALGORITHMS (THIS IS SIMILAR TO BOOKER-HIARY-KEATING 'S ANALYTIC METHOD FOR DETERMINING IF N IS SQUARE-FREE),
- WE HAVE NOT AS YET OPTIMIZED OUR METHOD WITH WOO. OUR ENEMY IS THE STRONG SZEGO LIMIT THEOREM (JOHANSSEN-DEIFT) WHICH SHOWS THAT A POLY(LOGNE) IS OUT OF REACH.