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SURVEY OF DRINFEL'D MODULES 27

INTRODUCTION

In Deligne [1971]}, two-dimensional f£-adic representations of Gal(@/q)
are attached to "new" holomorphic modular forms of weight at least two on the
Polncaré upper-half plane, or equivalently, to certain automorphic representa-
tions of the adéle group GLzClQ) . The correspondence preserves L-functions.
This theory depends on the properties of moduli varieties of elliptic curves
with given level structure. These varieties have a canonical structure over
@ and the fL-adic representations are realized in the f-adic Bl of certain
sheaves.

Drinfel'd [1973] transports the theory to the function field case by
introducing the concept of elliptic module, which we call a Drinfel'd module,

to replace elliptic curves.

Fixzed notations throughout the article

€ - absolutely irreducible projective and smooth curve over IFq.
@ = a closed point of C.

F = the function field IFq(C) of C over IFq.

A - the ring #0(c -w,Oc) of functions regular on C ~= .

F_ - the completion of F at « with valuation ring 0, .

C, - the completion of the algebraic clesure of F_

Eh - the finite field of q elements.

Relative to the function field F over IFq. we will define Drinfel'd
modules of rank r in the first chapter. Briefly, these are A = HO(C -N,OC)
module structures on the additive group in characteristic p given by
polynomials in Frobenius whose degree is a certain multiple of the rank r.
The term elliptic module, which is Drinfel'd's original term, is used for
Drinfel'd modules of rank 2 for these are objects which correspond cloéely to

elliptic curves. In fact, we have the following dictionary:
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28 PIERRE DELIGNE and DALE HUSEMOLLER

elliptic curve elliptic module (rank 2 Drinfel'd module)
Q IFq(C) = F

infinire place fixed place

z A = 1(c-=,0)

‘scheme scheme over A

n division point 1 divigion point for 1 an ideal of A

n level structure I level structure

moduli space modull space

lattice in € discrete A-modules

Most of the above dictiomary is explained in chapter 1. Elliptic curves
over the complex numbers € can be interpreted as classes of certain lattices
in €. In chapter 2 we describe Drinfel'd modules over C, in terms of
discrete A-modules in C defined over 4. Drinfel'd modules defined over
F_ , the algebraic closure of F_ , can be also described by lattices in F_,
and the lattices with Galois invariance properties correspond to Drinfel'd
modules over intermedifate fields between F, and F, .

For elliptic curves, indeed for more generally polarized abelian varieties,
and for Drinfel'd modules there are modull problems for families of these
objects and moduli spaces. From the point of view of Shimura varieties, basic
information about such moduli problems ts collected in triples (F,G,h') con-

sisting of:
- a reductive group G over a global field F ,

- a conjugacy class of maps h': 6, — G.

The above dictionary extends further with the following examples of triples
(F,G,h') for the corresponding moduli problems over F:

Al 0
polarized abelian varieties (rank g) ( ’CSPZS'( g D

. A 0
elliptic curves (Q’ GL, » (0 1 ))
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SURVEY OF DRINFEL'D MODULES 20

111 0
Drinfel'd modules (rank r) (F ,GLr ,( »
0 1
r-1
A 0))
elliptic module (F ,GL2 5 (0 1

A critical step in the theory over § was the calculation of the
cchomology of the complex analytic variety of C-valued points on the moduli
scheme and the comparison with the £-adic cohomology. In the function field
case Drinfel'd puts a rigid analytic structure on the C_-valued points of the
moduli scheme, calculates a rigid analytic Hl for certainm simple sheaves, and
compares this Bl with the £-adic nl . This rigid analytic space is the
quotient of a C_-analogue of the Polncaré upper-half plane by a discrete group
I' , and the cohomology is in the middle of a short exact sequence with sub~
group Hl(r) and quotient the space of coclosed l-cochains on the tree of
PGL(2,C,) dnvariant under T . This in turn is interpreted in terms of repre-
sentations. Finally, the various representations in Hl are sorted out with
a congruence formula which is analogous to the Eichler-Shimura congruence
formula. These considerations- are carried out in chapters 3 and 4.

In chapter 5 the global results on automorphic forms for GL(2JLF) are
applied to a local result conjectured by Langlands. For a local field K of
equal characteristic p, there is a natural bijection between irreducible
admissible representations of GL(2,K} and two-dimensional representations of
the Well group W(E/X) . The global theory of automorphic forms given by
elliptic modules applies only to representations T =®\7 €c “v where . is
the special representation.

In the form of private letters Drinfel'd has a new theory of "shtuka"
which handles all automorphic forms on GL(l} and GL(2) over a function
field. Even so it seems that elliptic modules are still worth consideration
because the theory for r =1 and r = 2 may extend easier for general =t
than the corresponding theory of "shtuka" which depends on the Selberg trace
formula. Another method to relate automorphic forms to £-adic representations
is in Drinfel'd [1983]. Recently, elliptic modules were used to describe
modular forms in the function field case, see D. Goss [1977].

This article grew out of lectures by P. Deligne at the I.H.E.S. in the
Winter-Spring of 1975 and a lecture in Bonn during the period of Karneval, 1975.
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30 PIERRE DELIGNE and DALE HUSEMOLLER

CHAPTER 1. ALGEBRAIC THEORY OF DRINFEL'D MODULES

In terms of the notations in the introduction, a Drinfel'd module is an
A-module structure on the additive group G, in characteristic p. There is
a theory of division points and isogenies of Drinfel'd modules which parallels
closely the corresponding theory for abelian varieties. Drinfel'd modules have
a characteristic v, which is a valuation of F = IFq(C) over IFq , and they
exhibit a singular and sometimes supersingular behavior at v when v F I
Again, we are reminded of elliptic curves in characteristic p.

Drinfel'd formulated and solved a moduli problem for Drinfel'd modules
with prescribed level structure. The constructions take place entirely with
affine schemes making the existence of the moduli elementary compared with the
existence question of the moduli scheme for elliptic curves with level struc-
ture. We introduce bDrinfel'd's modification of the notion of level structure
which allows for a clearer analysis of level structures at sinmgular and super-

singular points for the cases of both Drinfel'd modules and elliptic curves.

See additional remarks 1.

§1. ENDOMORPHISMS OF THE ADDITIVE GROUF

The additive group (functor) G, over a ring R isg represented by the
polynomial ring R[X] in one variable with structure morphism
a: R[X] — R[X] ®R R[X] given by oa(X) = X@1+1®X. A morphism
$: G, — Ga of the underlying schemes over R 1s given by a polynomial
6(X) € RIX] where ¢*(a(X)) = a(d(X)) for a(X) €R[X] , and this morphism ¢
preserves the group scheme structure if and only if ¢(X) is additive, i.e.
¢ (X+Y) = ¢(X) + ¢(Y) ., Composition ¢¢ of morphisms ¢ and ¢ 1s repre-
sented by substitution ¢(y(X)) , and the sum of two morphisms G, — G, is

represented by the sum of two polynomials.

For example, §(X) = axpi is additive where p 1s a prime number and
pa=0 in R since the binomial coefficient (ﬁ:) is divisible by p for
0<m < pi . For a field k of characteristic 0 the only additive poly-
nomials are of the form cX , ¢ Ek , but fof a fleld k of characteristic

p > 0 the additive polynomials are easily seen to be of the form
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SURVEY OF DRINFEL'D MODULES 31

1 2 n
= P = P P L0 P
o(xX) = oéi aiX aOX + alx + azx + + anx 5

If $Y(X) 1is a second additive polynomial, then
P p"
PO = Vagh) + v(axP) + oo+ Y(a X )

is also additive.

(1.1) DEFINITION. Let k be a field of characteristic p> 0. The
twisted polynomial ring k{t} 1s k@ Z[t] with the twisted tensor product

algebra structure satisfying the commutation rule
s i
EEHEeY = amP ©4H |

We denote a(® i simply by a'ti in k{t)} , and then the commutation
rule becomes Ta = afr .
Let %k denote a field of characteristic p > 0 in the remainder of this

section.

(1.2) PROPOSITION. The function © which assigns to an additive poly-
n .
nomial ¢(X) = ao}( + alxp + s + anxp the element ¢(X) = a; + atT o 4
an'r“ € k{1} 1is an isomorphism 8: Endk(Ga) —+ k{1} of rings.

i pd
The proof follows from the observation that the relation (aXP )P

1 i J
aP xP becomes ‘l‘ja'ri = af 'l'i+j under 6 . Note that the multiplicative

structure on Endk(Ga) is substitution of additive polynomials and on k{t}
the twisted polynomial multiplication.

We have two degree functions deg: End, (G,) —Z and d: ki{t} — 2
defined by the relatioms deg(aux + alxp + e+ anxpn) = p" and
d(ao N a.n-:“) =n where a  # 0. The following relations hold for
¢»¢ EEnd (G) and a,b€ k{t}

deg(¢py) = deg(d)deg(y) 5 deg(d +y9) <€ max(deg(¢),deg(y))
and
d(ab) = d(a) + d(b) - d(a+b) € max(d{a),d(b)) .

We have height functions ht: Endk(Ga) —+ 2 and ht: kit} — Z defined

by the relations l'n:(ahxph + -0 + anxpn) = h and 1'g|:(.’-‘sh‘l:l'l + eee &+ anl'“) =h
wvhere ay # 0. Clearly, ht(¢) = he(8(¢)) . The following relations hold
ht{¢p) = he{d) + ht{(¥)} and he(ab) = ht(a) + ht(d) for ¢,P GEndk(Ga) and
a,b & k{t} .
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32 PIERRE DELIGNE and DALE HUSEMOLLER

We have substitutions 3,: End) (G) — k end 3: k{t} — k defined by

the relations
i
Py = £y .
BO(ZaiX ) a5 and 3({81'1' ) a,
where 30 is the derivative at the origin and 3 the value at the origin.
Clearly 29(8(¢}) = 80(¢) for ¢ £ Endk(Ga) .

Finally, the following properties of additive polynomials seem to have

been known for some time.

(1.3) PROPOSITION. Let RC G,(k) be a finite subgroup, and form the
polynomial PH(X) = T‘Theﬂ(x—h) . Then P, (X) is an additive polynemial,
S0 PHE Endk(Ga) with deg(PH) = Card(H) , and we are able to recover
H= ker(PH) (k) , the set of all x €k with PH(x) ={ .

PROOF. To show that PH ig additive, consider QY(X) = PH(K +Y) - PH(Y) in
k(Y)[X} . Since H 1s a subgroup, QY =0 on H and further deg(QY) =
deg(PH) = Card(H) . Thus PH(X) and QY(X) are monic polynomials of the
same degree equal to Card(H) and each equal to zero on HC kC k(Y) . It
follows that PH(){) = QY(X) = PH(X+Y) - PH(Y) , 1.e. Pl-l is additive, and the

other statements hold which proves the proposition.

(1.4) REMARK. As a kind of converse of (1.3) observe that for an additive
polynomial f: Go—* G, over k, the set H of xE€ k with f(x) =0 1is a
subgroup of G,(k) with Card(H) dividing deg(f) . If k 1is algebraically
closed, then deg(f) = pht(f)°Card(H) , and that the group morphism
£: G (k) — Ga(k) is surjective for £ ¢ 0. Since ht(f) = 0 1f and only if
Bo(f) # 0 , we see that Bo(f) # 0 implies that deg(f) = Card(ker(f}) over
an algebraically closed k.

§2. DEFINITION OF DRINFEL'D MODULE OVER A FIELD

We return to the basic notations of the introduction, in particular
A= HO(C —m,OC) , and let k denote a field of characteristic p. Before the
definition we make some remarks which point out the natural limitations of the
definition.

(2.1) REMARK. Since End, (G,) isomorphic to k{t} 18 an integral domain,
and since A 1Is a Dedekind domain, any ring morphism A - Endk(Ga) is either
injective or has image contained in the constants k C k{t} . The second case

being relatively trivial means that we will be interested in morphisms which
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SURVEY OF DRINFEL'D MODULES 33
are injective (or faithful).

To the rational peint © , we have associated an absolute value Ix|¢u on

the function field F with Iqu as residue class field with g, a power of

q and the absolute value normalized such that |a|°I° = Card(Afa) for
ac€AaCF.

(2.2) REMARK. For an injective ¢: A — Endk(Ga) the composite

A—‘Lr Endk(Ga) —d-"'—&e-z denoted llab = deg(¢(a)) satisfies HRabl = llalibl and
la +bll < max{llali,Ibl)} from properties of deg. Since lal 1 for a #+ 0
and for some a , lal > 1 , the relation Wa/bl = lal/Ubl for a/bEF
defines an extension of llal to F as an absolute value. Since lall 2 1

for all a& A, a # 0, the absolute value Ix| on F must be equivalent to
|x|, » 1.e. Bxl = |x|T for some r>0 and all x€F.

In fact, r > 0 1is a natural number, but we defer the proof of this until
the next section, see (3.3), and introduce the following basic concept which
prinfel'd called an elliptic module. ‘

(2.3) DEFINITION. For a natural number r > 0 , a Drinfel'd module over
s field k of rank r for the pointed curve (C,®} over ]Fq is a morphism
of rings
¢: A — End (G,)
ouch that G is isomorphic to G, and [al = deg(¢(a)) = |a|, = (Card(afa))”

for all nonzero a EA.

Let Algk denote the category of commutative k-algebras R , and let
Mod A

a functor

denote the category of A-modules. To a Drinfel'd module ¢, we associate

E: )’ngk Bt ModA

which assigns to a k-algebra R its underlying additive group Ga(R) together
with the A-module structure defined by requiring ¢(a)(R) to be scalar multi-
plication by a on G, (R) . Observe that the functor E determines ¢ , and
frequently we refer to E as the Drinfel'd module instead of ¢ . We will
denote ¢(a) by just ¢, occasionally.

{2.4) DEFINITION. Let ¢: A— Endk(G) and ¢': A — Endk(G') be two
Drinfel’d modules. A morphism u: ¢ — ¢' 1is a morphism u: 6 — G' such

that ¢;u = u¢a for all a€ A. A nonzero morphism is called an isogeny.
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34 PIERRE DELIGNE and DALE HUSEMOLLER

Equivalently, u is5 a morphism of functors E — E' assoclated to ¢
and ¢' . Thus Drinfel'd modules over k form 2 category with the composition

of morphisms being evident.

(2.5) DEFINITION. Let ¢: A — Endk(G) be a Drinfel'd module and form
30¢: A — k wuhere 30: Endl-:(c) — k is the value of the derivative at the
origin. The Drinfel'd module ¢ has characteristic <« provided Botb: A— k
is injective and has characteristic v , & valuation of F over Ty different

from «, provided A n.= ker(30¢) .

