
Letter to J. Davis About Reciprocal Geodesics

Dear Jim,

I am following up on my e-mail to you about parametrizing and counting infinite maximal

dihedral subgroups of Γ = PSL(2, Z) and their connection to Gauss’ ambiguous forms. Interestingly,

besides your work with Connolly where these subgroups enter as decisive topological invariants for

the connect sum problem [C-D], they also come up in [P-R] (see also the references therein) in

connection with the stability of kicked dynamics of torus automorphisms and with quasi-morphisms

of Γ.

Denote by {γ}Γ the conjugacy class in Γ of an element γ ∈ Γ. The elliptic and parabolic classes

(i.e. those with t(γ) ≤ 2 where t(γ) = | trace γ|) are well-known through examining the standard

fundamental domain for Γ as it acts on H. We restrict our attention to hyperbolic γ’s and we call

such a γ primitive (or prime) if it is not a proper power of another element of Γ. Denote by P the

set of such elements and by Π the corresponding set of conjugacy classes. The primitive elements

generate the maximal hyperbolic cyclic subgroups of Γ. We call a p ∈ P reciprocal if p−1 = S−1pS

for some S ∈ Γ. In this case, S2 = 1 (proofs of this and further claims are given below) and S is

unique up to multiplication on the left by γ ∈ 〈p〉. Let R denote the set of such reciprocal elements.

For r ∈ R the group Dr = 〈r, S〉, depends only on r and it is a maximal infinite dihedral subgroup

of Γ. Moreover, all of the latter arise in this way. Thus, the determination of the conjugacy classes

of these dihedral subgroups is the same as determining ρ, the subset of Π, consisting of conjugacy

classes of reciprocal elements. Geometrically, each p ∈ P gives rise to an oriented primitive closed

geodesic on Γ\H, whose length is log N(p) where N(p) =
[(

t(p) +
√

t(p)2 − 4
)

/2
]2

. Conjugate

elements give rise to the same oriented closed geodesic. A closed geodesic is equivalent to itself with

its orientation reversed iff it corresponds to an {r} ∈ ρ.

The question as to whether a given γ is conjugate to γ−1 in Γ is reflected in part in the corre-

sponding local question. If p ≡ 3(4), then c =

[
1 0
1 1

]
is not conjugate to c−1 in SL(2, Fp), on

the other hand, if p ≡ 1(4) then every c ∈ SL(2, Fp) is conjugate to c−1. This difficulty of being

conjugate in G(F̄ ) but not in G(F ) does not arise if G = GLn (F , a field) and it is the source of

a basic general difficulty associated with conjugacy classes in G and the (adelic) trace formula and

its stabilization [La]. For the case at hand when working over Z, there is the added issue associated

with the lack of a local to global principle and in particular the class group enters. In fact, certain
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elements of order dividing 4 in Gauss’ composition group play a critical role in the analysis of the

reciprocal classes.

In order to study ρ it is convenient to introduce some other set theoretic involutions of Π. Let

φR be the involution of Γ given by φR(γ) = γ−1. Let φw(γ) = w−1γw where w =

(
1 0
0 −1

)
∈

PGL(2, Z) (modulo inner automorphism φw generates the outer automorphisms of Γ coming from

PGL(2, Z)). φR and φw commute and set φA = φR ◦φw = φw ◦φR. These three involutions generate

the Klein group G of order 4. The action of G on Γ preserves P and Π. For H a subgroup of G, let

ΠH = {{p} ∈ Π : φ({p}) = {p} for φ ∈ H}. Thus Π{e} = Π and Π〈φR〉 = ρ. We call the elements in

Π〈φA〉 ambiguous classes (we will see that they are related to Gauss’ ambiguous classes of quadratic

forms) and of Π〈φw〉, inert classes. Note that the involution γ → γt is up to conjugacy in Γ, the same

as φR, since the contragredient satisfies tg−1 =

[
0 1
−1 0

]
g

[
0 1
−1 0

]
. Thus p ∈ P is reciprocal iff

p is conjugate to pt.

To give an explicit parametrization of ρ let

C =
{
(a, b) ∈ Z2 : (a, b) = 1, a > 0, d = 4a2 + b2 is not a square

}
. (1)

To each (a, b) ∈ C let (t0, u0) be the least solution with t0 > 0 and u0 > 0 of the Pell equation

t2 − du2 = 4 . (2)

Our central assertion concerning parametrizing ρ is that the map ψ : C −→ ρ given by

(a, b) −→










t0 − bu0

2
au0

au0
t0 + bu0

2









Γ

, is two-to-one and onto.∗ (3)

It is clear that ψ((a, b)) is reciprocal since an A ∈ Γ is symmetric iff S−1
0 A S0 = A−1 where

S0 =

[
0 1
−1 0

]
.

There is a further stratification to the correspondence (3). Let

D = {m |m > 0 , m ≡ 0, 1(4) , m not a square} . (4)

∗For the general d it appears to be difficult to determine explicitly a one-to-one section of ψ.
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Then

C =
⋃

d∈D

Cd

where

Cd =
{
(a, b) ∈ C | 4a2 + b2 = d

}
. (5)

Elementary considerations concerning proper representations of integers as a sum of two squares

shows that Cd is empty unless d has only prime divisors p with p ≡ 1(4) or the prime 2 which can

occur to exponent α = 0, 2 or 3. Denote this subset of D by DR. Moreover for d ∈ DR,

|Cd| = 2 ν(d) (6)

where for any d ∈ D, ν(d) is the number of genera of binary quadratic forms of discriminant d ((6)

is not a coincidence as will be explained below). Explicitly ν(d) is given as follows: If d = 2αD with

D odd and if λ is the number of distinct prime divisors of D then

ν(d) = 2λ−1 if α = 0

= 2λ−1 if α = 2 and D ≡ 1(4)

= 2λ if α = 2 and D ≡ 3(4)

= 2λ if α = 3 or 4

= 2λ+1 if α ≥ 5 .






