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1 Introduction and Background

To the general mathematician I-functions might appear to be an esoteric
and special topic in number theory. We hope that the discussion below will
convince the reader otherwise. Time and again it has turned out that the
crux of a problem lies in the theory of these functions. At some level it is
not entirely clear to us why L-functions should enter decisively, though in
hindsight one can give reasons. Qur plan is to introduce L-functions and
describe the central problems connected with them. We give a sample (this
is certainly not meant to be a survey) of results towards these conjectures as
well as some problems that can be resolved by finessing these conjectures.
We also mention briefly some of the successful present-day tools and the
role they might play in the big picture.

An L-function is a type of generating function formed out of local data
associated with either an arithmetic-geometric object (such as an abelian
variety defined over a number field) or with an automorphic form (it is
expected that the latter set contains the former one, Shimura-Taniyama. for
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special cases and Langlands in general). Fix a number field K (i.e. a finite
algebraic extension of QQ), the reader will not lose too much by restricting
to Q. An L-function takes the form of a product of degree m > 1 over all
primes p of K e

L(s) = []Lo(s), (1)
P

where the local factors are
T

PR |
Lp(s) = [] (1 — () (Np)™) (2)
j=1
for suitable complex numbers a;(p) and where Np is the norm of p. As
a function of s this product converges absolutely for R(s) > 1 (see below)
and we can multiply out to get the series
L(s) = ) c(@N(a)™, (3)
a0 E
the sum being over integral ideals.
We give some concrete examples all being for K = Q.

(1) The Riemann zeta function (m = 1)

) =J[@a-2)" = n". (4)
p n=1
(2) Dirichlet L-functions (m = 1)
L(s, ) = [[ @-xlp™) " =Y xn™, ()
r n=1

where Y is a character of the group of primitive residue classes a(modgq)
(more precisely a multiplicative function on Z which is periodic of pe-
riod ¢). The minimal period ¢ is called the conductor of .

(3) For m = 2 we give the example of the L-functions of elliptic curves
defined over Q. Let E be such a nonsingular curve given by the
equation

E: ¥=2+ax+b, (6)
a,b € Q. For a prime p at which reducing £ modulo p yields a
nonsingular curve over F,, (the field with p-elements), one defines the
local factor Ly(s, F) as follows: Let Ng(p) be the number of solutions
of (6) with z,y in F, (not counting the point at infinity) and let
ap(p) = p— Ng(p). Define

-1
Ly(s,E) = (1 - QETS’);D-S + p—%) : (7)
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Note that this is not the standard algebraists normalization but it
is very convenient for analytic purposes. The L-function L(s, E) is
defined by -

L(s,E) = [] Ls(s, B) , (8)

where at primes p for which E has singular reduction (there being
finitely many of these) special care must be taken in defining the
local factor Ly(s, E).
Again we take m = 2 and give an example of a holomorphic modular
form and its L-function. Let H be the upper half plane. For z € H
and m > 1 set

F(Z) - Z fjlm 27 N(p)z : (9)

,uGZ[w/:T]

where N(u) = pfi. It tuzns out that F(z) is a holomorphic modular
form of weight k = 4m + 1 for the subgroup

To(4) = { (f 2) ESLQ(Z);4|c}

of the modular group SLy(Z). That is to say it transforms appropri-
ately under z — %ji—g for v = (32) € I'g(4), with nebentypus character

(Ri) Its L-function is

HaF) =) ( > (ﬁ) m)t—ﬁ H Ly(s,F) . (10)

t=1 p=pq +ipg
11 20,u9>0
N(u)=t
For p = 3(4)
Ly(s, F) = (1—p2)7" (11)
while for p = 1(4)
Ly(s,F) = (L—c(p)p™ +p7*) 7", (12)
where
1 - m 4m
op) =3 > (m) , (13)
N(p)=p
Alternatively we have
: . . s |
L(s,F) = [[ 1=2@@p) ™), (14)

P
where p runs over the prime ideals of Q@ (\/—1) and A is the “Grossen-
4m
|

character” given by A((a)) = (a/|a]) “he form F' is special among

the modular forms for I'¢(4) in having an expression (14) in terms of
a quadratic extension. It is an example of a “CM” modular form.
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An example of a non-CM holomorphic modular form is the popular

AR =q¢J] 1-g=) )", (15
n=>0 n=1 o

where g = €2™ is a holomorphic cusp form of weight 12 for bL(Q Z)
(that is A (“z*b) (ez + d)*?A(2) for (33) € SL(2,Z)). Its L-

function is

oo -1
L{s,A) = Z ;;I(IT;)? 7o = H (1 — 1(1,,)213 +p ) . (16)
=1 P
That it factors into an “Euler product” as indicated is a consequence
of A being a Hecke eigenform (see below).
Our last example is a Maass cusp form for GL(2,Z) on H. That is a
real-analytic function ¢(z) on H satisfying
(a) ¢(vz) = ¢(z) for y € SL(2,Z) =T
(b) #(—2) = #(2)
(c) Ap+ A =0, )\>i—
(A being the Laplacian for the hyperbolic metric)
(d) ¢ is square integrable on I'\H (in this particular example this
property is equivalent to being a cusp form).

R

These ¢’s are far less tangible than the previous examples. Indeed
that there are any such ¢’s is far from obvious. The only proof of
their existence is through the trace formula (indeed this demonstra-
tion was part of Selberg’s original motivation for developing the trace
formula). Our present understanding is that these elusive forms exist
in abundance only for I'’s as above, such as congruence subgroups of
SLy(Z) [PhS], [Wo]. The Hecke operators T, defined by

- \/“Z 3 ¢(a7+b)

ad=n b(modd)
act on these eigenspaces, they commute with each other and are self-
adjoint on L*(I'\H). We may therefore simultaneously diagonalize
and assume that

Th¢ = Ag(n)¢, foralln > 1. (17)

For such Maass eigenforms we have corresponding degree two L-
functions:

=Y M~ =[] Lo(s,9) (18)
n=1 P




Visions in Math. ANALYTIC THEORY OF L-FUNCTIONS 709

where
Lp(s,¢) = (L—en4(p)p™°) " (1 — agg(p)p™°)? (19)
and - -

a1,4(p) az,4(p) = 1, a1,6(p) + a24(p) = Ap(p) - (20)
That completes our list of examples of L-functions.

We now dive in with the general modern definition of an automorphic
cusp form and its L-function. We consider only the group GL,, since it
is expected from general conjectures of Langlands [La| that all L-functions
are products of these standard L-functions (we emphasize that other groups
and even the exceptional groups play an important role in understanding
these L-functions (see below)). Let Ax be the adele ring of K, that is the
restricted product, I, K, over the completions of K. An automorphic cusp
form F' on GLy(Ak) is an irreducible representation of GL,,(Ag) occur-
ring in L3(G Ly (K)\GLm(Ak)) under the right regular representation of
GL,(Agk). Here we are assuming that all functions transform under the
action of the center by a unitary central (idele class) character and the
subscript zero refers to the cuspidal subspace [GelP]. The relation to the
classical description of modular forms is that there are special functions in
such an irreducible representation which are classical modular forms. Now
an I as above is of the form ®,F, where v ranges over all places of K
(finite and archimedean) and F;, is a unitary (in fact generic [JS]) represen-
tation of GLy,(K,). Using suitable parameters of the local representation
of F, (Satake parameters [Sa2] if F, is unramified, which is the case for all
but a finite number of parameters, and Langlands parameters in general)
one defines the numbers ag;(v), j = 1,... ,m in (2) above. In particular,
this yields the definition of the local factors L,(s, F) = L(s, F) for v fi-
nite. At the archimedean places there are similar parameters for the local
representations of GLy,(R) or GL,(C). The local L-factors take the form

L(s,F,) = [[ Tu(s — ps,r(v)) , (21)
i=1

where

Tgte] =

—/2r(2), if K, ~R
{7{ (8), i (22)

(27)~5T(s), if K, ~ C.

