O-EXPANSION AND WEIGHTED ORBITAL INTEGRALS

J.-P. Labesse

5.1. The second form of the θ -expansion.

Let P be an ε -invariant parabolic and σ an ε -semisimple-conjugacy class. For $\gamma \in \sigma \cap M$ let $\gamma' = \gamma \varepsilon$ and $N(\gamma'_s)$ the centralizer in N of the semisimple part γ'_s of γ' . We introduce

$$N(\phi, x, \gamma') = \int_{\mathbb{N}(\gamma'_{S})} \omega(x)\phi(x^{-1}n^{-1}\gamma\epsilon(x)) dn$$

and

$$j_{P,\sigma}(x) = \sum_{\gamma \in M \cap \sigma} \sum_{\eta \in N(\gamma'_S) \setminus N} N(\phi, \eta x, \gamma') .$$

Using Lemma 3.1.1 we see that the series are in fact finite sums since ϕ is compactly supported. We now define a truncated term by

$$j_{\sigma}^{T}(x) = \sum_{\varepsilon(P)=P} \sum_{\delta \in P \setminus G} (-1)^{a_{P}^{\varepsilon}} \hat{\tau}_{P}(H(\delta x) - T) j_{P,\sigma}(\delta x) .$$

Here also the series are finite sums; this is a consequence of Lemma 2.1. The aim of this section is to prove the

THEOREM 5.1.1. (i) For a sufficiently regular T

$$\sum_{\sigma \in \mathcal{O}} \int_{G}^{1} |j_{\sigma}^{T}(x)| dx$$

is finite.

(ii) For any $\sigma \in 0$

$$\int_{\mathbf{G}} j_{\boldsymbol{\sigma}}^{\mathbf{T}}(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{G}} k_{\boldsymbol{\sigma}}^{\mathbf{T}}(\mathbf{x}) d\mathbf{x} .$$

The proof of statement (i) is, with minor modifications, the same as the proof of Theorem 3.1.2 and will not be repeated (see Lectures 3 and 4).

To prove the statement (ii) we need the

LEMMA 5.1.2.

$$K_{P,\sigma}(x, x) = \int_{N} j_{P,\sigma}(nx) dn$$
.

Recall that

$$K_{P,\sigma}(x, x) = \sum_{\gamma \in M \cap \sigma} \omega(x) \int \phi(x^{-1} n \gamma \epsilon(x)) dx$$
.

The continuous analogue of Lemma 3.1.1 shows that

$$\int_{\omega} \omega(x) \phi(x^{-1} n^{-1} \gamma \epsilon(x)) dn = \int_{\mathbb{N}} N(\phi, nx, \gamma') dn .$$

$$\mathbb{N} (\gamma'_{\varsigma}) \setminus \mathbb{N}$$

The lemma is now an immediate consequence of the definition of $j_{P,\sigma}$. \square

COROLLARY 5.1.3. Given P₁ c P we have

$$(N_1)^{j_{P,\sigma}(nx)dn} = \int_{N_1}^{K_{P,\sigma}(nx, nx)dn} .$$

We need only to remark that $P \supset N_1 \supset N$. \square

In Lecture 3 we introduced a function $H_1^2(x)_{\sigma}^T$ such that

$$\int_{\mathbf{G}} k_{\mathbf{\sigma}}^{\mathbf{T}}(\mathbf{x}) d\mathbf{x} = \sum_{\mathbf{P}_{1} \in \mathbf{P}_{2}} \int_{\mathbf{P}_{1} \setminus \mathbf{G}^{1}} H_{1}^{2}(\mathbf{x})_{\mathbf{\sigma}}^{\mathbf{T}} d\mathbf{x} .$$

If we substitute $j_{P,\sigma}(x)$ for $K_{P,\sigma}(x,x)$ in the definition of $H_1^2(x)_{\sigma}^T$ we obtain a function $J_1^2(x)_{\sigma}^T$. Then Corollary 5.1.3 tells us that

$$\int H_1^2(\mathbf{n}\mathbf{x})_{\boldsymbol{\sigma}}^{\mathbf{T}} d\mathbf{n} = \int J_1^2(\mathbf{n}\mathbf{x})_{\boldsymbol{\sigma}}^{\mathbf{T}} d\mathbf{n}$$

$$N_1 \qquad N_1$$

and the assertion (ii) in the above theorem follows from the fact that integration over $P_1 \setminus G^1$ can be seen as an integration over $P_1 \setminus G^1$. \square

