Lecture 5

0-EXPANSION AND WEIGHTED ORBITAL INTEGRALS

J.-P. Labesse

5.1. The second form of the 0O-expansion.

Let P be an e-invariant parabolic and & an e-semisimple-

1

conjugacy class. For ye ¢ nM let y' = ye and N(Y:s) the

centralizer in N of the semisimple part Y'S of «v'. We introduce
| - —1 _1
N(¢’ X, Y) = f U)(X)¢)(X n YE(X))dn
N(yy)
and
ip o (¥) = 1 ) N(¢, nx, ")

YEMAO ne N(y)\N
Using Lemma 3.1.1 we see that the series are in fact finite sums since

¢ 1is compactly supported. We now define a truncated term by

€
a
g0 =] I D PR - T, o (6%)
e(P)=P s§€P\G

Here also the series are finite sums; this is a consequence of Lemma 2.1.

The aim of this section is to prove the

THEOREM 5.1.1. (i) For a sufficiently regular T




is finite.

(ii) For any & € 0

f jT(X)dX = f kg‘(x)dx
©° ©
The proof of statement (i) is, with minor modifications, the same as the

proof of Theorem 3.1.2 and will not be repeated (see Lectures 3 and 4).

To prove the statement (ii) we need the

LEMMA 5.1.2.

KP,U(X’ x) = f jP’U(nx)dn
Recall that
KP O'(X’ x) = z w(x) f(b(x_lnye(x))dx
YyEMnO N

The continuous analogue of Lemma 3.1.1 shows that

JuGe(x T lvex))dn = f  N(4, nx, yDdn
N NGHO\N

The lemma is now an immediate consequence of the definition of jP o O

COROLLARY 5.1.3. Given P1 C P we have

j jP,o,(nx)dn = f KP,O'(nX’ nx)dn

© ©

We need only to remark that P D N1 ON. O



In Lecture 3 we introduced a function H%(X)UT such that

[ kix)dx = [ 20 Tax
1 (o 1 1'"e
© PcP, PI\G
If we substitute ]P, U(X) for KP, O'(X’ x) in the definition of
Hi(x)g we obtain a function Ji(x);. Then Corollary 5.1.3 tells us

that

_[ Hi(nx);rdnz f J%(nx);dn

© ©

and the assertion (ii) in the above theorem follows from the fact that
integration over Pl\ Gl can be seen as an integration over @

followed by an integration over PlNl\ Gl. O

Another variant of the 0-expansion will be of interest. Let P
be an e-invariant parabolic subgroup, the group E of connected

components of G' acts on A and to each orbit o we may attach
P P Yy

an averaged weight Tt

where o is any element in a. We define T as the characteristic
£

function of the X € 0(,0 such that m‘a(X) > 0 for any a e AP. If

. - A . s T T .
we substitute <Tp for Tp In the definition of kO' and o We obtain
T T

new functions which we shall denote by eko‘ and €]d: their definition

makes sense since the analogue of I.emma 2.1 is available. We may



reproduce the proofs in Lectures 2, 3, 4 with minor changes; we simply

have to replace from time to time weights by averaged weights and

2 2

oy by 1 the characteristic functions of the H such that a(H) > 0
if o€ AZ, a(H) <0 if aenr, - A2 and w-(H) >0 if o € A where
1 — 1 1 a Q

Q is the maximal e-invariant parabolic subgroup contained in P2 if
Q> Pl’ and Eo% = 0 if there is no e-invariant P between P1 and
PZ' More details will be given in Lecture 9.

5.2. Conjugacy classes and parabolic subgroups.

Let P be a (not necessarily standard) parabolic subgroup and let
p' = NG'(P) be its normalizer in G'. We shall say that P' is a parabolic
subgroup in G' if its projection on E, the group of connected components

of G', 1is surjective.

LEMMA 5.2.1. Assume P' is a parabolic subgroup in G' whose neutral

connected component P is standard, then e¢€ P'.

