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ABSTRACT

With every Lie semi-group, TT, possessing certain
- regularity properties, there is associated a Lie~éigebrg,
Aj and with evef& strdngly continueus;rebreseﬂtation>of
TT in a- Banach space there is asseqiatedﬂamrepresentation
Ala) of Ao Certain theorems regarding this representa-

tion are established.

-

- The above theorems are valid for a representation
of,a;Lie.group,also. In’this_case, it is shown that it

is possible to extend the representation to elliptic ele-
ments of the universél enveloping algebra. It is also shown
that the repfesentatives;of the strongly elliptic"eleménts
_of the universal enveloping algebra are the alnfi.nj.«.téSimai
,4generators of holomorphic sani,—groups° Integnallﬁépresentam

tions of these semi-groups are given.




INTRODUCTION

The study of Lie.saﬂiagroups and their representa-
_tions was initiated by E. Hille in [6]. For a Survey of
the basic problems and results the reader is referred to
that paper and to Chapter XXV of [7]. This thesis is a
continuation of work begun there; we summarize briefly the

results it contains.

In Chapter I, the "Dense Graph Theorems" suggested
in [6] are proved and it is shown that linear combinations
of the infinitesimal generators form; in the precise sense
of Theorems 4 and 6, a representation of a Liekalgebra

canonically associated with the semi-group. -

In Chapter II the study of the infinitesimal generators
is continued. For the work of this chapter it is necessary
to assume that the,semi—group is a full Lie group. It is
shown (Theorem 7) that the representation of the Lie algebra
can be extended, in a natural manner, to a representation
of the elliptic elements of the universal enveloping algebra.
Then the spectral properties of operators correspahding to
strongly elliptic elements are discussed; in particular it
is shown (Theorem 8) that they are the infinitesimal generators
- of semi-groups holomorphic in a sector of the complex plane.
Canonicalwrépresentations of these semi-groups as integrals

are given in Theorem 9.




§j : The reader interested in other work to which that
of Chapter II is related is referred to (9], [13], [19]s

and a forthcoming paper by E. Nelson.
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CHAPTER I

1. Lie semi-groups have been defined in [6] and
[7]. We.shall be concerned with semi-groups, [T, whose un-
derlying,topclcgicalhspacemis.mﬁgw? {lxg, o0ey xn)lxi > 0,
i=1, ..., n}, a subset of real Euclidean n-space. We de-
note the“semirgroupwoperation‘by either F(p,q) or Poqg.

~ The following conditions, numbered as in [7], are supposed

satisfied.

P,. Fl(a,0) = F(0,a)

PB.‘VF(a,F(bge)) = F(F(a,b),e) ;

P5v There exists a fixed positive constant B such that

‘ for all points a;, a, and b in IT
max {IF(ag,b) - F(az,b)I;MIF(b,al) - F(b,a,) [} < (1+Blb!)|alma21'

, P6" There exists a positive, monotone increasing continuous

funcﬁion w(t), 0<t <o tending to zero with t such that

lF(a,b)faebl < rew(s) r é,min {lal,lvl}, s = lal + |b]

Pll° At evéry point of E;.x E; ‘the n coordinates of
F(p,q) have continuous partial derivatives with respect to
the coordinates of p and q up to and including the third

- order.

Then, by Theorem 25.3.1 of [7], there is a continuous
function f(a) from TT into TT such that f((e+a')a) =
..‘f_;(‘ga)‘.c’ floa) for ace T, p) 02 0.
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Let T(p) be a representation of J[| in a Banach
spacel Xﬁ which is strongly continuous im a neighborhood of
the origin, then for a e T, p=0, p > T(f(Pa)) is a
strongly continuous one-parameter~semiegroup. Denote its
infinitesimal generator by A(a)° In this chaptef we in-

~vestigate the relations among the A(a) and their adjoints
A%(a). For the purposes of Chapter‘II, we remark that similar

theorems are valid for a representation of a Lie group.

We first construct a common domain for the operators,

A(a), a e T[, which is large enough for our purposes. We
use the following notation: %E—(p,q) = Fgg(p,q);

Lk 2k |

A S 3(pal = FE (p,q), ) 3 = Fk (p,q) F¥_ .(0,0)

Bq bq}p J’ 173

ani(0,0) = Bﬁij‘ F(p,q) may be extended to a twice non-
°E

tinuously differentiable function defined on En'x En,1 Denote
some fixed extension by F(p,q). Since. Fk_(0,0) = |
FI;‘J.(o,o) = %1; (the Kronecker delta), ﬁhere are open spheres
Ny, N, C_ N, about the.origin and three times continuously
differentiable functions W(q,h) and %.q,h) defined on
N;%N; such that W (0,0) =%(0,0) =0, F(n,V(q,h)) = q,
and F(X(q,h),h) = q. Moreover if F(h,p) = q [F(p,h) = q]
with p, h e Ny,  then q € Nl and \{tq,h) = p[Aiq,h) = pl.
We‘may'also suppose that all derivatives of ;q/(q,h) and
Ylq,h) up to the third order are bounded in Ny, that T(p)

le, the constructlon on p. 12 of [12].
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is strongly continuous in Nl/\TT, and that detA(Fg (p, > 1/2
and det (Fk (p,O) > 1/2 for p in N,. If Ng;;Nl is an

open sphere about the origin, set

.

E(N) = [y :‘j;T K(g)T(q)x dq|x € X, K(q) € C, (NIWTT}¢f
CQ(NfWTT} is the set of twice continuously différentiable
functions which are zero outside of NNTT. We refér the

‘reader to [7] for a proof that E(N) is dense in X.

Proposition 1. Let HB be an open sphere about the origin

with F(N N3) CN,, If ye E(N,) then T(ply is a twice
3 2 3 4 wice

continuously differentiable function of p in §N31§T73
Proof: We understand that some derivatives at the boundary
will be one-sided. If y e E(N3) and ey = ('%é,fi;&gwigﬁ) .

we have, recalling that K(q) is zero outside of NBfETT;g

1im s7H(T(p+se,))y - Tip)y)
s5==0) J

H

éige a7t jﬁ fTTT (q)(T((pfsej)o q) = Tlpeoq))x dq

k
, : r=p+ :
lim s"lfN ATT (K(W(q,r)) det (52'?‘@?” ’ SeJT(q)x dq

ti

s—=0 q r=p
k
= (K( ; ﬁi 5 T d
fg ﬂTF}p \V(q p)] det ( (q,p)))T(glx dq
+ lm q ﬁTT G(q,p,s)dq

DYk
= K ; d 5 (
f ﬂTTBPj (K(Y¥(a,p)) det (()q (q,p)))T(q)x dq
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since -G(ffq,p,s)/ converges boundedly to O with s. The
final integral is a continuous function of p. In a similar
manner we show that it is once continuously differentiable.

