AFTERNOON SEMINAR

Orbital integrals of spherical functions

J. Rogawski

Let E/F be an unramified quadratic extension of p-adic fields. Let G be the special unitary group in 3 variables with respect to E/F defined by the form $\Phi = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$. Let K be the maximal compact subgroup of integer matrices in G. Let

$$\mathbf{H} = \left\{ \begin{pmatrix} \star & 0 & \star \\ 0 & \star & 0 \\ \star & 0 & \star \end{pmatrix} \in \mathbf{G} \right\}$$

and set $K_H = H \cap K$. The map

$$\varphi : {}^{L}_{H} \hookrightarrow {}^{L}_{G}$$

gives a homomorphism $\varphi^*:\mathcal{H}_G\to\mathcal{H}_H$ where \mathcal{H}_G and \mathcal{H}_H are the Hecke algebras of G and H with respect to K and K_H respectively.

There is a unique stable class $\{T\}_{st}$ of CSG's of G which consists of elliptic tori that split over E. In these notes, we show that the transfer factors $\Delta_{G}(\gamma)$, $\Delta_{H}(\gamma)$, $\tau(\gamma)$ defined in previous notes do in fact give a transfer of orbital integrals for spherical functions and the class $\{T\}_{st}$. The remaining classes of elliptic CSG's will be dealt with in a lecture of Kottwitz.

The conjugacy classes within $\{T\}_{st}$ are parametrized by $H^1(\mathcal{J},T)$, where $\mathcal{J}=\{1,\sigma\}$ is the Galois group of E/F. Let A be the diagonal subgroup of G and let π be a fixed prime element in F. We have $H^1(\mathcal{J},T)=\mathbf{Z}/2$ and the four conjugacy classes within $\{T\}_{st}$ are defined by the

four cocycles with values in the normalizer N(A) of A in $G(\overline{F})$:

$$a_{\sigma,0} = w$$
 $a_{\sigma,1} = w \begin{bmatrix} \pi^{-1} \\ \pi \\ 1 \end{bmatrix}$ $a_{\sigma,2} = w \begin{bmatrix} 1 \\ \pi^{-1} \\ \pi \end{bmatrix}$ $a_{\sigma,3} = w \begin{bmatrix} \pi^{-1} \\ 1 \\ \pi \end{bmatrix}$.

To obtain a representative for the conjugacy class defined by a cocycle a_{σ} , we write $a_{\sigma} = g^{-1}\sigma(g)$ for some $g \in G(\overline{F})$ and take $T = gAg^{-1}$ (T is defined over F, although $\gamma \to g\gamma g^{-1}$, $\gamma \in A$, is not defined over F).

Let T_i be a representative for the class defined by the cocycle $a_{\sigma,j}$. We choose T_0 and T_3 inside H (this is possible since $a_{\sigma,0}$ and $a_{\sigma,3}$ lie in H). Let $\delta_i \in G(\overline{F})$ be such that $\delta_i T_0 \delta_i^{-1} = T_i$. We define the unstable orbital integral for $\gamma \in T_0'$:

$$\Phi^{T/k}(\gamma, f) = \Phi(\gamma, f) - \Phi(\gamma^{\delta_1}, f) - \Phi(\gamma^{\delta_2}, f) + \Phi(\gamma^{\delta_3}, f)$$

where $\Phi(x,f) = \int_G f(g^{-1}xg)dg$ for x elliptic regular and dg is chosen so that meas(K) = 1. For functions on H, we define

$$\Phi_{\mathrm{H}}^{\mathrm{T/1}}(\gamma, f) = \Phi_{\mathrm{H}}(\gamma, f) + \Phi_{\mathrm{H}}(\gamma^{\delta}_{3}, f)$$

where the measure on H is normalized so that $meas(K_H) = 1$. We want to prove the following.

Theorem: For all $\gamma \in T_0'$ and $f \in \mathcal{H}_G$,

$$\tau(\gamma) \Delta_{\mathbf{G}}(\gamma) \Phi^{\mathbf{T}/\kappa}(\gamma, \mathbf{f}) = \Delta_{\mathbf{H}}(\gamma) \Phi_{\mathbf{H}}^{\mathbf{T}/1}(\gamma, \boldsymbol{\varphi}^{\star}(\mathbf{f})).$$

