
Restriction Theorems and Appendix 1 & 2

Letter to: Andrei Reznikov - (June, 2008)

Peter Sarnak

Dear Andrei,

Your lecture at Courant last week raised some interesting points and I looked briefly
at one of them (see 4 below) as well as the connection to L-functions (Appendix 2).

1. In general “the convexity bound”is not a well defined concept though I think we
might say that we recognize it when we see it.In the case of automorphic L-functions
the notion is exact and I believe that everyone is satisfied with it. For the setting
of restrictions to a submanifold of eigenfunctions on a Riemannian manifold, the
general (and lovely I might add) results of Burq-Gerard and Tzvetkov [Duke Math
Jnl, Vol. 138, 2007, 445-] generalizing the results from your paper [“Norms of
geodesic restrictions .....representation theory” - Arxiv, 2004 ] are clearly what one
should call the “convexity” bounds. They are sharp for the n-sphere and are also
sharp in terms of applying to functions in the spectral projection in the range
|
√

(−∆) − t| < 1 (what one might call a weak quasi-mode - see (*) below for a
slight strengthening). That is they are really norm bounds for the projectors in
Lp spaces and in the above range they are sharp for any manifold .So improving
on these (with a power saving) in a rank 1 locally symmetric space case,without
assuming something like Hecke eigenfunctions is very interesting. I don’t recall
any such known improvements for these kind of questions and since these are
sharp, any exponent improvement appears to me to broaching the multiplicity
issue.For example your results with Bernstein [“Subconvexity bounds for triple
L-functions and representation theory” - Arxiv, 2006] on the size of integrals of
triple products of eigenfunctions and Nalini Ananthraman’s [“Entropy and local-
ization of eigenfunction” Annals of Math, (to appear)] results on concentration,
apply equally well for such projection operators or to weak quasi-modes.

2. In higher rank symmetric spaces for simultaneous eigenfunctions of the full ring
of commuting differential operators, the convexity bounds are sharper than those
of B-G-T. For the case of restriction to a point (or what is the same K-periods
where K is the maximal compact subgroup of the isometry group) my letter to
Cathleen Morawetz (see www.math.princeton.edu/sarnak) clarifies this point and
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describes what the improved “convexity bound” is. It is sharp in a suitable joint
spectral projection and is sharp on the corresponding globally compact Rieman-
nian symmetric space. Generalizing the B-G-T analysis to this higher rank locally
symmetric setting for other submanifolds (ie not points) would be interesting and
I think would define what is meant by the geometric convexity bound in higher
rank. As pointed out in my letter and as you pointed out in your lecture and is
also evident in your work with Bernstein, the geometric notion of convex bound
rarely agrees with the L-function notion of convex bound (when such period for-
mula are available). Over the years it has become clear that the cases of L-infinity
norms of eigenfunctions on negatively curved surfaces, ternary quadratic forms,
QUE via Watson and Rankin Selberg, which were the instances of subconvexity
for L-functions that drew me into this subject, are not typical.

3. My understanding from your lecture is the following. You are dealing with a quo-
tient of the upper half plane and restrictions of eigenfunctions to closed geodesics.
The above convexity bound for the L2 norm for this restriction is O(t1/4) [here t is√

λ] and you can improve this in the exponent without any Hecke or arithmetic as-
sumptions. This seems quite strong to me since your result cannot be valid for the
projector on the spectral range in (1)-ie for a weak quasi-mode.You also mentioned
that in the case that the surface is congruence and the eigenfunction is Hecke, then
you Philippe and Akshay can show that the bound O(tε) is valid.

4. To understand (3) above I looked at the case of the restriction to a fixed closed
horocycle (eg in the modular group case). This allows one to diagnose where the
issues are because these Fourier coefficients and their relation to Hecke operators,
are very familiar (as compared to the special value of L-function formulae). You
made some brief comments about this case in you paper [“norms ...theory 2004]
and B-G-T gives the same sharp bound that is: the convexity bound for this L2

restriction is O(t1/6).

In terms of Fourier coefficients, the proof boils down to estimation of the sums of
absolute squares of Fourier coefficients and of sizes of the Bessel functions Kit(ny).
Since there is no cancellation involved this is mostly manageable. The exponent
1/6 comes from the behavior of K in in the transitional range when |t−ny| < t(1/3)

and where the Airy function enters [I have learned to respect this feature having
blundered with it in my L-infinity paper Iwaniec, our correction is at the end of
my letter to Cathleen. This transion range is also the source of the finite analogue
of Kuznetzov’s 1/6 in cancellations in sums of Kloosterman sums -see my paper
with Tsimerman at www.math.princeton.edu/sarnak].

