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ABSTRACT

With every Lie semi-group U, possessing certain

regularity properties) ther-e is associated a Lie algebra9

A; and with every strongly conti-nuous representation of

1 in a Banach space there is associated a representation

A(a) of A0 Certain theorems regarding this representa=

tion are established0

The above theorems are valid for a representation

of a- Lie group also. In this. case, it is shown that it

is possible to extend the representation to elliptic ele

ments of the universal enveloping algebra. It is also shown

that the representatives of the strongly elliptic Qlements

of the universal erive1oping albra are the -infintesimal

generators of holomorphic sii-groups. Integral representa

tions of these semi-groups are given.



INTRO DUC TION

The study of Liesnigroups and their representa

tions was initiated by E0 Hille in [6] For a survey of

the basic problems and results the reader is referred to

that paper and to Chapter XXV of [7] This thesis is a

contiruiation of work begun there; we summarize briefly the

re su it S it C ont ai ns

In Chapter I, the “Dense Graph Theorems” suggested

in [6] are proved and it is shown that linear combinations

of the infinitesimal generators form, in the precise sense

of Theorems 4 and 6, a representation of a Lie algebra

canonically associated with the Semigroup6

In Chapter II the study of the infinitesimal generators

is continued6 For the work of this chapter it is necessary

to assume that the semigroup is a full Lie group6 It is

shown (Theorem 7) that the representation of the Lie algebra

can be extended, in a natural manner, to a representation

of the elliptic elements of the universal enveloping algebra0

Then the spectral properties of operators corresponding to

strongly elliptic elements are discussed; in particular t

is shown (Theorem ) that they are the infinitesimal gnerators

of semigroups holomorphic in a sector of the complex plan0

Canonical representations of these semi=groups as integrals

are given in Theorem 9



The reader interested in other work to which that

of Chapter II is related is referred to [9), [13), [19),

and a forthcoming paper by E. Nelson.



The author wishes to thank C T0 Ionescu Tulcea for

his advice and encourage during the preparaj0 of this



CHAPTER I

1. Lie semi-groups have been defined in [6) and

C 7]. We .shall. be Concerned with semi-groups, IT, whose un-

derlying.topologjcaj apaca..is a {(x1,
..., Xn)IXi 0,

i a 1, ..., n}, a subset of real Euclidean n-space. We de

note the.semi-group.operatj hyeither F(p,q) or poq.

The following conditions, numbered as in [7), are supposed

satisfied.

P2. F(a,0) F(0,a)

P3. .F(a,P(b.,c)) a F(F(a,b),a)

P5. There exists.a fixed. positive constant B such that

• for all points a1, a2 and .b in 17

max (IP(a1,b) - F(a2,b)I, IP(b,a1)
- F(b,a2)I} (l+BJbI)Ia1_I

P6. There exists a positive, moaotone increasing continuous

finction wft), 0 < t <, tending to zero with t such that

IF(a,b)—a—bI re.j(s) r ‘min lIaI,Ib(J, 5 a lal + Ibi

P11. At every point of cx the n coordinates of

F(p,q) have continuous partial derivatives with respect to

the coordinates of p and q up to and including the third

order.

Then, by Theorem 25.3.1 of [7], there is a continuous

function f(a) from 17 into 17 such that tt((r0)a)
..f(pa)of(a-a) for as 17,



Let T(p) be a representation of U in a Banach

space I, which is strongly continuous in a neighborhood of

the origin, then for a e iT, p 0, p - Ttf(pa)) is a

strongly continuous one-parameter semi-group, Denote its

infinitesimal generator by A(a). In this chapter we in

vestigate the relations among the A(a) and their adjoints

A’ta), For the purposes of Chapter II, we remark that similar

theorems are valid for a representation of a Lie group.

We first construct a common domain for the operators,

A(a), a if, which is large enough for our purposes. We

use the following notation: -(p,q) = F(p,q);
pJ

(pq) F(p,q); F.(p,q); F.(oo) -

F,±(0,0) = )f. F(p,q) may be extended to a twice ron

tinuously differentiable fnnction defined on E Y Denote

some fixed extension by F(p,q). Since F(O,O)

F(o, 0) = (the Kroneker delta), there are open spheres

N1, N2 CN, about the origin and three times continuously

differentiable functions W(q,h) and q,h) defined on

N1XN1 such that W(0,O) 0,0) = 0, Ffh,NI(q,h))

and FtCq,h),h) q. Moreover if F(h,p) = q [Ftp,h) = q]

with p, h 6 N2, then q 6 N1 and q,h) p[’(q,h) p].

We may also suppose that all derivatives cf “-Y(q,h) and

fq,h) up to the third order are bounded in N1, that Ttp)

1Cf. the construction on p. 12 of [12].
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is strongly contjnuo in N1fl, and that det(F’(pQ) 1/2

and det tF(p,O)) /2 for p in N1G If NCN1

open sphere about the origin, set

E(N) {y f K(q)T(q) dqlx e X, Kfq) C2 (NflJ0.1.

C2(NflU) is the set of tce Continuously differentiable

funct05 which are zero outside of N We refer the

reader to [7] for a proof that E(N) is dense in X

2sit 1 Let N3 be an open re about the

F(N,N3) çN2 If y £ E(N3) Ttp)y j

2 fl fl

We understand that some derivatives at the boundary

will be one-sided If y E t N3) and e (
,

we have, recalling that K(q) is zero Outside of N3fl

1/mf m/urn s PSey
s—O 3

urn K(q)(T((p+) o q) - T(po q))x dq

urn (Kttq,r)) det
tfq,r))rP+5ej(q)

dq
5-o N2fl7T r=p

tK{Vtq,p)) det ((q,p)))T(q) dq

+ li f G(q,p,s)dq
s-O N2flU

N2nTT Pj
(Kt(q,p)) det

(k(q,p)))(q)
dq



Since Gtq,p,s) converges boundedly to 0 with s. The

final integral is a Continuous function of o In a similar

manner we show that it is once COfltnuo5ly differentiable0

We remark the following formulae, valid for y EtN3),

€ N3flfl:

Ci) urn 5tT(f(sa))I)T(p)y

urn S(Tfffsa)o p)y Ttp)y)
sO

= urn CE 1s(F(f(sa) p)p3)

n n,
(1,1) -T(p)y0

jl il 1; peJ

So T(p)y e and Ata)T(p) is given by tl)

(ii) T(p)A(a)y lis(T(pf(sa))yT(p)y)
s0

(2) = E 1t 1F(p,o)?) T(p)y

(iii) Setting (Fk(p,o))J- (tp))

(103) Tfp)y
=pi k=l

(iv) Setting E1F(0,p) (p), =(p),

A(a)A(b)TCp)y £l(E(p)bi)(EflFi(Q)n
T(p)A(e)y

(v) (o) A(a+b)y =A(a)y ÷ A(b)y

() A(e.)A(e.)y A(eJA(ejy A(ek)y.

For a proof of the latter relation, see [7], p. 75g.



2. The first theorem is known as a “De4e Graph Theorem”

and has been suggested by E. Nile int6J and [71.