~ We remark the following formulae valid for vy ‘s‘Eﬁ(N3),

P e N ﬂ-ﬂ'
(i) lim s"l«(T(f(sa),)Y-I)T(p)y
s—=>0
= 1im s~ l(T(f(sa)o ply - T(ply)
s==0
= lim [£B_ "‘1(F3<f )o p)-pI ) (|£(sa) o p-p|)]
sﬁof _1§ (sa pP)ﬂ (ply+s” Of’ sa) o p-p|)]

P
-So T(p)y e D(A(a)), and AA(g)T(p’)y is given by (1).

(1.1) - f%‘(‘;nari-eﬁ )al) 2 ’T( )
Ao = : } u;*#,“ ; s a_ —_ .
S J=1 i=1i; bis Ind ply

(ii) T(piACa)z_F;limwsal(T(b<>f(sa))Y'T(P)Y)
T s=>0 | el NS

ot | ; Sy
1.2) =30 (R Fl (5.0)ak) 2 7
(] 2) j=1Zk=1F; (P, 0)a") >pd (p)y

(111) Setving (Fl(p,0)7 = (¥(p)),

3) 2Tply = B wde)T(p)Al
(1.3) 5 )y = i i (p)T(p)Ale, )y

(1v) Setting znlej (0,p) ¥5§(p), =p¥(p),

Ala)A(p)T(p)y = k gal( 2 ,6 p)hlﬁ(En le (O,P}& ) ;a"‘T(P)A(e )y
K, o)
(v) () A(a+b)y =A(a)y + Alb)y

(/6) A e; JA(e j)y - Ale )A(ei)y = Zk,,l})" A(ek)

For a proof of the latter relation, see [7], p. 758.
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2. The first theorem is known- as a "Denise Graph Theorem"
and has been Suggested by E. H1118 in 163 and [71. :

T : l: ” Lgi.’ t{al’ ‘,un’ ap}g_TTg ;[__i; Gﬁl&thg ClO§ur__e_,
in the product topology on Xx ... xX (p+l factors) of
{lx,h(ag)®, .0ny '~A(ka7)x),| x e E(N3)} and

G = {(X,A(al)x, seoy a )x)| x € f\gzl(A(a))} then G =vGo°

'Proo% G:J G ~_since an 'ln—f*l;{llte&lmal generator is a closed

operator. We show that G :3.G .Let §b b be

r+l? "0y n}
a maximal»llnearly~1ndependentrsubset of {aj, ¢.cy, a },
it 15 suff1c1en@ to prove the theorem f@r the former set
Let {by, «.uy b }CTJ" be a basis for E . If ¢t =
(tl, eeo, t0) & TT, set plt) = (tibl ces O f(tnbn)o
p(t) is a twice continucuslykdlfferéﬂtiable.m£§~0f T
into TT ~and may be extended to a tWice continuously differ-
entiable map of En inﬁe{fﬁnﬁ _Denote some fixed extension
by plt). The above process is analogous to the. introduction

,of~Canonical‘coordigatﬁs»sf the second kind on a Lie group.

Since QR§LQ)A= b?, p(t) has a twice continuously differ-
entiabletinyersemdefined in a sphere Nh about the origin.
We may suppose that F(NA’NL) Q;Né and that all derivatives

~ef the inverse function up to the second order are bounded

‘in Nkf If ye E(ﬁh) and p ¢ E%IWTT, then T(p)y e E(N3)'

For vy ¢ E(Nh)’ set ' '

u(y,s) =‘/q S(t)y dt
R(s)

s)
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where s = (sl, eeoy 8%, S(t) = T(p(t)), R(s) 1is the
rectangle with sides [O,sJe.], and R(s) 4is contained
~in the image of Nhf under the inverse map. By (1.1)

A(bk)u(y,s) = fR(S)A(bk)S(t)y dt

=f( : Z;l —= 5(t)y dt

Ris) i=1
. . i
, m t 2 2 p
where 7 .(t) = 2§,m=1Fm§(Q’P(t))bk ?—3 is once continuously

p

differentiable. Integrate by parts to obtain
- - ,/ s @i,si) .
(1.4) Alp )uly,s) = z?gl Jf C Zie)s(e)y Ao gid
’ , ’\l) (t,0)
/ ____ES__S Y dt..

R(s) 1=l sl

Since the integral of a function with valueslying

in a closed subspace of a Banach space is contained in that
subspace, .

(1.5)  (uly,s), A(br+l)u(y,s), oo, Alb July,s)) e G

Since (1.4) is a continuous function of y and E(N

4) is
' dense in X; for any y e X, uly,s) e f\ D(A(B

ok j=1 j)) and
~(1.4) and (15) hold. To complete the proof it is sufficient

to show
(1.6) 1lim ¢ Puly,s(le)) =y
: o =0
(1.7)  lim Alb o uly,s(o)) = Alb )y
& =0 :
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for k>r+1, ye ﬂ§=r+lD(A(bk)), and s(o) = (o; ..., o).

(1.6) is clear; to prove (1.7) we expand zi(t) in a Taylor's
’ k

series and consider

o1

' 3 (t7,00
S lim 7% ﬁi(t)s(t)y‘! TR
70 Jrisl(e)) (ers0 |
= 1im f'“*lf %i “Ls(tl,0)y - s(tl,0)y atl
2z 1
+ cr‘”r“’l,f -———-—115 (O)S(t ,0)y ati
. L) s i b
+ g 0%l f (z 40 “1¢J -—-—f-_I%,(o)) coe (S(tY,0)y - S(t*,0)y)dt?t
¥
= 3L alb)y + —£ (0)y
providéd

(1.8) lim o “H(s(t",0)y-5(t%,0)y) = a(b,)y,
G’*>0 :

But the,left'Side is

TT &

$21 T(e(e b, ))[c“°1(T( £(o b)) )y-y)

+ (T(£(od)) ~TN(ED g (TToTe  T(e(e™ ) ) o™ LT (e (edp,)) —y))]

‘and (1.8) follows if we recall that t* < ¢ and that y e D(A(

‘bi))
for i>k>r + 1

..,Summing over i and taking the last term

of (1l.4) into account we obtain (1.7)

(T The‘following theorem is not of so much interest as the one
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¢ ¥

N(WD(A(gi)A(ej))}, then F =F .,
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just proved but we want to uée,it to establish the analogue

of a theorem of [7]. We merély sketch’the proof.

