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ABSTRACT. This paper deals with some questions that have received a lot of attention since
they were raised by Hejhal and Rackner in their 1992 numerical computations of Maass forms.
We establish sharp upper and lower bounds for the L2-restrictions of these forms to certain
curves on the modular surface. These results, together with the Lindelof Hypothesis and known
subconvex L∞-bounds are applied to prove that locally the number of nodal domains of such a
form goes to infinity with its eigenvalue.

1. Introduction.

Cusp forms are the building blocks of the modern theory of automorphic forms. They are
elusive objects and even the existence of the everywhere unramified forms on GL2(Q)\GL2(A)
that we study in this paper, is known only by indirect means (Selberg 1956 using the trace
formula). The first reliable numerical computations of such forms was carried out by Hejhal
and Rackner [HR92]. They computed some high frequency Maass cusp forms (both even and
odd) for Γ = SL2(Z). Let X = Γ\H be the modular surface. It has an orientation reversing
isometry σ induced from the reflection of H, given by σ(x+ iy) =−x+ iy.

The even Maass cusp forms (which will be the central objects in this paper) are functions
φ : H→ R satisfying

(i) ∆φ +λφ = 0 , λ = λφ > 0 ,
(ii) φ(γz) = φ(z), γ ∈ Γ,

(iii) φ(σz) = φ(z),
(iv) φ ∈ L2(X), normalized so that

∫
X φ 2(z) dA(z) = 1,

where dA(z) = dxdy
y2 is the hyperbolic area measure.

Such a φ is automatically a cusp form [Hej76] and we will assume that it is also an
eigenfunction of all the Hecke operators Tn, n≥ 1. The corresponding automorphic cusp forms
on GL2(Q)\GL2(A) are the everywhere unramified forms and their L-functions L(s,φ) are
the GL2 analogues of the Riemann zeta function. We will use the parameter tφ to parametrize
the eigenvalue by λφ = t2

φ
+ 1

4 and we let nφ be the numbering of such φ ’s when ordered by λφ .
Selberg [Se89] proved a Weyl law for these φ ’s (thus demonstrating their existence);

(1) λφ ∼ 24nφ , n→ ∞.
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Let Zφ ⊂ X denote the nodal line of φ , that is the set {z ∈ X : φ(z) = 0}. It consists of a
finite union of real analytic curves. The connected components of X\Zφ are the nodal domains
of φ and we denote their number by N(φ). More generally, for any subset K⊂X we denote by
NK(φ) the number of such domains that meet K. From [HR92] we have in Figure 1, a picture
of the nodal lines for four such φ ’s with tφ = 47.926...,125.313...,125.347... and 125.523...
(note that tφ is denoted by R in [HR92]).

Figure 1

This paper is concerned with answering some questions that have been raised in connection
with such pictures. The most basic is to determine the number of nodal domains, either in
totality or in subsets of a fundamental domain. Another question, which appears particularly
hard to address analytically, is whether Zφ is nonsingular (and hence is self-avoiding). Using
heuristic arguments relating the zero sets of random waves to an exactly solvable bond perco-
lation model, as well as further heuristics relating eigenfunctions of quantizations of chaotic



Nodal domains of Maass forms I 3

Hamiltonians to random waves, Bogomolny and Schmit [BS02] suggest that in such settings
N(φ) has an asymptotic law! In our setting of even Maass cusp forms for X, it reads
Bogomolny-Schmit Conjecture

N(φ)∼ 2
π
(3
√

3−5)nφ , nφ → ∞.

There is also a localized version for NK(φ) for K a subset of X like the windows in
Figure 1 and the prediction is remarkably accurate for these four forms. Based on this and
other experimentation in different settings ([BS07], [NS09],[Nas11],[Ko12]) it seems that this
prediction is probably correct, with either the above constant or one very close to it.

According to Courant’s general nodal domain theorem [CH53] and (1), one has asymptoti-
cally

(2) N(φ)≤ nφ =
1

24
t2
φ

(
1+o(1)

)
.

However, even showing that N(φ) (or more generally NK(φ) with K a compact piece of X)
goes to infinity with nφ is problematic. At issue is the fact that N(φ) is a global topological
invariant and hence is difficult to study from local considerations. In particular, it is not true for
a general Riemannian surface that N(φ) must increase with nφ , so that the problem is truly a
global one (see [St25], [CH53] and [Le77] where it is shown that there are infinite sequences of
eigenfunctions each with few nodal domains). Our main result is a conditional proof (assuming
something much weaker then a generalized Riemann Hypothesis) that NK goes to infinity with
nφ .

We turn to a precise formulation of our results and methods. The isometry σ of X maps the
nodal domains of φ bijectively to themselves. In this way, the nodal domains are partitioned
into those fixed by σ , which we call inert, and those paired off by σ which we call split (see
Figure 2 from [HR92], where the black and red ones are inert and the green ones are split).
Correspondingly we write

(3) N(φ) = Nin(φ)+Nsp(φ),

where Nin(φ) is the number of inert domains and Nsp(φ), which is even, is the number of
split domains. The nodal domains for φ that we will produce are all inert. According to the
estimates given below, if the Bogomolny-Schmit Conjecture is true, then most of the nodal
domains for φ are split (when nφ → ∞); however we have no proof that there are any split
nodal domains! Our analysis is based on intersecting Zφ with various analytic arcs in X. If β

is such a simple arc then clearly

(4) Nβ (φ)≤ |Zφ ∩β |+1.

Denote by Kβ (φ) the number of sign changes of φ when traversing β . A key role is played
by the arc δ = {z ∈X : σ(z) = z} which is fixed by σ . This arc is composed of three piecewise
analytic geodesics, denoted by δ1, δ2 and δ3 in Figure 3. A simple topological analysis (see
Section 2.1) shows that

(5) 1+
1
2

Kδ (φ)≤ Nin(φ)≤ |Zφ ∩δ |,

and more generally for β a nonempty segment of δ

(6) 1+
1
2

Kβ (φ)≤ Nβ

in(φ)≤ |Zφ ∩β |+1,
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Figure 2

The complexification technique of Toth and Zelditch (using a form of Jensen’s Lemma) may
be applied to our φ ’s whose normal derivative vanishes along δ , to yield

(7) |Zφ ∩δ | � tφ log tφ .

Thus, the number of inert nodal domains is much smaller than what is predicted by the
Bogomolny-Schmit Conjecture. To give a lower bound for Nin(φ) we will use (5) and (6) and
hence we seek sign changes in φ along a given curve. To this end, we examine the behavior of
φ when restricted to certain curves. These restriction questions were first examined in [Re04]
and [BGT07], and sharp versions are discussed in [Sa08]. Let β be a nonempty simple analytic
segment. We seek sharp upper and lower bounds for the L2-restrictions of φ . It is plausible
that for any such fixed β and large tφ (recall that φ will always be L2 normalized over X)

(8) t−ε

φ
�

ε

∫
β

φ
2(z) d×z�

ε
tε
φ ,
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where throughout the paper d×z denotes the hyperbolic arclength measure
√

dx2+dy2

y for z =
x+ iy. Clearly, this implies that β is not part of the nodal line Zφ for tφ large enough, which
itself is a very strong statement. If β is a geodesic or horocycle segment, then one can show
without difficulty that β is not a part of Zφ (see Section 2.2).

If β is a closed horocycle or a long enough (compact) subsegment of δ , we establish the
sharp bounds in (8) . One of the key ingredients in the proof of the lower bound is the Quantum
Unique Ergodicity (QUE) Theorem of Lindenstrauss [Lin06] and Soundararajan [So10]. It
asserts that the restriction of φ 2 to a nice Ω⊂ X (say a geodesic ball or more generally micro
local lifts to Γ\SL2(R)) satisfies

(9)
∫

Ω

φ
2(z) dA(z)→ Area(Ω)

Area(X)
as tφ → ∞ .

Theorem 1.1. Let C be a closed horocycle in X. Then, for ε > 0

t−ε

φ
�

ε

∫
C

φ
2(z) d×z�

ε
tε
φ .

Remark 1.2. Using probabilistic arguments, Hejhal and Rackner ([HR92] (6.12)) conjecture
that the restricted mean square of φ to a closed horocycle is asymptotic to 1

Area(X) =
3
π

. This
follows from the conjectured equation (83) in Appendix A.

Theorem 1.3. If β is a long enough but fixed compact subsegment in δ1 or δ2, then for ε > 0

1�
β

∫
β

φ
2(z) d×z≤

∫
δ

φ
2(z) d×z�

ε
tε
φ .

In Section 6 (see Theorem 6.1) we first prove the lower bound in Theorem 1.3 in non-
localised form, namely the inequality between the first and third terms in this Theorem. For
this, little of the arithmetic features of X (other than QUE) are used. The localized version is
technically much more involved, requiring a delicate asymptotic analysis of the off-diagonal
terms, with both arithmetic and analytic input being crucial. It is in this analysis that we are
forced to make β long (see Section 6.2 and Appendix A).

The sharp lower bounds in the restriction theorems above can be combined with strong
upper bounds for

∫
I φ(z) d×z for I an arbitrary segment of C or β , and subconvexity bounds

for ‖ φ ‖∞ on X (see [IS95]) to give lower bounds for |Zφ ∩C | and |Zφ ∩β | (see the end of
Section 5 and Section 6.3).

Theorem 1.4. Let C be a fixed closed horocycle in X. Then for ε > 0

t
1

12−ε

φ
�ε |Zφ ∩C | � tφ .

Remark 1.5. The upper bound above can be established without recourse to arithmetic, that
is it holds for any hyperbolic surface Y and any closed horocycle on Y, as was shown recently

by Jung [Ju11]. The lower bound can be improved to t
1
2−ε

φ
if one were to assume that the

L∞-norm of φ restricted to compact sets is bounded by tε
φ

.

The random wave model for the φ ’s predicts that |Zφ ∩C | ∼ length(C )
π

tφ as tφ → ∞ (see
Appendix B).

Our primary interest is in sign changes of φ along δ . The lower bound in the next Theorem
is conditional on the Lindelof Hypothesis for the L-functions L(s,φ) associated to the form
φ . This conjecture asserts that L( 1

2 + it,φ)�ε

(
(1+ |t|)tφ

)ε and its truth follows from the
corresponding Riemann Hypothesis. For our purpose, what we need is a bound of the form
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L( 1
2 + it,φ)�ε (1+ |t|)AtB

φ
for some finite A but with B < 1

12 . The best subconvex bounds
for L(s,φ) known give B = 1

3 (see [Iv01],[JM05]) which is far short of 1
12 . For this reason we

simply assume the full Lindelof Hypothesis.

Theorem 1.6. Fix β ⊂ δ a sufficiently long compact geodesic segment on δ1 or δ2 and assume
the Lindelof Hypothesis for the L-functions L(s,φ). Then

|Zφ ∩β | �
ε

t
1
12−ε

φ
.

Remark 1.7. As noted in (7) , general complexification techniques [TZ09] yield |Zφ ∩β | � tφ .

Theorem 1.6 together with (5) leads to our main result.

Theorem 1.8. With the same assumptions as in Theorem 1.6

Nβ

in(φ)�ε
t

1
12−ε

φ
,

and in particular that Nβ (φ) goes to infinity as nφ goes to infinity.

Finally, we examine the behavior of φ in the shrinking regions near the cusp of X. For z in
the standard fundamental domain for Γ, and when ℑ(z)> 1

2π
tφ , φ is approximated very well

by one term in its Fourier expansion. From this, one can execute a much finer analysis of Zφ

even into a slightly larger region away from the cusp. It appears that all the nodal domains in
these regions are inert domains, see Section 4 (this being the analogue of the suggestion in
[GS12] that all the zeros of a holomorphic Hecke eigenform of weight k in the region of the
standard fundamental domain with y≥

√
k are real, that is they lie on the boundary δ ). In any

case, we show that there are at least 1
1000 tφ inert domains in the region y > 1

100 tφ . In particular,

(10) N(φ)≥ Nin(φ)≥
1

1000
tφ .

Other finer aspects of the geometry and topology of Zφ near the cusp (here y > ε0tφ with ε0
any positive constant) are discussed in Section 4.

Our results concerning these even Maass cusp forms can be extended to the Eisenstein
series E(z, 1

2 + it) and to odd cusp forms on X. The Eisenstein series are even with respect to
the symmetry σ and other than renormalizing the L2-norms by restricting to a compact subset
of X and invoking ([LS95], [Ja94]) the proofs go through in the same way. The odd forms
vanish identically on δ and the analysis of the nodal domains proceeds by working with the
normal derivative of φ restricted to δ . The analogue L2-restriction lower bounds and L∞ upper
bounds can be established with small modifications as indicated in Appendix C. In particular,
one concludes that Theorem 1.8 is valid for the odd cusp forms as well.

One can also extend these results on nodal domains to congruence subgroups as long as they
carry reflection symmetries. For example if Y= Γ0(q)\H is a surface of genus g, where Γ0(q)
is the usual ‘Hecke’ congruence group, then our reflection σ(z) =−z induces an isometry σ̃

of Y. The fixed set of σ̃ consists of a finite union of geodesics running between cusps. We
can diagonalize the space of newforms (the oldforms being taken care of at a lower level) with
respect to σ̃ , yielding σ̃ -even and σ̃ -odd forms φ . Correspondingly, φ has σ̃ inert and split
nodal domains. The main result, Theorem 1.8, extends to this setting, namely if Y is fixed (as
is g) and φ is as above, then the lower bound in Theorem 1.8 for the number of inert nodal
domains for φ holds as tφ → ∞ (see the remark after Theorem 2.1). In particular, the number
of nodal domains for φ goes to infinity with tφ .