ThQL 1: . ., a CU. G the ure

pgj Ix , xl (p+l qrs

,,., Ata)x)f x E(N3)1 ni
G ((x,Afa1)x, ..., A(a)x) x £ fl1(A)1, G

GD G0 since an infiflitesimal generator is a closed

operator, We show that G0DG.Let 4br+i b} be

a maximal linearly independent subset of (a1, ...,

it is sufficient to prove the theorem or the former set,

Let (b1, ,.,, b} C TI be a basis or E. If t =

(ti, ,,,, U, et p(t) f(tb1).9 ... fftb),

p(t) is a twice continuously differntiable map o IT
into U and may be extended to a twice COninuously differ

entiable map of E into E, Denote some fixed extension

by p(t). The above process ia analogous to_theintroductjon

of canonical coordinates of the second kind on a Lie group.

Since ()= b, p(t) has a twice continuously differ
tJ”

entiable iaverse defined in a sphere N4 about the origin.

We may supposethat FCN4,N4) CN3 and that all derivatives

of the Inverse function up to the second order are bounded

in N4. If y E(N4) and p s 4flU, then T(p)y E(N3),

For y E E(N4), set

u(y,s) Stt)y dt
R(s)



where s (s’, 5fl), 8(t) fits) is the

rectangle with sides [O,s3e.J, and fits) is contained

in the image f N, under the inverse map. By (1.1),

A(b)u(y,5) f A(b )S(t)y dt

f %(t) S(t)y
fits) ii

where (t) ElF3tQP(t))brn is once ntjnus

differentiable Integrate by parts to Obt&j

(Ai i
(1,4) Atbk)uty,s) E f (t)s(t)yjt5

d’

/ S( ) y
fl(s) i=l .t’

Since the integral of a fuctjo with values lying

in a closed sUbspace of a Banach space is contained in that

subapace,

(1.5) Atbr+i)u(ys)
..., A(b)u(y5))

Since (1.4) is CofltflUO5 function of y and E(N4) is

dense in I; for any y X, u(y,s) fl1D(A(b )) and

(1.4) and (15) hold, To comple the proof it Sufficient

to show

(1.6) lim nUt())

(1.7) li A(bk)nU(Y$()) A(b)y
-O
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for k r ÷ 1,
flr+lAk)), and s(o)

(1.6) is clear; to prove (1,7) we expand ft) in a Taylors

series and Consider

tt
urn

] (t’,o)

=
-n+l f 1(S(,)

$(,Q)y d
R()

+ -n+lf
(O)St’,o)7 d’

-i ‘k ‘i+ / t (0)) (S(t ,y ,O)y)dt
31 t3

A(b)y ÷ (O)y

provided

(i.e) urn l(s(tk,)ysttkQ)Y)
= A(bk)y.

But the left side is

+ (T(f(bk))i) k+1tU÷lT(fftmb)
))T(f(tb

and (1,g) follows if we recall that t’ < and that y D(A(b ))
for I k r ÷ 1, Summing over i and taking the last te

of (1,4) into account we obtain (1.7),

The following theorem is not of so much interest as the one



just proved but we want to Use it to establish the analogue

of a theorem of [7]. We therIy sketch the Proof.

Theor Z: If F0 is the Closure in the product tOpology

of f(y,A(e1)y, ..., A(e)y, A(et1A()y)Iy E(N)} and if

F (y,A(e1)y •.o, A(e)y, A(e)A(e)y)I ;D(A(e))

then F F0,

r&: F is a closed set and thus FD F, We show F0D F,

Taking ek we use the notation of the proof of Theorem

1. For y

f (ei)A(e)S(t)y

L(s)k,m=lrn(t) S(t)A(e)y) dt

where =lP(t.))F;(O,p(t)) is once con

tnuous1y differentiable Integrating by parts, we Obtain

(1.9) A(eJA(e,)u(ys)

mif Am Eklrn(t)S(t)A(ek)
R( (tm,o)

Theoem 1 implies that (1.9) holds for y 1D(A(e)) 0

The proof now completed as above,

30 We now Consider the adjoints of the infinitesimal

generato5 and prove the corresponding dense graph theorem0
* *

If y s X , the dual space of X, we denote the value of

at y I by (y,y), If NCN1, set



E = X*I(yy*)
d

with x X , K(q) c2(Nflfl), and for all y X

E(N) is dense in in the weak* topology0

iti , If y’ E(N3) Ttp)y j jç gingj

erntjabJ in the a* p in N3 fl if

fp: We merely sketch the calculations since the proof

is essential1y the same as that of Proposition 1.

urn if (y,K(q)(T(p+se,)
- Tfp))T(q)x’) dq

sO TT
—lurns / (y,K(q)(T (qo(p+5e) -T (q)x )dq

s-+O

f11ty, (K((q,p)) det
(q,p)))*fq)

dq0

The last integral is again a COfltiflou5ly differentiable

function of p.

We remark the following, valid for y E’tN3) and

p € N3 fl IT:

(i) urn
sO

(1,10) Ej=l(Ern=lFm(p,O)am) y,T(p)y),

This implies that Ttp)y E DtA*(a)) and that

(y,A (a)T (p)y ) is given by the right side of tl.lo)



(ii) As in the remarks following Proposition 1 we may show7

for y’ E’tN3),

* * * *
(1) A(ab)y — Afa)y + A (b)y

(nt) A*(e.)A(e)y*
A(eJA’(ejy =E yk

A(ek)yk=l ij

Th2rem Let . . ., aJ C U 0
the

(in the of the weak*topologj.) of

[(y,A*fa;)y, .., C(ap)y)fy*e
E(N3)} and H

* *
..., Ata)y )Iy E fl DtA (a))},.j=1

H =H
0

Proof: HD H0 since A f a) is closed in the weak*

topology, We show H0D H, Let [b1,
•., b be a maximal

linearly independent subset of Ea1, •., a}; it is suffi

cient to prove the theorem for the forTner set Let

be a basis for E. Agii we use the notation
*of the proof of Theorem 1. If y define u(y ,s)

by

ty,u(y,s)) f (y,S*(t)y ) dt
*

R(s)

—

with Stt) = T(p(t))0 As above

(Lii) (y,A(b)u(y 73)1
f s’)

- i=l )k(t) 75()y)f
‘ d’
(t’,o)

(t)(y,S*(t)y*) dt
() ii



with (t) E p(t),o)5 . As above

f*)
E fll(A(bk)) for aR

y
and

is given by (1.11), Moreover,

* *
(u(y ,s), A tb1)ufy ,s),

.., AJbr)u(y

The proof may be cozupleted as before if we show that

(1.12) urn l(y($*(k)

(s->O
* *

(y,A (b)y

for 1 k r, t3 , and ye fl1D(A(b)) But the

expression on the left equals

T(f(tJb))y (T*(f(bk))I)y*)
jk÷l

÷k
T(f(tb (T(

)fl

iI I+i jk+l 3 1

and (1,12) føllw since, see [11], (T*(f(tib))I)y*
is unj

formly bounded and a- (T (f(bk))I)y converges in the

weak-* topology to A (b)y

4 If a (a’, .,, an) E Ai)

is defined fo y E(N3), By the remarks after Propositjo

2, E(N3) is contained in the domain of its adjoint so that

A(a) has a least closed extension which we again denote by

A(a), By Theorem i,tthj notation is ConsiStent with that

used previously for & in U.



l2

____

10 A f a), the of At a), the weak— *

ia(e)

fgf: Suppose ty,x) tA(a)y,) for all y £

Then, usi-ng Theorem 1 nd the notation of its proof with

for yEX

nf tstt)y,x*)

]jy,x2Lj d

p *
(t)Stt)y,x2) dtj.