Theorem 2: If F_ is the closure in the product topology

O .
of {(y,Aley)y, ..., Ale )y, Ale, lA(e. yv) |y e E(N3)} and if
F = {(y,Ale1)y, ..., Ale )y, Aleg)Ale )y)ly e N2 DlAfe,))

o]

Proof: F isa closed set and thus FD F_. We show F.DF.
Taking bk = e, we use the notation of the proof of Theorem

1. For v e E(Nh)’

Aiei)A(ej)u(y,s) = JQ(S)A(e )A(e )S(t)y dat

]

. |
.j;(s)zg,m?lébm(t) g;“(s( t)hle, )y) dt

here SX(t) = 2y B5(n(6))FL (0,p(t ))'3—"'—“1— 15 ohie bons
v “r=1 3pF :

p
,tlnuously dlfferentlable., Integratlng by parts, we obtain

(1.9) A(ei)A(e')uW»s) ;' G
n=d Jp(gm)Tk- %0 Y (£",0)
k

J[ n ok
" Jr(g)Teome1 _;;E(t)S(t)A(gk)y.dto

Theorem 1 implies that (1.9) holds for vy £ (JEQID(A(ek))°

The proof.is now completed as above.

3. We now consider the adjoints of the infinitesimal

,generatorS and prove the corresponding dense graph theorem

If y € X , the dual space of X, we denote the value of

*

*
'y at yeX by (y,y). If NCN;, set




—Oa
; E‘i(N) = {Y$ £ X*l(Y,Y*) = f (YaK(q)T*(q)'x-*) da}
| m

with x e X, K(q) e Cz(HfWTT), and for all vy & X.

e

% &
E (N) is dense in X in the weak-* topology.

% * * *
Proposition 2. If v ¢ E (N ) T (p)y is twice continously
differentiable in the weak-* topology, for p in NBF\TT,

‘Prgofzk,we;m@rgly sketch the calculations since the proof

is esseﬂtially the same as that of Proposition 1.

. lim s7? jf,(y;x<q><w*<p+se.> - TP T (Q)x") dq
- s=>0 TT - J | ;

llm s / (y,K q) ( (p+sej)x$—T*(q)x*)dq
T

= § 2 : &E 3 3
= (y, =3 (K(X(q,p)) det (“=r (q, T ( dq.
J; (\TT4Y' Bpj (K(K(q,p e e (q,p)))T (q)x dq

The last integral is again a continuously differentiable

function of p.

We remark the following, valid for y e E*{NB) and

P E NB(W TT:
(1) | 1in s Ly, (T(£(sa)) ~1) T (p)y*)
s—=>0
(1.10) *,E?gl‘ A F (p,O)am) “zg(y,T (p)y ).

, * *« Lok
This implies that T (p)y & D(A (a)) and that
®, 4 ®
(y,A (a)T4(p)y ) is given by the right side of (1.10).
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- (ii) As in the remarks following Proposition 1 we may show,
ok %
for y e E (NB)’ |
* LI ® ok 3
(') A'(a*b)y = A'(a)y + A (b)y"
*

. R PRI B * * . n k%
(f1) A (ei)A (ej)y A (ej)A (ei)y Zkzl)’ijA (ek)y .
i

- Theorem 3: Let ,?{*ai’, eie, ap} CTT. 1If H, 1is the closure

N

g(in the product of the weak-* topologies

{(y A (al)y ) ey (ap)y )ly e B (NB)} and H =
(78 @)y, weey 47 )y ) 1y e N2 104 (a )], then
H=H_,

Ee)

Proof: H_ D H_ since A(a) 1is closed in the weak-*
topology.. We show HO;Q H. Let {bl, ceny br{ - be a maximal

~linearly independent subset of {al?‘..., a }; it is,suffi~

p

‘cieqt to.prove the theorem for'the former set. Let

A{bl, vy bn} be a basis for E_ . Again we use the notation
% * s

of the proof of Theorem 1. If y e E (Nh)’ define wuly ,s)

by

(y,u(y*,s)) = V/’ (y,S*(t)y*) dt
R(s)

s
SR ek ,
with 8 (t) = T (p(t)). As above

(1.11) ’(y,A (b, July ,s)) Ny d
- gn f kg’ ie)(y.8% )y ti’Sl)
17 s, T Y R o)

4 )El i Sho
- 28 . —=K (£)(y,5 (t)y) at
fa{,s) =Loyed T Y
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. i j t
with S:k(t) ézg’mglF‘;,(pv(t),O)bﬁ 3;— As above

u(y ,s) £ /3n 1D(A (b )) for all y e X* and A*(bk)y*

,iS»glvenwby;(l.ll). ,Moreav&r,
* o = ®
(uly ,8), A (byluly ,s), ..., A,ibr)u(y ,8)) € H, .

The proof may be -completed as before if we show that
(1.12) 1im o~ (y,(S 4k ,0) =8 *(rk O))y )

Lo =0 ; ¢

= (y,47 (b )y ")

0 * * ,
for 1<k<r, tJ<o, and ¥y e(ﬂgle(A (b;)). But the

expression on the left equals

(T T(etedo )y, o1 (e(o b)) -1)v")

j=k+1
k-1, k-1 _
Cex( T T(e(sm ))(T(f(abk))ul)ﬁ T(£(6Tb by, T Lot 1) -1y ),

i=1 f=i+l Gek+l

‘and (1.12) follows since, see [11], o H(T (£(t¥b,))-I)y" is uni-
: <
~.formly bounded and c‘ bk )=I)y  converges in the

%
weak-* topology to Awlbk)y

L. If a = (al, veey an)‘s;Eé, A{a) = Egﬁlng(ej)§
- is defined for y € E(NB)‘ By the remarks after Proposition
2, E*(H3) is contained in the domain of its adjoint so that
A(a) has a least closed extension which we again denote by
A(a). By Theorem 1, this notation is consistent with that

used previously for a in TJ.
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* ‘ .
- Lemma 1. A (a), the adjoint of A(a), is the weak-*
. : " . g1 Jp* 1ith *01
- clogure of the -operator £j,;a A‘iaj) with domain E (Nj).

le
S

~Proof: Suppose (y4§1) = (A(a)y,xz) for all vy ¢ E(NB)’
- Then, using Theorem 1 -and the notation of its proof with

T g

B (8(t)y,x") at
e fa(s(oﬂ A

for ye X

=77 T | i R ‘(giso-)' Aq
T ey S0

f (28 Eﬁé (t)S’(t) *) dt]
R(g) 151 y¢d e )

Transposing and taking limits

Then using (1.11)

: R - 2 s < P
(1.12) lim o n(y,zgulaﬂf(ej)u(xf"‘,s(o*)) = (y,%).