The map $\boldsymbol{\phi}^{\star}$ is defined in terms of the Satake transform. For λ $\boldsymbol{\epsilon}$ \boldsymbol{z} , set

$$a(\lambda) = \begin{bmatrix} \pi^{\lambda} \\ 1 \\ \pi^{-\lambda} \end{bmatrix}$$

$$F_{f}(\lambda) = \Delta(a(\lambda)) \int_{A}^{G} f(g^{-1}a(\lambda)g) dg.$$

The Satake transform $f^{\mathbf{v}}$ of $f \in \mathcal{H}_G$ may be viewed as a function on elements $\gamma \times \mathrm{Fr} \in {}^L\!\mathrm{A}$ where $\gamma \in {}^L\!\mathrm{A}^0$ and Fr is a Frobenius element. As such, it can be written in the form

$$f^{\mathbf{V}}(\gamma \times Fr) = \sum_{\lambda \in \mathbf{Z}} F_{f}(\lambda)\lambda(\gamma)$$

where $\lambda(\gamma)$ means $\lambda\alpha_3^{\rm V}(\gamma)$ and $\alpha_3^{\rm V}$ is the co-root corresponding to the root α_3 . Let $\eta_j = m\alpha_3^{\rm V} + m(\alpha_3^{\rm V})^{-1}$. Since F_f is invariant under the Weyl group, $f^{\rm V}$ is a finite linear combination of the η_j (j=0,1,...) and \mathcal{K}_G is isomorphic to the algebra spanned by the η_j . Let ${}^{\rm H}\eta_j$ denote η_j regarded as an element in the range of the Satake transform of \mathcal{K}_H . By definition of $\boldsymbol{\varphi}$, we have:

$$\varphi\left(\begin{bmatrix} a & & & \\ & 1 & & \\ & & a^{-1} \end{bmatrix} \times \operatorname{Fr}\right) = \begin{bmatrix} a & & \\ & 1 & \\ & & -a^{-1} \end{bmatrix} \times \operatorname{Fr}$$

from which it follows that $\varphi^*(\eta_j) = (-1)^{j} \eta_j$. Set

$$f_{\lambda}$$
 = char. fn. of Ka(λ)K

$$H_{f_{\lambda}} = char. fn. of K_{H}a(\lambda)K_{H}.$$

The next lemma follows easily, either by direct calculation or by MacDonald's formula.

Lemma 1:

1)
$$f_{\lambda}^{\mathbf{v}} = q^{2\lambda} \eta_{\lambda} + q^{2\lambda} (1 - \frac{1}{q^3}) \sum_{\substack{\mathbf{j} \equiv \lambda(2) \\ 0 < \mathbf{j} < \lambda}} \eta_{\mathbf{j}} + q^{2\lambda - 1} (1 - \frac{1}{q}) \sum_{\substack{\mathbf{j} \not\equiv \lambda(2) \\ 0 < \mathbf{j} < \lambda}} \eta_{\mathbf{j}} \qquad (\lambda > 0)$$

3)
$$\varphi^*(f_{\lambda}) = (-1)^{\lambda} q^{\lambda} f_{\lambda} + (1 - \frac{1}{q^2})^{\lambda - 1} \int_{j=0}^{\lambda - 1} (-1)^{j} q^{2\lambda - j} f_{j}.$$
 (\lambda > 0).

To prove the theorem, we shall calculate $\Phi(\gamma,f_{\lambda})$, $\Phi(\gamma^{\delta}j,f_{\lambda})$ for all λ and check that the values we obtain compare favorably with the known values of $\Phi_{H}^{T/1}(\gamma,^{H}f_{\lambda})$ through the formula 3) above.

As explained in Kottwitz's lecture, $\Phi(\gamma, f_{\lambda})$ is given combinatorially in terms of the Bruhat-Tits building associating to G. The building X is a tree with two G-conjugacy classes of vertices. We call the vertices conjugate to the vertex defined by K hs-vertices and call the remaining vertices s-vertices. Each hs-vertex has q^3+1 s-neighbors and each s-vertex has q+1 hs-neighbors. Thus, for q=2, the tree is as follows:

where the \circ are hs-vertices and the x are s-vertices. For vertices $p,q \in X$, let d(p,q) denote one-half the number of chambers that lie on a geodesic joining p and q; a chamber is an edge -x. The next lemma is a trivial calculation.

Lemma: For γ elliptic regular,

$$\Phi(\gamma, f_{\lambda}) = F_{\lambda}(\gamma)$$

where $F_{\lambda}(\gamma)$ is the number of hs-vertices $p \in X$ such that $d(\gamma p, p) = \lambda$.

Let T be an elliptic Cartan subgroup. Then T is contained in some maximal compact subgroup of G and thus T fixes some vertex $\mathbf{p}_0 \in \mathbf{X}$. The set $\mathrm{Fix}(\gamma)$ of fixed points of an element $\gamma \in \mathbf{T}$ is a connected neighborhood of \mathbf{p}_0 . If γ is regular, $\mathrm{Fix}(\gamma)$ is finite and $\mathrm{F}_0(\gamma) = \Phi(\gamma, \mathbf{f}_0)$.

