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CHAPTER 7.

CONTINUOUS SPECTRUM AND THE TRACE FORMULA TN THE CO-FINITE CASE.

In the previous chapter we showed how one may meromorphically continue
Ej (w,8) to = =§ +it. We also found that Ej(w, ngit) is actually analytic.
From its Fourier expansion in the various cusps it is apparent that for such
values of s (i.e. s= 151 +1it) the Eisenstein series only just miss being

in LE(BiIhLl/I‘). The situation is similar to harmonic analysis on the real

line, where egjﬂ’gX are eigenfunctions of convolution operators, yet not L2
eigenfunctions. The functions egﬂ:LgX furnish continuous spectrum via "wave
packets" . We will show how Ej (w, % +it), j=1,...,h, t ¢ R may be used in

the same way to construct the continuous spectrum. For simplicity we begin
with the case of one cusp. At the end of the chapter we describe the modi-
fications needed to handle the general case. We assume as is customary with

one cusp that it is placed at infinity.

Notice that E(w, §+ it) and E(w, %—it) are multiples of one another.

So we need only consider E(w, §+it) for t > 0.
(o]
Theorem 7.1. Let f(r), g(r) be in C, (0, ®) and let

+ir)dr

s

Flw) = f°° f(r) E(w,
0]

G(w) = foog(r) E(w, % +ir)dr
0
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then F, Ge Lg(lin+l/F ) and

©

Flw)g(w) av(w) = [ f(r)g(r)dr.

1
2x {F 0

Also

AF(w) = f°° - {(2)2 + 7} f(r) E(w, g—+ir)dr.
0]

Proof. As in the previous chapter set
s >
E, (0, 2+it) =E(w, 2+it) - 6 (y){yn/g 0B+ it)y”/2 it
A 2 2 A 2
where 6A(y) =1 if y > A, 6A(y) =0 if y<A. We may write

Pw) = 5+ 5, = 6,60 L Y2 0B e ) o) ar

+ fm EA(w, n/2+ir) f(r)dr .
0

Fl is rapidly decreasing in logy as y — @ eince it is essentially
a Mellin transform of f and |{(n/2+ir)| = 1. F, isin 12(3) since the
EA's are. Thus F e Lo (ﬂml/l“) .
- 2
Similarly G :G1+G2 e L. - Now
(*> (F)G)E = (Fl) Gl) + (Fl’ G2)+ (Fe 2 Gl) + (F2 2 GE) *

Two of the terms are of the form
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[ 8,(r) £(2) 8(x") B, (w, Eoie) (5% 2 304 9(Brar) V2 T 1 )ar art av (o).

These give zero since for y > A, E, , has zero Fourler coefficients.

One of the terms left is

J P @0 () 6,0 av(w)

which clearly goes to zero as A -®. We let A -5 ®» since l.h.s. of
(¥) is independent of A.

We are left with

lim [ £(r) g (z') E, (o, 24ir)E, (0, 2+ ir') dv(w) dvdv'
Ao 2 ATT 2

The inner product formula 1.62 of the last chapter renders the last ex-

pression in the form

S.Ai(r+r‘) @(ﬁ/g —ir')-¢(E/2-¥ir)A-i(r+r')

i(r+r")

[ f£(x)e(z")
0

pt(r-r') _y-i(r-r') s A"i(r'r')(1—¢(n/2+ir)$(n/2+ir'))

i(r-r'") i(r-r")

+ dr dr'

=1 + IT + IIT.
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Since (r+r') is bounded below, I -0 as A — ® by the Riemann

Lebesgue lemma. Similarly ITII — O for the same reason since L r—i'( )

is bounded. We are left with IT which if we do the =r integral first give s

® f(r) sin (log A(r-r'))
° fo (r-r')

dr - 2x f(r'")

as 1s well known since is the Fourier transform of the Dirichlet

kernel X[—l,l](g)'

[=e]
IT = 2x [ f£(r') g(r") dr'
0

The claim concerning AF follows from AE+ s(n-s)E = O. i

Corollary 7.2. The map f —F in 7.1 extends to an isometry of LE(O,a>)

in Le(ﬁp+¥/F).

Auxilary Estimates. Denote by € the subspace of Lg(ﬁﬁ+;/F) spanned by

the Eisenstein series, i.e. the image of LE(O,GD> under the above map.

It is easy to see at this point that & is an invariant subspace for A

in view of Theorem 7.1. It is also clear from 7.1, that the spectrum of

A on € is absolutely continuous, and is ((g)gv,a)). The simplicity of
this Plancherel formula may be a little deceptive. In fact we will see that
the density of stateg'corresponding to this continuous spectrum is essen-

tially 0'/ (3 +1it).
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The following simple "Bessel inequality'turns out to be very useful
in estimating such quantities as |[|E,(s)[l; which in term will give us our

first control over ¢'.