To improve on 1/6 in the fashion that you do in (3) above one needs to show
that the coefficients don’t put a large mass in the range: n lying in [t − t(1/3),
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t + t(1/3)]. Without any multiplicity hypothesis this seems problematic to me,
especially as the 1/6 bound is sharp when dealing with the projector. So that
improving this bound means that one has to exploit the difference between a weak
quasi-mode and a genuine eigenfunction.

Now assume that the original eigenfunction is a Hecke eigenfunction. Then as you
point out in [“norms ...” ] one can use known bounds on Fourier coefficients to
prove that the restriction of φ to the given closed horocycle has L2 norm bounded
by t(ε). What you don’t say and what I find is needed in order to make this
deduction from the Fourier coefficient analysis,are the results of Kim and Shahidi on
the L(s, φ, sym4) together with analytic techniques from the theory of L-functions
giving uniform bounds on sums over the coefficients to the power 4. In fact one
can go further if one assumes the Ramanujan Conjectures for Maass forms and also
that the Rankin Selberg L-functions L(s, φ× φ), satisfy a subconvex bound in the
tj aspect. With these one can show that

the L2 restrictions of φ to the horocycle are uniformly bounded.

It doesn’t seem out of the question that one could drop one or both of these
assumptions in deriving this result. This is a very strong form of QUE, it clearly
implies that for fattened up box [y1, y2]× [0, 1], a quantum limit gives measure at
most a fixed constant times the mass of the box. In fact it is clear that the L2 norms
of these restrictions should be converging to an explicit constant as the eigenvalue
goes to infinity. I don’t quite see how to deduce the last from a subconvex bound for
the Rankin Selberg L-function . In fact in this situation one might conjecture that
for each integer p,the integral of φ of (φ)p over the fixed horocycle converges to the
p− th moment of a Gaussian,as the eigenvalue goes to infinity. And hence that the
restriction of φ to the closed horocycle becomes Gaussian as the eigenvalue goes to
infinity. In fact Hejhal and Rackner [exp. math. vol. 1 (1992), 275-305] suggest as
much and check this numerically in their numerical investigation of the Gaussian
behavior of φ when considered as a function on the whole manifold. In this latter
case, I am not sure if one can improve (assuming some higher rank subconvexity)
my theorem with Watson that the L4 norm of such a φ is at most tε [see BAMS
Vol. 40 (2003) 441-478], to being uniformly bounded.For unitary Eisenstein Series
(properly normalized) the uniform boundedness of L4 norms was established by
Spinu in his thesis (which I am afraid is still not prepared for publication).

5. It is instructive to examine the similar restriction problem for holomorphic forms
of weight k (as is familiar the parameter k here plays the plays the role of t in the
above). That is say for X = SL(2, Z)\H, f(z) a holomorphic cusp form of weight
k normalized so that yk.|f(z)|2 has mass 1 over X. Now consider the problem of
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restriction of f to a closed horocycle C. The asymptotics as k goes to infinity of
yk.exp(−y) localizes for y in an interval of length

√
k about k and is quite different

to the Bessel function localization. As a consequence the convexity bound for the
L2 restriction to C is k(1/4) unlike the Maass form case. This is sharp for weak-quasi
modes which in this case means it is sharp for holomorphic modes (the projection
onto the range [k − 1/2, k + 1/2] consists of exactly of the holomorphic modular
forms of weight k whose dimension is correspondingly k/12). If we assume that f
is a Hecke form then as in (4) one can show that this L2 restriction has norm at
most kε. It is worth noting that since the corresponding range of summation of the
squares of the Fourier coefficients that needs to be estimated in this case is shorter,
ie [k −

√
(k), k +

√
(k)], one needs to resort to the full force of Delignes’ bounds

for the coefficients in these cases, in order to make the kε estimate. Because of
this short range issue it is not possible (as far as I can see) to deduce the uniform
boundedness of the L2 restriction to C, using subconvexity for the Rankin-Selberg
L-functions L(s, f × f). Still I believe that the restriction of such Hecke-eigen
holomorphic forms to closed horocycles have a similar behavior to the Maass forms.

