Lecture 9

THE MODIFIED BASIC IDENTITY
AND WEIGHTED ORBITAL INTEGRALS

J.-P. Labesse

9.1. The modified basic identity.

As was pointed out in Lecture 5, it seems to be more convenient
when dealing with & -expansion to use a completely e-invariant
truncation. Let P be an e-invariant parabolic subgroup of G; we
define e%

P to be the characteristic function of the set of X & 01.0

such that

T(X) >0 Yo €A —AP
o 0 0
where by definition
-1
m =1 ] &'m
a2 & ¥y
.L':O

and o is the orbit of o under E.

We need the analogue of Lemma 2.1, namely the

LEMMA 9.1.1. There are constants ¢ and N such that the number

of &§€ P\G for which

w.O.L(H(Sx) - T) >0

t N !
for all o € AO - AIS is at most cix[l\eNHTh,



We need only to show that we can find a set of representatives

for these § each of which satisfies

N, TN
5] <ctlx| te o *

According to reduction theory we may choose § such that dx € GP(TO)
and more precisely we may assume that &6x = nam with n e wy a compact
setin N, m € wy, 2 compact set in G and a € AO(R)O; moreover

H(8x) = H(a) and

(1) a(H(5%)) > alT ) Vae Ag

Taking over the numbering of Lecture 2, we have

(3) TB'OL(H(CSX)) <cq (1l + log |x |) Vae s,

Our assumption is not (4) as in Lecture 2 but only
(4" wL(H(8x)) > wo(T) Vaed, - A

But (3) and (4') imply

) 2~1
(4") w‘a(H(Sx)) > Ua(T) i cl(l + log |x |)
P
for any ocer- AO.

The inequalities (1), (3), and (4) yield the inequality

(2) ] IH(sx) | < CZ(l + loglx| + {|ITID



Since &x = nam with n and m in compact sets and H(éx) = H(a)

we conclude that
log [8x| < cg(1 + log x| + {|IT]) . a

Given P1 CpPC P2 three parabolic subgroups with P e-invariant

we define p oi to be the characteristic function of the set of H € 0!0

such that
. 2
(i) o(H) >0 Vae by
(ii) a(H) <0 Vo eAl - A%
P
(iii) m-&'(H) >0 Va eAO - AO
We obviously have
2 N
¥ oo = ‘I:P T
& P°1 P,eP
P_OP .

>
Given P1 and PZ we define 60'1' to be zero if there is no c-invariant

2 .
1 2 ch if Q, the

maximal e-invariant parabolic subgroup in PZ’ contains P

parabolic subgroup between P and P and to be
1

LEMMA 9.1.2. I_f Plc PC P2 with P e-invariant then

Clearly ng < Eci; now consider H in the support of 805, we

Q

need to prove that for any o € (AO - Ag) N A,

we have U&(H) > 0.



We know (cf. Lecture 2, page 7) that

AR Y * 5%
BE&A,AQ
with >\0L,B > 0 and mzx € &8 c &? The same equation holds for averaged
weights, and by assumption m"E(H) > 0. All we need to prove is that
m&(H) > 0, but Acl2 c A% and hence +vy(H) > 0 for any vy € A?; using

assertion (c) of Lecture 2, page 6, which tells us that
Q+ .+, Q
(o)) < o
we see that ‘m‘&(H) >0 for any W € &g O
We may now state the modified basic identity

PROPOSITION 9.1.3. Given P, an e-invariant parabolic subgroup

we have

[l

L Kplsx, ax)gép (H(sx) - T)
s§€ P\G

’I‘,P1

) I _oS(H(ex) - T)A
P,CPCP, £€P\G

KP(Ex, £x)

Using Lemma 2.4 (in Lecture 2) one needs only to remark that, thanks

to Lemma 9.1.2 we have



A

In Lectures 3 and 4 we may now substitute e‘?P for p and

*Oi for oi, and no change in the proofs is needed except Lemma 4.2.2
[

which has to be replaced by

LEMMA 9.1.4. Assume that H € %e\n; and X € w (some compact set

in azo) are such that Eci(H—X) = 1; then there exist a constant c¢

independent of X such that

) < c1+ )

Recall that H = Hl + I—I2 is the decomposition associated with the

direct sum

3\ = @) ® 3 \as

By assumption o(H-X) <0 for any o€ &y - A% and then

on(HZ) < —oc(Hl) + cq

_ R
for any o € Ap - Ap, and some constant c,.
For any o€ 4, - A(g we have assumed that m'a.(H—X) > 0 and
hence
- - (Y
T (H,) = To(H) > T(X) > ¢, - 0

The modified truncation was already used in Lecture 5. No modification

has to be made in Lecture 6, in particular the T in that lecture should

P



not be modified. In Lectures 7 and 8 one has to substitute eo% for ci
and the only slight change is in the proof of Lemma 7.3 (essentially the

same as Lemma 4.2.2).