Theorem 3 implies that u(x;,s(ﬁ))‘ is in the domain of the

weak-* closure of SaJA (ej)' and (1.12) then shows that
k

iy
in paragraph 1, may be used as the structural constants of

e
55

X, 1is also. By,Theorem;ZS‘S;i of [7] the ¥ as defined

afLie.algebra A  over En’ Denoting the Lie product, in

_this algebra, of a and b by [a,b], we have”[a,b]k =

)3

l,jgl’xgj,aibj, We can now prove the fﬁli&yihg theorem@~
, j= 4 , )




o
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Theoremt: I.The function a —> A(a) defined on A has the

- properties

(1) If x e D(Ala)) ND(A(b)) then x e D(A(sa+tb))

~and- A(sa+tb)x = sA(a)x + tA(B)x.

(i1) If x e D(&{a)A(b))ND(A(b)A(a)) then
x ¢ D(A([a,b])) and A([a,bl)x = A(a)A(b)x - A(b)A(a)x.

ITI. The funetion a = A¥(a);fhasvthe properties
* < ¥ ‘ < %
(i) If x € D(A (a))ND(A (b)) then x e D(A"(sa+tb))

K,k 3 * *
~and A (sa+tb)x = sk (a)x + tA (b)x .

(11) If x & D(A7(a)a™(6)) NDEA*(b)A"(a)) then

x e D(A%([a,b])) amd AT([a,b])x" = A%(b)a%(a)x" - A% (a)a%(b)x".

 Proof: If x e D(A(a))ND(A(b)) there is a sequence {xn}§;;E(N3)

such that x> x, A(a)xn —= Ala)x _and A(b)xn;-> Alb)x;
but then, using formula ( ), A(sa+tb)xn = sh(a)x_ +,tA(b)xn

> sh(a)x + tA(b)x. Since A(sa+tb) is a closed operator

x € D(A(sa+tb)) and A(sa+tb)x = sA(a)x + tA(b)x.

If x e D(A(a)A(p))ND(A(b)A(a)), then for x € E$(N3f

(A(a)A(b)x-A(b)Ala)x,x ) = (x,47(b)a"(a)x -4 (a)a " (b)x™) .

S0, using formula ( B1),

(1.13) (A(a)A(b)x-A(b)A(a)x,x)
= (x,47([a,b])x ).

de
B

The lemma implies that (1.13) holds for x e D(A*([a,b])).
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In other words, the vector u = (A(a)A(b)x-A(blA(a)x,x) in

- X6 X is annihilated by the annihilator of the subspace
‘ U= {(A([a,b])y,y) |y € D(A([a,b]))}. So u e U; or,
- x ¢ D(4([a,b])) and A([a,b])x = Ala)A(b)x - A(b)Ala)x.

The remainder of the theorem is proved in a similar manner.

Recalling that if a sequence of once continuously
~differentiable functions and the sequences of first order
- derivatives converge uniformly on some domain then the limit
- function is once continuously differentiable and its partial
,derivatiVGS-are the limits of the sequences of partial de-

rivatives, we have, using (1.3) and Theorem 1

~ Thegrem 5: If 7y ¢ f\?le(A(ej)) ‘then T(ply is once
continuously differentiable in a neighborhood in T[], of

the origin and (1.3) holds. Consequently, T(p)y ¢ D(A(a))

.for a e En and p in this neighborhood and (1.1) and (1.2)
~ hold for ace [J.

The following theorem, analogous to Theorem 10.9.4

of [7], is an immediate consequence of Theorem 2.

gzem 6: IE y.e N D(Ale,)) ND(Ale;)ale ) then
y € DlAle,)ale,)).

The only properties of E(N3) used in the proof of
Theorem 1 were that T(p)E(NA) Q;E(NB) for p in a neighbor-

- hood of the origin, that E(Nh) was dense in X, and that
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equation (1.1) was valid. Thus, using Theorem 5, we could

repeat the proof of Theorem 1 to obtain

Q;E}g;;x be the two dense subspaces of

Theorem 17: Let be
T(p)FCE for p in

Let F
X contained in f) _D(A(a)) and le
e e s ae 'rT’ —

a neighborhood of the origin, then Theorem 1 is valid with

E(NB) replaced by E.

In the next chapter we shall consider strongly con-
tinuous representations of Lie groups only. The group will
‘be denoted by G ana its Lie algebra by A. A little care
is necessary in the definition of A in order that the
formulae above remain valid. A‘ is taken as an algebra
isomorphic to the algebra of left-invariant infinitesimal
transfarmations with the multiplication XY - YX. (Cf, [2]).
Then if e(a) denotes the exponential map of A into G,
and the representatioﬁ is T(p); A(a) is the infinitesimal
generator of the one parameter group T(e(ta)). With a we
associate the following left- and right-invariant infinitesimal

transformations

L, £(p) = lim t™1(£(pe(ta))-£(p))
t=>0

1

R, f(p) = lim t7"(f(e(~ta)p)- £(p)).
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These mappings are isomorphisms of the Lie algebras
involved. Formulae (1.1) and (1.2) may now be written very

simplys

(1.17) Ala)}T(p)y f'RaT(p)y
(L.21) T(plAla)y = L_T(p)y.

i}

The adjoint representation p - dup of G is
defined in [2]. With respect to a fixed basis {ei, coes e}

of A let the matrix of the representation be (a(éip)»

noo n n . u
so that de, (v ade.) = % { E*d%(p)aJ)ei. We state formally
j=1  J i=1 j=1

the following simple lemma.

=

Lemma 2. If x e D(A(a)), then T(p)x € D(A(dq$(a))} and
(1.13) Mdﬁj@)ﬂphﬁfTWMme;

Proof: x e D(A(a)) if and omly if

lim tml(T(e(ta))x~x) = Ala)x exists; or

t==0

lim tmlT(p)(T(e(ta))me) ﬁzT(p)A(a)x exists: or
t—=0 .

lim £ T(p) (T(e(ta))x-x)T(p 1) T(p)x =

t—=0

lim tmlT(e(tdo%(a)))T(p)X - T(p)x = Aldy (a))T(p)x exists,
t~>0 ‘ P

This proves the lemma. We may write (1.13) an~A{d°%(a))x
='T(p)A(a)T(p°1)xe’ Formula (1.13) is implicit in formulae
(1.1), (1.2), and (1.3).

eg‘{ &
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Using the basis of A previously introduced we set
A. = Ale.), If [X;}, i=1, ..., n is aset of n in-
determinates and &= (o, ..., cxm), is an m-tuple of
integers, 1 <o S n, we write X=X 4 Ly oo X

1 2 o
~the absolute value of &, |o| &= m. . This notation is

slightly unorthodex but it is necessary to allow for the fact
that the A;'s do not commute. We shall be interested in

forms ¥ a A, in the set {A.}.
lo(|_<_md'o< 1

Let E ©be the set of vectors y in x which can

~be written in the form

= | K(p)T(p)x m(dp)
y pr pX/‘vtP

with /4_faneft-invariantn Haar measure, x in X,
and K(p) an infinitely d.rferentiable function with compact
support in G. E satisfies the conditions of Theorem 1°.

