Randomness in Number Theory

Peter Sarnak
Mahler Lectures 2011
<table>
<thead>
<tr>
<th>Number Theory</th>
<th>Probability Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole numbers</td>
<td>Random objects</td>
</tr>
<tr>
<td>Prime numbers</td>
<td>Points in space</td>
</tr>
<tr>
<td>Arithmetic operations</td>
<td>Geometries</td>
</tr>
<tr>
<td>Diophantine equations</td>
<td>Matrices</td>
</tr>
<tr>
<td>:</td>
<td>Polynomials</td>
</tr>
<tr>
<td>:</td>
<td>Walks</td>
</tr>
<tr>
<td>:</td>
<td>Groups</td>
</tr>
<tr>
<td>Automorphic forms</td>
<td>Percolation theory</td>
</tr>
</tbody>
</table>
Dichotomy: Either there is a rigid structure (e.g. a simple closed formula) in a given problem, or the answer is difficult to determine and in that case it is random according to some probabilistic law.

- The probabilistic law can be quite unexpected and telling.
- Establishing the law can be very difficult and is often the central issue.
The randomness principle has implications in both directions.
⇒ Understanding and proving the law allows for a complete understanding of a phenomenon.
⇐ The fact that a very explicit arithmetical problem behaves randomly is of great practical value.

Examples:

- To produce pseudo-random numbers,
- Construction of optimally efficient error correcting codes and communication networks,
- Efficient derandomization of probabilistic algorithms “expanders”.

Peter Sarnak Mahler Lectures 2011
Randomness in Number Theory
Illustrate the Dichotomy with Examples

(0) Is $\pi = 3.14159265358979323 \ldots$ a normal number?
π is far from rational;
Mahler (1953): $\left| \pi - \frac{p}{q} \right| > q^{-42}$.

(1) In diophantine equations:
A bold conjecture: Bombieri–Lang takes the dichotomy much further. If V is a system of polynomial equations with rational number coefficients (“a smooth projective variety defined over \mathbb{Q}”), then all but finitely many rational solutions arise from ways that we know how to make them (parametric, special subvarieties, group laws …)
“The ignorance conjecture”
(2) A classical diophantine equation

Sums of three squares: for \(n > 0 \), solve

\[x^2 + y^2 + z^2 = n; \quad x, y, z \in \mathbb{Z}. \]

If \(P = (x, y, z) \), \(d^2(P, 0) = n \).

\[\mathcal{E}(n) := \text{set of solutions.} \]

E.g. for \(n = 5 \), the \(P \)'s are

\[(\pm 2, \pm 1, 0), (\pm 1, \pm 2, 0), (\pm 2, 0, \pm 1), \]
\[(\pm 1, 0, \pm 2), (0, \pm 2, \pm 1), (0, \pm 1, \pm 2) \]

\[N(n) := \#\mathcal{E}(n), \text{ the number of solutions, so } N(5) = 24. \]
\(N(n) \) is not a random function of \(n \) but it is difficult to understand.

Gauss/Legendre (1800): \(N(n) > 0 \) iff \(n \neq 4^a(8b + 7) \).
(This is a beautiful example of a local to global principle.)

\(N(n) \approx \sqrt{n} \) (if not zero).
Project these points onto the unit sphere

\[
P = (x, y, z) \mapsto \frac{1}{\sqrt{n}}(x, y, z) \in S^2.
\]

We have no obvious formula for locating the \(P \)'s and hence
according to the dichotomy they should behave randomly. It is
found that they behave like \(N \) randomly placed points on \(S^2 \).
Figure 1. Lattice points coming from the prime $n = 1299709$ (center), versus random points (left) and rigid points (right). The plot displays an area containing about 120 points.
One can prove some of these random features.

- It is only in dimension 3 that the $\tilde{E}(n)$’s are random. For dimensions 4 and higher, the distances between points in $\tilde{E}(n)$ have ‘explicit’ high multiplicities. For 2 dimensions there aren’t enough points on a circle — not random.

(3) **Examples from Arithmetic:**

P a (large) prime number. Do arithmetic in the integers keeping only the remainders when divided by p. This makes $\{0, 1, \ldots, p - 1\} := \mathbb{F}_p$ into a finite field.
Now consider \(x = 1, 2, 3, \ldots, p - 1 \) advancing linearly.
How do \(\overline{x} := x^{-1} \pmod{p} \) arrange themselves?
Except for the first few, there is no obvious rule, so perhaps randomly?

Experiments show that this is so. For example, statistically, one finds that \(x \mapsto \overline{x} \) behaves like a random involution of \(\{1, 2, \ldots, p - 1\} \).

One of the many measures of the randomness is the sum

\[
S(1, p) = \sum_{x=1}^{p-1} e^{2\pi i (x+\overline{x})/p}.
\]

If random, this sum of \(p - 1 \) complex numbers of modulus 1 should cancel to about size \(\sqrt{p} \).
Fact: \(|S(1, p)| \leq 2\sqrt{p}\). (A. Weil 1948)
Follows from the “Riemann hypothesis for curves over finite fields”. The fact that arithmetic operations such as \(x \mapsto \overline{x} \pmod{p}\) are random are at the source of many pseudo-random constructions: e.g.

Ramanujan Graphs:
These are explicit and optimally highly connected sparse graphs (optimal expanders).