Since ker(30¢) is either zero or a maximal ideal of A , every Drinfel'd

module has characteristic « or some "finite" v # =.

(2.6) REMARK. If u: ¢ — ¢' 1is a nonzero morphism (isogeny) between
two Drinfel'd modules, then ¢ and ¢' have the same rank and the same

characteristic.

(2.7) REMARK. The definition (2.3) of a Drinfel'd module can be formu-
lated in terms of a (A,Endk(Ga))—bimodule N which is free of rank 1 over
Endk(Ga) and satisfying the condition [lal = (Card(A/a))r for a&€A,a#0.
The choice of a basis element for N identifies N with E“dk(Ga) .

§3. DIVISION POINTS

As with abelian varieties, division points of a Drinfel'd module play a
basic role in structure and modull problems. We continue with the notation
BE: Algk
b: A = Endk(Ga) 5

g t‘lodA equal to the functor assoclated to a ring morphism

(3.1) DEFINITION. For a € A (usually a ¥ 0) the subfunctor E CE
of a-division points is ker(cpa) . For an ideal I C A the subfunctor
EI C E of I-division points is naEI Ea 5

If Bryeee

So in particular for a principal ideal (b) we have E(b) = Eb . Since
E, = E if and only 1f a = 0 , the same holds for ideal EI = E,. if and only

»8_ generate an ideal I in A , then EI = Ealﬂ e N l?.ar .

if 1 =0, and essentially we consider E; only for nonzero ideals 1.
More explicitly, for any k-algebra R, the A-submodule EI(R) consists of
all x € E(R}) such that ax = 0 for any a € I . This shows that we can

view E. as a functor defined EI: Algk — MOdA/I .

1
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SURVEY OF DRINFEL'D MODULES 35

Again as with abelian varieties, EI(E) will be a free A/I-module for I
prime to the characteristic of E. For the case characteristic ©« this is no
restriction on 1 and for characteristic v corresponding to the maximal
ideal P, in A it means IC P, . In order ta prove this assertion we will
use the following lemma on torsion modules over a discrete valuation ring V
with local uniformizirg parameter 7 . For a V-module L let £(L) denote

its length and m L — I, the action of the scalaxr ™ on L.

2m

{3.2) LEMMA. Let L be a V/1~ -module.

(a) We have 2{ (ker(ﬂ:)) 2 L(L) .
(b) For nonzero L , the equality holds in (2} 1if and only if L is a

free V/ﬂzm-module, and in this case ker(‘n':') is a free V/1"-module.

PROOF. We can decompose L as the sum of modules N isomorphic to Vl'ni
with 0<1i€2m . For N = Vf'ni (0 <1< 2m) observe that

Vi'ni of length 1 for 1% m

ker('nm) =
. i-m i
1" (V/r) of length m for m< i .

In both cases 2£(ker(1r V) = 2.inf(i,m) » i = L(N) so that (a) holds. Alsc
N is free, i.e. 1 = 2m if and only if 22(ker(‘n )) = Q(¥) , and T (V/'IT )
is isomorphic to v/® as V/n -modules which proves (b).

In the following basic structure theorem for EI(E) over the algebraic
closure k of k , we also settle the question left at the end of (2.2).
Note that the above definitions apply to any morphism ¢: A — Endk(Ga) of

rings.

(3.3) THEOREM. If ¢: A — Endk(Ga) is a monomorphism of rings, then ¢
is a Drinfel'd module of rank r > 0 for an integer r . Moreover, for an
ideal I relatively prime to the characteristic of ¢ , the AJI-module EI(E)

is free of rank r.

PROOF. By {2.2) there exists a real number r > 0 with deg¢, = Card(A/a)r
for all a€A,a$0. If 346, =0, then by (1.4) deg¢, = Card E, (k)
and also
= 2 _ =2
Card Eaz(k) deg(¢az) = deg(qba) = Card Ea(k)

For each irreducible element T of A prime to the characteristic of ¢ ,

which is a local uniformizing parameter of Ap = V ,we apply lemma (3.2) <o the
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36 PIERRE DELIGNE and DALE HUSEMOLLER

v/nzm—module E ZM(E) to prove that E m(E) 18 a free A/m"-module of rank d
T T

where

Card(E () = deg(® ) = Card(a/m™’ .
L

From this we deduce that rt 1s an integer and so0 ¢ is a Drinfel'd wodule of
rank Tt .
Next, for any nonzero a € A the primary components of Ea(E) are of the

form E m(E) , 80 free A/m™-module of rank r , from which we deduce that
T

Ea(f) is a free A/a-module of rank r. Finally, if I is an ideal of A
prime to the characteristic of ¢ , then there exists another ideal J in A
with A=1+J and IJ = (a) , a principal ideal prime to the characteristic.
Then A/a = A/I @ A/J , and E, = EI @ EJ as functora. Since Ea(lz) is free
of rank r over Afa , 1t follows that EI(E) is free of rank r over AL ,

and this proves the theorem.

(3.4) REMARK. It remains only to consider for a Drinfel'd module E of

rank r and characteristic v # = , the A/mtemodules E n(E) where v(m) = 1.,
T
In this case 80¢ { = 0 for all i , and by the discussion in (1.4}, the
b

endomorphism ¢“ has a height h where deg(¢w) - ph.Card E"(E) , Or more

generally

nh

n h T 1| -
dea(rbﬂn) = (deg(d;))” = (p +Card E (k) = p -CardEﬂn(k) 5

Hence again by applying lemma (3.2), we see that E n(l-c) is a free module of
m
rank r-h <r over A/m" . As finite group schemes over k , We have a

splitting when k is separable

0 et

E = E x E
ni ni wi
0

where Eet

{ is étale of rank r~h and E { 15 infinitesimal of rank h.
m m

(3.5) DEFINITION. The height of a Drinfel'd module E of characteristic
v # @ is the height of ¢ where T 1§ an irreducible with v(®) =1 .

Since (m) is uniquely determined by v , the height is well defined.

(3.6) REMARK. Let E be a Drinfel'd module of rank r and character-
istic v. Let h be the height when v =% ., For an irreducible T of 4 ,
let A be A localized at m . Then lim E_, (k) is a divisible Ap-module

m —0 T
which is isomorphic to
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SURVEY OF DRINFEL'D MODULES a7

(I-‘.I‘J’er)r for ® prime to the characteristic,

(FIA“)r-h for w(m) = 1

§4. ISOGENIES

Recall that for a Drinfel'd A-module (¢,E) over k and any field
extension k* of k , the group E(k*) has a given A-module structure. For
two Drinfel'd A-modules over k and u€ k{t} with u % 0 , the additive
ut ¢ — ¢' is an isogeny if and only if the additive wu: E(kKy — E'(k) 1is
A-linear. This follows from the fact that two polynomlals are equal if and
only 1f their associated polynomial maps k — k are equal. The kernel of
ur E(k*) — E'(k*) 1is the A-module ker(u) (k*) where ker(u) 1is the scheme
kernel of u: ¢ — ¢' .

(4.1) Separable isogenies. An isogeny u: ¢ — ¢' 1s separable when
u(X) = box + blxp + e+ bsxpE where ‘n0 ¥ 0. Then u is determined by
ker(u){k) a finite A-submodule of E(k) 'up to constant factor. For a finite
A-submodule H CE(K) , we form PH(J[) = T_l'hea(x-h) , and there 18 a unique
Drinfel'd A-module ¢' such that ¢;PH = PH¢-a for all a €A .

1f acker(u)(k) = 0 for a ¥ 0 , then we can form the isogeny v with
kernel u(ker(tba)(i)) and vu = ¢a . HNote that such a nonzero a € A with
asker(u) (k) = 0 always existe for u # 0 since it is a finite A-module. When

u is separable, we can always choose v to be separable too. By the same
construction, 1f wu: ¢ — ¢* and w: ¢ — ¢" are separable isogenies such
that w(ker(u){k)) = 0 , then there is a separable isogeny v: ¢' — ‘¢" with
w = vu where ker(v)(k) = u(ker(w) ) .

(4.2) Purely inseparable isogeniea. These are of the form Ti € k{t} or

 FEN Kpi . Since d)a‘ri = Ti¢a in k{t} 18 equivalent to all coefficients of
gba being in TF ,, it follows that a purely inseparable isogeny exists only
when the characteristic v of ¢ is unequal to « , and in this case pi is
a power of q, where 9, is the cardinality of the residue class field of v.
The finite group scheme ker(tl) = Spec(k[t]/(tp }) . This case corresponds

to a purely local kernel.

(4.3) REMARKS. Let H be a finite subgroup scheme of G, , and let ¢
be a Drinfel'd module structure on G, . Then H {is the kernel of some

isogeny wu: ¢ — ¢' if and only if H 1s stable under the action of A and
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0 if the characteristic = ®

h
Spec(k[t]/(tq ) 1if the characteristic = v and
q=4q, = Card(F(v)) .

For any isogeny u: ¢ — ¢' there exists an lsogeny v: ¢t — ¢ and a €A

with ¢a = vu .

Let &(u) denote the degree of the additive polynomizl u eEndk(E) .

The function §&: EndR(E) — 2 also prolongs under extension of scalars to

End, (E) ———— End, (E) ®A F

I j )

z r Q - q .

Bad, (E) ®A F

(4.4) REMARKS. We study the A-algebra Endk(E) with § wusing the
following properties of §&: Endk(E) ® F,~—q:

(1) §¢u) > 0 and §{u) =0 if and only if u =10 .
(2) &{au) = bafs(u) for aEF .

(3} S(u+v) € max(§{u),56({v)) .

(4) 8(va) = §(vid(u) .

Moreover, End(E)C— Endk(E) ®A F_, will be seen to be a discrete A-module in
this normed vector space over F_ , see (4.9)(2). The main step will be to
show that End{(E) is a finitely generated A-module. For this we use the

following two lemmas.

(4.5) LEMMA. let A"C KCF: where X 1is a discrete A-module. Then
X 1is finitely generated.

PROOF. For all i observe that m: + ACF¥, has finire index, e.g.

k{1/t] + tik{[t]] C k({t)) has index Card(x)Ll . There exists an 1 with
XN (mc’;;')rl = 0 since X 1s discrete, and thus X embeds in (lemg;)“ and
X/A" embeds in (F_/ml+A)" which is finite. Since (X :A™) is finite and
A" is finitely generated, it follows that X 1is a finitely generated A-module.

(4.6) PROPOSITION. For a finite dimensional subspace V over F of
End(E) ®A F , it follows that V (M End(E) is a finitely generated A-module
which is projective.
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PROOF. For V, = F,® Vv, it follows that X = End(E) NV = End(E) NV, ,
and we can assume that § pgenerates V and so V,  or teplace V by a
gmaller subspace. Let xl,...,xn be a basis of 1)'m with xie X . Then
with this basis A"C xC F: =V and we are reduced to the previous lemma
since End(E) 15 a discrete subspace of End(E) ®A F_ . To see that

X = VA End(E) 1s projective, we have only to remark that it is flat since it
is torsion free over a Dedekind domain and finitely generated flat modules are

projective over a Noetherian ring.
(4.7) COROLLARY. The A-module End(E) is projective.

PROOF. Let W =11 W  where W= End(B) ®, F and dim ¥, 1is finite,
Then X, = End (E) N Ni is projective by (4.6) and the restrictions of the
projections W — W, to £y End(E) — X, define a morphism

f: End(E) — J__l_1 Xi onto a projective module with ker(f) = 0 . Hence End(E)

is projective.
For estimates on the rank we use the following lemma.

(4.8) LEMMA. let a €A be prime to the characteristic of E . Then
End(E) ® Afa — End(E,) is Injective.

PROOF., If w & End(E) and w(ker(d:a)) = 0 , then as in (4.1), it follows that
W= v¢a , and wIEa = 0 implies w & End(E)a .

Now we summarize all the basic results in the following theorem-and

remarks.

{4.9) THEOREM, Let E be a Drinfel’d module over an algebraically closed
field k of rank r . The

(1) End{E) 1is a projective A-module of rank & rz , and
(2) Endk(E) ®A F, 1s a field in which End(E) embeds as a discrete

A-module of this normed space over F_ .

PROOF. (1) The fact that End(E) 1is projective is contained in (4.7) and
the injectivity of End{(E) ® Ala — End(E,)} coming from {4.8) bounds the rank
by r2 since E, is an Afa-module of rank r for a prime to the character-
istic.

(2) The existence of & on Endk(E) ®A F proves that it is a field,
and since F_/F 1is a separable extension Endk(E) ®A F, 1is also a fileld.
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The subspace where § =0 on Endk(E)(:k F_ 1s zero since
dimg End (E) C%,Fm = rank(Endy (E)) .

oo

(4.10) REMARK., With the notations of the previocus theorem, the ring
Endk(E) is commutative for E of characteristic <« and further its

rank & r .

(4.11) REMARK, For a place v of F we denote by DV(E) = {ifn E(v)“
and then the Tate module would be by definition

T (E) = Hom(F_/A_,D_(E))

Then End(E) ®A AVC-» End Tv(E) = End DV(E) , and the cokernel is without

torsion as an Av~module.

§5. DRINFEL'D MODULES OVER A BASE SCHEME

Recall that locally free sheaf of rank 1 and invertible sheaf are the

same notions, for which we use also the term line bundle.

(5.1) DEFINITION. Let S be a scheme in characteristic p. A Drinfel'd
module over S of rank r is an invertible sheaf L and a morphism or rings

¢: A — End(L) such that locally over open sets where L 18 trivial
m i m r
¢a(x) = zi=0 aixp where p = fall” and a is a unit. We say that ¢a is

strictly of degree pln

In order to analyze the condition that a, is a unit, we use the

following lemma.

(5.2) LEMMA. Llet E be a ring with p =0 and ¢, f €ER{T} where

fd = Wi , ¢ = §=0a111 with aN a unit, Y = Efzobiti with bN a unit, and

f = 2?;0 ciTi. Then the leading coefficient “u is either a unit or zervo,

and so f is either zero or strictly of degree € M.

MHN

PROOF. Comparing the coefficients of T in the relation Wf = f§ , we

N_ M N-1_ M, _
deduce bNCM = cyag of cM(chM —aN) 0. Since bN is a unit, this can
be written

N-1 M,-1
CH(CM —aNbN) = 0 .
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N-1 M
Thus either «c, = 0 or cy=a unit with Cy a“le.

The next lemma 1s a version of the Welerstrass preparation theorem.