The standard global L-function of F' is then

L(s,F) = [ L(s,F). (23)

v finite
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The product converges absolutely for R(s) > 1. Moreover, the analogue of
Riemann’s analytic continuation and functional equation are known in this
generality (Hecke [Hec|, Godement-Jacquet [GoJ] and see also Tamagdwa
[T]). Define the completed function ;

A8 F) = ( H L(S,Fu)) - L(s, F) . (24)
v archim.
Then A(s, F') extends to an entire function (except in the case m = 1 and
F is the trivial representation when A has poles at s = 0 and s = 1) and
satisfies the functional equation
—~— 1
A(1-5,F) = & Ny 2A(s, F) . (25)
Here Nr > 1 is an integer called the conductor of F', € is the root number
(which has modulus 1) and F is the representation contragredient to F.
The cuspidal spectrum of L%(G Ly (K)\GLn(Ag)) is discrete so that
the set of standard L-functions is countable. In the form that we have
described them, these L-functions are not unrelated to each other (see for
example (10) and (14) above). It is known (see [AC] that each L(s, F) for
K is a product of L(s, F') for Q (with m’ = md, d = deg(K/Q)). For many
purposes it is convenient to think of L(s, F') over K rather than of larger
degree over Q. The cuspidal standard L(s, F) over Q are all independent
of each other and they form the basic building blocks for all L-functions.
One can form more general L-functions from these basic ones, that is
the tensor powers. Very special cases of these are known to have analytic
continuations and functional equations. There are at present two methods
to attack this problem of continuation both depend on the analytic prop-
erties of Eisenstein series. These are the Rankin-Selberg method, see [Bu],
and the Langlands-Shahidi method [Shl]. For example given F and F’
automorphic cuspidal on G Ly, and G Ly, respectively, then L(s, F @ F') is
an L-function of degree mm’ whose local factor at a place v of K at which
both F' and F' are unramified is:

L(s,F, ® F)) = H H (1— arjoap N(v)_s)"l : (26)
j=1 k=1

The precise analytic continuations and functional equations for these are
known [JPS]. The function L(s, F ® F') has non-negative coefficients in its
expansion (3). This together with its analytic properties (i.e. pole at s = 1)

imply that the product (23) converges absolutely in R(s) > 1.
Another special case that is known [G] is the degree 8 triple product of
G Ly forms. Let F,G and H be three cusp forms on GLy/K. At a place v
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where F, G and H are unramified define the local L-function of degree 8 by
L(s,F, ® G, ® H,) '
= I (-ap, () ace (v)ame ()N@)™)"" . (27)

e;€{1,2}
7=1,2,3

Set
L(s, F® G® H) = [[ L(s,F, ® G, ® H,). (28)

Then L(s, F® G® H) has an analytic continuation and functional equation
§— l-—3s;

Some special cases of the symmetric power L-functions of G L5 forms are
known to have analytic continuations and functional equations. Forn > 1
and F' on GLy/K define the local factor of the n-th symmetric power (at
an unramified place) by

m

L(s,sym™F,) = H (1 — (ap1 (v))’ (apa(v))™™ I\?(T;)"S) = (29)

J=0

The global n-th symmetric power L-function L(s,sym™F') is defined to be
the product of these local factors. For n = 1 this is Just the standard L-
function. For n = 2 the analytic properties were established by Shimura
[Shi2]. Recently, Kim and Shahidi [KiSh] established the expected analytic
properties for n = 3.1 Their proof uses at one point the unitary dual of the
exceptional group Gs!

The above discussion has indicated why L-functions of automorphic
forms enjoy certain analytic properties. For the examples (3) of L-functions
of elliptic curves over Q this follows from the spectacular progress by Wiles
[Wi] and [TaW] which asserts that “elliptic curves over Q are modular.”
This implies that L(s, E) is an L(s, F) for a suitable holomorphic weight 2
cusp form F' on a congruence subgroup of SLy(Z). Indeed, the construction
of automorphic forms (and hence of L-functions) from arithmetic-geometric
settings is one of the major thrusts of modern number theory. Our interest
here is beyond this and at the same time much older. That is, we are given
an automorphic form and its L-function and we investigate its properties
(beyond just analyticity) and their applications.

! Added in proof: Recently they have also established this for n = 4.
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2 Fundamental Conjectures

We turn to some of the basic problems which until their resolution are ex-
pected to be a focus of the subject. The first is a well known generalization
of Riemann’s Conjecture. L

A) Grand Riemann Hypothesis (GRH)
The zeros pr of any A(s, F) have real part equal to %

Comments:

(A1) Crisp, falsifiable and far reaching this conjecture is the epitome of
what a good conjecture should be. Moreover, it has many striking
consequences (some described below). One of its powers lies in that
it ensures uniform (up to square root of the number of terms - like
random numbers) cancellations in sums over ¢z (a) or cr(p) (as in (2)
and (3)). It is in this form that one often usessit in applications to
problems in which the local data in cg(p) is being used to analyze
something global and visa versa. In practice, GRH is often used as a
working hypothesis (and an apparently very reliable one at that) in
that one proceeds by using it, and in this way many results are es-
tablished under GRH. However, there have been sufficiently powerful
advances in the theory that in a number of cases one can dispense
with GRH and the desired result is established unconditionally.

(A2) The true strength of GRH lies in the statement for the general L(s, F'),
or at least for some infinite family of L-functions such as Dirichlet L-
functions L(s, x). For example, the case of (s) itself has few conse-
quences (it is of course directly equivalent to the size of the remainder
term in the Prime Number Theorem). For a recent description and
discussion of RH, see Bombieri [B2]. There is no L(s, F') for which
GRH is known. For families such as L(s, x), there are results, “density
theorems”, which assert that almost all their zeros lie near R(s) = 3.
These can often be used as a substitute for GRH (see section 4 below).

(A3) For ((s), L(s,x) and some GLy/Q L-functions extensive numerical
experimentations have confirmed GRH in impressive ranges. This is
important supporting evidence for the truth of GRH. The function
field analogues (see section 3) are known to be true and this is further
strong evidence in favor of GRH.

The direct results that have been established towards GRH are modest.
The method of Hadamard and de la Vallée Poussin for ((s) (in their proof
of the Prime Number Theorem) can be used together with the analytic
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sroperties of L(s,F') and L(s, F ® F') to show that L(1 + it, F') # 0 for

€ R, cf. [R]. The lower bounds for |L(1 + it,.F)| that one obtains this
vay are all roughly of the same quqlityQ except for one major lacuna. That
s the case of L(1,x), x quadratic over Q (this being the first instance
»f nonvanishing of L-functions and is due to Dirichlet in his proof of the
nfinitude of primes in arithmetic progressions). For this case instead of the
ower bound of (log g)™* for L(1,x,) the best known effective lower bound
s L(1,xq) > 13\%‘1, (if ¢ is prime and slightly weaker in general [Gol], [GrZ]).
The last is an excellent example of the use of GLy L-functions (in particular
L-functions of elliptic curves of high rank) to give information about G,
L-functions. Ineffectively Siegel [Si2], following Landau, established the
lower bound; given € > 0 there is C. > 0 such that for any g > 1

L(L,xq) 2 Ceq™® . (30)
GRH implies the so-called Lindeloff Hypothesis which, if true, is a very
useful bound for L-functions on the critical line.

Precisely for the purpose of estimating L(% + it, F') we introduce the
quantity (the “analytic conductor”)

m
CEH=Ne[[ [I @+lpjr)+it®), (31)
7=1 warchim.
where for v archimedean
dv)=1 if K,=R and d(v)=2 if K,=C. (32)
Fix m and K. Let d = deg(K/Q). The Lindel6ff Hypothesis asserts that
for any € > 0,
L(3 +it, F) < (C(F,)° . (33)
€
It follows from the functional equation for A(s, F') and the convexity
bounds of Phragmen-Lindel6ff that for € > 0
1. ¢
L(5+it, F) < (C(Ft))* . (34)

Because of its many applications we single out the following problem as a
basic one.
B) Subconvexity Problem

For m and K fixed to show there is § > 0 such that

L(}+it,F) < (C(F )i,

%In the special case of ¢(s) some improvements have been given using far reaching
methods of .M. Vinogradov.

7
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Actually in applications we usually have some subfamily (i.e. only one of the
parameters ¢, Np or || F' ||archim. varies) and we seek subconvexity estimates
uniformly for the subfamily. This problem (B) is solved in a number of cases
and we discuss this and some of their applications in section 6.