9.2. The convex hull of some "orthogonél sets."

The aim of this section is to prove Lemma 5.3.5. Given s € Q

we introduced
H (@, T) = s [(T-H(w_x))

LEMMA 9.2.1. Given s and t in Q and T sufficiently regular

Hs(x, T) - Ht(x, T)

is a positive linear combination of the roots vy such that sy >0 and

ty < 0,
Let y = W X and o = ts-l, we have

H (x, T) - H(x, T) = s HT - H(y) - H (y, T))

=siT- ol 4+ H(w n))

if y = ank with aéMO,neNO

the comments preceding it we see that this equals

-1 - v - v
s ( L hg e) ) hy, ¥
8>0

sv>0
agB <0 ty<0

and k € K. Using Lemma 6.3 and

with hB = hSY >0 if T 1is sufficiently regular. a



Let Pl be an e-invariant parabolic subgroup of G; the real
vector space (01.(1})8 isomorphic to }E\ azi will be denoted by Vl'
Any root B of Al in N1 defines a hyperplane V-B— which depends
only on the orbit 8 of B under E. The chambers are the connected

components of V'l the complement in V of the union of the VE-. The

positive chamber Ci is defined by the following inequalities:

- 1
a(H) >0 Vo €b, - 4,

Given s € Q(Mi) there is a standard e-invariant parabolic sub-

n

group P2 such that s(mi) =0Z§, we define C;(s) to be __I(CS)
where C; is the positive chamber of VZ' The chamber Ci(s) is

the set of H € Vl such that

y(H) >0 VY € 4,(s, €)

where Al(s, €) 1is the set of restrictions to Vl of the elements in

-1 2
s (AO - AO)-

£ . o s £
LEMMA 9.2.2. The map s —> Cl(s) is a bijection between Q(O‘Ll)

and the set of chambers in Vl'

. e . . . X .
Given a chamber C~ in V1 there is a unique chamber C in

(f which contains C%, and there is at least one s g # such that

4
F = sC is a "facette" of CO the positive Weyl chamber in ozg‘. Since
Q acts simply transitively on the set of Weyl chambers the "facette" F

M
depends only on C®. Since @ acts trivially on azcl} we may choose



s so that sa >0 for any a € Al Under those conditions s is

0
uniquely determined by C®. Since P1 is e-invariant we see that s
and ese—l have the same properties and hence s = ese-l. This
implies s g Q(m,i) and we conclude that C°% = Ci(s) for a unique

se Q(ui). O

Two chambers Ci(s) and Ci(t) are said to be adjacent if there
exist a linear form A on V1 unique up to scalars such that X is
positive on Ci(s) and negative on Ci(t); in particular the roots vy
such that sy > 0 and ty < 0 have restrictions to V1 equal to cyk
with <y > 0; the projection \?1 on V1 ~of Y equals C'Y; with c'Y > 0.

Given s € Q(n;:) we define Hg to be the projection on Vl of

H (x, T). ~ S

LEMMA 9.2.3. If s and 1t define adjacent chambers then

with ¢ > 0 (provided T is sufficiently regular).

According to Lemma 9.2.1 we have

n m
+
1]
o~
oy
<<

—
|
-1
><

sy>0
tvy<0

with h and ¢! ositive.
sy y P O



Given s € Q(Dti’) we have introduced Al(s, e); let ﬁl(s, £)
be the set of m‘Y the dual basis of the basis defined by the ¥ with

Y € Al(s, e).

LEMMA 9.2.4. If s and t define adjacent chambers there is a

bijection 8 : Al(s, g) —> Al(t, e) such that 6() = -8 if B defines

the wall between the two chambers and m‘e(Y) = m‘Y if v # 8.

Let R be the element in Al(s, e) which defines the wall between
Ci(s) and Ci(t), then —BeAl(t, e) and we define 6 on B by

8(B) = -B. Let VB be the hyperplane defined by 38 and Yy € Al(s, £)

with v # 8; there exist Y, € As(t, e) such that vy and Yy have the

same projection on VB and we define 6(y) to be Yq Then clearly
Tav) T Ty if y#s8. 0O
Let A € V'1 s the complement of the walls in Vl’ and s e Q(t‘lzi);

we define (Pjs\ to be the characteristic function of the set of H € Vl

such that

TJ‘Y(H) <0 if y(A) >0

VY € Al(s, e)
TITY(H) >0 if v(A) <0

Let a(s, A) be the number of vy & A,(s, &) such that vy(A) < 0. In
Lecture 5 we have introduced functions eB? on 01,0, which depend
only on the projection on Vl' If A€ Ci the positive chamber in Vl

we have



10

A
B3 = 0>y m)
We now introduce
v, wy = 7 AN o hged
569(01,;)

Lemma 5.3.5 is an immediate consequence of the

PROPOSITION 9.2.5. The function H — ¢(A, H) 1is independent of

A E V'l and is the characteristic function of the convex hull of the H;

(provided T is sufficiently regular).