The techniques used to prove our main results rely heavily on the Fourier expansion of φ

and especially the arithmetic interpretation of its Fourier coefficients, so that it is not clear if
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the results extend to compact arithmetic surfaces Y. In a follow-up paper [GRS] we show that
indeed similar results hold for nodal domains of eigenfunctions on certain such Y’s. Again, the
key is that Y carry a reflection symmetry. To produce such arithmetic surfaces with a symmetry
we take Y to be Γ\H, where Γ corresponds to the unit group of an anisotropic rational quadratic
form f (x1,x2,x3) of signature (2,1). To ensure that Y has a reflective symmetry σ̃ , one requires
that there be an integral root vector of v = (x1,x2,x3) of length 2 (the sign is such that this
gives a hyperbolic reflection). In this compact setting the proof of the critical Theorem 1.3
for σ̃ even eigenfunctions as well as various of the other ingredients, are deduced using more
representation theoretical tools. We leave the precise statements and details to Part II.

Acknowledgments.
AR and PS thank the BSF grant. All three authors have been partially supported by grant
NSFDMS-0554345.
AR thanks the ISF Center of Excellency grant and the Veblen Fund at IAS. He was also
supported by the ERC grant 291612.
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during part of the years 2010-2012 when much of this work took place. He also acknowledges
support from the Ellentuck Fund at IAS and the Vaughn Fund at OSU.
The software Mathematica c© was used on a dual-core PC to generate some of the images, using
data from [Th05].

2. Nodal domains and crossings.

We give in this Section a discussion related to equations (3) to (6) in the introduction and a
proof that segments of horocycles and geodesics cannot be contained in nodal lines.

2.1. Inert nodal domains and zeros.
Let X= Γ\H be the modular surface and σ : X→ X be the isometry of X (as a hyperbolic

surface) induced by the reflection of H given by

σ(x+ iy) =−x+ iy.

In what follows, φ(z) will be an even Hecke-Maass cusp form, so that

(11) φ(σz) = φ(z).

Let δ be the set of points on X fixed by σ so that δ = δ1∪δ2∪δ3 as shown below (here we
take the standard fundamental domain F = F−∪F+). The nodal line of φ is the set

Zφ = {z ∈ X : φ(z) = 0},
while the nodal domains of φ are the (finitely many) connected components of X \Zφ . We
denote them by Ω1,Ω2, ...,ΩN where N = N(φ) is their number. From (11), it is clear that if
Ω is a nodal domain (of φ ) then so is σ(Ω). Moreover, since the Ω j’s are disjoint, they fall
into two types:

(1) Inert domains V1, ...,VR where V j = Ω j′ for some j′ and σ(V j) = V j;
(2) Split domains W1, ...,WS, σ(W1), ...,σ(WS) where W j = Ω j′ for some j′

and σ(W j)∩W j = /0.

Thus the list of Ω’s is V1, ...,VR,W1, ...,WS,σ(W1), ...,σ(WS) so that

(12) N(φ) = Rφ +2Sφ .
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Figure 3

Geometrically, we can recognize the two types of nodal domains according as Ω j ∩δ is empty
or not. If Ω j ∩δ is nonempty, then it is an open nonempty subset of δ , so that the invariance
of δ under σ ensures that Ω j ∩σ(Ω j) is nonempty and so Ω j = σ(Ω j). If on the other hand
Ω j ∩δ is empty, then being open and connected, Ω j lies entirely in F− or F+ as indicated in
Figure 1, so that Ω j does not meet σ(Ω j) since σ(F+) =F−. Thus, inert domains are exactly
the domains meeting δ and can be thought of as boundary nodal domains for F+. They are the
analogues of what are called real zeros for holomorphic forms in [GS12]. Topologically, δ is a
circle when compactified at the cusp i∞. The vanishing of φ at the cusp and the normalization
of the first Fourier coefficient (see Section 3) ensures that φ (restricted to δ ) is positive in a
neighborhood of i∞. Let

S̃ =
{

i∞ = K̃1, K̃2, ..., K̃m
}

with m = mφ ≥ 1, denote the zeros of φ arranged cyclically on δ . Denote by S the subset
{K1, ...,Kn} of the K̃ j’s at which φ changes sign. Clearly n = nφ is even and n < m (since
K̃1 /∈S ). We call mφ the number of zeros of φ on δ and nφ the number of sign changes.

Each inert nodal domain V j meets δ \ S̃ and the intersection consists of a disjoint set
of segments of the form (K̃ j, K̃ j+1). Moreover, different inert domains give rise to different
disjoint sets of such segments. It follows that the number of inert V j’s is at most the number of
intervals (K̃ j, K̃ j+1) so that we have the upper bound Rφ ≤ mφ .

To obtain a lower bound for Rφ , we first assume that the nodal line Zφ is nonsingular (that
is φ and Oφ never vanish together) so that mφ = nφ +1. In this case, Zφ has no self-crossings
and consists of say ν simple closed curves `1, ..., `ν (each an embedded circle in X). If K ∈S ,
then `i passes through K for some i and being an embedded circle must cross δ at some other
point K′ ∈S ∪{i∞}. The resulting reflected curve (by σ ) yields a closed curve in X which is
one of the components of Zφ and which we denote by `K,K′ . These curves meet δ at exactly two
distinct points and every point of S appears once. Thus we get exactly 1

2 n simple closed curves
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in X corresponding to the sign changes of φ on δ . The remaining ν− 1
2 n closed curves come

in pairs and do not meet δ . It follows from this, by induction on ν and n, that there are exactly
1
2 n+1 nodal domains whose boundary contains one of the `K,K′’s. In other words, under the
nonsingular assumption, there are 1

2 n+1 inert domains and ν− ( 1
2 n+1) split domains.

In general, Zφ consists of piecewise analytic arcs with singularities formed by crossings
(cusps) and self-intersections. However these may be removed locally one at a time at the cost
of possibly decreasing the number of inert nodal domains but not changing S or at worst not
increasing the quantity Rφ − ( 1

2 nφ +1). In more detail, suppose that locally (away from δ ), Zφ

looks like the figure on the left below with ± denoting the sign of φ near the singularity and
Ωi the corresponding pieces of the complement.

Figure 4

Deforming the curves near the singularity (as shown in the figure on the right above) would
possibly decrease the number of connected components by one and keeps everything away
from the singularity the same. If the singularity looks like that below, with p and q joined as
shown, then we remove the arc joining them which may again decrease the number of domains
without changing anything else.

Figure 5

Next, consider the figure on the left below where Zφ meets the boundary δ . Here, p and q
are sign changes of φ on δ . To get the figure on the right, we deform the arcs containing p and
q into each other so that p and q are replaced by the point t which is not a sign change. Here we
reduce the value of nφ by two and lose exactly one inert nodal domain, so that Rφ − ( 1

2 n+1)
is unchanged and the singularity s is removed.
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Figure 6

Last, we consider the case when one encounters a possible cusp singularity on the boundary
as shown below. Here, there are two possible deformations. Suppose that φ is positive on
Ω1 and Ω3, and negative on Ω2. Then, we may remove the singularity s which is not a sign
change, as shown in the middle figure. In this way, the number of inert nodal domains may
have possibly decreased while the number of sign changes remains unchanged. The same
conclusion holds if φ is positive on Ω1 and Ω2, and negative on Ω3. Now we may remove the
arc between Ω1 and Ω2 as shown on the right.

Figure 7

In this way, we remove all crossings and singularities so that when completed, Zφ will be a
nonsingular curve and the quantity Rφ − ( 1

2 nφ +1) will not have increased. We then have the
following

Theorem 2.1. Let Rφ denote the number of inert nodal domains of φ . Suppose mφ denotes the
number of zeros of φ on δ , and nφ the number of sign changes. Then

1
2

nφ +1≤ Rφ ≤ mφ .

If Zφ is nonsingular, then there are exactly 1
2 nφ +1 inert nodal domains of φ .

Remark 2.2. An analog of this lower bound also holds for other arithmetic surfaces as
mentioned in the Introduction. However, one must take into account the genus g of the surface.
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Then, the lower bound takes the shape

Rφ ≥
1
2

nφ +1−g,

so that for a fixed surface, Rφ � nφ .

2.2. Segments not in Zφ .
We end this Section by showing that the restriction of φ to a geodesic segment or a horocycle

segment cannot be identically zero. That is to say that Zφ cannot contain a geodesic segment
or a horocycle segment.

We begin with a horocycle segment C ⊂ X. If φ
∣∣
C
≡ 0 then by analytic continuation

φ
∣∣
C ∗ ≡ 0, where C ∗ ⊂H is the complete horocycle extending C . It is well known [Hed36]

from the theory of the horocycle flow, that the projection of C ∗ in X is either a closed horocycle
or it is dense in X. In case of the latter, clearly φ ≡ 0 in X, which is a contradiction. On the
other hand, if the projection of C ∗ in X is a closed horocycle C̄ , then Theorem 1.1 is applicable
(see Section 5 and Theorem 5.1) so that we have an essentially sharp, and in particular a
non-zero, lower bound for the L2-restriction of φ to C̄ , which contradicts that φ

∣∣
C ∗ ≡ 0. One

can also use the (exponentially small) lower bound of [Ju11] which has the advantage of
not making any arithmetic assumptions. However, we give an simpler argument as follows:
suppose C̄ is the set {x+ iY :− 1

2 < x≤ 1
2} with a fixed Y > 0. Then for any integer n≥ 1,

‖φ
∣∣∣
C̄
‖2 =

∫ 1
2

− 1
2

|φ(x+ iY )|2 dx� |λφ (n)Kitφ (2πnY )|2,

where λφ (n) are the Hecke Fourier coefficients and K is the Bessel-MacDonald function (see
Sections 3 and 5 for details and notation). It is known that the Bessel function above does
not vanish if we choose n >

tφ
Y . Moreover, the Hecke relations ensures that |λφ (n)| > 1

2 for
all n chosen to be either a prime or its square. Thus the L2-norm above does not vanish. This
completes the proof of the claim for horocyclic segments.

For geodesic segments β , assume that φ
∣∣
β
≡ 0. First, if β ⊂ δ then along β we have both

φ
∣∣
β
≡ 0 and ∂nφ

∣∣
β
≡ 0 so that by the reflection principle (or Carleman estimates) φ vanishes

identically on X. Hence we may assume that β is disjoint from δ . Let β̃ be the lifted complete
geodesic in H, so that again from analytic continuation φ

∣∣
β̃
≡ 0. Hence by the reflection

principle, as an eigenfunction on H, φ satisfies φ(R
β̃

z) =−φ(z), where R
β̃

is the reflection of

H in β̃ . Moreover, we also have φ(R jz) = φ(z) where R j is the reflection in δ̃ j, for j = 1,2 and
3. Thus, φ 2(z) is invariant under the subgroup Λ of the isometries of H generated by R1,R2,R3
and R

β̃
. The reflection group < R1,R2,R3 > is known to be a maximal discrete subgroup of

the isometry group of H. Since R
β̃
/∈< R1,R2,R3 > (since we are assuming here that β̃ (modΓ)

is not contained in δ ), we conclude that Λ is not a discrete subgroup of the isometry group
of H. Hence the same is true of the subgroup of words of even length in R1,R2,R3 and R

β̃
,

as a subgroup of SL2(R). In particular, the closure of this last group contains a 1-parameter
connected subgroup of SL2(R) which we denote by B. So φ 2 is invariant under the action of B
on H. By connectedness, φ is also invariant under B so that φ is an eigenfunction that lives on
B\H. Such an eigenfunction is a function of one variable (satisfying an ODE) and unless it is
identically zero cannot be invariant under Γ. Thus φ ≡ 0 on H, a contradiction, proving that
φ
∣∣
β
≡ 0 is impossible.
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3. Preliminaries, approximation theorems and QUE.

If φ(z) is a Maass eigenform associated with the eigenvalue λ = 1
4 + t2

φ
for the Laplace operator

on the modular surface X= SL2(Z)\H, then recall that it has a Fourier expansion of the type

(13) φ(z) = ∑
n6=0

ρφ (n)y
1
2 Kitφ (2π|n|y)e(nx),

where z= x+ iy, Kν(y) the MacDonald-Bessel function and e(x) = exp(2πix). In what follows,
we will always assume that our eigenform is L2-normalized, that it is a Hecke-eigenform and
that |tφ | → ∞. It is then known that (see Iwaniec [Iw90] and Hoffstein-Lockhart [HL94]) that
for ε > 0

(14) t−ε

φ
� |ρφ (1)|2e−πt � tε

φ .

It will be convenient to use the notation

(15) ρ̃φ (n) = ρφ (n)e−
π
2 tφ .

One has

(16) ρφ (n) = λφ (n)ρφ (1) and ρ̃φ (n) = λφ (n)ρ̃φ (1)

where λφ (n), with λφ (1) = 1, are the Hecke eigenvalues which by [KS03] are known to satisfy

(17) λφ (n)�ε nθ+ε ,

with θ = 7
64 . and are expected to satisfy the Ramanujan-Selberg Conjecture

(18) λφ (n)�ε nε .

3.1. Approximation theorems.
We recall here the asymptotic behavior of Kν(u) for ν = ir with large r > 0 and all u > 0.

Lemma 3.1. Let C be a sufficiently large positive constant and r > 0.

(1) If 0 < u < r−Cr
1
3 , then

e
π
2 rKir(u) =

√
2π

(r2−u2)
1
4

sin
(

π

4
+ rH(

u
r
)
)(

1+O(
1

rH( u
r )
)

)
,

(2) If u > r+Cr
1
3 , then

e
π
2 rKir(u) =

√
π

2
1

(u2− r2)
1
4

e−rH( u
r )

(
1+O(

1
rH( u

r )
)

)
,

(3) If |u− r| ≤Cr
1
3 , then

e
π
2 rKir(u) = π

(
2
r

) 1
3

Ai
(
(u− r)(

u
2
)−

1
3

)
+O(r−

2
3 ),

where Ai(x) is the Airy function. The implied constants are absolute.

Here the non-negative function H(ξ ) (shown in Fig.8) is given by

(19) H(ξ ) =

{
arccosh( 1

ξ
)−
√

1−ξ 2 : 0 < ξ ≤ 1,√
ξ 2−1− arcsec(ξ ) : ξ > 1.
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For 0 < ξ ≤ 1, it is a decreasing function, while for ξ > 1 it is increasing. Near ξ = 1, it
has order of magnitude |ξ 2−1| 32 and near ξ = 0 it has a logarithmic singularity.