Next we discuss the generalized Ramanujan Conjecture. It is the local
analogue of GRH and is a spectral problem concerning the local represen-
tations Fy, of GLn(Ky) of the global automorphic cuspidal representation
F. Tt asserts that for a place v at which F, is unramified, F, should be
tempered (see [Sal]). Equivalently this can be stated in terms of L(s, F})
as follows:

C) Generalized Ramanujan Conjecture (GRC)

Let F' be an automorphic cuspidal representation of GL,,(Ag) which
is unramified at a place v. Then for v finite |a;F(v)] = 1 while for v
archimedean, R(u; rp(v)) = 0.

Comments:

(C1) Again this is a clean and far reaching conjecture. It is in the back-
ground in many applications of the spectral theory of automorphic
forms to problems in analytic number theory.

(C2) The original problem of Ramanujan was concerned with the case
F = A(z) (see (15) above). In this case GRC is equivalent to the
original Ramanujan Conjecture:

I7(p)| < 207 . (35)
For this case and more generally the case of holomorphic cusp forms
of even integral weight for congruence subgroups of SL(2,Z) the con-
jecture was established by Deligne [D2].
(C3) For K =Q and Q, = R, GRC is equivalent to the Selberg Eigenvalue
Conjecture; that for any N
M (C(N)\H) > £ . (36)
Here I'(N) is the principal congruence subgroup of I'(1) = SL(2,Z),
that is (V) = {y € T(1);v = (; %) mod N}, and A; is the smallest
eigenvalue of the Laplacian on the cuspidal space LZ(T'(N)\H).
There are nontrivial and very useful general bounds towards GRC.
Firstly, there are purely local bounds which use only that F), is unitary
and generic [JS] (these properties of F;, follow from F being a cusp form).
These bounds are

llOgN(u) |, (v)| l < %, for v finite (37)
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[ﬁﬁ(ﬂj;p(v})l < é—, for v archimedean . (38)

This can be viewed as the analogue of the convexity bound for L-functions.

For this problem a “subconvex” bound is known in general [LuRS]. For F
on GL,(Ag) cuspidal '

‘logN{.U) a;r(v)| < 53— m1+1 , for v finite (39)

|R(1,r(v))| < 3 — =27 , for v archimedean . (40)
The proof of this is global relying on the analytic properties of Rankin-
Selberg L-functions as well as a technique of persistence of zeros for fam-
ilies of L-functions (in this case twists by ray class characters) and also a
positivity argument. This theme of families will recur often in what follows.
Combining the above bounds for m = 3 together with the Gelbart-Jacquet
[GeJ] symmetric square lift from GLy to GL3 yields an improved bound?
for GLs: =

|10gN('u) aj,f‘("”)l < % , for v finite (41)

|R(pj,r(v))| < £, for v archimedean . (42)

o

Remarkably the last at finite places can be proven by a quite different
method, see Shahidi [Sh2] who uses exceptional groups. For K = Q and
Qoo = R (42) yields Ay (T'(N)\H) > 2% for the Selberg problem (36) above.
This being greater than - has significant corollaries (see section 7). The \ise
of the family of twists of L-functions by Dirichlet characters for the purpese
of obtaining estimates towards the GRC for Maass forms for GLy/Q, at
finite places p, was introduced in [Dull]. In that case it was used to exploit
the extra functional equations afforded by the family as well as to overcome
the lack of positivity for the coefficients of the symmetric square L-function.
Their method may be used to give a slight improvement of (41) in the case
K =Q.

It was observed early on (Tate, Langlands, Serre) that the expected
analytic properties (i.e. meromorphic continuation and location of poles)
of the symmetric power L-functions imply GRC as well as conjectures about
the distribution of the “angles” {afp1(v),... ,arm(v)} as N(v) — co (the
so-called Sato-Tate Conjectures). For F' on GLy/Q and n > 1 consider

Gn(s) = L(s,sym™F @ sym"F) , (43)

3We have just learned that for this case, Kim and Shahidi have established the im-
proved bound replacing ¢ by 3% in (41) and (42). Added in proof: Their methods when
combined with the method of twisting leads for the case of K = @ to bounds with &
replaced by & (see [KiS])
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where L(s,sym™F) is given following (29). The series for Gn(s) is of ﬂ;ﬁ‘@

form :
Ga(s) = 3 b(m)m™* (44)

with b(m) > 0. If as expected Gn(s) is analytic for R(s) > 1 (it certainly
has a pole at s = 1) then the positivity of the coefficients easily implies
that

b(m) < m!™¢, forany e>0. (45)

Now examining the coefficients of (43) we have for p a prime at which F' in
unramified and e > 1

n _ e |2
Z [(aF,l(P))J (ara(p)" j]
J=0 ;
Hence, combining (45) and (46), the fact that |ap;(p)ar,(p)] = 1 and
letting e — oo and € — 0 we conclude that

max {|ara (p)], lera(p)| } <o . (47)

Thus the knowledge that G, (s) is analytic for R(s) > 1 for all n yields GRC
for F. The GRC for p = oo, i.e. the Selberg Conjecture would also follow
from similar considerations. The behavior of the distribution of the angles
{ar1(p), ara(p)} requires a little more, that is the analytic properties of
Gn(s) up to and including R(s) = 1.

The last fundamental conjecture that we mention is the Birch and
Swinnerton-Dyer Conjecture. This conjecture was discovered experimen-
tally (i.e. through numerical experimentation) in looking for elliptic curve
analogues of the Siegel Mass Formula (see section 6) for quadratic forms.

< eb(p°) . (46)

D) Birch and Swinnerton-Dyer Conjecture (BSC)

Let E/Q be an elliptic curve and L(s, E) its L-function. Then the
order of vanishing of L(s, F) at s = % is equal to the rank of the group of

Q-rational points on F.
Comments:

(D1) Again this qualifies as an excellent and perhaps somewhat unexpected
conjecture at the time. It contains highly nontrivial local to global
information. Recall that the L-function L(s, E) is defined from local

data while the rank of the group of rational points is one of the most

interesting global geometric invariants of E(Q).
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(D2) The point s = % is the only explicitly known point at which any

A(s, F') vanishes. Vanishing at s.= % could happen simply because
of the sign of the functional equation (if F' = F and ep = —1), but
as in the case of A(s, E); it"could vanish to order greater than 1 for

deeper arithmetical reasons.

As with the last conjecture there are substantial results towards the
BSC for elliptic curves over Q. The works of Coates-Wiles [CoW] for CM
elliptic curves and Kolyvagin-Lugachev [KoL] and Gross-Zagier [GrZ] in
general imply essentially that the Conjecture is true if the order of vanishing
at s = % 1s at most 1. It should be noted that the only general method to
construct rational points on a given E is Heegner’s construction [Hee] (we
are not asking to find elliptic curves containing a given rational point). It

is unclear what role these play when L(s, E) vanishes to order > 2.

L

3 Function Field Analogues

As was mentioned in section 2 the function field analogue of GRH is known.
There is a lot to be learned from this algebro-geometric analogue and it
has led to many insights for L-functions over number fields. As in the
number field case the Riemann Hypothesis in the function field has striking
implications. In particular it yields optimal bounds for exponential and
character sums over finite fields and these are a basic tool in many of the
results mentioned already as well as ones mentioned below. In fact, the
special cases of the GRC that have been established make use of GRH in
the function field. So the function field is an important part of our story
and we review this analogue briefly.