R()

Transposing and takir limits

urn n
E 1af . ty,(S’(J,oj

*$ (t,Oflx2)dt ty,x),

Then using (1,11)

(1.12) urn ty,x)o3 3

Theorem 3 implies that u(X,s(y)) is in the domain of the

weak* closure of Ea3A(e) and (1.12) then shows that

x is also, By Theorem 25.,l of t7] the Y, as defined

in paragraph 1, may be used as the structural constants of

a Lie algebra A over E. Denoting the Lie product, in
this algebra, of a and b by [a,bJ, we have [a,bJk

a1b3, We can now prove the fIIojng theorem



Theorew I,The function a A(a) defined n A has the

pr

i) If x DC (a)) fl DC 41b)) then x D(A( sa+tb))

and A(sa+tb)x = sA(a)x + tA(B),

(ii) If x D(A{a)A(b))flDtA{b)A(a)) then

x e D(At[a,b])) and At[a,b])x Ata)ACb)x A(b)A(a)x,

II, The furiet ion a A (a) has the ies

(i) If x D(Ata))flD(A(b)) E D(A(sa+tb))
,J.

ancj A’(sa+tb)x (a)x + tA(b)x

Cii) If x D(A(a)A(b))flDftC(b)A(a))
* Ic 4 * *x e DCA t[a,b])) A ([a,b])x A tb)A Ca)x .A ta)A {b)x

Prgof: If x D(A(a))flDCA(b)) there is a sequence X} CE(N3)

such that x, A(a)x A(a)x and A(b)x — A(b)x;

but then, using formula ( ), A(sa+tb)x sAta)x + tA(b)x

— sACa)x + tAtb)x, Since A(sa+tb) is a closed operator

x.e D(ACsa+tb)) and A(sa+tb)x = sAta)x + tA(b)x

If x DtACa)A(b))flD(A(b)A(a)), then for x E*(N3)

tACa)ACb)x-ACb)A(a)x,x) = (x,A(b)Aa)xA(a)A(b)x)

So, using formula

(1l3) tACa)ACb)xACb)A(a)x,x*)

fx,A([a,b])x)

The lemma implies that (1,13) holds for x



In other words, the vector u = tA(a)A(b)xA(b)A(a)x,x) in

X 3 I is annihilated by the annihi1atorof the subspace

U (A([a,b])y,y)Iy D(A([a,b]))}. So u E U; or,

x D(A([a,b])) and A([a,b])x A(a)A(b)x Atb)A(a)x,

The remainder of the theorem is proved in a similar manner.

Recalling that if a sequence of once continuously

differentiable functions and the sequences of first order

derivatives converge uniformly on some domain then the limit

function is once continuously differentiable and its partial

derivatives are the limits of the sequences of partial de

rivatives, we have, using (1.3) and Theorem I

ys fl1D(Ate)) then T(p)y onáe

continuously differentiable in a neighborhood in if, of

gjgjn and (1,3) holds. T(p)y E D(Ata))

for a En and p in this gborhood and (1 1) (1,2)

.ho.ld.for. .a if.

The following theorem, analogous to Theorem 10.9,4

of [7], is an immediate consequence of Theorem 2

6: yE fllD(A(ek))flD(A(eJA(ei) the

y s D(A(e)A(eJ).

The only properties of EtN3) used in the proof of

Theorem 1 were that Ttp)E(N4) CEfN3) for p in a neighbor

hood of the origin, that E(N4) was dense in X, and that



equation (1,1) was valid. Thus, using Theor 5 we could

repeat the proof of Theorem 1 to obtain

Threm I : Let F C E C X two dens e subs-paces of

I fl D(A(a)) let T(p)FCE for p
aerr

a gborhood the jjgj Theml valid jjJ

E(N3) E.

In the next chapter we shall consider strongly con

tinuous representations of Lie groups only. The group will

be denoted by G and its Lie algebra by A. A little care

is necessary in the definition of A in order that the

formulae above remain valid. A is taken as an algebra

isomorphic to the algebra of 1eft-invariant infinitesimal

transformations with the multiplication XY U (Cf. [2]).

Then if e(a) denotes the exponential map of A into G,

and the representation is Ttp); Ata) is the infinitesimal

generator of the one parameter group T(e(ta)). With a we

associate the following left— and right—invariant infinitesimal

transforma tions

L ftp) l t(f(pe(ta))—f(p))a

R ftp) lim t(f(e(—ta)p)— ftp)).a



alóa

These mappings are isomorphisms of the Lie algebras

involved. Formulae (1.1) and (1.2) may now be written very

simply:

The adjoint representation p t dca of

in [2). WIth respect to a fixed basi8

let the matrix of the representation be

dec ( E a3e ) E C EcO1ip)ai)e. We
“ j=l ‘ ialj=lj

the following s imple lemma.

Lmmmsa a. L x e D(A(a)), tha T(p)x £ D(A(%(a)) a
(1.13) A(d.€(a))T(p)z = T(p)A(a)x.

Proof: x c D(A(a)) if and only

lim tiT(e(ta))xax) A(a)x
t.so

lim t1T(p)(T(e(ta))xex) T(p)A(a)x exists; or

urn tlT(p)(T(e(ta))xex)T(p1)T(p)x
t-sIo

Urn tT(e(tdocja)))T(p)x e T(p)x a A(d(a))T(p)x exists.
ta)wO I’ I’

This proves The lemma. We may write (1.13) as

a T(p)A(a)T(p”1)x. Formula (1.13) is implicit in formulae

(1.1), (1.2), and (1.3).

(1.1’)

(1.2’)

A(a)T(p)y a RT(p)y

T(p)A(a)y = LaT(P)Y•

defined

of A

so that

G is

lei, ..., eI
(ot.p))

state fomaily

if

exists; or



Using the ba-sis of A previously introduced we set

= A(e), If = 1, n is a set of n in-

determinates and o °l’ acm), is an mtuple of

intecers, 1 < n, we write X X X
1 2 m

the absolute value of oç, I I m, This notation is

slightly unorthodox but it is necessary to allow for the fact

that the As’s do not commute0 We shall be interested in

forms E aA in the set A0}0
Io(Im

Let E be the set of vectors y in x which can

be written in the form

y K(p)Ttp)x(dp)
/

with a leftinvariant Haar measure, x in X,

and K(p) an infinitely dferentiable function with compact

support in G. E satisfies the conditions of Theorem P

Similarly E is the set of y in x such that for

xX

fx,y) fK(p)(x,T(p)x)(dp)o

With any form E aX we may associate theIc<Im
operator with donain E, defined by B x aAx

Io<In
* * * *and the operator B0, with domain E , defined by B0x.

= E aAx If &. (Os, •, ) then 04 (o c °°e’IIm
The following simple proposition is of some interest0 A special

case has been considered in [l7]



sition3 x j E B0T(p)x T(p)Bx,

___

the jQjnt Bo iQre

Suppose that for all x in E

* *
(B0x,x1) tx,x2),.