7.5 Bessel Inequality.

Let k(z,w) be a real point pair invariant of compact support, and

let K(z,w) = - k(z, yw) be its automorphization.
vel

7.4 Proposition. We have

-é-lg fo [f:(%%r it)[2 IE (w, —2@ +it)]2 at < fg Ik (w, w')[g av(w').

Proof. In this inequality w is fixed. As a function of w', K is of

compact support in &. Thus if

T .
h(o') = K(w,0') - = [ E(2+it) 5o, 2 +it) - B(o', 2+it)dt
21y 2 2 2
then

T ~

Inf? = é K (0,0")|% dr (w) - % fo |k (5+1t) E(w, 5+ i) a

which follows from the Plancherel formula and KbiEz:S(n—s)E. The inequality

then follows immediately.
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Lemme 7.5. Let k> 0 be a point pair which is supported in d(z,w) < ¢

and with [k(z,w)dv(w) = 1. Then

A~

|k(s) -1] < % for |s| < %
for suitable absolute c.
Proof. If w_ = (1,0,...,0) then
k(s) = [ k(w0 ) (y(w'))® av (o)
d(w',zo) f €
and so
lk(s)-1] = [ (r(@")®-1)k(z_,0")av(w")

d—(‘”':wo) __<_ €
and the lemma follows.
We now also assume that k 1s chosen, as it may be, so that

max | k| < (}e—(n+l) for absolute C.

Lemma 7.6. For such k

[ k(z,0)|% av (0) << v, ()
J €

m—

where as always K(wl,wg) = 7::I“k(ml’7w2).
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o~ (n+l)

Proof. For z in a compact subset of & the term which is max]k[

. . 2
makes the statement true, since we are averaging k| over a set of measure

<< e(n+l) . So we can think of y(z) being large. ©Now as in 1.19
~(nt
[K(z,w)| <<#F {Lel :[4] <yele (n+1)
- -n+
L L

Also

j k(z,w) = O if wed and
(%) e .

ly(w) < yet or y(w) > ye
If e < cl/y for suitably small = (depending on I only).
K(z,w) = k(z,w)
and
[x(zw)Pav) = |k (z0)?av(e) < ¢ @)
& d(Z,w)fe
. -(nt+1) n
On the other hand if ¢ > cI/y then ¢ <<y/e
whence
IK(Z,U))' << yl’l/e
by « c
ye n n
[ k(o) far @) << [ (P e << L o
& -¢

ye
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n+l)

T 2
Corollary 7.7- [ lE(w,—-*-lt)[ dt = O(y ' T+T
0

Proof. If we apply the Bessel in equality 7.4, then on the range [0,T],

Jf:(g +it)] > ¢, >0 by 7.5, if e = 1/T. The right hand side of the

3
n n+l)

Bessel inequality is O(Ty +T by 7.6.

The following factorization of ({(s) will be used only minimally but
is of interest. We have seen in the previous chapter that ¢(s) is bounded
in Re(s) > n/2 except for possible poles in (g,rd. Let
n/2 < oy < SRR < Oy = W be these simple poles if any such exist, besides

the one at n, which we discussed in Chapter 6.57. Define

SO‘

% N
(7.9) 0 =TT s ) 0600

i=1

*
We have introduced the rational factor to render ¢ analytic in Re(s) > n/o.
*
Clearly this is achieved and the identity [0 (n/2+it)| = 1 still holds.

Thus ch*(s)l <1 for Re(s) > n/2 still holds. Also (b*(s) q>*(n-s) =

*
We may therefore factor out the zeros and poles of ¢  (which occur

symmetrically about n/2+it) to obtain

p(s) = E(5/2) T

where p=pf+iy are the poles of @
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Here g is some entire function but the bound in Re(s) > n/2 = eg(s—m/E)

is bounded, and is of absolute value 1 on Re(s) = n/2. By reflection and

* *

¢ (s) ¢"(n-s) = 1 we see that g(s-n/2) is constant (being bounded and
* *

entire), and since ¢ (s) =1 on Re(s) »®, O being a Dirichlet series

we learn that g= 0.

— S=0s _

d(e) = TT (—2) ] (22t

. +o. -
51 @ sntoy o S-p

we call this the Blashcke factorization.

We introduce an important function
[CON -
(7.10) Ww(r) = 1- q>* (n/2+ir) .