Largest known planar cubic Ramanujan graphs

\(n = 80\)
\(\text{deg} = 3\)
Arithmetic construction:
\(q \equiv 1 \pmod{20} \) prime

\[
1 \leq i \leq q - 1 \quad ; \quad i^2 \equiv -1 \pmod{q}
\]

\[
1 \leq \beta \leq q - 1 \quad ; \quad \beta^2 \equiv 5 \pmod{q}
\]

\(S \) the six \(2 \times 2 \) matrices with entries in \(\mathbb{F}_q \) and of determinant 1.

\[
S = \left\{ \frac{1}{\beta} \begin{bmatrix} 1 \pm 2i & 0 \\ 0 & 1 \mp 2i \end{bmatrix}, \quad \frac{1}{\beta} \begin{bmatrix} 1 & \pm 2 \\ \mp 2 & 1 \end{bmatrix}, \quad \frac{1}{\beta} \begin{bmatrix} 1 & \pm 2i \\ \pm 2i & 1 \end{bmatrix} \right\}
\]

Let \(V_q \) be the graph whose vertices are the matrices \(A \in \text{SL}_2(\mathbb{F}_q) \), \(|V_q| \sim q^3 \), and edges run between \(g \) and \(sg \) with \(s \in S \) and \(g \in V_q \).
V_q is optimally highly connected, 6 regular graph on $|\text{SL}_2(\mathbb{F}_q)|$ vertices, optimal expander. Here arithmetic mimics or even betters random.

(4) **The Möbius Function**

\[
n \geq 1, \quad n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}
\]

\[
\mu(n) = \begin{cases}
0 & \text{if } e_j \geq 2 \text{ for some } j, \\
(-1)^k & \text{otherwise.}
\end{cases}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(n)$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Is $\mu(n)$ random? What laws does it follow.
There is some structure, e.g. from the squares

$$\mu(4k) = 0 \quad \text{etc.}$$

One can capture the precise structure/randomness of $\mu(n)$ via
dynamical systems, entropy,

Very simplest question thinking of a random walk on \mathbb{Z} moving to
the right by 1 if $\mu(n) = 1$, to the left if $\mu(n) = -1$, and sticking if
$\mu(n) = 0$. After N steps?
\[\frac{1}{N} \sum_{n \leq N} \mu(n), \quad N \leq 100\,000 \]

Is

\[\left| \sum_{n \leq N} \mu(n) \right| \ll_{\varepsilon} N^{1/2+\varepsilon}, \quad \varepsilon > 0? \]

This equivalent to the Riemann hypothesis! So in this case establishing randomness is one of the central unsolved problems in mathematics.

One can show that for any \(A \) fixed and \(N \) large,

\[\left| \sum_{n \leq N} \mu(n) \right| \leq \frac{N}{(\log N)^{A}}. \]
(5) The Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad s > 1 \]

it is a complex analytic function of \(s \) (all \(s \)).

\[\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}. \]

Riemann Hypothesis: All the nontrivial zeros \(\rho \) of \(\zeta(s) \) have real part 1/2. Write \(\rho = 1/2 + i\gamma \) for the zeros.

\[\gamma_1 = 14.21 \ldots \quad \text{(Riemann)} \]

and the first \(10^{10} \) zeros are known to satisfy RH.
$0 < \gamma_1 \leq \gamma_2 \leq \gamma_3 \ldots$

Are the γ_j’s random?
Scale first so as to form meaningful local statistics

$$\hat{\gamma}_j := \frac{\gamma_j \log \gamma_j}{2\pi}$$

$\hat{\gamma}_j, j = 1, 2, \ldots$ don’t behave like random numbers but rather like eigenvalues of a random (large) hermitian matrix! GUE

Nearest neighbor spacings among 70 million zeroes beyond the 10^{20}-th zero of zeta, versus $\mu_1(GUE)$
(6) **Modular Forms**

Modular (or automorphic) forms are a goldmine and are at the center of modern number theory. I would like to see an article “The Unreasonable Effectiveness of Modular Forms”

Who so? I think it is because they violate our basic principle.

- They have many rigid and many random features.
- They cannot be written down explicitly (in general)
- But one can calculate things associated with them to the bitter end, sometimes enough to mine precious information.
Below is the nodal set \(\{ \phi = 0 \} \) of a highly excited modular form for \(\text{SL}_2(\mathbb{Z}) \).

\[
\Delta \phi + \lambda \phi = 0, \quad \lambda = \frac{1}{4} + R^2.
\]

\(\phi(z) \) is \(\text{SL}_2(\mathbb{Z}) \) periodic. Is the zero behaving randomly? How many components does it have?

Hejhal–Rackner nodal lines for \(\lambda = 1/4 + R^2, \ R = 125.313840 \)
Hejhal–Rackner nodal lines for $\lambda = 1/4 + R^2$, $R = 125.313840$
The physicists Bogomolny and Schmit (2002) suggest that for random waves

\[N(\phi_n) = \# \text{ of components } \sim cn \]

\[c = \frac{3\sqrt{3} - 5}{\pi}, \text{ comes from an exactly solvable critical percolation model!} \]

- The modular forms apparently obey this rule. Some of this but much less can be proven.
- These nodal lines behave like random curves of degree \(\sqrt{n} \).

(7) **Randomness and Algebra?**
How many ovals does a random real plane projective curve of degree \(t \) have?

Harnack: \(\# \text{ of ovals} \leq \frac{(t-1)(t-2)}{2} + 1 \)

Answer: the random curve is about 4% Harnack,
\(\# \text{ of ovals} \sim c't^2, c' = 0.0182 \ldots \) (Nazarov–Sodin, Nastasescu).
Some references:

