AFTERNOON SEMINAR

Orbital integrals of spherical functions

J. Rogawski

Let E/F be an unramified quadratic extension of p-adic fields.
Let G be the special unitary group in 3 variables with respect to E/F
1

defined by the form ¢ = (] -1 '). Let K be the maximal compact subgroup of

integer matrices in G. Let

and set KH = H N K. The map

@ : LH > LG

gives a homomorphism ?* :#G - }(H where %G and ){H are the Hecke
algebras of G and H with respect to K and KH respectively.

There is a unique stable class {T}St of CSG's of G which consists
of elliptic tori that split over E. 1In these notes, we show that the transfer
factors AG(Y), AH(y), t(y) defined in previous notes do in fact give a
transfer of orbital integrals for spherical functions and the class {T}st.
The remaining classes of elliptic CSG's will be dealt with in a lecture
of Kottwitz.

The conjugacy classes within {T}st are parametrized by Hl(gf,T),
where ? = {1,0} 1is the Galois group of E/F. Let A be the diagonal subgroup

of G and let 7 be a fixed prime element in F. We have H](%I,T) =

7/2 ® 1/2 and the four conjugacy classes within {T}St are defined by the



four cocycles with values in the normalizer N(A) of A in G(F):

To obtain a representative for the conjugacy class defined by a cocycle a;s
we write a, = g_lo(g) for some g € G(F) and take T = gAg—] (T 1is defined
over F, although Yy ~> gyg-l, vy € A, 1is not defined over F).

Let Ti be a representative for the class defined by the cocycle

a We choose T, and T inside H (this is possible since a

Os3° 0 3 a,0

and a lie in H). Let &. € G(F) be such that &§.T 671 =T.. We
i 17071 1

0,3

define the unstable orbital integral for Y € Té:

5 5 5
ST/K(y,£) = B(y,E) - Oy LE) = B(y 2,8) + 0(y *,6)

where 0(x,f) = [, £( -]x )dg for x elliptic regular and dg is chosen
o £(g x8

so that meas(K) = 1. For functions on H, we define
/1 %3
@H (y,£) = @H(Y,f) + @H(Y ,£)
where the measure on H is normalized so that meas(KH) = . We want to

prove the following.
Theorem: For all v € Té and f G&?( ,

T/ T/1

. (v, P (5.

T(Y)AG(Y)® (v,£) = AH(Y)®

*
The map & is defined in terms of the Satake transform. For

A €2, set



a(i)

1]
—

-

Aa)) [ g al0g)de.

A\’

Ff(x)

The Satake transform f' of f € J(h may be viewed as a function on elements
Y x Fr € Ly vwhere Y € LAO and Fr 1is a Frobenius element. As such, it
can be written in the form

£ (yxFr) = | F OOAY)
AeZ

where A(y) means Aag(y) and o' 1is the co-root corresponding to the root

3
Qqe Let nj = mug + m(ag)—]. Since Fe is invariant under the Weyl group,
£V is a finite linear combination of the nj (j=0,1,...) and )(é is

isomorphic to the algebra spanned by the nj. Let Hnj denote n.

]
regarded as an element in the range of the Satake transform of J(H. By

definition of &, we have:

: 1 ] x Fr} = [a i l x Fr
¢ ! o

* .
from which it follows that @ (nj) = (-1)7 Hnj. Set

Hh
]

char. fn. of Ka(A)K

rh
[

A char. fn. of KHa(X)KH.

The next lemma follows easily, either by direct calculation or by MacDonald's

formula.



Lemma 1:
2 2 22—
D) f;=qknk+qx(1—l3) z nj+q>”(1—-1-) z n; (Ny o)
=) T 3Ea(2)
0<j<h 0<j<A
A-1
2) B oM s dfa-b row, (3>0)
)\. X q . J
i=0
* A H LA G2 E
: J
q” j=0
S.
To prove the theorem, we shall calculate Q(Y’fk)’ d(y J,fx) for
all )\ and check that the values we obtain compare favorably with the known

g/l(y,fo) through the formula 3) above.

values of ¢
As explained in Kottwitz's lecture, Q(Y’fk) is given combinatorially

in terms of the Bruhat-Tits building associating to G. The building X 1is

a tree with two G-conjugacy classes of vertices. We call the vertices

conjugate to the vertex defined by K hs-vertices and call the remaining

vertices s-vertices. Each hs-vertex has q3+l s-neighbors and each

s-vertex has q+1 hs-neighbors. Thus, for q =2, the tree is as follows:



where the o are hs-vertices and the x are s-vertices. For vertices
p,q € X, let d(p,q) denote one-half the number of chambers that lie on a
geodesic joining p and gq; a chamber is an edge o°—x. The next lemma

is a trivial calculation.
Lemma: For y elliptic regular,
Q(Y’fk) = FA(Y)

where FX(Y) is the number of hs-vertices p € X such that d(yp,p) = A.
Let T be an elliptic Cartan subgroup. Then T is contained in

some maximal compact subgroup of G and thus T fixes some vertex Py € X.