From the Blashcke product

@) ~ _S-p  sp-(s-n+p) <~ _n-p-p
- (s) = ;Z =
§ 5 (s-0)°

and so

(7.10)' _g:b‘—*(n/g.;_it): '; n-28
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It follows that W(r) > 1, Vr. The function W(r) will appear in
the trace formula, and is very important. It counts the amount of continu-
ous spectrum. It also controls various terms related to the continuous

spectrum.

Proposition 7.11 . l-!@(s)[g = 0((c-n/2)W(t)) for nf2 <o < o, < n.

Proof. Exercise. More importantly

Proposition 7.12.

1) [ B (ws) By (0,8) av(w) = 0(W(t)), n/2 <o <o, <n
&

~

(15)  f Bylo, w2+ 1) Ey (o, w2+ 16) V(@) = W(6) +0(2) = - L(ye+at) +o()
&

(the various implied constants depend on A which is fixed here).

Proof. Both follows from the inner product formula. For example in (i) we ob-

tain from that formula

PR St a1 S 100 S YO N

20 - n 21t

_ AEG‘H . peo | An_go(l"l¢(s)|2) + 0(1) = o(W(r))

20 -n

by 7.11. (ii) follows from the inner product formula after putting
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s; =8, = o+it and taking limit as o —n/2 which gives the §'/¢ term.

Next we show that W gives a pointwise bound for E.

Proposition 7.15.

For a fixed we &

n+l)

E(w,s) = O(W(t)|t] for n/2 <o < o .

Proof. We choose A much larger than y(w) then

/ |B(0',8) |7 AV (w")
{w':y(w") <A}INE

< J |EA(w‘>S)lefﬂ7(w') = 0(wW(t)) where s = ¢ + it.
&

Choose a point pair invariant k(wl,wg) with sufficiently small support so
that

K(z,w) = k(z,w) for y(z) < A.

Then [ XK(w,z)E(z,s)dv(z) = h(s)E(w,s)
&

h(s) E(w,s)

i
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As before if support of k is in a ball radius << L/at , then

ln(s)-1] < 1/2 and then max|k| < t*"T.

i.e. B(w,8) = oW(t)t™ ) .

These last few propositions give us control over the size of E via W.
Actually we can use the Bessel inequality to obtain an important estimate

for W.

Theorem 7.1kLk.

fR w(t)at = o(R* 1) .
0

For a general group [' this is the best order of magnitude bound that
we know for W. Bounding W further, turns out to be one of the most im-
portant problems in the theory and we will return to this point after the

trace formula. We will need the following lemma

Lemma 7.15.

éIEA(w, n/2+ it)[edv(w)
< ¢ / |B(w, /2+it) |°
Fn{oly(w) < ct+a}

av(w)

for suitable C.

Proof. It is a matter of estimating

(*) I ] |E

L (0, v/2+18)] Z av(w)
EL Ct+A
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since in the rest of the region E,=E. In (%) E, has no zero Fourier

coefficients. The non-zero Fourier coefficients from Section 6.3 satisfy

2
(7.16) eny) + [ ulel e (3) -0
¥
where

n/2-1/2

a (v) =y c ()

*
ae(y), ee¢ L  being the Fourier coefficients.

From 7.16 it is clear that for y > Y, >> b

(7.17) (y) 2 o le|Ze (v) .

Since we know our solutions ae(y) are rapidly decreasing at infinity

we see that

Ce(yo) Cé(yo) <0 (and hence ce(y) do not change sign).

Since in fact any solution of 7.16 with

f(yo)f‘(yo) > 0 (not both zero)

must clearly by 7.17 go to infinity at least as fast as exp(ﬁfely) as must

its derivative.

Let x(y) be the solution of 7.16 with

)

x'(y,) = -cl(v,) (say c(v,) > 0)

x(y,) = c (v,
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then x(y), x'(y) > @ 1like e™ at least.

However

x"(y) 4 (v) - x(¥)4' (¥) = cont. =0 < ¢ (y) < eV e
el(y)e™ < elly) <o

From this it is easy to see that

© yo-i—l

[ la, P <cf Jam®E

Yo y Y, y

and from this the lemma follows by adding over the non zero coefficients

and using Parseval.

Corollary 7.16.

T
.o . 2 _ n+l
Proof.
T n 2 n n+l
[ B, 5 +it)|[7at = o(y T+177)
0

by integrating this in FN {y <C'T} gives
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T
/ / | B(w, S+ it)]% at av(w) = 0 (T
0 3n{y <c'T}

n+l)

Theorem 7.14 now follows from 7.12(ii).

As we have already pointed out this bound on W(t) is already the

best general bound on W that we know!