(5.3) LEMMA. Let R be aringwith p=0, If ¢ = 21:_0 ai'ri where
is a unit and s++.,a, are nilpotent, then after a change of coor-
ay a1 N

dinates with a(T) =1 + Ignl ci'ri such that

M
How = T et - e'@

with at" a unit.
The coefficients cN'CN-l"" Gy  ATE chosen by decreasing induction.

(5.4) REMARKS on the definition (5.1). An alternative form of the
definition of a Drinfel'd module over a scheme § in characteristic p 1is to
give E/S a group scheme locally isomorphic to G, and a morphism of rings
¢: A — Endg(E) with degree ¢ = lall locally over §S.

Using lemma (5.3), we can put an Os-linear structure on E such that the
action of some d)a for Hlall > 1 1s locally given by a polynomial expression
with highest coefficient a unit and of degree HaH: . Using lemma (5.2) and
the relation ¢a¢b = ¢ab - ¢b¢a , it follows that all ¢b are given locally
by polynomials of strict degree llbll: . Questions of Os—linearity need only
be checked over closed subschemes Spec{R)~— S where R 1is a local Artimo
ring.

(5.5) Analogue of characteristic. The function a~— 3,9 ~defines a

morphism A — Os of rings and hence a morphism of schemes S -+ Spec(d) .
For a closed point 8 €5 , the Drinfel'd medule Ls over the fleld F(s)
has characteristic B8(s) € Spec(a) .

§6. LEVEL STRUCTURE AND THE MODULI SPACE

Let I be an ideal in A , let V(I) denote the set of prime ideals
of A containing 1 , and let E/S be a Drinfel'd module of rank r over S
with characteristic morphism ©: $§ — Spec(A) . Then form the finite flat
group scheme EIIS = r-\aEI kers(E 2, E) of rank equal to card(A/D)T .
The scheme EI/S is étale outside the characteristics which divide I , i.e.
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over 8 1(Spec(V) -V(IN C S .

In the most elementary sense an I-level structuyre on a Driufel'd module E
should be an isomorphism «: (I']'/A)r —w-EI over S , and in fact, this
definition worke very well away from characteristics dividing I . In order to
deal smoothly with characteristics dividing I, we are led to the following
definition of Drinfel'd which has also an analogue for elliptie curves with

level structures.

(6.1) DEPINITION. An I-level structure on a Drinfel'd module E/S of
rank t 1s an A-linear morphism

a: (1Y) — E;

such that for all {1 in I-IIA the corresponding sections o(i) of E; have

the property that as divisors on E

! @) = (B
té @ l/a’ !
Locally E is isomorphic to G, , and in this case E, is defined as the

kernel of a polynomial map P: G, ~+ G, where

P = ] X -aw) .
1e(171/a)

Let Fi denote the contravariant functor from schemes to sets which
assigns to a scheme 5 che set of isomorphism classes of Drinfel'd modules

over § of rank r with I-level structure.

(6.2) THEOREM., Let I be an ideal in A with Card V(1) >1. The
funceor Fi is representable by an affine scheme of finite type over A.

PROOF. For x & V(I) it suffices to show that the functor restricted to the
category of schemes over Spec(A) -{x]} 1is representable. Then for a scheme

S over Spec({A) - {x} , and a Drinfel'd module E over 5 with an I-level
structure, the choice of nonzero elements for the I-level structure gives a
trivialization of E. Over these local pieces E is given by coordinates of
¢a for each a &€ A and elements ofi) for 1 € (I'llA)t subject to the

relationsa:
(a) ¢a¢b = ¢b"a
{(b) The leading coefficient of ¢a is invertible.
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() ¢,(a(d)) = 0.
(@) P(X)y = TT(X-a(i)).

All of these relations are affine in nature and can be represented by an affine

scheme.
The book of Katz-Mazur [1985] carries the construction of moduli spaces

of elliptic curves using Drinfel'd's definition of level structure.
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CHAPTER 2. ANALYTIC THEORY OF THE AFFINE MODULES OF DRINFEL'D

The group of peints of an elliptic curve over the complex numbers is of
the form C/L where L 1is a lattice over Z (so of rank 2) in €. There
is a similar assertion for Drinfel'd modules of rank r . The group of
G,-valued points is of the form C_ /L where L 1s an A-lattice {(discrete
A-module) ofrank r in C_ .

The description of Drinfel'd modules in terms of lattices gives a calcula-
tion of the modull space of Drinfel'd modules over C_, in terms of a quotient
GL(r,A)\HonFm(F:.ij . This is similar to the quotient GL(Z,Z)\Monm (IR2,C)
which classifies elliptic curves plus a differential form. In the last section
an adélic description of the points of this moduli space is given.

§1. EXPONENTIAL FUNCTION ASSOCIATED TO A LATTICE

Let X be a subset of a complete nonarchimedean value field K such that
0E X and B(a,r) N X 1s finite for amy ball B(a,t) C X arownd a of
radius r > 0. Then the Euler product

e (t) = ¢ T7 (1—%)
vy €X - {0}

defines an entire function eyt K — K with zeros on X , because the
hypothesis implies lituYex - {0} t/y =0 from which we deduce that ex(t)

converges uniformly on any ball.
By changing f and t by scalar factors, we can assume that the power

geries expansion of an entire function has the form £(t) = 20(:\ antn where
la,| €1, Jag| <1 for 1<r, and la.| = 1 ; when £ 1s nonconstant, also

r >0 . By solving congruences modulo powers of the maximal ideal of F , we

can factor

r

r -1
£(ty = (t +e)t +———-+cr)(b0+blt+----) 5

1If, in addition, K 1is algebraically closed, then it follows that every non-—

constant entire function has at least one zerc. Thus the Euler product ex(t)
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is the unique entire function, up to a constant factor, with one aimple zero

at each point of X and no other zeros.

(1.1) DEFINITION. A subgroup L of the additive group of a complete
value fleld K is called a lattice provided the intersection L MNB{a,r) 1is
finite for any ball B(a,r) .

When K is of characteristic p , then pL = 0 and the torsion group L
is a limit of finite subgroups H , i.e.
L = M3y finjtect?
t
If the above Euler expansion ey(t) =t TTYEX -{0}(1 - 1s additive,

i.e. ex(x +y) = ex(x) + ex(y) for any x,y €F , then X 1is clearly a
lattice and ex(t) is its exponential function.

(1.2) PROPOSITION. Let L be a lattice in a complete value field K of
characteristic p. Then eL(x +y) = eL(x) + eL(y) for any x,yEK.

PROOF. Since L = lim

o, finiteCLH » it follows that uniformly on any ball

eL(t) ) .

1im ' e
—H finitecL H

Each eﬂ(t) 18 additive since 1t equals c-T_l'hEH(t -h) which is additive
by 1(1.3). Thus eL(x +y) = eL(x) + eL(y) since it is a limit of functions

ea(t) gatisfying this property.

(1.3) REMARK. If L is a lattice in 2 complete value field K , and if
AEK' , then AL 1s a lattice also and the exponential function e (t) of
1 determines the exponential function of AL by eAL(t) - I\eL(A'"lr.) . The
lattice AL is called the dilation of L by A €K’ .

Two lattices L and L' are in the same dilation claes provided L' = AL
for A€ K' . We always normalize the exponential function so that

eL(t) = t + (higher order terms) .

§2. CHARACTERIZATION OF DRINFEL'D MODULES OVER C_

Lattices T'C C_ such that al CT for a€ACC, with the induced
scalar action by a € A are also A-modules, which we call A-lattices. A
dilation AT of an A-lattice T 1is again an A-lattice for XA € C; , and we
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46 PIERRE DELIGNE and DALE HUSEMOLLER

can speak of dilation classes of A-lattices,
Given an A-lattice T in C_ , we form the ring morphism
¢r: A — Endc (G,) where ¢£ for a A 1s defined by the following cow-

(-]
mutative diagram

°r
0 -+ T ~+ Cy + C,, ——+ 0
Pk,
e
0 » T - C, L C., — 0 .

For Al , the relation ¢§r(e”(t)) = en-.(at) becomes in view of (1.3) simply
¢2P(ler(l-1t)) = Aer(alhlt) or A-lcb:r(ler.(t)) = er(at) . This implies that

r AT
¢a‘¢a for AEC,.

(2.1) THEOREM. The function, which assigns to each A-lattice T , the
ring morphism ¢r: A —r Endc (G;) defined above, is = bijection from the set
oo

of A-lattice dilation classes in C_ determined by ' which are projective of
rank r onte the set of isomorphism classes of affine A-modules ¢a over C

of rank r with a¢a e a,

PROOF. TFirst we calculate ker(d)z) . This 1s isomorphic to ker(¢£er)ll‘ =
ker(er.a)ll" , and ker(e[.a)lI' is isomorphic to a1 ker(er)/P = a~1r/T. Hence
ker(¢£) is isomorphic to (Ala)r since T 1s projective of rank r, and
moreover deg(¢£) = Card(A/a)® . Thus [ — ¢1" is a well defined function
from dilation classes of A-lattices projective of rank r to isomorphism
classes of affine A-modules over C, of rank r . The property 3¢oa - 3
follows from eI.(t:) « t + (higher terms) , and ¢QI‘ = MEJ\"‘ from the calcula-
tion preceding the statement of the theorem.

To show I —» ¢r 15 a bijectlon, we consider an affine module
$: A — Endc (Ga) of rank r and construct an additive entire function
e: ¢, — C, “such that ¢a(e()()) = e(aX) and e(t) = t + (higher terms). Then
the corresponding A-lattice T 1s the set of x €C_ with e(x) = 0.

The first step is to show that there is a unique formal solution
e(1) € k{{1}} such that ¢a(e(x)) w e(ax) for a given a € A with
¢a('r) = a0+--- +asTB and a = a, # 0,1 . The condition tba(e(x)) = e{ax) 1is
equivalent to ¢a(e(a'1x)) = e(x) = ZO <l eixp . Equating coefficients of T,

we derive from the relation

(o) (Begee™!) = 2o
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i _n
= PP
the formula e, ii+j =n aiej a , and hence the inductive definition for the

coefficlents e starting with ey = i

n i _n
= { aieg_iap .
i=1

—ph
en(l - al LA
This shows both the exi{stence and unigueness of e(t) .

The second step 1s to show that for this e(r) , the relation tbb(e(x)) =
e(bx) holds for any b E A . Consider

et oo = e Heo = @ e haThm .

1 both satisfy the relation

From the expression it follows that e and ¢beb-
¢aea'1 = & , and from the uniqueness asgsertion in step one, it follows that
ebP.-eb for any bE& A . a

Next we have to show that e(x) = EO €n euxp is an entire function.
Assume in the inductive definition of e(x) that }a] > 1 and write the above

recurrence formula for e, as
n 8 n
P o_ - P
e (a a) ) aje . for n#s8 .
i=]

- - -
Then Ia[.|en|P“<maxl<i<8{|ai]P r _, where rj-]ejlp . For §

—
such that 1/]a] <8 <1 and any =n 2 fixed n, , each term |ai[p € 1l+e ,
and it follows that
r € 8. max r . .
" 1€1<e
Since ) r € -1 max{r,,...,r.} , we see that r_ = e ]pdn — 0, which
0€n'n  1-0 [ A A n n ’

proves that e(x) 1s an entire function.
Finally, we calculate ¢a for this e(x) where [ equals the subset of
x€C, with e(x) = 0. We have

(-&)

b0 = a.x TT,
Yyea "T/T-{0}

since :ba(x) =0 on a'll'/I' . Thus the degree of ¢a equals Card(a-l'['/I') =
Card(l'/a) = (Car:d(A/a))r . This proves the theorem.

For our future considerations I-level structures will play a basic role
where I 1is a nonzero ideal in A . This leads to the following definition.
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(2.2) DEFINITION. Let Y be a projective A-module of rank r. For a
nonzero ideal I A an I-level structure is an iscmorphism o: Y/IY — a/nt

of A-modules (or free A/I-modules).

An isomorphism Y/IY L (A/I)r is equivalent to an isomorphism

I-]‘Y./Y AN (I_llA)r since v =11 ®A u. Inthe case Y = T an A-lattice
of rank r and the affine A-module E = qbr: A -+ EndC (6,) corresponding to
I' by (2.1), we calculated ker(¢£) = a'll"lf and thus the subfunctor

EI = a@l ker(¢a) C. E has the form

B(c) = [)a'T/r = 1T
acl

Thus we immediately deduce the following assertion.

(2.3) PROPOSITION. Using E,(C,) = I /I , we have that an I-level
structure on the affine A-module E = ¢ 1is the same as on I-level structure

on the projective A-module T .

§3, DISCRETE MODULES IN A VECTOR SPACE OVER A LOCAL FIELD

The following preliminaries are needed in the next section in order to

parametrize A-lattices in C_ as homogeneous spaces.

(3.1) NOTATIONS. Let A be a discrete subring of a local field K with
field of fractions F(C K. We assume that K/A s a compact abelian group.

(3.2) EXAMPLES. () A=TZCF=QCK=R.
(2) A=Z+fRCK=Q(/-d) for d>0 ,d CZ square free and FCK=C.
-1 -1
(3) A qu[tl CF= IFq(t) = IFq(t YCK= IFq((t n.
(4) A=T [C-=)CF= T (C-=) = F ()C K=F, where C 1s an affine
curve and F_  1is the completion of F at = .
Of course (3) is a special case of (4),and (4) is the case of interest in this

part.

For any finite dimensional vector space V over K , the topology 1is well
defined and given by a norm. A subgroup H in V is discrete provided there
exists a neighborhood N' of O in V with N'NH=0. If N+NCN',
then N+xMNN+y =¢ for x,yEH 1f and only 1f x =y.
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For an A-module H , the rank of H , denoted tk,H , is dim (K ®A H) .

(3.3) PROPOSITION. Let H be a discrete A-module contained in a finite

dimensional K-vector space V. Then

rkA(H) < dimK(V) 5

PROOF. Let XyreorXy denote a set of elements H forming & basis of the
vector space W= K+HC V . Then

L = Ax1@---®AxnC HCWCV .

Since H 1is discrete in V , there exists a neighborhood R' of O €V with
HMAN =0 and a neighborhood N with N+ NCN' . Now N+l is a neigh-
borhood of 0 in V/L intersecting H/L only at 0. Thus H/L 13 a
discrete subgroup of V/L and of the compact abelian group

WL = xxl@---(i)xxnlmle---@un .

Thus H/L 1is finite and n = dimF(F ®A L) = dimF(F ®A H) = ﬁ:l.mKH " which in

turn implies rk A(li) = dimF(‘F ®A H) £ dlmKV . This proves the proposition.