(6′)

Corresponding to (5) we have

ρ =
⊔

d∈DR

ρd , (7)

with ρd = ψ(Cd). In particular, ψ : Cd −→ ρd is two-to-one and onto and hence

|ρd| = ν(d) for d ∈ DR . (8)

Local considerations show that for d ∈ D the Pell equation

t2 − du2 = −4 , (9)

can only have a solution if d ∈ DR. When d ∈ DR it may or may not have a solution. Let D−
R be

those d’s for which (9) has a solution and D+
R the set of d ∈ DR for which (9) has no integer solution.

Then
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(i) For d ∈ D+
R none of the {r} ∈ ρd, are ambiguous.

(ii) For d ∈ D−
R , every {r} ∈ ρd is ambiguous.

In this last case (ii) we can choose an explicit section of the 2 to 1 map (3). For d ∈ D−
R let

C−
d = {(a, b) : b < 0}, then ψ : C−

d −→ ρd is a bijection.

Using these parameterizations as well as some standard techniques from the spectral theory of

Γ\H one can count the number of primitive reciprocal classes. We order the primes {p} ∈ Π by their

trace t(p) (this is equivalent to ordering the corresponding prime geodesics by their lengths). For H

a subgroup of G and x > 2 let

ΠH(x) :=
∑

{p}∈ΠH
t(p)≤ x

1 . (10)

We have the following asymptotics as x →∞

Π{1}(x) ∼ x2

2 log x
, (11)

Π〈φA〉 (x) ∼ 47

8π2
x(log x)2 , (12)

Π〈φR〉 (x) ∼ 3

16
x , (13)

Π〈φw〉 (x) ∼ x

2 log x
(14)

and

ΠG (x) ∼ c3 x1/2 log x . (15)

(All of these are established with an exponent saving for the remainder).

In particular, roughly square root of all the primitive classes are reciprocal while the fourth root

of them are simultaneously reciprocal ambiguous and inert.

We turn to the proofs of the above statements as well as a further discussion connecting ρ with

elements of order dividing four in Gauss’ composition groups.
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We begin with the implication, S−1pS = p−1 =⇒ S2 = 1. This is true already in PSL(2, R).

Indeed, in this group p is conjugate to ±
(

λ 0
0 λ−1

)
with λ > 1. Hence Sp−1 = pS with

S =

[
a b
c d

]
=⇒ a = d = 0, i.e. S = ±

[
0 β

−β−1 0

]
and so S2 = 1. If S and S1 satisfy

x−1px = p−1 then SS−1
1 ∈ Γp the centralizer of p in Γ. But Γp = 〈p〉 and hence S = βS1 with

β ∈ 〈p〉. Now every element S ∈ Γ whose order is two (ie an elliptic element of order 2) is con-

jugate in Γ to S0 = ±
[

0 1
−1 0

]
. Hence any r ∈ R is conjugate to an element γ ∈ Γ for which

S−1
0 γS0 = γ−1. The last is equivalent to γ being symmetric. Thus each r ∈ R is conjugate to a

γ ∈ R with γ = γt. (15′)

We can be more precise;

Every r ∈ R is conjugate to exactly four γ’s which are symmetric. (16)

To see this associate to each S satisfying

S−1rS = r−1 (17)

the two solutions γS and γ′S (here γ′S = SγS) of

γ−1Sγ = S0 . (18)

Then

γ−1
S rγS = ((γ′S)−1 rγ′S)−1 and both of these are symmetric. (19)

Thus each S satisfying (17) affords a conjugation of r to a pair of inverse symmetric matrices.

Conversely every such conjugation of r to a symmetric matrix is induced as above from a γS. Indeed

if β−1rβ is symmetric then S−1
0 β−1 rβS0 = β−1 r−1β and so βS−1

0 β−1 = S for an S satisfying (17).

Thus to establish (16) it remains to count the number of distinct images γ−1
S rγS and its inverse that

we get as we vary over all S satisfying (17). Suppose then that

γ−1
S rγS = γ−1

S′ rγS′ . (20)

Then

γS′ γ
−1
S = b ∈ Γr = 〈r〉 . (21)

Also from (18)

γ−1
S SγS = γ−1

S′ S ′ γS′ (22)
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or

γS′ γ
−1
S S γS γ−1

S′ = S ′ . (23)

Using (21) in (23) yields

b−1 Sb = S ′ . (24)

But bS satisfies (17) hence bSbS = 1. Putting this relation in (24) yields

S ′ = b−2S . (25)

These steps after (22) may all be reversed and we find that (20) holds iff S = b2S ′ for some b ∈ Γr.

Since the solutions of (17) are parametrized by bS with b ∈ Γr(and S a fixed solution) it follows

that as S runs over solutions of (17), γ−1
S rγS and (γ′S)−1r(γ′S) run over exactly four elements. This

completes the proof of (16). This argument should be compared with the one in [Ca, pp 342] for

counting the number of ambiguous classes of forms.