Remark. In the general case of h cusps all of the above estimates may be
proved for Ej0»,§4~it), Ej(w,s) etc. in a similar fasion by use of the
inner product formula, and Bessel inequality. We do not stop at this point
to describe this any further - but rather leave it to the end when we des-

cribe what happens in the general case in the trace formula.

The Trace Formula. We have now developed enough preliminaries to derive the

non compact trace formula. As usual let k be a ¢ compact support point

pair and let K = :g k(z,yw). We have seen that K dJdoes not give rise
r=r

(unless it is trivial) to a Hilbert Schmidt kernel, where & is finite volume
but not compact. However by use of the Eisenstein series which have been the
subject of the past number of chapters, we may isolate exactly the non-compact
part of K. After removing this contribution we will have a trace class
operator. Farlier we already introduced the space € spanned by the Eisen-

stein series.
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€= (Fell@YT)ir(2)=] £(t)E(z, 2+1it)dt where f e I12(0, )]} .
0

The action of K on € is given by

el <«

] k(z,0)(f f(t)E(w,g+ it)dat)av(e) = [ h(t)f(t)E(w,§+it)dt
¥ 0 0

where k ¢« h is as usual h(t) :jk(%%-it).

Thus clearly € is invariant under our operator X as is &
(since K is self-adjoint). We now show that K restricted to &5 is
a compact operator. The easiest way of seeing this and one which allows

an easy computation of the trace is to introduce H(z,w) a kernel which

corresponds to the action of XK on €. Let
1 n
n. . . n, .
H(z,w) = T J k:(§4-1t)E(Z,§+~1t)E(w,§A~1t)dﬁ

-0

1l

© -
1 con . n, . n, .
= J k(5+1t) B(z, 5+1t) B(o, 3+1t) dt .

Firstly there is a question of convergence. Hence k is smooth and
of compact support, k and hence h is rapidly decreasing, and the key
estimates 7.13 and 7.1k imply that the integral defining H(z,w) converges.

In fact by the Plancherel formula, and Bessel inequality
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fm h(t)|E(z, 2+ 1t)|2 at
0

Il

[ 18(z,0) |7 av(w)
&

on | |K(z,0)| av(w) ,
&

IA

one can also see convergence.

The action of H(z,w) is given by

Proposition 7.17. mor @e C: (0, @) and

glw) = foo @(t)E(w,§+it)d’c then
0

(e

[ H(z,0) g(w)dv(w) = [ (b(t)h(t)E(z,§+it)dt, and if ue &%
3 0

then [ H(z,w)u(w)dv(w) = 0.

Proof. Follows directly from the Planchevrel formula.

It follows that the action of H on &€ ig identical with that of
K on €, whileon 8L, H is zero. Thus the trace of K on & is

the same as that of K-H on the whole space, and we therefore are led to

the study of K-H.

As is usual in this business we define the cut off functions



-63-

Hg”(%w) =}&;{wfﬂt)ﬁﬁz,§+it)%ﬁw,§+it)dt.

Lemma 7.18. HA is a compact operator (actually Hilbert Schmidt)

Proof.

2 1T n, .
< &1 )], B

-0

1
(f 1H§l)<z,w)f2av<z)dv(w>) 2 at
&

2
We have seen that HEA(', gﬁ-it)ﬂ = 0(W(t)) and the estimate 7.1k

on W, proves 7.18.

We now decompose H into four parts; write =z=(y,x), W =(n,E)
p=0+1it
and define

H(z,0) = B (5,0) + 1= [ 8,(2) 8, @)L 5+ §(s)7°751 - [1°+ 0(a)n™ S In()as

+ Hﬁ?)(Z,w) = H&l) + Hég) + HéE) .

Lemma T7.19.

13 (,0) = 8, (2) 8, (@)K (3,1) + 57 (2,0)

where H(h) is compact and [ H(M)(Z,z)dv(z) -0 as A 5w, and
&

K (7sn) = [ (v, w,+t)dt as in 1.26.
R
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Lemma 7.20. HéB)(z,w) is compact and [ H£5>(z,z)dv(z) -0 as Ao om.
&

Proof of 7.19. Hﬁg) has four factors when multiplied out. Two of these

give

¥ )%E [ a@®)/n)™ + ()

S e AT aw/m e

since h 1s even.

On the other hand

I

K (¥,1) = K (0,0,) = [ k(o) , 0, +1)db

> 2
C re(ETEE e L () Y2 g(20g 9/m)
1

i

G2 2 1 ) /) .

- Q0

Thus these two terms give rise to the §,(z) 6A(w) Ko(y,n) term.
The other terms are similar to each other, we consider for example

[ee)

L n, . n/2 - it i n-s
[ n(t =+it at = = [ k s ds .
T (t) 0(5+1t)(ym) re(s) 1/ (s)0(s) (yn)

He
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Now in view of the rapid decay in t of k(o+it) we may shift
this contour integral a little to the right and still not pick up any poles

of . Thus for some Gli> g we will have the last term

n-g

0(s,(n) 8, n) 7).