6. In any case the analogue these sharper results and phenomenon for restrictions of
Hecke eigenfunctions to closed horocycles should be valid for restrictions to closed
geodesics as well. A proof of the uniform boundedness in L2 of the restriction to a
closed geodesic would establish a very strong and new form of non-scarring for the
eigenfunctions.

7. The uniform bound of L2 restrictions is even a delicate business for a flat torus. B-
G-T ask if for the standard flat torus the L2 restriction of an eigenfunction to a fixed
curve is uniformly bounded. I looked at this for the case that curve is a geodesic
segment and found after some analysis and reductions that this is equivalent to the
question of whether there is a universal constant K such that for any arc of length√

R of any circle radius R centered at 0,the number of integer lattice points on the
arc is bounded by K. Apparently this is not a trivial problem, it was raised in
Cilleruelo and Cordoba [Proc. Amer. Math. Soc., 115, (1992), 899-905] where it
shown that for acrs of length R(α) with α < 1/2 this is true. They suggested that
for α = 1/2 there is no uniform bound K but in more recent papers Granville and
Cilleruelo [“Close lattice points on circles”, to appear in the Canadian Journal of
Math] conjecture the opposite is true. So it seems that even what to expect here
is not clear.

Best regards,
Peter
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Added:

1. Clarification of weak-quasi modes: In the setting of negatively curved manifolds
the notion of weak quasi-mode should be strengthened a bit to accommodate the
fact that using microlocal analysis one can analyze sums over the spectrum with

|tj − t| < b
/

log(t) (*)

where b is a positive constant depending on the manifold. This smaller projection
leads to the small improvements(i.e. logarithmic but not in the exponent) in bounds
for eigenfunctions on such manifolds. For example the L-infinity convex bound of
t(1/2) on such a surface can be improved to t

1
2

/
(log t) and this is sharp for this

stronger notion of weak-quasi-mode. Similarly Nalini’s work makes critical use of
this smaller window.I checked that the convex bound t(1/6) in (5) above is still sharp
(up to log factors)for quasi-modes in this smaller range and I expect that the same
is true for the other restriction theorems.

2. Restrictions and periods in the Hecke case: Ichino showed me today his very recent
work with Gan establishing a new case of Gross-Prasad, that is for H = SO(4)
periods in G = SO(5) (both defined over Q say). We then looked for applications
of this to restrictions. I expect the following is a good approximation to the Hecke
(i.e. adelic but I restrict to fixed level Γ) story for restrictions for this and some
other cases (there are also similar cases of restrictions to SL((n − 1) in SL(n)
associated with converse theorems of twisting by GL(n− 1)).

In general these period formulae take the shape: H is a subgroup of G (defined over
Q) with H(R) intersect Gamma finite volume in H(R) which we view as cycle C
in X = Γ\G(R)/K (and I stick to everything invariant on the right under maximal
compacts).

The period formulae give the Integral over C of |φ × ψ(h)|2 as being an explicit
expression in terms of special values (Rankin Selberg) COMPLETED L-functions.
Here φ is a form on X and ψ on C and both are L2 normalized. Thus by Plancherel,
the L2 norm of the restriction to C of φ is explicitly a weighted nonnegative sum of
special values of L-functions. The weighting is determined from the archimedian
factors in the L-functions and is easily computed with Stirling. By breaking into
pieces at appropriate scales [more than just dyadic depending on the archimedian
weights in these formulae and here we abandon any attempt to get uniform bounds
for the L2 restriction but are satisfied with things up to t(ε)], we are left with
establishing Lindelof on average over various ranges of the parameters. In some
examples such a piece can consist of a very small ranges -thus essentially requiring
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(much as I found in the example (6) with holomorphic forms and pretty much
needing the full full force of Deligne there)the full Lindeloff to get the desired
sharp bound. In any case the following is clearly always true in these situations
and in full generality:

Assuming Lindelof one can understand the L2 restriction story that is: One gets
the the sharp (up to ε) bound for the L2 restriction of the (varying) form φ, to C.

In many cases the weightings are such that we can prove Lindelof unconditionally
on average over the ranges in question (this is just like point (5) above where we
get by without the full knowledge of Ramanujan for Maass forms) and hence one
proves a tε bound for the restriction .