(3.4) PROPOSITION. Let H be a projective A-submodule contained in a
finite dimensional K-vector space V. Then H 18 discrete in V if and only
if 9: K®A H-— V 18 injective.

PROOF. Assume H is discrete in V. Then H C im(8) C V is discrete and so
rkA(H) < dimK(im(e)) by (3.3). On the other hand, for any H , we have

rkA(H) = dim (K ®A H) > dim (1m(8)) .

Hence dim (K ®A H) = dimK(im(B)) and so © is injective.

Conversely, assume that © 1s injective. There exiats H' with B @ &®'
free, and a free module A% C K" is a discrete A-submodule. Hence H {s
discrete in K®A H, and since O 1s injective, H 1is discrete in V. This

proves the proposition.

(3.5) REMARK. let C be the completion of the algebraic closure of K.
Then for every projective A-module P with rkA(P) % [C : Kl there exists an

A-monomorphism

P—C
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50 PIERRE DELIGNE and DALE HUSEMOLLER

such that P 1is discrete im C , i.e. dby (3.4), the induced K®A P—C is
injective.

In example {1}, 2 = [C:K] and free modules P of rank £ 2 over Z can
be embedded as discrete subgroups of € = C. In examples (3) and (4),
[(.2‘,J 3 F“] = w anpd all projective modules embed as A-lattices of C_ .

§4. MODULI SPACES AS HOMOGENEOUS SPACES (LOCAL THEORY)

Now we return to the notations of the article where F = IFq(C) 5
A= IFq[C-m] y F, completion of F at =, and C_ the completion of the
algebralc closure F_, of F_ . Let K denote F, a local field as referred
to in 53 where A (C K 1s discrete and K/A compact. We denote points in
projective space ]Pr-l(cm) by their homogeneous coordinates ypioor Y.
We begin by parametrizing F-vector subspaces or equivalently free A-lattices
in C, .

(4.1) PROPOSITION. The function £: CA\(Homp (F,C,) -{0) — P L)
givenr by £f(u) = u(el) HERR :u(en) where e, = (0,.:051,...,0) is a bijection
which restricts to a bijection

*
. \MonFm(F;,Cm) —_— lPr__l(Cm) =~ U (E_ -rational hyperplanes} .

PROOF. A nonzero element u of Homy, (F:,cw) is determined by its values
(u(el),...,u(er)) on the canonical ha:is elements ey [ F: . A dilation of u
ylelds a dilation of the r-tuple (u(el).....u(er)) - (xl,...,xr) . Next,

r d
(al....,ar) € ker(u} C F, if and only if ):1.1 asx, 0, L.e. for
(al,....ar) 0, (xl,....xr) is on the F_-rational hyperplane with equation

alx1+---+arxr -« 0 .

This proves the proposition.

For an A-module Y projective of rank r , we have embeddings and
t
isomorphism Y —F_ ®A Y =F, and GL,(Y) — CL(F, ®A Y) = GL(r,F_) coming

from the tensor product. By taking the image of Y or F ®A Y , and using

(3.4), the following horizontal arrows are well defined functions.

(4.2) PROPOSITION. Let Y be a projective module of rank r over A.
The following diagram {8 commutative and the horizontal arrows are bijectioms
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A-sublattices of C
MonFa\D(Fw®AY,Cw) IGLA(Y) isomorphic to Y ml

N\ \

. A-sublattices of C_
Cm\MonF(?@)AY,Cw)IGLA(Y) -_—— s |isomorphic to Y

modulo dilations in C

2
r-dimensional ‘

+

F-vector subspaces

Mon \(F,®, ¥,C ) /6GL{x,F) ————
@® of Cm

L

. r-dimensional F-vector
Cm\MonFm(FmAY ,C_)}/CL(r,F) —————t

subspaces of C_
modulo dilaticns in C

Now putting (4.1) and (4.2) together along with (2.1), we obtain the
following assertion. Let P; denote the set of isomorphism classes of pro-

jective A-modules of rank T .

(4.3) PROPOSITION. Using the previous notations, we have the following
bijections

(P__,(C) — U(F, -ratienal hyperplanes))/GLA(Y)

r-l

N A-sublattices of C,
Cw\MonF (FmQAY’cm)/GLA(Y) ——ey {isomoTrphic to Y
@ modulo dilations in C N

and taking disjoint unions

‘LLr(IPr—l (€.} — U(F-rational hyperplanes)) /GLA(Y)

YEPA

A-sublattices of C_ of rank r
modulo dilations in C

|

tisomorphism classes of affinel

11l ¢ \Mon, (F ® v,c)/6L, (Y) ————r
YEP” @ A TTRTTA

A-modules ¢, over Cw of
rank r with B¢
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52 PIERRE DELIGNE and DALE HUSEMOLLER

(4.4) REMARK. 1In the case r = 1, PO(C‘”) - (F-rational hyperplanes) is
a point, and (4.3) is a statement about bijections between sets with one point.
We will be Interested particularly in the case r = 2 in latter parts. 1f
a,x. + a,x, = 0 where al,aze F, , then Xy toxy ® =2y ioay (S IPl(Fw) . Thus

il 272
we have

]Pl(Cm) - (F-rational iines) = IP]_(Cm) - lPl(Fm) .

The next step is to modify (4.3) to include the case of A-lattices with
I-ievel structure. For a projective A-module Y of rank r the projection

Y — Y/IY includes a group morphism GLA(Y) — GI.A(Y/IY) which has kernel

GLA(Y,I) . In the following two statements we have a restatement of (4.2) and
a modification taking into account I-level structures. Fix an I-level struc~
ture

ag: ¥/IY — a/n’ .

(1) Each monomorphism wu: Fm®AY —+ C,, determines a lattice u(Y) C C,
and an I-level structure uo((uIY)‘l) modI) = a on u(Y) where
w[¥: ¥ — u(Y)C C, . Moreover, all A-sublattices of C, , isomorphic to Y

together with an I-level structure, come by this conatruction.

(2) Two monomorphisms u,u': F 0, Y — C, determine the same lattice in
C, 1if and only if there exists b = GLA(Y) with u' = vh. They determine
the same lattice in C_, with I-level structure if and only if there exists
h € GI.A(Y,I) with u' = uh.

This leads to the following modification of the previous proposition.

(4.5) THEOREM. Let I be a nonzero ideal in A , and use the previous
notations. We have the following bijections:
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SURVEY OF DRINFEL'D MODULES 53

'l—l}(]?r-l(cw) - U (F -rational hyperplanes})/GL,(Y,I)

YGPA

a: Ty — @ Im®
modulo Aut of Y

A-gublattices of C,

of rank r with an I-level

structure modulo dilations

L1 ci\on, (£, ¥,c) /6L, (1,1} —=—=— }
in C:

T
YEPA

ar Ty - @7 a"
modulo Aut of Y

isomorphism classes of affine A-modules ¢a
over C, with I-level structure and of
rank = vy with 3, = a

or more briefly the bijection

1L efey/e, e ==y | -
(o, Y)Y EP, ()

r r
Here Q°(C) = mr—l = IPr_l(Cm) ~ \J (F_-rational hyperplanes), alse HI
is the modull functor for affine A-modules rank r . with I-level structure, and
P;(I) is the set of ordered pairs (a,Y) with Y€ P: and
a: I7M/y — (171/8)% 1s an isomorphism.

§5. MODULI SPACES AS HOMOGENEOUS SPACES (ADELIC THEORY)

The basic bljection describing H;(cm) in (4.4) involves only the local
field at ® . In this section we will describe PLI(CQ) using all the primes
of F together with M‘;(Cw) . This adélic description is closely related to
the adélic description of vector bundles on a curve which we recall now.

(5.1) REMARKS ON VECTOR EUNDLES. Over any ring space X = (X,Ox) a
vector bundle E of rank n 1s a (locally free) sheaf on X locally
isomorphic to O; ., If X 1is a nonempty open set of the curve C over IFq s
for example X = C ~ {=} , then a vector bundle of rank n can be described
as a family (V'LV)VEX where X 1is an n-dimensional vector space over
F = IFq(C) and each L, 1is a free module of rank n contained in vV over

the local ring O(V) at v . We assume that there exists a basis xl,...,xn
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54 PIERRE DELIGNE and DALE HUSEMOLLER

of V over F and a finite set S C X with

L = 0, %, + «+- +0

v w1 () *n

for all vE X - 58 . The basis xl....,xn is called a trivialization of V
on X-5. If yl,...,yn 1s any other basis of V , then

= a d = b
6| § 1,3 *1 § 3,173
vhere (aij)‘(bij) G.GL(n,O(v)) for all but a finite number of v . Hence
every basis of V 4is a trivialization of V over some X -T where TCX
is finite.

To an Ox—sheaf E , locally isomorphic to 0; , we assign V = E where
N 1is the general point of C. The ( (v)-submodule L, CV 1s defined by
trivializing E|[(X-S) on an open set X-S around v with x,,...,x €V
and requiring for all w€E€ X -5 with § finite that

L, = O(V)xl + o0+ O(W)xn .

These lattices which come up in the above description of a vector bundle
can be identified with certain homogeneous spaces. Let F, denote the com-
pletion of F at v € X with valuation ring Ov . Then using matrix trans-
form between basis of a lattice in a vector space M or FS , we have the

following commutative diagram of bijections:

CL(n,F}/GL(n,0(,\) —==—— {0,,,-lattices in )
! I
GL(n.Fv)/GL(n,Ov) _ {Ov-latticea in Fl‘:}

(5.2) Homogeneous space description of trivialized vector bundles

A vector bundle E with a trivialization is described by (Fn,‘l‘..v) for
vEX where Ly = 07, C F* for all VEX - S where § is finite. Thus
the vector bundle trivialized on X - § is determined by a finite set of
lattices L C F* for vES . This leads to the following bijections:
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trivialized over X~-$S
n-dimensional vector bundles on X
all up to iscmorphism

TTeL(n,F )/6Ln,0) —=—
vES

Vecs(x) I T6L(n,F ) x | ! GL(n,0 )/ I ‘GL(n 0 }

vES veX-§ veX

where the vertical arrow is a homeomorphism of locally compact spaces.

At points of § we can consider a A-level structure on the vector bundle
E relative to a positive divisor A supported on 5. This is just an
isomorphism of the sheaf EIi!(-A) = E®0 (0/0(-1)) — (0/0(-A)™ . 1In terms of
the description of E with the data (Fn,]..v) this is an isomorphism

L, ey — Oy ""’o(v))“ where s(v) = ord(,(4) and T, is a local

uniformizing parameter of O(V) and hence Ov . If we denote by
GL(n,Ov,Av) = ker(GL(n,0 ) — GL(n, 0 I,H,S(v)o ¥

and K(n,A) = | IVEX

as follows for supp(d) C §:

GL(n,Ov.Av) , then the previous diagram becomes modified

trivialized over X-S

T‘I‘ —~ n-dimensional vector bundles
v sGL(n 1t )/GL(n’O 'Av) ,on X with A-level structure

all up to isomorphism

Vecg (X;4) = [ T6L(n,F ) TT 6La,0 )/K(n A .
vES vEX -8

Now we consider two special cases for X namely X=C and X = C ~ {=}

and remove the condition that the vector bundle is trivialized.

{5.3) Vector bundles on C.

The product in the numerator of Vecs(X) or Vecs(x;A) is one of the
terms in the inductive limit which defines the adéle group GL(n,A.F) where

GL(n,A?) - lim ||GL(nF)X || GL(nO) .
VES ve€ -8

Hence considering vector bundles with A-level structure and trivialization over
some open set C-S5 of C where Supp(d) C S, we obtain the bijection
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vector bundles of dimension n
~ lwith a A-level structure and
GL(n’AF)/K(n’A) " ) trivialization off the Supp(4)
all up to isomorphism 5

Since the various trivializations are all related by the action of GL(n,F) on

basis, we have the following quotient of the previous bijection

isomorphism classes of
GL(n,F)\GL(n,AF) /(n,p) ———— In-dimensional vector bundles
on C with A-level structure 5

(5.4) Vector bundles on C-{=}.

The product in the mumerator of Vecg(X) or Vecs(x;A) for X = C - {=}
is one of the terms in the ]:_:H_n which defines the finite ad&le group

£ 7 A
CL(n,A;) where Ap = A®A F and A = Lim, A/J, the limit being taken over
ideals JCA. A divisor A can be described as an ideal IC A, and the

group K(n,A) 1is given by
K(n,8) = ker(6L(a,A) — GL(n,A/AD))

which we also demote by GL(n,K,I) to avoid confusion with the previous case
discussed in (5.3). As before we obtain in the injective limit the bijection

vector bundles of dimension n on

£ 2 P ¢ -{=} with a A-level structure
GL{n'A'F) /GL(n,4,1) land trivialization off the Supp(d)
all up to isomorphism .

On the affine C - {»} with coordinate ring A = woc - {=},0) a vector
bundle of dimension n is just a projective module Y of rank n over A

Now we combine the previous bijection with
* r r
Cm\HonFm(Fm,Cm) = Q) = T __(F) —U{F_-rational hyperplanes} .

We have a bijection

(6L(x,aD) f6L(e, A, 1)) x 7(C,)

vector bundles Y on C-= of T
rank r with a trivialization & :Z:omogphiﬁmstorgiztigns in
and a A-level structure all up c* P Yo UP

to isomorphism L)

Licensed ta Princeton University, Prepared on Wed May 23 11:09:58 EDT 2012 for download from IP 128.112.203.193.
License or copyrighl restrictions may apply to redistribution; see hittp:tiwww.ams.orgipublications/ebooksiterms



SURVEY OF DRINFEL'D MODULES 57

The trivialization of Y is a basis of Y ®A F over F which defines an
embedding Y — F:; as a discrete A-submodule. When this embedding is composed
with a monomorphism, F:, — C, ylelde an A-sublattice of C, of rank r with

an I-level structure modulo dilations in C; .  Hence by (4.5) we have a map
toL(r Al 6L, R, 1)) x 27 (c,) — ME(C)

where the fibres correspond to the various bases of ¥ ®A F over F. Hence

factoring out by the action of GL(r,F) yields the adélic description of
Mi(C,) -

(5.6) THEOREM. The above map induces a bijection

CL(r,FI\GL(r ,AD) x 87(C,) f6L(r,&,1) == M1 (C,) .