Let $N_{hs}(\gamma)$ be the number of paths in X of the following type:

The path begins at p_0 , ends at an s-vertex p' which is not fixed by γ , but $p \in Fix(\gamma)$. Similarly, let $N_s(\gamma)$ be the number of paths

$$p_0$$
 p p'

with $p \in Fix(\gamma)$ and $p' \not \models Fix(\gamma)$. As the following diagram indicates:

 $F_{\lambda}(\gamma)$ is determined by $N_{hs}(\gamma)$ for λ even, $\lambda \neq 0$ and by $N_{s}(\gamma)$ for λ odd. The next lemma follows easily from the structure of the tree.

Lemma 2:
$$F_{\lambda}(\gamma) = \begin{cases} q^{2\lambda - 3} N_{hs}(\gamma) & \lambda \text{ even} \\ q^{2\lambda - 2} N_{s}(\gamma) & \lambda \text{ odd.} \end{cases}$$

We first calculate $F_0(\gamma)$. Let $\gamma_1, \gamma_2, \gamma_3$ be the eigenvalues of $\gamma \in T_0$. Since $T_0 \subset H$, we may choose γ_2 so that

$$\gamma = \begin{pmatrix}
* & 0 & * \\
0 & \gamma_2 & 0 \\
* & 0 & *
\end{pmatrix}.$$

Let val: $\mathbf{E}^* \to \mathbf{Z}$ be the valuation map and set $\mathbf{m}_j = \text{val}(1-\alpha_j^{-1}(\gamma))$ where $\alpha_1(\gamma) = \gamma_1/\gamma_2$, $\alpha_2(\gamma) = \gamma_2/\gamma_3$, and $\alpha_3(\gamma) = \gamma_1/\gamma_3$ (the ambiguity in the labelling of γ_1 and γ_3 will not matter).

<u>Proposition</u> 1: Let $\gamma \in T_0$ be regular. Set $m = \min(m_1, m_2, m_3)$, $n = \max(m_1, m_2, m_3)$, and let

$$\delta(\gamma) = \begin{cases} 1 & \text{if } m \equiv n \\ 0 & \text{if } m \not\equiv n \end{cases}$$
 (2)

a) $F_0(\gamma)$ is equal to

$$\frac{-(q+1)}{q^4-1} - q^{4\left[\frac{m}{2}\right]} \frac{q^2(q+1)}{q^4-1} - (-1)^{m+n} q^{m+n} \frac{1}{q-1} + \delta(\gamma) \frac{q^{m}1^{+m}2^{+m}3}{q-1} .$$

b) $F_0(\gamma^{\delta_3})$ is given by the following formulas

(i) If
$$m_1 \neq m_2$$
, then $F_0(\gamma^{\delta_3}) = (q^{\frac{m-1}{2}}] + 4 - 1)^{\frac{q+1}{4}}$

(ii) If
$$m_1 = m_2$$
, then $F_0(\gamma^{\delta_3})$ is equal to

$$\frac{-(q+1)}{q^4-1} - q^{4\left[\frac{m}{2}\right]} \frac{q^2(q+1)}{q^4-1} + (-1)^{m+n} q^{m+n} \frac{1}{q-1} + (1-\delta(\gamma)) \frac{q^m 1^{+m} 2^{+m} 3(q+1)}{q-1}.$$

With this proposition, we can compute $\Phi^{T/K}(\gamma,f_0)$. If m_1,m_2,m_3 are the integers attached to γ , set $F_j(m_1,m_2,m_3)=F_0(\gamma^j)$, where we let $\delta_0=1$. The proof of the proposition shows that $F_2(m_1,m_2,m_3)=F_3(m_3,m_2,m_1)$ and $F_1(m_1,m_2,m_3)=F_3(m_1,m_3,m_2)$. We must calculate

$$F_0(m_1, m_2, m_3) - F_3(m_3, m_2, m_1) - F_3(m_1, m_3, m_2) + F_3(m_1, m_2, m_3).$$

The three possibilities are

(a)
$$m_1 > m_2 = m_3$$
 (b) $m_3 > m_1 = m_2$ (c) $m_2 \ge m_1 = m_3$.

