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1. Motivation: In the case that S/T" is not compact, but is never-the-
less of finite volume, the spectrum of the corresponding invariant opera-
tors is not purely discrete. There will also be some continuous spectrum,
and we will need to study this continuous spectrum quite carefully in order
to eventually derive a trace formula. The key to the construction of the
continuous spectrum in these cases is the Fisentein-Maass series. In this
chapter we will develop the theory of the Eisenstein series and in particu-
lar their analytic continuation. As we shall see these series are of in-
trinsic interest in their own right. Our discussion will be limited to the

case of hyperbolic spaces.

To motivate these series, consider the case of 'ﬂ2 and T= PSLE(Z)

the classical modular group. The stabilizer of infinity is
s s P
T = i o ZL) tne 2).

The standard fundamental domain is &



Considering first the parabolic subgroup [, it is clear that the

functions ys are [ invariant and are also eigenfunctions of the Laplacian D.

(1.3} Dy~ + s(l—s)ys = 0.

These functions (ys), are closely related to the spectrum of D on
ﬁ/ I' functions, as the following construction of approximate eigenfunctions

from the functions ys , indicates.

Let ¢, B be real parameters, and let ¢ be a fixed positive even func-
==}

tion supported in (-2,2), with say J O(x)dx = 1, and assume that ¢ log B > 2.

-0

Define wu(z) = ysq)(e log (y/B)), then it is clear that u is T in-

variant, also

Du = 3 {s(s-1)7° § +26 571 9" (¢ log /B oy * y 0" (e Llog y/B)(§)2 - 0" (¢ 1ogy/B)551)
y

Du-u = eys(25—1)$'(e log y/B) + ys ee " (e log y/B).

Now if s=1/2+it, with te R then we see that

. ° %:fit S+t B
paulf = S [(es-1)ey® 0 (e log 9/B) 4" £ 9(e 20g w/B)|
0 y
o 2
=¢ [ |(2s-1)0"(ex-¢c log B) + ¢ {"(ex-¢ log B)‘ dx
-0

1]
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[ ]es1) 0t s | .



On the other hand

[==]

S = £ 1oGe 208 /)" X -2 10 e

and so

(1.2) Iow - s(s-1)ull << e [l -

The last implies that s(s-1)=- ]Jf -ta is in the spectrum of D on LE(}%/I").
The reason for this is that, for a self adjoint operator A, if ?\O is a
-1
distance ¢  from the spectrum of A, ¢ (A), then the resolvent R, = (?&o -A)
[

is bounded by l/eo .  For by the spectral theorem

A= [ M E,
o(4)
1
R, (A) = adE
o) ()
o
I&, | <
9]
But (1.2) says that |R ol > /e, Ve therefore -l/h«—tg is
(-1/% - %)

in the spectrum.

The above arguments show that 6(D) 2 (-, -1/4]U{0}, where we have
added {0} since the constant function is clearly an eigenfunction. We will
see later [ ] that indeed 6(D) on Le(li/ I'), T the modular group, is

exactly {0} U (- @, -1/4]. At this point we see that there is probably continuous
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A
spectrum and that the functions yl/2 H are usefull for the harmonic

analysis of D in a cusp.

Section 1.2. We turn to the general situation. We have seen in a previous
chapter that if Hn+l/ T' is of finite volume, then a fundamental domain for
I' congists of a compact part together with a finite number of cusps. To
begin with, we assume that there is only one cusp, the general case will be
dealt with later on. We assume that the cusp is at infinity, and that the
stabilizer of w, T , is simply a rank-n translational group of Bfl, L.es

a lattice L. So T acts by

(¥:x) = (y) X+f’)) Lel .

Let EL be a fundamental domain for the lattice I in IRn and let

Fo={(y,x): xe &

= L <y <o}

Clearly &_ is a fundamental domain for T_ . Let & denote a funda-

mental domain for T, & may be chosen within &_ .



Consider asg before the functions ys . They are T_ Ainvariant and

satisfy

(1.3) Dy° + s(n-s)y° = 0.

Of course ys is not T invariant, so to make a function which is T in-
variant we average the function ys-being already T invariant we need only

(and can only!) average over cosets of I'_ mod T.
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Definition (1l.4).

Let E(w,s) = > Y(?w)s
yel;fr

n+l
where we H > 8¢@.

Formally the above series is T invariant, and since the y's are iso-
metries of the hyperbolic metric, and hence commute with D, we expect (since
each y(yw)s is eigenfunction of D with eigenvalue s(n-s)), that E will

be too.

Proposition (1.5). The series 1.5 converges absolutely in Re(s) > n and

uniformly on compact subsets.
Proof. Let o = Re(s).

S o
vy (w)| £ 2y (),
so we only consider the last sum. The idea is to compare the value of yc at

w, with the average value of yc in a small ball about w. We have

e a(z {{;)<5 v :;’df ) C(c:té) y° () (z=(y,x))

for a suitable constant c(o,8) ¥ 0. The simplest way of seeing this is to ob-
serve that the left hand side of 1.6, is a point-pair operator applied to the

function y°© .



Now for a fixed w, or more generally if w lies in a compact subset of
&, we may choose & small enough so that the images under Em/ ' of B(w,8)
are disjoint. Also keep in mind that the images of & wunder suitable coset re-

presentatives of ﬂn/ I' fill exactly the strip &_ , so that

where A depends on I' only, and is chosen so that BEIX [A, ®) CEF.

o-n
(1.6)" . . T lyGw)]|® < y0 o+ Clo, 800 ¢ o> n.

g-n

Which clearly implies the absolute and uniform convergence claimed.

Corollary 1.7. For Re(s) > n, E(w,s) is T invariant, holomorphic in s

and satisfies
DE(w,s) + S(n-s) E(w,s) = O.

Proof. The T invariance is obvious. The functions y(yw)s are all eigen-
functions of D with eigenvalues s(n-s), and so are eigenfunctions of any in-

tegral operator of point pair invariant type. ©Since the series 1.4 converges



-8

uniformly on compacta we have
K, E(*,8) = h(s)E(+,s)

where K is point pair corresponding to k which is of compact support,
and h «s> k is the Selberg correspondence. Choosing K smooth shows E

is CaCl . Also DOK is a point pair integral operator therefore

D, K (E(-»8)) = M(s) E(+,s)

say where A\ ¢ DZ k(z,w). If we let k be an approximation to the identity

A(s) — -s(n-n) DOK (E) _>D0E and, we learn that
DE (z,s) =-8(n-s) E (z,s8).

Proposition 1.8. E(w,s) = ys4—0(yn+l) as y -®, Re(s) > n.

Proof. We need only estimate C(o,8) in (L.6). To do this we observe that
at a height y, we need to choose a ball of radius about 1/y in the argument

of 1.5. Thus from 1.6. The estimate in 1.8 is clear.

Actually we can do a lot better, we will see shortly by use of the Fouriler

expansion that

E(w,s) =y + 0y 9).



§ 1.3 Fourier Expansions.

The function E(w,s) as defined in the previous section satisfies

E(y, x+ 4, s) = E(y,x,8) Vie L

since it is T invariant. Thus for each fixed y we may form its Fourier

series development

(1.9) Blo,8) = = G, @) e({x,8)
£ e:La\L
where I is the dual latbice to L,e(@) = 2 , and (x,£) =

Xlgl + x2£2 winze Xngn'
This separation of variables and the equation DE(w,s)+s(n-s)E(w,s) =0
imply that the co-eff Gﬂ(y) satisfy the o.d.e.
2ol ! 2, 21,12
¥y G, (y) - (n-1)yG, (v) + s(n-s)Gy(y) -y bx [£]7G ,(y) = O.

Thus if b(y) :y—n/2 Gﬂ(y) then

B+ ;y‘bl o [_(%)2/37-2 = l}.ﬂelﬂle]b = 0.
For 4 # 0:

The solution of the last equation is a Bessel function (see Appendix for

its properties). The two independent solutions are the Bessel function growing
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exponentially at infinity and the one decaying exponentially at infinity.

Since
2 2
6,01 < ] [B(w8)] Fax <<y°
L

as we have seen, it follows that only the decaying solution can occure, i.e.

we have for £ £ 0
(1.10) 0y(r) = Gy(slY 2 K, o (2xn 4]y)

for some function Gg(s). Ks-n/e is the Bessel function solution which de-
cays exponentially at infinity

Ks—q/E(Y) << e_cy_ as y -® for some c > 0.

On the other hand if £ =0, the linearity independent solutions are yS and

ke Since for large Re(s)

1 1
v | Eles)ax = y® + o(y"™™)
L F

from 1.8 while we know

=] n-
ay® + By"® =G (¥)

1
vrg;j é E(w,s)dx

L

from the o.d.e., we see that the zero'th co-efficient Go(y) must be of the

form



P g

(1.11) G,(¥) =¥ +P(s)y ™"

for some function §(s).

Returning to the co-efficients Gﬁ(y) in 1.10, we see from the be-

havior of the Bessel K-function at infinity (see Appendix ) that

-(2n|t|-¢)(y-v,)
(1.11)" e, < e |G, (v,)|

for y > Yor Yg large enough and some ¢ > O.

As a corrolary we obtain a much stronger and more useful version of

1.5

Corrolary (1.11)" . For Re(s)>n

E(w,8) = y° + 0(s)y ™" + glo,s)

where g(w,s) < < e as ¥y »® for ¢ sufficiently small.

The function O@(s) will turn out to be of the utmost importance in

what we do.

So far all that we have done is for Re(s) > n. 1In this region, in view
of the ys in the zero'th co-efficient there is no hope that E(w,s) be any-
thing near square integrable over & w.r.t. (ixdy)/;yn*l . It becomes clear

that one needs to analytically continue E(w,s) to the left of Re(s)=n. In



fact at least as far as s=n/2 + it, te¢ R.

The analytic continuation is a very important part of the theory
and we will give two proofs of the continuation. One method, very much in
the spirit of the book so far, was presented by Selberg in his lectures at
Stanford 1980. The second method is an adoption by Colin deVerdiere of
a method due to Lax and Phillips. However before embarking on these two
proofs we pause to give some examples where the Eisenstein series may be
computed exactly in terms of known special functions. These examples show
that the analytic continuation is at least as deep as the contimuation of the

Zeta functions of number theory.

§1.k. Some examples.

1.12. Classical modular group. The case of Hg and T = PSL(2, Z). There

is only one cusp and so

S

E(z,s) = > S ST

yel \T [cz+<l|ES

which by the previous section is of the form

g+ f(a)y™ S + = an, 8) 52K 7, @xlnly)e?™

n

for certain functions ®(s) and a(n,s). To compete ¢(s) we consider



i

1 1 y_f:".
[ B(ze)ax = -
0 0\7elT_\T |cz+d]
s s - dx
= ¥y +y J =
c>0 0 J|ez+4d|
(C,d):l
1
s A dx
vy = 5] Zs
e>0 ¢ 0 |z+d/c|
(e,d) =1
o 1
S L dx
= A os I 28
c>0 C g=- 0 |z+q+d/c|
d mod c
(d,c)=1
s 1 ” dx
= y+y > =/
&S0 2% Lo |z+d/c|?®
(C,d):l
d mod c
w88 &(c) 3 dx
= vy 2s I 2 . BuB
c>0 C - (X" +y7)

where &(e) is the Euler & function, i.e. ¥(c) =#{d mod c: (d,c) =1}

1
e

+
e

1-s8 @gcg > dx
Z 2s f 2 s)
e>0 ¢ —o (1+x)

s 25-1 FES-L%Q) 1-s
C(2s /x T'(s y

I
e
+

for this example



= T

R = %%??Q' Ww“*€*®)=sfqgr(#2m&ﬂ-

As an exercise we leave it to the reader to show that

* o 2 (n)
glus) < ys+ 2s-1 yl-s " Z _c§._1/2_ YJJE Ks-l/E (2% ny) ws(nx 27 )

¢ (2s) el ¢ (2s)
where
(1.13) (n) = a®.
o (n g?%

Thus it is clear that E(z,s) may be meromorphically continued to all
of ¢ . On the other hand, the Eisenstein series - { function connection
above may be exploited in the other direction, and we will have more to say

about this later on.

1.14%. Imaginary quadratic fields and the Bianchi groups. (A little knowledge

of rumber theory is needed here), (see § ). Nice examples for ]m:t5 are the
Bianchi groups. Let D > 0 be square free, and let Q(/-D) = kD be the
corresponding imaginary quadratic number field. Let @D be the ring of in-

tegers of k. We consider the discrete subgroup of SL, (é),

If D#L1 or 3 then I‘m=[(é E)]ne@}. Therefore L:@Dcme =

We consider
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s .
E(UJ,S) = Z Y(')’w) > W= (y:x-laxe) = (.:Y-)Z) Z=Xl+1X2 .
7 el \T
s il
E(w,s) =y +
2 2 28
(e, )= (1) ([ez+a|™+[c|T)
mod + I
(using the action of SL, (¢) on ¥ see 8 Y5
s 1 :y'r 1
=y *+3 %: > 2
2 ¢fo ]c]gs dmod ¢c meG (|z+d,/c+u:|1[2+3r2)S
d,C =1

We want the zero'th coefficient. Let EL be a fundamental domain for

@ in ¢, then

[ Ely,z;s) éx, d.x2 %
3

L
s dx
1 1 95
=V(EY + 5 > =l et
cEFO dmod c |c R (xl+x2+y)
(d;c)=l
s « 2
A ¥ rd 8dr
= V(& )y + = > [ =
4 2 $70 dmod c ]c]gs 00 (y2+ :t'e)S
(d,e)=1
A i 8
=V(E )y + E = >
L 2 sl 70 dmedec |cfES
(d,c):l

2-8

8
B(w,8) =y + V(& ﬂjE(s—lj ;g
L c£0 e

+ nonzero Fourier coefficilients
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where & is the Fuler function for 6, i.e. & (G) = # relatively residue

classes of ©/G where G is an ideal of 6. We write the last as

E(w,8) = ¥° + O (s)y"°

where the notation ¢ll(s) is brought in, since in general there is more than
just one inequivalent cusp at infinity, see later when we do the general case

of a finite number of cusps.

q)ll(s) = Z @(G) 5

G principal N(G)° V(EL)(s-l)
G#£0
where N(G) = norm of G . We continue to derive a more convenient form for

¢ll(s). Let I be the ideal class group of G, |I| = h = class number of
QD. Let ¢1, ¢2 § o wh , with ¢1 = identity charater, be the character group

to I . Define the L-functions Lj by

G
L.(S) = EJ_..(._)
J ¢Zfo n@G)°

the sum being over the nonzero ideals of 6. We see that

Lj(s—l)

h
(1.15) 04(8) = —Z— >

V(E)(s-Dh  TT Iy(s)

These L # id. functions are entire [ ], and so again via number theory
we see the continuation of ¢ll(s). We will later use this E(w,s), L function

on Q(/~D) connection,to compute the volumes of ¥/ FD'



il e

§ 1.5 Further analysis of the FEisenstein series.

Lemma 1.16. Let f £ 0, be in L2(3) and is also a T invariant eigen-

function of A with eigenvalue s(n-s), then s(n-s)e [0, ®).

Proof. This follows from the fact that A 1is a positive self-adjoint operator
on Le(ﬁp+1/F). Indeed for smooth T automorphic functions of compact support

in &, we may integrate by parts
(1.17) -J(aP)yav = J(vo, vi)av = - [ O(ay) av
& & &

where { , ) is the hyperbolic innerproduct, i.e.

n -
g(vdbw)dv: fg(z(%)er(%)z ¥ S b

I
|_l
I_l

e

From 1.17 it 1s clear that the spectrum of A is real and positive.

Lemma 1.17. Let f be an automorphic eigenfunction of A with eigenvalue
s(n-s), and Re(s) > n. Suppose also that f(w) = O(y"), m <@ as y -m.

Then f(w) = @E(w,s) for some a.

Proof. Being an eigenfunction and also T, invariant, the function £(w)
may be expanded in a Fourier series, in a manner similar to what was done with
the Eisenstein series. The polynomial bound shows that only the K-Bessel

functions occur in the coefficients.
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fw) = Goyﬁ + G;)yn—s + non zero co-eff.
2
fw) - GOE(w,S) = h(w) e L (&),
and h has eigenvalue s(n-s). By the previous lemma we conclude that h= 0,
since Re(s) > n.

As in the compact case, we now form self-adjoint operators whose kernels
- +
are constructed via point pair invariants. Let @ :IR —- IR be smooth and of

compact support. Correspondingly we have

’{.Ul"w2[2
k(wl,wg) = o —————
9o
(L:18)
K(wl,we) = > k(u:l,ywe) :
yel

The series in (1.18) clearly converges (being only a finite sum) and

satisfies

(1.18)" K(ywl,we) & K(wl,we) = K(we,ml).

Thus K(wl,wg) is a I' automorphic symetric kernel. It is also ob-
viously locally bounded. We will now examine the behavior of K in the cusp.
We find that unlike the compact case, K will not give rise to a compact

operator, it will however be bounded and self-adjoint.
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Behavior in the cusp.

Being locally bounded, we are only interested in the behavior of
K(wl,we) as one of y, ¥, (or both) tend to infinity. (as usual
Wy = (yl,xl), Wy = (ye,x?)). It is clear that if y, is large enough (de-

pending on our kernel k) say Yy > A, then

(1.19) K(wl,we) = k(ml,ﬂwe)
fel
2
7e L I19o PR
* *
- (2 ).; L = dual lattice to L

3
% F12%55¥q0¥
P 12 %20 Y1095

by the Posson sum formula, i.e. where

2
x -m+t” v ¥

@X - (t) = @ + —_—t — =
X oy
25i( 1772 i g)
. s 172 n 2. %y Yo 2xi{ v, Eu
. 9(E)=e (i) [ 8 lul " 4=+ — =2 Jre du.
TR Yo V1

It follows that uniformly in Xl’xé € 31. and Y1595 that the above Fourier

transform @(E) decays rapidly in modulus as IE] —» @ . Thus the sum over the

dual lattice gives
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n/2 2.7 78 -N
(y,9,) fIRn@ lu| +y2+yl-2 du + O ((y;3,)" )

for any N> 0, and for 71 > Al . S0 we have

( K(leWE) = ]fRn k(wl;w2+t)dt * O( (YlYE)“N)
‘ 0 if ¥ /v, + VY] 2 A,
(1.20) < ”
l(ylyg)n/e ]fRn 8 (Jul® + ¥,/¥, -2)du
\ for ‘Yl > Al 2

Thus as y;, ¥, »® Wwith yl/y2 bounded and small (near 1),

K(wl,wg) ~ yn . From this it is plain that K ;f LE(EX F). This is not

surprising, as we have already seen that [(-;—1)2 ,®) € o(A) = spectrum (4A) .

So we do not have discrete spectrum, and so not every such K can be compact.
Lemma 1.21. K defines a bounded self adjoint operator of L2(3) -+L2(3).

Proof. The symmetry property of K +that was remarked above, gives the self-

adjointness. To see boundedness; let f be automorphic in Le(g)-

K flo) = f3 K (w0, )E (w,)av (@, ).
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We are only interested in the L2 boundedness of Ko f as ¥ »®,
since locally K is bounded, even as a function. For Yy large, we have

from 1.20

5 yy¢ 5 dv(wg)
[k, £(w))| < 023{?{ é I l(ya)n/ [ £ (o) | —%7
LY/ 1 (v,
Cl,C2 depend on T and k only.
[ f°° 2 d’yldxl<fmf of2 + PCL |£(w,)] 1 p O¥yA%y
o K, 2|7 (0y) —57 Bl |7y fgf/ N e dar2| == B
Y1 L LY ¢ Yo Yo I1
® ype It A Wy . . Ty 4y, 9%y
& F_3F y./e 3 y./c 1
L L °n Y1 2 1/ €1
i 1 2] g, dys | SEAnG
el £ G 1 )
2 3 A 3 y./)c g vy
i L Y1/ % ¥o
" 2
E o ”f”2 *

Applying the kernel K(wl,we) to E(w,,s), (in Re(s) > n)

f k (wl)we )E(we)s)dv(wz)

i

il

é K(wl,uu2 )E(wg, s)dV(wg)

k(s)E(wy; ) (k >k Selberg transf.) i.e.



e

(1.22) K E(w;,8) = ﬁ(s)E(wl,s).

The last of course is a polntwise identity rather than an L2 state-

ment. We now begin a series of modification of functions by "cut offs" which

allow us to get L2 vectors. Let

(1.23) B(w,s) = E(w,8) - aly)y> for Re(s)>n,

==}
where Q(y)eC (R), >0 and

T —
o
. [=H
b
e
IA
e

ofy) = , A a large parameter.
* 1 A+1

P-l

Hy
~
(Y

If A is large enough (depending on I') then 1.23 defines a T
automorphic smooth function E(w,s). From (1.11)" it is clear that
E(w,s) e 1 (ﬁn+¥/F ). TFor Re(s)>n, clearly E is holomorphic in s.

Now

(B we) = k(s)E(v,s) - K, (a(y)y®)

1.24

Il

k(s) E(w,s) + G(w,s) where

c(w,8) = (k-k(s))E(w,8) = K (ay)y°) - k(s)aly)y® -

It follows that G(w,s) is entire in s, and is actually supported

in a compact subset (i.e. y < A"') of & independent of s. So G(w,s)
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. 2, n+l : 4 : .
ig in 0 (W /T), Vs. Thus if k(s) is not in the spectrum of K,

(1.24)" a(w,s) = (K-k(s))E(w,s)

has a unique solution E(w,s), and (1.24)' will give an analytic continu-
ation of ¥ to this region. The spectrum of K is real. Choosing K::DOKl,

where K, is close to an approximation to the identity gives

1

s % s
Ky =- s(n-s) Ky (s)y

Kl(s) near 1. 8o if Re(s) > g, s not real then s(n-s) avoid spec(K)
and so we obtain the analytic continuation of ﬁ(m,s) to this region. We

have proven

Theorem 1.25. There is a holomorphic function E(w,s) taking values in LE(E)

defined and holomorphic in Re(s) > n/E, s not real and such that

E(w,s) :a(y)ys + ﬁ(u-’) s).

Thus E may be continued to this region. We now present Selberg's proof of

the meromorphic contimuation of E to all of ¢.

To begin with we must modify our kernel by removing the part which is

growing in the cusp. Let

K(wy,0,) = K(wg,0,) -o(yy) [ nk(wl’w2 +t)dt
IR

K is T dinvariant and write it
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(1.26) E(wl!wg) = K(wl)me) —Ko(wl’w2)'

In view of 1.20 ﬁ(ml,we) =0y ™) as y > and also ﬁ(ml,m2)==0
if yl/yé + yg/yl > A2 say. Note that K is no longer self-adjoint. From

the definition it is apparent that

(1.27) | &, (w,0,)e ((m,xl>)dxl =0 if m£0
3
L

In Re(s) >n

(1.28) R (E(w,s)) = k(s)E(0,8) -X (" +0(s)y""")
and
& , dtdy, -
K ) =a) [ [k, (6,5,)) 7, —mg = 9 k(s)y
%, T2

(1.29)  .". (K-k(s))E(w,s)=-0a(y)k(s)[y°+0(=s)y"°1.

We saw by a previous remark that K is a compact operator, so that
1.29 could be used to contimue E(w,s). However we do not know @(s) nor are

the various terms in I? . To overcome these difficulties we consider the
equation

~ * x 8
(1.30) (K-x%(s))E (w,8)=-0a(y) k(s)y" .

*
This is an equation for the unknown E . A further modification is needed

to put the r.h.s. in L2 . Let
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(1.30)" E (0,8) = aA(y)y"+E  (0,5)

The equation for E** becomes
~ ¥ ~ s
(1.31) K-k(s))E (0,8) = K (ay)y®) = Hw,s).

~ - . . 2
The decay K(wl,wg) = O(y N)‘ implies that H(w,s) e L (F). Thus (1.31)
¥
may be solved uniquely and meromorphically for E (w,s). By varying k (e.g.
X%
making it an approximation to the identity, we learn that E (w,s) has a
meromorphic continuation to ¢ . Since K is smooth (i.e. smooth kernel),
xx . . *
E (w,s) is smooth in w. Thus by (1.30)"' we have that E (w,s) may be mero-
*
morphically continued to ¢ and is smooth in w. Since E  satisfies (1.30)

we have that for Re(s) > n;
(1.32)  (K-K)[E (0,8) +0(s) E (0,0-8)] = -aly) k(s) [y° + 0(s)y™®]
which is 1.29 with E replaced by E*(s) + q>(s)E*(n—s).
Lenma 1.35. For Re(s) > n
E(w,8) = E (0,8) + §(s) E' (0, n-s) .

Proof. Both satisfy 1.29, and both differ from functions in L2(3) by a(y)ys.
Thus by the usual argument, the difference is annihilated by i—k(s). But for
Re(s) > n and s 1is some suitable open subset k(s) does not lie in the spec-

trum of X, whence the difference is zero identically.
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Thus to meromorphically continue E(w,s) we need only continue
“
¢(s) as E has already been handled. Actually we can reduce the con-

*
timuation of ¢ to that of E .

*
Lemme, 1.34. Let Re(s)>n, s¢ IR and s not a pole of E (w,s) or
* * * ) ) )
E (w, n-s), then E (w,s)+AE (w, n-s) is an eigenfunction of A with

eigenvalue s(n-s) iff A=0(s).

Proof. We have just seen the one way implication. For the other direction,

if A ¥ ¢(s) satisfies the above properties then after a subtraction we get
*

that E (w,n-s) is again such an eigenfunction of A (non-zero), and

* e *

E (w,n-s) ¢ I°. But the usual lemma now tells us that E (w,n-s) = O.

A= ¢(S).

* *¥ '
E , E are both smooth in ®w and the equation

* * ¥
AE +AAE =-s(n-s)E
leads to
*
(1.35) AR (0,8)+ AAE (0,n-5)

= s(n—s)[E*(w,s)v%l.E*(ub n-s)] +H(w,s),

where H(w,s) is holomorphic in s and is of compact support in w. Also
W i . 5
we know DE (w,s) is meromorphic in s and in LE(Hn %/T) " x Y05 Ak

of the form

(1.36) u+ Aw=0, u,ve:L2 :



=

By the previous lemma for s in a suitable open set (1.35) has a
unique solution A, and this A is @(s). Thus for s in this region,
v £0 and

(*) 0(s) = 2 = - +2U

v,V

Now u=u(w,s) and v=v(w,s) are meromorphic in s (from 1.35 and
their definition) and so (¥) may be used to meromoprhically continue the

function ¢(s).

Theorem 1.57. ¢(s) may be meromorphically continued to all of ¢.

Theorem 1.38. E(w,s) has a meromorphic continuation to ¢, and satisfies

AE (w,s) + s(n-s) E (w,s) = 0.

This concludes Selberg's proof. We remark that one of it's strengths
is that all that we have used is the theory of compact operators, and in

principle at least this method should extend to higher rank.
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§;:QEE.We now present another proof of the continuation of E. The proof
makes use of differential rather than integral equations, but as the reader
may see for him or herself there are similarities with the proof just pre-
sented. The proof in its present form is due to Colin De Verdiere [ ]
which in turn uses ideas of TLax, Phillips [ ]l. The proof is more

sophisticated than the last, and requires some knowledge of functional analysis.

By this point the reader should be ready to consider the case of more
than the cusp. We saw in a previous chapter [ ] that in the general case
of a finite volume hyperbolic manifold the fundamental domain will have a

k be a set of suech h in-

finite number, say h, cusps. Let kﬁj AR

equivalent cusp points - so kj e RB°U {@}. Let r;,T,, ..., be the
stabilizers of these points - which we assume are rank n lattices. For any

cusp kj there is a rigid motion Gj of I-Im.:L taking kj to @, under

this, Fj is transformed into a rank n lattice of translations of IR . The
corresponding coordinates are

(3)

w =

will be called normal co-ordinates for the j-th cusp. For each cusp we define

an Eisenstein series as before.

Definition 1.LO.

B (ws) = =  (P(w)°, were o=, x)).
J 7€ Ts,/F
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As in the case of one cusp, (propE} 1.5, (1.11)" ) we obtain

1.41. Ej(w,s) converges absolutely and uniformly for ® in compact sub-

sets of &, for Re(s) > n. Furthermore in this region

AE. + s(n-s) E, = O.
dJ ( ) J

On using the co-ordinates m(J), E,

l(w(J),s) is periodic under the

lattice at infinity Lj corresponding to the stabilizer Fj . The Fourier

expansion as in 1.10 is of the form

e, 500 <o @rte ¢ = o(8,5,1,0) )Y 2K,y (x| 2]y ()
J

ao(i,y(j),S) = éij(yj)s + ¢ij(8)(yj)nhs :

1.43. Ei(w(j), 5) = éij(yj)s + q)ij(s)(y’j)n_s +0(e” WJ)

for ¢ >0, and as yJ - @

The last gives us the behavior of the ith Eisenstein series in the jth cusp.

The analogue of 1.17 is
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1.4k, Tet f be an automorphic eigenfunction of A with eigenvalue

s(n-s), Re(s) > n and if

f(w(j)) - o)™, n< o for j=1,..., h

then f is a linear combination (unique) of the Eisenstein series.

Proof. By using the Fourier expansion (for f) and 1.43 and the poly-
nomial bound into the cusp, we see that f(w(J)) = Gﬁ(ya)s + L2 functions

in the jth cusp. From which
h 5 h
fw) - > a.E,(w,8) el°(F) = £ = > Q.E.,
ST 9 9 S d

by the usual argument (1.16).
We turn to the meromorphic continuation of By end ¢ij(s).

Let § be a c” , I' automorphic function, which for aq < 2, large

enough looks like

G}
. 0 for v < a
tll(y('j)) = ; _ 8
l 1l for y(']) > a,

Clearly for aq large enocugh such a function exists.
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Let us be a little more precise about the operators we are talking

about, since the proof is based on changing their domains. A is the Lap-

+
lacian on LE(H-Il l/ I'), which is a self adjoint operator with core domain
(see ) T automorphic smooth functions with compact support in & . Let
R, be the resolvent of A, at X, which is certainly bounded and holo-

A

morphic in A, for A outside of [0, @], since A > O.

For a fixed cusp kj, let hj(w) be the T automorphic function

which looks like

[(1HEh® m P s
h,(w,8) =

J f 0 other cusp.
Let
(1.45) Hy(w;8) = - (8+s(n-5))(hy(w,5))-

It is clear that Hj(-,s) is of a fixed (independent of s) compact support

in & for every s. That Hj(w,s) is entire is also clear.

Now fix a > & and define the Hilbert space Ha to be the closed
2
subspace of L (Hn+%/F) for which the zeroth co-efficient of f in each cusp,

call it %J.(O,y(‘])) satisfies

%j(o,y(j)) =0 for y(j) > a.



¥, is the orthogonal complement of all functions f(w) which are functions

of yJ only for yJ > a, S0. Ha is indeed a closed subspace of

¥ = I2(FYT).

We now consider ﬁa which will be a self-adjoint operator, i.e. the
Laplacian, but with domain, functions in ﬁa' The easiest way to define ga

is to define it through a quadratic form. ILet
(1.45) C(u,v) = [{(vu,w)av + [ uvdv .
& F
If we let Ca be the form defined by 1.45 with domain

(L.46) 8, =0an {fe LE, vf e ﬂg, f automorphic under T'}.

Qa is dense in ﬁa , and clearly Ca is a closed symmetrie¢, positive
quadratic form. Thus Ca gives rise to a unique self adjoint operator Aa
on M, (see for example ). It is clear that locally away from the
y(J) = a, the action of A, is that of A. Also functions of

horosphefes

the form f e ﬂa with

h
Af =g+ > aj Tj (in the distributional sense)
el
where
2 arl
T(8) = [ b gent(@ /T
(y'=2lns
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are in the domain of aa . This follows since everything is happening on
the zero'th Fourler coefficient and there the space M  has zero'th co-

efficient is zero "at y(J) = a" . 1In fact for such an T

(1.47) AT = 8.

Proposition 1.48. The resolvent of A  on ¥, is compact and

(a, + s(n-s))™

is a meromorphic family of bounded operators.

Proof. We need only show that the Ca form embedds compactly into

ﬁa [ ]. Or since Ha is closed that

B= (ue¥, :C,(u)< 1)

n+

is relatively compact in LE(H‘ %/F). By the Rellich embedding theorem

[ ], B is locally relatively compact. Thus all one needs to show is that

) [u|2 =AY, 0 uniformly for ue B or b s .

Now since u(y,x) has it's zero Fourier coefficient on each horosphere

y = const. > a, equal to zero we have



Bl

[ et e Fad <oy 112G
Kel}Lj ELj axl

for a suitable constant Cj Poincare construct for the torus IRn/LJ. .

h h
. ~ 2_ d ~
ce S8 P EEES [ wmlf ZH < G
=1 _(3) o J=1 y>b G
d=: g >b =
b 2 axdy 1~
S5 J |l 1 < -75(3c(u) as needed. m]
We now define
(1.49) Kj(w,s) = hj(w,s) + (L\.a+ s(n-s))_l Hj(w,s)

Kj is well defined as Iﬂj (w,8) ¢ H -

It is clear that

(&a"' S(H—S))[KJ. (U-:':S) - hj (wJ S)] = Hj (UJ, S).

J

Thus locally away from y° = & wWe have

(A+ s(n—s))(Kj(w,s) _hJ (w,8)) = Hj(w,s} i.e.

‘ (+s(n-8)) K5 (w,8) = O

D : :
2] I for y‘j;éa
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1.50 is the key, since we have seen that Ej also satisfies 1.50 -
so we should be able to relate Kj to Ej‘ (0f course 1.49 gives us the

meromorphic continuation of Kj)'

We must first examine the behavior of Kj(w,s) for yj = a. Now
Kj(w,s) is in the domain of A, and is therefore continuous, we may expand
it into a Fourier series in y(j) in the jth cusp. ﬁj(o,y(j),s) will in
view of 1.50, satisfy the usual zeroth coefficient ordinary differential

equation for y(a) < a and y(J) > 8 KJ(O,y(J), s) is continuous in

y(J) (though its derivative need not be) and so

)n—s 4

( J“ch_j(S)(Y'j)S & Bj(S) (5 3 v <a

(1.51) fij(O,:sr(j),S) = l ’ :
)® y) > e

for suitable Aj(s), Bj(s). Notice the second part of 1.51 comes from 1.49
since Hj ¢, . Since Kj(w,s) is meromorphic from 1.49 and 1.48, it follows

that Aj(s), Bj(s) are meromorphic.

Now consider
(1.51)  G;(w,8) = Ky(w,8) + X(a,aa)(y(j))

x (a0 + B ()@ - 7))
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It is apparent that Gj(w,s) and it's first derivative are continuous

accross yﬂ = a. Away from yJ = a

(1.52) (A4-s(n—s))Gj(w,s) =0

and only the zero'th coefficient of Gj(w,s) could be 'bad' , since it has

been fixed up, up to 1lst derivative, 1.52 actually holds Vw.

Now for Re(s) > n the behavior of Gj in Jjth cusp. is Aj(s)(yJ)S-i-LgJ

and in the ith cusp. j # i it is L2, we conclude by the usual lemma that

(1.53) 65(0,5) = 45(s) Ej(0,5)

From 1.51 for example since ﬁj is continuous, Aj(s) # 0, it is meromorphic,
as is Gj . 1.53 then furnishes the meromorphic continuation of Ej . Once
we have the continuation of Ej(w,s) for j=1,...,h it is clear that
¢ij(s) may be meromorphically continued. We have proven:

+
Theorem 1.5k, For each we Hn'l

g Ej(w,s) is meromorphic in ¢, as is

¢ij(s), as if s 1is not a pole of Ej(w,s)
(A + s(n-8)) Ej(cn,s) = 0.

Remark. A slightly more general type of Eisenstein series that will be

used later is the following.
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Let ¥ be a unitary one-dimensional character of T , trivial on Fw.

Define

E(w,8,%) = =_ %) FOw))®
yer/F

then

E(yw,s,%x ) = X(7) E (w,5,%)

and AE +s(n-s)E = O. The meromorphic continuation is identical to what

we did, except that the Hilbert space, is that of functions satisfying
£(yw) = x(7)f(w).

1.55 FURTHER PROPERTIES OF E(w,s).

Though we have shown @ij(s) and E(w,s) are meromorphic, we know
very little else about them at this point (e.g. location of poles etc.).
In this section we will prove the Maass - Selberg inner product formula and

use it to prove some simple facts about E(w,s).

PROPOSITION 1.56. The functions Ej(m,s) or @ij(s) have no poles in

Re(s) > n/2 except possibly for finitely many sj's with Sj e (n/2,n).

PROOF. If Ei has a pole of order v at some point Sy then

. v
lim (s-so) Ei(w,s)
S—)SO
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will be a nontrivial eigenfunction of A with eigenvalue So(n-so).
Since the Fourier expansion of this eigenfunction in the i-th cusp, will
not contain the term (yi)s , it is clear that this eigenfunction will be
square summable over & . The usual selfadjointness now implies that

so(n—so) is real. gq.e.d. o

The pole at s =n.

At s=n, Ej(w,s) has a pole and its residue is easily calculated.
To see this, we will show shortly (see ) that if E(w,s) has a pole in
(n/2, n) it must be a simple pole. Now at s=n, if there is a pole, the
residue will be an L2 eigenfunction with eigenvalue O. Thus it is an L2
harmonic function, which must therefore reduce to a constant, say cj (1P
there is no pole then cj =0 ). Consider in the jth cusp

ax? dy? 3y ax? ay?
Jan+l

(¥y) ) §,-3 (y9)™Ht

@sn)  [15,0'9,8) - ¢1)°]
&

where

sj:{(yJ,xJ): 0<y! <o, xlecd )
3

A(xd) . 3 .
l.h.s of 1-57- = f f (yJ )S _d'-sf_II dXJ
& 0 ()"
J

where A(xY) is the height function as in figure (1.3). So (L.57)

Jys-n .
/ A(x;_% s
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Res(of 1.57) at s =n = V(EL ).
J

On the other hand from 1.57 directly Ej (w(J), s) - (v )S is uniformly

in L2 over &, and has residue Cj at s=n.

qjv(ﬁ) = V(ELJ).

Theorem 1.58. E, (w,s) has a simple pole at s=n, the residue being the

constant function V(3 )/ V().
J

Thus 1.58 may be used to compute volumes of fundamental domains for
some cases such as the Bianchi groups introduced earlier. We defer these and

other applications of the Eisenstein series to another chapter.

PROPOSITION 1.59.

h
E, (w, n-s) = % @ij(n—s)Ej(w,s).

1]

In matrix notation if E(w,s) (El(w,s), . ..,Eh(w,s))h and if &(s)=(¢..(s)).

1

E(w, n-s) = ¥(n-s) E(w, 8).

h
Proof. Lbi,j (n-s) Ej (w,s), has its zeroth coefficient in the e cusp
J=1

equal to
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h h
- £\s = fin-s
ﬁ @ij(n's)éjﬂ(y ) + o q)ij(n's) ¢i£(8)(y ) L
On the other hand Ei(w,s) has zeroth coefficient

j\n-s £y\s
by, )75+ 0, () P)°
Tt follows that for Re(s) > n

h

ZEdLﬂn%)Ei%s)—E(wﬁ)ef%ﬁﬁl/m,
=L * : i

and has eigenvalue S(n-s) = (as usual) the result.

Corollary 1.60. &(s) satisfies the functional equation

8(n-s)&(s) = 1.

We now turn to the inner product formulas. These will give us more
insight into E(w,s) and also are vital in using E(w,s) to produce continu-

ous spectrum.

As is by now customary, we must begin by truncating the Eisenstein

series (to get back to = quantities).
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Definition 1.61. Let A be a large parameter, we define

_ jys Jin-s

B, (0,) - (6, 60)° + 6., (7))

E; ,(0,8) = if y(J)>A
’ Ei(w,S) otherwise.

is square summable over &.

Tt is clear from 1.43 that E.
i,A

1.62. Maass - Selberg Relation. For s, / 52 , sl+§2 £n

/ Ei,A(w’sl) EJ,A Ou,sg) av(w)

3
s.+s,-n  n-(s,+s,) h -
1% 1=
T -4 =1 Pix(51) Pyc(sy)
Sl+82 i
- S.-8 s, -
1 2™%
N (le(SQ)A “t’ij(sl)ﬁ
S17 %

In this formula we are assuming, as we will from now on as far as the
general theoretical aspect of Eisenstein series is concerned, that the cusps
kj , and transformations (93. are normalized so that \;’(3L Y= s

dJ

Proof. The quantity on the left of the identity may be split as

h &
-~ e T i ~
fg Ei(w,sl) Ej(m,s ) dv(w) + 35—1 P,f E; Ej av(w) .
A = y>a



1S). 15

For each of these integrals, ﬁi and EJ. are genuine eigenfunctions

of A, and we may apply Green's formula, (non Euclidian version).

(1.63)' [ (uaw-va)dv = [ (u an—va u)do
s os =

with §=3, or S={w:y('€)ZA}, for some £=1,....,n .

The boundary terms will come from the sets y‘] =A, X¢ Lj , which for

the volume integrals we have
(1.63) [ A ﬁi(w, sl) Ej(w,se) av(w) = - sl(n-sl) / Ei(w, sl) av(w).

Also, since the only alternation to Ei , that is made when going to
ﬁi is on the zero'th Fourier coefficients in each cusp - all other boundary
terms will cancel. Thus 1.63 and (1.63)' will yield an expression for the re-

quired inner product in terms of a boundary integral on y‘j =A of the zeroth

coefficients. When these are evaluated, keeping in mind that the volume element

on oS is -d% , and y % is the unit normal vector to oS (all in a typical
y

cusp), one obtains 1.62. We leave it to the reader to supply these details.

Corollary 1.6k4. d}ij(s) = ¢ji(s).

Proof. For 815 S > n and real, we see from 1.62 that as s all the

2 by T8y

terms except possibly the last remain bounded. But then this means the last

must be bounded too and hence d}ij (sl) = ¢)ji(sl). However for s real (bij (s)
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is real, which is apparent from the series defining E(w,s). Thus
¢ij(s) = ¢ji(s) ¥ se¢ R, but then this is so far all s, by analytic

continuation.

Corollary 1.65. &(s) is holomorphic on Re(s) = g and is in fact a

unitary matrix on this line.

Proof. We have seen that &(s)@(n-s) =I. Now 1.64 shows that &(s) = &(s),

so @(g..it)z @(§+-it) = @tr(gi-it) by 1.64. This holds at all points of
holomorphy of & along the line gi-it, but it trivially also guaranties
holomorphy on the whole line. The equation says precisely that @ is unitary

along the line.

Corollary 1.66. If s, 1s a point of holomorphy of & then it is also a

point of holomorphy of E.

Proof. We have seen that E 1s meromorphic in ¢ and in particular at 5,
Thus

£, ()
Elw,s8) = ——— + ...+ fo(w) + regular ...

(s-8,)"

If there is a genuine singular part of E at S, then the L2 norm of

EA(O,S) would tend to infinity as s — s An inspection of 1.62, with

s =
sl==52 = s, # R, gives the left hand side — @, which r.h.s. is finite since

% is holomorphic at S,



o

If s,eR, say s =0, then taking a limit in 1.62 gives

20- ~20 -2
(1.67) J ﬁ(w,c)ﬁ(w,c)trdV(w)::Eé(c)- %% . 1A o-n _ ,n-204 (o) -
&

20 - n

Thus we have the same conclusion, since even if cr:n/2 5 ia(g) =1

so that the right hand side is still bounded.

Corollary 1.66 and 1.65 are vital to the theory since they guarantee that
E(w,s) is holomorphic on s = n/2 + it and we will need all of these func-

tions to construct the continuous spectrum.

Corollary 1.68. The poles of & in (g, n) are simple.

Proof. Taking the trace of equation 1.67 yields a positive quantity on the
left hand side, while if @ had a higher order pole the r.h.s. clearly

becomes negative.

Theorem 1.69. The residues of Ei(w,s) at the poles of ¢ in (2, n) are

1 eigenfunctions of A (some may be zero).

Proof. This is clear from the Fourier expansion since the residues will not

j)s

involve the (y terms.
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Definition. Let ¢(s) = det &(s).
The function ¢(s) will be of utmost importance as it measures the
quantity of continuous spectrum and it will appear as an important term in

the trace formula.

Theorem. &(s) and @(s) are bounded in Re(s) > g > Im(s) > 1.

Proof. The inner product formula with sl:=s2 yields

IAEO"H _ AG—QH@(S)@*(Q i @(S) AQit_(P(S)A-Qi“‘G
20-n 2it

0 < Trace [ 1.
*
In the region in question 20 -n, is positive so since &% is the self-
=
adjoint, the above gives an upper bound for H@@ | in % <o <ntl to the
right of nt+l it's trivially bounded. To end this chapter we continue with

the examples in 1.1h.