The starting point is to replace the field K by a finite extension k of the
field Fy(¢), F, being the field with ¢ elements. We define, following Artin,
the zeta function of k

G(T) = ] (1 —T%et)™, (48)

the product being over all the places (i.e. primes) of k and deg(v) is the
corresponding local extension degree. The field k may be realized as the
field of functions of a nonsingular projective curve C over F,. This allows
one to give an alternate useful expression for (. (7). If N, is the number of

points on C defined over Fn, then
o0

G(T) = ((T,0/Fg) = exp 3070 ). (49)

n=1

e
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Using this and the Riemann-Roch theorem for the curve C over F, one can
show the analogue of the analytic continuation and functional equation of

(s), for (x(T). That is,

) = i) (50)

(1-T)(1—qT)

where P is an integral polynomial of degree 2¢g with g the genus of C and
P satisfies a functional equation relating its values at T to 1/¢7. The
analogue of GRH is the statement that all the zeros of P be on the circle
|T'| = 1/,/q. This was established by Weil [Wel]. There are a number
of ideas that go into his proof (he gave two quite different proofs). The
numbers N,, can be realized as the number of points on C(F,) which are
fixed by the n** power of the Frobenius morphism (raising coordinates to
the power g). This suggests the use of a Lefschetz trace formula to linearize
this counting. To achieve this Weil passes to the Jacobian X of C. For ¢
prime to g and v > 1 the corresponding Frobenius endomorphism a acts
on the £ division points of X, giving rise to an f-adic matrix realization of
a. Its eigenvalues are shown to be the inverses of the zeros of P(T"). This
gives an important spectral interpretation of the zeros. The proof that the
zeros are on the circle 1/,/g requires a further elaborate analysis of « in
the endomorphism ring of X and in particular the use of the positivity of
Rosati involutions.

The definition of the zeta functions (T, V/F,) for smooth projective
varieties V' over F, was given by Weil. He put forth conjectures about the
rationality, functional equations and analogues of the Riemann Hypothesis
for these zetas. The first was proven by Dwork. A different proof was
given by Grothendieck who also established the other analytic properties
(i.e. functional equations, location of poles) by using his £-adic cohomol-
ogy theory. In particular, Grothendieck gives a spectral interpretation of
¢(T,V/Fq) in terms of the characteristic polynomial of the induced linear
action of Frobenius on the cohomology groups of the variety.

The proof of the analogue of GRH is due to Deligne [D2]. An impor-
tant methodological difference in his proof being that the zeros are not
shown to have a given absolute value (“purity”) in one step and with one
variety V. For example, if V is a smooth hypersurface in P?" then he
places ((T,V) in a family V;, t € U a parameter space. The arithmetic
fundamental group m;(U) has representations via monodromy in the vari-
ous cohomology groups f{i(%,@g), where Vj is a fixed base point (in this
hypersurface example only the middle dimensional cohomology group con-
tains nontrivial information). In this way one may realize ((T, V/F,) as a
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local factor of an L-function associated with the monodromy representation
above. One can furthermore examine various tensor powers of this repre-
sentation. Also these new L-functions have known -analytic properties (or
at least one can locate their poles’using invariant theory for the represen-
tations of the monodromy groups). One is now very much in the position
that one is in deriving the local GRC from the global analytic properties
of the symmetric power L-functions (see section 2). In fact, similar pos-
itivity arguments with arbitrarily high dimensional representations of the
monodromy groups yield in the limit that the zeros of ((T,V/F,) are all
on the circle |T| = g "+1/2, So the family, its symmetry and positivity are
the key ingredients in the known proof of the GRH for varieties over finite
fields.

The solution by Deligne of these Weil Conjectures allowed him to solve
the special cases of GRC mentjoned in section 2. The reduction itself is
deep and is due to Eichler [E] and Igusa [I] in the special case of weight 2
and Thara [Ih] and Deligne [D1] in general.

We end this section by mentioning the function field analogue of au-
tomorphic forms F' on GL.,. Replacing, as we did at the start of this
section, K by k we may consider the space L?(G L (k)\GLm(Ag)) and its
cuspidal subspace. In a recent paper Lafforgue [L] has completed the pro-
gram started by Drinfeld of (amongst other things) establishing the GRC
for these automorphic cusp forms. A key ingredient of course is Deligne’s
proof of the Weil Conjectures above. There are many other crucial ingre-
dients such as the trace formula [A] and the converse theorem [CogP].

4 Dirichlet L-Functions GL(1)/Q

The work of Linnik [Lil] marked the beginning of a series of developments
which give in some sense GRH (for Dirichlet L-functions) on average. This
is not just an exercise but is a powerful tool which produces results not cov-
ered by GRH. In many applications of GRH one has, say sums of sums over
primes in different arithmetic progressions, and GRH would give approx-
imations for each sum. Since one is averaging over different progressions
it is just as useful in such situations to know that the approximation of-
fered by GRH is correct on average. The many developments during the
period 1950-1970 mentioned above are based on a penetrating study of the
orthogonality of Dirichlet characters (to different moduli!) and culminated
in the Bombieri-Vinogradov Theorem.
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For (a,q) =1, let

¥(z;q,0) = Z 1ogp, (51)
p<z
s p=ea(q)
the sum being over pnmes Accordmg to GRH
Y(z;,0) = —(—) + 0(z2(logz)?) , (52)

where ¢(q) is the number of residue classes (modulo ¢) prime to g (this
equivalence is essentially due to Riemann).

The Bombieri-Vinogradov Theorem (in a slightly stronger form by
Bombieri [B1]) asserts that for A > 0 there is B > 0 such that f}

Z(’ ¥(z;q,a) — )

where @ = :clf’Q/(Iog x)B. So this comes close to (52) on average in this
range. By the way (53) is closely related to statements giving nontrivial
bounds for the number of zeros p = 8 + %y of L(s, x) of conductor ¢ < Q
and with 8 > o (¢ > 3), |7| < T, known as Density Theorems.

More recent results [BFI] use much more sophisticated tools including
bounds for exponential sums over finite fields as well as GLy/Q spectral
theory in the form connected with sums of Kloosterman sums (see section
7). Their results concern primes in progressions to moduli beyond /z and
cannot be derived from GRH. For example it is shown (among stronger,
but more complicated results) that for any a # 0, A > 0 there is B > 0
such that

Y(z)

‘1;;(33 20) - 25| < % ; s (loglogz)® . (53)

?

e
(log )"

(a g)=
q< \/_(103 :]A

We turn to Problem B of section 2 which concerns the size of L(s, x)
on the critical line. The first developments are much older. Weyl’s method
[Wey] of shifting the argument and repeated squaring in estimating sums
3. e(af(n)), where e(z) = €*™ and f is a polynomial, led to the subcon-
vexity estimate (the convexity exponent here is l/ 4)

¢k +it) < (jt]|+1)8 (54)

for the Riemann zeta function (the same can be done this way for L(s, x)

in the t-aspect). There have been many improvements of the exponent %,
but our emphasis here is on subconvexity.

For the case of L(s,x) (s fixed with real part equal to one half) in the

conductor g of x aspect, there is the result of Burgess [Bur]. It gives the
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subconvexity estimates (again the convexity exponent is i)

L(s, )< g6 . (55)
Burgess proceeds by estimating the sums
S= Y.  xn (56)
N<n<N+H

for N and H of certain sizes. He obtains nontrivial bounds by summing
S and its shifts to large (even) powers which allows him to make use of
bounds for complete character sums which in turn rely on Weil’s GRH in
the function field for curves of suitably large genus. Interestingly there are
ranges in (56) where Burgess obtains nontrivial bounds and for which the
GRH for L(s, x) yields nothing nontrivial.

In the next section we discuss a recent improvement of (56) for x
quadratic.

s

5 Special Values

The question as to whether an L-function L(s, F') vanishes at a special
point on the critical line has arisen in various contexts and is apparently
a fundamental one (note that such a question is not addressed by GRH).
It arises in the problem of examining the instability of the elusive Maass
cusp forms (see section 1). For this problem the L-functions in question are
L(s,¢®Q), ¢ a Maass form and Q a holomorphic cusp form of weight 4 (all
this for GLy/Q). The special points being s = 3 = ir, where the Laplace
eigenvalue of ¢ is § + r2. The other special point that arises is s = 3 for
self-dual forms F (i.e. F = f) This point is the central symmetry point
for the functional equation of L(s, F'). In the case that L(s, F') is the L-
function of an elliptic curve (or an abelian variety) then the vanishing at
§5= % is related to rank of the group of rational points, this being presented
in D) of section 2. Note that if F is self dual then L(s, F') is real for s real
and since L(s, F') — 1 as s — o0, it follows that if we admit GRH then

L(3F)>0. (57)
In the simplest case, that is F' being a quadratic Dirichlet character (57) is
not known (in fact one can show that if L (%}x) > 0 for x quadratic then
one can eliminate in part the Landau-Siegel lacuna mentioned in section 2).
So it is quite striking that for PGL(2)/K cusp forms F' (these are self-dual)
one can show that

L(3,Fex) =0 (58)
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for any quadratic ray class character x. This final version is due to Guo
[Gu], it completed a series of developments beginning with Waldspurger
[W]. The theta function treatments of (58) (Guo proceeds differently using
the relative trace formula)-proceed by expressing L (%,F ® x) as a sum
of squares of the x-th Fourier coefficient of a form of half-integral weight
which corresponds to F' as in Shimura [Shil], [Shi3]. We will exploit this
in the next section.