Case (a): We are reduced to $F_0(m_1, m_2, m_3) - F_3(m_3, m_2, m_1)$. After cancelling off equal terms, we get

$$(-1)^{m_1+m_2}q^{m_1+m_2+m_3}\left[\frac{q+1}{q-1}\right] - 2(-1)^{m_1+m_2}q^{m_1+m_2}\left[\frac{1}{q-1}\right].$$

Case (b): The constant terms cancel and the highest order term is $q^{m}1^{+m}2^{+m}3(\frac{q+1}{q-1})$. The intermediate terms are as follows:

$$F_{0}(m_{1}, m_{2}, m_{3}) := q^{4\left[\frac{m}{2}\right]} \left[\frac{q^{2}(q+1)}{q^{4}-1}\right] - (-1)^{m+n} q^{m+n} \left[\frac{1}{q-1}\right]$$

$$-F_{3}(m_{3}, m_{2}, m_{1}) := q^{4\left[\frac{m-1}{2}\right]+4} \left[\frac{q+1}{q^{4}-1}\right]$$

$$-F_{3}(m_{1}, m_{3}, m_{2}) := q^{4\left[\frac{m-1}{2}\right]+4} \left[\frac{q+1}{q^{4}-1}\right]$$

$$F_{3}(m_{1}, m_{2}, m_{3}) := q^{4\left[\frac{m}{2}\right]} \left[\frac{q^{2}(q+1)}{q^{4}-1}\right] + (-1)^{m+n} q^{m+n} \left[\frac{1}{q-1}\right].$$

The sum of these intermediate terms is

$$\frac{-2(q+1)}{q^4-1} \left(q^4 \left[\frac{m}{2} \right] + 2 4 \left[\frac{m-1}{2} \right] + 4 \right) = \frac{-2q^{2m}(q+1)}{q-1} = \frac{-2q^{m}1^{+m}2(q+1)}{q-1}.$$

Case (c): We are reduced to $F_0(m_1, m_2, m_3) - F_3(m_1, m_3, m_2)$ and the answer is the same as case (a). To summarize, we have the next proposition.

<u>Proposition</u> 2: For $\gamma \in T_0$ regular,

$$\Phi^{T/\kappa}(\gamma,f_0) = (-1)^{m_1+m_2} \left(\frac{1}{q-1}\right) \left[q^{m_1+m_2+m_3}(q+1)-2q^{m_1+m_2}\right].$$

This Proposition gives the theorem for $f_0=f$; it is clear that $\tau(\gamma)=(-1)^m1^{+m}2 \quad \text{and it is known that} \quad \Phi_H^{T/1}(\gamma, {}^Hf_0) \quad \text{is equal to} \quad (q-1)^{-1}(q^m3(q+1)-2).$

Proof of Proposition 1: Since T_0 splits over E, we may choose $g \in SL_3(\mathcal{O}_E)$ so that $gA(E)g^{-1} = T_0(E)$, where \mathcal{O}_E is the ring of integers in E. Suppose that $\gamma \in A(E)$ and $g\gamma g^{-1} \in T_0$. Then a vertex p is fixed by γ if and only if $g\gamma g^{-1}$ fixes gp. Let p_0 be the vertex associated to K and assume that $T_0 \subseteq K$, which we may up to conjugacy. An hs-vertex of X is of the form gxp_0 for some $x \in SL_3(E)$; gxp_0 lies in X if and only if $\sigma(gxp_0) = gxp_0$. Now, $\sigma(gxp_0) = gxp_0$ if and only if $x^{-1}(g^{-1}\sigma(g))\sigma(x) \in SL_3(\mathcal{O}_E)$ and since $g^{-1}\sigma(g) = w$, this is the condition (*)

By the Iwasawa decomposition, we may choose x upper-triangular. Let

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} \qquad a,b,c \in E^*$$

$$x,y,z \in E.$$

A calculation shows that this x satisfies (*) if the following six quantities lie in $\mathcal{O}_{\mathtt{F}}$:

1) aa

4) $b\overline{b} + a\overline{a}x\overline{x}$

2) <u>aax</u>

5) $b\overline{b}z + a\overline{a}yx$

3) <u>aay</u>

6) $c\bar{c} + b\bar{b}z\bar{z} + a\bar{a}y\bar{y}$.

Now let

$$\mathbf{x} = \begin{bmatrix} \pi^{\mathbf{d}} & & \\ & \mathbf{1} & \\ & & \pi^{-\mathbf{d}} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \pi^{-\mathbf{j}} \varepsilon_{1} & \pi^{-\mathbf{k}} \varepsilon_{2} \\ 0 & \mathbf{1} & \pi^{-\mathbf{j}} \varepsilon_{3} \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

where d = a non-negative integer, $0 \le j \le d$, and the ϵ_j are zero or lie in \mathcal{O}_E^* . Then x satisfies (*) if and only if the two conditions

1)
$$\pi^{-j}(\varepsilon_3 + \overline{\varepsilon}_1 \varepsilon_2) \in \mathcal{O}_E$$

2)
$$\pi^{-2d}(1+\pi^{2d-2j}N(\epsilon_3)+N(\epsilon_2)) \in \mathcal{O}_E$$

are satisfied, and if x,x' are of this form, $xp_0 = x'p_0$ only when

$$\varepsilon_1 = \varepsilon_1' (\pi^j) \quad \varepsilon_3 \equiv \varepsilon_3' (\pi^j) \quad \varepsilon_2' - \varepsilon_2 \equiv \pi^{2(d-j)} \varepsilon_1(\varepsilon_3' - \varepsilon_3) \quad (\pi^{2d})$$

(N(a) denotes the norm from E to F). Furthermore, for x of this form, $d(xp_0,p_0)=d.$

We will now describe the $\ q^{4d}(1+\frac{1}{q^3})$ points at a distance d from $\ p_0$ in X by writing them as $\ g\times p_0$ with x in the above form.

- a) j = 0; take $\epsilon_1 = \epsilon_3 = 0$ and $N(\epsilon_2) \equiv -1 \ (\pi^{2d})$. We obtain $q^{2d}(1+\frac{1}{q})$ points this way.
- b) j = d; take $\varepsilon_1 = (\overline{-\varepsilon_3/\varepsilon_2})$ so that 1) is satisfied and choose ε_2 so that $N(\varepsilon_2) \not\equiv -1$ (π);

then ε_3 is taken to be a unit satisfying 2). There are $q^{4d}(1-\frac{1}{q^2})-q^{4d-2}(1+\frac{1}{q})=q^{4d}(1-\frac{1}{q}-\frac{2}{q^2})$ choices for ε_2 and $q^{2d}(1+\frac{1}{q})$ choices for ε_3 . Dividing by q^{2d} to account for redundancies, we obtained $q^{4d}(1-\frac{3}{q^2}-\frac{2}{q^3})$ points in this way.

c) $j=1,\ldots,d-1$; take $\varepsilon_1=(\overline{-\varepsilon_3/\varepsilon_2})$ so that 1) is satisfied and pick ε_2 and ε_3 so that $1+\pi^{2(d-j)}N(\varepsilon_3)+N(\varepsilon_2)\equiv 0\ (\pi^{2d})$. We must require that $N(\varepsilon_2)\equiv -1\ (\pi^{2(d-j)})$ and $N(\varepsilon_2)\not\equiv -1\ (\pi^{2(d-j)+1})$. Then 2) is satisfied by $q^{2(d-j)}(1+\frac{1}{q})(q^{4j}-q^{4j-1})$ choices of ε_2 and $q^{2j}(1+\frac{1}{q})$ choices of ε_3 . Dividing by q^{2j} to account for redundancies, we obtain $q^{2d+2j}(1+\frac{1}{q})^2(1-\frac{1}{q})$ $q^{2d+2j}(1-\frac{1}{q})^2(1-\frac{1}{q})$ points. Summing over j gives $(1+\frac{1}{q})(q^{2d-2}-1)q^{2d}$ points.

For each of the points of the form $p = xp_0$ with x in the above form, we may consider the points w_ip where

$$\mathbf{w}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \mathbf{w}_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

In cases a) and c) this leads to new points (by a lengthy but straight-forward calculation) and $g_{i}x_{0}$ is F-rational if $g_{x_{0}}$ is because $f_{w_{i}w_{i}} = 1$. Hence we have described a total of

$$q^{4d}(1-\frac{3}{q^2}-\frac{2}{q^3}) + 3q^{2d}(1+\frac{1}{q}) + 3(1+\frac{1}{q})(q^{2d-2}-1)q^{2d} = q^{4d}(1+\frac{1}{q^3})$$

points of the form $p = xp_0$ or $w_j xp_0$ such that gxp_0 is an F-rational point of X and $d(gxp_0,p_0) = d$. This must therefore be all $p \in X$ such that $d(gxp_0,p_0) = d$.

Let
$$\gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}$$
 and let $\alpha_1, \alpha_2, \alpha_3$ be the standard roots. If $n = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$, then

$$\gamma^{-1}n^{-1}\gamma n = \begin{bmatrix} 1 & (1-\alpha_1^{-1}(\gamma))x & (1-\alpha_3^{-1}(\gamma))y + (\alpha_3^{-1}(\gamma) - \alpha_1^{-1}(\gamma))xz \\ 0 & 1 & (1-\alpha_2^{-1}(\gamma))z \\ 0 & 0 & 1 \end{bmatrix}$$

Assume that $g\gamma g^{-1} \in T_0$ and let

$$(1-\alpha_{j}^{-1}(\gamma)) = \pi^{m_{j}} \eta_{j} \quad \eta_{j} \in \mathcal{O}_{E}^{*}.$$

If x = an, $a \in A$, $n \in N$, then γ fixes xp_0 if and only if $\gamma^{-1}n^{-1}\gamma n \in K \cap N$. Suppose that

$$\mathbf{a} = \begin{bmatrix} \pi^{\mathbf{d}} & & \\ & \mathbf{1} & \\ & & \pi^{-\mathbf{d}} \end{bmatrix} \qquad \mathbf{n} = \begin{bmatrix} \mathbf{1} & \pi^{-\mathbf{j}} \varepsilon_{1} & \pi^{-2\mathbf{d}} \varepsilon_{2} \\ 0 & \mathbf{1} & \pi^{-\mathbf{j}} \varepsilon_{3} \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

with n of the type described above. Then if γ fixes anp $_{0}$, the following inequality holds:

(**)
$$\operatorname{val}(N(\epsilon_2) + \pi^{2(d-j)}N(\epsilon_3) - \pi^{2(d-j) + m_1 - m_3} \eta_1 \eta_3^{-1}N(\epsilon_3)) \ge 2d - m_3.$$

Furthermore, it is easily checked that

i)
$$m_1 > m_3 => m_3 = m_2$$

ii)
$$m_1 < m_3 => m_1 = m_2$$

iii)
$$m_1 = m_3 \Rightarrow m_2 \geq m_1 = m_3$$
.

We consider the cases separately.

- 1) $m_1 > m_3$: then γ fixes anp₀ if and only if $2d < m_3$ and $0 \le j \le m_2$.
- 2) $m_1 < m_3$: then γ fixes anp if and only if either
 - i) $2d 2j + m_1 m_3 \ge 2d m_3$, $j \le \frac{m_1}{2}$, $2d \le m_3$, and $0 \le j \le m_2$, or
 - ii) $2d > m_3$, $2d 2j + m_1 m_3 = 0$ and $N(\epsilon_2) + \pi^{3-m} N(\epsilon_3) \eta_1 \eta_3^{-1} N(\epsilon_3) \equiv 0 \ (\pi^{2d-m_3}).$ This occurs only when $m_1 \equiv m_3 \ (2)$ and $d = [\frac{m_3}{2}] + 1, \dots, \frac{m_1 + m_3}{2}.$
- 3) $m_1 = m_3$: then γ fixes anp 0 if and only if either
 - i) $2d \leq m_3$ and $0 \leq j \leq m_1$ or
 - ii) $0 \le d = j \le m_1 \text{ and}$ $val(N(\epsilon_2) + (1-\eta_1\eta_3^{-1}N(\epsilon_3)) \ge 2d m_3.$

When $d \neq j$, we have to consider the points $w_j x p_0$ for j = 1,2 also; this amounts to replacing γ by $w_j \gamma w_j^{-1}$ and using the above conditions.

Suppose first that $m_1 \neq m_3$ and let $m = \min(m_1, m_3)$, $n = \max(m_1, m_3)$. Then the number of fixed points is equal to

$$1 + \sum_{d=1}^{\left[\frac{m}{2}\right]} q^{4d} \left(1 + \frac{1}{3}\right) + \sum_{d=\left[\frac{m}{2}\right]+1}^{\left[\frac{n}{2}\right]} q^{2d} \begin{bmatrix} \left[\frac{m}{2}\right] \\ \sum \\ j=1 \end{bmatrix} q^{2j} \left(1 - \frac{1}{q^2}\right) \left(1 + \frac{1}{q}\right) + \left(1 + \frac{1}{q}\right) \end{bmatrix} \quad (\alpha)$$

We obtain:

$$F_0(\gamma) = \frac{-(q+1)-q}{q^4-1} + \frac{q^m 1^{+m} 3}{q-1} \quad \text{if} \quad m_2 \neq m_3 \tag{2}.$$

If $m_1 \equiv m_3$ (2) and $m_2 = m$, we obtain the number (α) plus an additional

$$(1+\frac{1}{q})^2 q^m \sum_{d=[\frac{n}{2}]+1}^{\frac{m+n}{2}} q^{2d} = (\frac{q+1}{q-1})(q^{n+2m}-q^{m+2[\frac{n}{2}]})$$

points. We obtain

$$F_0(\gamma) = \frac{-(q+1)-q}{q^4-1} - \frac{q^{m_1+m_3}}{q-1} + \frac{q^{m_1+m_2+m_3}}{q-1} + \frac{q^{m_1+m_2+m_3}(q+1)}{q-1} \quad \text{if} \quad m_1 \equiv m_3, m_2 = m.$$

The only remaining case is $m_2 > m_1 = m_3$. We obtain

$$\frac{4\left[\frac{m}{2}\right]+2}{q^{4}-1} + \frac{q^{m_{1}+m_{2}}}{q-1} \qquad \text{if } m_{2} \neq m \quad (2)$$

$$\frac{-(q+1)-q}{q^4-1} = \frac{q^{m_1+m_2}}{q^4-1} + \frac{q^{m_1+m_2}}{q^{m_1}} + \frac{q^{m_1+m_2+m_3}}{q^{m_1}} \quad \text{if} \quad m_2 \equiv m \quad (2).$$

The result is as stated in part a) of Proposition 1.

Now we have to compute the fixed points for $\gamma \in T_j'$, j=1,2,3. We will see that the cases T_1 and T_2 can be easily reduced to the case of T_3 , so we deal now with this case where we may assume that T_3 is associated to the cocycle

 $a_{\sigma} = w \begin{bmatrix} \pi^{-1} \\ 1 \\ \pi \end{bmatrix}$ and that $gAg^{-1} = T$. Let \mathcal{M}_A be the apartment in X associated to A, and let $P_{1/2}$ be the unique s-vertex fixed by a_{σ} (we may assume that T stabilizes $P_{1/2}$). As in the previous case, we will describe the hs-vertices $P_{1/2}$ such that $P_{1/2}$ by determining whether or not $P_{1/2}$ fixes $P_{1/2}$.

Let
$$a = \begin{bmatrix} \pi^d \\ 1 \\ \pi^{-d} \end{bmatrix}$$
 and $n = \begin{bmatrix} 1 & \pi^{-j} \varepsilon_1 & \pi^{-2d-1} \varepsilon_2 \\ 0 & 1 & \pi^{-j} \varepsilon_3 \\ 0 & 0 & 1 \end{bmatrix}$, $j = 0, 1, \dots, d$,

where $\varepsilon_{\mathbf{j}} \in 0_{\mathbf{E}}^{\times}$ or $\varepsilon_{\mathbf{j}} = 0$. The point $\operatorname{ganp}_{\mathbf{0}}$ is F-rational if and only if $t(\overline{\operatorname{an}}) \begin{bmatrix} \pi & 1 & \\ & \pi^{-1} \end{bmatrix} (\operatorname{an}) \in \operatorname{SL}_3(0_{\mathbf{E}})$ which is equivalent to the requirements $1) \quad \pi^{-\mathbf{j}}(\varepsilon_3 + \overline{\varepsilon}_1 \varepsilon_2) \in 0_{\mathbf{E}}.$

2)
$$\pi^{-2d-1}(1+\pi^{2d-2j+1}N(\epsilon_3)+N(\epsilon_2)) \in O_E$$
.

We always take $\varepsilon_1 = -(\overline{\varepsilon_3/\varepsilon_2})$.

a) j = 0: take $\varepsilon_1 = \varepsilon_3 = 0$ and $N(\varepsilon_2) \equiv -1(\pi^{2d+1})$. We obtain $q^{2d}(q+1)$ points in this way.

b) $0 < j \le d$: choose ε_2 such that $N(\varepsilon_2) = -1(\pi^{2d-2j+1})$ and $N(\varepsilon_2) \ne -1(\pi^{2d-2j+2})$, and ε_3 satisfying 2). We obtain a total of $q^{2d+2j+1}(1-\frac{1}{q^2})(1+\frac{1}{q})$ points in this way.

Adding cases a) and b), we obtain a description for $q^{2d+1}(1+\frac{1}{q})+q^{2d+1}(1+\frac{1}{q})(1-\frac{1}{q^2})\sum_{j=0}^d q^{2j}=q^{4d}(q+1) \text{ points. Furthermore, all points obtained in this way satisfy } d(p,p_{1/2})=d+\frac{1}{2} \text{ (where } d(p,q)=\text{half the number of chambers separating } p \text{ and } q\text{). Since exactly } q^{4d}(q+1)$

points satisfy $d(p,p_{1/2}) = d + \frac{1}{2}$, this must be all of them.

To reduce the cases of T_1 and T_2 to T_3 , we remark that γ fixes xp_0 if and only if $w_j\gamma w_j^{-1}$ fixes w_jxp_0 . Choose g_j (j=1,2) so that $g_jAg_j^{-1}=T_j$. Then the number of fixed points of $g_1\gamma g_1^{-1}$ equals the number for $gw_1\gamma w_1^{-1}g^{-1}$ and the number for $g_2\gamma g_2^{-1}$ equals the number for $gw_2\gamma w_2^{-1}g^{-1}$.