Then, for x in E

tfK(p)Ttp)xx*)(dP)
K(p)B0T(p)x,(dp),x)

K()Ttp)Bx/(dp)
,xi)

We may wr ite th is:

(xfK(p)T(p)4(dp)) (dp))0

The integrals in the final formula are taken in the weak*

topo1ogy. We now let K(p) approach the function and

obtain fK(p)T(p)4(dp) x1 and BfK(p)T*(p)x(dp)

= fK(p)T (p)x (dp) x in the weak* topology0
G /



CHAPTER II

1. Before proving the principal theorems of this chapter

we must establish some estimates for the fundamental solutions

of strongly elliptic differential equations and a differenti

ability property of weak solutions of elliptic equations.

The estimates are deduced from familiar ones for the fundamental

Lolutions of parabolic equations (cf [3], [15], [1])

Since w are unable to refer the reader to complete proofs

of the latter estimates we establish them below0 Although

the required property of weak solutions of elliptic equations

is known (cf0 [1]) we have included a proof0

2 A differential operator, E (-i) , with con

stant coeffioiets, is called strongly elliptic if for any

-real n-vector Re E p1 jm,
with a fixed

JHm

p > O A fundnenta1 solution for the operator

E (—i) a ÷ i is
1cdm

Gtx, >
2) f d

If

1’ (Ear)t -

gfx,t)
- I e e

c2rn En

then

G(x,) = je tg(xt) dt0
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-‘ jjE/m.lIf in 2, set k
C6t)1/m1J

to obtain

a

gtx,y,t)j <c EP2 (JL)m/mi
Iyy ti/rn

in

If lxi < 2(c6t)1/m, then (x,y,t)j c9

in

Now we observe that Re E a(y))
f%n

(cos pk sins’) Ilm,
so there exists

2 with

U/2 < < < < U/2 such that, for

Re [e,E a(y))} > /2llmo Consequently we have proved

Lnrn. 2 Let the

___

ions i lied0

for <arg and j <rn, the gjn uaiities

(i) If b1, then

b3ltj m

x, y,t) J < e e F3
itll/m

(ii) If < b1, then
jtJ1m

b3iti

— (x,y,t)f b4=0
ax

he constants ioon n, in, and M

As a consequence, if in,
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2 5

(1) 0< S1< lxi SR0

L)
I 5 e

0 I()m+ dt

1
M0i,R).

(ii) lxi

LJt P1
dt + I

‘il

I + m n 0

1ci + c2iiogjxj m n = 0

We remark that, for lfll m 1, m n = 1 n 0
jY ,8

only if n = l in which case G(xz,x) CCX)

for Ix This is a simple fact about Fourier transforms

in one variable and we do not prove it0

0 < jx < R0

I I

12 W dt

dt } m
l2 0

(Lif ) m
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as j increases provided JxyI remains between two fixed

positive constants and that the derivatives of order ml

go to infinity like xyI’ as goes to zeros

3 The differential operator, E with constant
tLIm x

coefficients, is elliptic if Qt) = a<( 0 for any
[l-m

real nvector F. John, in [10], has constructed fundame=

tal solutions for such differential operators. These are,

for n, the number of variables, odd and even respectively,

(2.1.) Ktx)

(2.2) x=y)
=

where fl is the unit sphere and is the Laplacian. Ac

tually John was concerned only with the case that the coeffi

cients are real; however, a repetition of his argument shows

that (2.1) and (2.2) are fundamental solutions when the co

efficients are complex. In order to use these fundamental

solutions we must perform the indicated differentiations0 Let

= x x ; then
oxi xi

‘2) A 1 n L2 nlc÷o

2r2 i,j=l ij i ‘r r2

(2.)

k =

,j kjXikjij ±



With a suitable skewsymmetric mabrix,

LjjJ g(xe)ff)d

urn gte
t____0

= urn [( g(x,)jf(etAii) f()}dw
t—o

= fg(xe)Lijf()do

C_f course, in the last integrand, x has beenxeplaced by

in the operator Setting
=

we have for n odd

(25) K(x) rmft)m1 ()t

P) is a polynomial in A similar formula is valid for

n-even0 We may also show that, for n odd,

-Ktx) __ I
(2Th) (mlH

is a polynomial in and Again, a similar formula

is valid for n even0 For x Ø 0, Ea0< K(x) 00 If

C y.-) is an infinitely differentiable function with compact

support and (x) 1 in a neighborhood of 0, then (cf0

57 of [10])

1 (O) J K(’x) Z a (x)
IIm x
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with (ô1,
ooe,oII1);

or

(2.6) 1 = urn Ea( J)(x)x d.
—O )1x JL

r

(2.6) is also valid for the fundamental solutions discussed

in paragraph 1,

iWe can now pnve the lemma of this paragraph0 We

consider a differentiai operator B = which

is defined and uniforfnly elliptic in a domain V of Euclidean

nspace; that is, -for any real n-vector and any

x V, IE afx)I 11m with some fixed constant

We suppose that a(.x) is jj times continuously differentiable

in V and that its derivatives up to the order are

bounded in V. C(V) is the set of infinitely differentiable

functions with compact support in V. Then we have’

Lemma : u ( x) and £ C x) are uou ctions

in V such that

(2.7) fBtx)u(x) dx f(x)f(x) dx

for ll functions in C( V). Then Ut x) is m=l times

continuou difere iabi V and the modulus of

m=i deryiv O( log l/ unilorm

in compact subset, U3 V.

Proof: By the usual arguments it can be shown that (2.7) holds



-3o

for ofx) m=times continuously differentiable with compact

support in V Let Ktx=’z,y) be the fundamental solution

f the operator E 1aty) — let t-’(y) be infi.zütely
IcIm

differentiable with compact support in V and be identically

1 in a neighborhood, W, of U Let be infinitely

differentiable; Q; dy = 1; ad =

if yf > Then for large k C 27) is valid with

nJkt
)W txz,y) dz0

We calculate

jCyz) d

+ E / aty)j()
l d

IlI<fl1

With our unorthodox

little difficult to

subsequences of the

Integrate the fir-st

)K(xy) dz
P jtyz)(za(y)

= a
JE1

= f (-l)
E lm

a(y) 3kt.Kt2cY) dx

notation the symbol 0(1 + 0(2

explain0 It means that 0(1 and

sequence o( whose union exhausts

term by parts to obtain

is a

are



(xz)

-

a(y)j(yz) d

+ f j(yz)E a (y)K(xz,y)(z)} dz
V-W Im z

(l)mj(yx) +f j(y-z)E [tz)K(x-z,y)} dz0
V-W Im z

Substituting these formulae into (27) and letting

k we obtain, for x s

(1)u(x) fKtx_YY)f(y) dy

(2M f E aty)(y)K(xy,y)}u(y) dy
V-w LIm

- £ fatY) [(y) K(x-y,y))u(y) dy0
V

11km

We use this representation of utx) to prove the

lemma0 We first show that if tJ() is the modulus of

continuity, in a compact subset of W, of a typical term

of the right hand side, as a functiop of x, then )
Ct slog l/% This isobvious for the second term since it

is an infinitely differentiable function of x The only terms

wiiicb give trouble are those which contain derivatives of K,

with respect to z, of order m-l0 Consider then

L(x) =fu(Y)a(y) (y) Kcx-y,y) dy

with rn-i0 We estimate



L(x+w) = L(x)