An application of (59) for the case K = Q and ¢ a Maass cusp form was
given recently in [Conrl]. By incorporating (for x quadratic) [ |L(3 +
it,x)|6 e~t°dt as part of a family involving L3 (3,6 ®x) it is shown that
for s fixed with R(s) = %

L(s,x) < q&*¢ . (59)
This gives the first improvement over (58) and is another pleasing example
of the use of GLy theory to understand GL; L-functions. It highlights our
point of view that L- functions be considered as a whole and especially
in {families. We add that the proof of the above appeals to bounds for
expdgnential sums in two variables over finite fields and in particular to
Deligne’s estimates which follow from the general GRH for varieties over
finite fields.

Another case where (58) has been established is the following [HK].
Let Fy, Fy, F3 be three forms on PGL(2)/K and L(s, F1 ® F» @ F3) the
L-function (28) which has degree eight. Then

L(L,Fi®@FRQF;) > 0. (60)

As in the previous example the proof of (60) involves expressing the
special value as a sum of squares of “periods” of F;FyF3. For analytic
applications one needs an entirely explicit relation between these special
values and periods. In his thesis [Wa] has proved such an explicit relation
for forms over Q. For example, for Maass forms of full level (i.e. for forms
on SL(2,Z)) as in (6) of section 1 he shows that

(%:¢1 ® ¢2 ® ¢3) _ ?r_4 / Bele i leitald)
H AL ) 216 |/sr(2,z)\H

wheré Ii is the completed L—functlon

A(s, 1 @ T2 ® p3)

o S+ €171 + €219 + €37
=t T 1 (0 L1 9428 69)
Ej=il

dxdy
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and ¢1, @2, @3 are normalized to have L2-norm equal to one on SL(2,Z)\H.
We will exploit this beautiful formula in the next section.

Of special interest in applications is to know how often a family of
L-functions vanish at a special point. The technique of mollification (cham-
pioned by Selberg in his proof that a positive proportion of the zeros of ((s)
lie on R(s) = ) has been successfully developed in the context of special
values of GLo formb (at least over Q) in [IwS] and [KowMV2]. We men-
tion some results in this direction. Let N be squarefree and fix k > 2.
Let H}(N) denote the set of holomorphic newforms F of weight k for
I'o(N), that is on the modular curve Xo(N). The sign e of the func-
tional equation for L(s, F) is 1. When N is large (which is our interest
here) roughly one half of the forms have each sign, the total number being
|HE(N)| ~ % @(N). If ep = —1 then L (3, F) = 0 and we are interested
in I’ (1, F). It is shown [[wS],{KowMV2] that NN

#{F e H(N);er =1,L (3, F) > (log )2}

. 1
A FF € Hi(N)jes = 1) > % B
; #{FEHE(N)EEF:—LLJ(w )7“}} 7 .
o e m e =-1] ¥ )
1
e N d_1 L(s,F) < 1.2. 64
T T ey et ) 4

We expect that the constants % and % in (62) and (63) can be replaced
by 1 while 1.2 in (64) can be replaced by . It is tantalizing that an
improvement in (62) of the ; to any ¢ > é, would resolve the Landau-
Siegel lacuna (section 2). The proof of this implication [IwS] exploits the
positivity (58).

Next (62) and (63) together with the results [KoL], [GrZ] towards BSC
mentioned in D of section 2 imply results on the ranks of the Mordell-
Weil groups of the Jacobian varieties Jo(N) = JAC(Xo(NV))/Q. Precisely
(62) yields a quotient (“winding quotient” [M]) Mo(NN) of Jo(N) over Q,
which has only finitely many rational points and has dimension which is
asymptotically at least ¢ dim Jo(N). Moreover, (63) implies that for large
N the rank of Jo(INV) is asymptotlca.lly at least " dim Jo (V). Finally, (64)
together with BSC imply that rank Jo(IV) < 1. 2 dlm Jo(N), for N large.

The application of nonvanishing to spectral deformation theory also
concerns Xo(N) = To(N)\H (for N fixed). Let ¢; (with eigenvalue A;)
be an orthonormal basis of Maass Hecke cusp forms and let Q be a fixed
holomorphic cusp form of weight ¥ > 1. Recently Luo [Lu] using the
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mollification methods as above has shown that
T #{ <A L(3+1ir5,Q 8 ¢5) #0} '>0 _
A=—00 #{)\J < )‘} _.
This has striking applications to the question of nonexistence of Maass cusp
forms for the general quotient I'\H, I' in the deformation (Teichmuller)
space of I'g(N), see [PhS] and [Wo).

(65)

6 Subconvexity and Equidistribution

Up to now the discussion has centered around L-functions only. In this
section we give two examples of applications to problems which at first
sight appear to have nothing to do with L-functions. First we describe
some results on the subconvexity problem B of section 2 for Euler products
of degree at least two. In these cases the coefficients of the L-functions are
arithmetical and inexplicit so that the methods of Weyl and Burgess don't
apply. Instead sophisticated new methods are needed (see section 7).

For L(s,F) with F' a cusp form on GL9/Q, subconvexity has been
established in all the parameter aspects (in s aspect in [Goo] and [Me]
while in the other parameters in the series of papers by Duke Friedlander
and Iwaniec). We concentrate on the twisting by Dirichlet characters. For
a fixed F' on GL(2)/Q a cuspidal eigenform (i.e. a holomorphic or Maass
form on I'g(N)\H) and x a (primitive) Dirichlet character, the following
subconvexity estimate (s is fixed with R(s) = :,13—) was established in [DuFI]:

L(s,F®X) < qi5*¢. (66)
Here q is the conductor of x and the convexity bound is ¢'/2.

The methods used to deal with F' on GL(2)/Q run into a number of
difficulties (not the least of which are the units) for number fields. Recently
the authors of [CogPS] have resolved these difficulties. Let K be a totally
real extension of Q. Fix a holomorphic Hilbert mmsdular cusp form of even
integral weight (i.e. a form on GLy/K). Lt x range over primitive ray
class characters of conductor Q (we have in mind N(Q) — oo). Then for s
fixed with R(s) = 1

L(s, F®x) < N(Q)io+e . (67)

Again the conductor of F ® x is N(Q)? so that the convexity bound for
(67) is N(Q)/2.

Some progress has also been made for Euler products (over Q) of higher

degree. Fix a holomorphic or Maass cusp form G for I'o(IN)\H ( so N is

fixed) and let F' vary over the holomorphic newforms for I'g(IN) of weight k.
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Then for s fixed with R(s) = %, the Rankin-Selberg L-functions L(s, F®G)
satisfy the subconvexity estimate [S2] (in the k-aspect)
L(s,F®G) < k&t = (68)

(here the “analytic” conductor is k* so that the convexity bound is k).

Also, for Rankin-Selberg L-functions, but in the level aspect, [KowMV1]
have established a subconvexity estimate. Precisely, fix G and let F va.rf\\__
over holomorphic newforms of the same weight as G, but of level N — oo. "\i,]
Then for s fixed with R(s) = ,

L(s,F®G) <« Niste (69)

(the convexity bound being N %).

We turn to the applications. The first is to Hilbert’s 11-th problem:
which integers are integrally represented by a given quadratic form over a
number field? The case of bina_rgr quadratic forms is equivalent to the theory
of relative quadratic extensions and their class groups and Hilbert class
fields. For forms in four or more variables the situation is quite different
and has been understood for some time. The case of three variables has
remained open and we describe below the essential part of its resolution.