We need some more lemmas.

LEMMA 9.2.6. Assume m'Y(H—H:’) <0 for each Y€ Al(s, ¢) and each

s € (e i), then for any A € V) one has p{A, H) = 1.

Given A, there is one and only one s e Q(8t i) such that
A€ Ci(s) and by definition of goé\ we see that ¢ [t\(H—Hi) = 0 wunless

t = 5 and hence
R _ O
y{(A, H) = cPS(H Hs) =1 .

LEMMA 9.2.7. Assume (A, H) # 0 and A € Ci(s) then provided T

is sufficiently regular we have

€
my(H_Hs) <0 forall ye€ Al(s, £)

Since A — Y(A, H) 1is constant on Ci(s) it suffices to prove

that (A, H-H_) < 0.
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If y(A, H) # 0, then for at least one t € Q(UL?) we have

jt\(H-Hi) = 1 and hence

- & _ € .
vz -9 = (1, H-HT) <0

but
{». H-uE ) = (n, H-HEY + (0, HE - HY)
and Lemma 9.2.1 implies

<A,Ht€—Hg><0. a

LEMMA 9.2.8. The set C of H € V, such that m‘y(H-H:) <0 for

1
all vy e Al(s, g) and all s € Q(D‘li) is the convex hull of the set of

Hz with s € Q(ni), provided T is sufficiently regular.

The set C is an intersection of closed convex sets and hence is
a closed convex set. Thanks to Lemma 9.2.1 we see that H: eC if T
is sufficiently regular. Now consider H €& V1 outside the convex hull

of the HZ, then there exist A eV such that

() - (n)

for all s e Q(o‘l.i) and in particular if s is such that A lies in

the closure of Ci(s) . This implies H ¢ C. O

The function A — y(A, H) is clearly locally constant on V'l.
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To finish the proof of Proposition 9.2.5 we need only to prove that

- € £
w(Ag, H) = w(AT, H) when [\G € Cl(o) and ATE Cl(T) are elements
in two adjacent chambers. Let A be a linear form defining the wall Vk

between the two chambers.
A A
. € o _ T .
Given s € Q(ﬂl.l) then ()‘p s (H) = cfs (H) if y(AO)y(AT) >0

for all vy € Al(s, e). If it is not so there is one and only one root
B e Al(s, €) proportional to A such that B(Ag)B(AT) < 0, and there
exist t € Q(ot i) such that Ci(s) and Ci(t) are adjacent and

separated by V>\. Since y(Ag)-y(AT) >0 if vy # B8 we see that

A i\
_ O/ g€ T/rr 1€
g (H) = @ S(H-HD) + ¢ _"(H-H))

is the characteristic function of the set ¢f H such that

mY(H—HS) >0 if Y(Ao) <0

e .
m (H-HD) < i y() >0

for all vy e Al(s, ) and Yy # 8. Let 9o be the bijection of Lemma 9.2.4;

using Lemma 9.2.3 we see that given vy € Al(s, €),

UY(H—HS) = )(H—Ht)

—
u\)e(Y

whenever vy # B and hence

g (H) = £ (H)
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since y(AO)-e(Y)(AG) >0 if y # 8. This implies that

a(s,AG) I\c a(t,AO) AG
(-1) @ _°(H-H) + (-1) ¢, ° (H-H))
a(s,AT) AT a(t,AT) AT
= (-1 P, (H-H) + (-1) P, (H-H)

and hence \P(AO‘, H) = IP(AT, H). 0O

Let A be in any chamber, then

vi(x, T) = [ (A, H)dH = lim | HCNE) o myan
v

t>0 V
1 £>0 1

= lim ) IS (RHY (Lqyalst) ¢ MH-H_)dH
Y sea(a V1 7

An elementary computation yields
€
. et <A’Hs >
Vl(X, T) = lim Z c

t+0 Seﬂ(%i) . 1 'ﬂ_
YeAl(s,e)

v ()

1
where cg = !det(yi, yj) 1%, Y, € Al(s, e). Using Lemma 9.2.4 one shows

that c, = ¢y is independent of s and depends only on Pl' Finally

we get
ay
€ S <A’HS(X’T)>
Vl(x’ T) - ( 8) T—[- ( )
a;)! L < veh
1 sea’l(ﬂll) Yeﬂl(s,e)

In particular it is a polynomial of T of degree ai.
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