By assumption there is an element € € P' which projects on €4
the given generator of E. We have PO c P, let Pl = z—:l(PO); this is
a minimal parabolic subgroup and hence there exist 61 € P such that

-1
lelcSl = PO' Then 6151 leaves PO invariant; so does ¢ and hence
§ = 61519— normalizes PO and is an element of G so that ¢ € P0

_ -1 1
and € =6 éleleP. O

Such parabolic subgroups in G' will be called standard; P' is
standard if and only if P 1is standard and e-invariant; moreover

p! DP'O. Let M be the Levi component of P containing M then M

0’



and e generate a subgroup M' in P' which will be called "the" Levi
component of P'. Let A be the split component of the center of M,
then A% is the split component of the center of M'. The weights of A®
in G are the orbits under E of the weights of A; since E preserves
positivity of weights, the centralizers of A and A® in G (which are
connected) are equal to M. The centralizer of A% in G' is M'.

Consider yle G such that Y'l = Y€ is semisimple and P'1 a
standard parabolic subgroup of G' such that y'l € M'1 "its Levi component
and such that moreover no strictly smaller standard parabolic subgroup

contains an M'l-conjugate of y'l in its Levi component.

Let Als be the split component of the center of M'l.

LEMMA 5.2.2. The torus Ai is a maximal split torus in G'(Y'l) the

centralizer of y'l in G'.

Let B be a maximal split torus in G'(Y'l). Since Y'l is semi-
simple G'(y'l) is reductive and up to conjugacy in G'(y'l) we may

assume AiCB. Let M, (resp. M}) be the centralizer of B in G

2 2

(resp. G'), we have M'2 C M'l. Up to conjugacy inside M1 we may

assume that M2 is the Levi component of a standard parabolic subgroup

PZC P1 of G. Since Y'l commutes with B we have Y'léM'Z and

Y'l normalizes N2 the unipotent radical of P2 (y'l fixes the weights of B)
and hence Y'l € P'Z. This implies that P'2 projects surjectively on E.

The minimality property of P'1 implies P‘1 = P'z; moreover

EE,M'1=M'2 so that B:BEZAi. O
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COROLLARY 5.2.3. Up to conjugacy M) is well defined by c(Y'l)

the G-conjugacy class of y'l.

Given y'1€ M'1 C P'1 and y'z € M'2 C P'2 minimal as above we know

that Ai and A; are maximal split tori in G'(Y'l) and G'(y‘z). If

€

y'l and Y'Z are conjugate then AEI: and AZ

are also conjugate and

the same is true for the Mi. O

COROLLARY 5.2.4. Given P' a standard parabolic subgroup of G' with

Levi component M' and Yy'e M' n C(Y'l) there exists a standard parabolic

P'2 of G' associated with P'1 such that P'ZCP‘ and my'm_le M'2 for

some meg M. [

Given P'1 and P'2 as above, let oL, be the Lie algebra of

Ai(R)O. Let us denote as usual by Q(al.l, 012) the set of restrictions

to 011 of elements s € 9, the Weyl group of G, such that

s(O’Ll) = 0, Given o€ Q(a‘Ll, 01,2) there exist a unique element s € Q
such that s induces ¢ and such that moreover s_lon > 0 for all

2
a & A

0 it is the element with minimal length in the class o¢. This

provides us with an injective map from Q(JLl, €7 2) into Q. We shall
identify Q(oLl, aLZ) with its image.

Let us denote by (0L i, 01,;) the set of restrictions to ni of
€
5

of Ai‘a (in G) such an s defines an element in Q(A’Ll, JLZ) and

elements s € @ such that s(b’li) =0 Since Mi is the centralizer

hence Q(Ol,i, 01..;) may be regarded as a subset of Q(all, 01,2) and

be identified with a subset of Q.



i, O’L;) is the set of s g © such that

(1) s(nl) =0,

LEMMA 5.2.5. Q(0

G) s M) >0  Wa€ A

(iii) es = se.

The first two conditions define Q(O'Ll, JLZ); if an element satisfies
the three conditions it clearly defines an element in Q(0t i, o ;).
Conversely if s((ni) = 02,; and s_l(a) >0 for all a € AS the same is

true for sl=&:se since P2 is e-invariant. Moreover s1 and s

have equal restrictions to ni and hence equal restrictions to 011. This
implies s = s;. O

Given P' a standard parabolic subgroup of G', let us denote
by ﬁ(d{,i, P') the set of elements s € Q such that there exists a
parabolic subgroup P‘2 C P' standard in G' with s(ai) = Q;. The
Weyl group of M, denoted by QM, acts on the left on fz((ni, P') and
each class 0 € QM\ ﬁ(oz,i, P!') contains a unique element s such that
s_lot >0 for any o € AIS. As usual s is the element of minimal length
in o. Thanks to Lemma 5.2.5 we see that such an s commutes with
e. We shall identify QM\SNZ(OLE, P'Y with the set Q(dti, P') of those
s in Q.

We can now describe rather explicitly the set M' N c(y‘l). Given

vy' € M'n c(y'l) there exists s € Q(U‘Li, P') and m € M such that

= m 1w ‘w—lm
s1%Vs



where wsé G represents s. But s is not always uniquely defined

by v'; it defines only a double coset in @:

M € .
Q .s.Q(OLl, yl)

where Q(O‘Li, Y'l) is the subgroup of the o € Q(ni, ni) such that

W Y'w_l =my'm—l
ol o 1'11

for some m, € Ml' The element m € M is defined by y' and

-1 -1 . . .
! i ! M.
wsylwS up to an element in M(WsYlws ) its centralizer in

5.3. Tame semisimple conjugacy classes.

The aim of this section is to give a simple expression for j;(x)
when & contains only semisimple elements. Such classes will be called
tame semisimple. Given such a class & and vy € 0, then y' = ye
is semisimple and for any parabolic subgroup P' of G' containing Y’
we have N(y') = N(Y'l) = {1}.

An element +v' defines a tame semisimple class if and only if its
centralizer G(vy'), in G, contains no unipotent element. In
particular, regular semisimple elements give rise to tame semisimple
classes.

Let Y'l, P'l, M'1 be as in Lemma 5.2.2 with y' conjugate to Y'l
(in G) and assume that G(Y'l) contains no unipotent elements. Recall
that Ai is a maximal split torus in G(Y'l), since G(Y'l) contains no

unipotent element the neutral component G(Y'l)o lies in the centralizer



of Ai that is M'l. Hence Ml(y'l) is of finite index say d(y'l) in

!
G(v})-
More generally given P' standard in G' with Levi component M'
such that y'€& M' let us denote by d(M, y') the index of M(y') in
G(y".

Let s € ﬁ(ﬁli, P') be such that y' = m 1wsy'lw;lm where W

represents s and m € M.

LEMMA 5.3.1. The cardinality of the set

M, M e,
27\0 .S.Q(lﬂ.l, Yl)
is d(M, v).

Consider first the case where y' = Y'l, s =1 and P'= P'l, then
all we have to prove is that the order of Q(O‘Li, Y'l) is d(y'l) and this

follows from the

LEMMA 5.3.2. There is a natural map from G(Y'l) onto Q(ozi, y'l) with

1
kernel Ml(Yl) .

An element g € G(Y'l) normalizes AS the center of G(y'l)o and

1
hence it normalizes Ml' Then g defines an element sg of
Q(oli, dli) and since g commutes with y’l it lies in Q(Oli, Y'l). By

the very definition of Q(#t i, Y'l) this map is surjective and its kernel is

M; 0 G(y)) = Ml(Y'l)- O
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We can now return to the general case. We need only to prove it
when y' = Y'l, W, = 1, P'1 C P', in which case it amounts to saying that
. M
the index of Ml(Y'l) in M(Y'l) is the cardinality of Q  n Q(ni, Y‘l)

which is clear. O

Given & a tame semisimple class we have

ip,p () = ) ) w6 (x T tye(nx))
YEMnor neN
since N(Y'S) = N(y") = {1}. Now since in such a case ¢ is the twisted
conjugacy class of some Yq with y'l = Y€ semisimple in M'l, minimal
as above, we may use the description of c(y‘l) N M obtained at the

end of 5.2 to see that (x) 1is the sum over

JP’or

€ _ M € € '
s € a(a{, P, y'l) = o\, P /oot |, Yl)

and over EEM(Wsy'lw;I)\P, where W represents s of

w(x)d)(x_lf;_lWSYlE(W;lEX))
We may replace the sum over Q(n%, P, y'l) by a sum over
Q(ui, P') but we must divide each term by the integer d(M, wsy'lw;l)
as follows from the Lemma 5.3.1. We may also replace the sum over
M(wsy'w_l) \P by a sum over wle(y'l)w;l\P but we must divide each

1 s

term by the index of Wle(Yi)w;l in M(wsy‘lw;l) which equals

-1
d(Y'l) /d(M, WSY'le )
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We finally obtain (x) as the sum over s € Q(Oz,i, P'Y of the

p, o
~1
t
sum over &€ Wle(Yl)Ws \P of

-1 -1 -1 -1
1
dv)) Tw(x)e(x & “w ye(w_ "Ex))
This yields immediately the following expression for jg(x):

T - ~1.-1
6 = y d(vy) Lix)exts v e(6x))e (6%, T)
s€ M (Y)\G '
where
€
ap |
el(x, T) = ) ) (-1) TP(H(WSX) - T)
e(P)=P  se(a P
depends only on the parabolic subgroup P'l. We may get rid of the factor

d(Yll)—l if we replace Ml(y'l) by G(y'l); we obtain the

LEMMA 5.3.3. Given ¢ a tame semisimple class we have

T -1.-
]O'(X) = z w(x)o(x 16 1Yle((ﬁx))el(éx, T)
5€G(D\G
Replacing {P by E{P we define ei the analogue of €y and

we have the

LEMMA 5.3.4. Given ¢ a tame semisimple class we have

€j£ (x) = ) m(x)cb(x_lé_lyle(éx))ei(éx, T)
§€G(yP\G
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The reason for introducing the ei

integrals have a usable form, that is, can be treated along the lines

is so that the weighted orbital

suggested by Y. Flicker in "Base change for GL(3)" and used again in his
preprints on GL(3) and SU(3).

Given s € Q(“i’ azg) we define Ag to be the set of a e Ay
such that s—1a > 0. The Lemma 5.2.5 tells us that this is the set of
simple roots attached to a standard parabolic subgroup P's of G
containing P'Z. Given s as above we introduce a function on 0

€
a

B3G) =] -1 *
pPLcp'cP!
2 s

ETP( sX)

€
a

This is the product of (-1) Fs and of the characteristic functions of the

X € 01,0 such that m‘a(sX) > (0 for any o EAO - A(S) and m'a(sX) <0

2

for any o € A - AO.

s
0

Given s € 2 we introduce
H (x, T) = s NT - H(w _x))
s 7 s
With these notations we have

ej(x, T) = ) (BI(-H_(x, T))
se o)

where Q(B‘(,i) is the (disjoint) union over the P'2 of Q(dli, ﬂlg).

Let ci(x, T) be the set of H € 61, whose projection on }E\Oli

lies in the convex hull of the projections on }E\ ai of the set of
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H (x, T) with se Q(dz,i).

LEMMA 5.3.5. Assume T is sufficiently regular then

H —> y _BI(H-H_(x, T))
S€ Q(D‘Li)

is the characteristic function of ci(x, T).

This lemma is essentially Lemma 3.2 in Arthur's paper [Inventiones

Math. 32, 1976]. More details will be given in Lecture 9 below. O

We shall denote by vi(x, T) the volume of the projection on

’38\01; of Ci(X, T). We obtain the

PROPOSITION 5.3.6. Given ¢ a tame semisimple class we have

J ej§ (x)dx = [ V(Y'l)w(x)¢(x_1yle(x))vi(x, t)dx
' G(Y'l)G(Y'l)O\G

where v(y'l) is the wvolume of AT(R)OG(Y'l)O\G(Y'l)O.