The lemma follows readily from asymptotic expansions for the Airy function, and from
uniform asymptotic expansions for the K-Bessel function by Balogh [Ba66], [Ba67] (based on
earlier work of Olver).

Corollary 3.2. Uniformly in u > 0 and r sufficiently large, one has

Kir(u)�


(r2−u2)−

1
4 e−

π
2 r,

u−
1
2 e−u,

r−
1
3 e−

π
2 t .

Define

(20) Φ(z) =
φ(z)

ρφ (1)e−
π
2 tφ√y

= ∑
n6=0

λφ (n)e
π
2 tφ Kitφ (2π|n|y)e(nx).

Proposition 3.3. Let ∆ = t
1
3

φ
log tφ . Then for any c < y≤ tφ

2π
with any fixed c > 0, we have

(1)

Φ(z) =
√

2π ∑
|n|≤

tφ−∆

2πy

λφ (n)
e(nx)

(t2
φ
− (2πny)2)

1
4

sin
(

π

4
+ tφ H(

2π|n|y
tφ

)

)

+O
(
t
θ− 1

3+ε

φ
(

∆

y
+1)

)
,

(2) For any − 1
2 < α ≤ β ≤ 1

2∫
β

α

Φ(x+ iy) dx =

√
2π ∑

0<|n|≤
tφ−∆

2πy

λφ (n)
2πin

e(nβ )− e(nα)

(t2
φ
− (2πny)2)

1
4

sin
(

π

4
+ tφ H(

2π|n|y
tφ

)

)

+O
(
t
θ− 4

3+ε

φ
(

∆

y
+1)

)
.
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(3)
∫ 1

2
− 1

2
|Φ(x+ iy)|2 dx =

2π ∑
|n|≤

tφ−∆

2πy

|λφ (n)|2
1√

t2
φ
− (2πny)2

sin2
(

π

4
+ tφ H(

2π|n|y
tφ

)

)

+O
(
t
2θ− 2

3+ε

φ
(

∆

y
+1)

)
,

where the implied constants depend at most on θ and ε (and not on α , β and y).

Proof. This follows by decomposing the sum in (18) into three sums with n’s in the range
2π|n|y < tφ −∆,

∣∣2π|n|y− tφ
∣∣≤ ∆ and 2π|n|y > tφ +∆ so that we may apply Lemma 3.1. The

analysis is straightforward using (14), (16), (17) together with the bound Ai(x)� |x|− 1
4 as

|x| → ∞ for the Airy function. The middle transitional range is responsible for the error terms
indicated together with the error terms given by Lemma 3.1, while the infinite range gives a
term with exponential decay.

We next provide a good approximation to Φ(x+ iy) for a sequence of large values of y (this
being the analog of Theorem 3.1 in [GS12], where a similar result was shown for holomorphic
Hecke cusp forms). Define, for integers l

(21) yl =
tφ

2πl
, 1≤ l� tφ .

Proposition 3.4. For any small ε > 0 let l ∈ Z with 1 ≤ l ≤ ε
tφ
∆

. Assume that φ is an even
Maass cusp form. Then, for any − 1

2 < x≤ 1
2 , writing zl = x+ iyl we have

Φ(zl) = π

(
16
tφ

) 1
3

λφ (l)Ai(0)cos(2πlx)

+

√
2πl
tφ

∑
|n|≤l−1

λφ (n)
e(nx)

(l2−n2)
1
4

sin
(

π

4
+ tφ H(

|n|
l
)

)(
1+O(

1

tφ H( |n|l )
)

)

+O(t
θ− 2

3
φ

).

Moreover, if t
1
3+ε

φ
� yl � εtφ , then for any y satisfying |y− yl | ≤ εylt

− 2
3

φ

Φ(x+ iy) = π

(
16
tφ

) 1
3

λφ (l)Ai
(
(2πl(y− yl))(πly)−

1
3

)
cos(2πlx)

+
√

2π ∑
|n|≤l−1

λφ (n)
e(nx)

(t2
φ
− (2πny)2)

1
4

sin
(

π

4
+ tφ H(

2π|n|y
tφ

)

)
×

1+O(
1

tφ H( 2π|n|y
tφ

)
)

+O(t
θ− 2

3
φ

),

where the implied constants depend at most on ε .

Proof. The main terms above come from the transitional range, where the n’s are restricted to
satisfy ∣∣|n|− tφ

2πyl

∣∣= ∣∣|n|− l
∣∣≤ ∆

2πyl
≤ ε,
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so that the contribution here comes only from n =±l in the first case, with a similar analysis
for the second. One uses Lemma 3.1, (20) and the fact that the cusp form is an even function.
The error term comes from the rapid exponential decay of the tail end together with the error
from the main term.

We end this subsection with the following elementary lemma that will be used often.

Lemma 3.5. Let ε > 0 be fixed. Then for all 0 < u <U− ε and 0 < α ≤ 1
u

∑
n=1

1
(U2−n2)α

�ε

{
1
U logU : if α = 1
U1−2α : if α < 1.

3.2. Mean-value theorems and QUE.
In this subsection all the statements are valid for Maass forms φ without the assumption

that it is even.

Lemma 3.6. For X ≥ 1, and k = 1,2

∑
|n|≤X
|λφ (n)|2k�ε Xtε

φ .

Proof. The case k = 1 is due to Iwaniec [Iw90]. For k = 2, one follows Kim’s proof [Ki03]
that sym4(φ) corresponds to an automorphic cusp form on GL5, and then applies Molteni’s
extension [Mo02] to GLn of Iwaniec’s method to bound sums of Fourier coefficients of cusp
forms (see also [Li10], and [LY11] where a similar result is proved for k = 4).

For the proofs of some of the theorems in later sections, we will need stronger versions of
the above Lemma for the case k = 1, with sharp cutoff functions in suitable intervals. It is clear
that one need only prove the case when φ is either even or odd.

Proposition 3.7. For any fixed ω > 0
1

100
ωtφ ≤ ∑

|n|≤ωtφ

|ρ̃φ (n)|2 ≤ 100ωtφ

and

∑
10−5ωtφ≤|n|≤ωtφ

|ρ̃φ (n)|2 ≥
1

1000
ωtφ .

Proof. As we are assuming φ is even or odd, there is no loss in assuming n ≥ 1 when
convenient. It is also clear that the second part follows easily from the first.

We apply QUE with an incomplete Eisenstein series, that is with

Eg(z) = ∑
γ∈Γ∞\Γ

g
(
y(γz)

)
.

with a function g ∈C∞
0 (R+) to be chosen, applied to the integral∫

X
|φ(z)|2Eg(z) dA(z).

Unfolding, this tells us

(22) ∑
|n|6=0
|ρφ (n)|2

∫
∞

0
g(y)Kitφ (2π|n|y)2 d×y =

3
π

∫
∞

0
g(y)

dy
y2 +o(1).
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Let α > 0 and set

g(y) =

{
1 if α < y≤ 2α,

0 otherwise,
(while g is not smooth, it has compact support and is a legitimate choice) so that

(23) ∑
|n|6=0
|ρφ (n)|2

∫
∞

0
g(y)Kitφ (2π|n|y)2 d×y =

3
2πα

+o(1).

(i). The lower bound.
By Prop. 3.3 and (23) we have∫ 2α

α
∑

0<|n|≤
tφ−∆

2πy

|ρ̃φ (n)|2
1√

t2
φ
− (2πny)2

dy
y
≥ 1

10α
,

the error terms being negligible because θ is sufficiently small. Interchanging the order of
summation and integration and simplifying gives us

1
√

tφ
∑

0<|n|≤
tφ−∆

2πα

|ρ̃φ (n)|2
∫ min{4π|n|α,t−∆}

2π|n|α

1
√

tφ −u
du
u
≥ 1

10α
.

The integral does not exceed 10√
tφ

, so that the statement in the proposition follows on putting

α = 1
2πω

.

(ii) The upper bound.
The integral in (23) can be investigated asymptotically to sufficient accuracy. Let

g̃(s) =
∫

∞

0
g(y)ysd×y ,

and recall that∫
∞

0
K2

itφ (2π|n|y)ysd×y =
1
8
(π|n|)−s Γ2( 1

2 s)
Γ(s)

Γ(
1
2

s+ itφ )Γ(
1
2

s− itφ ) ,

so that∫
∞

0
g(y)K2

itφ (2π|n|y) d×y =
1

2πi

∫
ℜ(s)=1

1
8
(π|n|)−s Γ2( 1

2 s)
Γ(s)

Γ(
1
2

s+ itφ )Γ(
1
2

s− itφ )g̃(−s)ds .

Applying Stirling’s formula as tφ → ∞ (see Section 6.1 for a similar treatment), we have to
good accuracy that∫

∞

0
g(y)K2

itφ (2π|n|y) d×y∼ 2π
e−πtφ

2πitφ

∫
ℜ(s)=1

1
8
(π|n|

tφ

)−s Γ2( 1
2 s)

Γ(s)
g̃(−s)ds ,

∼ 2π
e−πtφ

8tφ
Wg
(π|n|

tφ

)
,(24)
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where

Wg(x) =
1

2πi

∫
ℜ(s)=1

Γ2( 1
2 s)

Γ(s)
g̃(−s)x−sds ,

=
1

2πi

∫
ℜ(s)=1

Γ2( 1
2 s)

Γ(s)
g̃0(s)x−sds ,

where g0(y) = g(y−1). Then for x≥ 0 we have Wg(x) = 4Ag(2x), where Ag(x) is (essentially)
the Abel transform

(25) Ag(x) =
∫

∞

x

g( 1
y )√

y2− x2
dy .

In particular, if g≥ 0, then so is Wg. Moreover, we see that∫
∞

0
g(y)

dy
y2 =

1
π

∫
∞

0
Wg(y)dy ,

so that (22) now reads

(26)
2π

tφ
∑
n6=0
|ρ̃φ (n)|2Wg(

π|n|
tφ

) =
24
π2

∫
∞

0
Wg(y)dy+o(1) .

Then, with the choice of g(y) as before

(27)
∫

∞

0
g(y)

dy
y2 =

1
2α

.

Also, if 0≤ x≤ (8α)−1, then Wg(x)≥ 4log2 > 1, say. Hence, using positivity and the above,
as tφ → ∞

1
tφ

∞

∑
n=1
|ρ̃φ (n)|2Wg(

πn
tφ

)> ∑
1≤n≤

tφ
8πα

|ρ̃φ (n)|2 .

Then, from (27), (26) and the above, we have

∑
1≤n≤

tφ
8πα

|ρ̃φ (n)|2 ≤
100
8πα

tφ

which proves the proposition.

Corollary 3.8. Let a
q ∈Q with (a,q) = 1 and q≥ 1. There exist small positive constants Dq

and εq such that if X = ωtφ , with 0 < ω < ∞ fixed, then

DqX ≤ ∑
1≤|n|≤X

|ρ̃φ (n)|2 cos2 (2π
an
q

)
≤ 100X

and

∑
εqX≤|n|≤X

|ρ̃φ (n)|2 cos2 (2π
an
q

)
≥

Dq

2
X .

(Here εq =
1

200 Dq suffices).

Proof. We will use the following: there is a positive number Cq such that
(i) if 4 - q, then cos2

(
2π

an
q

)
≥Cq for all n ∈ Z;

(ii) if 4 | q, the same is true for those n not of the form q
4 m with m odd. Otherwise, the

cosine vanishes. Note that this implies that if 8 | q, then cos2
(
2π

an
q

)
≥Cq for all odd

numbers n.



18 Amit Ghosh, Andre Reznikov and Peter Sarnak

Thus the lower bounds in the corollary follow from Prop. 3.7 with Dq =
1

100Cq when 4 - q.
For the remaining cases we consider first the case when 8 | q. Write q = 2Jq0 with J ≥ 3

and q0 odd. Put

S(X) = ∑
1≤n≤X

|ρ̃φ (n)|2 and T (X) = ∑
1≤n≤X

|ρ̃φ (n)|2 cos2 (2π
an
q

)
.

Then,

(28) T (X)≥Cq ∑
n≤X

n6= q
4 m,m odd

|ρ̃φ (n)|2 :=Cq(S(X)−V (X)),

say, where
V (X) = λ

2
φ (2

J−2) ∑
∗

l≤ X
2J−2

q0|l

|ρ̃φ (l)|2,

where the ∑
∗ denotes a sum over odd numbers.

If λ 2
φ
(2J−2) ≤ 1

2 , then V (X) ≤ 1
2 S( X

2J−2 ) ≤ 1
2 S(X) so that T (X) ≥ 1

2CqS(X), and we are
done. In the other case, we first observe that

T
( X

2J−2

)
≥ ∑

∗

l≤ X
2J−2

q0|l

|ρ̃φ (l)|2 cos2(2π
a
q

l)

≥Cqλ
−2
φ

(2J−2)V (X) .

Substituting into (28) gives

T (X)≥
Cq

1+λ 2
φ
(2J−2)

S(X).

Since λ 2
φ
(2J−2) is bounded above independently of φ , the conclusion follows.

Last, we consider the case when 4||q so that we write q = 4q0. First we have

(29) T (X)≥Cq ∑
n≤X
2|n

|ρ̃φ (l)|2 :=CqW (X),

say.
Suppose λ 2

φ
(2) ≥ 1

2 . Then it follows that W (X) ≥ 1
2 (S(

1
2 X)−W ( 1

2 X)), so that W (X) ≥
1
3 S( 1

2 X). Substituting this into (29) gives the result. Next, if λ 2
φ
(2) ≤ 1

2 , then the Hecke
relations imply λ 2

φ
(4)≥ 1

4 .Then we rewrite (29) as

T (X)≥Cq ∑
n≤X
4||n

|ρ̃φ (n)|2 ≥Cqλ
2
φ (4)∑

∗

n≤ X
4

|ρ̃φ (n)|2

≥ 1
4

Cq
(
S(

1
4

X)− ∑
n≤ 1

4 X
n even

|ρ̃φ (n)|2
)

=
1
4

CqS(
1
4

X)− 1
4

CqW (
1
4

X).