To continue we make use of the explicit correspondence between Π and classes of binary quadratic

forms (see [Sa1] and also [He] pp 514-518). An integral binary quadratic form f = [a, b, c] (i.e.

ax2 + bxy + xy2) is primitive if (a, b, c) = 1. Let F denote the set of such forms whose discriminant

d = b2 − 4ac is in D. Thus

F =
⊔

d∈D

Fd . (26)

with Fd consisting of the forms of discriminant d. The symmetric square representation of PGL2

gives an action σ(γ) on F for each γ ∈ Γ. It is given by σ(γ)f = f ′ where f ′(x, y) = f((x, y)γ).

Following Gauss we decompose F into equivalence classes under this action σ(Γ). The class of f is

denoted by f̄ or Φ and the set of classes by F . Equivalent forms have a common discriminant and

so

F =
⊔

d∈D

Fd . (27)

Each Fd is finite and its cardinality is denoted by h(d) - the class number. Define a map n from P

to F by

p =

[
a b
c d

]
n−→ f(p) =

1

δ
sgn (a + d) [b, d− a,−c] . (28)

where δ = gcd(a, d− a, c) ≥ 1. n satisfies the following

(i) n is a bijection from Π to F .

(ii) n(γpγ−1) = (det γ) σ(γ) n(p) for γ ∈ PGL(2, Z).
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(iii) n(p−1) = −n(p)

(iv) n(w−1pw) = n(p)∗

(v) n(w−1p−1w) = n(p)′

where

[a, b, c]∗ = [−a, b,−c] (29)

and

[a, b, c]′ = [a,−b, c] . (30)

The proof is a straight forward verification except for n being onto, which relies on the theory of

Pell’s equation (2). If f = [a, b, c] ∈ F and has discriminant d and if (td, ud) is the fundamental

positive solution to (2) (we also let εd := td+
√

d ud
2 ) and if

p =




td−udb

2 aud

−cud
td+udb

2



 (31)

then p ∈ P and n(p) = f . That p is primitive follows from the well-known fact [see Ca pp 291] that

the group of automorphs of f , AutΓ(f) satisfies

AutΓ(f) := {γ ∈ Γ : σ(γ)f = f} =









t−bu

2 au

−cu t+bu
2



 : t2 − du2 = 4






/
± 1 (32)

More generally

Z(f) := {γ ∈ PGL(2, Z)|σ(γ)f = (det γ)f}

=









t−bu

2 au

−cu t+bu
2



 : t2 − du2 = ±4






/
± 1 . (33)

Z(f) is cyclic with a generator ηf corresponding to the fundamental solution ηd = (t1 +
√

d u1)/2,

t1 > 0, u1 > 0 of

t2 − du2 = ±4 . (34)

If (9) has a solution, i.e. d ∈ D−
R then ηd corresponds to a solution of (9) and εd = η2

d. If

(9) doesn’t have a solution then ηd = εd. Note that Z(f) has elements with det γ = −1 iff

df ∈ D−
R . (35)
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From (ii) of the properties of the correspondence n we see that Z(f) is the centralizer of p in

PGL(2, Z), where n(p) = f . (36)

Also from (ii) it follows that n preserves classes and gives a bijection between Π and F . More-

over, from (iii), (iv) and (v) we see that the action of G = {1, φw, φA, φR)} corresponds to that of

G̃ = {1, ∗, ′,−} on F , G̃ preserves the decomposition (27) and we therefore examine the fixed points

of g ∈ G̃ on Fd.

Gauss [Ga] determined the number of fixed points of ′ in Fd. He discovered that Fd forms an

abelian group under his law of composition. In terms of the group law, Φ′ = Φ−1 for Φ ∈ Fd. Hence

the number of fixed points of ′ (which he calls ambiguous forms) in Fd is the number of elements of

order (dividing) 2. Furthermore Fd/F2
d is isomorphic to the group of genera (the genera are classes

of forms with equivalence being local integral equivalence at all places). Thus the number of fixed

points of ′ in Fd is equal to the number of genera, which in turn he showed is equal to the number

ν(d) defined earlier. For an excellent modern treatment of all of this see [Ca].

Consider next the involution ∗ on Fd. If b ∈ Z and b ≡ d(2) then the forms [−1, b, d−b2

4 ] are all

equivalent and this defines a class J ∈ Fd. Using composition one sees immediately that J2 = 1,

that is J is ambiguous. Also applying composition one finds that

J [a, b, c] = [−a, b,−c] = [a, b, c]
∗
. (37)

That is the action of ∗ on Fd is given by Φ → ΦJ . Thus ∗ has a fixed point in Fd iff J = 1, in which

case all of Fd is fixed by ∗.

To analyze when J = 1 we first determine when J and 1 are in the same genus (i.e. the principal

genus). Since [1, b, b2−d
4 ] and [1,−b, b2−d

4 ] are in the same genus (they are even equivalent) it follows

that J and 1 are in the same genus iff f = [1, b, b2−d
4 ] and −f are in the same genus. An examination

of the local genera (see [Ca pp 339]) shows that there is an f of discriminant d which is in the same

genus as −f iff d ∈ DR. Thus J is in the principal genus iff d ∈ DR. (38)

To complete the analysis of when J = 1, note that this happens iff [1, b, b2−d
4 ] ∼ [−1, b d−b2

4 ].