(5.7) REMARK. The quotient space descriptions in (4.5) and (5.6)
generalize to any open compact subgroup HC GL{r,A) to give the C -valued
points H.;(Cm) of a modull scheme M, :

My(C) = GL(r,F)\GL(r.Alf,) x Qf(c ) /0 adélic version

= 11 £ nr(G“,)/(xl'lx-l 1 6L(r,F)) local version .
xit €GL(r,Ap) /H

The moduli scheme H.; arises from H-level structures on Drinfel'd modules.
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CHAPTER 3. THE RIGID ANALYTIC MODULI SPACE

Now our aim is to describe the rigid analytic structure on the C -valued
points of the moduli space. These points were parametrized by a quotient of
ﬂr(cm) by a discrete group in 2(4.5). The rigid analytic structure on
the moduli space 1s a quotient of the rigid amnalytic structure on Qr(Cm) .

in order to define the rigid analytic structure on Qr(cm) , we make use

of a natural mapping

.ol r r
A QF(C) — I(F)oC 1(F) ¢

onto the rational points I(F:)q of the geometric realization I.(F:';)m of the
building I(F:';) of the group PLG(r) over the local field F, . The
admissible open sets of the rigid analytic structure are inverse images by Jl-l
of certain open neighborhecods of skeltons in I(F:)m 5

In this discussion we indicate how both Rr(cw) and the building I(F;)

are p—adic analogues of real symmetric spaces.

§1. NORMS ON VECTOR SPACES OVER A LOCAL FIELD

(1.1) NOTATIONS. Llet K be a local field with valuation ring R,
maximal ideal p = Rm , and q = Card(k) where % = R/RW . We normalize |al
on K as |a| = q-ord(a) so that |w| = a! and |K¥| = €. We consider
finite dimensional vector spaces over K , and thus the closed unit ball and
unit sphere are compact. If V is of dimension m over K , then a lattice

is any R-submodule M free of rank m.

¢1.2) DEFINITION. A norm on a vector space V over K is a function
a: V-— IR satisfying:

(a}) oafx) 20 and a(x) =0 if and only {f x =0 .

(b) «fax) = |alaf{x) for a€ K and x€ V.

(e} alx+y) € sup(ai{x),a(y)) for x,yE€ V.
A norm is called integral provided alV) = |K| = {0} U qz and rational provided
aHC Q.
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SURVEY OF DRINFEL'D MODULES 59

If o(x) < aly) , then axiom (¢} can be strengthened to the equality
a(x+y) = aly) = sup(a(x),a(y)) .
If o is a norm and t > O , then the dilation ta 1s a norm, and we

denote by N(V) the set of dilation classes of norms on v.

{1.3) EXAMPLE (I). For a basis Xgaeees Xy of V and real numbers
r.>0 ,..., r_ >0 the function
V] m

alagg + -0+ ax) = sup(roiaol ,...,rlau‘!)

is a norm on V. 1In fact, every norm can be described by this formula. This
is proved by induction'on m by considering a nonzero linear form A: V—F
and choosing %, #0 in V such that x it ]1(x)|/0'.(x) defined on the com~
pact projective space IP(V) takes its maximum at Xq - Then V = Fxo@ ker(3)
for which on ker{})) the inductive hypothesis applies. See Goldman and
Iwahorl for the details.

{1.4) EXAMPLE (II}. The norm Oy asgociated to a lattice M in V is
given by the formula G.M(x) = tnf{l/lal: ax € M} .

Observe that M 1s the unit uu-ball in V of all x € V with a.M(x) <1,
and for x # 0 we have o, (x) = q”" where p” = {a € F: ax € ¥} . For two
tattices L and M the inclusion LC M holds 1f and only if aL(x) b2 au(x)
for all xe€ V.

For nonzero ¢ € F we have ucu(x) = (lf]c[)an(x) for all x &€V , and
in particular, am(x) = qO.H(x) . Pinally, if XgreeosXy is a basis of a
lattice M over R, then

aylagrg + ++- +ax) = sup{[aol OO |aml} .

Thus this example is a special case of (1.4).
Going back to a(agxy+--- ta x ) = sup(r0|a0] ,...,rmiam;) , we see that

replacing =x, by cxy for c # 0 replaces Ty by riflcl . In particular,

i

X, replaced by nsxi leads to ry replaced by qsri . Hence, by rescaling

i
the basis vectors, we can always require the constants L] to be in an ‘interval
of the form [r,qr) or {r,qr] for some given r > 0. So when

a(v) = {0} U qz , we can choose the x. with each r

i = 1, and this gives the

next propesition.
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(1.5) PROPOSITION. The following are equivalent for t > 0 and a norm

o on a vector space V :
(1) o= L0y for scme lattice M ,
(2) (V) = |Fl-t , and
(3) alagxg + e- +ax) = tesup(lagf ,..., | }) for some basis

xo,...,xm of V.

Now we wish to study to what extent the. representation

alagry + ==+ +ax) = sup(rolaul 000r rm|am])
for a norm o 18 unique by renormalizing and reordering so that
q3r0>r1}...>rm_l?rm)1.

Then the basis elements are unique up to multiplication by ﬂtl and cyclic
permutation. The requirement that r > 1 removes this ambiquity, and further
after a dilatien of o we can assume that ;=4 The set of values

a{) = {0} U qzrolJ ven Lqurm , and thus the numbers r, are uniquely
determined by a . They make up the set o(V) N {1,q] wvhen we require 7 > 1.
With these notations, consider the lattices Li for {=m,m1,...,0 where

1

-1 -
Rxo + ore + in +RE X, ket R xo for r, > T4
Li =
Li+1 , for T, = Ti41 ?
and L =Rx, + +++ 4+ Rx_ .
m 0 m

(1.6) LEMMA. The lattice Li is the open ball B(O,qri) .

PROOF. For x = Eajxj € V clearly x€ L, if and only if |aj| €1 if
j€1 and ]ajl £q 4if j > i, or equivalently, ri]ajl £ T for &1
and rj[ajl £ qrj for j > 1 . Now assume that r, > Tiel * and we see that
both inequalities are equivalent to rjlaj| <‘riq . Hence, x€ Li if and
only if a(x) < qr, - 1f LR IR then Li - Li+1 , and so the result
holds by induction from m to Q.

Finally, we obtain the following structure theorem.
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(1.7) THEOREM. Let o be a norm on a vector space V with
a{V M (l,q] =5, and for r& S , let L(r) = B{0,qr) an open ball. Then
dimV 2 Card(S) and o = supres(raur)) .

PROOF. As in (1.3), we can choose a basis xo,...,xm of V with
alagxg + »rr +ax) = sup(rolaol ,...,rmlam!)

and q 2 Y 2z r B oaee B T 1. The r, exhaust the set S with possible

repetitions and thus dimV > Card(s).

By (1.6) the lattice lLi = L(r,) for 1ri > L) igs given by
+ +0s + RN X, - The norm o, = aL(ri) is

i

L1=Rx0+...+ax + RT X

i i+l

given by

- -1
oy (agxg 00 +ax ) = sup(|a0|,...,]ai|,q |ai+1| sreesq [aml) .

and since rq-llai+1| < 1y, 08,0 » 1t follows that

alx) = sup(rouo(x) ,...,rmozm(x)) =  sup (r-aL(r)(x)) 5
res

This proves the theorem.

§2. THE BUILDING FOR PGL(V) OVER A LOCAL FIELD

We continue with the notations (1.1) in this section. The dilation
(or homothety) class {L} of a lattice L is the set of all lattices AL
where A € F* in the vector space V. Observe that {L} 1s the set of all
niL for 1 1in the integers.

Let PGL(V) denote GL(V)/(scalars) for a vector space V.

{2.1) DEFINITION. Let V be a vector space over the local field K.
The building I(V) for the group PGL(V) over K is the simplicial complex
whose vertices are dilation classes {L} of lattices L in V , and whose
simplexes {vo,... .vn} are sets of vertices where after reordering v, " {Li}
with L0 > Ll Do > Ln > ﬁLO .

Observe that the ordering of the vertices Vgrrr eV such that repre-
sentatives L:I. = v, can be chosen with L.:l > oeee > Ln > ‘u'LO is unique up to
the action of the cyclic group on n+1 elements inside the symmetric group.

The simplicial complex I(V) has dimensiom equal to dimV-1, and each

simplex is contained in a top dimensional simplex (one whose dimension equals
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62 PIERRE DELIGNE and DALE HUSEMOLLER

dim I{V) ). For dimV = 2, the building I(V) 1is cne dimensiocnal, a graph.

In fact, I(V) is simply connected and hence a tree. Each vertex v = {L} is
contained in (m+1) 1l-simplexes {v,v'} corresponding to the m+1 lattices
L' with L>L'>mL.

This building I{(V) is a special case of the buildings (immeubles) which
have been associated to general semisimpie groups over a local field by Bruhat
and Tits. These simplicial complexes are contractible, and the vertices are
in natural bijective correspondence with the cosets of PGL(V)/(maximal com-—
pact subgroup K). Here K is the image of GL(L) in PGL(V) for a lattice
L of V. This description together with other features suggest that I{(V)
is an analogue of the symmetric space for real Lie groups.

Now recall some generalities on geometric realizations as applied to (.
The geometric realization T(V) is the subset of (t)€ ﬁvel(v)[o'll
such that ({v: t, # 0} is a simplex of I(V) and Ev t, = 1. For each sim-
plex g = {vo,...,vn} of I(V) its geometric realization IG] C I(V)IR is
the subset of (tv) c I(V)IR with t, =0 for v ¢ o . As a subset of

m““ o |o] is compact, we give I(V) the inductive (weak) topology where M
is closed in I(V)IR if and only if M N |g| 1s closed in |g| for each
simplex ¢ of I(V) . We will make use of the dense subset I(V)Q C I(V)m
consisting of (t,) with each t,&E Q. The set I(V)zC I(V)Q of (:v)
with each I:VE Z can be identified with the set of vertices of I(V) .

The funetion which links the considerations of this section with those of
the previous section is O: I(V’)IR —+ N(V) from the geometric realization of
the building to the dilation classes of norms on V as follows: Let
G = {vo,...,vn} be a simplex and t = (t,) € [o] be a point. We can choose
an ordering 0 = (vo....,vn) such that t, >0 and latrices L;y& vy with

R
ty n°°’L )

Lo > Ll Do D> Ln > TrLo . Then 8(t) =a where o = sup(q .

(2.2) THEOREM. The function 8: Tl'.(V)]R — N(V) is a well-defined
bijection which carries the vertices I(V)z onto the set of classes con-
taining integral norms and I(\J’)Q ontc the set of classes containing rational

norms .

PROOF. The function 6 is a bijection by (1.10), the structure theorem for
norms. 1In that theorem we proved that each norm o has a unique representa-
tion o = sup(rouLo,....rmaLm) vhere q = g P r, 2 -2 . > 1 up to

t

et
dilation. Let r, =4 m

i =
or t, 1°3q(r1/r1+1) - Then (rg,...,t)

determines the unique point in l({Lo yeren L})I which maps to o under 6.

The remaining statements are clear from the formulas relating the ti's and
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and ti's .  This proves the theorem.

§3. METRIC ON THE BUILDING

We continue with the notations of (1.1) in this sectien.

{3.1) DEFINITION. Let V be a vector space over the local fleld K.
For two norms o,8 on V , we define the distance p{o,f) between o and B

by the following equivalent formulas:

pl{a.B) = logq( sup a(x)lB(x)) +losq( Bup B(x)/a(x))

x€V ,x$0 XEV, x$0
= log sup a(x}/g(x)) - log inf a(x) /B (x)
q(xGV,x#O ) Q(xev.xio )

(3.2) REMARK. From the first formula for p(a,B) we see that pl{o,B) =
p(B,a) , and from the second form it follows that pla,B) » 0 , and
plo,f) = 0 if and only if B = tea for some t > 0. Moreover, for Y >0
and t, > 0 we have p(tla.tza) = p{a,B) , and thus

pl{a}, {8} = pla.R)

is well defined on dilation classes of norms on V. Finally, it is easy to

check the triangle inequality
pla,yY) < pla,BY + p(B,Y)
using the relations of the form

sup alx)/B(x) = sup a(x)/B(x). sup B(x)/Y(x) .
x€EV ,x$0 XEV, x¢# 0 xEV ,x %0

Hence p 1is a metric on the space N(V) of dilation classes of norms on V.
Note from the definition of p that if t,a LR K tza on V, then
pla,B) € logq(tl/tz) .

(3.3) EXAMPLE. Let M be a lattice in V. Then the Integral norm thy
is defined as in (1.4), and

M = {x€EV: o.M(x) < 1} and ™ = {x&EV: aH(x) < 1}

Thus M -7mM {5 the unit oy -sphere of all x with an(x) =1 in V. More-

over, since every x€ V , x ¥ 0 , is proportional to some x' with
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64 PIERRE DELIGNE and DALE HUSEMOLLER
uM(x‘) = 1 , we deduce that

p(a,aM) = log( sup u(x}) - ]og( inf ('t(x))
PxeM-aM NyeM-m

For two lattices M and N in V , there exists a natural number T
. r r r r
with M DTN and N DTM so that auﬁqau and GNQan. We obtain
p(o:.M,aN) € 2r . For a more precise calculation, we reorganize the hypothesis

in the next propositien.

(3.4) PROPOSITION. Let ¥ DN D 7'M be lattices in V where
™MmpbpuD 7 M, Then r = p(aM,uN) .

PROOF. From 0 < ay € qrcnM we deduce that p(o,,0) €r. Since TMPHN ,
we have x € (M-7M) M N and therefore oy(x) £ 1. Thus
"1°gq(i“fxeM —m %y (X)) 20. Since 7 THly DM and prHl
exists x EM-7M with x & 7Tty and so cxN(x) #2qt . Thus
GLN(x)) 2 r. By the example (3.3) it follows chat

N D 1M , there

logq(supy gy —my
p(aN,aM) # r and hence p(au,au) =r,

(3.5) COROLLARY. A set of lattices MD""’M:' , or equivalently, a set

of integral norms Ggoe ey (for example o, = aM) , determine a simplex
i

in the building I(\J’}z or N(V) 1if anrd oniy if p(ai,uj) =1 for 194 3.

PROOF. Arrange, after teordering and dilationm, the lattices as follows:
.. i i-1
¥y DM D ee- DMy DM DM, with M, D7 " M, . Then

1 = ploy % ) 21 by (3.4), so 1 =1, and the classes {Mi} form a simplex.
0 r
Conversely, p(ui,aj) =1 for 1 ¥ i when the classes determine a gimplex

again by (3.4).

§46. THE MAPPING FROM THE p-ADIC SYMMETRIC SPACE TO THE BUILDING

Mow we return to the basic situationm of the function field F = ll-'q(C) of
the smooth curve CI‘IFq , the local field F, at = on the curve, and Cm
the completion of the algebraic closure of F_ .