From (29), we also have CqW (X) ≤ T (X). Combining with the above we conclude that
T (X)≥ 1

5CqS( 1
4 X) completing the proof. The second conclusion follows from the first.
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4. Nodal domains near the cusp.

In this section, we investigate the structure of the nodal domains as we move away from the
cusp. As is expected, the nodal domains are quite predictable very near the cusp but soon lose
this feature as we move into the fundamental domain. Let Rφ denote the number of inert nodal
domains of φ in X, and let Zφ denote the nodal line. More generally, let α denote an analytic
arc segment in X and let Nα(φ) be the number of nodal domains of φ whose boundary meets
α , so that Rφ = Nδ (φ).

4.1. A lower bound. Our first result gives a lower bound for Rφ (and so for N(φ)) by counting
the number of sign changes of φ on the boundary δ , since it follows from Theorem 2.1 that the
number of nodal domains must exceed half the number of such sign changes.

Theorem 4.1. If φ is an even Hecke-Maass cusp form, then

N(φ)≥ Rφ � tφ .

This follows from the following Proposition with x0 = 0;

Proposition 4.2. For any fixed − 1
2 < x0 ≤ 1

2 , there are at least ctφ sign changes z = x0 + iy of
φ(z) in the segment 1

100 tφ < y < tφ , with a positive constant c.

Proof. For large y, we expect that only the terms n =±1 would contribute significantly in the
sum (20). Since φ is even, the zeros of φ are the same as those of

(30) Φ̌(z) := e
π
2 tφ Kitφ (2πy)cos(2πx0)+ ∑

n≥2
λφ (n)e

π
2 tφ Kitφ (2πny)cos(2πnx0).

Using Lemma 3.1, we see that the sum above is exponentially small and that the first term is
highly oscillatory due to the behavior of the Bessel function. More precisely, let ε > 0 be a
sufficiently small fixed number and choose y so that ( 1

2 + ε)tφ < 2πy < (1− ε)tφ . Then, we
have

Φ̌(z) =

√
2π

(t2
φ
− (2πy)2)

1
4

sin
(

π

4
+ tφ H(

2πy
tφ

)

)
cos(2πx0)

(
1+O(

1
tφ
)

)
+O(e−εtφ ).

For any positive integer m, let ym be the unique solution to H( 2πy
tφ

) = πm
tφ

so that if x0 6=± 1
4 (or

not close to it), we have

(t2
φ
− (2πym)

2)
1
4

√
π

sec(2πx0)Φ̌(x0 + iym) = (−1)m +O(
1
tφ
).

Due to the restriction imposed on y, it follows that one may take 1≤ m� tφ , so that we get at
least ctφ sign changes of φ .

It remains to consider the lines x0 =± 1
4 (and those x0 close by). The term n = 2 is now the

main term unless |λφ (2)| is very small. So first suppose that |λφ (2)|> 1
log tφ

, so that

Φ̌(z) =−λφ (2)e
π
2 tφ Kitφ (4πy)+ ∑

n≥2
λφ (2n)e

π
2 tφ Kitφ (4πny)(−1)n +O(e−εtφ ).

The analysis is now the same as that given above for the case x0 6= 1
4 , with y replaced with 2y,

so that we assume ( 1
2 + ε)tφ < 4πy < (1− ε)tφ and the same conclusion follows.
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Next, if |λφ (2)| ≤ 1
log tφ

, the Hecke relations imply that |λφ (4)| ≥ 1
2 , so that this time the

term involving λφ (2) can be absorbed into the error term so that we obtain

(31) Φ̌(z) = λφ (4)e
π
2 tφ Kitφ (8πy)(1+O(

1
log tφ

))+

∑
n≥3

λφ (2n)e
π
2 tφ Kitφ (4πny)(−1)n +O(e−εtφ ) .

The conclusion then follows if we restrict y so that ( 1
3 + ε)tφ < 4πy < ( 1

2 − ε)tφ .

4.2. Analysis away from the cusp. To describe the nodal domains further, we will need
some results regarding the distribution of zeros of the functions Kir(u). It is known that (see
[Du90], [Ol74]) Kir(u) has infinitely many positive simple zeros in the interval 0 < u < r,
and has no zeros for r ≤ u < ∞. We denote the zeros by kr, j with j = 1,2, ... such that
r > kr,1 > kr,2 > ... > 0. For r fixed and j→ ∞, we have kr, j→ 0. On the other hand for any
fixed j, with r growing, one has

(32) kr, j = r+a j

( r
2

) 1
3
+

3
20

a2
j

( r
2

)− 1
3
+O

(
r−

2
3

)
,

where a j denotes the (negative) zeros of the Airy function Ai(x), with 0 > a1> a2 > ... . It is
known that [Ol74]

(33) a j =−
(

3π

8
(4 j−1)

) 2
3
+O

(
j−

4
3

)
,

as j→ ∞. The first few zeros of the Airy function are approximately a1 = −2.33811, a2 =
−4.08795, a3 =−5.52056 etc. .

We recall the definition of yl from (21), so that if y > y1, Kitφ (2πy) is nonzero (the first zero
occurs in the transitional region). Then by Lemma 3.1, Corollary 3.2 and (30), we have

(34) Φ̌(z) = e
π
2 tφ Kitφ (2πy)

(
cos(2πx)+O(e−εtφ )

)
,

for some small ε > 0. It thus follows that the nodal line Zφ must lie in an exponentially narrow
neighborhood of the lines x = ± 1

4 . If, as y varies in this range away from y1, Zφ does not
intersect these vertical lines, then there are only two possible configurations for the nodal
domains here, illustrated by Figure 9. The question of which of the two occurs is completely
determined by the sign of the second Fourier coefficient λφ (2), assuming it is not zero (because
the Bessel functions are of constant sign). Thus, if λφ (2)> 0, we have Figure 9(a) and Figure
9(b) if λφ (2)< 0 (the black dots in the figures are the points 1

2π
ktφ , j with j = 1 and 2). Under

these conditions the nodal domains here would be inert. It is conceivable that Zφ may intersect
the line x =± 1

4 but that would occur only if λφ (2) is non-zero but exponentially small as tφ
grows, which is probably unlikely (at any event, it is easily shown that there cannot be more
than one such intersection in this region).

The analysis above can be extended to the region y2 +O(t
1
3 )< y≤ y1 except for neighbor-

hoods of those y’s close to the points 1
2π

ktφ , j (because in this range, the terms in the sum in (30)
have exponential decay). In other words, Zφ is exponentially close to the vertical lines x =± 1

4
or the appropriate horizontal lines y = 1

2π
ktφ , j. Now suppose there is a split nodal domain

within this region. Then necessarily this domain must be contained in a band of exponentially
small thickness that weaves about the aforementioned lines. Since the length of Zφ is O(tφ )
(see [DF88]) the area A of such a band is exponentially small. However, by the Faber-Krahn
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Figure 9

Figure 10

Theorem (see Prop. 4.5 below) it is necessarily the case that A� t−2
φ

(here we assumed that
Zφ is a smooth curve) so that all nodal domains for this range of y are inert.

We illustrate this analysis, using data from [Th05], with tφ = 830.42904848... and tφ =
830.43027421... in Fig. 10 (showing only half of the fundamental domain), where λφ (2)> 0
and < 0 respectively. Here, y1 ∼ 132.167, y2 ∼ 66.08, 1

2π
ktφ ,1 ∼ 129.40 and 1

2π
ktφ ,2 ∼ 127.36.

The shaded regions represent the points where φ(x+ iy) is positive, so that the boundaries
represent Zφ . The topmost regions extend to infinity without any change and the first horizontal
cut occurs near y = 129.

The situation changes rather dramatically as we move into the region y3 < y < y2 since now

(35) Φ̌(z) =
(

e
π
2 tφ Kitφ (2πy)cos(2πx)+λφ (2)e

π
2 tφ Kitφ (4πy)cos(4πx)

)(
1+O(e−εtφ )

)
,

so that the zeros of the main term above form a curve Z∗
φ

close to Zφ . To determine the points
on Z∗

φ
, it is not hard to verify that for some values of y there is a uniquely determined x and

for the rest, there are two choices of x not close to each other in general (we assume here,
for simplicity that λφ (2) 6= 0) . Moreover, there are no y’s which give rise to points in the
interior for which Z∗

φ
has a horizontal tangent except for those y’s that satisfy the simultaneous

condition that Kitφ (2πy) and Kitφ (4πy) are both small. Since split nodal domains must have
points (not on the boundary δ ) with horizontal tangents, we expect that there are few (if any)
such for this range of y. In particular, we expect that most nodal domains here are inert. Figure
11(a) illustrates the domains for tφ = 830.42904848... with 11(b) a close-up view, while Figure
12 does the same with tφ = 830.43027421.... Here y2 ∼ 66.08 and y3 ∼ 44.05 and we observe
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the influence of the vertical lines x = 1
8 and x = 3

8 . The close-up view also shows the lack of
horizontal tangents except on the boundary.

Figure 11

Figure 12

While we are unable to be more precise when we consider extended ranges of y, the
following Theorem shows that there is some form of regularity (locally) in the neighborhoods
of many special values of y:

Theorem 4.3. Let ε > 0 be sufficiently small and φ an even Maass cusp form. Let l be

an integer satisfying 1� l � t
1
6−ε

φ
and assume that |λφ (l)| ≥ ε . Put yl as in (21) so that

t
5
6+ε

φ
� yl � εtφ . Then in the bounded region in the strip − 1

2 < x≤ 1
2 with |y− yl | ≤ εylt

− 2
3

φ
,

the nodal line Zφ is located in narrow neighborhoods (going to zero with t) of the lines x = m
4l

with |m| ≤ 2l odd integers.

Proof. We use the second part of Proposition 3.4. By the Cauchy-Schwarz inequality, the sum
is bounded by

(36)

(
∑
|n|<l
|λφ (n)|2

) 1
2
l−1

∑
1

1

(t2
φ
− (2πny)2)

1
2

 1
2

� (
l
y
)

1
2 (1+100ε),
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by Lemma 3.6 and Lemma 3.5. The conditions on y ensures that y∼ yl so that

Φ(x+ iy) = π

(
16
tφ

) 1
3

λφ (l)Ai
(
(2πl(y− yl))(πly)−

1
3

)
cos(2πlx)

+O(t
− 1

3−ε

φ
) ,

provided l� t
1
6−ε

φ
. Moreover, the Airy function is asymptotically close to Ai(0) so that the

assumption on the size of λφ (l) ensures that the sign changes of φ are determined by those of
cos(2πlx), from which the Theorem follows.

4.3. An upper bound. We end this section by giving an extension of the Courant nodal domain
theorem for regions close to the cusp.

Theorem 4.4. Suppose Zφ is a smooth curve. Then, for any ε0 > 0 sufficiently small, there are
at most Oε0(tφ ) nodal domains of φ in the region y > ε0tφ .

This Theorem, taken together with Theorem 4.1 suggest the possibility that almost all the
nodal domains near the cusp are inert. For l > l′ ≥ 0, put

(37) Dl′,l =
{
− 1

2
≤ x≤ 1

2
, yl ≤ y≤ yl′

}
,

where we put y0 = ∞. The Theorem is a consequence of the following

Proposition 4.5. Suppose Zφ is a smooth curve.

(1) Let 1 ≤ l′ ≤ l � t
1
6−ε

φ
be integers such that |λφ (l)| and |λφ (l′)| both exceed ε for

some ε > 0 sufficiently small. Then, the number of nodal domains of φ in Dl′,l is
Oε((l− l′)tφ ).

(2) Suppose l� t
1
6−ε

φ
and |λφ (l)| ≥ ε . Then the number of nodal domains of φ in the

region y > yl is Oε(
t2
φ

yl
).

Proof.
Let S1,S2, ...SN be the nodal domains of φ wholly contained in Dl′,l (so that they do not

intersect the horizontal boundaries). Since φ is an eigenfunction of ∆ with eigenvalue λ , on
each Si, λ is the least non-zero eigenvalue of the associated Dirichlet boundary value problem.
We appeal to the Faber-Krahn Theorem for bounded domains in hyperbolic space (see [Ch84],
Chap. 4.2) which states that if the boundary of Si is smooth (which we will assume), there is a
constant C > 0 such that

Area(Si)λ >C.

Summing over all the Si’s gives us

N ≤ λ

C ∑
i

Area(Si)≤
λ

C
Area(Dl′,l)� (l− l′)tφ ,

since Area(Dl′,l) =
2π(l−l′)

tφ
.

The remaining nodal domains necessarily intersect the horizontal boundaries yl or yl′ so
that the number of such nodal domains is bounded by the number of zeros of φ on these closed

horocycles. Applying the formula (36) with y = yl and with 1≤ l� t
1
6−δ

φ
, we have

Φ(zl) =
C′

l
1
3

cos(2πlx)λφ (l)+O(l−
1
3−δ ),
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for some constant C′ > 0 and for any small δ > 0. Now suppose that |λφ (l)|> ε . It follows that
if α is a zero of Φ(x+ iyl), then α is near n

4l for some odd integer n. This zero is necessarily
simple since Prop. 3.4 can be extended to ∂

∂x Φ(x+ iy) so that the main term is not small at α .
We now consider the complexification of Φ(x+ iyl), with x a complex variable. The estimates
for the Fourier coefficients from (14), (16), (17) and the Bessel function show that φ(x+ iyl)
is a holomorphic function of x ∈ C for |x−α| ≤ yl

4t =
1

8πl , for any real number α . Applying
Jensen’s Lemma, in each ball of radius 1

16πl centered at α there are O(log tφ ) zeros so that
Φ(x+ iyl) has at most O(l log tφ ) real zeros for − 1

2 ≤ x≤ 1
2 . Part one of the proposition then

follows. The second part follows using l′ = 1 since λφ (1) = 1.
To complete the proof of Theorem 4.4, we have to choose l in Prop. 4.5 such that our

condition |λφ (l)| ≥ ε0 is satisfied. By the Hecke relations, for any prime number p, this
condition is satisfied with l = p or p2. Choosing ε0 =

1
l and p sufficiently large but independent

of t gives us our conclusion.