= f uty+x)a(y+x) (y+x) K(wy,y+x)

K(=y,y+x), dy0
z Oy

2 3
We remark that K(w=y,y+x) is

z y
2 3

K(x=z,y1) evaluated at x1 l w=y and y1 = y+x
dZl 11

This notation is perhaps a little confusing; but it is desirable

to keep the number of letters and ubscripts introduced to a

minimum0 Also Ktw=y,y+x) is defined oniy for y + x E.

but since we are multiplying by a derivative of ‘j1fy+x) there

is no difficulty in taking the integral over Now

K(w-y,y+x)
z y

Iy=w1 Gtwyy+x)0

G(w=y,y+x) is once continuously differentiable with

respect to w, when w y and G(wy,y÷x)

for y+x in V0

Write

L(+w) L(x)

u(y+x)a(y+x) f’(y+x) G(w=y,y+x) n=1 dy

+ f u(y+x)a(y+x) (y+x)G(w=y,y 1
1}dy II%O
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If wi is small enough

tii<t’
]lyIlwI log i/jwj ]jy>wi log 1/iwi

O(lwI log i/Iwl)

+ K P dy
l ]RiyIJw log l/Iwj

The integrand in the second term is dominated by

— < K < — where 0 <Q < 1n-l n n
lywI

1T
Integrating

I Otiwi log + O(iwilog(log))

OtiwI log

1121 jy’n11 dy

otiwl log Tr

If m = 1, there is nothing more to proves We suppose

m > l Now we observe that the equations

y p÷y
Ktwy,y)J

= 1+2=

AK(xy,y)

allow us to replace, in (2), partial derivatives of

K(xy,y) by sums of tQtal derivatives of terms

y K(xy,y) To avoid confusion, we explain this in detail0



Until now we have when differentiating the function

K Ktxa3y) regarded it as a function of the thre-e variables

x, y5, and z and only after taking derivatives have w sub

stituted y for However3 in the following it will be

necessary to integrate by parts To do this it is necessary

to replace the function K(xz,y) by
)z

partial-derivatives of -some function of y The above

formula is the means to do this0 The right hand side is
-0’

obtained by taking of Ktxzy); setting z y; and

then taking oI the resulting function of x and y0

We have indicated this by writing the sign for a total de=

rivative0

We wish to invoke the lemmas of E0 Hopf [] First

we must observe that if we replace uty) by I in the terms

of (%) containing partial derivatives of K(x=z9y) th

respect to Z of order ml we may replace partial derivatives

y total derivatives and integrate by parts9 for the a0<(y)

involved in thesexpressions will be once continuously dif=

ferentiable0 This lowers the order of the singularity of the

integrandao that we may now differentiate with respect to x

to obtain a continuous function0 The lemmas just mntione

now imply that utx) is once continuously differentiable in

a neighborhood of U0

Now that we know u(x) is once continuously differ

entiable in a neighborhood of U we return to the expression

(2) We replace 1(y)9 which has served its purpose9 by



3 S

another infinitely differentiable function which has its

support in a no ighhorhood of U in which we know utx) to

be oe:cntiauousIy differentib1e0 We write all partial

derivatives as sums of -total derivatives; integrate those

tem.s involving tot al do rivat lye s of orde r ml by part s;

and then tak? the deriat ive with respect to x of the

integind jn every integral on the right hand side of (2G)O

This gives us an expression similar to- (2) for uCx)0 The

lemma -is nowestahlished by iruiuction It is only necessary

to obs.e-rve that th-e derivatives of the coefficients and of

K(xz,y) with respeet to y whichare taken in the proof

all e-xist0 for the purposes of th-is thesis it may be assumed

that the cDefficients are infinitely differentiable; then

this difficulty does not arises

We.. return now to the study c-f representations of Lie

groups We use the same noarion as before0 Set

Wk [x s fl D(A(a1) A(a)) and set
a1, akA

Cx fl D(A(a,) A(ak

Analogous to the terminology in the theory of partial dif

ierentiai equations we call the fonii £ aX0< elinpt if

when we substitute a real nonozero novectcr for X

E O With an elliptic forms £ aX we associate
Im -

th.e oerator B0 with domain W defined by B x £ aAx0
0

We shall need to consider also the operator B with domain



defined by Bx Z aAx Since the domain of

is dense and that of B0 is dense in the weak* topology

and since they are adjoint the closure B and the weak*

closure, of and B respectively are well de

fined0 The following theorem shows this notation to be

justified

B isthejQjnof B0

Proof: Suppose that for all x e. W

(E aAcj). = Cx

We shall show that x Let be a leftinvariant

Haar measura onG and set R R(e); If K(p) is in’

finit ely diffe rent iable with compact support in G

EaAfKtP)TtP)x,(dP)i =faR<K(P)}T(P)xCdP)o

Consequently

/K(p)(Ttp)xx)Cdp)o

Let t} be an analytic coOrdinate system of the second

kind L14] corresponding to the basis {e in a neighborhd,

V, of the identity then, assuming that K has support

p
/ b(t) = K(p(t))1{tTtp(t))x,x)}Ftt) dt

fKcPctI(TcPttxxFct) dt0
V



Here F(t) and b(t) are analytic functions; F(t) is

nowhere zero; and btt) is elliptic in a neighbor
jm

hood UCV of the oriin since bq(O It is then a

consequence of Lemma 5 that (T(p)x,x) is ml times con

tinuously differentiable. This implies that xj If

x e (x,x) = £a(Ax,x1) Ea(A1jx, A*x), Since

E CWm7 Theorem 1? implies that

(29) (x,%) EatA11x,Ax1)

for all x E Since t} is a canonical coordinate system
of the second kind we may infer as in the proof of Theorem 1

that C $(t)x dt is in W for all x X The nota
]R(s() 1

tion is the same as in the proof of that theorem; in particular,

5(t) = T((t)) Also

A. I S(t)x dt I ci,o)x d’ + G()
‘ fR(s) JR(’)

with lim = O Then, using t29),

lim Ia C (S(II)xS(Ic(1O)x Ax) d1+
G1t’•

-o° ]R(10dJocI)

lim [ (S(t)x,x ) dt.
d’JR() 2

G1 C
Here 0 as 0 for all x e X Consequently

(2l0) lim [Ea t (S ° Sft
i )Rtc<I)



Now [ (the integral is taken in the weak*
JR(s)

topology) is in Wm; and by Lemma 2 and formula (l.2) we

have, for x W,

I (A A x,S(t)x’)
]R(s) 0(1 1

t (S(t)A A 1

= f E c (t)(A S(t)x,x)dt
]Rts) JJ=o °(,6 1

= P (t)(A S(t)xAx)dt
jR(s) fttp
fEC(t) E$ (S(t)X,A;X)d

We may choose the c(t) so that (0) unless o

and c((O) 1G Also (0) Integrate by parts to

obtain

S(,O)x,Ax)d +

We observe that G2(x) is a linear function of x which

is uniformly bounded as 0 Since ft clearly converges

to 0 for x E Wm it converges to 0 for all x0 on

squent ly, summing over o(, and using (2 10),

urn (x,Ea A** $(t)x dt) (x,x)0
c’0 ° JRfs)

