To: Zeev Rudnick

Dear Zeev,
Your talk in Park City led me to revisit the topic of the number variance for the eigenvalues of $S L(2, \mathbb{Z}) \backslash \mathbb{H}$. In my opinion the critical problem, at least for smooth counting, is to analyze this quantity in intervals $\left[\lambda-\frac{H}{2}, \lambda+\frac{H}{2}\right]$ with H as small as possible. In particular, the Poissonian behavior probably kicks in for $H=o(\sqrt{\lambda} / \log \lambda)$. In any event the smaller that one can take H the more information can be gleaned about the multiplicities and spacings between the eigenvalues.

The problem appears to be a very difficult one. An examination of Chapter 2 of Hejhal $[\mathrm{H}]$, especially the discussion about $S(T)$, confirms this. Rather than the standard approach to these problems via the trace formula, I describe below how the Petersson-Kuznietzov formula allows one to see a little further. Roughly speaking, it allows one to halve the interval width that can be analyzed. This is very modest progress but it allows for a small window in which the number variance is shown to be Poissonian. Interestingly, in this form the large number variance is not a consequence of high multiplicities of lengths but is rather a consequence of the analytic aspects of the formula. This approach also makes transparent the Poissonian nature of the number variance.

Let, at first, X_{Γ} be any compact quotient $\Gamma \backslash \mathbb{H}$ of the upper half plane. Denote by $\lambda_{\phi}=\frac{1}{4}+t_{\phi}^{2}$ the eigenvalue of the eigenfunction ϕ. Fix h an even test function in $\mathcal{S}(\mathbb{R})$ with support $\hat{h} \subset(-1,1)$ and $\int_{-\infty}^{\infty} h(x) d x=1$. Here

$$
\begin{equation*}
\hat{h}(\xi)=\int_{-\infty}^{\infty} h(x) e^{-2 \pi i x \xi} d x \tag{1}
\end{equation*}
$$

For t large and $1 \ll L \ll t^{1-\epsilon}$ set

$$
\begin{equation*}
N_{h}(t, L)=\sum_{\phi} h\left(\left(t_{\phi}-t\right) L\right) . \tag{2}
\end{equation*}
$$

These are your "smooth" counting functions of eigenvalues t_{ϕ} near t in a window of size $t / L[\mathrm{R}]$. The expected number $\widetilde{N}_{h}(t, L)$ is given by the identity term in the trace formula and it satisfies

$$
\begin{equation*}
\widetilde{N}_{h}(t, L) \sim \frac{V o l(X)}{4 \pi} \frac{t}{L} \text { as } t \longrightarrow \infty . \tag{3}
\end{equation*}
$$

Applying the trace formula to the sum in (2) and estimating trivially the contribution of the conjugacy classes using the Prime Geodesic Theorem yields:

$$
\begin{equation*}
N_{h}(t, L) \sim \widetilde{N}_{h}(t, L) \tag{4}
\end{equation*}
$$

as long as $L \leq \frac{\log t}{\pi}$.
While I expect that (4) holds with L as large as $t^{1 / 2-\epsilon}$, I don't see how to extend the range in (4). For the case of $\Gamma=S L(2, \mathbb{Z})$ the range can be doubled - see below.

If in (2) we choose h as above and also satisfying $h(x) \geq 0$, we obtain a bound for the multiplicity, $m_{X}(t)$, of the eigenvalue $t^{2}+\frac{1}{4}$:

$$
\begin{equation*}
m_{X}(t):=\sum_{t_{\phi}=t} 1 \leq \frac{\operatorname{Vol}(X) t}{h(0) 4 \log t}(1+o(1)) \tag{5}
\end{equation*}
$$

Optimizing the choice of such h, (see [I-L-S] page 115) yields

$$
\begin{equation*}
t \xrightarrow{\lim _{\longrightarrow}} \frac{m_{X}(t) \log t}{t} \leq \frac{\operatorname{Vol}(X)}{4} \tag{6}
\end{equation*}
$$

In my youth I would have been impressed with a bound of $m_{X}(t)=O\left(t^{1-\delta}\right)$ for some $\delta>0$. Today a bound $m_{X}(t)=o\left(\frac{t}{\log t}\right)$ looks pretty good. In any case (6) is the best I know for a general hyperbolic surface.

The number variance (smoothed) is defined to be

$$
\begin{equation*}
\sum(T, L):=\frac{1}{T} \int_{T}^{2 T}\left(N_{h}-\tilde{N}_{h}\right)^{2} d t \tag{7}
\end{equation*}
$$

The Poisson model for the t_{ϕ} 's (that is to say that they are statistically independent) predicts that (we assume that $L(t) \longrightarrow \infty$ with t)

$$
\begin{equation*}
\sum(T, L) \sim\left(\int_{-\infty}^{\infty} h^{2}(y) d y\right) \frac{\operatorname{Vol}(X)}{4 \pi} \frac{1}{T} \int_{T}^{2 T}\left(\frac{t}{L}\right) d t \tag{8}
\end{equation*}
$$

We turn to $S L(2, \mathbb{Z})$ in which case the ϕ 's are taken to be Hecke-Maass cusp forms. In this case you show $[\mathrm{R}]$ that if $L=L(T)=o(\log T)$ then

$$
\begin{equation*}
\sum(T, L) \sim \frac{K}{2 \pi L} \int_{0}^{\infty}|\hat{h}(u)|^{2} e^{\pi L u} d u, \quad \text { with } \quad K=1.328 \ldots \tag{9}
\end{equation*}
$$

While \sum is growing with T it is still much smaller (in this range) than Poissonian. One can extend (9) to the range $L \leq \frac{\log T}{\pi}$. In fact, Luo and I [L-S] (see also [G-J-S] for a similar result for an arithmetic element in $\mathbb{C}[S U(2)])$ work a little more to show that \sum (unsmoothed)* is bounded below by $\frac{T}{L^{2}}$ in this range. This is off by a factor of L from Poissonian.

To see more of the key features of the $S L_{2}(\mathbb{Z})$ spectrum we need to increase L beyond $\frac{\log t}{\pi}$. This can be done using the Kuznietzov Formula. To this end introduce the weights

$$
\begin{equation*}
\left|\nu_{\phi}\right|^{2}=\frac{2 \pi}{L\left(1, \operatorname{sym}^{2} \phi\right)} \tag{10}
\end{equation*}
$$

They vary mildly with ϕ;

$$
\begin{equation*}
t_{\phi}^{-\epsilon} \underset{\epsilon}{\ll}\left|\nu_{\phi}\right|^{2} \ll \log t_{\phi} \tag{11}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\text { Average }_{\phi}\left(\left|\nu_{\phi}\right|^{2}\right)=\frac{4}{\operatorname{Vol}(X)}=\frac{12}{\pi} \tag{12}
\end{equation*}
$$

One can compute Average ${ }_{\phi}\left(\left|\nu_{\phi}\right|^{4}\right)$ by the methods in [L1] and one finds that

$$
\begin{equation*}
\text { Average }_{\phi}\left(\left|\nu_{\phi}\right|^{4}\right)=\frac{24}{\zeta(3)} \tag{13}
\end{equation*}
$$

The Kuznietzov Formula (see [I] page 140) reads (for $n, m \geq 1$).

$$
\begin{align*}
& \sum_{\phi} h\left(t_{\phi}\right)\left|\nu_{\phi}\right|^{2} \lambda_{\phi}(n) \overline{\lambda_{\phi}(m)}+c t s \\
& =\frac{\delta_{m, n}}{\pi} \int_{-\infty}^{\infty} t \tanh (\pi t) h(t) d t \\
& \quad+\sum_{c=1}^{\infty} \frac{S(m, n, c)}{c} h^{+}\left(\frac{4 \pi \sqrt{m n}}{c}\right) . \tag{14}
\end{align*}
$$

Here $\quad h^{+}(x)=2 i \int_{-\infty}^{\infty} J_{2 i t}(x) \frac{h(t) t}{\cosh \pi t} d t, S(m, n, c)$ is the Kloosterman sum, $\lambda_{\phi}(n)$ are normalized Hecke eigenvalues of ϕ and $c t s$ is the continuous spectrum, which will be of no significance in what we do.

Consider the weighted number counting functions:

$$
\begin{equation*}
M_{h}(t, L):=\sum_{\phi} h\left(\left(t_{\phi}-t\right) L\right)\left|\nu_{\phi}\right|^{2} . \tag{15}
\end{equation*}
$$

[^0]According to (14) the expected value \widetilde{M}, of M satisfies

$$
\begin{equation*}
\widetilde{M}_{h}(t, L) \sim \frac{t}{\pi L} \tag{16}
\end{equation*}
$$

(our assumptions on h are the same as those that we imposed on $N_{h}(t, L)$). Using asymptotic expansions of $J_{2 i t}(x)$ for t large and x small we obtain to leading order that for $h_{t}(x)=h(L(x-t))$,

$$
\begin{equation*}
h_{t}^{+}(x) \sim \frac{t^{1 / 2}}{L} \Im\left\{(2 i)^{1 / 2}\left(\frac{x e}{4 \pi t}\right)^{2 i t} \hat{h}\left(\frac{-\log \frac{x e}{4 t}}{\pi L}\right)\right\} . \tag{17}
\end{equation*}
$$

Hence (essentially) we have

$$
\begin{equation*}
M_{h}(t, L)-\widetilde{M}_{h}(t, L)=\frac{t^{1 / 2}}{L} \Im\left\{(2 i)^{1 / 2} \sum_{c=1}^{\infty} \frac{S(1,1, c)}{c}\left(\frac{e}{c t}\right)^{2 i t} \hat{h}\left(\frac{\log \frac{c t}{\pi e}}{\pi L}\right)\right\} \tag{18}
\end{equation*}
$$

From (18) we first note that if $L \leq \frac{\log t}{\pi}$ (ie the range (4)) then the right hand side of (18) is zero. So in this range M_{h} does not fluctuate. Moreover, as soon as $L>\frac{\log t}{\pi}$ there is immediately a $\frac{t^{1 / 2}}{L}$ fluctuation. Thus the large (Poisson like) fluctuations come from the $\frac{t^{1 / 2}}{L}$ factor rather than from multiplicities in the c-sum. Applying Weil's bound for $S(1,1, c)$ and estimating the RHS of (18) in absolute value yields:

For

$$
\begin{equation*}
L \leq \frac{2 \log t}{\pi}, M_{h}-\widetilde{M}_{h}=o\left(\widetilde{M}_{h}\right) \tag{19}
\end{equation*}
$$

Thus in this range, which is double that of (4), we have

$$
\begin{equation*}
M_{h} \sim \widetilde{M}_{h} \tag{20}
\end{equation*}
$$

One can remove the weights $\left|\nu_{\phi}\right|^{2}$ using zero density theorems, thus establishing (4) in this extended range. Precisely;

$$
\begin{align*}
& N_{h}(t, L) \sim \widetilde{N}_{h}(t, L) \\
& \text { for } \quad L \leq \frac{2 \log t}{\pi} \tag{21}
\end{align*}
$$

To see this we proceed as follows:
Let $\delta>0$ be small enough so that the density lemma 2.1 of [L1] ensures that at most $T^{1 / 10}$ of the $L\left(s, \operatorname{sym}^{2} \phi\right)$ with $\left|t_{\phi}-T\right| \leq \frac{T}{2}$ have a zero in $1-\delta \leq \sigma<1$ and $|\Im(t)| \leq \log ^{3} T$. Hence for all but at most $T^{1 / 10}$ of the ϕ 's, $L\left(s, \operatorname{sym}^{2} \phi\right) \underset{\epsilon}{\ll} T^{\epsilon}$ for $1-\delta \leq \sigma<1,|t| \leq(\log T)^{2}$. Denote by G the set of good ϕ 's as above and by B the rest. We have $|B| \leq T^{1 / 10}$. Fix $g \in C_{0}^{\infty}(0, \infty), g \geq 0$ and $\int_{0}^{\infty} g(t) d t=1$ for $\phi \in G$ we have and $M \geq 1$

$$
\begin{equation*}
\sum_{n}\left|\lambda_{\phi}(n)\right|^{2} g\left(\frac{n}{M}\right)=M \frac{L\left(1, \operatorname{sym}^{2} \phi\right)}{\zeta(2)}+O\left(M^{1-\delta} T^{\epsilon}\right) \tag{22}
\end{equation*}
$$

Hence $\quad \sum_{n}\left|\nu_{\phi}\right|^{2}\left|\lambda_{\phi}(n)\right|^{2} g\left(\frac{n}{M}\right)$

$$
\begin{align*}
& =\frac{2 \pi 6}{\pi^{2}} M+O\left(M^{1-\delta} T^{\epsilon}\right) \\
& \quad=\frac{12}{\pi} M+O\left(M^{1-\delta} T^{\epsilon}\right) \tag{23}
\end{align*}
$$

Now summing over ϕ we have

$$
\begin{aligned}
& \sum_{\phi} h\left(\left(t_{\phi}-t\right) L\right) \sum_{n}\left|\nu_{\phi}\right|^{2}\left|\lambda_{\phi}(n)\right|^{2} g\left(\frac{n}{M}\right) \\
& =\sum_{\phi \in G} h\left(\left(t_{\phi}-t\right) L\right) \frac{12 M}{\pi}+O\left(M^{1-\delta} T^{\epsilon} \frac{t}{L}\right) \\
& \quad+O\left(t^{\frac{1}{10}} M^{1+\epsilon}\right) \\
& =\frac{12}{\pi} M \sum_{\phi} h\left(\left(t_{\phi}-t\right) L\right)+O\left(M^{1-\delta} \frac{t^{1+\epsilon}}{L}\right)
\end{aligned}
$$

(we assume $M \ll \sqrt{t}$).

$$
\begin{equation*}
=\frac{12}{\pi} M N_{h}(t, L)+O\left(M^{1-\delta} t^{1+\epsilon}\right) . \tag{24}
\end{equation*}
$$

Switch orders of summation on the L.H.S. of (24) and apply (14). The $\delta_{n, n}$ terms yield

$$
\begin{equation*}
\frac{M t}{\pi L} \tag{25}
\end{equation*}
$$

Let δ_{1} be small enough so that $\left[-\delta_{1}, \delta_{1}\right]+($ support $\hat{h}) \subset(-1,1)$. Then for $M=t^{\delta_{1}}$, the Kloosterman sum contributions to the R.H.S. of (24) is $o(M t / L)$ as long as $L \leq \frac{2 \log t}{\pi}$. Thus under this assumption we have

$$
\begin{align*}
N_{h}(t, L) & =\frac{t}{12 L}+O\left(M^{-\delta} t^{1+\epsilon}\right)+o\left(\frac{t}{L}\right) \\
& =\frac{V o l\left(X_{S L(2, Z))}\right.}{4 \pi} \frac{t}{L}+o\left(\frac{t}{L}\right) \tag{26}\\
& \sim \widetilde{N}_{h}(t, L) . \tag{27}
\end{align*}
$$

This establishes the claim (21). As a consequence we have

$$
\begin{equation*}
t \xrightarrow{\lim _{\longrightarrow}} \frac{m_{S L(2, \mathbb{Z})}(t) \log t}{t} \leq \frac{\operatorname{Vol}(X)}{8}=\frac{\pi}{24} \tag{28}
\end{equation*}
$$

It is rather embarrassing that this is the best multiplicity bound which I can give, given that in all likelihood $m_{S L(2, \mathbb{Z})}(t) \leq 1$ for all t.

The extended range $L>\frac{\log t}{\pi}$ allows us to obtain a Poissonian number variance for M_{h}.
Set

$$
\begin{equation*}
\sum(T, L):=\frac{1}{T} \int_{0}^{\infty} 4\left(\frac{t}{T}\right)\left(M_{h}(t, L)-\widetilde{M_{h}}(t, L)^{2} d t\right. \tag{29}
\end{equation*}
$$

Here $\psi \geq 0$ is a smooth function of compact support in $(0, \infty)$. If $L \leq \frac{2 \log T}{\pi}$ one can square out in (18) and as $T \longrightarrow \infty$ the diagonal is the dominant term. That is

$$
\begin{align*}
& \sum(T, L) \sim \frac{T}{L^{2}} \sum_{c=1}^{\infty} \frac{\mid S(1,1, c)^{2}}{c^{2}} \int_{0}^{\infty} t \psi(t)\left|\hat{h}\left(\frac{\log \left(\frac{c t T}{\pi c}\right)}{\pi L}\right)\right|^{2} d t \tag{30}\\
& \sim \frac{T}{L^{2}} \int_{0}^{\infty} t \psi(t) d t\left(\sum_{c=1}^{\infty} \frac{|S(1,1, c)|^{2}}{c^{2}}\left|\hat{h}\left(\frac{\log (T c)}{\pi L}\right)\right|^{2}\right) \tag{31}
\end{align*}
$$

Let

$$
\begin{equation*}
B(x)=\sum_{c \leq x} \frac{|S(1,1, c)|}{c^{2}} \tag{32}
\end{equation*}
$$

Recent work [$\mathrm{F}-\mathrm{M}]$ comes close to determining the asymptotic behavior of $B(x)$. They show that

$$
\begin{equation*}
\exp \left((\log \log x)^{5 / 17}\right) \ll B(x) \ll(\log x)(\log \log x)^{3} \tag{33}
\end{equation*}
$$