Fix the number field K. The problem of which integers v in K are rep-
resented by the genus of a given integral quadratic form f(z1,z9,...2,) is
answered completely by Siegel’s mass formula [Si4] (which gives the number
of solutions in terms of local data, via the product of local masses). So if
there is one class in the genus of f the formula resolves the representation
problem for f. If n > 3 and f is indefinite at an archimedean place v of K
then Kneser’s [Kn] results on the class numbers and weights of the spinor
genus of f show that we are more or less in the one class in the genus situa-
tion. So we restrict to the difficult case when f(z1,... ,Z,) is definite over
a totally real field K. For four or more variables one can proceed either
by using analytic methods of Hilbert modular forms and in particular the
bounds towards GRC for GL2 /K (see (39) for weight two holomorphic cusp
forms) or by using algebraic methods ([HsKK], [C]), to prove the following:

) There is Cf (depending on f effectively) such that if v € Ok is (totally)
positive and N(v) > Cfy, then v is primitively represented by f iff it is
primitively represented locally at every completion v (the local conditions
are satisfied for all but finitely many primes and are easily checked).

For f a form in three variables the problem is much more difficult
and is resolved (at least for squarefree v) by the estimates (66) and (67).
The connection is as follows: using the relation between the special value
L (%,F@X), x> = 1 and the “y-th” Fourier coefficient of half-integral

{
B |
k- |

|
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cusp forms ([W], [Shi3]) mentioned in the last section, one finds that the
bound (66) for Q and (67) in general, give nontrivial bounds for the square-

free Fourier coefficients of half-integral weight holomorphic cusp forms..

Here and in other such problems, the convexity bound for the L-function
corresponds exactly to the “trivial” bound for the Fourier coefficients.
Moreover, the Lindeloff Hypothesis in the quadratic twisting x aspect, for
L (%, F® X): is equivalent (or determines) the half-integral weight GRC.
Put another way, a nontrivial bound for the squarefree Fourier coefficients
of a half-integral weight cusp form is equivalent to a subconvexity bound
for L (1, F ® x) while GRH for L(s, F®x) (via Lindelsff) implies the opti-
mal bound for these coefficients. In the case K = Q a nontrivial bound for
the Fourier coefficients of such forms was derived earlier in [Iwl] by a dif-
ferent method. For the case of Hilbert modular forms the passage via (67)
gives the first bounds towards the Ramanujan Conjectureg of half-integral
weight.

We return to the form f(z1, 2, z3). Its theta function 64(2) is a Hilbert
modular form of weight % whose coefficients give the number of representa-
tions by f. Write 8 = E + C where E is an Eisenstein series and C a cusp
form. The v-th coefficient of the Eisenstein series (a linear combination of
standard Eisenstein series) depends only on the genus of f and is a product
of local masses. It can be estimated from below by C.N(v)}/?~¢ (when v
is represented locally) where € > 0 and C; an ineffective positive constant
depending on €. It is ineffective since the lower bound appeals to Siegel’s
ineffective lower bound for L(1,x) (see (30)). Now the bound (67) leads
as above to the v-th coefficient of C being O(N (v)%) Thus we conclude:
if N(v) is sufficiently large and squarefree then v is represented integrally
iff it is represented locally. This yields a solution (albeit ineffective and
for squarefree ) of the representation problem for definite ternary forms.
Using the results of Schulze-Pillot [Sc| one can extend these results to all v
except perhaps for an explicit finite set of square classes (v = pt%,t > 0)
along which the local to global principle can fail.

Of special interest is the long studied problem of sums of squares in a
number field. Over Q as is well-known all positive numbers v are sums
of four squares (Lagrange) and such a v is a sum of three squares iff
v # 4%(8b + 7) (Legendre), that is iff there are no local obstructions. That
the answers for these are so neat is a consequence of 3:% + :1:% + w% and
:r:rf - 3:% - 5':% + z2 having one class in their genus. This happens for very
few totally real fields. In fact Siegel [Si3] shows that Q(v/5) is the only

=§=.._4'/
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field for which every totally positive number is a sum of three squares. In
general Siegel [Sil] showed that every sufficiently large (in norm) totally
positive v is a sum of five squares and the result mentioned above settles
four squares similarly. For three‘squares (67) implies that there is an in-
effective Cx depending on K such that if N(v) > Ck and v is squarefree
and totally positive, -then v is a sum of three squares iff it is so locally
(the local condition only involves the primes dividing 2 and for many fields
K there are no such local obstructions). Note these results are ones of
equidistribution. Indeed for N(v) large and v satisfying the local solvabil-
ity conditions, v is represented by the genus of f in roughly N(v)/? ways.
The subconvexity estimate ensures that each class in the genus represents
v roughly equally often. We mention that Linnik [Li2] gave an interest-
ing ergodic theoretic approach to equidistribution problems associated to
ternary quadratic forms which yield some partial results.

We end this part of the discussion with some general comments about
integer solutions to Diophantine equations. The problem of establishing the
existence of any or many such solutions for equations for which solutions
are expected, has proven formidable. Success has been limited to varieties
which are homogeneous (such as the case of quadrics which were discussed
above) for an action of an algebraic group, or to varieties defined by many
variables compared to the degree and number of equations. For the latter
the circle method of Hardy and Littlewood can be applied. An example
of the last is due to Heath-Brown [He] who showed that any nonsingular
cubic form in 10-variables over Q has infinitely many rational (projective)
points (i.e. for f(z) = 0). New methods for exhibiting rational points on
varieties would be very welcome.

The second equidistribution problem comes from “Quantum Chaos”.
One of the central problems in this subject concerns the behavior of indi-
vidual eigenstates of the quantization of classically chaotic systems in the
semi-classical limit. This problem cannot at present be addressed with the
techniques of analysis or partial differential equations. To gain insight we
therefore specialize to systems of classical mechanics defined by the geodesic
motion on a hyperbolic manifold (compact or finite volume). These are well
known examples of chaotic Hamiltonian dynamics. We even specialize to
such manifolds of arithmetic type. For these it turns out that the questions
that we have been discussing about general L-functions lie at the heart of
the problem. Consider the case of a hyperbolic such surface X = I'\H.
A quantization of the geodesic motion on the cotangent space T*(X), is
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the Laplacian A. Let dv(z) denote the Riemannian measure on X. Per-
haps the most fundamental problem concerns the behavior as X — oo of
the probability measures pg = |¢(z)|?dv(z) on X, where Ag + Ap = 0; -
Jx |¢(z)|? dv(z) = 1. These measures have the well-known interpretation
of being the probability distribution in configuration space of a particle
in eigenstate ¢. These ¢’s are the familiar Maass forms, especially if we
restrict to Xo(N) = T'o(IV)\H, N fixed (one can similarly analyze the com-
pact surfaces arising as quotients of H by units in quaternion groups). We
consider the question of the behavior of these measures u4 for Maass forms
¢ which are also eigenforms for the Hecke operators. Since the multiplicity
of cusp forms with eigenvalue ) is expected to be very small, the latter as-
sumption is probably not necessary, but we will certainly exploit it. Once
we are assuming that ¢ is a Hecke eigenform we can also allow holomorphic
eigenforms as well. We formulate the problem precisely for, these modular
forms: Fix N and Xo(N) = T'g(N)\H. Each of the spaces of holomorphic
newforms of weight k with given Hecke eigenvalues, and Maass newforms
with given Hecke eigenvalues, are one dimensional. So there are unique
normalizations so that the following are probability measures on Xo(N):

pr = y* | f(2)| du(z)
py = |6(2)] dv(2) ,

where dv(z) = y~2dzdy. We have the following Equidistribution of Mass
Conjecture [RudS2]:

(70)

im pf = d (71)
k—o0
im pgy = db, (72)
A—r00

where div = dv/Vol (Xo(V)).
Comments:

(1) This conjecture looks reasonable, but at the time it was made it
went against certain beliefs (i.e. that eigenstates might concentrate
on periodic geodesics for example). The conjecture is made more
generally for compact manifolds of negative curvature, yet the only
theoretical evidence is in the case of arithmetic manifolds (there is
some numerical evidence as well [Hej], [AuS]).