This completes the proof of the theorem,

The form E ax is called strongly elliptic if
i0(in

Re IE a I p > 0, for any real nvector
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Let E ax be strongly elliptic and let B be the
In

operator associated, by the previous theorem, with the form

E ti)1ax then we have
IIm

Th earem : B the infi nit e simal r semigoup,
u(t), [7]

Proof: If x E W and X is a complex number

(Bxx,T’(p)x) = t

= Eti)atTtp)Ax,x) tTCp)x,x)

= ttp)x,xi

Let t = (t1, , t) be a canonical coordinate system of,

say, the first kind associated with 1e1, 000, e, in a

neighborhood, V, of the identity and let S (i)
Iin

= S t-i) ‘°b(t) in this cordinate system0 Since
I<2m

we may choose the b(t) in such a manner that b(O)

the right hand side is uniformly strongly elliptic in a

neighborhood, UCV, of O Let st,r,) be the

[nIfundamental solution of E(i) “ b(r) = + considered

in Section l, We have established estimates for K(s=t,r,)\)

for p D ) with S a certain sector in the com

plex plane. Let cf t) be an infinitely differentiable func

tion with support in u and with 9(t) = 1 if

for some small 10 Then, if 1/2’



43

-
T

h

43

U
)4

-3

*
N43

C
I)

4
3

-43
-

U
)

((2
1

N

1
<4
;

+
4
)

ll
(1)

c
J
4
3

N

(22

43

(A
)

U4
)

r
-

(A
)

N—
%

43

U
)N1
<43Co

U
)

4.)

43

*
N43

U
)

ct$Coz0
Q

r-4

ci)
4.)

0

Co
C)

z
ci)

VII

—

—

4
)

‘
‘

(1)
.
_

4.)

rH
II

4.)Co
43

-
ct

43
Co

U
)

0
r-j

0

-

U
)

,‘c
0

-

(27
ci)

-
S

,-0
::o

i

Co
43ci)

4.)
c
i)

A
>

k
r

ci)
0

.
_

tr
o

00ct

Coci)

4.)

H
*

N
Co00Ct5

0(22
043

0
cii

£0

oi—f
0

-
0

0
*

N
-S

Q
N

Co
-4cii

cii
.1

fl
00

cii
4
3
*

r
-

N
c

Q.A

ci)

0

-
T

h

*
N43

*
U

)NIa

(22

-
T

h

I-cCoCO

rIN

N-43C’)

f
f
4
.)

C\1

c,44.)
1
<43Co

43

0
)
4
3

2

0
43

Co
Cl)

-

Co

U
)Q
.

011)
cii

ci
-

43
4.)

cii

-f-I
0

4.)
Z

ci)
CO

ci)ci)

430ci)
Coci)

ciiCII

-f-I

N43

,0

U

LA)
a,

•
4
)

4.)Ci)

U
U

j
U

)
0

0

N
I-c

—
S

U
)

N(2)

U
)NII,

II



Consequently, for p(,$) N4,

N
lixil <II3xxIL

This me quality remains valid for x D(A) For x e

cons ider

(Ttp)x,Bxx)

= -

Change into local coordinates and perform the same calcula

tions as above to obtain

p
(2,11) dt

I

= (S(s)x,x

* *
By the proof of the previous theorem, if x D(B) we can

*
choose a sequence [xn} such that (x,x) (x,x ) and

(x,3 x) (x,B x ) for all x X. By the principle of

uniform boundedness, 11x11 and I3xII are uniformly bounded0

Conseqiently, in u1, tS(t),Bx) tStt)x,x*x)

houndedly and (S(t)x,x) (S(t)x,x) boundedly. The

dominated convergence theorem now allows us to assert the

validity of (21l) for all x D(3) Now, given an

e D(’), we choose an x X such that I1x 1,

(x,x*) >J1, and set -s 0 in (2.11) to obtain the in=

equality

[Bx_>x*jI > hi - lli”lI =—

(A 5) 2 S)f 1

‘ p.



Mere we make use of th.e estimates for the. function

K1 (st,r,).) estb1ished in paragraph 2. Consequently, for

r(>,S’) N1,

IIx*1I tIB*x Ito

Thus the resolvet, RD, ,3), exists for
et’

,S’) >

and llatX,B)It N5 if (S) The theorem is now

consequence of Theorem l2.,l of [7].

5 In this paragraph the strongly elliptic farm

will be fixed0 We denote the operator associated with

- (-ti) ‘ax by B and the semi-group it generates by

U(t), Since the space, I, onwhich the group G acts,

will vary in the course of the proof, we shall specify the

space by writing BtX) and u(t,X) when there is a danger

of confusion.

Let be let-invariant Haar measure on G and

let be the Banach space of functions on G integrable

with respect to Two representations of C in

of particular interest are {L(p)f(q) f(pq) and

[Rtp)f} Cq) = f(qp) It is easily shown that these representa=

tations are strongly continuous. We may call them, respectively,

the rp’esentation by left-translations and by riht-tranlations,

A linear operator on L1(/4) is said to commute with right

translat,ions if it commutes with all operators R(p) We

shall need the following lemma, proved in the general case
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just as it is for the line [7]

Iemma 6 Let S be a bounded linear op e rator on L

which commutes with right translations, then there

fi nfte, cqnab 4.tive Bore) set £ncon,

___

that

(2.12) Sf(p) =ff(q1P)tdq)

for almost all p. Moreover var(’)

Proof Let [g(p)} be an approximation to the identity

on G and let f be a function in L1(/) with compact

support0 Set

h(p) =fffqlp)gk(q)(dq)

0

Then

Thk(p)
=ff(ql)fTg)(pq)

(dq)

(2l3) = ffqlp)CTg)tq)(dq)

=

with Vtdq) (Tg)(q)/(dq). Since kL1()

var () Let 4’ be an accumulation point of

tne sequence in the space of bounded, countably

additive set functions with its weak* topology as the conjugate



space of C0, the space of continuous functions on G vanish-C

ing at infinity0 For any f 1H(,’ lik is defined

and (2.13) is valid. Moreover hk - f as k
— ; and,

then, Thk Tf. But if f is continuous with compact

support tf(q’p)2)(dq) is an accumulation point of (Tb1 )(p),
1

as given by (2,13). Consequnetly, for all f

(Tf)p)

for almost all p. Clearly va r(’iJ IITII and liTti

varhi)

We remark that the -V satisfying (2.12) is unique.

We may now state the theorem of this paragraph.

9. Ther&cxist finite, additive Borel

functions, ,R(t,’), pçndg form,

and G such that

(2,llf) U(t)x jT(p)xt,dp)

atleastfo’it<V2; 1V1<0<”P20

The integral is, of course, a Bochner integral. As

the theorn is stated and V2 may vary with the

represe.ntaticn. It is true, however, that and

may be taken to depend only on the form and on G. To

establish this we have only to observe that the. angles of

the sector, outside of which the estimates for R()S,B) were

established, depend only on the forirrand on G.
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Proof Consider first the representation L(p) of G

in L1(,,.d, The semigroup Utt,L1(1)) gnerate y the

operator B(L1(7j) associated with the form

in this representation commutes with right translations and,

Consequently, is given by

(2,15) U(t,L1(,4))f(p) ftqp)(t,dq

This establishes the theorem in this case, We next establish

it for the case of the representation by left translations

in C3 If f is in L1(,) and g is in C0, the func

tion

h(p) f(pq)gtq)(dq)

is in C and 1hI
.

gj Let
0

and set

htp) fft(Pq) gtq)tdq).

