
Added by Derek Robinson, November 2017. Chapter II of Langlands thesis established
the density of the analytic elements in any continuous representation T of a Lie group on a
Banach space X. In this note we explain how the arguments and estimates used to establish
the density provided the foundation for a much deeper understanding of the differential
structure of the group representations and eventually a productive approach to the analysis
of diffusion processes on Lie groups.

Let B and U(t) denote the operator and holomorphic semigroup of Theorem 8. One may
normalize B, by the addition of a multiple of the identity, to ensure that U(t) is uniformly
bounded, i.e. ∥U(t)∥ ⩽ M for all t > 0. Then the fractional powers Bγ, γ ∈ ⟨0, 1⟩, are well
defined. Let Xa(B) denote the subspace of analytic elements of B, the x ∈ W∞ such that
∥Bnx∥ ⩽ bnn! for all positive integers n. Similarly let Xa(B

1/m) denote the analytic elements
of B1/m. These can be identified as the x ∈ W∞ such that ∥Bnx∥ ⩽ cn(nm)!. Finally let
Xa(T ) denote the analytic elements of the representation T , i.e. the x ∈ W∞ such that
∥x∥n ⩽ ann!. Then the final characterization of the analytic elements is given by

Xa(T ) = Xa(B
1/m) (∗)

for all continuous representations of the group and all the strongly ellipticm-th order operators.
Since Xa(B

1/m) is dense in X, by general semigroup theory, this result incorporates the
density of Xa(T ). Now we outline a path to establishing (∗).

If x ∈ W∞ then x ∈ D(Bn) and ∥Bnx∥ ⩽ cn∥x∥mn for all n ⩾ 1 with c > 0. Therefore if
x ∈ Xa(T ) then ∥Bnx∥ ⩽ (ac)n(mn)! and x ∈ Xa(B

1/m). Hence Xa(T ) ⊆ Xa(B
1/m). But the

converse inclusion is much more difficult to establish. First, Langlands parametrix estimates
establish that the resolvent of B exists and ∥(λ − B)−1x∥ ⩽ Nλ−1∥x∥ for all large λ > 0.
A slight elaboration of these arguments gives bounds ∥Aα(λ − B)−1x∥ ⩽ N ′λ−1+|α|/m∥x∥
for all large λ > 0 whenever |α| ⩽ m − 1. But since the semigroup U is holomorphic
one has ∥BU(t)∥ ⩽ b t−1 for all t ∈ ⟨0, 1]. Combining these estimates gives ∥AαU(t)∥ ⩽
a(b + 1)t−|α|/m for all t ∈ ⟨0, 1] and |α| ⩽ m − 1. Then by an induction argument one
concludes that ∥U(t)x∥k ⩽ a bkk!t−k/m∥x∥ for all x ∈ X, t ∈ ⟨0, 1] and k ⩾ 1. In particular
one has a straightforward verification of Langlands conclusion that U(t)X ⊆ Xa(T ). Since
Xa(B) =

⋃
t>0 U(t)X one then deduces that Xa(B) ⊆ Xa(T ).

The possibility of the stronger inclusion Xa(B
1/m) ⊆ Xa(T ) was suggested by Roe

Goodman (J. Funct. Anal. 3 (1969) 246–264). He established this result with B a Laplacian,
i.e. a sum of squares, in any unitary representation. Ed Nelson then observed that the result
extended to a large class of representations satisfying a general regularity property. Nelson’s
argument was given in an appendix to Goodman’s paper. It is a modification of his earlier
result on analytic domination (Ann. Math. 3 (1959) 572–615).

First D(B) ⊆ (λ − B)−1X ⊆ Wm−1 for all large λ. Therefore Wm ⊆ D(B) ⊆ Wm−1.
But it is not always true that D(B) = Wm. This is the case for unitary representations
and the Goodman–Nelson arguments extend to all Banach space representations for which
it is valid, specifically for all representations such that ∥x∥m ⩽ a (∥Bx∥ + ∥x∥) for all
x ∈ W∞. The key observation is that ∥(adA)α(B)x∥ ⩽ b|α|∥x∥m ⩽ a b|α|(∥Bx∥+ ∥x∥) for all
α since (adAi)(B) = AiB −BAi is m-th order, i.e. the adjoint action does not change the
order. Then it follows by a modification of the analytic domination result of Nelson that if
∥Bnx∥ ⩽ cn(nm)! for all n ⩾ 1 then x ∈ Xa(T ), i.e. Xa(B

1/m) ⊆ Xa(T ).
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Secondly, if D(B) ̸= Wm then the foregoing reasoning does not apply. Nevertheless
(∗) follows by interpolation arguments. First the spaces Wk are invariant under the group
representation T and all the previous considerations apply to Wk and the representation
T |Wk

, which we also denote by T . Then it follows readily that Xa(T ) = Xk,a(T ) where Xk,a

denotes the analytic elements of T on Wk. Hence if Wγ , γ ∈ ⟨0, 1⟩, are the real interpolation
spaces between X and W1 then each Wγ is T -invariant and W1 ⊆ Wγ ⊆ X. It follows
that Xa(T ) = Xγ,a(T ) with Xγ,a the analytic elements of T on Xγ. But one has bounds
c ∥B1/mx∥ ⩽ ∥B1/mx∥γ ⩽ C ∥B1/mx∥1 where B now is the common notation for the elliptic
operator on X, Wγ and W1. Moreover, ∥x∥1 ⩽ a (∥Bx∥ + ∥x∥) by the estimates on the
resolvent of B. Therefore c ∥B1/mx∥ ⩽ ∥B1/mx∥γ ⩽ aC (∥B(m+1)/mx∥ + ∥B1/mx∥). Hence
Xa(B

1/m) = Xγ,a(B
1/m). Combining these conclusions one observes that (∗) is valid on X if

and only if it is valid on Xγ . Therefore the problem of verifying (∗) is replaced by the problem
of establishing that D(B) = Wγ,m. But this follows by an extension of the standard theory
of interpolation spaces. The argument, which is quite circuitous, exploits various equivalent
identifications of the spaces in terms of the group representation and the semigroup. Full
details of all these arguments can be found in Chapters I–II of Elliptic Operators and Lie
Groups, Oxford Univ. Press, 1991.

Finally Langlands proved that the action of U is given by a semigroup kernel K which is
integrable with respect to Haar measure. This result was central to his proof of the density
of Xa(T ) in contrast to the arguments outlined above which are independent of the kernel.
Further analysis of the kernel, notably with a Lie group version of the Nash inequalities,
establish that K is of ‘Gaussian’ type but that is another story; a tortuous tale.
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