From this everything in 7.19 follows.

Proof of 7.20. As in 7.19 Hi5) is a sum of various terms all of which are

essentially the same. Consider for example

[oe] [ ——
n/2-it ., n . n, .
g e .
8, (¥) f_mH(t) y O(Z+it) By (v, 3+it) at
The usual estimate on W(t) gives convergence, and allows us to shift

the integration line of
- n-s
8,0 T _E(s)y T 0(s) B, (w,n-s) ds
)

over to Re(s)=n+1 say. In doing so we will go over the finitely many poles
of E. Now since 0(s) E(w, n-s) = E(w,s) it follows that @(S)EA(QU n-s) =

EA(w,s). Thus the above becomes

Flaw) 6A'£%l Re(s){=n+l ﬁ(s)yﬂ—sﬁﬁ.ob’s)ds

where G(z,») is the sum of the residues. Now EA(w,s):zo(l) on Re(s)=n+l

and so the integral in the last term is 0(1/y). Thus this term is a compact
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kernel and its trace —» 0 as A — ®». Now the poles of EA(w,s) are 12

eigenfunctions for se (g, n), therefore the G(z,w) term is a sum of

terms of the form

Il-Gi
8, (¥)y g(w) -

These are also Hilbert Schmidt kernels, and have trace — 0 with

A Ss®.

We saw in 1.20 that

K(z,0) = 6,(2) 6, () X_(7, 1) + K, (2,0)

where KA is Hilbert Schmidt. We therefore have

(7.21) K-H = KA-[H£1)4-H£5)4-Hé4)]~

We have shown that all of the kernels on the right of the (7.21) are

Hilbert Schmidt and so

Theorem 7.22. K-H is Hilbert Schmidt.

It follows as in the compact case, it follows that there is a sequence
0 =X < Xl < KE ... (we do not claim there are infinitely many \'s - see

later) and orthonormal uj e LE(HP+%/F) such that

l 0
Auy *-le%j = 0, Hujll2 =1, and & = span{uj}.
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Now assuming further that K-H 1s trace class, which it will be
under our assumptions on k (see our discussion in the compact case) it

follows that

5 1?_<sn) - é{K(Z,Z)—H(Z,z)}dV(Z)

(7.22)

= lim [ {K,(z,z - gl ,2)} AV(z
Aim@;} 2 (2,2) - By (2,2)) 4v(z)

in view of Lemmas 7.19, T7.20.

The same on the left of 7.22, is our usual sum as in the compact quotient
case, thus to complete the calculation we must evaluate the right hand side

of 7.22.
We begin with the H term

©
jai

éaﬁhz,z)av(z) - [ R(Eran)|E,(w, 2

5+ it)l2 at av(z).

- CO

By the inner product formula this gives

BB it) - 479G i)
} at

10 'on, .
L[ n(s)(2l0gA- %(~+1t) v
b 7 2 oit

1 2it 2 n, . sin(t log A)
==/ A Tn(t) + OE+1it)[ 1} at
T e o1t 2" " ot

-it) -¢(§ +int)

+ I}; {: h(t) 2 log A - E]'}? {: h(t) %—(§+it)dt.
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Now as A — o, the first term in the first integrand goes away by the

Riemarn Lebesque lemma. The second term in the first integral is an approxi-
[es]

sin x
/ X

mate identity, and since = qx 1t leads to

-0

I]f (D(g-)h(o) as A > ®.

We therefore have
(7.23) é Hél)(z,Z)dV(Z) = g(0) log A- ﬁ% J h(t)g%-(§4~it)dt
+ g'_- (I)(g)h(O) +o(l) as A - o.

Now we look at

J x

[ (220 (2),

we have seen a number of times that KA -KO is rapidly decreasing into the

cusp, so

| K, (2,2)a7(z) = | k(z,z)av(z) + [ (k(z,2)-K_(2,2))dv(z)
3 8, y> A

Where
8, = {ze3:y(z) < AL

This leaves us with [ K(z,z)av(z).

Sa

Now

K(Z)Z) = z k(Z:GZ)'

gel
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However for y large k(z,o0z) = O unless o 1s the identity or is an
element of T , since otherwise d(z,0z) - @, as y gets large and k

as always has compact support. Thus

= I K(z,02)a9(2) = c%; [y ¥(z,02)a9(z) + 2> [g k(z,02)au(z).

o SA cel, A
or a conjugate or conjugate
of T, of FOO

The first term in the last equation is handled in exactly the same way

as the compact quotient.