The simple critical observation is the following: For

z (z .,zr) € C, the function on F_

1t

a = (a)b—a,a) = [z,a +---+zrar]

b 11
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SURVEY OF DRINFEL'D MODULES 65

. r e
is a norm on the F_-vector space F provided |zla1 + + zrar| =0
implies that a = (al,...,ar) = 0, This is the case exactly for

z € ¢, — {all F -rational hyperplanes} .

Further, for ¢ €C, and z € CL the relation @, = Icluz , which is a
dilation of norms, holds and this leads to the following definition.

(4.1) DEFIKITION. The building map 3% defined on the p-adic symmetric
space OF(C.) to the building N(F:) = I(F;)m of the group PGL(r,F ) is
given by

z = (z,)E Qf —+ A(z) = dilation class of a, .

i
For a representative r-tuple (zl,....zr) =z of z€E oF , We represent

X{z) as the notm L i.e.
A(z)(ay,.-000)) = ]zla1 + e+ zrar[ .
Note, since |C:| = qq , in fact A: ﬂr(cu)-—r I(F:)Q .
(4.2) PROPOSITION. The building map A: 8°(C,) — I(F:)Q 18 GL(r,F)-
equivariant for right actions. In particular, it 18 also GL(r,F)-equivariant.

PROOF. For s € GL(r,F ) we view the matrix as acting on the left and ar's
the action on the right. The norm A(z) acted on by & on the right is
Az)s , or for a € FL , it is A(z)(s(a)) = [<zlse>| = |<zts12>| = A(z"a)(a) .
Thus A(z)s = )\(zts) which proves the proposition.

For a subgroup I C GL{r,F_) we have a quotient building mapping
At QF(C /T — LE)/T C I /T

In the case T 1s a certain subgroup of GL(r,A) this is a mapping of the
corresponding moduli space associated with T to a quotient of the bui:lding
by the discrete group [ .

(4.3) REMARKS. The building map X is useful for several purposes.
First, the sets )\-1 (ball around a vertex or simplex) can be used to describe
the rigid analytic structure on the p-adic symmetric space. In the apecial
case r = 2 so that I(F:) is a tree T , we will describe a topological
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66 PIERRE DELIGNE and DALE HUSEMOLLER

model for Q (Cc,) = C, and the map A: ¢ - F, — T . This is used to
calculate the cohomology of Q (c /T . There are some coverings of T/T
which induce back to admissible covers of 9 (c, y/T , and these give rise to a
spectral sequence which could be thought of as the Leray spectral sequence of
the map AI.: Qz(cw) /T — T/T . 1In this case H*(T/T) 4is just the cohomology
of the group T .

In order to illustrate further what is involved in defining the rigid
analytic structure, we must calculate p(i{z) ,aA) where A is the standard
lattice O:C F: . Since any other lattice is A wup to the action of GL(r,Fw)
and since both p and A are GL(r,F )-invariant, this cszlculation leads to

p(k(z),aL) for any vertex o .

By (3.3) we have

p(A(z),2,) = log sup |a,z +---+az[ - log | inf |a,z +'--+az|
A Q(aeS(A) 11 r) Q(aes(l\) 171 r)

where S(A) = A ~ mA , the set of all (al,...,ar) e F: with all ]ai| £1
and at least one |a | = 1.
Thus we see that p(i(2) a,A) € s Aif and only if for all a,b € 8(A)

l B Ialzl-!-"' +arzt|
qs ]blzl+°-- +brzr|

In the case |zll > |22|>--->]z‘_| with all ratios Izi|l|zj| ¢ o for

i =3 , we have
p(M(2),ay) = log (lz /]2 D

by an easy straightforward caleculation. When some of the rvatios
fz |/|z | €q% the calculation of p(A(z),a,) is more complicated, and in
fact, it is at the basis for the structure of of (c,) as a rigid analytic

space.

§5. FILTRATION OF THE 1-DIMENSIONAL p-ADIC SYMMETRIC SPACE
In this section we study the case r = 2 in detail where 92((‘.”) =
]Pl(Cm) P (F ) = - F_. We use the notation Q for ¢ -F = Qz(cm)

where uE€ G is u€C, and T = I(F:) is the building which in this case
is a tree (a contractible l-dimensional simplicial complex). The building map
At § — T 1is given by
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SURVEY OF DRINFEL'D MODULES 67
A(u){a,b) = |a+bul ,

and we wish to study

la +bul
la+bul

U (a,b) € S(A)
4 Inf, byes)

p(A(u),ay) = log = p(A(1/u),0p)

in terms of congruence properties of u relative to elements of F, - This is

formulated by using the following notion.

(5.1) DEFINITION. For u €C, we define the irrational absolute value

of u to be |u|h_==iufaEF ju-a] .
-]

Observe that this is just the distance from u to F,CC, . The
following pioperties are easily deduced from the definition.

¢{5.2) PROPOSITION. The irrational norm satisfies the following:
(1) Por u€C,, iu]ir =0 if and only if u€F, .
(2) For uEC, and c €F, we have 1cu!h_= |c|-|ulir .
(3) For |u)@ q® and uEC, it follows that |ul, = lul .

(4) For |u| =1 with residue class = ﬁé the irrational norm
|u|ir = |u] =1 if and only if uEqu - Fy

From the previous section we see for lu] & qz that p(A(u) ,aA) =
logq(max(|u|,ll|u])) which for |u| <1 becomes simply p(A(u),ay) = —logq|u| .

(5.3) PROPOSITION. The distance from A(u) to the standard vertex oy
in the tree T 1s given by

-1°3q|u|1t for Ju] €1
p(Alu),oy) =
-logqllfulir for |uj>1.

PROOF. = :
F. For the case |u]l €1 , we have sup(a’b)esm)la+bu] 1 since
|a+ub| € max(ial,|bl-ful) €1 and }140*ul = 1 ., Further,

1nf(a,b)e SO0 a+bu| = inf'al <1, Ibl ,_1|a+bul = 1nf|e| <l|e+u| = ]“iir

since |u] € 1. Hence, we have

PO 0 = log (M/fuly) = -log fuly, -
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68 PIERRE DELIGNE and DALE HUSEMOLLER

For the case Ju| » 1 observe that p(A(u),ay) = p(A(Lfu),@p) =
-1ogqlllu| by the first part. This proves the proposition.

Now we are in a position to describe the inverse image in 2 of closed
balls arcund the standard lattice vertex * = oy - First, some notation for
residue class reduction —r: OCm - IFq or T IPl(Cw) — ]PI(IFq) . We choose
a cross section s8¢ IPl(IFq) —_— ]PI(C“) with 8(0) = 0 and s(®) == such
that rs is the identity on ]1’1( ﬁq) 5

(1) Clearly ug A"S¢+) from (2.2) if and only 1f [u|, = 1. This
gives the following relations for ¢ Oé .
i -]

-1 -1, =x b3
LT r ('JI"q _IFq)

fuec: o =13 = U tuec: lu-s®f <1
EET,

0. — U 8,1
3 EEqu

P, (C,) - _ B{s(n),c)
1 neng;%l’q)

where B(v,c) is the open ball of radius c¢ around v in C, for v§ =
and B(w,c) = {o} U {u €cC: {u|l > 1/} C 'lPl(Cw) .

(2} TFor the closed ball B*(*,c) with 0 € ¢ <1 observe that
B*(%,c) C open star of the vertex = o in the tree T . In this case

_1 -
Ala* e = B - L) Ble(.a D),
new, (¥
q
and again the inverse image is IPl(Cw) minus (q+1) balls, but this time
of slightly smaller radius g € 1. Now we see the relation between these
balls and the edges of the tree coming out from the vertex & =Q, . All the
points of B(s(n),l) - B(s(n),q-c) project to the edge corresponding to
n €R,(Cy) -

(3) As the radius ¢ of the closed ball B*(x,c) approached 1 io the
tree, we come to {gq+1) new vertices each with q new edges coming out as

¢ increases in 1< ¢ < 2. In the building we have the pictures
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,\L\B*(*.l)

(for q=2) (for q=3) .

In terms of 1-1(3*(*,':)) this means that as ¢ increases to 1 and through
{1,2) , that B(s(n),q"%) will decrease in size and at the moment < = 1, 1t
will split inte q balls of radius q° for ¢ € [1,2) each parametrized by
IF.  arocund the points s{(n} + s(£1) where (n,E,l) € IPl(!?q) x Fq so that

q
for ¢ €[1,2)

AL (x,e)) = B(a(n) + s(E))TM,0 ) .
(n,6,) EB](F) xF_

Note for ¢ <1 that B(s(n),q %) = B(a(n) + s(§)",q7%) .

The general result follows by the same considerations as above and proved
using P(A(u),*) = —logq|uir| for Ju| €1 and the relation between ju] and

I“ln- .
(5.4) THEOREM. With the above notations associated with A: Qz(cw) - T

we have, for ¢ € [m,ml) where m is an integer >0 , the following

-1 m
ATT(B(x.c)) = P.{(C) — J B(s(E,) +--- +8(E )W ,q7%)
1 w) EElPl(Fq) - 0 m

where § = (Eo,il,....im) with EO € IPl(Fq) and §, € IFq for 1 €1 %€m.

Thus for m & ¢ <m+1 it is the projective line minus (q +1)qm balls
of tadius q™°. We have the following picture of ]Pl(C,,) - {these balls}
for q = 2: )

radiua q © radius q © radius q ©
ce [0,1) ¢c € [1,2) c €2, 5
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70 PIERRE DELIGNE and DALE RUSEMOLLER

(5.5) REMARK. Each lﬂl(B(*,c)) has the natural structure of a rigid
analytic space. In this way the increasing union of the A-I(B(*,c)) , which
is E]_(Cen) = IPI(Fm) has the structure of a rigid analytic space.

(5.6) REMARK. We have the following intuitive picture of the

"topological" space n’l(cm) - ]P1(F@) . For each vertex of the tree T we

take a copy of

P, () - {q+1 open discs indexed by the edges with that vertex}
and for each edge we take & copy of an annulus
lPl(Cw) — {2 open discs}

Now for each edge we glue the two boundary circles of the associated annulus

onto the two boundary circles inm the spaces
IPl(Cm) ~ {q+ 1 ocpen discs}
associated to the vertices of the edge respectively. The result is gimilar to

the boundary of a tubular neighborhood of the tree T embedded in Euclidean

space.
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CHAPTER 4. COHOMOLOGY OF THE MODULI SPACE

The aim of this chapter is to calculate the étale cohomology of the
moduli spaces Mi . This is done in two steps. First, we describe the rigid
analytic cohomology of chcw) in terms of coclosed cochains on the building,
which in this case is’a tree. This comsists in determining the rigid cohomol~
ogy of IPl minus a finite union of discs and then using a patching argument
over the edges of the tree with a compatibility condition at each vertex. The
étale cohomology of the meduli space, which by comparison,ié isomorphic to
the rigid analytic cohomology Hl(ﬂz(cw)lr) of the analytic moduli space, is

the middle term of a short exact sequence

0 — 1 (1) — HLRE e M) — Bt e )| — 0

where I 1is the discrete subgroup of €L{2,F) corresponding to the I-level
structure. Finally, the action of the lnertia subgroup of Gal(F_ BIYM) >
provides an isomorphism of Hz(ﬂz(cw))r onto Hl(T).

§51. CENBRALITIES ON THE COHOMOLOGY OF RIGID ANALYTIC SPACES

For a complete nonarchmedian field K with separable algebraic closure
Kg we make the following definitions of gl = H:igid for a rigid analytic
space X over K and i = 0,1. We do this using the étale cohomology groups

for the coefficlents Z/n and y  where nt isin K.

(1.1) DEFINITION OF HO. In both cases of coefficlents HO(X,ZIn) =
0 0 i}
Het(xs,zln) and H (X,u,) = Het(xs,un) where X% = X@( K, .

Recall that Hit(x.un) can be described as pairs {(L,$) , up to an
evident isomorphism, of an invertible sheaf L on X and an isomorphism

b Ox-=+ anj with the group structure given by tensor product. Further
1 1
B (Xgoup) = Um Hy (X®L,n;) for KCLCK, and ([L:K] finite. These

definitions have meaning for rigid analytic spaces.
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72 PIERRE DELIGNE and DALE HUSEMOLLER

(1.2) DEFINITION OF Hl . The group Hl(X,un) is the group under tensor
product of pairs (L,¢) , up to igomorphism, of an invertible sheaf L on X
and an isomorphism ¢: 0x4=+ "% | Moreover, Hl(XB,un) = Ei?x' HI(X@BK'.un)

where KC K'C K; and (k' : K] 1is finite.

Both HO and Hl are clearly functors under rigid morphisms.
This cohomology has the following properties which we state without any

complete proofs.

(1.3} PROPOSITION. 1f X =W, for W a projective varlety or an
affine curve over K, then Hi(ﬂs) = ai(xa) for 1 = 0,1 , and coefficients

Mo and Z/n .

This follows from the GAGA-type theorems of Kiehl. The projective com-
parison theorem implies the affine curve comparison theorem since a covering
of 0K |21 ¢ r of order n prime to p extends to a ramified covering of
[z] <r.

(i.4) PROPOSITION. If f: X— Y iB a finite étale morphism of rigid
analytic spaces with Galois group € of order prime to n , then
Hl(Y,un) — ul(x,un)c is an isomorphism.

This 18 easy from the definitions.

(1.5) PROPOSITION (Kummer sequence). We have an exact sequence over a

rigid analytic space:

0 — 10 — 000 2o 100 — way) — WP T w G

(1.6) PROPOSITION. Let {xi}iéll be an admissible copen covering of a
rigid analytic space X with nerve of dimension € 1 , then there is an exact

sequence

0 — 100k, — T TR0,y — T T & A%,u)
1§91 )

( ’ 1 1 1
HO (G0 ) — Til (K M) ‘|'i *Ij H(XNXED -
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§2. COHOMOLOGY OF Qz(Ca)

Using the generalities of the previous section and some specific informa-

tion, we are able to make the following calculation.

(2.1) PROPOSITION. Let DO""’Dm be m+l palrwise disjoint open disca
in TP (C,) of radius in lc,| . Then for the rigid analytic space
X= IPl(Cm) S (DOU---UDm) we have for n prime to p :

{a) Ho(xs.zfn) = Z/n

® K&,y = @m”

for X =X ®Fm Ry

PROOF. (a) This is a question of connectedness of discs in ml(cw) over
any finite extension of F_ . Since Xy D].LJ---UIJm = IPl(cm) - DO is a disc
and hence connected, and since the spherical boundaries of l:r1 are connected,

it follows that X is connected.