Another variant of the 0-expansion will be of interest. Let P be an ϵ -invariant parabolic subgroup, the group E of connected components of G' acts on Δ_P and to each orbit $\overline{\alpha}$ we may attach an averaged weight $\overline{\omega}_{\overline{\alpha}}$:

$$\overline{w}_{\overline{\alpha}} = \frac{1}{\ell} \sum_{r=0}^{\ell-1} \varepsilon^r \overline{w}_{\alpha}$$

where α is any element in $\overline{\alpha}$. We define ${}_{\varepsilon}\hat{\tau}_{P}$ as the characteristic function of the X $\boldsymbol{\varepsilon}$ $\boldsymbol{\sigma}_{0}$ such that $\boldsymbol{\pi}_{\overline{\alpha}}(X) > 0$ for any $\alpha \boldsymbol{\varepsilon} \Delta_{P}$. If we substitute ${}_{\varepsilon}\hat{\tau}_{P}$ for $\hat{\tau}_{P}$ in the definition of $k_{\boldsymbol{\sigma}}^{T}$ and $j_{\boldsymbol{\sigma}}^{T}$ we obtain new functions which we shall denote by ${}_{\varepsilon}k_{\boldsymbol{\sigma}}^{T}$ and ${}_{\varepsilon}j_{\boldsymbol{\sigma}}^{T}$: their definition makes sense since the analogue of Lemma 2.1 is available. We may

reproduce the proofs in Lectures 2, 3, 4 with minor changes; we simply have to replace from time to time weights by averaged weights and $\sigma_1^2 \text{ by } \varepsilon \sigma_1^2 \text{ the characteristic functions of the H such that } \alpha(H) > 0$ if $\alpha \in \Delta_1^2$, $\alpha(H) \leq 0$ if $\alpha \in \Delta_1 - \Delta_1^2$ and $\varpi_{\overline{\alpha}}(H) > 0$ if $\alpha \in \Delta_Q$ where Q is the maximal ε -invariant parabolic subgroup contained in P_2 if $Q \supset P_1$, and $\varepsilon \sigma_1^2 = 0$ if there is no ε -invariant P between P_1 and P_2 . More details will be given in Lecture 9.

5.2. Conjugacy classes and parabolic subgroups.

Let P be a (not necessarily standard) parabolic subgroup and let $P' = N_{G'}(P)$ be its normalizer in G'. We shall say that P' is a parabolic subgroup in G' if its projection on E, the group of connected components of G', is surjective.

LEMMA 5.2.1. Assume P' is a parabolic subgroup in G' whose neutral connected component P is standard, then $\epsilon \in P'$.

By assumption there is an element $\varepsilon_1 \in P'$ which projects on ε_0 the given generator of E. We have $P_0 \subset P'$, let $P_1 = \varepsilon_1(P_0)$; this is a minimal parabolic subgroup and hence there exist $\delta_1 \in P$ such that $\delta_1 P_1 \delta_1^{-1} = P_0$. Then $\delta_1 \varepsilon_1$ leaves P_0 invariant; so does ε and hence $\delta = \delta_1 \varepsilon_1 \varepsilon^{-1}$ normalizes P_0 and is an element of G so that $\delta \in P_0$ and $\varepsilon = \delta^{-1} \delta_1 \varepsilon_1 \in P'$. \square

Such parabolic subgroups in G' will be called standard; P' is standard if and only if P is standard and ϵ -invariant; moreover $P' \supset P'_0$. Let M be the Levi component of P containing M_0 , then M

and ε generate a subgroup M' in P' which will be called "the" Levi component of P'. Let A be the split component of the center of M, then A^{ε} is the split component of the center of M'. The weights of A^{ε} in G are the orbits under E of the weights of A; since E preserves positivity of weights, the centralizers of A and A^{ε} in G (which are connected) are equal to M. The centralizer of A^{ε} in G' is M'.