We assert that ht U(t,C)h To prove this we

notice that:

(U It hIc0 L(J UU

LuCt,L1(1)) U 111L1(

Ket Hf 11L( )

Here and K are some constants and t is greater than

or equal to zero,
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(ii) IIhthUc < t’1L() c0 as t

(iii) = fft(0q)gtq1)(dq)

= fft(oq)g(ql),(dq)

= C q)g(q) (dq)

=

The derivatives are taken in the strong topology0

For t 0 the asserted equality now follows from

Theorem 37l of [7] By analytic Continuation ht

in the domain Common to the two sectors in which they are

defind0 We may now write

(2l6) u(t,C0)h(p) f{ff(r1pq)(t
dr) }g(q) (dq)

fh(rP)(t,dr) 0

Since functions of the above form are dense in C the

theorem is established for In order to complete the

proof we must introduce two new spaces of functions0 These

function Spaces are closely related to the given representa=

tion, T(p), of C in X0 Let Y be the space of continuous

f, on G satisfying

(a) Jjffl sup

(b) 11f(pc)f(.)j 0 as p



For brevity, we have set JT(q)j + jjT(q) jJ X(q) Y is

a Banach space and the representation by left translations

of G in Y is strongly continuous1. In particular

1ILtp)f11 = SUP

= P%
q AtP qi A(q)

(p)IIfI(

for “X(p) and >1(pq) )(p) >(qL It is important

to nt ice that if x is in X and x is in I’ then

(T(p)x,x) and IIT(p)x are functions in Y0 Moreover,

if x is in W1tx) and a is in A, then

sup
q tq)

lixi Lit T(e(ta))xx}A(a)x1f 0

as t 0 Consequently (Ttp)x,x) is in W1(Y) and

A(a,Y)(T(p)x,x’) (T(p)A(a)x,x), The same relation holds

between Wk(x) and The converse statement is weakerfl
I , , —‘l I \If f,ip) = i1Tp ix,x ) is in W1i1YJ for every x in

x and tL(e(ta))I)Ata,Y)f Ott°() as t 0 for some

c,( > 0, thex1 x is in W1(x)0 For A(a,Y)f(0) = x0tx’)

defines a bounded linear functional x0 on I But

t
t[(e(ta))xx)

- (xxf fL(efta))I)A(a,y)f(Q)dt



The

tam sense,

tions, f,

It is essential to observe

and therefore measurable0

lations of 0 in Z is

of L1(,) and 1111
then f E D(BtL1(,t)))

solution of normal type

3(Z) is a solution of

problem for

is to assert that UCt,

(2.15 to write

(2. 17)

x O(t°); thus x0 is0

that (q) is lower semicontinuous

The representation by left trans

strongly continuous, Z is a subset

hf II t Moreover, if f

and B(Z)f B(Ll(tlj)f. Thus a

of the abstract Cauchy problem for

normal type of the abstract Cauchy

Again, Theorem 23,7l of [7] allows

z)f = u(t,L1(,,))f0 We make use of

Consequently Lxx

in I

Wk( ‘I

and

and

x0 A(a)x0 The same relation holds between

WktX).

second space, Z, to be introduced is, in a cer-

dual to Y. It is the space of measurable func

on 0 satisfying

(c) jlf(q) I tq)(dq)
= h1n11 <.

U(t,Z)f(p) fftqlp)(tdq)

This is a weaker assertion, in this case, than that of the

theorem0 We have not yet shown that ff(q0)(t,dq)

exists as a Bochner integral0 Let f be in Z and g be

in - Y0 Consider

htp) jf(Pq)g(q)(dq)o



Then

(h(p)j ftf(pq)I Ig(q)j(dq)

JIiJyJIftpq) I> (q)(dq)

iiyfif(q)J(P1q)(dq)

In other words, i hHy Bgi {f, We remark another simple

fact, which allows us to assert tt functions, h, of the

above form are dense in Y If f has compact support and

= 1 then

()
(dq)f

fIf(q) 1g(qp)g(p)j(dq)
>(p)JG /

sup ftf(q)(dq)
qsupf /

Using the same technique as before, we set = U(t,Z)f and

then set

ht(p)
jf(pq)g(ql)(dq)

Again the uniqueness theorem for the abstract Cauchy problem

assures us that ht U(t,Y)h Making use of (2l7) we

may write

(2l) U(t,Y)h(p) jf(rpq)(tdr)}g(ql)(dq)



Formally changing the order of integration, we obtain

Utt,Y)h(p)
fGtP)(t,dr)0

However, we have not yet proved that the integral in (2.l)

is absolutely convergent and we are, consequently, unable

to justify the change in the order of integration,

C0 is a subset of Y and HIt HgtI Consequently,

Utt,C0)g isa solution of normal type f the abstract

Cauchy problem for B(Y), The uniqueness theorem again

implies that Utt,C0)g U(t,Y)g, Making use of (2l6), we

write

Utt,Y)g(p) fg(qlp)(tdg)

Then

<Iu (t, Y) H Hg H

By the usual argument it follows that

UU(t,Y) II ii

But if f(q) is in Y we can find a sequence {g(q)} in

C0 such that g—Jf Consequently,

f(f(’p)j Ht,dq) fp)jTu(t,y)Jj BrJ.

In particular, setting f(q) = IIT(q)x1j and setting p 17

we obtain
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fLIT(q)xU Ij (t,dq) 2 U(t,Y) LI ILXlle

We are now able to justify the inversion of the order of

integration in (2.1), We apply the last inequality to the

space Z and the representation L(p) of G in Z0

fGfG
Ig(q)l II(t,dr)(dq)

(p) fq)1I(t,dr)(dq)

= >(p) fLIL(r)f11ZIJtt,dr)

We know that ILx(t) LI 2t1U(t,Y) If IfxlI
constants C1 and when t 0.

(T(q)x,x) is in Wf) and, taking

equality, it follows that tftx(t),x”)

to f3x,x’) as t — 0 In particular,

of uniform boundedness,. IIx(t)xfl - 0

u(t,Y) is a holomorphic semi-group,

function and x(t) is a holomorphic

K1e LixIl, with some
If x E W(x) then

g = 1 in the above

(x,x)} converges

applying the principle

as t —‘ 0. Since
*

(x(t),x ) is a holomorphic

function0 Moreover

We now show that if

= U(tX)x. We first

(T(q)x(t),

x(t) ITt p)x(t,dp) then xft)

observe tbat

x) f(T(q)T(p)x,x)(t,dp)

fctTp,(t,dp)

=
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(T(q)xft),x) is in D(Bk(Y)) for any k; the work of the

next paragraph shows that (T(q)x(t),x) is in Wk(Y)

for any k0 Consequently tt) is in Wk(x) for any k.