(b) For this, first observe that the rational fuctions without poles on
X are dense in HD(O }) . WNext, 1f f 1s a rational function without zeros or
poles on X , then there exists c €F, with sup Ex[o::f(x) -1/ <1, and
hence, cf = g" for some g EH (0 Y. T¥or Si equal to the boundary of Di

we have an isomorphism
G ) AnE Y EDD) —— @ (s, ) Ha(P /DD
*n o e 1a1 1*"n’ ol e

since H (0 ) = 0 in the Kummer sequence where every divisor on X is prin-
cipal. Now S:l is a special case of the more general X, and H (51’" ¥
im((F:/(F:)n) = Z/n . This reduces to the assertion that 2} 18 not en nth
power for n fj which follows by writing zJ . £7 . Hfl = 1 , and reducing

modulo the maximal ideal. Hence we have the short exact sequence
* * 0 1 m
0 — F/(F)" — - (X,u) — @/n)" — 0 .

Now pass to the separable algebraic closure of F_ through finite extensions
to see that Hl(xs,un) = (z/n)“' . This proves the proposition.

Now we can describe the cohomology of 0 = nz(cm) using the following

notion.

Licensed to Princetan University. Prepared on Wed May 23 11:09:58 EDT 2012 for download from 1P 128.112.203.193.
License or copyrighl restrictions may apply o redistribulion; see hitp:iwww.ams.org/publicalions/ebooks/terms



74 PIERRE DELIGNE and DALE HUSEMOLLER

(2.2) DEFIRITION., Let M be an abelian group, and let B be a graph
{1-dimensional simplicial complex) with B, the set of oriented edges. The
group of l-cochains Cl(B,H) 18 the subgroup of c € T_|'eeB M such that

e

¢(~e) = -c(e) , and the group of coclosed (harmonic) l-cochains gl(n,n) is

the subgroup of ¢ € Cl(B.H) such that E c(e) = 0 where the sum is

e ce(b)
over e(b) the set of edges ending at b , and this holds for each vertex b

of B.

The group of l-chains Cl(B,H) is the quotient group of 'L"LeEB M
e
divided by the subgroup generated by e - (-e) , and the group of coclosed 1-
chains H-l(B’M) is the quotient of CI(B.M) by the subgroup generated by
Eeee(b) c(e) for each vertex b of B.

(2.3) PROPOSITION. We have isomorphisms
002 2/ ==z and K@) ) = 1t (r.z/n)

which are compatible with the action of GL{2,F) and Gal(Fw,s/Fm) . Here
A Qz(cm) —» T onto the tree where GL(2,F ) acts, and Gal(Fm’s.-’Fm) acts
trivially which induces an action on _l_{_l(T,zln) .

PROOF. We write X = qGI xi where I 18 the set of vertices and edges of
T, If i 1is a vertex v, then Xi is l\*l(ﬂ*(v,lIS)) , and 1f i 1is an
edge e , then xi is l-l(e*) where e* = e - Uv B{v,1/4) with the union
taken over all vertices of T . The nerve of this covering has vertices I
and is sk(T) the first barycentric subdivision of T . Let IOC I be the
subset of 1€ I corresponding to the edges, choose isomorphisms

Hl(xi,un) —Z/n by (2.1), and choose orientations for each 1 GIO 5

Then the composite

) — TTeta ) — T R @) — TT 2/
el ie IO i€l

is seen, with (1.6}, to be an isomorphism Hl(x,un) -+ gl(r.z/n) . It is

injective by (1.6), and the image set corresponds exactly to those functions,

extended to be alternating on all ordered edges, satisfying the conditiom of

being coclosed. This proves the proposition.
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§3, A SIMPLE TOPOLOGICAL MODEL
To illustrate further the patching technique used in the previous

proposition (2.3) and the ideas which go into the calculation of the cohomology

of ﬂz(Cw) /T , we consider maps of surfaces onto a graph.

(3.1) DEFINITION. A map f3 X— B from a surface (real oriented 2-
manifold) onto a graph is called regular provided f is proper and

(1) f'l(open l-simplex) = $? - (2 disjoint closed discs) ,

) f-l(open star of a vertex) = S2 ~ (y(b) disjoint closed discs)

where v{(b) 1is the number of l-simplexes of B incident to b .

Observe that the projection £ of the boundary X of a tubular neigh-
borhood N of B IR3 is an example of such a regular map £: X— B. The
boundary 3X of X 1is the disjoint unfon of £ '(b) where v(b) = 1.

Now a cross section s&: B— X of f: X— B always exists and leads to
two split short exact sequences

H, (f)
0 — ker Hl(f) —— HI(X) >H1(B) —_— 0

o)

0 — uie) 1l (x) » coker HI(£) —+ 0 .

2 - ,1
The terms ker Hl(f) = Eo,l = HO(B’HI(F)) and coker Hl(f) = Eg =

HO(B,ﬁl(F)) are part of the spectral sequence of the map f: X — B and
ﬁl(F) and fil(F) are systems of coefficients on B whose structure is clear
from axioms (1) and (2) .

(3.2) REMARK. Following the argument of the proof of (2.3), we have short
exact sequences using the groups gl(s.z) and ﬂl(B,Z) introduced in (2.2)
Hl(f)
0 ——r ll_l(B,Z) —_— Hl(X) e Hl(B) — 0

and

1
0 cutee A0, ply ——— vl e,z — 0

For each edge e GBe of B, let xe = f_l(open e) , and observe that
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7% PIERRE DELIGNE and DALE HUSEMOLLER

Hl(f)
| Hl(xe) —— ul(x) —_— “1(‘” — 0
eEEBe

and 1
0 —— Hl(B) _.E._..(_fl_.,. Hl(x)

> TT elexy)

e EB,

are exact sequences. We choose generators of Hl(xe) and ul(xe) such that
the generator for Hl(xe) and for Hl(x_e) are negatives of each other in
Hl(x) .

In the case of the previocus section B was a tree so that Hl(B) =0 and
WL(B) = 0 , and thus B (B,2) = H (X) and H'(X) = H(8,Z) are isomorphisms.

{3.3) REMARK. For a regular map f: X — B of a closed surface onto a
finite graph we have rkHl(x) = 2-rkH1(B) and the homelogy group Hl(B) is
isomorphic to ker Hl(f)==+ 51(3,2) . The same statement holds in cohomology.

This assertion follows from the fact that the symplectic homology pairing
%"y on Hl(x) is nonsingular, but x+y restricts to zero on elther of the
direct summands kerHl(f) or HI(B) -ml-ll(s) for a section s of f.
These isotropic submodules are then maximal isotropic and thus of the same

rank.

(3.4) REMARK. Let f: X — B be a regular map of the surface X onto a
graph B which has a finite subgraph 30 such that B -BO is the disjoint
union of m half lines Ll""’Lh . Then each f-l(Li) is a topological
punctured disc, and X 1is a closed surface with m points deleted. We define

the cuspidal cohomology H} of B and X by

KI(B) = ker (H(8) — H'(B ~By))
and
Hy(x) = ker (B (R) — H (X -£72(3))) .

The cohomology exact sequence in (3.2) becomes
1 1 1
0 —— H/(B) — H,(X) — H,(B,Z) — 0

where g}(s,z) is the subgroup of ﬂl(B ,Z) consisting of c = (ce)eeB with
' e
e, = 0 for e in B-Bj. Again rk:H}(B) = rkg}(n,z) , and H}(B) and

g}(B,Z) are isomorphic.
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54, COHOMOLOGY OF THE MODULI SPACE WITH FIXED LEVEL STRUCTURE

With the map Qz(cm) — T onto the tree, we were able to analyze the
cohomology of Qz(cm) in (2.3). The simple topological model is contained in
(3.2). MNow we consider a subgroup T' of GL(2,A) and study the cohomology of
T\QZ(CQ) using r\gz(cm) ~— I\T , the modT building map.

The Leray spectrai sequence of this map is the covering space spectral
sequence whose terms in lowest degree yield the exact sequence with coeffi-

cients in Z/n or by
0 — w1\ — B \RE )y — mh@E e )’ — BE\D .

The Hl groups for the graph I'\T and the rigid analytic space r\nz(qm) are
defined by coverings and the building map induces coverings.

Under the hypothesis that T acts on T with stabilizer subgroups of
points only p-groups ( p prime to n), the groups H*(I\T) = H*() are just
the cohomology groups of [ with coefficients in u, or Z/n . Further,
since T 1is a tree, we have HZ(P) =0, We obtain a short exact sequence
whose last term Hl(ﬂz(cm))r is isomorphic, by (2.3), to g}(r\r)r the group
of P;invariant coclosed cochains on T with values in u;l or Z/n. This

gives the following result.

(4.1) PROPOSITION. For a congruence subgroup T C GL(2,A) of the ideal
IC A , which acts on the building T with p-groups for stabilizer subgroups,
the mod ' building map yilelds the cohomology exact sequence

0 — #l(r) — b (na(c)) — BimIet — 0
or with coefficients in Z/n
0 — u T,z — BLEEF, 2/ — Tz ent — o
]

In order to obtain a useful cohomology, we have to look at a compactifica-
tion of M@%(c,) or MA(C) . or equivalently a neighborhood of infimity.
As in the previous section the cuspidal cohomology H%(Mi@BFw s,zln) is the
subgroup of Hl consisting of classes equal to zero ;n some ;eighborhood of
infinity, or equivalently, of classes with image in ﬂj(T,Z/n)f ® u;l e

coclosed T-invariant cochains with support compact module T.

(4.2) REMARK. Let 1,C Gal(Fm s/Fm) be the inertia subgroup. In the
+*
short exact sequence of (4.1), I0 acts trivially on the subgroup and quotient

group {the associated graded group). Then (0,x) F> ox -x defilnes a map
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I0 % Hl(MiﬁaFw s,Z/n) —_ Hl(F\T,zln) which is bilinear and Gal(F_ a/F;) -

» n 3
equivariant. Identifying W with IOII0 as Gal(ﬁm’leu)—modules, we factor
this map through

v ® gl('r.z/n)r ® u;l — wi(M\T 2/ .

. (4.3) PROPOSITION. Under the assumptions of (4.1) the short exact

sequence of (4.l) restricts to
0 — B'O\T,Z/0) — HAOLEE, 2/ — KL (1,2/m) ®ut — 0
In the limit over n = 1 the map of (4.2) induces

1 r 1
B (1,2,), — B (I\T,Zp) .
This map is an isomorphism after tensoring with QE .

This proposition is the analogue of (3.4). Finally, we incorporate the
isomorphism into the exact sequence to obtain a description of H} of the

level I-moduli space as follows with the next definition.

(4.4) DEFINITION. The special representation Pea1 is the two-
dimensional representation of Gal(F, sIFI”) through F lg(l) generated by
k]

($,0) and (0,u) with ¢u¢’1 = uqm . This representation is given by

1 0 11
(¢,0) l-—-—'( _1) and (0,u) p—r .
0 q, 0 1
This two-dimensional representation has an invariant one-dimensional sub-

space, and it allows us to give another interpretation of (4.3).

(4.5) THEOREM. Under the assumptions of (4.3) we have an isomorphism of
Gal(Fw’s/Fm)—modules

1,2 . ol r
HyGGOF, Q) * B (T.Q) ®spg,; -

In the next chapter, we intepret this isomorphism in terms of automorphic

forms on the adéle group.
The proofs of the related results on gbelian varieties can be found in

{SGA 7, p. 20, exposé I].
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CHAPTER 5. APPLICATIONS TO RELATIONS BETWEEN AUTOMORPHIC FORMS
AND GALOIS REPRESENTATIONS

In this chapter we calculate the limit cohomology H = 1_1_9}l }il(li,lz_l,(-)n) as
a representation of GL{2,A ) %x Gal(F/F) . This representation decomposes into
a direct sum of m X o(M) where W =T ® SPGL(Z ) and ofm) is a two-~
dimensional Galois representation with G(Tr)|D = SPo.q

This defines a certain map T O(T) which is given in §2 and studied
further in §3 with the congruence formula for the Frobenius action on the two-
dimensional Galois représqntation. In the last section we sketch the proof of
the local Langlands' conjecture in characteristic p for GL(2) . This is a
proof of a local result using a global theorem.

§1. COCLOSED 1-COCHAINS AND THE SPECIAL REPRESENTATION

For any XE€ (Fw) we demote the quotient linear map by Yy: F2 — F ry an

and observe that if L 4is a lattice in Fz , then Y (1.) is a lattice in

F 2/% . For an ordered 1-simplex 4= (Ly>L;) in I(F y =T , the opposite

eimplex -3 is represented by (L >'ITLO) , and TY (LO) = Y ('HLO)C Y (L YC
(L ) are lattices in the i-dimensional epace szx so that either

Yx(ﬂLo) = Yx(l.l) or 'Y (L ) =Y (Lo)

(1.1) NOTATIONS. For an ordered l-simplex 2 of the tree T = I(Fi) .
let P(2Z) denote the subset of X € IPl(F“) with 'Yx(Ll) a YX(LO) where
3= (1oL .

From the above remark we see that IP]_(F.:.) = P(;) U P(—:) is a partition
of the projective line. If a.,. ..,'SB are all the ordered l-simplexes issuing
from a vertex {L } , then P, (F,) = PG YU .- UPG ) is also a partition
of the projective line. Thus P(-a ) = P(a Yo ---LIP(a ) is a partition of
any P(a) which leads to the assertion that the P(a) generate the Boolean
algebra of open compact subsets of IP]_(Fm) .

(1.2) REMARK. The end or boundary points of the tree T = I(Fi) are’
given by half infinite simplicizl paths., Fixing a vertex I.o of T , we
agsign to each point X € IPl(Fm) a sequence of lattices
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m=-1
L0>L1> >1,m>Lm+l>--- with Lm>1.m+1>1TLm and Lm:[)ﬂ Ly

satisfying Y){(I'i) = "x“'1+1) for 1 2 0. All half-infinite simplicial paths

from L0 arise this way and each one determines an end of T.

(1.3) NOTATIONS. For a group M we map the coclosed cochains of T into
the M-valued measures on IPl(Fw) by ¢ b= Mo where uc(P(g)) = c(a) . The
map is defined _Iil(T,M) - Meas(IPl(Fm) M) .

For the ordered l-simplexes 'a"o,...,gs issuing from a vertex, we have
- -
H(P(-Eg)) = w (PED) + o + U (PE)

from the coclosed condition c(-go) = c(ﬁ'l) + aes + c('a"s) . 'This relation is
sufficient to show that uc is a finitely additive set function on the family
of compact open subsets of IPl(Fm) . From the partition Il?l(Fm) =p(ay U P(-3)
we obtain uc(ml(Fw)) = (0 so that U, has total mass equal to zero.