The identity term of the second sum is also handled as before. The
new term is whats left over in the second term. The centralizer of 4 ¢ Fm

is Fm and so the second sum leads to

:E: zz: I k(z, z+£) av(z)

Zel ocel/T oS,
where ' denotes, omit £ =0.

We have geen that as oe I'/T_, 03F fills up the strip
{(y,x):y >0, x eEL} and therefore since k(z,z+£)=0 if y is small

enough, we are led to
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Write v:[ﬂig/ye or y=|4|/v gives

. foo J/2-1
& k dv
V(&) 7ot |2)° v 12]?
2
Let
B () = S

2 < [2]®

It is an easy computation using lattice point count (or any other
method) that
Eﬂn/e(log X+ )

B (x) = +0(x"%)
b r)

for some & > 0, and where is a constant like the Fuler constant de-

L
pending on the lattice.

It follows that

[ k(z,z)av(z) = fm k(t)tn/z'l BL(AJE)dt

SA 0

Nl

7.2k

+ IT = I+ 1IT

where II are terms like those in the compact gquotient.
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To express

and where

I

Now

k(x)
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. _ n/2
B 1, R sV 2 (o )+ )+ 0((E) T 0

[o4) 13/2
1 2-1 2
(37 w0y a0 By (og a7
n/2
1 2-1 -
+ 5 }jﬂ—ry—g—y fO k(t)tn/ log t dt + O(A 6) .

everything in terms of g, recall that Kn/g g%q&(t) = Q(t) where
2

foo]
gt = --]&-— [of(x+ )%t at

@

q(e"+e ¥ -2) = g(u). Thus
2 o)
= (log A+7L)g(0) +% ﬁﬂg fo k(t)tn/2'1 logt dt .

Tr—m/e(—l)n/‘2 Q(n’/g) (x) if n is even

- n+l n+1

(L)% §,0% @ iF n isoa.

Say n 1is even we have

I:

nf2 e
(1og A+7,) &(0) + & —1%}2—5— I a(™2) (1) 2L 10g ¢ Jat
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integrating by parts g - 1 +times gives

(log A+y,)e(0) + S/ Q' (t) logt+ c ldt .
0

Similarly one can show a similar such expression with n odd for appropriate

¢' . Thus
n

o

(Log &+7;)8(0) + ¢ £(0) + 5 [ @'(t)log tat
n 2 0

H
Il

(7.25) =, 8(0) + 5 [ (u+2 log(1-e")]dg(u) + g(0) log A
4 0

0 Looye L p e DU@re) oo
© ¢ Fro- g Tt DG

Il

Cn,Fg

Putting these together we obtain the following trace formula for the cage of

one cusp.

For g of compact support:

> b(z) - -é%% [ n(t) %(gm)at
J - OO

as fefore
A

(7.26) - Tident. + hyp. + elliptiz‘ + cé r g(0)
4

v 10/2) oy L 2 [ onge) D) gy
T T(l‘Fit)
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The T is related to the Sj as in the compact case, via

Also the sum X h(rj) is a sum over + rj's which is why we multiplied all

coefficients by 2.

T7.27 The General Finite Volume Case.

We have discussed the Eisenstein series in the general case of h., cusps,

1

and proven the basic facts concerning these Jjust as with the case of one cusp.

One then proceeds in directly the same fasion, forming K(z,w) and

h
1 © ——ee e
1 = n, . n, .
= = =+ =
H(z,0) = 3‘2:1 f_m h(t) E, (2, 5 it) E, (w, 2+1t) at

Under the usual condition on k, one shows that KX-H is compact. Everything
proceeds as before, the only thing to point out is in using the Maass - Selberg
formula 1.62, along =s= gﬂ-it, on taking a trace we are left only with
@'/¢(§Hﬁiﬂ where § = det.(@ij). In fact it is the determinant ¢ which con-

troles essentially everything, including the matrix @ij’

Remark. If ((s) is regular at some point s, with Re(s) <n/2, t #0,

then so is &(s) (and hence also Ei(z,s)).
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n

To see this, for Re(s) > 5 t # 0 we know everything is holo-

morphic. Now
&(s)¥(n-s) =1.

Thus @&(s), if Re(s) < g is regular if &(n-s) is invertable which de-

pends only on whether §(n-s) # O.