The set Fix(y) of fixed points of an element <y € T 1is a connected

neighborhood of Py* If vy 1is regular, Fix(y) is finite and

FO(Y) = 0y, fy).

Let Nhs(y) be the number of paths in X of the fellowing type:

The path begins at Py» ends at an s-vertex p' which is not fixed by v,

but p € Fix(y). Similarly, let NS(Y) be the number of paths

with p € Fix(y) and p' ﬁ Fix(y). As the following diagram indicates:



FX(Y) is determined by Nhs(y) for A even, A # 0 and by Ns(y) for

A odd. The next lemma follows easily from the structure of the tree.

Lemma 2: q N s(y) A even

A odd.

We- first calculate FO(Y). Let Y1sYp0Y3 be the eigenvalues of

Y € TO. Since T, & H, we may choose Y2 so that

0
£ 0 %
Y = Yz
0 *

Let val : E' > I be the valuation map and set m, = val(l-agl(y)) where
al(Y) = YI/YZ’ az(y) = Y2/Y3» and a3(y) = Y]/Y3 (the ambiguity in the

labelling of Y, and vy, will not matter).

Proposition 1: Let Yy € T0 be regular, Set m = min(m],mz,mB), n =

max(m],m ), and let

273
1 if m=n (2)

S(y) =
0 if m#n (2).



a) Fo(y) is equal to

m my Tyt
451 2 q
-(g+1) 27 q°(q+1) m+n m+n | (q+1)
- - (-1 — + §(y) ——F— .
4 -1 q-1
q -1 q -1
<S3
b) FO(Y ) 1is given by the following formulas
-1
$ 4144
(1) If w #wmy,then Fo(y ) = (g 2 —1)‘*—*—’——]—

S
(ii) If m,=w, ,then F,(y 3) is equal to

m, +m,+m

L 11Ty
—(2"‘1) -q 2 q [ES+]) + (_])m+nqm+n __}_]_ + (]‘S(Y)) q 1 (q+l)
q -1 q -1 q q-

. . . T
With this proposition, we can compute @ /x

(Y,foé. 1f m,m, ,my
are the integers attached to vy, set Fj(ml’mZ’mB) = FO(Y J), where we
let 60 = |. The proof cf the proposition shows that Fz(ml,mz,mB) =

F3(m3,m2,ml) and Fi(ml,mz,m3) = F3(m1,m3,m2). We must calculate
Fo(m],mz,m3) - F3(m3,m2,ml) - F3(m],m3,m2) + F3(m],m2,m3).
The three possibilities are
(a) m, > m, = mg (b) my > m, =m, (c) m, > m = m,.

Case (a): We are reduced to Fo(ml,mz,m3) - F3(m3,m2,ml). After cancelling

off equal terms, we get



m +m, m_+m,+m m_+m, m_ +m
1772 B MM g4 1) 17 ™ 2{ 1 ]
(=1) = - 2(-1 —
1 a-1) -0 d q-1

Case (b): The constant terms cancel and the highest order term is

m]+m2+m3 .l
q (%:T). The intermediate terms are as follows:
4[21( 2
- q 27|9(g+D) _ _jymtn menf 1
Fo(m],mz,m3) q 7 (-1)" q )
q -1
ar® Ly, o
- F,(m,,m,,m,) ¢ - g 2 q+l1 _
3V7322y 4
kq -14
m= 1
4[—1+4 3
- F,(m,,m_ ,m,) : - q 2 q*!
3173220 4
\q -1
4[21( 2
F,(m,,m,,m,) : - g 279" (g#1) + (_l)m+nqm+n " .
37177273 4 gq-1
q -1
The sum of these intermediate terms is
m m-1 m, +m
_2(q+]) 4[7]+2+ 4['—2—-]+4] } _2q2m(q+l) ] _2q 1 2(q+1)
qa_l q q q_] q—l

Case (c): We are reduced to Fo(m],mz,m3) - F3(m],m3,m2) and the answer is

the same as case (a). To summarize, we have the next proposition.