Consider $\gamma_1 \in G$ such that $\gamma_1' = \gamma_1 \varepsilon$ is semisimple and P_1' a standard parabolic subgroup of G' such that $\gamma_1' \in M_1'$ its Levi component and such that moreover no strictly smaller standard parabolic subgroup contains an M_1' -conjugate of γ_1' in its Levi component.

Let $A_1\epsilon$ be the split component of the center of M_1' .

LEMMA 5.2.2. The torus A_1^{ε} is a maximal split torus in $G'(\gamma_1')$ the centralizer of γ_1' in G'.

Let B be a maximal split torus in $G'(\gamma_1')$. Since γ_1' is semisimple $G'(\gamma_1')$ is reductive and up to conjugacy in $G'(\gamma_1')$ we may assume $A_1^{\varepsilon} \subset B$. Let M_2 (resp. M_2') be the centralizer of B in G (resp. G'), we have $M_2' \subset M_1'$. Up to conjugacy inside M_1 we may assume that M_2 is the Levi component of a standard parabolic subgroup $P_2 \subset P_1$ of G. Since γ_1' commutes with B we have $\gamma_1' \in M_2'$ and γ_1' normalizes N_2 the unipotent radical of P_2 (γ_1' fixes the weights of B) and hence $\gamma_1' \in P_2'$. This implies that P_2' projects surjectively on E. The minimality property of P_1' implies $P_1' = P_2'$; moreover $\varepsilon \in M_1' = M_2'$ so that $B = B^{\varepsilon} = A_1^{\varepsilon}$. \square

COROLLARY 5.2.3. Up to conjugacy M'_1 is well defined by $c(\gamma'_1)$ the G-conjugacy class of γ'_1 .

Given $\gamma_1' \in M_1' \subset P_1'$ and $\gamma_2' \in M_2' \subset P_2'$ minimal as above we know that A_1^{ε} and A_2^{ε} are maximal split tori in $G'(\gamma_1')$ and $G'(\gamma_2')$. If γ_1' and γ_2' are conjugate then A_1^{ε} and A_2^{ε} are also conjugate and the same is true for the M_1' . \square

COROLLARY 5.2.4. Given P' a standard parabolic subgroup of G' with Levi component M' and $\gamma' \in M' \cap C(\gamma'_1)$ there exists a standard parabolic P'_2 of G' associated with P'_1 such that P'_2 C P' and $m\gamma'm^{-1} \in M'_2$ for some $m \in M'$. \square

Given P_1' and P_2' as above, let $\boldsymbol{\pi}_i$ be the Lie algebra of $A_i(\mathbf{R})^0$. Let us denote as usual by $\Omega(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)$ the set of restrictions to $\boldsymbol{\pi}_1$ of elements $\mathbf{s} \in \Omega$, the Weyl group of \mathbf{G} , such that $\mathbf{s}(\boldsymbol{\sigma}_1) = \boldsymbol{\pi}_2$. Given $\sigma \in \Omega(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)$ there exist a unique element $\mathbf{s} \in \Omega$ such that \mathbf{s} induces σ and such that moreover $\mathbf{s}^{-1}\alpha > 0$ for all $\alpha \in \Delta_0^2$; it is the element with minimal length in the class σ . This provides us with an injective map from $\Omega(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)$ into Ω . We shall identify $\Omega(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)$ with its image.

Let us denote by $\Omega(\boldsymbol{\pi}_{1}^{\varepsilon}, \boldsymbol{\pi}_{2}^{\varepsilon})$ the set of restrictions to $\boldsymbol{\pi}_{1}^{\varepsilon}$ of elements $s \in \Omega$ such that $s(\boldsymbol{\pi}_{1}^{\varepsilon}) = \boldsymbol{\pi}_{2}^{\varepsilon}$. Since M_{i} is the centralizer of A_{i}^{ε} (in G) such an s defines an element in $\Omega(\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2})$ and hence $\Omega(\boldsymbol{\pi}_{1}^{\varepsilon}, \boldsymbol{\pi}_{2}^{\varepsilon})$ may be regarded as a subset of $\Omega(\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2})$ and be identified with a subset of Ω .