The examples based on such period formula that I know (with the new one from
Ichino yesterday) are as follows :

(a) Take G = SL(2), and H = K (or the stabilizer of any CM point on the
modular curve). In this case C is a point. Then viewing this as an G = SO(3)
and H = SO(2) case, the above formulae is due to Waldpurger and the sum
reduces to a single L-function and we find that Lindelof and the L-infinity
conjecture for restriction (ie evaluation)at CM points, are equivalent. So this
is the hardest case. I pointed to this analysis in my Schur lectures some time
ago.So for this case there is no averaging and certainly t(ε) is not something we
can realistically contemplate proving. Also in this case the restriction is not
uniformly bounded in L2(C). The method to show this that is discussed near
the end of my letter to Cathleen was developed much further in the thesis of
Milicevic [Princeton, 2006] who obtains rather sharp lower bounds for these
special CM points.

(b) As above but H is SO(1, 1). If the SO(1, 1) is split over Q then C is a
geodesic running from one cusp to another [in this case H intersect Γ is not
finite volume in H but this should only spoil things logarithmically], and the
period formula in question is just Hecke’s integral formula (φ is a cusp form)
against the character ys, re(s) = 0. Plancherel converts the L2 restriction to
C to a weighted mean-square over |v| << t of the |L(1/2+iv, φ)|2. The weight
scales like the analytic conductor and one can show that the L2 restriction is
at most tε.

(c) As above but the SO(1,1) is not split over Q. Then C is a closed geodesic. In
this case the period formula is again that of Waldpurger. From your lecture
this is the case that Philippe and Akshay and you have handled. I assume that
this is done by establishing Lindelof on average over the ranges that present
themselves.I look forward to seeing the details.
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(3) G is SO(4) and H is SO(3). Depending on splitting over Q we get different
cases.

(a) If G splits as an SO(2, 2) or SL(2)×SL(2) and H is SL(2) embedded diago-
nally, then if φ is f ×f , with f and eigenfunction on SL(2), the L2 restriction
of φ to H is the the L4 norm of f !. The period formula in this case is Watson’s
formula and the above general method is is exactly the way that Watson and
I established that the L4 norm of f is at most tε. It is in the short ranges over
which the corresponding triple product L-functions need to be averaged that
we freely used the Ramanujan Conjectures for GL(2) and the reason that I
stated this theorem in my BAMS article as conditional on Ramanujan. At
the time I felt one could probably get by without this and had planned to try
do so when (if ever) I write this up.In Spinu’s case of unitary Eisenstein series
this wasn’t an issue since these obey Ramanujan (but there is a deeper reason
connected with averaging over families of L-function which factor as absolute
squares that makes his case much easier).

(b) G is is SO(3, 1)/R and H is the maximal compact subgroup. Then X is a hy-
perbolic three manifold and C is a point (an arithmetic ”CM like point”).This
is the case that I discussed from various points of view in my letter to Cath-
leen. One of the view points is to use Jacquet-Lapid and Offen’s formula
which gives the period to L-function formula. The result is that φ restricted
to C is zero if φ is not a base change and if it is then it is given by the value
of a finite L-function at s = 1 times t1/2. So in this case the L2 restriction to
C is not small and it is well understood.

(c) If G is SO(3, 1)/R and H is SO(2, 1). In this case X is again a hyperbolic
three manifold and C is totally geodesic closed hyperbolic surface in X. The
period formula in this case has been established by Ichino “Trilinear forms
and central values of triple product L-functions” to appear in DMJ. I expect
(or should I say it would be nice) that the analysis of the averaging of L-
functions used in (a) above will apply here (the average is again an SL(2)
spectral average and one can use Kuznetzov if at least H is split over Q).
This should yield (again under GL(2) Ramanujan) that the L2 restriction of
φ on X to C is bounded by tε.

(4) G = SO(5) and H is SO(4). The period formula is the new Gross-Prasad formula
that Ichino and Gan have just established. There are again many cases according
to splittings but the one that attracts me (I like hyperbolic spaces!) is G equal to
SO(4, 1)/R and H is SO(3, 1)/R. Then C is is a totally geodesic closed hyperbolic
three manifold in X. I would hope (this time expect is too strong) that one can do
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the spectral L-function averages over this hyperbolic three manifold to establish
again that the L2 restriction to C is bounded by tε.

(5) For more general cases of the Gross-Prasad formula for H = SO(n), G = SO(n +
1), n > 4 should they be proved, the true size of the restriction to the H cycle
can be understood assuming Lindelof. However, to establish the sharp bound
unconditionally will require at least averaging L-functions over families of forms in
a genuinely higher rank group which is a separate challenge .

June 30, 2008: gpp