% * %
Similarly E  is the set of y in x  such that for

xe X
S % %
(x,y ) = JAK(p)(x,T (plx )/u(dp)o
G .
With any form | % a°<xq_ we may assveiate the
°< ngm“
‘operator 'Bo;www&th“domain*wE;‘“defined by‘“ch = | ? adgdg
‘ S X {<m

and the operator B;, with domain E*, defined by B;xf

= |u$<m%“A;*Xm° If oL = (o, ..., o |yj) then " =(d‘d1, ceey L

The following simple proposition is of some interest. A special

case has been considered in [17].

)
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Proposition 3: If, for x in E, BOT(p)x=T(p)BOX,

sy
&

‘then the adjoint of Be is the weak-* closure of B._,

—

E7A

©

Proof. OSuppose that for all x in E
* *
(Byx,x7) = (x,%,) .

Then, for x in E

L]

('/(}'K(pf'?T(p)x,x;)/tA(dI?) (/;K(p)BeT(p)x,/a(dp),x;:)

1]

(_/(;g(?)TS(%P)BOX/M(QPEQg;)\;

We may write this:

(X,/(;K(P)T'r(p)xg /,((dp)) =‘(::ch;:j(;K(p)'l""(p):}ci‘/‘((d_‘p)')u

The integrals in the final formula are taken in the weak-%*
topalogy. - We now let K(p) approach the Y-function and

. 3 % * < 3 3
obtain fGK(p)T (p)xl/q(dp)f% x, and BOL‘K(p)T’(p)xl/u(dp)

de
LS

3K K
= [K(p)T (plx. s4ldp) = in th k=% topol .
fG ’(p) (p xz/({( p) X, 1in the wea opology




CHAPTER II

1. Before proving the principal theorems of this chapter

~we must establish some estimates for the fundamental solutions
of strongly elliptic differential equations and a differenti-
ability property of weak solutiens of elliptic equations.

‘The estimates are deduced from familiar ones for the fundamental
-solutions of parabolic equations (cf. [3], [15], [18]).

- Since wg are unable to refer the reader to complete proofs

- of the latter estimates we establish them below. Although

\ thé required property of weak solutions of elliptic equations

is known (cf. [1]) we have included a proof.

!Zl‘(m faeé'zxx s  Wwith con-
|<m

stant coefficients, is called strongly elliptic if for any

2. A differential operator,

real n-vector F Re Fl a k%l > PI ?lm, with a fixed
| =m

Pf>”0; A fundamental solution for the operator

e o
‘El:cd—’(“lﬂ [ad—b}?_+ )\ 18 f
: ixe'l |
G( , )~ S N //) e , e
%) S RTDR VB, T 0«82 i
If
' , -(za ?“)t il
; . 1 - =4 11@?
b)) = —— *ta
S T /Ene sl
then




e
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This is a basic observation since it allows us to obtain

estimates for G(x,\) from those for g(x,t).

‘We shall be interested in-the case that Ay = ax(y)y
|| < m, depends on a parameter, y, varying in a region,
U, of n-dimensional real space. We shall suppose that

ad(y),«lql < m, 1is m times continuously differentiable in

U and that, in U,

IN

m

(1) 33;7%(;«)} ;Y]

(11) Re le a v) 8% 2 P!?glmo
o] =m

We want to estimate the mixed partial derivatives

of glx,y,t} and G(x,y, W) up to the order m. We notice

_that, for t > 0,

. ~(a f*)t =
(x,7,8) = —2— [ 3lAlg P Ty (v geineF gy
Byrb | )A(ZTTﬂljf; ¥ .

. \v 3
N

¥ ' ] |
Lt PN “3! ﬁ@e‘(zacﬁ )t Jixe
TR e pREI MX(?’t)‘} ?df

\n/ \rQ’-k\:’Q‘*)?‘p@\\c‘-A )

and that the integrand, in the final integral .@s a function

of the;campiQXQva&atar ? =07 + o+ iT, 019 o, and T

”ﬁi"i‘ at|ovi|™ az:t’

- real, “Ismdﬂﬁiﬂa*ﬁd“by‘Hﬂ“ﬁxpT6331Un cqe

Ir_‘_ ﬁ fﬁ"m; ‘07'1 Y Pl’ al’ azdependﬁn ey m M., and
P only. Consequently



m a tnm
< ¢y ki eagtanPll§f ¥ §~z-n

Co KL & K
T ‘rk

Here and in the following all constants, unless the contrary

- 1s mentioned, depend only on n, m, M, and p- Since r,

- in the above inﬁquality, is arbitrary we choose it to be
1

% ™ and obtain

-(Ta_ £%)t at -p- |¢|% ,5
’)X’l \Eﬁ,t%l- Mb'( f,‘tf)e ”‘? }l <Tykt e 2 e P1 ZS‘ c%(%)mo
Then
/ 3
2k f jL_ 2k 1, B 20 "
IXJ !)yx 9x‘§g ;Y&t)l <n (yzlxl ) }yv }xﬁ glx,vy, t)J
g2kl o -(za %) . ¢
/3 | I/m 4 WK%F |
3k -4 1 F1™e
< ch? g%grzzg (cs)gk (2k)¢ (é%)Zk/m‘JQ e 1 f
‘ B
ayt 2k (B2L)41/2
‘ 2k =2k
< ey §§EIZI (cgt) /() n e %,
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{om/m=1
If = > 2, set k = i~~LZi= } to obtain
(cqt) /™ 2 (cge)/m-Ll

,z*’ P o P2 sx; m/m 1
éy } g(XaYat), < c8 n+la!
1/ ar ol 2t
, m
If x| < 2(cgt)™”™, then l 57 0o glx ,y,t)i < ¢ enz1 T -

Now we observe that Re {61(?75 ay %4)}
| =m

(cos @ p-k sin??l l%lm, so there exists ¢l and ¢2 with
TT/2 < <0< éz < TT/2 such that, for 4; < @< ds s

Re {ei? 2 ay E J P/Zlflmo Consequently we have proved
e | =m =« :

Lemma 3. Let all the above conditions be fulfilled. Then,

for ¢, <arg t < ¢2 and l%76i < m, the following inequalities
,are'v&li ) |

(1) 1If - l ~ > by, then
_Zi__l_bﬁ l ; eb3lti 3 m l
' (x,y,t) |-< b, ~S—rrer ( ym=1
Y7 P g\x,y 2 !tlgi%éL e lt!l m
(ii) 1If ltjflﬁ < by, then
122 gl
I A— ‘e
3) Y;Xﬁg( ””t); hltlm%
»;ghg;gggazéggs,égngyigg;x;ga n, my p, and M.

As a consequence, if lx+ﬁl <m,
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YO
3
!§m§~;£§ g(sz§xgt)f dx
fy gx
b It

= &ETEWE |x-2<by ltll/mmdx

! by [t] 91( t!l% ym= l

%2 tligi;m x&!;«;bl(atll/m ,t;n/m

bylt]
‘”', tlfs m’

Let 35 be the sector in the complex plane defined

i.cbi

id,
) < by a1 Re (ze

) Sbyle If N s
not in S we can find a Cf, él < go < 3925 such that

by S = {z|Re (ze

e (fkei@) - by 2 P(‘h,S), the distance from A to S.

Lemma 4: If )\ is mot in S, then for |l <m and
|7f76l <m /
G(X“ZQX;%)E dx < ¢ i

(el A,8))

Proof: Choose P as above; then

Jf ‘gt?;iif (x-z x17\)l dx

' 1 m‘ Y
< f [ e 128 2 ) acl
;ﬁ J O
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~(Re(h.el®) “by)t

®s fo”e T/ e

IN

G i

< =
< 3 =
[Re( >\'el(9)%b3} L%L

P

IN

C
L
(n,5) A

Y A ‘
We must now estimate %—? )l—fg G(x-z s Xy N ) pointwise
oy X

for |[x| <R, R>0. Choose y as above; then

Y 6
o g oty

-»(«Re()xei@) mbB,)t
< bh/‘ e , dt
> (%ﬂ)‘m“ e
l .
g L o
~(Re( A 61@ *b‘a ');t s Q;L?g%w)mml
+ b b & T — Bt‘lm dt
: t<(lx=zlym tIhA
B!
=b,I; + b,I,.

- We estimate the two terms separating for
Re (Me*¥)-b, =w > % > 0. For simplicity we replace
by 3 = %Yo y

x =2z by x.
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I=L™
I. < e dt
1= nt+
: (Jg’-‘i)m% s
m 71
-w,(-%}-d-)
Se T M(%,,%.R)

(i1) x| € 7:,1,

© ~wt 1 g o
‘Il s flnt_g_igﬁf" gt + f %g,z)wgﬁigﬂ v
, Py

f el’ +1 cz;[x{‘mfn'll@[ , m-n- |8 #0

cy + c?llog[x}l ) m-n - Iﬁ[ = 0,

We remark that, for |£] *m - 1, ;ﬂ ulsn - lﬁ[ 1 «n=20
22 ¢ b CON
bY )xﬁ (x-z,%x, A)| < C(A)

for |x-4 < 9. This is a simple fact about Fourier transforms

only if ‘n = ly, in which case

in one variable and we do not prove it.

(111) 0 < %y = Ix| <R,

1 gl
L folxmyR o elxlymeT
I, < Wy 3 ¢ dt
‘+{é[
o} i =
© n+

v 12l g} e m [J.+d,].
L gl | 1*92
(w|x/™M™ © '



1 1
-t
J, =e” w x| fm € — dt < cpem® X,
o colxlm+t)Iif-’i!;éL
1
| o —n+£ﬁ| ’PBtm_l | n+éél -2
Jl = (w]x|™)y e % dt
leIm) m

w0 -0t ( ~l)(n+lé|-2)+m-2
: s 3 £ n m

1
W™ x|
1
g x| 1 91 my 92
Seg e {(wlx]™) = + (w|x|™)
with certain exponents q and Qs -
(iv) [x]| < ‘61
1zl =
(1X]ym m
L 'P3 )
f2 < ":@3;1:‘ =

R
b _ m=1
= ‘le-n-ﬁp[ /ﬂ Se~S§§EEI— dt
< c6|x+m n~[ﬂf°

The estimates are precise emough for our purposes,

‘All we need to know is that G(x-y,x, A) goes to zero uniformly
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as (y 1increases provided lx«y! remains between two fixed
positive constants and that the derivatives of order m-1'

go to infinity like Ix—yql'n ~as |x-y| goes to zero.

i

& :
3. The differential operator, ?&l aisl;, with constant
) =m IX
coefficients, is elliptic if Q(%) = }l: | ao(iz"( #0 for any
: | =m

real n-vector F, F. John, in [10], has constructed fundamen-
tal solutions for such differential operators. These are,

for n, the number of variables, odd and even respectively,

n=1 o |
ek t Zl—gwdfv';(X-Y°E)ln_lsgn (X°§)§§u,
o 4(2TT9) 2 Y m-1)y X n"gw - , ‘

2.2 K(x- ——;Ln_ '£kn/2‘jﬁ -‘X“I°E!mléglx-z°f
( ) x-y) (ZWi‘)nmi- x ,()_g Q E

where (). is the unit sphere and /A is the Laplacian. Ac-

It

(2.1) Klx-¥)

"%

tually John was concerned only with the case that the coeffi-
cients are real; however, a repetition of his argument shows
that (2.1) and (2.2) are fundamental solutions when the co-
efficients are complex. In order to use these fundamentai

solutions we must perform the indicated differentiations. Let

L. =x; ™ - x, ; then
ij i J 3
DXJ« aXl
2
(203) fﬁ S l 21:1 L2 n-’l ) + B
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With a suitable skew-symmetric matrix, A,

ij?
Liqjcléé(xoﬁ)f(f)d
= lim —[f (ehiix. § dwg f _°§)f(§)dw¥]

t—=0

Lin —tf x-Frtetethisg - (3} dw?

J;LF

Of course, in the last integrand, x has beenrepl&ced by §

g(x-f)Lijf f)dcoFo

in the operator L,

- X
ije Setting £ T=T we have for n odd

, | P(})
(2.5) K(x) = 1 T 'nJP B L&eh —  duw,.
o 4(2TT1)" H (m-1) o ® [Qp)i®? u@

P.(E); is a polynomial in \f A similar formula is valid for

n-even., We may also show that, for n odd,

%.7)

bd Kt ) - 1 _.Kl n‘ld‘f )m -1 ( ;PX d
I W(2TT0)" Ym-1)r e Es N i

P,(x,f) is a polynomial in % and E Again, a similar formula

is valid for n even. For x # O, Zadfi K(x) = 0. 1If

Sa,(.y-)“ is an infinitely dlfferentlable function with compact
. support and @(x) = 1 in a neighborhood of 0, then (cf.
p. 57 of [10]) *

” ' 5(
1=&(o>)=/x(-ﬁ>z 2 ¢ (x)
4 ) :e%go lxl=s{2,a°<(f3x3‘K)(‘X)X"(.L‘id}?()()dw

€
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with & = (°<.1’ M,,,oqq,‘el); or

)
2.6 1 = 1i b3 Jizﬁ)(u ) dud
12.8) s;lio Jﬂlxﬂ%&: ax(bx‘* > x“lo([ ¥
) r

(2.6) is alse valid for the fundamental solutions discussed

in paragraph 1.