That is [1, b, b2−d
4 ] ∼ (det w) σ(w)[1, b, b2−d

4 ]. Alternatively, J = 1 iff f = (det γ) σ(γ)f with f =

[1, b, b2−d
4 ] and det γ = −1. According to (35) this is equivalent to d ∈ D−

R . Thus ∗ fixes Fd iff J = 1

iff d ∈ D−
R and otherwise ∗ has no fixed points in Fd. (39)

We turn to the case of interest, that is the fixed points of − on Fd. Since − is the (mapping)

composite of ∗ and ′ we see from the discussion above, that the action Φ −→ −Φ on Fd when
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expressed in terms of (Gauss) composition on Fd is given by

Φ −→ J Φ−1 . (40)

Thus the reciprocal forms in Fd are those Φ’s satisfying

Φ2 = J . (41)

Since J2 = 1, these Φ’s have order dividing 4. Clearly, the number of solutions to (41) is either 0

or #{B|B2 = 1}, that is, it is either 0 or the number of ambiguous classes which we know is ν(d).

According to (38) if d /∈ DR then J is not in the principal genus and since Φ2 is in the principal

genus for every Φ ∈ Fd, it follows that if d /∈ DR then (41) has no solutions. On the other hand,

if d ∈ DR then we remarked earlier that d = 4a2 + b2 with (a, b) = 1. In fact there are 2ν(d) such

representations with a > 0. Each of these yields a form f = [a, b,−a] in Fd and each of these is

reciprocal by S0. Hence for each such f, Φ = f̄ satisfies (41), which of course can also be checked

by a direct calculation with composition. Thus for d ∈ DR, (41) has exactly ν(d) solutions. In fact,

the 2ν(d) forms f = [a, b,−a] above project onto the ν(d) solutions in a two-to-one manner. To see

this, recall (15′), which via the correspondence n, asserts that every reciprocal g is equivalent to an

f = [a, b, c] with a = c. Moreover, since [a, b,−a] is equivalent to [−a,−b, a] it follows that every

reciprocal class has a representative form f = [a, b,−a] with (a, b) ∈ Cd. That is (a, b) −→ [a, b,−a]

from Cd to Fd maps onto the ν(d) reciprocal forms. That this map is two-to-one follows immediately

from (16) and the correspondence n. This completes our proof of (3) and (8). In fact (15′) and (16)

give a direct counting argument proof of (3) and (8) which does not appeal to the composition group

or Gauss’ determination of the number of ambiguous classes. The statements (i) and (ii) on page

7 follow from (41) and (39). If d ∈ D−
R then J = 1 and from (41) the reciprocal and ambiguous

classes coincide. If d ∈ D+
R then J 0= 1 and according to (14) the reciprocal classes constitute a fixed

(non-identity) coset of the group A of ambiguous classes in Fd.

To summarize we have the following: The primitive hyperbolic conjugacy classes are in 1-1

correspondence with classes of forms of discriminants d ∈ D. To each such d, there are h(d) = |Fd|
such classes all of which have a common trace td and norm ε2

d. The number of ambiguous classes for

any d ∈ D is ν(d). Unless d ∈ DR there are no reciprocal classes in Fd while if d ∈ DR then there are

ν(d) such classes and they are parametrized by Cd in a two-to-one manner. If d /∈ D−
R , there are no

inert classes. If d ∈ D−
R every class is inert and every ambiguous class is reciprocal and vice-versa.

For d ∈ D−
R , C−

d parametrizes the G fixed classes.

Here are some examples:
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(i) If d ∈ DR and Fd has no elements of order four, then d ∈ D−
R (this fact seems to be first noted

in [Re1]). For if d ∈ D+
R then J 0= 1 and hence any one of our ν(d) reciprocal classes is of order

four. In particular, if d = p ≡ 1(4), then h(d) is odd (from the definition of ambiguous forms

it is clear that h(d) ≡ ν(d)( mod 2)) and hence d ∈ D−
R . That is t2− pu2 = −4 has a solution

(this is a well-known result of Legendre).

(ii) d = 20 = 5 × 4. η20 = 4+
√

20
2 , ε20 = 18+4

√
20

2 , 20 ∈ D−
R and ν(20) = h(20) = 2. The

distinct classes are [1,−4,−1] and [2,−2,−2]. Both are ambiguous, reciprocal and inert. The

corresponding classes in ρ are









1 4

4 17









Γ

and









5 8

8 13









Γ

.

(iii) d = 52 = 13×4. This is similar to (ii) except that the units are bigger. 52 ∈ D−
R , η52 = 36+5

√
52

2 ,

ε52 = 1298+180
√

52
2 , ν(52) = h(52) = 2. The distinct classes are [1, 6,−4] = [3,−4,−3] and

[2,−6,−2]. Both classes are ambiguous, reciprocal and inert. The corresponding classes in ρ
are 








289 540

540 1009









Γ

and









109 360

360 1189









Γ

.

(iv) d = 221 = 13 × 17 ∈ D+
R , η221 = ε221 = 15+

√
221

2 , ν(221) = 2 while h(221) = 4. The distinct

classes are [1, 13,−13], [−1, 13, 13], [5, 11,−5] and [5,−11,−5]. The first two classes are the

ambiguous ones while the last two are the reciprocal ones. There are no inert classes. The

composition group is cyclic of order 4 with generator either of the reciprocal classes. The two

genera consist of the ambiguous classes in one genus and the reciprocal classes in the other.

The corresponding reciprocal classes in ρ are









2 5

5 13









Γ

and









13 5

5 2









Γ

.

The two-to-one correspondence from C221 to ρ has (5, 11) and (7, 5) going to the first class

and (5,−11) and (7,−5) going to the second class.
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(v) Markov discovered an infinite set of elements of Π all of which project entirely into the set

F3/2, where for a > 1 Fa = {z ∈ F ; y < a} and F is the standard fundamental domain for Γ.

These primitive geodesics are parametrized by positive integral solutions m = (m0, m1, m2) of

m2
0 + m2

1 + m2
2 = 3 m0m1m2 . (41′)

All such solutions can be gotten from the solution (1, 1, 1) by repeated application of the

transformation (m0, m1, m2) → (3m1m2 − m0, m1, m2) and permutations of the coordinates.

The set of solutions to (41′) is very sparse ([Za]). For a solution m of (41′) with m0 ≥ m1 ≥
m2 let u0 be the (unique) integer in (0, m0/2] which is congruent to εm̄1m2(mod m0) where

ε = ±1 and m̄1m1 ≡ 1(mod m0). Let v0 be defined by u2
0 + 1 = m0v0, it is an integer since

(m̄1m2)2 ≡ −1(modm0), from (41′). Set fm to be [m0, 3m0 − 2u0, v0 − 3u0] if m0 is odd and
1
2 [m0, 3m0 − 2u0, v0 − 3u0] if m0 is even. Then fm ∈ F and let Φm = f̄m ∈ F . Its discriminant

dm is 9m2
0 − 4 if m0 is odd and (9m2

0 − 4)/4 if m0 is even. The fundamental unit is given by

εdm = (3m +
√

dm)/2 and the corresponding class in Π is {pm}Γ with

pm =




u0 m0

3u0 − v0 3m0 − u0



 . 41′′

The basic fact about these geodesics is that they are the only complete geodesics which project

entirely into F3/2 and what is of interest to us here, these {pm}Γ are all reciprocal (see [C-F

page 20] for proofs).

m = (1, 1, 1) gives Φ(1,1,1) = [1, 1,−1], d(1,1,1) = 5, ε5 = (3+
√

5)/2 while η5 = (1+
√

5)/2.

Hence d5 ∈ D−
R and Φ(1,1,1) is ambiguous and reciprocal. The same is true for m = (2, 1, 1) and

Φ(2,1,1) = [1, 2,−1].

m = (5, 2, 1) gives Φ(5,2,1) = [5, 11,−5] and d(5,2,1) = 221. This is the case considered in

(iv) above. Φ(5,2,1) is one of the two reciprocal classes of discriminant 221. It is not ambiguous.

For m 0= (1, 1, 1) or (2, 1, 1), ηdm = εdm and since Φm is reciprocal we have that dm ∈ D+
R and

since Φm is not ambiguous, it has order 4 in Fdm .

We turn to counting the primes {p} ∈ ΠH , for the subgroups H of G. The cases H = {e} and 〈φw〉
are similar in that they are connected with the prime geodesic theorems for Γ = PSL(2, Z) and

PGL(2, Z) [ He ].
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Since t(p) ∼ (N(p))1/2 as t(p) −→∞,

Π{e} (x) =
∑

t(p)≤ x
{p}∈Π

1 ∼
∑

N(p)≤ x2

{p}∈Π

1 . (42)

According to our parametrization we have

∑

N(p)≤ x2

{p}∈Π

1 =
∑

d∈D
εd ≤ x

h(d) . (43)

The prime geodesic theorem for a general lattice in PSL(2, R) is proved using the trace formula,

however for Γ = PSL(2, Z) the derivation of sharpest known remainder makes use of the Petersson-

Kuznetzov formula and is established in [L-S]. It reads

∑

N(p)≤ x
{p}∈Π

1 = Li(x) + O(x7/10) . (44)

Hence

Π{e}(x) ∼
∑

d∈D
εd ≤ x

h(d) ∼ x2

2 log x
as x −→∞ . (45)

We examine H = 〈φw〉 next. As x −→∞,

Π〈φw〉(x) =
∑

t(p)≤ x
{p}∈Π〈φw〉

1 ∼
∑

N(p)≤ x2

{p}∈Π〈φw〉

1 . (46)

Again according to our parametrization,

∑

N(p)≤ x2

{p}∈Π〈φw〉

1 =
∑

d∈D−
R

εd ≤ x

h(d) . (47)

Note that if p ∈ P and φw({p}) = {p} then w−1p w = δ−1pδ for some δ ∈ Γ. Hence w δ−1

is in the centralizer of p in PGL(2, Z) and det(wδ−1) = −1. From (36) it follows that there is a

unique primitive h ∈ PGL(2, Z), det h = −1, such that h2 = p. Moreover, every primitive h with

det h = −1 arises this way and if p1 is conjugate to p2 in Γ then h1 is Γ conjugate to h2. That is

∑

N(p)≤ x2

{p}∈Π〈φw〉

1 =
∑

N(h)≤ x
{h}Γ

det h =−1

1 , (48)
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where the last sum is over all primitive hyperbolic elements in PGL(2, Z) with det h = −1, {h}Γ

denotes Γ conjugacy and N(h) =
√

N(h2). The right hand side of (48) can be studied via the trace

formula for the even and odd part of the spectrum of Γ\H ( [Ve ] pp 138-143). Specifically, it

follows from ([Ef] pp 210) and an analysis of the zeros and poles of the corresponding Selberg zeta

functions Z+(s) and Z−(s) that

B(s) := Π
{h}Γ, det h=−1

h primitive

(
1−N(h)−s

1 + N(h)−s

)
(49)

has a simple zero at s = 1 and is homomorphic and otherwise non-vanishing in 2(s) > 1/2.

Using this and standard techniques it follows that

∑

N(h)≤ x
det h=−1
{γ}Γ

1 ∼ 1

2

x

log x
as x −→∞ . (50)

Thus

Π〈φw〉(x) ∼
∑

d∈D−
R

εd ≤ x

h(d) ∼ x

2 log x
as x −→∞ . (51)

The asymptotics for Π〈φR〉, Π〈φA〉 and ΠG all reduce to counting integer points lying on a quadric

and inside a large region. These problems can be handled for quite general homogeneous varieties

([D-R-S], [E-M]), though two of the three cases at hand are singular so we deal with the counting

directly.

Π〈φR〉(x) =
∑

{γ}∈Π〈φR〉
t(γ)≤ x

1 =
∑

td ≤ x
d∈DR

ν(d) . (52)

According to (16) every γ ∈ R is conjugate to exactly 4 primitive symmetric γ ∈ Γ. So
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Π〈φR〉 (x) = 1
4

∑

t(γ)≤ x
γ ∈P
γ = γt

1

∼ 1
4

∑

N(γ)≤ x2

γ ∈P
γ = γt

1 .

(53)

Now if γ ∈ P and γ = γt, then for k ≥ 1, γk = (γk)t and conversely if β ∈ Γ with β = βt, β

hyperbolic and β = γk
1 with γ1 ∈ P and k ≥ 1, then γ1 = γt

1. Thus we have the disjoint union

∞⊔

k=1

{γk : γ ∈ P, γ = γt}

=





γ =





a b

c d



 ∈ Γ : t(γ) > 2 , γ = γt






=









a b

b d



 : ad− b2 = 1 , 2 < a + d, a, b, d ∈ Z




 . (54)

Hence as y −→∞ we have,

ψ(y) := #




γ =




a b

b d



 ∈ Γ : 2 < t(γ) ≤ y






∼ #




γ =




a b

b d



 ∈ Γ : 1 < N(γ) ≤ y2






=
∞∑

k=1

#
{
γ ∈ P : γ = γt , N(γ) ≤ y2/k

}

= #{γ ∈ P : γ = γt , N(γ) ≤ y2} + O(ψ(y) log y)) . (55)

Now γ −→ γtγ maps Γ onto the set of

[
a b
b d

]
, ad− bc = 1 and a+d ≥ 2, in a two-to-one manner.
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Hence

ψ(y) =
1

2

∣∣ {
γ ∈ Γ : trace (γtγ) ≤ y

} ∣∣ − 1 . (56)

This last is just the hyperbolic lattice point counting problem (for Γ and z0 = i) see ([Iw] pp 192)

from which we conclude that as y −→∞,

ψ(y) =
3

4
y + O(y2/3) . (57)

Combining this with (55) and (53) we get that as x −→∞

Π〈φR〉(x) ∼
∑

d∈DR
εd ≤ x

ν(d) ∼ 3

16
x . (58)

The case H = 〈φA〉 is similar but singular. Firstly one shows as in (16) (this is done in

([Ca] pp 341) where he determines the number of ambiguous forms and classes) that every p ∈ P

which is ambiguous is conjugate to precisely 4 primitive p’s which are either of the form

w−1p w = p−1 (59)

or

w−1
1 p w1 = p−1 with w1 =

[
1 0
1 −1

]
, (60)

called of the first and second kind respectively.

Correspondingly we have

∑

d∈D
εd ≤ x

ν(d) ∼ Π〈φA〉(x) = Π(1)
〈φA〉(x) + Π(2)

〈φA〉(x) . (61)

An analysis as above leads to

Π(1)
〈φA〉 (x) ∼ 1

4
#

{
a2 − bc = 1 ; 1 < a <

x

2

}
=

1

4

∑

1<a< x
2

τ(a2 − 1) (62)

where τ(m) = # of divisors of m.

The asymptotics in (62) was investigated first by Ingham. We use the more flexible result in

([D-F-I] pp 211) from which we derive (with a small remainder if desired)

Π(1)
〈φA〉(x) ∼ 3

4π2
x(log x)2 as x −→∞ . (63)
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Π(2)
〈φA〉(x) is a bit messier and reduces to counting

1

4
#

{
(m, n, c) : m2 − r = n(n− 4c) , 2 < m ≤ x

}
. (64)

This is handled in the same way and if I made no arithmetic mistakes, yields

Π(2)
〈φA〉(x) ∼ 85

16π2
x(log x)2 . (65)

Putting these together gives,

∑

d∈D
εd ≤ x

ν(d) ∼ Π〈φA〉 (x) ∼ 47

8π2
x(log x)2 as x −→∞ . (66)

Finally we consider H = G. According to the parametrization we have

ΠG(x) =
∑

{p}∈ΠG
t(p)≤ x

1 =
∑

d∈D−
R

td ≤ x

ν(d) ∼
∑

d∈D−
R

εd ≤ x

ν(d) . (67)

As in the analysis of Π〈φR〉 and Π〈φA〉 we conclude that

ΠG(x) ∼ 1

4
#

{
γ =

[
a b
b c

]
∈ PGL(2, Z); det γ = −1 , 2 < a + c ≤

√
x

}
. (68)

Or what is equivalent after a change of variables:

ΠG(x) ∼ 1

4

∑

m≤
√

x

rf (m
2 + 4) (69)

where rf (t) is the number of representations of t by f(x1, x2) = x2
1 + 4x2

2. This asymptotics can be

handled by one of a number of methods, for example [Ho1] and yields

∑

d∈D−
R

εd ≤ x

ν(d) ∼ ΠG(x) ∼ c1

√
x log x . (70)

Here c1 is a positive constant that I didn’t calculate.

Returning to our enumeration of geodesics, note that one could order the elements of Π according

to the discriminant d in their parametrization and ask about the corresponding asymptotics. This

is certainly a natural question and one that was raised in Gauss (see [Ga] §304).
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For H a subgroup of G define the counting functions ψH corresponding to ΠH by

ψH(x) =
∑

d∈D
d≤ x

# {Φ ∈ Fd : h(Φ) = Φ , h ∈ H} . (71)

Thus according to our analysis

ψ{e}(x) =
∑

d∈D
d≤ x

h(d) (72)

ψ〈φA〉 (x) =
∑

d∈D
d≤ x

ν(d) (73)

ψ〈φR〉 (x) =
∑

d∈DR
d≤ x

ν(d) (74)

ψ〈φw〉 (x) =
∑

d∈D−
R

d≤ x

h(d) (75)

ψG(x) =
∑

d∈D−
R , d≤x

ν(d) . (76)

The asymptotics here for the ambiguous classes was determined by Gauss ([Ga] §301), though

note that he only deals with forms [a, 2b, c] and so his count is smaller than (73). One finds that

ψ〈φA〉 (x) ∼ 3

2π2
x log x , as x −→∞ . (77)

As far as (74) goes, it is immediate from (1) that

ψ〈φR〉 (x) ∼ 3

4π
x , as x −→∞ . (78)

The asymptotics for (72) and (75) are notoriously difficult problems. They are connected with

the phenomenon that the normal order of h(d) in this ordering appears to be not much larger than

ν(d). There are Diophantine heuristic arguments that explain why this is so [Ho2], [Sa2], however

as far as I am aware, all that is known are the immediate bounds

(1 + o(1))
3

2π2
x log x ≤ ψ{e}(x) 3 x3/2

log x
. (79)

The lower bound coming from (77) and the upper bound from the asymptotics in [Sie],
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∑

d∈D
d≤ x

h(d) log εd =
π2

18ζ(3)
x3/2 + O(x log x) .

In [Ho2] a precise conjecture is made;

ψ{e} (x) ∼ c2 x(log x)2 . (80)

The difficulty with (76) lies in the delicate issue of the relative density of D−
R in DR. See the

discussions in [Lag] and [Mor] concerning the solvability of (9). In [Re2], the two component of Fd

is studied and used to get lower bounds of the form; Fix t a large integer, then

∑

d∈D+
R

d≤ x

1 and
∑

d∈D−
R

d≤ x

1 4
t

x(log log x)t

log x
. (81)

On the other each of these is bounded above by
∑

d∈DR
d≤ x

1, which by Landau’s thesis or the half-

dimensional sieve is asymptotic to c3 x
/√

log x. (81) leads to a corresponding lower bound for ψG(x).

The result [Re2] leading to (81) suggest strongly that the proportion of d ∈ DR which lie in D−
R is in

(
1
2 , 1

)
(In [St] a conjecture for the exact proportion is put forth together with some sound reasoning).

It seems therefore quite likely that

ψG(x)

ψ〈φR〉 (x)
−→ c4 as x −→∞ , with

1

2
< c4 < 1 . (82)

It follows from (78) and (79) that it is still the case that zero percent of the classes in Π are

reciprocal when ordered by discriminant, though this probability goes to zero much slower than when

ordering by trace. On the other hand, according to (82) a positive proportion, even perhaps more

than 1/2, of the reciprocal classes are ambiguous in this ordering, unlike when ordering by trace.

I end with some comments about the question of the equidistribution of closed geodesics as

well as some comments about higher dimensions. To each primitive closed p ∈ Π we associate the

measure µp on X = Γ\H (or better still, the corresponding measure on the unit tangent bundle

Γ\SL(2, R)) which is arc length supported on the closed geodesic. For a positive finite measure µ
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let µ̄ denote the corresponding normalized probability measure. For many p’s (almost all of them

in the sense of density, when ordered by length) µ̄p becomes equidistributed w.r.t. dA = 3
π

dxdy
y2 as

0(p) → ∞. However, there are at the same time many closed geodesics which don’t equidistribute

w.r.t dA as their length goes to infinity. The Markov geodesics (41′′) are supported in F3/2 and so

cannot equidistribute w.r.t dA. Another example of singularly distributed closed geodesics is that

of the principal class 1d (∈ Π), for d ∈ D of the form m2 − 4, m ∈ Z. In this case εd = (m +
√

d)/2

and its easily seen that µ̄1d
→ 0 as d → ∞ (that is all the mass of the measure corresponding to

the principal class escapes in the cusp of X). On renormalizing one finds that for K and L compact

geodesic balls in X, lim
d→∞

µ1d
(L)

µ1d
(K) →

Length(g ∩L)
Length(g ∩K) , where g is the infinite geodesics from i to i∞.