Progosition 2: For vy € TO regular,



This Proposition gives the theorem for fO = f; it 1is clear that

m,+m T/I

! and it is known that @H

t(y) = (-1)
-1, "3
(g-1) "(q “(q+1)-2).

(Y,Hfo) is equal to

Proof of Proposition 1: Since TO splits over E, we may choose g € SL3(C95)
1

so that gA(E)g = TO(E), where O is the ring of integers in E. Suppose

E
that vy € A(E) and gyg_1 € T, Then a vertex p 1is fixed by vy 1if and

only if gyg_] fixes gp. Let Py be the vertex associated to K and
assume that TO C K, which we may up to conjugacy. An hs-vertex of X is

of the form 8XP, for some x € SLB(E); gxP, lies in X 1if and only if
G(gxpo) = gxp,y.  Now, G(gxpo) = Bxp, if and only if

x (g7 o(g))o(x) € SL4(07) and since g 'o(g)

w, this is the condition
(*) bx e SLB(CY ).

E
By the Iwasawa decomposition, we may choose x wupper-triangular. Let

*
a,b,c € E

]

[}
o
O O —
o - N
—_— N

X,¥s2 & E.

A calculation shows that this x satisfies (%) if the following six

quantities lie in C7 :

E
1) aa 4) bb + aaxx
2) aax 5) bbz + aayx
3) aay 6) cc + bbzz + aayy.

Now let
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N\

d -j -4

s I 81 il €2
= -]

X 1 0 1 kit 83
4o 0 1

where d = a non-negative integer, 0 < j < d, and the ej are zero or lie

. * . o . . -
in C’E' Then x satisfies (%) if and only if the two conditions

-j _
D 1o (egre e,) € O];

2) Tr-Zd(1+Tr2d_2jN(e3)+N(€2)) € 0;

are satisfied, and if x,x' are of this form, Xpy = x'pO only when

j 2(d~}) 24
() € - €, =T JE‘(€3'~ g€;) (W )

ti
Q]

oot (]
€, = € (m) €,

(N(a) denotes the norm from E to F). Furthermore, for x of this form,
d(xpo,po) =d.
We will now describe the qu(1+ -%J points at a distance d

q
from Py in X by writing them as g x Py with x in the above form.

-1 (ﬂ2d

a) j =0; take e, =¢, =0 and N(ez)

: ). We obtain qu(1+ %)

points this way.

b) j = d; take € = (—€3/€2) so that 1) 1is satisfied and choose €, SO

that N(Ez) 2 -1 (m);

then ¢4 is taken to be a unit satisfying 2). There are qad(l— —%) -
q
q4d-2(1+ %) = q4d(]— %._ J%) choices for €y and qu(l+ %) choices for
q
€3- Dividing by q2d to account for redundancies, we obtained
q4d(l— 2. jL) points in this way.

2 3
q q



1

C) j = 1,...’d - 1; take €] = (—83/62) so that ]) is SatiSfiEd and
TTZ(d-J)N(€3) + N(ez) =0 (n2d). We must require

TT2(d—_‘1)+]

pick €9 and e3 so that 1 +

that N(€2) = -1 (ﬂz(d_j)) and N(Ez) Z -1 ( ). Then 2) 1is satisfied

by 24y, %)(ql;j_ql;j—-l)

choices of €, and qzj(l+ é& choices of €qe
Dividing by qzj to account for redundancies, we obtain q2d+2j(1+ %)%\-%)
q2d+2j(l— —%)(1+ é& points. Summing over j gives (l+ é)(qu—z—l)qu
points. ¢

For each of the points of the form p Xp with x 1in the above

form, we may consider the points w,p where

01 0 -100
Wy o= 10 0 Wy = 001,
00 -1 01

In cases a) and c¢) this leads to new points (by a lengthy but straight-

forward calculation) and gV XD, is F-rational if 8XD is because
i

t .
wow, = 1. Hence we have described a total of

q4d(l— I _2_) + 3q2d(l+ l) + 3(1+ l)(qu—z_])qu = q4d(l+ -1—-)
q2 q3 b 4 q3

points of the form p = Xpy or wjxpo such that 8XPg is an F-rational
point of X and d(gxpo,po) = d. This must therefore be all p € X such

that d(gxpo,po) = d.

