
October, 2002

To: Zeev Rudnick

Dear Zeev,

Your talk in Park City led me to revisit the topic of the number variance for the eigenvalues of

SL(2,Z)\H. In my opinion the critical problem, at least for smooth counting, is to analyze this

quantity in intervals
[
λ − H

2
, λ + H

2

]
with H as small as possible. In particular, the Poissonian

behavior probably kicks in for H = o
(√

λ/ log λ
)
. In any event the smaller that one can take H

the more information can be gleaned about the multiplicities and spacings between the eigenvalues.

The problem appears to be a very difficult one. An examination of Chapter 2 of Hejhal [H],

especially the discussion about S(T ), confirms this. Rather than the standard approach to these

problems via the trace formula, I describe below how the Petersson-Kuznietzov formula allows

one to see a little further. Roughly speaking, it allows one to halve the interval width that can

be analyzed. This is very modest progress but it allows for a small window in which the number

variance is shown to be Poissonian. Interestingly, in this form the large number variance is not a

consequence of high multiplicities of lengths but is rather a consequence of the analytic aspects of

the formula. This approach also makes transparent the Poissonian nature of the number variance.

Let, at first, XΓ be any compact quotient Γ\H of the upper half plane. Denote by λφ = 1
4

+ t2φ

the eigenvalue of the eigenfunction φ. Fix h an even test function in S(R) with support ĥ ⊂ (−1, 1)

and
∫ ∞

−∞
h(x) dx = 1. Here

ĥ(ξ) =
∫ ∞

−∞
h(x) e−2πixξ dx . (1)

For t large and 1 � L� t1−ε set

Nh(t, L) =
∑
φ

h((tφ − t)L) . (2)

These are your “smooth” counting functions of eigenvalues tφ near t in a window of size t/L [R].

The expected number Ñh(t, L) is given by the identity term in the trace formula and it satisfies

Ñh(t, L) ∼ V ol(X)

4π

t

L
as t −→∞ . (3)



Applying the trace formula to the sum in (2) and estimating trivially the contribution of the

conjugacy classes using the Prime Geodesic Theorem yields:

Nh(t, L) ∼ Ñh(t, L) (4)

as long as L ≤ log t
π

.

While I expect that (4) holds with L as large as t1/2−ε, I don’t see how to extend the range in (4).

For the case of Γ = SL(2,Z) the range can be doubled - see below.

If in (2) we choose h as above and also satisfying h(x) ≥ 0, we obtain a bound for the

multiplicity, mX(t), of the eigenvalue t2 + 1
4
:

mX(t) :=
∑
tφ=t

1 ≤ V ol(X)t

h(0) 4 log t
(1 + o (1)) . (5)

Optimizing the choice of such h, (see [I-L-S] page 115) yields

lim
t −→∞

mX(t) log t

t
≤ V ol(X)

4
. (6)

In my youth I would have been impressed with a bound of mX(t) = O(t1−δ) for some δ > 0. Today

a bound mX(t) = o
(

t
log t

)
looks pretty good. In any case (6) is the best I know for a general

hyperbolic surface.

The number variance (smoothed) is defined to be

∑
(T, L) :=

1

T

∫ 2T

T

(
Nh − Ñh

)2
dt . (7)

The Poisson model for the tφ’s (that is to say that they are statistically independent) predicts that

(we assume that L(t) −→∞ with t)

∑
(T, L) ∼

(∫ ∞

−∞
h2(y) dy

)
V ol(X)

4π

1

T

∫ 2T

T

(
t

L

)
dt . (8)

We turn to SL(2,Z) in which case the φ’s are taken to be Hecke-Maass cusp forms. In this case

you show [R] that if L = L(T ) = o (log T ) then

∑
(T, L) ∼ K

2πL

∫ ∞

0
|ĥ(u)|2 eπLu du , with K = 1.328 . . . (9)
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While
∑

is growing with T it is still much smaller (in this range) than Poissonian. One can

extend (9) to the range L ≤ log T
π

. In fact, Luo and I [L-S] (see also [G-J-S] for a similar result for

an arithmetic element in C[SU(2)]) work a little more to show that
∑

(unsmoothed)∗ is bounded

below by T
L2 in this range. This is off by a factor of L from Poissonian.

To see more of the key features of the SL2(Z) spectrum we need to increase L beyond log t
π

.

This can be done using the Kuznietzov Formula. To this end introduce the weights

|νφ|2 =
2π

L(1, sym2φ)
. (10)

They vary mildly with φ;

t−ε
φ �
ε

|νφ|2 � log tφ . (11)

Moreover

Averageφ

(
|νφ|2

)
=

4

Vol(X)
=

12

π
(12)

One can compute Averageφ(|νφ|4) by the methods in [L1] and one finds that

Averageφ

(
|νφ|4

)
=

24

ζ(3)
. (13)

The Kuznietzov Formula (see [I] page 140) reads (for n,m ≥ 1).∑
φ

h(tφ) |νφ|2 λφ(n)λφ(m) + cts

= δm,n

π

∫ ∞

−∞
t tanh(πt)h(t) dt

+
∞∑

c=1

S(m,n, c)

c
h+

(
4π
√
mn

c

)
. (14)

Here h+(x) = 2i
∫ ∞

−∞
J2it(x)

h(t)t

cosh πt
dt, S(m,n, c) is the Kloosterman sum, λφ(n) are normalized

Hecke eigenvalues of φ and cts is the continuous spectrum, which will be of no significance in what

we do.

Consider the weighted number counting functions:

Mh(t, L) :=
∑
φ

h((tφ − t)L) |νφ|2 . (15)

∗unsmoothed counting functions carry information about eigenvalues in intervals of length smaller than 1
L . I

know of no nontrivial upper bounds for these.
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According to (14) the expected value M̃ , of M satisfies

M̃h(t, L) ∼ t

πL
(16)

(our assumptions on h are the same as those that we imposed on Nh(t, L)). Using asymptotic

expansions of J2it(x) for t large and x small we obtain to leading order that for ht(x) = h(L(x−t)),

h+
t (x) ∼ t1/2

L
=
{

(2i)1/2
(
xe

4πt

)2it

ĥ

(
− log xe

4t

πL

)}
. (17)

Hence (essentially) we have

Mh(t, L) − M̃h(t, L) =
t1/2

L
=
{

(2i)1/2
∞∑

c=1

S(1, 1, c)

c

(
e

ct

)2it

ĥ

(
log ct

πe

πL

)}
(18)

From (18) we first note that if L ≤ log t
π

(ie the range (4)) then the right hand side of (18) is zero.

So in this range Mh does not fluctuate. Moreover, as soon as L > log t
π

there is immediately a t1/2

L

fluctuation. Thus the large (Poisson like) fluctuations come from the t1/2

L
factor rather than from

multiplicities in the c-sum. Applying Weil’s bound for S(1, 1, c) and estimating the RHS of (18)

in absolute value yields:

For

L ≤ 2 logt

π
, Mh − M̃h = o

(
M̃h

)
. (19)

Thus in this range, which is double that of (4), we have

Mh ∼ M̃h . (20)

One can remove the weights |νφ|2 using zero density theorems, thus establishing (4) in this extended

range. Precisely;

Nh (t, L) ∼ Ñh(t, L)

for L ≤ 2 log t

π
. (21)
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To see this we proceed as follows:

Let δ > 0 be small enough so that the density lemma 2.1 of [L1] ensures that at most T 1/10 of the

L(s, sym2φ) with |tφ − T | ≤ T
2

have a zero in 1− δ ≤ σ < 1 and |=(t)| ≤ log3 T . Hence for all

but at most T 1/10 of the φ’s, L(s, sym2φ)�
ε

T ε for 1 − δ ≤ σ < 1, |t| ≤ (log T )2. Denote by G

the set of good φ’s as above and by B the rest. We have |B| ≤ T 1/10. Fix g ∈ C∞
0 (0,∞), g ≥ 0

and
∫ ∞

0
g(t) dt = 1 for φ ∈ G we have and M ≥ 1

∑
n

|λφ(n)|2 g
(
n

M

)
= M

L(1, sym2φ)

ζ(2)
+ O

(
M1−δT ε

)
. (22)

Hence
∑
n

|νφ|2 |λφ(n)|2 g
(
n

M

)
=

2π6

π2
M + O

(
M1−δT ε

)
=

12

π
M + O

(
M1−δT ε

)
. (23)

Now summing over φ we have∑
φ

h((tφ − t)L)
∑
n

|νφ|2 |λφ(n)|2 g
(
n

M

)

=
∑
φ∈G

h((tφ − t)L)
12M

π
+ O

(
M1−δ T ε t

L

)

+O
(
t

1
10 M1+ε

)
=

12

π
M
∑
φ

h((tφ − t)L) + O

(
M1−δ t

1+ε

L

)

(we assume M �
√
t) .

=
12

π
M Nh(t, L) + O

(
M1−δ t1+ε

)
. (24)

Switch orders of summation on the L.H.S. of (24) and apply (14). The δn,n terms yield

Mt

πL
. (25)
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Let δ1 be small enough so that [−δ1, δ1] + (support ĥ) ⊂ (−1, 1). Then for M = tδ1 , the Klooster-

man sum contributions to the R.H.S. of (24) is o(Mt/L) as long as L ≤ 2 log t
π

. Thus under this

assumption we have

Nh(t, L) = t
12L

+ O
(
M−δ t1+ε

)
+ o

(
t
L

)
=

V ol (XSL(2,Z))

4π
t
L

+ o
(

t
L

) (26)

∼ Ñh(t, L) . (27)

This establishes the claim (21). As a consequence we have

lim
t −→∞

mSL(2,Z)(t) log t

t
≤ V ol(X)

8
=

π

24
. (28)

It is rather embarrassing that this is the best multiplicity bound which I can give, given that in

all likelihood mSL(2,Z)(t) ≤ 1 for all t.

The extended range L > log t
π

allows us to obtain a Poissonian number variance for Mh.

Set ∑
(T, L) :=

1

T

∫ ∞

0
4
(
t

T

) (
Mh(t, L) − M̃h(t, L

)2
dt . (29)

Here ψ ≥ 0 is a smooth function of compact support in (0,∞). If L ≤ 2 log T
π

one can square out

in (18) and as T −→∞ the diagonal is the dominant term. That is

∑
(T, L) ∼ T

L2

∞∑
c=1

|S(1, 1, c)2

c2

∫ ∞

0
tψ(t)

∣∣∣∣∣∣ĥ
 log

(
ctT
πc

)
πL

∣∣∣∣∣∣
2

dt (30)

∼ T

L2

∫ ∞

0
tψ(t) dt

 ∞∑
c=1

|S(1, 1, c)|2

c2

∣∣∣∣∣ĥ
(

log(Tc)

πL

)∣∣∣∣∣
2
 . (31)

Let

B(x) =
∑
c≤x

|S(1, 1, c)|
c2

. (32)

Recent work [F-M] comes close to determining the asymptotic behavior of B(x). They show that

exp((log log x)5/17) � B(x) � (log x) (log log x)3 . (33)
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One could use these bounds in (31) to give quite sharp bounds for
∑

(T, L). Rather than doing

this let’s postulate that

B(x) ∼ A log x for some A > 0 (34)

(various considerations suggest this - numerics plus heuristics are needed here). Then it follows

that

∑
(T, L) ∼ Aπ

(∫ ∞

0
tψ(t) dt

) (∫ ∞

log t
πL

|ĥ(y)|2 dy
)
T

L

for
log T

π
< L ≤ 2 log T

π
. (35)

Except for the constant this yields exactly a Poissonian number variance. The Poisson model, that

is to say that the tφ’s are independent as are the |νφ|2 (in the last, of each other as well as of the

tφ’s) leads to ∑
(T, L) ∼ 2

ζ(3)

(∫ ∞

0
tψ(t) dt

) (∫ ∞

−∞
|h(y)|2 dy

)
T

L
. (36)

Thus the constant in (35) cannot be the Poissonian one since the functional dependence on h

is not the same as long as log T
πL

is bounded below. We expect that the diagonal approximation in

(30) remains valid as even for L
log T

−→ ∞. If so (35) and (36) will agree as long as A is what it

should be. One can speculate further along these lines. In view of the randomness that is present

in the numbers S(1,1,c)√
c

one might believe that for H ∈ C∞
0 (0,∞), we have

1

T

∫ 2T

T

∣∣∣∣∣∑
c

S(1, 1, c)

c
H
(
c

X

)
c2it

∣∣∣∣∣
2

dt�
ε

T ε
∑

c

∣∣∣∣∣S(1, 1, c)

c

∣∣∣∣∣
2

H
(
c

X

)2

(37)

for X as large as eT .

Assuming (37) and using the upper bound in (33) we would then have that for δ > 0,∑
(T, L)�

ε

T 1+ε

L
(38)

for L ≤ T 1−δ. (38) together with (11) already lead to far-reaching statements about multiplicities.

For example, (38) implies that ∑
t≤T

m2
SL(2,Z) (t)�

ε
T 2+ε (39)
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and that

N0(T ) :=
∑
t≤T

mSL(2,Z)(t)≥1

1 �
ε
T 2−ε . (40)

My interest in the multiplicities for SL2(Z) lies in part in its connection to the deformation theory

that Phillips and I began in the 80’s and that was pushed significantly farther by Wolpert in the

90’s. That theory is now essentially complete except for the issue of multiplicities for SL2(Z),

Γ0(2) and Γ0(4). In fact, (38) together with the results of Luo [L2] on nonvanishing of special

values of Rankin-Selberg L-functions, is sufficient to show that for the generic Γ in Teichmuller

space, the scattering determinant φΓ(s) is a meromorphic function of order 2!

With best regards,

Peter Sarnak

8



References

[R] Z. Rudnick, “The Central Limit Theorem for the Modular Group,” Park City Lectures,

(2002).

[I-L-S] Iwaniec-Luo-Sarnak, IHES, Vol 91, 55-131, (2000).

[L-S] Luo-Sarnak, Comm. Math. Phys., 161, 419-432, (1994).

G-J-S] Gamburd-Jakobson-Sarnak, JEMS, 1, 51-85, (1999).

L1] Luo, J. reine angew Math., 506, 215-235, (1999).

[I] Iwaniec, “Introduction to the Spectral Theory of Automorphic Forms,” (1995).

[F-M] Fouvry-Michel, “Sommes de Modules de sommes d’exponentieles,” Preprint, (2002).

[L2] Luo, Annals of Math., Vol. 154, 477-502, (2001).

H] Hejhal, S.L.N., Vol. 548, (1976).

9



Addendum to letter to Rudnick

In connection with the issues of multiplicities of the eigenvalues, one can ask about joint

multiplicities of the tφ’s and λφ(p)’s. For S a subset of the primes P , let

Y S = [0,∞)×
∏
p∈S

Jp , Jp =
[
−p1/2 − p−1/2, p1/2 + p−1/2

]
.

Each φ gives a point xφ ∈ Y P , xφ = (tφ, λφ(2), λφ(3), . . .), and by projection a point in Y S for any

S. When ordered by tφ the points xφ become equi-distributed in
∏
p

Jp, w.r.t.
∏
p

dµp where µp is

the p-adic Plancherel measure [S]. In particular, the image φ −→ xφ is dense in
∏
p

[−2, 2] since the

support of each µp is [−2, 2]. Strong multiplicity one asserts that φ −→ xφ ∈ Y P is injective. For

yS ∈ Y S let

m(yS) = #{φ : xφ = y} . (1)

In what follows ty or t will denote the archimedian component of y. For S fixed, the trace formula

methods can be used to show that if yS ∈ Y S then

m(yS) �
S

t/(log t)|S|+1 (2)

This suggests that if we let S grow slowly with t we should get sharp bounds. Indeed, assuming

GRH for L(s, φ×φ′) one can show that if Sν is the set of the first ν primes and ν � (log t)2, then

for y ∈ Y Sν

m(y) ≤ 1 . (3)

Assuming the Lindeloff Hypothesis for L(s, φ× φ′) the same conclusion (3) can be drawn as long

as ν�
ε

tε, for any ε > 0.

One point of interest is that one can get rid of all hypotheses by using zero density theorems for

L(s, φ×φ′) (which can be developed as in [L1]) or one can proceed more directly using large sieve

inequalities for Fourier coefficients, as is done in [D-K], to prove the following:

For any ε > 0, there are cε > 0, c′ε <∞ s.t. if ν ≥ cεt
ε and y ∈ Y Sν then

m(y) ≤ c′ε t
ε . (4)
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It is perhaps worth noting that for these automorphic forms φ, tφ is the “analytic conductor”

introduced in [I-S] and that these last results which use L-functions can be obtained much more

generally on GLn with the role of t played by this conductor.
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