5. Restriction to closed horocycles

For 0 < Y < ∞, denote by CY the closed horocycle on X given by the points z = x+ iY , with
− 1

2 < x≤ 1
2 . We are interested in the restriction of φ to CY . We first give a sharp bound for

the L2-restriction in

Theorem 5.1.
(1) For any fixed Y > 0 and any ε > 0

t−ε

φ
�‖φ

∣∣
CY
‖2

2
=
∫ 1

2

− 1
2

|φ(x+ iY )|2 dx� tε
φ ,

where the implied constants depend on ε and Y .
(2) For all c < Y <

tφ
2π

with any fixed c > 0 we have

‖φ
∣∣
CY
‖2 �ε

tε
φ .

Using this, we then prove

Theorem 5.2. For ε > 0 and fixed Y > 0

t
1
12−ε

φ
�ε #{z ∈ CY : φ(z) = 0}� tφ .

Remark 5.3. It is easy to see that if Y > Atφ for some sufficiently large constant A, then
there are two zeros of φ(z) on the horocycle CY . This follows from the exponential decay of the
Bessel function so that the term n = 1 dominates Φ(z). Moreover, since there are no real zeros
of Kitφ (u) with u≥ tφ , the cosine for even Maass forms (or sine for odd forms) provides the
sign change as x varies.

Remark 5.4. Jung [Ju11] has recently established a lower bound of e−Atφ for ‖φ |
CY
‖2

2
in

Theorem 5.1 without having to assume that φ is a Hecke eigenform (such a bound follows
trivially from the argument given in Section 2.2 for Hecke eigenforms). This, together with
results of Toth and Zelditch [TZ09] allows him to establish the upper bound in Theorem 5.2
of O(tφ ) for such φ ’s and, in fact, for any hyperbolic surface with finite area (without any
arithmetic assumptions).

Remark 5.5. In Appendix A, we obtain the analog of the above theorems as Y moves towards
the cusp. The lower bound above depends on standard QUE and is responsible for our
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assumption that Y be bounded. It is not sufficient for our purposes as Y grows with t for which
we appeal to a conjectured quantitative version of QUE (see also the introduction for precise
statements).

While the theorems above hold for fixed Y , we show in Theorem 5.6 below that as we

approach the cusp with Y � t
5
6+ε

φ
, there are some horocycles with many zeros that are evenly

spaced out on the horocycle (see also Theorem 4.3).

Theorem 5.6. Let ε > 0 be sufficiently small and φ an even Maass cusp form. There are

� t
1
12−ε

φ
integers l satisfying 1� l� t

1
6−ε

φ
such that there are 2l zeros of φ on the horocycle

CYl , with Yl =
tφ

2πl . Thus, there are a growing number of horocycles CY such that each have
1
π

tφ
Y zeros of φ .

Remark 5.7. The asymptotic behavior of #{z ∈ CY : φ(z) = 0} in Theorem 5.2 should follow
that predicted by a random wave model. In Appendix B we show that such a model predicts

that for Y � t
1
3−ε

φ

#{z ∈ CY : φ(z) = 0} ∼ 1
π

tφ
Y
,

which is consistent with the result in the above Theorem.

.Proof of Theorem 5.1. For Y and ∆ as in Prop. 3.3, we have∫ 1
2

− 1
2

|φ(x+ iY )|2 dx� |ρφ (1)|2e−πtφ ∑
|n|≤

tφ−∆

2πY

|λφ (n)|2
Y√

t2
φ
− (2πnY )2

+O
(
t
θ− 4

3+ε

φ
(∆+Y )

)
,

with the error term uniform in Y . It is easily seen that the error term is O(tε
φ
) so that applying

the Cauchy-Schwarz inequality and using (14), we have

∫ 1
2

− 1
2

|φ(x+ iY )|2 dx� t2ε
φ Y

 ∑
|n|≤

tφ
2πY

|λφ (n)|4


1
2
 ∑
|n|≤

tφ−∆

2πY

1
t2
φ
− (2πnY )2


1
2

.

It follows from Lemma 3.6 that we obtain the desired upper-bound (for Y not fixed), since the
right hand side above is

� t2ε
φ Y (

tφ
Y
)

1+ε
2 (tφY )−

1
2 (log tφ )

1
2 � t4ε

φ .

For the lower bound, using Lemma 3.1 and discarding some terms from the resulting sum by
positivity, we have for any Y > 0 (still not fixed)

(38)
∫ 1

2

− 1
2

|φ(x+ iY )|2 dx� Y |ρφ (1)|2e−πtφ 1
tφ

∑
|n|≤

tφ
4πY

|λφ (n)|2 sin2
(

π

4
+ tφ H(

2π|n|Y
tφ

)

)
,

with H as given in (19). Let 0 < η < 1 be small and define the set

S ′ = S ′
η =

{
|n| ≤

tφ
4πY

:
∣∣∣sin

(
π

4
+ tφ H(

2π|n|Y
tφ

)

)∣∣∣≤ η

}
.



26 Amit Ghosh, Andre Reznikov and Peter Sarnak

Then, S ′ is contained in the set

(39) S =
{
|n| ≤

tφ
4πY

:
∣∣∣1
4
+

tφ
π

H(
2π|n|Y

tφ
)−m

∣∣∣≤ 10η , for some m ∈ Z
}
.

The pair of integers (n,m) as above are lattice points in Z2 which are close to the real analytic
curve

(40) y =
1
4
+

tφ
π

H(
2πxY

tφ
),

with x in the appropriate range. Since this curve has no line segments, it is known since Van
der Corput (see Huxley [Hu03]) that the number of such lattice points satisfies

(41) |S | � η
tφ
Y

+O(t
2
3

φ
Y−

1
3 ),

provided Y � η2√tφ . We choose η = t−δ

φ
with δ > 0 small and fixed. The contribution to the

sum in (38) from those n in S is

(42) � η
2

(
∑

n∈S
1

) 1
2

 ∑
n≤

tφ
Y

|λφ (n)|4


1
2

�ε η
2(η

tφ
Y
)

1
2 (

tφ
Y
)

1+ε
2 � η

5
2 (

tφ
Y
)1+ ε

2

using (41) and Lemma 3.6. On the other hand for n not in S , the contribution is

≥ η
2

 ∑
n≤

tφ
4πY

|λφ (n)|2− ∑
n∈S
|λφ (n)|2


so that on combining with the previous analysis and (38), we get for 0 < c < Y � t

1
2−ε

φ

(43)
∫ 1

2

− 1
2

|φ(x+ iY )|2 dx≥ η2Y
tφ

∑
n≤

tφ
4πY

|ρ̃φ (n)|2 +Oε(η
5
2 t3ε

φ ),

which gives us our lower bound on applying Prop. 3.7, for any fixed Y .

.Proof of Theorem 5.2.
The upper bound is a consequence of the complexification argument of Toth-Zelditch

([TZ09], Theorem 6) where the lower bound obtained in Theorem 5.1 above (or more generally
the weaker lower bound of [Ju11]) is used to satisfy the notion of a “good curve” in [TZ09]. It
remains to prove the lower bound in the statement of our Theorem.

Let M be the number of sign-changes of φ(z) on CY , say at the points {α j} with 1≤ j ≤M
(we put α0 =− 1

2 and αM+1 =
1
2 ). Then,

(44)
∫

CY

|φ(z)| dx =
M

∑
i=0

∣∣∣∫ α j+1

α j

φ(x+ iY ) dx
∣∣∣.

Using the L∞ estimate |φ(z)| � t
5

12+ε

φ
in [IS95] and Theorem 5.1, we have

t−ε

φ
�
∫

CY

|φ(z)|2 dx� t
5
12+ε

φ

∫
CY

|φ(z)| dx.
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On the other hand, by Prop. 3.3, the second integral in (44) is bounded by

tε
φ ∑

0<|n|≤
tφ−∆

2πY

|λφ (n)|
|n|

√
Y

(t2
φ
− (2πnY )2)

1
4
,

which is then bounded by t
− 1

2+ε

φ
after using the Cauchy-Schwarz inequality, Lemma 3.5 and

Lemma 3.6. Then from (44) we conclude

t−ε

φ
� t

5
12+ε

φ
Mt
− 1

2+ε

φ

from which our lower bound for M follows. If one were to use the conjectural L∞ estimate

|φ(z)| � tε
φ

, valid for z in a compact part of H, then one would obtain M� t
1
2−ε

φ
.

.Proof of Theorem 5.6. The proof is the same as in Theorem 4.3 so that

(45) Φ(zl) = π

(
16
tφ

) 1
3

λφ (l)Ai(0)cos(2πlx)+O(
l
√

tφ
)+O(t

θ− 2
3

φ
).

Thus, if l = o(t
1
6

φ
), the error terms are negligible provided λφ (l) is not too small. We use the

Hecke relations

(46) λφ (p)2 = λφ (p2)+1

valid for all prime numbers p≥ 2. It follows that either |λφ (p)| ≥ 1
2 or if not, then |λ f (p2)| ≥ 1

2 .

We then choose l accordingly, so that now we can find � t
1
12−ε

φ
values of l in the interval

1≤ l� t
1
6−ε

φ
with the main term dominating in (45). For each such fixed l, we then see that

there are 2l sign changes of φ(x+ iyl) for − 1
2 < x≤ 1

2 .

6. Restriction to geodesics and compact segments of δ .

In this section, which is the heart of the paper, we prove Theorem 1.3 and Theorem 1.6.
However, in Section 6.1, we first give bounds for the L2-restriction of φ to any complete
geodesic joining two cusps. The rest of the section is then devoted to proving the main result
which gives a sharp lower bound for this L2-restriction to a sufficiently long but fixed segment
β of δ1 (and which carries over without change to δ2). This gives a localization of Theorem
6.1 below; the proof involves choosing a similar auxiliary function F but the analysis is more
intricate. In [GRS] we develop the analogue of Theorem 6.1 but for a non-split closed geodesic
about which reflection defines a global symmetry of a compact hyperbolic surface (so that for
this result no arithmetic tools are used).

6.1. Restriction to geodesics.

Theorem 6.1. Let C denote any geodesic joining two cusps. Then

1�
C

∫
C

φ
2(z)d×z�

C ,ε
tε
φ .

Remark 6.2. By assuming a suitable version of the quantitative QUE (see Appendix A), one
can get an asymptotic formula for the integral in the Theorem of the type ∼ 12

π
log tφ .
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We provide a proof of this Theorem when C is δ1 (see the remarks at the end for the general
case). We will denote t by tφ to distinguish it from the imaginary part of the complex variable
s = σ + it.

Recall that

(47)
∫

∞

0
φ(iy)ys− 1

2 d×y = 2ρφ (1)L(s,φ)Γ
( s+ itφ

2
)
Γ
( s− itφ

2
)
,

where for ℜs > 1

L(s,φ) =
∞

∑
1

λφ (n)
ns .

By Parseval’s formula, it then follows that

(48)
∫

∞

0
|φ(iy)|2d×y� |ρφ (1)|2

∫
∞

0
|L(1

2
+ it,φ)Γ

( 1
2 + i(t + tφ )

2
)
Γ
( 1

2 + i(t− tφ )
2

)
|2dt.

(i) The upper bound.
Using Stirling’s formula, the product of gamma functions above is bounded by

(1+ |t + tφ |)−
1
4 (1+ |t− tφ |)−

1
4 min(e−

π
2 t ,e−

π
2 tφ ).

We may then neglect the contribution from say, t > 2tφ in (48) for it gives us an estimate of
exponential decay for that part of the integral, after using (14) and the fact that the L-function
has at most polynomial growth in t . For the remaining, we then have

(49)
∫

∞

0
|φ(iy)|2d×y� t

− 1
2+ε

φ

∫ 2tφ

0
|L(1

2
+ it,φ)|2(1+ |t− tφ |)−

1
2 dt.

If we were now to assume the Lindelof Hypothesis, that is |L( 1
2 + it,φ)| � tε

φ
, our required

upper bound for Theorem 1.3 would follow easily. To obtain an unconditional result, we
replace L( 1

2 + it,φ) with Dirichlet polynomials using the approximate functional equation. To
this end, we use Theorem 2.5 from [Ha02] which implies that for g a smooth real function
satisfying g(x)+g( 1

x ) = 1, we have

(50) |L(1
2
+ it,φ)| �|

∞

∑
n=1

λφ (n)

n
1
2+it

g(
n√
Cφ

) |+ (1+ |t− tφ |)−1C
1
4+ε

φ
,

where Cφ is the analytic conductor of L(s,φ) given by

Cφ =Cφ (t) =
1

4π2

√(1
4
+(t + tφ )2

)(1
4
+(t− tφ )2

)
.

The contribution from the error term above to (47) is seen to be O(tε). We choose g(x) such
that it is zero for x≥ 2, is decreasing smoothly for 1≤ x < 2 and is non-negative otherwise, so
that n≤ 2

√
Cφ in the sum above. We break the integral in (49) into the two ranges 0≤ t ≤ tφ

and tφ ≤ t ≤ 2tφ , so that after suitable changes of variables, we finally have to estimate

t
− 1

2+ε

φ

∫ tφ

1

∣∣ ∞

∑
n=1

λ ∗
φ
(n)

n
1
2+it

g(
n√

Dφ (t)
)
∣∣2t−

1
2 dt,

where |λ ∗
φ
(n)| = |λφ (n)| and Dφ (t) � tφ t. Expanding the sum in the integral above, we see

that the diagonal contribution is O(tε
φ
). For the non-diagonal terms, we break the integral into
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O(log tφ ) dyadic subintervals of the type [A,2A] so that we have to estimate

t
− 1

2+ε

φ
A−

1
2

∞

∑
∗

m 6=n

|λφ (m)λφ (n)|√
mn

∣∣∫ 2A

A
(

m
n
)itg(

m√
Dφ (t)

)g(
n√

Dφ (t)
) dt
∣∣,

where ∑
∗ indicates that the variables are restricted to satisfy m,n�

√
tφ A. Since the product

of the g-functions in the integral are monotonic in the variable t, integration by parts shows
that the integral is bounded by min(A, | log m

n |
−1) so that after a suitable change of variables,

we are left to estimate

t
− 1

2+ε

φ
A−

1
2 ∑

∗

m,h≥1

|λφ (m)|2

m
min(A,

m
h
),

so that we obtain the required bound of O(tε) after applying (14) and the restriction imposed
above on m and n (and so also on h).