LEMMA 5.2.5. $\Omega(\boldsymbol{n}_{1}^{\varepsilon}, \boldsymbol{n}_{2}^{\varepsilon})$ is the set of $s \in \Omega$ such that

- (i) $s(\boldsymbol{n}_1) = \boldsymbol{n}_2$
- (ii) $s^{-1}(\alpha) > 0 \qquad \forall \alpha \in \Delta_0^2$
- (iii) $\varepsilon s = s \varepsilon$.

The first two conditions define $\Omega(\boldsymbol{n}_1, \boldsymbol{n}_2)$; if an element satisfies the three conditions it clearly defines an element in $\Omega(\boldsymbol{n}_1^\varepsilon, \boldsymbol{n}_2^\varepsilon)$. Conversely if $s(\boldsymbol{n}_1^\varepsilon) = \boldsymbol{n}_2^\varepsilon$ and $s^{-1}(\alpha) > 0$ for all $\alpha \in \Delta_0^2$ the same is true for $s_1 = \varepsilon s \varepsilon^{-1}$ since P_2 is ε -invariant. Moreover s_1 and s_2 have equal restrictions to $\boldsymbol{n}_1^\varepsilon$ and hence equal restrictions to $\boldsymbol{n}_1^\varepsilon$. This implies $s = s_1$. \square

Given P' a standard parabolic subgroup of G', let us denote by $\tilde{\Omega}(\boldsymbol{\pi}_{1}^{\varepsilon}, P')$ the set of elements $s \in \Omega$ such that there exists a parabolic subgroup $P_{2}^{\prime} \subset P'$ standard in G' with $s(\boldsymbol{\pi}_{1}^{\varepsilon}) = \boldsymbol{\pi}_{2}^{\varepsilon}$. The Weyl group of M, denoted by Ω^{M} , acts on the left on $\tilde{\Omega}(\boldsymbol{\pi}_{1}^{\varepsilon}, P')$ and each class $\sigma \in \Omega^{M} \setminus \tilde{\Omega}(\boldsymbol{\pi}_{1}^{\varepsilon}, P')$ contains a unique element s such that $s^{-1}\alpha > 0$ for any $\alpha \in \Delta_{0}^{P}$. As usual s is the element of minimal length in σ . Thanks to Lemma 5.2.5 we see that such an s commutes with ϵ . We shall identify $\Omega^{M} \setminus \tilde{\Omega}(\boldsymbol{\pi}_{1}^{\varepsilon}, P')$ with the set $\Omega(\boldsymbol{\pi}_{1}^{\varepsilon}, P')$ of those s in Ω .

We can now describe rather explicitly the set $M' \cap c(\gamma_1)$. Given $\gamma' \in M' \cap c(\gamma_1')$ there exists $s \in \Omega(\sigma_1^{\epsilon}, P')$ and $m \in M$ such that

$$\gamma' = m^{-1}w_s\gamma_1'w_s^{-1}m$$

where w_s $\boldsymbol{\epsilon}$ G represents s. But s is not always uniquely defined by γ^1 ; it defines only a double coset in Ω :

$$\Omega^{\mathbf{M}}.s.\Omega(\boldsymbol{\alpha}_{1}^{\varepsilon}, \gamma_{1}^{\prime})$$

where $\Omega(\mathbf{n}_1^{\varepsilon}, \gamma_1')$ is the subgroup of the $\sigma \in \Omega(\mathbf{n}_1^{\varepsilon}, \mathbf{n}_1^{\varepsilon})$ such that

$$w_{\sigma} \gamma_{1}^{\prime} w_{\sigma}^{-1} = m_{1} \gamma_{1}^{\prime} m_{1}^{-1}$$

for some $m_1 \in M_1$. The element $m \in M$ is defined by γ' and $w_s \gamma_1' w_s^{-1}$ up to an element in $M(w_s \gamma_1' w_s^{-1})$ its centralizer in M.

5.3. Tame semisimple conjugacy classes.

The aim of this section is to give a simple expression for $j_{\pmb{\sigma}}^T(x)$ when $\pmb{\sigma}$ contains only semisimple elements. Such classes will be called tame semisimple. Given such a class $\pmb{\sigma}$ and $\gamma \in \pmb{\sigma}$, then $\gamma' = \gamma \varepsilon$ is semisimple and for any parabolic subgroup P' of G' containing γ' we have $N(\gamma') = N(\gamma'_1) = \{1\}$.

An element γ' defines a tame semisimple class if and only if its centralizer $G(\gamma')$, in G, contains no unipotent element. In particular, regular semisimple elements give rise to tame semisimple classes.

Let γ_1' , P_1' , M_1' be as in Lemma 5.2.2 with γ' conjugate to γ_1' (in G) and assume that $G(\gamma_1')$ contains no unipotent elements. Recall that A_1^{ε} is a maximal split torus in $G(\gamma_1')$, since $G(\gamma_1')$ contains no unipotent element the neutral component $G(\gamma_1')^{\circ}$ lies in the centralizer

of A_1^{ϵ} that is M_1' . Hence $M_1(\gamma_1')$ is of finite index say $d(\gamma_1')$ in $G(\gamma_1')$.

More generally given P' standard in G' with Levi component M' such that $\gamma' \in M'$ let us denote by $d(M, \gamma')$ the index of $M(\gamma')$ in $G(\gamma')$.

Let $s \in \tilde{\Omega}(m_1^{\epsilon}, P')$ be such that $\gamma' = m^{-1}w_s\gamma_1'w_s^{-1}m$ where w_s represents s and $m \in M$.

LEMMA 5.3.1. The cardinality of the set

$$\Omega^{M} \setminus \Omega^{M}.s.\Omega(\mathfrak{a}_{1}^{\varepsilon}, \gamma_{1}^{\prime})$$

is $d(M, \gamma)$.

Consider first the case where $\gamma' = \gamma_1'$, s = 1 and $P' = P_1'$, then all we have to prove is that the order of $\Omega(\boldsymbol{\alpha}_1^{\epsilon}, \gamma_1')$ is $d(\gamma_1')$ and this follows from the

LEMMA 5.3.2. There is a natural map from $G(\gamma_1')$ onto $\Omega(\alpha_1^{\epsilon}, \gamma_1')$ with <u>kernel</u> $M_1(\gamma_1')$.

An element $g \in G(\gamma_1')$ normalizes A_1^{ε} the center of $G(\gamma_1')^{\circ}$ and hence it normalizes M_1 . Then g defines an element s_g of $\Omega(\boldsymbol{\pi}_1^{\varepsilon}, \boldsymbol{\pi}_1^{\varepsilon})$ and since g commutes with γ_1' it lies in $\Omega(\boldsymbol{\pi}_1^{\varepsilon}, \gamma_1')$. By the very definition of $\Omega(\boldsymbol{\pi}_1^{\varepsilon}, \gamma_1')$ this map is surjective and its kernel is $M_1 \cap G(\gamma_1') = M_1(\gamma_1')$. \square

We can now return to the general case. We need only to prove it when $\gamma' = \gamma_1'$, $w_s = 1$, $P_1' \subset P'$, in which case it amounts to saying that the index of $M_1(\gamma_1')$ in $M(\gamma_1')$ is the cardinality of $\Omega^M \cap \Omega(n_1^\varepsilon, \gamma_1')$ which is clear. \square

Given & a tame semisimple class we have

$$j_{P,\sigma}(\mathbf{x}) = \sum_{\gamma \in M, \sigma\sigma} \sum_{\eta \in N} \omega(\mathbf{x}) \phi(\mathbf{x}^{-1} \eta^{-1} \gamma \varepsilon(\eta \mathbf{x}))$$

since $N(\gamma_s') = N(\gamma') = \{1\}$. Now since in such a case σ is the twisted conjugacy class of some γ_1 with $\gamma_1' = \gamma_1 \varepsilon$ semisimple in M_1' , minimal as above, we may use the description of $c(\gamma_1') \cap M$ obtained at the end of 5.2 to see that $j_{P}, \sigma^{(x)}$ is the sum over

$$\mathbf{s} \in \Omega(\boldsymbol{\sigma}_{1}^{\varepsilon}, \mathbf{P'}, \boldsymbol{\gamma}_{1}') = \Omega^{M} \backslash \tilde{\Omega}(\boldsymbol{\sigma}_{1}^{\varepsilon}, \mathbf{P'}) / \Omega(\boldsymbol{\sigma}_{1}^{\varepsilon}, \boldsymbol{\gamma}_{1}')$$

and over $\xi \in M(w_s \gamma_1^t w_s^{-1}) \setminus P$, where w_s represents s of

$$\omega(\mathbf{x})\phi(\mathbf{x}^{-1}\xi^{-1}\mathbf{w}_{s}\gamma_{1}\varepsilon(\mathbf{w}_{s}^{-1}\xi\mathbf{x}))$$
.

We may replace the sum over $\Omega(\boldsymbol{n}_{1}^{\varepsilon}, P^{1}, \gamma_{1}^{\prime})$ by a sum over $\Omega(\boldsymbol{n}_{1}^{\varepsilon}, P^{1})$ but we must divide each term by the integer $d(M, w_{s}\gamma_{1}^{\prime}w_{s}^{-1})$ as follows from the Lemma 5.3.1. We may also replace the sum over $M(w_{s}\gamma_{1}^{\prime}w_{s}^{-1}) \setminus P$ by a sum over $w_{s}M_{1}(\gamma_{1}^{\prime})w_{s}^{-1} \setminus P$ but we must divide each term by the index of $w_{s}M_{1}(\gamma_{1}^{\prime})w_{s}^{-1}$ in $M(w_{s}\gamma_{1}^{\prime}w_{s}^{-1})$ which equals

$$d(\gamma'_{1})/d(M, w_{s}\gamma'_{1}w_{s}^{-1})$$
.

We finally obtain $j_{P,\sigma}(x)$ as the sum over $s \in \Omega(\sigma x_1^{\epsilon}, P')$ of the sum over $\xi \in w_s M_1(\gamma_1') w_s^{-1} \setminus P$ of

$$d(\gamma_1')^{-1}\omega(x)\phi(x^{-1}\xi^{-1}w_s\gamma_1\epsilon(w_s^{-1}\xi x))$$

This yields immediately the following expression for $j_{\sigma}^{T}(x)$:

$$j_{\sigma}^{T}(x) = \sum_{\delta \in M_{1}(\gamma'_{1}) \setminus G} d(\gamma'_{1})^{-1} \omega(x) \phi(x^{-1} \delta^{-1} \gamma_{1} \varepsilon(\delta x)) e_{1}(\delta x, T)$$

where

$$e_{1}(\mathbf{x}, \mathbf{T}) = \sum_{\varepsilon(P)=P} \sum_{\mathbf{s} \in \Omega(\boldsymbol{\pi}_{1}^{\varepsilon}, P')} (-1)^{\mathbf{a}_{P}^{\varepsilon}} \hat{\tau}_{P}(\mathbf{H}(\mathbf{w}_{s}\mathbf{x}) - \mathbf{T})$$

depends only on the parabolic subgroup P_1' . We may get rid of the factor $d(\gamma_1')^{-1}$ if we replace $M_1(\gamma_1')$ by $G(\gamma_1')$; we obtain the

LEMMA 5.3.3. Given σ a tame semisimple class we have

$$j_{\sigma}^{T}(x) = \sum_{\delta \in G(\gamma'_{1}) \setminus G} \omega(x) \phi(x^{-1} \delta^{-1} \gamma_{1} \epsilon(\delta x)) e_{1}(\delta x, T) .$$

Replacing $\hat{\tau}_P$ by $\hat{\epsilon^{\tau}_P}$ we define e_1^{ϵ} the analogue of e_1 and we have the

LEMMA 5.3.4. Given σ a tame semisimple class we have

$$\varepsilon^{j} \mathbf{\sigma}^{T}(\mathbf{x}) = \sum_{\delta \in G(\gamma'_{1}) \setminus G} \omega(\mathbf{x}) \phi(\mathbf{x}^{-1} \delta^{-1} \gamma_{1} \varepsilon(\delta \mathbf{x})) e_{1}^{\varepsilon}(\delta \mathbf{x}, T) .$$

The reason for introducing the e_1^{ε} is so that the weighted orbital integrals have a usable form, that is, can be treated along the lines suggested by Y. Flicker in "Base change for GL(3)" and used again in his preprints on GL(3) and SU(3).