Let vy be the standard roots. If

i
<
N

and let al,aZ,QB
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voa=alox Gl oy + @ ) - o] e

vy a7 lyn = |0 I (1-03 (1))

0 0 i

Assume that g\{g_1 €T and let

m.

-] - ]
(l—aj ¥)) = nj

€ O

If x =an, a € A, n € N, then vy fixes Xp if and only if y—ln-lyn € KA N.

Suppose that

nd 1 W—JEI ﬂ-2d€2
a = i n=i0 1 T e
3
-d 0 0 i

with- n of the type described above. Then if vy fixes anp the following

inequality holds:

2(d-3) 2(d-J)+m1-m3

(%) val(N(e,)+m N(eg)-n npn; N(e) > 24 - m

3

Furthermore, it is easily checked that

1) m, > my => my = m,
ii) m <mg =>m =m,
iii) m, = my => m, Z_m] = mg.

We consider the cases separately.
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1) m, > my:  then Y fixes anp, if and only if 24 < m; and 0<] < my.

1

2) my < my: then y fixes anp, if and only if either

m
i) 2d -2j+m, -my, >2d - m ji—zl,2d<m3, and

1 3 3° =
0 < j< m,, oOr
ii) 24 > My 2d - 27 + m - my = 0 and
my-m, -1 2d—m3
N(ey) + m N(€3) - N N3 N(ey) = 0 (m ).
This occurs only when m, = mg (2) and
m m,+m
d=[—§3-]+l,..o’ 123 .
3) m = gl then <y fixes anp, if and only if either
i) 2d < mg and 0 < j <m or
ii) 0<d=] <m and
-1
va1(N(e2)+(l—n]n3 N(e3)) > 24 - mg.
When d # j, we have to consider the points ijpO for j = 1,2 also;

this amounts to replacing vy by wijgl and using the above conditions.
Suppose first that m, 3 my and let m = min(ml,m3),

n = max(ml,m3). Then the number of fixed points is equal to

(3] (5] 3
) c14d(1+ ——]5-) + ) q2d ) qzj(l— Lz)(l+ %) + (1+ %) (a)
d=1 q d=[%l']+l j=1 q

We obtain:
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4[274+2 m_+m
F.(y) = —(g+=q ’ CLADA L if m, Z m (2)
oY 4 q-1 2 ¥ 03 °
qg -1
If m, = m, (2) and m, = m, we obtain the number (a) plus
an additional
m+n a
2 m+2[=]
1,2 2d
(1+ a—) qm z q = (__g::)(qn+2m_o’ 2 )
d=[%]+1
points. We obtain
4[%]+2 m, +m, m, +m,+m,
-(q+1)-q (q+1) ¢q q (q+1)
F = - = = .
0(y) q4-1 =T * -~ if m = my, My = m
The only remaining case is m, > m, = m,. We obtain
4[3]+2 m +m
~(qg+D-q > (g#D) g ' 2
+ if m, Zm (2)
4 gq-1 2
q -1
4[21+2 m,+m m, +m,+m
-(q+1)-q 2 (g+1) q '@ ? q 2 3(q+1)
- + if m, = m (2).
4 q-1 q~1 2
q ~1
The result is as stated in part a) of Proposition 1.
Now we have to compute the fixed points for vy € Tj, j = 1,2,3. We
will see that the cases T, and T, can be easily reduced to the case of

1 2

T3, so we deal now with this case where we may assume that T3 is

associated to the cocycle
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a =w 1 and that gAg-] = T. Let CYA
m

be the apartment in X
associated to A, and let Py/2 be the unique s-vertex fixed by a5 (we
may assume that T stabilizes pl/Z)' As in the previous case, we will
describe the hs-vertices p such that gp 1is F-rational in the form Xp

and then compute the fixed points of gyg_l by determining whether or not

vy fixes Xpy:

d -j -2d-1
gl 17 7 €y
Let a = 1 and n = |0 1 ﬂ_Je3 s J = 04l1y...,d,
nd o o 1
where €. € OE or €j = 0. The point ganp is F-rational if and only if
tEm|" 1 (an) € SL3(0E) which is equivalent to the requirements

-1
m

-j —
1y = (€3+€1€2) € OE'