(ii) The lower bound.
The method here is similar to the one above but more intricate. From (48), applying Stirling’s
formula and discarding a portion of the integral, we may rewrite (48) as implying

(51)
∫

∞

0
|φ(iy)|2 d×y� 1

tφ

∫
∞

0
|L̃(1

2
+ it,φ)|2V

( t
tφ

)
dt ,

where V (x) is a fixed, non-negative C∞-function supported in the interval ( 1
3 ,

1
4 ), with

∫
V = 1,

and where we define

L̃(s,φ) =
∞

∑
1

ρ̃φ (n)
ns .

As in (48), we may now write the approximate functional equation in the form

L̃(
1
2
+ it,φ) =

∞

∑
1

ρ̃φ (n)

n
1
2+it

g(
n√
Cφ

)+ eiθ(t)
∞

∑
1

ρ̃φ (n)

n
1
2−it

g(
n√
Cφ

)+O(t
− 1

2+ε

φ
),

since the conductor has size t2
φ

. The phase function θ(t) satisfies

θ
′(t)∼− log

( tφ + t
2
)
− log

( tφ − t
2
)

To estimate the lower bound for the second integral in (51), we use Cauchy-Schwarz as follows:
fix ε0 > 0 (which will be chosen small) and set

F(t) = ∑
ε0tφ
1000≤ν≤ε0tφ

ρ̃φ (ν)

ν
1
2+it

.

Consider

(52)
∣∣∫ ∞

0
F(t) L̃(

1
2
+ it,φ)V

( t
tφ

)
dt
∣∣2 .

This is

≤
(∫ ∞

0
|F(t)|2V

( t
tφ

)
dt
)(∫ ∞

0
|L̃(1

2
+ it,φ)|2V

( t
tφ

)
dt
)

� tφ
∫

∞

0
|L̃(1

2
+ it,φ)|2V

( t
tφ

)
dt ,(53)

using standard mean-value theorems for Dirichlet polynomials and Theorem 3.7. To eval-
uate the integral in (52), we expand the sums and use the approximate functional equation
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(discarding the error term) to get

(54) ∑
n

∑
ν

ρ̃φ (n)ρ̃φ (ν)√
nν

∫
∞

0

(ν

n

)itg(
n√
Cφ

)V
( t

tφ

)
dt+

∑
n

∑
ν

ρ̃φ (n)ρ̃φ (ν)√
nν

∫
∞

0
eiθ(t)+it log(nν)g(

n√
Cφ

)V
( t

tφ

)
dt .

The diagonal term n = ν above gives, using Theorem 3.7, a lower bound

� tφ ∑
ε0tφ
1000≤ν≤ε0tφ

|ρ̃φ (ν)|2

ν
� tφ ,

with an absolute constant.
For the integral in the first sum in (54), for the non-diagonal terms, repeated integration by

parts gives an estimate of the type (tφ | log n
ν
|)−l , for any integer l ≥ 1. Substituting this and

estimating the resulting sums using Prop. 3.7 gives an estimate of the type O(ε l
0tφ ). For the

rest of the sums, we observe that the oscillatory integrals have stationary points only when
nν ∼ t2

φ
; however, if ε0 is chosen small enough, these are avoided. Moreover, the derivative of

the phase is monotonic, so that the integral is bounded by (log tφ )−1. By Cauchy-Schwarz, and
Prop. 3.7, the resulting sum in (54) is o(tφ ). Thus the diagonal term dominates and combining
the estimates from (53) and (52) gives us the lower bound in the Theorem.

Remark 6.3. For the case of arbitrary geodesics with two cusps as endpoints, it suffices to
consider the vertical half-lines with real part a

q , for q≥ 1 and with a and q coprime. Following
the reasoning above, L(s,φ) is replaced with L(s, a

q ,φ), which is the L-function twisted with
cos(2π

an
q ) and similarly for F, but with a modification for the range of summation. This

modified L-function has a approximate functional equation (which may be derived by the
methods in [Ha02]) of the type

(55) L̃(
1
2
+ it,

a
q
,φ) =

∞

∑
1

ρ̃φ (n)

n
1
2+it

cos(2π
an
q
)g(

n
q
√

Cφ

) +

ei(θ(t)+2t logq)
∞

∑
1

ρ̃φ (n)

n
1
2−it

cos(2π
an
q
)g(

n
q
√

Cφ

)+Oq(t
− 1

2+ε

φ
),

where a is the multiplicative inverse of a modulo q. The upper bound follows immediately. For
the lower bound, the incooperation of terms depending on q present no new difficulties as q is
fixed, so that the conclusions above still hold, with the exception of the nature of the diagonal
term which is now of the form

� tφ ∑
εqX≤ν≤X

|ρ̃φ (ν)|2

ν
cos2(2π

aν

q
)� tφ ,

by Corollary 3.8 with X = ε0tφ .

6.2. Restriction to compact segments.

We are now ready to prove the main result, namely the lower bound in Theorem 1.3 for
β a sufficiently long (but fixed) compact segment of δ . The analysis is delicate and it would
be more direct and simpler in terms of showing the off-diagonal terms are smaller than the
diagonal, if we had a more flexible version of QUE as in (83) (indeed, one would then be able
to take β to be an arbitrary fixed segment on δ ). Since this last is not available to us, we make
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do with standard QUE and a cruder, more involved analysis in which we are able to show that
the diagonal dominates the off-diagonal (but with both the same order of magnitude in tφ ), if β

is long enough.
We begin by setting up the test function to be used. Let a be a positive number independent

of t to be chosen (a will be suitably large) and let 0 < b < a (again to be chosen later). Let
k(y) ∈C∞

o (R) be an even function satisfying the following properties for y≥ 0 :

(1) k(y) = 1 for a≤ y≤ 2a,
(2) k(y) = 0 for y ∈ [0,a−b]∪ [2a+b,∞),
(3) 0≤ k(y)≤ 1 for y ∈ (a−b,a)∪ (2a,2a+b) and
(4) |k(l)(y)| ≤Clb−l for some constant Cl with any l ≥ 0.

The support of k determines the corresponding segment on δ1 which we denote by β . The
size of b is determined by the size of a and any constant that depends on either will generically
be denoted by Ca. Similarly, we will let C denote a generic positive constant independent of a
and t but which will change. The parameter l will be chosen suitably large later on but will
be independent of a and t. At the end of the proof, we will choose a suitably and then let
tφ become arbitrarily large so that the dependence of Ca on a will be unimportant. In places
where the value of a plays an important role we will be precise and indicate this dependence.
Finally, the symbol� will mean an implied constant independent of a and tφ .

For any real function F(y), we have

(56) I :=
∫

β

φ(z)2k(ℑz) d×z≥ 2
∫

F(y)φ(iy)k(y) d×y −
∫

F(y)2k(y) d×y .

By (13), we write

(57) φ(iy) = 2
√

y ∑
n≥1

ρ̃φ (n)e
π
2 tφ Kitφ (2πny).

By (14),(16) and (17) we have ρ̃φ (n)� tθ+ε

φ
. Put M =

tφ
η

with η = η(a)� a to be chosen
later and define

(58) F(y) = 2
√

y ∑
m≥M

ρ̃φ (m)e
π
2 tφ Kitφ (2πmy).

Then, we write in (56), I ≥ 2I1− I2.
We provide the analysis for j = 1 and 2 together, so that we write

(59) I j = 4 ∑
m≥M

∑
n≥1

ρ̃φ (m)ρ̃φ (n)α j(n)G(m,n),

where we define
G(m,n) = eπtφ

∫
Kitφ (2πmy)Kitφ (2πny)k(y) dy ,

and with α1(n) = 1 while α2(n) does the same except it vanishes for n < M. We decompose
the sum above into three pieces: ID

j denoting the part of the sum with m = n which is the
diagonal, IS

j denoting the sum with small spacing 1≤ |m−n|< R and IL
j for the large spacings.

6.2.1. The large spacings for I1 and I2 .
We first deal with IL

j and prove the following
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Proposition 6.4. For any integer l ≥ 1

∑∑
m≥M,n≥1
|m−n|≥R

|ρ̃φ (m)ρ̃φ (n)G(m,n)| �l
a
bl R−l+ 3

2
√

η

( 1
tφ

∑
n�

tφ
a

|ρ̃φ (n)|2
)
+

a
b

R−
1
2

( 1

t
3
2

φ

∑
n�

tφ
a

ρ̃
2
φ (n)
√

n
)
+

a
b3 R−

1
2

(√
tφ ∑

∗

m≥M

|ρ̃φ (m)|2

m
3
2

)
+o(1),

as tφ → ∞.

The proof of this proposition relies heavily on the asymptotics of G(m,n) which is deter-
mined with the following

Lemma 6.5.

(1) For u,v > 0, r ≥ 0 and c real (see [GR00])∫
∞

0
Kir(uy)Kir(vy)cos(cy) dy =

π2

4
√

uv
sec(iπr)P− 1

2+ir

(u2 + v2 + c2

2uv

)
,

(2) if w > 1 and r→ ∞, then ([Du91])

P− 1
2+ir(w) =

( log2(w+
√

w2−1)
w2−1

) 1
4 J0(r log(w+

√
w2−1))

(
1+O(

1
r
)
)
,

(3) if x→ ∞, then ([GR00])

J0(x) =

√
2

πx
cos(x− π

4
)
(
1+O(

1
x
)
)
.

Let k̂(x) =
∫

∞

0 k(y)cos(2πxy) dy be the Fourier transform. Then, applying integration
by parts multiple times shows that |k̂(x)| ≤ Clb(xb)−l as x→ ∞ for any integer l ≥ 1 so
that |k̂(x)| ≤Clamin(1,(xb)−l) for all x. Moreover, if k1(x) =

∫ x
0 k̂(r) dr, we have first that

|k1(x)| ≤ Cax if x < 1
b and since k1(∞) = Ck(0) = 0 we have also |k1(x)| = |

∫
∞

x k̂(r) dr| ≤
Cl(bx)−l , with l chosen suitably large. We first note that in (59) the contribution to IL

j from
either m or n exceeding 1

πa tφ is exponentially small due to the decay of the Bessel functions
(since y ∈ [a,2a]). Thus we may assume both m,n ≤ 1

πa tφ in what follows (denoted by an
asterisk in the summation) so that using Lemma 6.5

(60) IL
j =C∑

∗

m≥M
∑
∗

n≥1
|m−n|≥R

ρ̃φ (m)ρ̃φ (n)α j(n)√
mn

∫
∞

0
k̂(x)P− 1

2+itφ

(
1+

(m−n)2 + x2

2mn

)
dx

+O(e−ctφ ) ,

for some constant c > 0.
We put h = |m−n| so that R≤ h� tφ

a and in Lemma 6.5 we put

w = 1+
h2 + x2

2mn
> 1.

Then if w− 1 < ε is small, log(w+
√

w2−1) =
√

2
√

w−1+O(w− 1)�
√

w−1� h√
mn ,

while if w−1≥ ε , then log(w+
√

w2−1)�
ε

1. Thus since
√

mn� tφ
a and h≥ 1, in either

case we have t log(w+
√

w2−1)� a is sufficiently large so that we may use part (3) of Lemma
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6.5 in part (2) to get

(61) P− 1
2+itφ

(w) =C
1
√

tφ

( 1
w2−1

) 1
4

cos
(
tφ log(w+

√
w2−1)− π

4
)

×
(

1+O
( 1

tφ
max(1,

1√
w−1

)
))

.

We first break the integral in (60) with x ∈ [0,h] and x ∈ (h,∞).
For x > h, using (61) we have

P− 1
2+itφ

(w)� 1
√

tφ

( x2

mn

)− 1
4
(
1+

x2

mn

)− 1
4 .

We consider two cases:
(i) if x≥

√
mn, then P− 1

2+itφ
(w)� 1

x

√
mn
tφ

, so that the contribution to the integral in (60) is∫
∞

√
mn

k̂(x)P− 1
2+itφ

(w) dx� a
√

mn
tφ

∫
∞

√
mn
(xb)−l 1

x
dx,

� a
√

mn
tφ

(b
√

mn)−l .(62)

The contribution to IL
j is then

� a
√

tφ
b−l

∑
m

∑
n

|ρ̃φ (m)ρ̃φ (n)|
(mn)

l−1
2

�a t
− 1

2+ε

φ
,

for l chosen large. This contribution will be negligible and will be ignored. Next the case
(ii) if h < x≤

√
mn. Now P− 1

2+itφ
(w)� 1√

tφ
( x2

mn )
− 1

4 so that∫ √mn

h
k̂(x)P− 1

2+itφ
(w) dx� a

√
tφ
(mn)

1
4

∫ √mn

h
(xb)−lx−

1
2 dx� a

√
tφ
(mn)

1
4 b−lh−l+ 1

2 .

Now, the contribution to IL
j is

� a
bl√tφ

∑
∗

m≥M
∑
∗

n≥1
|h|≥R

ρ̃φ (m)ρ̃φ (n)α j(n)

(mn)
1
4

1

hl− 1
2
.