One could use these bounds in (31) to give quite sharp bounds for $\sum(T, L)$. Rather than doing this let's postulate that

$$
\begin{equation*}
B(x) \sim A \log x \quad \text { for some } A>0 \tag{34}
\end{equation*}
$$

(various considerations suggest this - numerics plus heuristics are needed here). Then it follows that

$$
\sum(T, L) \sim A \pi\left(\int_{0}^{\infty} t \psi(t) d t\right)\left(\int_{\frac{\log t}{\pi L}}^{\infty}|\hat{h}(y)|^{2} d y\right) \frac{T}{L}
$$

for

$$
\begin{equation*}
\frac{\log T}{\pi}<L \leq \frac{2 \log T}{\pi} \tag{35}
\end{equation*}
$$

Except for the constant this yields exactly a Poissonian number variance. The Poisson model, that is to say that the t_{ϕ} 's are independent as are the $\left|\nu_{\phi}\right|^{2}$ (in the last, of each other as well as of the t_{ϕ} 's) leads to

$$
\begin{equation*}
\sum(T, L) \sim \frac{2}{\zeta(3)}\left(\int_{0}^{\infty} t \psi(t) d t\right)\left(\int_{-\infty}^{\infty}|h(y)|^{2} d y\right) \frac{T}{L} \tag{36}
\end{equation*}
$$

Thus the constant in (35) cannot be the Poissonian one since the functional dependence on h is not the same as long as $\frac{\log T}{\pi L}$ is bounded below. We expect that the diagonal approximation in (30) remains valid as even for $\frac{L}{\log T} \longrightarrow \infty$. If so (35) and (36) will agree as long as A is what it should be. One can speculate further along these lines. In view of the randomness that is present in the numbers $\frac{S(1,1, c)}{\sqrt{c}}$ one might believe that for $H \in C_{0}^{\infty}(0, \infty)$, we have

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}\left|\sum_{c} \frac{S(1,1, c)}{c} H\left(\frac{c}{X}\right) c^{2 i t}\right|^{2} d t \underset{\epsilon}{<} T^{\epsilon} \sum_{c}\left|\frac{S(1,1, c)}{c}\right|^{2} H\left(\frac{c}{X}\right)^{2} \tag{37}
\end{equation*}
$$

for X as large as e^{T}.

Assuming (37) and using the upper bound in (33) we would then have that for $\delta>0$,

$$
\begin{equation*}
\sum(T, L) \underset{\epsilon}{<} \frac{T^{1+\epsilon}}{L} \tag{38}
\end{equation*}
$$

for $L \leq T^{1-\delta}$. (38) together with (11) already lead to far-reaching statements about multiplicities. For example, (38) implies that

$$
\begin{equation*}
\sum_{t \leq T} m_{S L(2, \mathbb{Z})}^{2}(t) \underset{\epsilon}{\ll} T^{2+\epsilon} \tag{39}
\end{equation*}
$$

and that

$$
\begin{equation*}
N_{0}(T):=\sum_{\substack{t \leq T \\ m_{S L(2, Z)}(t) \geq 1}} 1 \gg \epsilon T^{2-\epsilon} \tag{40}
\end{equation*}
$$

My interest in the multiplicities for $S L_{2}(\mathbb{Z})$ lies in part in its connection to the deformation theory that Phillips and I began in the 80 's and that was pushed significantly farther by Wolpert in the 90 's. That theory is now essentially complete except for the issue of multiplicities for $S L_{2}(\mathbb{Z})$, $\Gamma_{0}(2)$ and $\Gamma_{0}(4)$. In fact, (38) together with the results of Luo [L2] on nonvanishing of special values of Rankin-Selberg L-functions, is sufficient to show that for the generic Γ in Teichmuller space, the scattering determinant $\phi_{\Gamma}(s)$ is a meromorphic function of order 2 !

With best regards,

Peter Sarnak

REFERENCES

[R] Z. Rudnick, "The Central Limit Theorem for the Modular Group," Park City Lectures, (2002).
[I-L-S] Iwaniec-Luo-Sarnak, IHES, Vol 91, 55-131, (2000).
[L-S] Luo-Sarnak, Comm. Math. Phys., 161, 419-432, (1994).
G-J-S] Gamburd-Jakobson-Sarnak, JEMS, 1, 51-85, (1999).
L1] Luo, J. reine angew Math., 506, 215-235, (1999).
[I] Iwaniec, "Introduction to the Spectral Theory of Automorphic Forms," (1995).
[F-M] Fouvry-Michel, "Sommes de Modules de sommes d'exponentieles," Preprint, (2002).
[L2] Luo, Annals of Math., Vol. 154, 477-502, (2001).
H] Hejhal, S.L.N., Vol. 548, (1976).