Given $s \in \Omega(\boldsymbol{\alpha}_1^{\varepsilon}, \boldsymbol{\alpha}_2^{\varepsilon})$ we define Δ_0^s to be the set of $\alpha \in \Delta_0$ such that $s^{-1}\alpha > 0$. The Lemma 5.2.5 tells us that this is the set of simple roots attached to a standard parabolic subgroup P_s^i of G^i containing P_2^i . Given s as above we introduce a function on \boldsymbol{n}_0 :

$$\varepsilon^{\mathbf{B}_{1}^{\mathbf{S}}(\mathbf{x})} = \sum_{\substack{P'_{2} \subset P' \subset P'_{s}}} (-1)^{a_{P}^{\varepsilon}} \widehat{\tau}_{P}(sX) .$$

This is the product of $(-1)^{a_{P_s}^{\varepsilon}}$ and of the characteristic functions of the $X \in \pi_0$ such that $\overline{\omega}_{\overline{\alpha}}(sX) > 0$ for any $\alpha \in \Delta_0 - \Delta_0^s$ and $\overline{\omega}_{\overline{\alpha}}(sX) \leq 0$ for any $\alpha \in \Delta_0^s - \Delta_0^s$.

Given s $\boldsymbol{\epsilon} \Omega$ we introduce

$$H_s(x, T) = s^{-1}(T - H(w_s x))$$
.

With these notations we have

$$e_1^{\varepsilon}(x, T) = \sum_{\varepsilon} B_1^{s}(-H_s(x, T))$$
 $s \in \Omega(n_1^{\varepsilon})$

where $\Omega(\mathfrak{n}_1^{\varepsilon})$ is the (disjoint) union over the P_2' of $\Omega(\mathfrak{n}_1^{\varepsilon}, \mathfrak{n}_2^{\varepsilon})$. Let $c_1^{\varepsilon}(x, T)$ be the set of $H \in \mathfrak{n}_0$ whose projection on $\mathfrak{z}^{\varepsilon} \setminus \mathfrak{n}_1^{\varepsilon}$ lies in the convex hull of the projections on $\mathfrak{z}^{\varepsilon} \setminus \mathfrak{n}_1^{\varepsilon}$ of the set of $H_s(x, T)$ with $s \in \Omega(\mathbf{n}_1^{\epsilon})$.

LEMMA 5.3.5. Assume T is sufficiently regular then

$$H \longrightarrow \sum_{s \in \Omega(\mathfrak{M}_{1}^{\varepsilon})} \varepsilon^{B_{1}^{s}(H-H_{s}(x, T))}$$

is the characteristic function of $c_1^{\epsilon}(x, T)$.

This lemma is essentially Lemma 3.2 in Arthur's paper [Inventiones Math. 32, 1976]. More details will be given in Lecture 9 below.

We shall denote by $v_1^{\epsilon}(x, T)$ the volume of the projection on $\int_{0}^{\epsilon} \mathbf{v}_1^{\epsilon} dt dt$ of $c_1^{\epsilon}(x, T)$. We obtain the

PROPOSITION 5.3.6. Given σ a tame semisimple class we have

$$\int_{\mathbf{G}_{1}}^{1} \varepsilon^{j} \int_{\mathbf{\sigma}_{1}}^{\mathbf{T}_{1}} (\mathbf{x}) d\mathbf{x} = \int_{\mathbf{G}_{1}(\gamma_{1}^{i})}^{\mathbf{G}_{1}(\gamma_{1}^{i})} (\mathbf{x}) \phi(\mathbf{x}) \phi(\mathbf{x}^{-1} \gamma_{1} \varepsilon(\mathbf{x})) v_{1}^{\varepsilon}(\mathbf{x}, t) d\mathbf{x}$$

 $\underline{\text{where}} \quad v(\gamma_1') \quad \underline{\text{is the volume of}} \quad A_1^{\varepsilon}(\mathbf{R})^{\circ} G(\gamma_1')^{\circ} \setminus \mathbf{G}(\gamma_1')^{\circ}.$