(2) In the holomorphic case the condition that f be a Hecke eigenform
is essential. For example the masses uar of the holomorphic forms
(A(2))* of weight 12k on Xo(1) certainly don’t become equidistributed.
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(3) The Conjecture (71), if true, has the pleasant corollary that the ze-
ros in Xo(N) of such an f(z) (there are about k of them) become
equidistributed with respect to d as k — oo {Rud].

The connection between Conjectures (71), (72) and L-functions is (61)
and its generalizations. GRH for the triple product L-function L(s, F ®
F ® @) and even subconvexity in the k or A aspects (with s = %) already
imply these conjectures! To see this, consider the case of GLy(Z)\H. The
equidistribution (72) in this case is equivalent to

gl = / do (2)|ér(2) Py~ dedy — 0 (73)
SLQ(Z]\H

as A — oo, for any fixed Maass cusp form ¢ (one needs also to consider
the continuous spectrum, that is the unitary Eisenstein series in place of
@0, but these are slightly easier to handle so we ignore them here). Now
according to (61) the right hand side of (73) is up to gamma factors equal
to L(L, ) ® ¢r ® ¢o)/L%(1,sym?¢,)L(1,sym>¢p). There is no problem
dealing with L(1,sym?2¢,) since it is bounded below by A€ and above by
X¢ for any € > 0, and effectively so [Iw2], [HoL]. A simple analysis with
Stirling formula then shows that a bound of O(A~?) for the right hand side
in (73) is equivalent to the subconvexity estimate in A;

L(3ér®¢r@¢0) < A% (74)
Unfortunately we have not been able to establish (74) in general. The L-
function L(s, ¢x ® ¢x ® ¢g) factors into L(s,sym?dx ® ¢o) L(s, do). So the
key case is subconvexity for L (%, sym?¢y ® @0) which is an Euler product
of degree six. For the special case of “CM forms” ¢y or f on I'g(V)\H (see
(9) for example) this Euler product factors further into a Rankin Selberg
L-function of degree four times L(s, ¢p) which is of degree two. So in this
case the subconvexity estimate (68) (and its A analogue) gives a proof of
(71) and (72). That is (71) and (72) are true for CM forms.

These two applications show, of course, the power of GRH, however they
also show that in certain problems a complete resolution can be achieved
by finessing GRH and establishing the more approachable subconvexity
estimate.

7 GL(2) Tools

We give some flavor of some of the modern techniques that have been suc-
cessful in studying L-functions by indicating how subconvexity estimates
are proven. Suppose for example that we want to estimate L (1 F), where

a3
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F' is a self-dual cusp form on GL,,(Ag). Using the series representation
(3) together with standard arguments involving contour shifts and the func-
tional equations, we obtain

CF({I) (NG) i._'._.'-'l
L(3F) =2 o e 75
(2 ) (HEZD m oy ’ ( )
where W (t) is a smooth function which is essentially independent of F and
is rapidly decreasing as t — o0 and X = /C(F'), C(F) being the analytic
conductor (31) (here C(F') denotes C(F,0) from (31)). The coefficients
cr(a) are known in some cases to satisfy the GRC so that

cr(a) <(Na)s . (76)
€
In any case for F' on GL,(Ax) we have (76) on average ([Iw2], [Mo])
S ler(@)? < Y(CE)E. (1)
Na<y ' =
From (75) and (77) the “trivial” convexity bound
L(5.F) < (€))7 (78)
€:

follows. To go beyond (78) one needs to exhibit some cancellation in the
sum (75). We can no longer appeal to any functional equations since these
have already been exploited in deriving (75) (that is if we “dualize” using
the functional equation we arrive back at a similar sum). Also to directly
estimate (75) is problematic since one knows very little about cg(a). We
proceed according to the theme of this account and embed F' in a family
F (sometimes even fake families!). Finding suitable families is part of the
problem. The idea is to consider averages

SF) =Y LGP (79)

FeF

The conductors C(F'), F' € F are all assumed to be the same (or nearly
the same) size. In some cases one might take higher powers of L in (79)
(the choice here of high moments rather than something like high tensor
powers as in (43) and in section 3 is no doubt a poor one). Now GRH (via
Lindeldff) asserts that L(3, F) <. (C(F))® so we can expect that

S(F) < |FI(C(Fy))° - (80)
Here Fj is our particular F € F which we seek to bound. Using orthogo-

nality and completeness of the family F, (80) can often be established. By
positivity (an apparently precious tool) we have from (80).

L(3, Fo) < |FI'/%(C(Fy))* - (81)
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So if the family F is sufficiently small (precisely |F| < (C(F))/?7%) and at
the same time rich enough to establish (80), then (81) will yield a subconvex
bound. In practice when this method succeeds one finds that one can
establish (80) with |F| < (C (F))*?2 in a relatively straight-forward analysis
involving summing over F and analyzing only the “diagonal” contribution.
This however simply recovers the convexity bound (78) and the heart of
the problem is to decrease somewhat the size of |[F|. This is done at the
expense of off-diagonal terms now appearing in the analysis. Cancellations
in these new sums has to be gotten from some new input. In some problems
the decrease in size of |F| can be achieved analytically (e.g. in the case of
(68), F ® G with G fixed on GL2/Q, F varying over Fx the holomorphic
forms of fixed level and weight % < k < 2K. Shortening here can be done
by restricting K — H < k < K+ H with H = K1-¢.6 > 0). In many
interesting examples (e.g. (66) and (67)) shortening cannot be achieved
by such a device. One appeals to a technique known as “amplification”
which arithmetically shortens F by introducing weights. The method was
introduced in [FI] in connection with estimating L(s, x), however its true
power has been shown in the more general setting of L(s, F')s. Roughly the
idea is as follows: Let M be a small parameter (M = X?,§ small) and let
a(b) with Nb < M, be complex numbers of modulus at most 1. Consider
the amplified sums

2
2 LS
A= 13" a®)er®)| [L(5F)| - (82)
FeF 'Nb<M
This time we shoot for the expected bound
A< M|F|IX*. (83)
€

In establishing (83) one faces off-diagonal terms and if these can be suc-
cessfully estimated then choosing a(b) = cp,(b), i.e. amplifying Fy, we

get
2

LGB | D len®) | <[FIMXE. (84)
Nb<M
This implies a subconvex bound for L (1, Fp).

So the key features are the family and dealing with the off-diagonal
sums. For example for (66) the family used is L(s, F ®x) with x a Dirichlet
character of conductor g. For (67) one cannot use ray class characters of
conductor Q since there may be very few of these (such characters have to
be trivial on the units). One proceeds with nonnegative expressions which

make sense for all numerical characters of (Ox/Q)*, but which have no
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meaning in terms of L-functions (“fake families”). In both (66) and (67)

amplification is used. The key off-diagonal sums that need to be treated

are of type . :
> a@a@w (S w(E2) e, @
va—upf=h

where v and p are fixed small integers in K, h # 0 and G is a smooth
function depending on the arguments of o and [ in the embeddings of K
into R. Over Q a reasonably elementary treatment of these sums is given
in [DuF1I] (it appeals among other things to Weil’s bounds on Kloosteman
sums - see below). In general, one uses the full Maass form spectral theory
for GLy(Ag) and a suitable theory of Poincaré series. Crucial ingredients
are the GRC bounds (41) (42) as well as the spectral analysis method in
[S1].

For the case of L(s, F ® G) and the estimate (69), where F' varies over
holomorphic cusp forms of a fixed weight for I'g(N) and N — oo (all over
Q), the averaging is carried out by means of the Petersson Formula [P]. Let
Bi(N) be an orthogonal basis for Sg(N) (the space of holomorphic cusp
forms of weight k for T'g(V)). Normalize the Fourier coefficients of ap(n)
for F € Si(N) by setting

2 4o(n
I‘(k—l))” (af( ) (86)

Then the formula reads that for m,n > 1

S () pr(m)

FEB,(N)

: S(m,n,c) 4m\/mn

= 2 s Lkl e 2

= 6(m,n) + 2mi* > == Jk ( ; . (87)
c=0(N) .