We break the sum into two pieces: first with n ≤ 1
2 m. Then, h ≥ 1

2 m�a tφ so that the
contribution from the sum is negligible if l is chosen suitably large. For the rest, n > 1

2 m�M,
so that the sum is

� a
bl√tφ

∑
∗

h≥R

1

hl− 1
2

∑
∗

n> 1
2 M

|ρ̃φ (n)|2√
n

,

� a
bl R−l+ 3

2

( 1√
tφ M ∑

n�
tφ
a

|ρ̃φ (n)|2
)
.(63)

For the remaining range of x with 0 ≤ x ≤ h we see that w− 1 � h2

mn . We first consider the
contribution from the error-terms in (61).
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If h2

mn ≥ 1 then w−1� 1 so that P− 1
2+itφ

(w)� t
− 3

2
φ

√
mn
h . Then∫ h

0
k̂(x)P− 1

2+itφ
(w) dx� a t

− 3
2

φ

√
mn
h

∫ h

0
min

(
1,(bx)−l) dx ,

� a
b

t
− 3

2
φ

√
mn
h

.

The contribution to IL
j in (60) is

� a
b

t
− 3

2
φ ∑

∗

h≥R

1
h ∑

∗

n
ρ̃

2
φ (n)�a t

− 1
2+ε

φ
,

which is negligible.
If on the other hand h2

mn ≤ 1, the error term in (61) gives us P− 1
2+itφ

(w)� (htφ )−
3
2 (mn)

3
4 .

Then, as in the case above,∫ h

0
k̂(x)P− 1

2+itφ
(w) dx� a

b
(htφ )−

3
2 (mn)

3
4 .

The contribution to IL
j is

� a
b

t
− 3

2
φ ∑

h≥R
h−

3
2 ∑

n�
tφ
a

ρ̃
2
φ (n)
√

n ,

� a
b

R−
1
2

(
t
− 3

2
φ ∑

n�
tφ
a

ρ̃
2
φ (n)
√

n
)
.(64)

We now consider the contribution from the main term in (61) to IL
j . Denoting it by Q(w)

and using integration by parts, we estimate

(65)
∫ h

0
k̂(x)Q(w) dx = k1(h)Q(h)−

∫ h

0
k1(x)

∂

∂x
Q(w) dx.

Since k1(h)� (bh)−l and Q(w)� (htφ )−
1
2 (mn)

1
4 , the contribution from these terms to IL

j is
seen to be the same as in (63). Next, it is easily seen that

∂

∂x
Q(w)≤C

1
√

tφ

1

(w2−1)
5
4

(
w+ tφ

√
w2−1

) x
mn

�
√

tφ
1

(w−1)
3
4

x
mn
�

√
tφ x

(mn)
1
4 h

3
2
.(66)

So the contribution to (65) is (following the remarks made after Lemma 6.5)

�
√

tφ

(mn)
1
4 h

3
2

∫ h

0
x|k1(x)| dx

�
√

tφ

(mn)
1
4 h

3
2

∫ h

0
xmin(ax,(xb)−l) dx

� a
b3

√
tφ

(mn)
1
4 h

3
2
.(67)
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Thus, the contribution to (60) is then

(68) �
√

tφ
a
b3 ∑

∗

m≥M
∑
∗

n
h≥R

|ρ̃φ (m)ρ̃φ (n)|
(mn)

3
4 h

3
2

.

We now estimate the sum in (68) by considering three cases: n > m, n < 1
2 m and 1

2 m≤ n≤ m.
In the first case, the main term in (68) is

�
√

tφ
a
b3 ∑

∗

h>R

1

h
3
2

∑
∗

m≥M

|ρ̃φ (m)ρ̃φ (m+h)|(
m(m+h)

) 3
4

,

� a
b3 R−

1
2

(√
tφ ∑

∗

m≥M

|ρ̃φ (m)|2

m
3
2

)
.(69)

For the second case, we see that |m− n| ≥ 1
2 m so that in (68) we find the main term is, by

Lemma 3.6

≤Ca
√

tφ ∑
∗

m≥M
n≥1

|ρ̃φ (m)ρ̃φ (n)|
m

9
4 n

3
4

�a,ε
√

tφ M−
5
4 t

1
4+ε �a,ε t

− 1
2+ε

φ
,

which is negligible. Finally, for the last case, we have 1
2 m≤ n≤ m−R so that both m and n

exceed CM so that we may reverse their roles and get the estimate obtained in the first case,
that is (69).

Collecting the estimates from (60), (63), (64) and (69), we see that

(70) |IL
j | �l

a
bl R−l+ 3

2
√

η

( 1
tφ

∑
n�

tφ
a

|ρ̃φ (n)|2
)
+

a
b

R−
1
2

(
t
− 3

2
φ ∑

n�
tφ
a

ρ̃
2
φ (n)
√

n
)
+

a
b3 R−

1
2

(√
tφ ∑

∗

m≥M

|ρ̃φ (m)|2

m
3
2

)
+o(1),

as t→ ∞, for j = 1 and 2.

6.2.2. Small spacings for I1 and I2.
We first remark that in our application at hand, we will not need to deal with small spacings

since we are able to choose R = 1. This is due to the fact that we choose our segment β to
be sufficiently long. However, we include the analysis here to indicate that QUE can be used
to control such sums. It suffices to deal here with IS

1 . This is because when R is bounded,
IS
1 − IS

2 is a sum where m and n both run through a bounded interval (depending on R) so that
the contribution from them is negligible as tφ → ∞ and if a

η
→ 0 as a grows (we use here the

bounds (17) for the Fourier coefficients and the estimates for the Bessel function away from
the transitional range in Corollary 3.2).

Proposition 6.6. For bounded R,

IS
1 = ∑∑

m≥M,n≥1
1≤|m−n|<R

ρ̃φ (m)ρ̃φ (n)G(m,n)� Ra
( 1

tφ
∑

m≤M
ρ̃

2
φ (m)

)
+o(1) .
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For the proof, we use the notation from the subsection above and rewrite

(71) IS
1 = ∑

m,m+h6=0
1≤|h|≤R

ρφ (m)ρφ (m+h)
∫

Kit(2π|m|y)Kitφ (2π|m+h|y)k(y) dy

−2
R

∑
h=1

M

∑
m=1

ρ̃φ (m)ρ̃φ (m±h)
∫

eπtφ Kitφ (2πmy)Kitφ (2π(m±h)y)k(y) dy .

We denote the above as IS
1 = IS1

1 − IS2
1 . We will show that IS1

1 is small using QUE directly, while
IS2
1 will be bounded in a manner similar to IL

1 in the previous subsection.
We will first consider IS1

2 . We assume η > 100a so that 2πmy < 1
2 tφ , and since h is relatively

small, the integral in (70) is O(at−1
φ

) by Lemma 3.1. Thus

(72) IS1
2 � Ra

( 1
tφ

∑
m≤M

ρ̃
2
φ (m)

)
.

Remark 6.7. It may appear that the estimate above for the integral is rather crude. A careful
analysis shows that there is not sufficient oscillation in the integral to extract futher savings
since mh∼ tφ .

We next consider IS1
1 . Let g(y)∈C∞

0 (R+) with the support contained in the interval (A−1,∞)
with A≥ 1. For any h ∈ Z and z ∈H we have the incomplete Poincare series

Ph,g(z) = ∑
γ∈Γ∞\Γ

g
(
y(γz)

)
e
(
hx(γz)

)
.

The sum is finite and Ph,g(z) is Γ-invariant. Moving z into the standard fundamental domain
we see that |Ph,g(z)| ≤ A ‖ g ‖∞ uniformly in z. Since

∫
X Ph,g(z) dA(z) = 0 for h 6= 0, it follows

from QUE that there is a function ε(tφ )→ 0 such that

(73)
∫
X

φ(z)2Ph,g(z) dA(z)�h,g ε(tφ ) .

Unfolding the integral above and using the fact that φ is even, we see that the integral in (73)
is equal to (up to to a multiplicative constant) the sum over m in IS1

1 with g(y) = yk(y), so that

(74) |IS1
1 | ≤Ca,R ε(tφ ) ,

which is negligible if R is bounded and t→ ∞. Hence from (71), (74) and (72), we have

(75) IS
1 � Ra

( 1
tφ

∑
m≤M

ρ̃
2
φ (m)

)
+o(1) .

Remark 6.8. It is worth pointing out that a stronger version of Prop. 6.6 holds with R→ ∞

with t if we assume a quantitative form of QUE. To obtain this we have to estimate the Sobolev
norm of Ph,g uniformly in h. Since

∆
(
g(y)e(hx)

)
= Lg(y)e(hx)

where
Lg(y) = y2g′′(y)+4π

2h2g(y),
it follows that for m≥ 0, ∆mPh,g(z) = Ph,Lmg(z). Then for g fixed and h 6= 0

(76) ‖ ∆
mPh,g ‖∞�g,m |h|2m.

Hence, for k fixed, the Sobolev norm satisfies (for h 6= 0)

(77) ‖ Ph,g ‖2
W k�g,k |h|k.
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Then, QQUE (see Appendix A1) implies that there are constants k and ν > 0 such that
equation (73) takes the form∫

X
φ(z)2Ph,g(z) dA(z)�g |h|kt−ν+ε

φ
.

so that
IS
1 � Ra

( 1
tφ

∑
m≤M

ρ̃
2
φ (m)

)
+Oa(R(k+1)t−ν+ε

φ
) .

The error term here is now o(1) for the larger range R� t
ν

k+1−ε

φ
.

6.2.3. Completion of the proof.
Noting that ID

1 = ID
2 , from (59), we rewrite the diagonal term as

(78) ID
1 = 2 ∑

m 6=0
ρφ (m)2

∫
Kitφ (2π|m|y)2k(y) dy+O

( a
tφ

∑
m≤M

ρ̃
2
φ (m)

)
,

where the error term comes from m≤M. The main term here is

2
∫
X

φ(z)2P0,g(z) dA(z),

where g(y) = yk(y). By QUE this is

∼ 2
∫
X

P0,g(z) dA(z)∼ 2
∫

k(y) d×y≥ 2log2.

Collecting all the estimates from Prop. 6.4, Prop. 6.6 and the remarks made above, we conclude
that |I| ≥ ID

1 + IS
1 +2IL

1 − IL
1 +o(1) so that there are positive absolute constants C j such that

(79) |I| ≥ 2log2−C1
a
bl R−l+ 3

2
√

η

( 1
tφ

∑
n�

tφ
a

ρ̃
2
φ (n)

)
−C2

a
b

R−
1
2

(
t
− 3

2
φ ∑

n�
tφ
a

ρ̃
2
φ (n)
√

n
)
−

C3
a
b3 R−

1
2

(√
tφ ∑

∗

m≥M

ρ̃2
φ
(m)|

m
3
2

)
−C4Ra

( 1
tφ

∑
m≤M

ρ̃
2
φ (m)

)
+o(1) .

To estimate these sums, we appeal to Prop. 3.7, which by partial summation gives us

|I| ≥ 2log2−C1
1
bl R−l+ 3

2
√

η−C2
a
b

R−
1
2 a−

3
2 −C3

a
b3 R−

1
2
√

η−C4Raη
−1 +o(1) ,

≥ log2 ,

on choosing b =
√

η , R = 1, l = 100 and η = a
101
100 , say and letting a be sufficient large. This

completes the proof of the lower bound.

6.3. Proof of Theorem 1.6.
The method here is exactly the same as that used in the proof of Theorem 5.2, where one dealt
with closed horocycles. For this we obtain an upper bound for the analogue of the integral
appearing in (44) so that we have to prove

(80)
∫

α j+1

α j

φ(iy) d×y� t
− 1

2+ε

φ
.

Using the discussion in Sec. 6.1, it is easy to see that Parseval’s theorem applied to the product
of φ(iy) and the characteristic function for the subinterval [α j,α j+1] shows that the integral in
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(80) is

(81) 2ρφ (1)
∫

∞

−∞

L(
1
2
+ it,φ)Γ

( 1
2 + i(t + tφ )

2
)
Γ
( 1

2 + i(t− tφ )
2

)(α it
j+1−α it

j

t

)
dt.

In exactly the same way as was done in Sec. 6.1 leading to (49), it then follows that the integral
in (80) is

� t−
1
4+ε

∫ 2tφ

0
|L(1

2
+ it,φ)|(1+ |t− tφ |)−

1
4 min(1,

1
t
) dt + e−ctφ ,

for some constant c > 0. Then the Lindelof Hypothesis for L( 1
2 + it,φ) gives us the estimate in

(80).

Appendix

Appendix A. Formulations of QUE and applications to short closed horocycles

The usual formulation of QUE on the configuration space X was given in (9). In our analysis,
we have used the Fourier expansion of φ repeatedly. We examine here the formulation of
QUE in terms of the Fourier coefficients. For holomorphic cusp forms of even weight k
(L2-normalized with respect to the Petersson inner-product) it is shown in [LS03] that QUE is
equivalent to:

For m ∈ Z and h ∈C∞
0 (0,∞) fixed

(82)
Γ(k)

k

∞

∑
n=1

ρ f (n)ρ f (n+m)h
(4πn

k

)
→ 3

π
δm,0

∫
∞

0
h(y) dy ;

as k→ ∞, with ρ f (n) = a f (n)(4πn)
1
2 (1−k) where a f are the fourier coefficients of f .

Similarly, we expect that for Maass forms we have:
For m ∈ Z and h ∈C∞

0 (0,∞) fixed

(83)
e−πtφ

tφ
∑
n6=0

ρφ (n)ρφ (n+m)h
(π|n|

tφ

)
→ 12

π3 δm,0

∫
∞

0
h(y) dy ;

as tφ → ∞ .
While (26) and (73) show that (83) follows from QUE for certain h’s, there is a basic

difficulty in realizing all h’s of compact support in this way. The problem comes from the
nonlocal transform Wg of g in (25) (and it is more complicated when m 6= 0), which is a feature
of Maass forms and is not present in the holomorphic case. As a consequence we have that
(83) implies QUE (which is straightforward) but we don’t know the converse implication. The
flexible form (83), in as much as it allows one to truncate the n-sum into a compact dyadic
piece would allow for a much more direct treatment treatment of Section 6.2 . In fact, it allows
one to establish Theorem 1.3 for β a fixed but arbitrary small segment in δ . This in turn would
yield Theorem 1.8 for such a β .