We can now prove the lemma of this paragraph. We

i &
consider a differentisl} operator B =% aq(x)jLe which
| ot <m ox%

is defined and uniformly elliptic in a domain V of Euclidean
n-space; that is, for any real n-vector E and any
xeV, |z ax(x)§kl > P‘flm with some fixed constant e-

|| =m . |
We suppose that ax(x) is |«| times continuously differentiable

lth order are

in_ V _and that its derivatives up to the |«
bounded in V. C?(V) is the set of infinitely differentiable

functions with compact support in V. Then we have:

Lemma 5: Suppose u(x) and f(x) are two continuous functions

in V such that

(2.7) [B?(x)u(x) dx = f?’(x)f(x) dx
Vv | v

for all functions gJ_ig CS(V), Then u(x) is m-1 times

cgntinucuslv‘differﬁntiable];g 'V and the modulus of continuity

gi:aﬁz;nmwlst order dérivative is 0l % log 1/%} uniformly

in any compact subset, U, of V.

i Proof: By the usual arguments it can be shown. that (2.7) holds
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for -f(x) m-times continuously differentiable with compact
support in V. Let K(x-z,y) be the fundamental solution

of the operator T ﬂf,_,a(,((y) — let W(y) be infinitely

¢
o | =m dx%
differentiable with compact support in V and be identically

1 in a neighborhood, W, of U. Let jk(y) be infinitely
different iable; Jk(y) > 0; f jk(y dy = 1; and jk(y) =0
1

if lyl > i Then, for large Is:‘3

- Gly) =A (y-z)¥ (2)K(x-z,y) dz.
: n

(2.7) is valid with

We calculate

L
by ay 3 (v=2)Y(2)K(x=2,y) dz
(™Y 357 & ?

oo

| | oty 1
,=fz sV (1) Y Bt gy Pekxen,y) Vi) a
E_ oy

‘o
=j}; (-l)m T a 3 Jk y=- z)'\f/ (x-z,y) dz

+ 3 b aylylj Y’* ) {'\f/ z) K(x-z,y)} dz.

|o<15<m

With our unorthodox notation the symbol o(l +o, = is a

little difficult to explain. It means that o(l and ,0(2 are

subsequences of the sequence & whose union exhausts X

Integrate the first term by parts to obtain



N fvmwjk(yxz)z Ay 2K e, y) Ya)) da

]
8
al

=4
(_l)mjk(y ) +[;f ng(y Z)El:xl?m if;( {’\}/(Z)K(szsy)} dz.

#

H
Substituting thése formulae into (2.7) and letting

k > o we obtain, for x e W,

(-1)"u(x) = j;K(X-y,y)f(y)dy
N4
(2.8) -fz (v) 2=V (y)K (x-y,7) July) d
| thd_:madyata({\}/y x-y,y) uly) dy

!o<11<m

/ (v) Q‘T{W *’M (x=y,y) }uly) dy.

We use this representation of u{x) to prove the
lemma. We first show that if ¢( %) is the modulus of
continuity, in a compact subset of W, of a typical term
of the right hand side, as a function of x, then w(% ) =
O( 9log 1/® . This isobvious for the second term since it
is an infinitely différentiéble function of x. The only terms
which give trouble are those which contain derivatives of K,
with respect to =z, bf order m=l. Consider then

X1 X2 443
L(x) = /;u(y)ax(y) 222 Y (y) -;-w; f:rg K(x-y,y) dy
z y

dy

z.
ot
&
'y
o
|

=m=1, We estimate



:

L(x+w) = Lix)

&1 oty Ag
=f u(y+x)ayly+x) izjj‘V(Y*'X“"?‘?’E “‘2“&*"3“ K{w-y,y+x)
En ?y 0z By
Lo bc>(3 )
~—;§ K(-y,y+x)] dy.
P

3
We remark that f?;-‘ji- K{w-y,y*+x) is

X o 0(3'

§;§§ ?;33 K(fai,yl) gvalqéﬁedkat Xy - zlk= w-y eand y; = y*x,

This notation is perhaps a little confusing; but it is desirable
to keep the numbefkof‘lette;s and subscripts introduced to a
minimum. Also K(w~y;y+xf ~is defined only for y + x e V;

but since we are multiplying by a derivative of q/(y#x) there

is no difficulty in taking the integral over E_. Now

A2 o3

B lan o [
3——‘(- L o= K(w-y,y*+x) = |y-w] /;(‘W“Y° JP(w=y, ¥, y+x)
22 dy 2 : u"§ ?

lY*Wllnn G(w=y,y+x) .

W

G(wfy,y+x) is once continuously differentiable, with

| O alu K
respect to w, when w # v and I§§Z G(w ygy+X)l < T§j§Tk

for y+x in V.

Write

L(x+w) = L(x)

! G-y, yix)

o /};; u(y+x)a«(y+x) f%\}/(Y+X){G(W‘ng+x l In Q{x } dy
y

n

+é u(y+x)ayly+x) Q?W(ym Glw-y, yreH—

o ly-w

1 i
ll’l“}. - lyln“’l}dy = Ilﬁalgo
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If |lwl is small enough

; I | .
! < JTYhSIWl log 1/|w| qu[>{wl log 1 I
O(|wl| log 1/lwl|)
+ K !/N |G (w=-y, v+x) =G (=y.y+x) |
1 >

R_iYiZTWlllog 1/ |wl lyln‘l

dy.