{(1.4) PROPOSITION. The functien ¢t U, is an isomorphism
gl(T,H) — Meas(IPl(Fm),H)O of the M-valued coclosed cochains of T onto the

M-valued measures of total mass zero.

PROOF.. The inverse of ¢k v, is given by U Y vhere cufﬁ) = {P@@)) .
The coclosed condition for cl-l follows from the finite additivity and total
mass zero by the relations made explicit in (1.3). This proves the proposition.

Now the measures on IPl(Fm) are linear functionals on the space " of
locally constant functions on IP]_(Fm) . This space Cw(IPl(Fm)) is an
important representation space under translation by GL(2,F) on ]P]_(Fm) .
This representation is related to the special representation of the group
GL(2,F ) . It is the key link between cohomology as described by coclosed

cochains and representation theory.

(1.5) DEFINITION. Let D be a ring of scalars. Then the special
representation sp (or sp(D}} of GL(2,F)) (with values in D) is defined
on the module Vsp = C:(]Pl(Fw)',D)!D where D also denotes the subspace of
constant functions and the action of GL(Z,FN) is given by translation of
functions (sf)(x) = f(s-lx) for f € Caa(lPl(Fm) D) , x€E ]P]_(Fm) , and
s €GL(2,F ) .
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(1.6) PROPOSITION. The function ¢ ¥+ ¥, of (1.5) is an isomerphism
1
B (T,D) — HomD(Vsp,D) , the algebraic dual.

PROOF. This is immediate from (1.5) and the fact that Heas(]P]_(Fm) ,D) 1is the
algebraic dual of Cm(Il’l(Fm) D) .

Now we use the group actionm on vsp to obtain still another version of

the previous two propositions.

(t.7) PROPOSITION. The function {f,s) Pp(f,e) = ¢{f) defines an

isomorphism

tomg; 2,5 ) Vep ,C (GL(2,E,)))) — Hom (V,,D)

with inverse ¢(f) = P(£,8) = ¢(sf) .

PROOF. The GL(2,F_)-morphlem condition on Y(f,s) for s,t € GL(2,F ) takes
the form Y(tf,s) = y(f,st) . Setting s = 1 , we obtain d{tf) = Y(f,t) and
the two maps are inverse to each other.

We use the notation L(GL(2,F}) for Cm(GL(Z,Fm)) . Let T be a sub-
group of GL(2,F_) . It acts on the tree T, the space IP]_(Fm) , the repre«
gentation VP and its dual V;p , and also on GL(Z,Fw) . Hence the
isomorphisms of (1.4), (1.6) and (1.7) restrict to isomorphisms

wher,ml = HomD(Vsp,D)r v Homgy o g y (VapsLIGL(Z,E)/T)

Now we agsume that I 1s a subgroup of GL(2,A) of finite index. ¥or each
parabelic P over the global field F of GL(2) with unipotent radical U ,
we form f,(x) = Iueulrnuf(xu)du . Note that U 1is conjugate to

1 %
63
(1.8) DEFINITION. A function f on GL(Z,FQ)/I‘ is cuspidal provided

fp(x) = 0 for all parabolic P of GL(2Z) over F. Let LO(GL(Z,YN)/I')
denote the subspace of cuspidal f € L(GL(2,F )/T) .

by an element of GL(2,F) .

For f & L(GL(2,F_)/T) which is the image of an element of Vg, by a
homomorphism in HomGL(z,Fm)(Vsp,L(GL(Z,Fw)/T)) , the function £ 48 cuspldal

if it has compact support modulo [ and the center of GL(2) . This gives
the next proposition.
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(1.9) FROPOSITION. The above isomorphism
wtr,m’ = Hom (Vo ,L(GL(2,F ) /TY)
24 GL(2,F,) " 8P’ *Teo
restricts to an isomorphism
ch'r D)I‘ —— Hom (Von,L.{GL(2,F_)/T))
_ ] ! GL(z,Fm) sp) 0 3 Lo L]

where recall ﬂ}(T‘D)E denotes the coclosed cochains which are T-invariant

and have compact support modulo T .

§2. LIMIT COHOMOLOGY AND AUTQMORPHIC FORMS

Recall in 2(5.7) we have an adelic and a local description of the C_-
valued points M;(C“) of the moduli scheme H; for open compact subgroups
HC GL(r,4) . Our aim in this section is to relate ﬁl-valued automorphic forms
to the limit cohomology {EEHﬂf(Mﬁ(Cm).iz) using the isomorphism in (1.9) and
the cohomology calculation (4.5). For this we make use of the special repre-
fentations SPay * see Ch. 4(4.5), and SPGL(Z) , see (1.5), with values in
Qg , the algebraic closure of the f-adic numbers.

(2.1) DEFINITION. The space LO(GL(Z,F)\GL(Z,AF)) of cuspidal auto-
morphic forms with values In 62 consists of functions
£: GL(Z,F)\GL(Z,AF)——-»QE such that
(a) f 1is invariant by an open compact subgroup,
(b) the GL(2,F )-transforms of f generate a finite direct sum of
irreducible representations, and
(¢} f 1is cuspidal, 1l.e. LJ(F)\U(AF)f(ux)du =0 for all x where
U consists of matrices
1 =
(o 1) -

For a function f satisfying (a) and (b) in (2.1), we have that f is in LO
if and only if it has support compact modulo the center of GL(2,F) .

Now we are prepared to relate cohomology and automorphic forms. Im (1.9)

for a group D of scalars, we studied an isomorphism
8: H(T,D H (v__,C (GL(2,F),D
O E (T, ) — omGL(Z,Fm) sp’c (GL(2, w)’ )

which preserved the action of GL(Z2,F ) and restricted to certain submodules
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) o=
as an isomorphism. We apply this now to the case D =C (GL(Z,AF),QE) and

obtain an isomorphism

6: H-(7,C7(6L(2,A0) ,8y)) —=— Homg () 1 )(vsp,C“(cL(z.Ai) x GL(2,F),Qp)) -

Using the two coset space descriptions of H; , see 2(5.7), and the
cohomology calculation 4(4.5), we have a restriction of this 8 to BH where

BH is canonical on the associated graded group and defined

1,, 74 = £
B, Hy(4;,Qp) = HomGL(z’Fw)(VSP,LO(GL(Z,F)\GL(Z,LF) x GL(2,F,)/H)) ® spg_

as (Centralizer (H) in GL(Z,AF)) x Gal(F_ s/Fw) -representations. For this we
]

use the calculation

coclosed cochains of T
invariants by xix~1 N GL(2,F){ ® 8Pca1

H}(Husag) = .l_l_ f
xH € GL(Z,AF)IH with compact support

coclosed cochains on Gal(2,Af) x T
s linvariant by H and OL(2,F) with{ @ 5Pga1
compact support d

which maps by the restriction BH of 9. Observe that invariance by H
implies that the function is locally constant on GL(Z,A%) .

Now we assemble all the isomorphisems BH together with the transfer
morphisms — M_, _1 to define an isomorphism in the limit. This limit
KHX

isomorphism is one of the main results of the theory.

(2.2) THEOREM. With the above notations the limit of the GH defines an
isomorphism of GL(Z,AF) x Gal(F;'lew) -representations

1 =
B o= Lin B (4,,Qp) — HomGL(Z,Fw)(vsp’LO(GL(Z'F) GL(2,Ap))) @ spg,; | -

A bagic result in the theory of automorphic forms for GL(2) , see
{J -L, prop. 11.1.1}, is that the representation of GL(Z,AT) on L0 decom-
poses with multiplicity one

L.(GL(2,F)\GL(2,8)) = | | =
L be TET

where 0 1is a set of irreducible admissible representations of the adélic
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group GL(Z,AF) . Now each "ETMN is of the form ﬂ@vﬂv where 1rv is an
irreducible admissible representation with a GL(Z,OV)-invariant vector for

almost all v . From the theorem we have the next corollary.

(2.3) COROLLARY. As GL(Z,A.:.) » Gal(F_ lew) modules, we have an

isomorphism

= @ [( ® "v) ® slJGal]

TEN ,m_=sp- view

and as GL(Z,Lf.) B Gal(Fs/F) modules we have a mapping T+ 0(m) of two-
dimensional Gal(FS/F)-modules such that U(Tr)[Gal(Fm.s/Fw) = 8Pga1 and an

isomorphism

= @ [( ® ﬂv)®o(n‘)] .

TEMN ,7_=8p- V=

The mapping T+ 0(%) 1is a form of the reciprocity mapping of class
field theory between automorphic representations equal to the speclial repre-
sentation at © and Galois representations of dimension two equal to the

special representation at = .

§3. PROPERTIES OF THE CORRESPONDENCE 7+ o{1)

Let [l denote the set of representations T in 1 with 7 = 8PgL(2) *
and let I denote the set of compatible families of £-adic representations &
of Gal(F/F) which are two dimensional and irreducible for alt £ 4p, and
let I, denote the ¢© €L with g, = 8P6a1 *

From (2.2) and (2.3) we have a function still denoted wWh= o(m) defined
n,-+Z%Z, . For an irreducible representation T of GL(Z,AF) , let W,
denote the scalar action defined by 7 restricted to the center of GL(Z,A.F) .

Also we use the reclprocity map from abelian class field theory
Gal (F/F) — GL(L,FN\GL(1,Ap)

so that for a l-dimensional character X of the ideal class group ve have a

character ¥ of Gal(F/F) by composing with the reciprecity map.
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(3.1) PROPOSITION. For 7= T(T) we have
(1) o(@@X) = a(m @X Y for X a l-dimensional character.

{2) deto{m) = w;l(-l) for the central character o
PROOF. (1) Observe that T@o(m = (TEN @ (o(m) ®X-1) is a subrepre-
sentation of H from which the first assertlion follows.

(2) This relation is rather involved to work out completely. For this
one uses the cup product in cohomology and the alternating bilinear form that
it defines on H. 1In a group GL{2) define s’ = gfdet where this is the

contragredient relative to the alternating form ao that

sx Aldet(s)) lay = sAY .

For 7 a representation on V , s m(s')} 4is isomorphic to the dual repre-
sentation, see [Deligne 1973, pp. 102-3] for references. For a form P with

P(n(8)x,n(8")y) = Y(x,y) we have
Wnle)x,m(s}y) = w (8)Y(x,y)

and § 1is unique up to a constant factor. Ome has P(x,y) = mw(-l)w(y.x) .
These considerations are coupled with properties of the cup product form to
yield the stated relation.

Now we are in a position to study the relation between 7 and c(ﬂ)v[Dv
for all v such that GL(Z.OV) leaves a l-dimensional space of the repre-
sentation space of n, invariant. Then m, = Indg(xl,xz) (unitary), and it
is classified by a quadratic polynomial T2 - a,T + b, with roots il(wv)
and Xz(ﬂv) , called the Hecke polynomial. Such a place v 1is called
unramified.

Further, 1if a(ﬂ)v is unramified, then it is characterized by the
characteristic polynomial of Frobenius Fr,,. This is also a quadratic poly-
nomial 'l‘2 -a;T + b; . ‘The basic result, which we sketch, 1s the following

theorem.

(3.2) THEOREM. For a place v such that 7, and 0(11)v are unramified,
the Hecke polynomial of W, twisted by |clet:(s)|1/2 equals the characteristic

polynomial of Frobenius,
PROOF. By an Eichler-Shimura type congruence formula

2
(Frv) - av(Prv) + bv = 0 .,
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This congruence formula is proved, as in the case of elliptic curves, by con-
sidering Drinfel'd modules mod v and the action of Frobenlus.

Next, from (3.1) and the considerations related to alternating forms, we
deduce that b, = b) since b", » det 6(T) . Hence for roots o and B of
the Hecke polynomial, we see that ¢, or a,0 or 8,8 are the characteristic
roots of Fr, . The condition on the constant terms of the polynomials implies

that the roots of the characteristic polynomial of ¥Fr, are a and B .

§4, LOCAL LANGLANDS' -CONJECTURE IN CHARACTERISTIC p

Now we sketch the steps in the proof of the local Langlands' conjecture in
characteristic p for GL(2) which was outlined in a letter from Deligne to
Drinfel’d dated 1/21/1975.

(4.1) The map pe+ ®(p) . Let p be a two-dimensional representation of
W(K/K) and the local Well group of the local field K in characteristic p .
We can take K = F, for a function field F . Since the Artin conjecture is
true for Artin L-functions in the function field case, see A. Weil [1948]), we
can apply [J-L, proposition 12.6, p. 408] to obtain n(p) from a global auto-

morphic representation.

(4.2) Injectivity of p a{p) . This is corollary (1.7) of proposition
(1.6) in Gelbart and Jacquet, "A Relation Between Automorphic Representations
of GL(2) and GL(3)" [ 1978 ]. It is an argument on GL(2) x GL(2) which
uses corollary 19.16 of [J].

(4.3) Surjectivity of p+ 7(p) . As with the injectivity, this depends
on the local result that e(n & X) depends only on Wy for ¥ very ramified,
see [J-L, proposition 3.8(ii1i), p. 116] and e(V®X) depends only on detV
for X very ramified, seé [Deligme, 1973, proof of 4.16, p. 546]. Now con-
sider global 7 and o(m) = o given by (3.2). Here T and o have the same
global L and ¢ factors and the same local L and ¢ factors at all,
vgs , vhere S is finite. We wish to prove that L, and g, are equal for
all v. The global functional equations and product formulas have the form

TJL,a®x0 = TJe,o® i)WLv(E Bx ' ®up

and

T, e®x = TTe @0 [L,6® X @w)
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Now divide the one expression by the other using the equality for v¢s
to obtain

TTelr®x = [Tel@®xn
vES vES

wvhere €'(t1) = e(T)(L(Ty Xu&)/L(T)) . Now choose a global ¥ which equals 1
at a fixed v, €S and which is very ramified at WES - {vo} . Then

e; =€, depends only on the central character and determinant. Hence both
gides are equal at wWES - {vo} , which implies 2;0(17) = E"'O(G) . From this

we recover sv(n') = ev(a(‘n)) and Lv(ir) - Lv(c('rr)) for all v .

For a finite set § = {vo,...,vm} of places and local discrete series
representations “i at v, , one can prove by looking at a quaternion algebra
ramified at each place of 5 that there is a global representation w with
Tlv0= T and with Trv1 and L differing by an unramified twisting for
1=1,...,m, Using (3.2), we form ¢ = o(m) and define p = ovo .  Then

p=r Ty = 7(p)} has the desired property giving surjectivity.
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