Both forms of QUE above can be quantified with rates in obvious ways, and again the
quantitative version of (83) will imply the quantitative QUE which we call QQUE:

Conjecture A.1. QQUE
There is a ν > 0 and a k < ∞ such that for any f ∈C∞(X) with

∫
X f dA = 0 we have∫

X
|φ(z)|2 f (z) dA� t−ν

φ
‖ f ‖W k ,
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where W k is the Sobolev k-norm on X.

Remark A.2. While QUE is known thanks to Lindenstrauss [Lin06] and Soundararajan
[So10], it is not known with any rate. There is little doubt (in our minds) about the truth
of Conjecture A.1 as it follows from a subconvex estimate for the triple product L-function
L(s,φ × φ ×ψ), where ψ is another Maass form (fixed ie independent of φ ) or a unitary
Eisenstein series.1 This implication is a consequence of Watson’s explicit formula [Wa02].
The subconvex estimate is in turn a weak form of the sharp estimate for critical values of such
L-functions, known as the Lindelof Hypothesis. It is well known that the latter is a consequence
of the Riemann Hypothesis for L(s,φ ×φ ×ψ) so that Conjecture A.1 has a very firm basis.

For our application, we need a more explicit version of QQUE stated as follows: let

(84) FY = {z ∈ X : ℑ(z)≥ Y}.

Conjecture A.3. There is a number ν > 0 such that for Y > 0, as tφ → ∞∫
FY

|φ(z)|2 dx dy
y2 =

3
π

Vol(FY )+O(Y−
1
2 t−ν+ε

φ
).

Consequently, ∫ 1

0

∫ 2Y

Y
|φ(x+ iy)|2 dx dy

y2 � 1
Y

for 0 < Y < t2ν−ε

φ
.

Remark A.4. The Lindelof Hypothesis for triple product L-functions would allow the exponent
ν = 1

2 , in which case the second lower bound would be valid for almost the full range of Y .
This conjecture is a more precise version of the ”escape of mass” Proposition 2 of [So10].

We now apply these quantitative versions to the analysis of the zeros of φ for short closed
horocycles nearer the cusp. In the proof of Theorem 5.1 the upper bound was valid for closed
horocycles CY with 0 <Y � t1−ε

φ
, while the lower bound, which uses QUE was then restricted

to bounded values of Y . This restriction to bounded Y carries over to Theorem 5.2. To extend
these theorems to closed horocycles located higher up in the fundamental domain, we need the
analog of Prop. 3.7 for shorter sums. For such sums, we appeal Conjecture A.3.

Proposition A.5. Assume Conjecture A.3. Then for any 0 < c < Y � t2ν−ε

φ

∑
|n|≤

tφ
Y

|ρ̃φ (n)|2�ε

tφ
Y
.

Proof. The proof is identical to that in Prop. 3.7 with α = Y
2π

and replacing (23) with the
Conjecture.

Using Prop. A.5 we have the following: let Tφ = min(t2ν
φ
, t

1
2

φ
). Then

Theorem A.6. Assume Conjecture A.3. For any ε > 0 and 0 < Y � T 1−ε

φ

‖φ |
CY
‖2

2
=
∫ 1

0
|φ(x+ iY )|2 dx�ε t−ε

φ
.

We then have

1 If φ is itself a unitary Eisenstein series or a dihedral cusp form, this subconvexity is known [Sa01], [LS95].
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Theorem A.7. Assume Conjecture A.3. For ε > 0 and 0 < c < Y � T 1−ε

φ

t
1
12−ε

φ
�ε #{z ∈ CY : φ(z) = 0}�

tφ
Y

log tφ .

Remark A.8. Theorem 5.6 suggests that the upper bound here may be close to best possible.

The proof of Theorem A.6 follows directly from the proof of Theorem 5.1 since (43) implies
our result on using the analog of Prop. 3.7 given in Prop. A.5.

Proof of Theorem A.7. It is clear that the above conditional results provide a proof of the
lower bound using the analysis following (44). For the upper bound, we give a direct proof
(suggested by the complexification idea in [TZ09]) as follows: for any Y > 0, define for
ζ = x+ iγ

φY (ζ ) = ∑
n6=0

ρφ (n)Y
1
2 Kitφ (2π|n|Y )e(nζ ).

The estimates for the Fourier coefficients from (14), (16), (17) and the Bessel function show
that φY (ζ ) is a holomorphic function in the horizontal strip given by |ℑ(ζ )| ≤ Y

4tφ
. Moreover,

it has at most a polynomial rate of growth in tφ in such a strip. The lower bound in Theorem
A.6 shows that φY (ζ ) is not identically zero. Then, by Jensen’s lemma, it follows that φY (ζ )
has at most O(log tφ ) zeros in a disc of radius at most Y

8tφ
centered at a point x real. Hence,

φY (ζ ) has at most O(
tφ
Y log tφ ) real zeros in the interval 0≤ x≤ 1 which then implies the upper

bound for the zeros in the Theorem.

Appendix B. Random wave model on closed horocycles

In [GS12] we used the random wave model in Edelman-Kostlan [EK95] to obtain predictions
on the distribution of zeros of the real part of holomorphic cusp forms on vertical lines. We
apply the same methods here to even cusp forms but on horizontal line segments. From (7) we
write

(85) Φ̃(z) = ∑
n≥1

λφ (n)e
π
2 tφ Kitφ (2πny)cos(2πnx).

For any fixed Y , which may vary with tφ , we consider the vectors

v = v(x) = ∑
n≥1

e
π
2 tφ Kitφ (2πnY )cos(2πnx)en

where en = (...,0,0,1,0,0, ...) denotes the unit vector with the 1 in the nth-
coordinate. The probability density function for the real zeros of the the associated random
wave function is given by

(86) P(v) = P(v,x) =
1
π

√
< v,v >< v′,v′ >−< v,v′ >2

< v,v >2

where v′ is the derivative with respect to x and with the standard inner-product. This is the
expected number of real zeros of the associated wave function per unit length at the point x.
Unlike the situation in [GS12], we do not expect the term < v,v′ > to contribute to the main
term, in which case, we should have

P(v)∼ 1
π

√
< v′,v′ >
< v,v >

.
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Define, for r > 0

(87) S(x) = S(x,r) = ∑
n≥1

eπrK2
ir(2πnY )cos(2πnx),

so that with r = tφ we have

< v,v >=
1
2
(S(0)+S(2x)),

< v,v′ >=−1
2

S′(2x)

and
< v′,v′ >=

1
2
(S′′(0)−S′′(2x)).

For x not close to a half-integer, we would not expect the terms above involving x to contribute
due to cancellation. Using Lemma 3.1, we write the sum S(x) = S1(x)+S2(x)+S3(x) for n’s
restricted by the ranges as indicated there. Using Corollary 3.2, we see that S2(x) is negligible.

Similarly, S3(x) is bounded by (1+∆Y−1)t
− 2

3
φ

= o(Y−1) if Y = o(t
2
3

φ
). In what follows, we

will restrict Y to satisfy Y = o(t
1
3 ), so that ∆

Y → ∞. Put T = Tφ =
tφ

2πY and E = ∆

2πY so that

Y S1(x)∼
T−E

∑
n=1

1√
T 2−n2

sin2
(

π

4
+ tφ H(

n
T
)
)

cos(2πnx)

∼ 1
2

T−E

∑
n=1

1√
T 2−n2

cos(2πnx)+O

(
|

T−E

∑
n=1

1√
T 2−n2

sin( f (n))|

)
,(88)

where we denote by f (n) any function of the type 2πnx±2tφ H( n
T )+C, with C a constant. We

show that the second sum in (86) above is o(1) for all x, while the same is true for the first sum
except for those x near integers. For x = 0, the first sum is asymptotic to π

2 and it is easy to

show it is o(1) if ‖x‖�Yt
− 2

3
φ

. To deal with the second sum, we use the following lemma from
[Vi76] (pg. 306):

Lemma B.1. For q < x≤ r, suppose f ′′(x) is continuous and satisfies A−1� | f ′′(x)| � A−1

for A suitably large. Futher, suppose g(x)� G is monotonic. Then

∑
q<n≤r

g(n)e( f (n))� G
(

r−q√
A

+
√

A+ log(max(r−q,A))

)
.

For those n≤ T 1−δ , with δ > 0 sufficiently small, the sum is trivially o(1). For T 1−δ ≤ n≤
T −E, we subdivide the sum into subsums with T −2 j+1E < n≤ T −2 jE with 0≤ j ≤ J−1.
For n in such a subsum

(89) f ′′(n)�
Ttφ

n2
√

T 2−n2
�

√
Ttφ

(T −2 jE)2
√

2 jE
:=

1
A
.

Moreover, we may take G = (2 jET )−
1
2 so that the lemma gives an estimate for each subsum of

� (2 jET )−
1
2

 2 jET
1
4 t

1
2

φ

(T −2 jE)2
j
4 E

1
4
+

(T −2 jE)2
j
4 E

1
4

T
1
4 t

1
2

φ

+ log tφ

 .
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Simplifying and summing over j then gives us the estimate of o(1) if Y = O(t
5
9

φ
), as is the case.

We thus have
S(x) =

π

4Y
(1+o(1))

except for those x with 0 < ‖x‖�Yt
− 2

3
φ

. In exactly the same way and with the same restriction,

S′′(x) =
π

4Y
(2πT )2 (1+o(1)) ,

while S′(x) = o(T
Y ). This then gives us

P(v,x)∼ 1
π

tφ
Y

uniformly for all x except those satisfying 0 < ‖2x‖�Yt
− 2

3
φ

, with Y = o(t
1
3

φ
) (the last condition

may probably be relaxed). Integrating over all − 1
2 < x≤ 1

2 , using the estimate P(v,x)� tφ
for the exceptional x’s, we obtain the expected number 1

π

tφ
Y of zeros of φ(z) on such a horocycle

(compare with Theorem 5.6 and Theorem A.7).

Appendix C. Nodal domains of odd eigenfunctions

In this Appendix, we sketch the proof of the remark made in the Introduction regarding the
nodal domains of an odd Maass form. Let φ be an odd, real Hecke-Maass eigenform, so that
φ satisfies φ(−z) =−φ(z). Hence φ vanishes identically on δ , which is therefore part of the
nodal line of φ , and so we consider the nodal domains within F+ in Figure 3. To prove the
analogous lower bound for the number of nodal domains for φ which meet β ⊂ δ (these being
the ‘inert’ nodal domains) we seek sign-changes of the normal derivative ∂nφ of φ along δ

(and consequently those of φx =
∂φ

∂x along δ1 and δ2). Each point in β at which there is such a
sign-change must be the end point of an interior nodal line and a topological argument similar
to the one in Section 2 shows that the number of associated nodal domains is at least half of the
number of such sign-changes. As before in order to produce sign changes in ∂nφ we compare
its L∞-norm, its L2-norm and also its meanvalue all restricted to β .

First, we give an extension of the subconvexity L∞ result of [IS95]. This is easily proved
using Bernstein’s inequality for polynomials on the unit circle. In fact one has

Lemma C.1. Let z belong in a compact set D in H. Then for any k ≥ 0 and any Hecke-Maass
cusp form φ

sup
z∈D

∣∣∣ ∂ k

∂xk φ(z)
∣∣∣�D,k tk

φ sup
z∈D
|φ(z)|,

�D,k,ε t
k+ 5

12+ε

φ
.

Proof. Write
φ(z) = ∑

n∈Z
an(y)e(nx),

and for any N ≥ 1, put
φ(z;N) = ∑

|n|≤N
an(y)e(nx).
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For fixed y, we apply Bernstein’s inequality to get

sup
|x|≤ 1

2

|( ∂

∂x
)k

φ(z;N)| �D,k Nk sup
|x|≤ 1

2

|φ(z;N)|.

Then choose N = 100 tφ
y so that φ(z,N) and all its derivatives are well approximated by φ

and its derivatives respectively, with an error that decays exponentially in t so that the lemma
follows.

Next, we need to prove

(90)
∫

α j+1

α j

φx(iy) d×y�ε t
1
2+ε

φ
,

which is the analogue of (80). This is obtained in exactly the same way as the discussion there,
where (81) now becomes

4πρφ (1)
∫

∞

−∞

L(
1
2
+ it,φ)Γ

( 3
2 + i(t + tφ )

2
)
Γ
( 3

2 + i(t− tφ )
2

)(α
−1−it
j+1 −α

−1−it
j

1+ it

)
dt.

Then, Stirling’s formula together with the Lindelof Hypothesis gives the required result.
Finally, we need to prove, as in Section 6.2

(91)
∫

β

φ
2
x (s) ds�β t2

φ .

The method is the same, with the non-diagonal terms offering no new problems. However, the
diagonal term cannot be evaluated as in Section 6.2.3 because φx is not automorphic so that the
diagonal is not an inner-product involving an incomplete Eisenstein series. Instead we obtain a
lower-bound for the diagonal using positivity, asymptotic estimates for the Bessel functions
and finally QUE by using Prop. 3.7. The constant obtained this way is much smaller than that
obtained for the even case, but does not affect the outcome if a is chosen large enough.

Remark C.2. To obtain the analogue of Section 6.2.2 we could have proceeded by using the
gradient of φ instead of φx as follows∫

k(y)|φx|2 dy =
∫

k(y)‖OOOφ‖2 dy =
∫
H

∑
h∈Z

e(hx)‖yOOOφ‖2 dA.

For small values of h one may rewrite the last integral, after integrating by parts, as an inner
product with incomplete Eisenstein and Poincare series against φ 2, with a small error, so that
QUE can be applied. For the large values of h, one has to expand the sums and analyse the
resulting expression. This device will prove useful if (83) were to hold.

Combining all these estimates finally lead to the same statements as those in Theorems 1.6
and 1.8 but for φ an odd form..
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