We leave the actual computation of the trace in this general case to

the reader. The trace formula becomes:

Theorem 7.28. For g even of compact support and h=g, hl =# of cusps

= ont)- & 0 one) & (Luanae
J -0

= ddent. + elliptic +  hyp. +

l (h

5 l-tmcew(g)))h(o)

[=<]

h
1 T .
- = —_— (1 +
- f_m h(t) =(1+1it) at
This is still not the most general case since we have assumed that the

parabolic subgroups Fj corresponding to the cusp Kj is a rank n lattice.
Actually in view of in Chapter , we can assume that our given general
cofinite T has a subgroup I'' of finite index, which has no elements of

finite order. T' will then fall within the theory we have just developed.
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As far as the analysis goes, there are no new difficulties since if E.(z,s)

are the Fisenstein series for T' , then defining

yield T dinvariant functions. It is easy to see that on

[ span {Fj(z, % +it)) 1t

K(z,w) is compact. The rest is then as before.

7.29 Spectral Resolution.

In view of 7.22 we have the following spectral expansion in the L2

sense of an arbitrary f e 12 (ﬁn+¥/F).

h [=5]
(7.30) f = % (f,uj)uj(z) + JEZ_; f_m (f, EJ.( . ,§+it)> EJ.(Z, §+it)dt

where ( , ) is L2 inner product over & .

With this comes also the Parseval identity (this is the correct version
of the preliminary Bessel inequality used earlier).
h

1) el = = F N m (L EespCas + S (gup )
7- 5 = Jézf_i_ . 2 J ) 45_ ,J. .
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The action of any function of A on an fe¢ L2 is then easily

calculated from the expansion 7.30

K £ = ‘J; (£, uj>f<(>\j)uj<z) + Zl {: n(t)(£, EJ.> Ej(z,—gﬂt)dt-

h
j=
We turn to immediate applications of the trace formula, just as in

the case of a compact gquotient.

7.52 Weyl's Law.

The important new term in the trace formula 7.28 (different to the
compact case) is the second term on the left hand side - i.e. [ h %;dt
term. This term comes from the Eisenstein series and hence the continuous
spectrum. Except for finitely many poles ¢ has it's poles to the left

n

of Re(s) = 5 (the poles and zero are symmetric via 0(s)@(n-s) =1) and

T
so J ¢'/¢(§4-it)dt measures the winding due to the poles. This is even
-T

more clear from the partial fraction expansion 7.10 for (¢*)'/(®)* which
differs from @'/@ by only finitely many factors and hence asymptotically
is not significantly different. If we now apply the exact same argument as
we did in the compact case to obtain the asymptotics of the eigenvalues, we

obtain the following analogue of Weyl's law:
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Theorem 7.33.
T 1 h n
+
= 1 -2 (B+it)at = o™t - L0 1ogT + cTHO(——)
25 T 2 7t 1 Tog T
lr. |<T g
3=
where C =
Notice that only in dimension n=1 the terms T logT and T

not swollowed by the big O term. The new terms, Tlog T and T come from

1
the g(0) and [ l%— terms in 7.28.
T 4
The term - [ is a winding number, counts the continuous spectrum,
-T

and for large T is of course positive. Thus Weyl's law is correct when we
count both the discrete and continuous spectrum in this way. One is led

naturally to the question as to which (if any) of the two terms on the left of

7.3% is the dominant term. In fact there is no obvious reason why ] :?: 1
r.|<T
term should even be unbounded. Notice 7.33 gives the bound [ ¢'/¢ = o(7™l)
-T

which is our key estimate 7.14! We are led to one of the most important un-

solved problems of the theory.

Conjecture 7.34%. (Roelcke - Selberg).

——

(a) Weakest form: N(T) = _= 1 is unbounded as a function of T. Put
lr.l <T
J —

another way this conjecture says that there are infinitely many L2 eigen-

functions for A, on any cofinite quotient of hyperbolic space.
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(b) Stronger form: The N(T) term in 7.33 is the dominant term, i.e.

+
NT) m e ™t as T L oo

Ty n l+e
(¢) strongest form: [ (z+it)at = o(T" ~) Te > O.

-T

One reason for conjecturing part (c) is that this term corresponds to
the continuous spectrum, which in turn comes from the Eisenstein series which
correspond to automorphizations of functions of y alone - so one may expect

the asymptotics to be of a one dimensional problem.

Evidence of the possible truth of 7.34 comes from arithmetic groups
where one can calculate ¢(s) explicitly and one finds that the conjecture

is true in it's strongest form. In fact we saw in (7.10)™ that

T !
i (§+it)dt = 0(T) +2x _—= 1
T ly| <arT

where B+iy is a pole of ((s). Thus part (c) follows if

L~

o(s) = &2

:

with a(s) entire and b(s) entire of order 1. This happens to be the case
in all the examples (arithmetic) of Chapters 6 that we calculated, since b(s)

is typically a zeta function of a number field.