Suppose $g\gamma g^{-1} \in T_3$, and let m_1, m_2, m_3 be as before. Then if $g\gamma g^{-1}$ fixes anp_0 with an of the usual form so that $ganp_0$ is F-rational, the following inequality holds:

(*)
$$\operatorname{val}(N(\epsilon_2) + \pi^{2d-2j+1}N(\epsilon_3) - \eta_1 \eta_3^{-1} \pi^{2d-2j+1+m_1-m_3}N(\epsilon_3)) \ge 2d + 1 - m_3.$$

There are two cases to consider:

a)
$$m_1 \ge m_3$$
: then $2d \le m_3 - 1$ and $0 \le j \le \min(m_1, m_2)$.

b)
$$m_1 < m_3$$
: (i) $0 \le j \le \min(m_1, m_2)$, $d \le \frac{m_3 - 1}{2}$ and $j \le \frac{m_1}{2}$ or
(ii) $2d + 1 > m_3$, $0 \le j \le \min(m_1, m_2)$, $2(d - j) + 1 = m_3 - m_1$ and $v(N\epsilon_2 + \pi^{2d - 2k + 1}N\epsilon_3 - \eta_1\eta_3^{-1}N\epsilon_3) \ge 2d + 1 - m_3$
((ii) occurs only when $m_1 \ne m_3(2)$.)

The number of fixed points in the two cases is

a)
$$\sum_{d=0}^{\left[\frac{m_3-1}{2}\right]} q^{4d}(q+1) = \frac{q+1}{q^4-1} (q^{\frac{m_3-1}{2}})+4$$

b)
$$\sum_{d=0}^{\lfloor \frac{m}{2} \rfloor} q^{4d}(q+1) + \sum_{d=0}^{\lfloor \frac{m}{2} \rfloor} q^{2d}((q+1) + \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} q^{2j}(q+1)(1 - \frac{1}{q^2})) + d = 0$$

$$+ (1 + \frac{1}{q})^{2} \sum_{\substack{d = [\frac{m_{3}^{-1}}{2}]+1}}^{\frac{m_{1}+m_{3}^{-1}}{2}} q^{m_{1}+1+2d}$$
 (if $m_{1} \neq m_{3}(2)$)

$$= \begin{cases} \frac{-(q+1)-q^2(q+1q)}{q^4-1} + \frac{q^m 1^{+m} 3}{q-1} & \text{if } m_1 \equiv m_3(2) \\ \\ \frac{-(q+1)-q^2(q+1)q}{q^4-1} - \frac{q^m 1^{+m} 3}{q-1} + \frac{q+1}{q-1} & q^{2m} 1^{+m} 3 & \text{if } m_1 \not\equiv m_3(2). \end{cases}$$

To obtain the theorem for $\ f_\lambda,\ \lambda\neq 0,$ it is necessary to compute $N_{hs}(\gamma)$ and $N_s(\gamma).$ It is known that

$$\Phi_{\mathrm{H}}^{\mathrm{T/1}}(\gamma, {}^{\mathrm{H}}f_{\lambda}) = q^{\lambda+\mathrm{m}}3(1+\frac{1}{q}).$$

The next lemma follows from Lemma 1.

Lemma 3:

$$\Phi_{\mathrm{H}}^{\mathrm{T/1}}(\gamma, \boldsymbol{\phi}^{*}(f_{\lambda})) = \begin{cases} 2\lambda + m_{3} (1 + \frac{1}{q})((1 + \frac{1}{q} + \frac{1}{q^{2}}) - 2q^{-(m_{3}+1)}) & \lambda \text{ even} \\ 2\lambda + m_{3}^{-1} (1 + \frac{1}{q})(1 - 2q^{-m_{3}}) & \lambda \text{ odd.} \end{cases}$$

For $\gamma \in T_0$, regular, let $N_{hs}^{\kappa}(\gamma) = N_{hs}(\gamma) - N_{hs}(\gamma^{\delta_1}) - N_{hs}(\gamma^{\delta_2}) + N_{hs}(\gamma^{\delta_3})$ and $N_s^{\kappa}(\gamma) = N_s(\gamma) - N_s(\gamma^{\delta_1}) - N_s(\gamma^{\delta_2}) + N_s(\gamma^{\delta_3})$. The result is equivalent to the next proposition.

<u>Proposition</u> 3: Let $\gamma \in T_0$ be regular.

a)
$$N_{hs}^{\kappa}(\gamma) = (-1)^{m_1+m_2} q^{m_1+m_2+m_3} (q^3+q^2)((1+\frac{1}{q}+\frac{1}{q^2})-2q^{-(m_3+1)})$$

b)
$$N_s^{\kappa}(\gamma) = (-1)^m 1^{+m} 2_q^m 1^{+m} 2^{+m} 3_{(q+1)(1-2q^{-m}3)}$$
.

The computations required to verify this proposition can be carried out using the description of the fixed points of γ given in the proof of Proposition. According to Kottwitz's lecture, we can alternatively compute the number of s-vertices fixed by the stable conjugates of γ , for a simple argument shows that $N_{\rm hs}$ and $N_{\rm s}$ can be expressed in terms of the numbers of fixed s and hs-vertices. A computation of the number of fixed s-vertices will be given in subsequent notes.