2) 1297124723 g yaNge,)) € o,
3 2 E
We always take ¢, = -(€3/€2).
a) j =0: take €, = € = 0 and N(ez) B —1(ﬂ2d+1). We obtain q2d(q+])
points in this way.
b) 0 < j < d: choose €, such that N(€2) -1(n2d_23+1) and
N(Ez) F2 —1(ﬂ2d_23+2), and €q satisfying 2). We obtain a total of
q2d+2]+](]- —%J(l+ %) points in this way.
q
Adding cases a) and b), we obtain a description for
d .
q2d+1(1+ é& + q2d+1(1+ é&(l— —%) z qzé = qad(q+l) points. Furthermore, all

q- j=0

points obtained in this way satisfy d(p,pl/z) =d + (where d(p,q) =

1
2
half the number of chambers separating p and gq). Since exactly q4d(q+1)
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points satisfy d(p,p,,,) = d + l, this must be all of them.
y 1/2 2

To reduce the cases of T1 and T2 to T3, we remark that vy

fixes Xp, if and only if wijgl fixes wjxpo. Choose gj (j=1,2) so
that ngggl = Tj° Then the number of fixed points of glyg;1 equals the
number for gwj_ywzlg—1 and the number for gzyg;] equals the number for
-1 -1
gw,Yyw, & -
Suppose gyg-1 € Ty and let W, M, 5 My be as before. Then if

gyg_] fixes anp with an of the usual form so that ganp, is

F-rational, the following inequality holds:

. 2d=2j+1+m_-m
2d=-23+1 - 173 _
(%) val(N(€2)+ﬂ N(€3)‘ﬂlﬂ3 i N(€3)) >2d + 1 - m,.

There are two cases to consider:

a) m, > mg! then 2d <mg - 1 and 0 < j f_mln(m],mz).
. V m,~-1 m,
b) m, < mgi (1) 0<] f.mln(ml,mz), d <= and j < 5 or
(ii) 24 + 1 > mg, 0<j i_mln(ml,mz), 2(d-j) + 1 = mg - m,
2d-2k+1 -1
and V(N€2+TT Ne3-n]n3 Ne3) >2d + 1 - my

((ii) occurs only when m, 4 m3(2).)

The number of fixed points in the two cases is

m,~1
3 m,—1
==, Pt N
a) ] q (e =L—(q -1).
d=0 q -1
m m,—-1 m
[— R [
4d 2 2d 23 i
B) 1 q g+ s ] @ + T Pl@rna- =) +
d=0 j=0 q
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(if m % my(2))

m]+m3—1
2 m, +1+2d
1,2 1
+ (1+ =)
( 4 E q
m,-1
_r. 3
d=[ 5 J+1
4 ml
_(q+1)_q2(q+1q4[?r] qml+m3
+ if m, = m,(2)
4 g-1 1 3
q -1
= <
ml]
4{— m,+m
2 2 173 2m,+m
-(q+1)-q"(gq+1)q _q q+1 173 .,
q4-] =1 + —1 ¢ if m, # m3(2).

To obtain the theorem for fx, A# 0,

Nhs(y) and NS(Y). It is known that

A+m
/1, H,, M3
(Y’ f>\) = q (1+ q).

%

The next lemma follows from Lemma 1.

Lemma 3:

22 +m ~(m,+1)
3 1 1 1 3
1+ — 1+ — + ~—)=2
q (1+ q)(( + q + 2) q

q

22+m,-1 -m
1
e > (= D(1-29 3

\

o1y, 9" (5 = 1
)

S

K

1 2
For Y € T,, regular, let Nhs(y) = Nhs(y) - Nhs(y ) - Nhs(y ) + Nhs(y

< S S S
and NS(y) = N_(y) - N _(y

the next proposition.

) A even

A odd.

$

$

it is necessary to compute

3

1) - NS(Y 2) + NS(Y 3). The result is equivalent to
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Proposition 3: Let Y € TO be regular.

m_ 4m. m_ +m.+m ~(m,+1)
2 N (=¢n' Zgl? 33D e L v Ly2g 3 )
s q q2
m. +m m_+m,.+m =
b) Ny =D V2?2 3gena-2q D).

The computations required to verify this proposition can be
carried out using the description of the fixed points of Yy given in the
proof of Proposition. According to Kottwitz's lecture, we can alternatively
compute the number of s-vertices fixed by the stable conjugates of v,
for a simple argument shows that Nhs and Ns can be expressed in terms of

the numbers of fixed s and hs-vertices. A computation of the number of

fixed s-vertices will be given in subsequent notes.