Addendum to Letter to Rudnick

In connection with the issues of multiplicities of the eigenvalues, one can ask about joint multiplicities of the t_{ϕ} 's and $\lambda_{\phi}(p)$'s. For S a subset of the primes P, let

$$
Y^{S}=[0, \infty) \times \prod_{p \in S} J_{p}, J_{p}=\left[-p^{1 / 2}-p^{-1 / 2}, p^{1 / 2}+p^{-1 / 2}\right]
$$

Each ϕ gives a point $x_{\phi} \in Y^{P}, x_{\phi}=\left(t_{\phi}, \lambda_{\phi}(2), \lambda_{\phi}(3), \ldots\right)$, and by projection a point in Y^{S} for any S. When ordered by t_{ϕ} the points x_{ϕ} become equi-distributed in $\prod_{p} J_{p}$, w.r.t. $\prod_{p} d \mu_{p}$ where μ_{p} is the p-adic Plancherel measure $[\mathrm{S}]$. In particular, the image $\phi \longrightarrow x_{\phi}$ is dense in $\prod_{p}^{p}[-2,2]$ since the support of each μ_{p} is $[-2,2]$. Strong multiplicity one asserts that $\phi \longrightarrow x_{\phi} \in Y^{P}$ is injective. For $y^{S} \in Y^{S}$ let

$$
\begin{equation*}
m\left(y^{S}\right)=\#\left\{\phi: x_{\phi}=y\right\} \tag{1}
\end{equation*}
$$

In what follows t_{y} or t will denote the archimedian component of y. For S fixed, the trace formula methods can be used to show that if $y^{S} \in Y^{S}$ then

$$
\begin{equation*}
m\left(y^{S}\right) \underset{S}{\ll} t /(\log t)^{|S|+1} \tag{2}
\end{equation*}
$$

This suggests that if we let S grow slowly with t we should get sharp bounds. Indeed, assuming GRH for $L\left(s, \phi \times \phi^{\prime}\right)$ one can show that if S_{ν} is the set of the first ν primes and $\nu \gg(\log t)^{2}$, then for $y \in Y^{S_{\nu}}$

$$
\begin{equation*}
m(y) \leq 1 \tag{3}
\end{equation*}
$$

Assuming the Lindeloff Hypothesis for $L\left(s, \phi \times \phi^{\prime}\right)$ the same conclusion (3) can be drawn as long as $\nu \underset{\epsilon}{\gg} t^{\epsilon}$, for any $\epsilon>0$.

One point of interest is that one can get rid of all hypotheses by using zero density theorems for $L\left(s, \phi \times \phi^{\prime}\right)$ (which can be developed as in [L1]) or one can proceed more directly using large sieve inequalities for Fourier coefficients, as is done in [D-K], to prove the following:

For any $\epsilon>0$, there are $c_{\epsilon}>0, c_{\epsilon}^{\prime}<\infty$ s.t. if $\nu \geq c_{\epsilon} \epsilon^{\epsilon}$ and $y \in Y^{S_{\nu}}$ then

$$
\begin{equation*}
m(y) \leq c_{\epsilon}^{\prime} t^{\epsilon} \tag{4}
\end{equation*}
$$

It is perhaps worth noting that for these automorphic forms ϕ, t_{ϕ} is the "analytic conductor" introduced in [I-S] and that these last results which use L-functions can be obtained much more generally on $G L_{n}$ with the role of t played by this conductor.

References

[S] Sarnak, "Analytic Number Theory and Diophantine Problems," Proc. Conf., Oklahoma State, (1984), Progress in Math., 70, Birkhäuser, 321-333.
[I-S] Iwaniec-Sarnak, GAFA, special Vol., 705-741, (2000).
[D-K] Duke-Kowalski, Invent. Math., 139, 1-39, (2000).

June 11, 2004

[^0]: *unsmoothed counting functions carry information about eigenvalues in intervals of length smaller than $\frac{1}{L}$. I know of no nontrivial upper bounds for these.