Here §(m,n) is 0 if m # n and is 1 if m = n, Ji(z) is the Bessel function

and S(m,n, c¢) is the Kloosterman sum

S(m,n,c) = § Q(M) _ (88)
i
x mode
zE=1(c)

Thus (87) converts averages of this family to sums of exponential sums over
finite fields and allows one to analyze averages over the family of L(s, F'),
for F' € Sg(IN). The Petersson formula (87) and its generalizations due to
Kuznetsov [Ku] are important tools in the subject. They lie at the bottom
of many of the applications of the GL3/Q analytic theory. We mention
one other such application, that is the Density Theorem for exceptional
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eigenvalues. Recall the Selberg Conjecture (36) which is a special case of
GRC. In [Iw2] the following Density Theorem is proven; for any r with
0<r< %} . o

#{)\ <i-r%Xan eigenval{n-a' of Ao £ (FU(N)\]HI)}

< [Vol(rg(N)\H)]l"Mc . (89)

The proof uses the generalizations of (87) as well as Weil's bound [We2] for
Kloosterman sums
|S(m,n,p)| < 2¢p (90)
if p does not divide m or n ( (90) is a consequence of the function field RH
for curves). A point to note about (89) is the exponent 1 — 4r, which in
particular implies Selberg’s well-known bound
A (To(N)\H) > 3 . (91)
An exponent of 1—2r in (89) is easily deduced from the Selberg Trace For-
mula. Just as with the Density theorems for GL(1)/Q mentioned in section
4, (89) can sometimes be used as a substitute for (36) in applications.
Formula (87) and its generalizations are also useful when applied in the
other direction, that is to capture cancellations in sums of Kloosterman
sums (the Linnik-Selberg Conjecture [Li3], [Se]). Kuznetsov [Ku| used his
formula and the fact that A;(SL(2,Z)\H) > %, to show that for m,n fixed

T @ i (92)
c<X
Note that Weil’s bound (which is sharp in ¢ for m,n fixed [Mi]) gives
Oc(X1F€) for the sum in (92). So indeed (92) asserts cancellations in the

sums of these sums. The development (42) in as much as it goes beyond
(91) (i.e. Ay > 2L), shows that there is cancellation in the sums (92) for ¢

100
in an arithmetic progression. Fix m,n, N and a, then
S(m,n,c 9
> IBRG & giite (93)
= Ve p:
c=a(q)

This concludes our brief discussion of GLs tools. Also fundamental is
the Selberg Trace Formula which we have mentioned a few times in passing.
So at least over Q and for GL», the analytic theory can be considered to
be in quite good shape, much like GL,/Q (see section 4) was at the end of
the 70’s.

The trace formula has been successfully extended to GL, as well as
other groups by Arthur [A]. His form is very suitable for comparisons of
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the geometric sides of the trace formula for different groups. This implies
on the spectral side some striking conjectured “liftings” of automorphic
forms between various groups. The analytic type of spectral and trace
formula that have been developed for GL, with applications such as those
of this section in mind, have met only with mild success. For now this can
be viewed as a challenging new direction which might provide important
new information on the basic problems. For example we expect that such
developments are needed to resolve the basic problem B in general.

8 Symmetry and Attacks on GRH

In the previous sections we described progress made not by climbing the
summit (GRH), but by going around it. In this section we discuss some
structural phenomenon and insights that might play a role in the accent.
As we have mentioned a number of times, families of L-functions play
a central role even (or especially) when examining the deeper aspects of
a given L-function. One might ask whether something like a monodromy
group of a family of L-functions (section 3) exists in the number field set-
ting. One way to detect such symmetry groups for families is to look
at the local distribution of zeros of L-functions. For a fixed L-function
L(s,F), F cuspidal on GL,,(Ag) (note here we demand over Q so that
these L-functions do not factor further) one can examine the high zeros
pr = & + iy (for this part of the discussion we assume GRH). One can
show that
mlogT
27
Hence, in studying the local distribution of spacings between the zeros one
considers the unfolded numbers %ﬁl’i vF, whose mean spacing is 1. Re-
markably these follow the local scaled spacing laws for eigenvalues of large
unitary matrices, that is the CUE (Circular Unitary Ensemble) laws from
random matrix theory (at least in leading order asymptotics). This was
proven analytically in restricted ranges for the distribution of pairs of ze-
ros (“pair correlation”) in [Mon| and for higher correlations in [RudS1].
Moreover, extensive numerical experiments [O], [Rum], [Ru] confirm this
phenomenon for various GL;/Q and GLy/Q L-functions. In [KS] an ana-
logue of this phenomenon about local spacings of zeros is proven for the
function field zeta functions of section 3. Moreover, the source of this uni-
versal behavior is identified. While in this case the spectral interpretation
of the zeros is through the eigenvalues of Frobenius on cohomology groups,

Np(T) = #{0 < yp < T} ~

T (94)
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the local distribution of zeros is governed by the scaling limits of the eigen-
value distributions of the monodromy_groups of families of L-functions.
The calculations of these scaling limits appeals to methods from random
matrix theory and these limits, at‘least for monodromies which come from
the classical groups, are universally the CUE distributions. In the function
field case one can also show [KS] that the low-lying zeros (i.e. zeros 5 +iyp
with yr near zero) as F runs over a family of L-functions, follow the laws
governed by the corresponding scaling limit of monodromy groups of the
family. This time the distributions are not universal and depend on the
monodromy, or the symmetry of the family. Again, it is remarkable that
this phenomenon of distribution of low-lying zeros persists for L-functions
L(s,F) for F in suitable families [KS]. This has been confirmed (again
in restricted but wider ranges than for the high zeros) analytically for a
number of families [IwLS], with different symmetry types. It has also been
confirmed numerically in [Ru]. These distributions attached to each family
and its symmetry also explain the specific fractions that appear in (62) and
(63) (see also [So]). In (62) the symmetry is an orthogonal one SO(even)
while for (63) it is SO(odd) (it is worth noting that subfamilies are inde-
pendent entities and may have different symmetry types). Random matrix
theory via these symmetries has recently been used to predict the asymp-
totics of all moments of L-functions on the line % + ¢t and for suitable
families L(3, F), F € F [ConrF], [KeS).

The results above about the distribution of zeros give ample evidence
for there being a natural spectral interpretation of the zeros of L(s, F') as
well as the existence of a glue that marries different L-functions. However,
these insights offer no real clue as to where such a spectral interpretation,
or such symmetry groups may be found. There have been some interest-
ing attempts to find nontautological spectral interpretations of the zeros of
a given L-function such as ((s). In particular Connes [Con| suggests the
singular space X = K*\Ag (P. Cohen has also pointed to this space and
its intimate connection to the zeros of L-functions). The idele class group
Jrx = K*\A¥ acts on X by multiplication z — yz, z € X,y € Jx. He
shows that with a suitable interpretation (via regularization) and assum-
ing GRH, the decomposition of this action of multiplication over addition
into irreducibles of Jx, yields exactly all the zeros of A(s, F') where F' is
a GL1(Ag) automorphic form. It turns out that this is closely connected
to the explicit formula of Riemann which relates sums over zeros of an L-
function to sums over primes and their powers, of the coefficients of the
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L-function. Connes analysis gives a group action interpretation of the ex-
plicit formula. Weil [We3] had previously pointed to an arrangement of the
terms in the explicit formula in attempting to interpret them in sugges-
tive ways (so that they look like various key p__l_ayei*'s in the function field
setting). We note that anyway the explicit formula is a basic tool which
is used analytically. For example, it is used directly in the analysis above
concerning the distribution of the zeros. It is also used indirectly in the
zero density theorems mentioned in section 4.

Whether these interpretations of the zeros or the explicit formula can
be of any use in further understanding the zeros or attacking RH is un-
clear. Right now the use of families as a tool to study the zeros has been
the most successful. We believe that families and understanding further
what quantities to average as well as positivity will continue to play a cen-
tral role perhaps even in the big ascent. After all, it is this analysis that
“puts the zeros on the line %” in the general case of varieties over finite
fields. One can imagine a scenario, a short cut, where GRH is established
via families before a suitable spectral interpretation is given (for example
fictitious zeros off the line might be ruled out spectrally before the true ze-
ros are spectrally understood). More likely however is that suitable spaces
and spectral interpretations of the zeros will be given and their analysis
through families lead to the complete understanding (i.e. GRH, distribu-
tion of zeros ...). Anyway, all this is wild speculation and this is no doubt
a good place to stop.
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