Equidistribution is often restored when one averages over naturally defined sets of geodesics. If

S is a finite set of (primitive) closed geodesics, set

µ̄S =
1

0(S)

∑

p∈S

µp

where 0(S) =
∑
p∈S

0(p).

We say that an infinite set S of closed geodesics is equidistributed w.r.t. µ when ordered by length

(and similarly for ordering by discriminant) if µ̄SX → µ as X → ∞ where

SX = {p ∈ S : 0(p) ≤ x}. A fundamental theorem of Duke [D] asserts that the measures µFd

for d ∈ D become equidistributed w.r.t. dA as d →∞. From this, it follows that the measures

∑

t(p) = t
p∈Π

µp =
∑

td = t
d∈D

µFd

become equidistributed w.r.t. dA as t →∞. In particular the set Π of all primitive closed geodesics

as well as the set of all inert closed geodesics become equidistributed as the length goes to infinity.

The set P of reciprocal geodesics also becomes equidistributed (the proof I have in mind uses

the parametrization (1) coupled with the spectral methods mentioned on page 14). However, the

set of ambiguous geodesics does not become equidistributed w.r.t. dA. The extra log’s in the

asymptotics (63) give a hint that these may have some singular behavior. Also the ambiguous

classes are algebraically close to the principal class, being the square roots of the latter, so it is

not too surprising that they retain some of the features of the latter. Specifically, one can show
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elementarily using (59) and (60) that a positive proportion of the measure of the ambiguous classes

escapes in the cusp.

The distribution of these sets of geodesics is somewhat different when we order them by dis-

criminant. Indeed at least conjecturally they should be equidistributed w.r.t. dĀ. We assume the

following normal order conjecture for h(d) which is predicted by various heuristics [Sa2], [Ho2]; For

α > 0 there is ε > 0 s.t.

#{d ∈ D : d ≤ x and h(d) ≥ dα} = O
(
x1−ε

)
. (83)

According to the recent results of [Po] and [H-M], if h(d) ≤ dα0 with α0 = 1/5297 then every closed

geodesic of discriminant d becomes equidistributed w.r.t. dĀ as d −→∞. From this and Conjecture

(83) it follows that each of our sets of closed geodesics, including the set of principal ones, becomes

equidistributed w.r.t. dĀ, when ordered by discriminant.

An interesting question is whether the set of Markov geodesics is equidistributed w.r.t. some

measure ν when ordered by length (or equivalently by discriminant). The support of such a ν would

be one dimensional (Hausdorff). One can also ask about arithmetic equidistribution (eg congruences)

for Markov forms and triples. Gamburd and myself are preparing a paper which investigates this

question.

The dihedral subgroups of PSL(2, Z) are the maximal elementary noncyclic subgroups of this

group (an elementary subgroup is one whose limit set in R ∪ {∞} consists of at most 2 points). In

this form one can examine the problem more generally. Consider for example the case of the Bianchi

groups Γd = PSL(2, Od) where Od is the ring of integers in Q(
√

d), d < 0. In this case, besides the

issue of the conjugacy classes of maximal elementary subgroups, one can investigate the conjugacy

classes of the maximal Fuchsian subgroups (that is subgroups whose limit sets are circles or lines in

C ∪ {∞} = boundary of hyperbolic 3-space H3). Such classes correspond precisely to the primitive

totally geodesic hyperbolic surfaces of finite area immersed in Γd\H3. As in the case of PSL(2, Z),

these are parametrized by orbits of integral orthogonal groups acting or corresponding quadrics (see

Maclachlan and Reid [M-R]). In this case one is dealing with an indefinite integral quadratic form

f in four variables and their arithmetic is much more regular than that of ternary forms. The

parametrization is given by orbits of the orthogonal group Of (Z) acting on Vt = {x : f(x) = t}
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where the sign of t is such that the stabilizer of an x(∈ Vt(R)) in Of (R) is not compact. As is shown

in [M-R] using Siegel’s mass formula (or using suitable local to global principles for spin groups in

four variables (see [J-M]) the number of such orbits is bounded independent of t (for d = −1, there

are 1,2 or 3 orbits depending on congruences satisfied by t). The mass formula also gives a simple

formula in terms of t for the areas of the corresponding hyperbolic surface. Using this, it is straight

forward to give an asymptotic count for the number of such totally geodesic surfaces of area at most

x, as x → ∞ (i.e. a “prime geodesic surface theorem”). It takes the form of this number being

asymptotic to c.x with c positive constant depending on Γd. Among these, those surfaces which are

noncompact are fewer in number being asymptotic to c1x/
√

log x.

Another regularizing feature which comes with more variables is that each such immersed geodesic

surface becomes equidistributed in the hyperbolic manifold Xd = Γd\H3 w.r.t. dṼol, as its area goes

to infinity. I know of two ways of proving this. The first is to use Maass’ theta correspondence

together with bounds towards the Ramanujan Conjectures for Maass forms on the upper half plane,

coupled with the fact that there is basically only one orbit of Of (Z) on Vt(Z) for each t (see the

paper of Cohen [C] for an analysis of a similar problem). The second method is to use Ratner’s

Theorem about equidistribution of unipotent orbits and that these geodesic hyperbolic surfaces are

orbits of an SOR(2, 1) action in Γd\SL(2, C) (see the analysis in Eskin-Oh [E-O]).

With best regards,

Peter
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[Re1] L. Rédei, Acta. Math. Sci. Hung., 4, (1953), 31-87.
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