In particular we have
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Theorem 7.35. In the case of the modular group SLE(SZ ) the discrete

spectrum satisfies Weyl's law. Thus most of the spectrum is discrete.

Theorem 7.35 is a triumph of the trace formula, it gives the existence
of L2 spectrum, which as we shall see in the next section gives us cusp

forms.

These mysterious objects will be a major concern for the rest of the

book!

7.36 Asymptotics of Geodesics.

The other immediate application of the trace formula is to the asympto-
tics of the lengths of geodesics on hyperbolic manifolds. Everything proceeds
exactly as in the compact case. Indeed if we look at the proof for the com-
pact quotient case we observe that the [ %; and f’%; terms as well ag the
h(0) terms may all be incorporated in Lemma 1 of that section. The rest of

the proof follows mutatus mutandis.

+
Theorem 7.37. Let M = Hn 1/'F be a finite volume hyperbolic manifold and

let T[(x) be as before, the number of closed geodesics on M whose length

is less than x. Then

E+tl)x 24t )x (n-—=)x

IXy b 1R ) oo +1i(f BTy s o(e BTy

I(x) = Li(e

where tj’=irj corresponds to the discrete eigenvalues of A on LE(M), in
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The Selberg zeta function z(s) may be formed out of the hyperbolic
transformations in a fasion exactly the same as before. Its analytic continu-
ation, functional equation follow as before, the only difference being the

poles of §(s) which appear as poles of z(s) as well.
We end this chapter by defining cusp forms:

We have already introduced the space € of functions gpanned by the

Eisenstein series Ej(Z,g +it) along the line = g . Consider this
space together with the finite dimensional space of residues of the Ej's at
the poles of E in (g, n), which we call R. We have seen each member

of R isin 12 (¥%YT).

If u is C of compact support in ¥ then for Re(s) > n we have

Fi(s) = f3 u(z) B, (z,5) av(z)

® : . (3)
fo ua('y ,0)(v) =R

® : - (3) 3,.(3)
_ u(z(3)y (ydys x 7 dy
fo fg(j (z*7) (%) Sy

~

Where uj(y<J), 0) is the zero'th coefficient of u in the jﬁh cusp, i.e.

~

Fj(s) is the Mollin transform of uj(y). Thus

-1~ 1 -
N UJ(Y:O) = 53 J F.(s)y "ds .

Shifting the integral across to c¢= g gives
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© n—GK

n, . -it —~—
J Fj(§+1t)y at  + > v Res(FE, S = O‘K)
-0

g

. n/2

_ J
U‘J(y}o) - 23-[:1

residue of Fj on (g,n).

The residues of F correspond to the poles of E in (%, n], and

clearly give

- yn/E < . n, . -it
uJ.(y,O) = 5 f_ {u( )5 Ej(" §+ 1t)>:y" at

27

L n-g.
+ > (u(.), Res (EJ: S:GK)> ¥ ¢ :
K

The last equation makes sense (and so entends) for all wue L2(1in+l/1“),

since, by the spectral resolution (u(.), Ej(. 5 %Jrit)) € LE(IR ), and

Res (Ej , 8 —_~gK) € L2(3:¥n+l/1"). It follows that if ue (€® R)JL then

ﬁj (y,0) = 0. Conversely if Uy (y,0) = 0 it is clear by growth considerations
that (u(.), Res (B, s=0,)) =0, and (u(.), E; (. ,-§+it)) - 0. If this is

so for every j then ue (€@ R)" .

Definition 7.38. We let C be the space of cuspidal functions, i.e. the

subspace of Lg(hml/l“) consisting of all wue L2 for which

é u(zd)axd =0 vy J=1,.e05hy

J
i.e. all L2 functions which have zero Fourier coefficient in every cusp.

It is easy to see that this definition makes sense on L2 functions and defines
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a closed subspace of L2.
We have shown in the remarks above 7.38 that

c=(e®RrR)" .

2

Thus L = & ®R @ C , each of the subgpaces is invariant under function
of A. Also we have seen that K(z,w) as usual is compact on R® C, and
in particular on C . Thus C has an orthonormal basis of eigenfunctions

Vl;VQ;---, AVJ.‘*‘XJVJ = 0.

Definition 7.59. A cusp form is an L2 eigenfunction of A which has zero

Fourler coefficient in each cusp i.e. an L2 eigenfunction of A which is in
Cc.

We observe that since R is finite dimensional the conjecture 7.34 in
its weakest form is equivalent to C being infinite dimensional, or that there

are infinitely many cusp forms.

This definition of cusp form is modeled on the classical definition of
an analytic automorphic form being one which has zero coefficient in its Fourier

expansion, equal to zero, see | 1.