We observe finally that txtt),x) = (Bx(t),x) and, thus,

=3x(t) Another application of the uniqueness theorem

for the abstract Cauchy problem shows that x(t) = U(tX’x

when x is in Wm(X Since Wm X is dense in x the

equation is valid for all x in I.

6 In this paragraph we establish the basic analytical

properties of Utt)x and of ,(t,dp). UCt)x is an analytic

function of t and BUft)x = -j U(t)x =

dt

,t U(7)xk0
j i d0 We observe that , as a

2TTi ItIr(t)t)

power of B, is the operator associated, by Theorem 7, with

the-elliptLc form (l)ktE(i) tax)k for it is equal to

that operatoron Wmk and its adjoint is equal to that

operator’s adjoint on Wk. Let -‘ be a rightinvariant Haar

measure on G and let K(p) be an infinitely differentiable

function on G with compact support0 If x is in W , then

fKp)BkT(p)X)dp)
JG

JK(p) E bU x,T(p)x’)Vfdp)
G Iqlmk

= f
{Ljj is the set of leftinvariant differential operators

introduced in Chapter 1 This formula remains valid for x in
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D(B9. As above, by Lemma 5,if x is in D(&9 then x is

ifl Wg1 In particular1 U{t)x is in (1 W and T(p)U(t)x
k

is an infinitely differentiable function of p. U(t)x

is defined for all x in 1; we show that it is a bounded

linear function of x. If 6c1 1, AU(t) .Ls a elosed,

everywhere defined linear operator on I; consequently, it

is bounded. By induction, it is apparent that AU(t) is

a bounded linear operator. Consequently IIA8(t)xll N(t) Ibtil.
TLp)U.{tJ,x is infinitely differentiable as a function of

p and t and

Idtk
AU(t)x

= .L* JI4etIr(t)(Cet)1t+l
d4

S N(k,oot)IIxIj.

The equation

I(T(p)U(t)x,x*) = (Ttp)Bu(t)x,x*)

ii *
— E(ui)IaJiJT(.p)U(t)x,x

when written in an analytic coordinate system, Is about

- .4Ke .idatit-y .15 a parabolic equation with snalytic coefficients.

We now appl the results of [3]. The facts which we need

from this paper are not explicitly stated as theorems and

the proofs are not given in complete detail. However, since

the proofs are quite complicated and the assertions to be

derived froni these facts ancillary to the rest of the thesis,

we. prefer not to perform the calculations in detail here.



The work in the paper shows that CTtp(s))u(t)) u(s,t)

may be extended to an analytic function in a Complex neighbor

hood, N(t), of the origin in S-space, N(t) may be taken,

locally in t, to be independent of t; and the upper bound

of Iu(s,t)1 in N(t) depends only onupp.er boins for the

absolut value of uts,t) and a certain number of its de

rivatjyes for real s. Thus u(s,t) may be extended to an

analytic function of $ and t in a certain, open set, M,

of complex ts,t)-space, which contains all the points

(s,t) with t in the Sector in which Uft) was shown to

exist and s real and Close to the origin, In a neighborho0

of anypoint (s0,t0), Iu(s,tj is bounded by an expression

K(s07t) IIxjj Ilx II, For fixed x and varying x , u(s,t)

defines a bounded linear functional v(s,t,x) on

v(s,t,x) is an analytic map of M into X’, But v(s,t,x)

is in X for s real and close to the origin; so

is in X for all (s,t) in M, In particular, U(t)x is a

Well-behaved vector, in the sense of [5], in the interior of

the sector in which U(t) was shown to exist, Since

x as t - 0, we have

are jense any

nl represe&tj of G,

We now show that there is a function, h(t,p), analytic

to t and p such that M(t,dp) h(tP)(dp)6 , is a

left-invariant Haar measure on G, If f(x), in
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is infinitely differenfile with compact support and [s}

is an analytic coordinate system in a neighborho pf the

-identity, then there are analytic functions, au(s),

independent of f Such that, for small 5,

n
— f(s) a E ai (s)L f(s).
)sj

Consequently, for small %,

a” n p
I I—’— f(s)Jds t k I. IL4f(s)Ids
JIsI$h 3=1 JIsI% “

n
<K zULfI, 1.a

17-V

Theorem 1’ implies that if f is in W1(Lj(r)) then it may

be approximated by a sequence tn1 of infinitely differ

entiable functions with compact support in such a manner that

Lsfn - L3f in L1(td. Thus, if f is in W1(L1(,g.,J) its

distribution derivatives, with respect to (Si), in a

neighboc’hoo, N, of the origin are in L1(,,s,N) and

Si<1LN5)Ids S K1 EilLJfl).

Similar remarks apply to the higher order derivatives. Since,

when f is in L1(,as), - U(t,L1(,4))f is in

for any k, we have

f 1 ft(5)Ids s C(t)jfrIl.
lsIS% s

It is well-known El) that this implies that may be taken
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as an infinitely differentiable function in a neighborhood,

0, of the origin and that

Ci) Ifts)t D1(t)LtfjL

Cii) if(s)L <

in 0, Consequently, for every p p(s), sin 0, there

is a bounded measurable function g(t,p,q) such that

ffp) = ff(q)g(t,p,q)fdq).

Moreover Ig(t,p,.) gft,l,6)If() — 0 as p - 1. If

f is continuOus -with compact support

f(p) =fftq_lp)ttdq)

= fG(td1

Consequently tt,pdq) g(t,p,q)(dq), In particular,

(t,dq) = g(t,l,q)(q)(dq) = h(t,q)(dq)((dqer)

= (r)/jdq), cf. [4], p 265) Then /(t,pdq)

h(t,pq(dq) = so that h(t,pq)

= g(t,p)4)L(q). h(t,p) satisfies the following two

conditions

Ci) IIh(t,°)IIv = ess sup IL(q)h(t,q). ess sup jg(t,l,qj
q q

<a,

(ii) ess sup I(q){h(t,pq) - hft,q)}j

ess sup fg(t,p,q) - g(t,l,q)j 0
q



To prove this we notice that for f in C0

ff(q_lr)h(t1+tq)(dq)
u(t1+t2 C)f(r)

u(t1,C0)utt2c)f(r)

=

utt2,V)h(t1,.) ht (t17’), we also have

htt1,p) fh(tlqp)h(tq)(dq) Consequently

ti+t2,p)
= h(ti,p)3 Then h(t1+t2,q.) L(q)h(t1,o)

is an analytic function of t2 and

Applying the linear functional which

-at the identity we see that h(t,p)

of t and o

&S p - 10 As anticipated in the n-etation, we call the

Banaeh space of functions satisfying (i) and (ii), with

the nonn given by ti), V0 The functions in V are

equivalent to continuous functions so we take V to be a

space of continuous functions0 The representation, L(p),

by left-translatjons of G in V is strongly continuous6

In order to use this fact we must observe that

fh(t17q_1p)h(t27q)(dq)
= h(t1+t2,p)0

However, setting

= f{ff(Plr)h(t1qlp)(dp)}h(t)()

= If(Plr)1]h(t1
q1p)h(t q)(d)}1(d) 0G G

q -with values in Z.

evaluates a function

is an analytic fut±
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