The integrand in the sacond term is dominated by
Kl K |wl Kolwl
n-1 s n s n
Ty I -y 1 Iy
y

where 0 <@g < 1.

ly
Integrating
I. = o(|w| 1o Ly + o(lwl1 (1«1 L)
1 e Tul) o8 (T 108 TuT
= 0(|w| 1log T%T)

[‘I2| < Kg f IT}%——v—an'l - ’ry'%?l:-ﬂ dy
lyl<R
ofw| log ‘T%T)'

If m =1, there is nothing more to prove. We suppose

li

m > 1. Now we observe that the equations

g Y

L [~—-——- K(w-y,y)] = ~——5-= 1—75:—- K(x-y,7)
P /@fﬁz 1

allow us to replace, in (2.8), partial derivatives of

K(x-y,y) by sums of total derivatives of terms.
2L_
¥y

K(x-y,y). To avoid confusion, we explain this in detail.
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(7 Until now we have when differentiating the function
K =K(x=2,y) regarded it as a function of the three variables
X, ¥, and z and only after taking derivatives have we sub-
stituted y for 2. However, in the following it will be
necessary to integrate by parts To do this it is necessary

K{x= é,Y} by

QYX 'z=y

partial derivatives of some function of y. The above

to replace the function

formula is the means to do this. The right hand side is

obtained by taklng =§l% of K(x- zgy) settlng z = y; and
then takrng : of the resulting function of =x and v.
We have 1ndlcated this by writing the sign for a total dem

rivative.

We wish to invoke the lemmas of E, Hopf [8]. First

we must observe that if we replace uly) by 1 in the terms

of (2.8) containing partiél derivatives of K(x=z,y) with
respect to Z of order m-=1 we may replace partial derivatives
by total derivatives and integrate by parts, for the a_(y)
involved in these expressions will be once continuously dif=
ferentiable. This lowérs,the order of the singularity of the
integrand so that we may now differentiate with respect to =
to obtain a continuous function., The lemmas just mentiened

now imply that wu(x) is once continuously differentiable in

a neighborhoecd of U,

Now that we know wu(x) is once continuocusly differ-

entiable in a neighborhood of U we return to the expression

(2.8). We replace VY l{y), which has served its purpose, by
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another infinitely differentiable function which has its
support im a neighborhood of U in which we know u(x) to
be once-continauously difﬁerentiébleo We write allppartial
derivatives as sums bf»{ctal derivatives; integrate those
“tenﬁSJinyolving total derivatives of order m=-1 by parts;
and then take the derivative, with respect to x, of the
- integrand in every integral en the right hand side of (2.8).
This gives us an expression;similaf to (2.8) for u'(x). The
lemma is now.established by imduction. It is only necessary
to observe that the derivatives of the coefficients’apd of
K(x-z,y), with 598pect to 'y, which are taken inmthe,préof
all exist. For the purposes of this thesis it may be assumed
that the coefficients are infiﬁitély‘differentiableiwphen
this difficulty does not arise. | g
4. We_return now to thexstuéy of representations of Lie

groups. We use the same notation as before. Set

W, = {xe Xlxe N D(A{ay) ... Alay))] and set
alhgesogaks
Ho A w0 %k f\ , % % )
Wi{' o ‘{K £ Xlx € algeoogakgAP(A (al) o o6 A (ak})j;o

Analogous to the terminology in the theory of partial dif-

_ferential equations, we call the form Z!: ! a X elliptic if
. X ;ﬁn

when we substitute a real non-zero n-vector E for X,

b3 a #£ 0, With an elliptic form, ¥ a X we associate
A Jel 7 P 5 )

|| =m % ; ol <m ~

the operator B@9 with domain Wﬁg defined by Box =¥ Ay Ao

lo¢| <m

)

We shall nsed to consider alsoc the operator ng with domain
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g,
W

ko :
o %XAX*X . 9Since the domain of

defined by B§x¥ =5
lo( | <m

g

%
B, 1is dense and that of Bo is dense in the weak-* topology

and since they are adjoint, the closure B and the weak-%*

e
3

closure, BF, of B, and ng respectively, are well de-=
fined. The following theorem shews this notation to be
justified.

e

. Theorem 7: B  is the adjoint of B.

Proof: OSuppose that for all x e Wﬁ

e
pre

(ixl<maxAx;%§;l.=;(x}xg)a

o
<

We shall show that Xy € W;;le Let f*' be a leftwinvariant
Haar measure on_G and set R, = Rle,). If K(p) is in-

finitely differentiablewith compact support in G,

| EaxAd{/Qk(p)T(p)x/q(dp)} =t/ZQEQx%xK(p)ETQP)X/i(dp)e

Consequently

/é;adﬁK{pX(Tﬁp)xgxi)}Aid?) = jgk(p)(T(p)xsxg}f4€dp}o

Let {ti} be an analytic coordinate system of the .second

‘kind [14] corresponding to the basis {eiE, in a neighborhood,

V, of the identity; then, assuming that K has support in V

bl

" o p e
]g{%dggmbx(t) L K(p(e)) HT(ple) ) IR (6] e

- VK(p(t)){(T(p(t))xsxg)}F(t) dt.,
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Here F(t) and bg(t) are analytic functions; F(t) is
nowhere gero; and ,% | bq(t) %fi is elliptic in a néighborw
hood U(C V of the S?iggn sincet by (0) = 8y It is then a
consequence of Lemma 5 that (T(p)x,xi) is m-1 times con-
tinuously differentiable. This implies that x; € Wﬁ 1. If
xe W, (x,x;:) = Zad(Ao(x,x;f) Ta gl Aot jog | %5 ;{*x;) Since
ECW , Theorem 1' implies that

e

(2.9) (x,xg) = ZaoéA " l QNXl

for all x ¢ Wl‘ Since {ti} is a canonical coordinate system
of the second kind we may infer as in the proof of Theorem 1

that S(t)x dt dis in W, for all x € X. The nota-
R(s(od) 1
tion is the same as in the proof of that theorem; in particular,

S(t) = T(P(t)). Also

A, J/j S(t)x dt ?‘/F . S(%i,d?x~3(%i,0)x att + Glo)
* JR(s) R(S4)

>0 o
o o G, (o)

1im {ga{‘g < (s (87 1kl 5y s (3%l 0)x, howry) o l‘_‘! — -
>0 (8%l . &
lim = | (S(t)x,x;) dt.
=0 ¢" JR(s)

G, (o)
Here 5~ > 0 as ¢ —>0 for all xe X. Consequently

og

°< | ,\,o( bd - ; QL
(2.10) 1im -[Ea (s (% id],c)x - 5(% LxI;O)x;A_xxi dt ?d{}
60 6% L X | a4 &

= (x,%,).




-38-

: * *
Now f( )S (t)xldt (the integral is taken in the weak«#*
: Ris)

ulp
<

topology) is in WI;; and by Lemma 2 and formula (1.,27) we

have, for x € Wms

(A, ... A x.8 () %)) dt
/}\I(s) 1 C| 1

- (S(6)A,  ous A,  x.x)dt
R(s) < ] 1

= T c (t)

fR(s) 811l 4

= t) (Ao Slt)x,A .x. )d
jl;(s)zcdﬁ( ) ( ﬁl t)x, 5:{1) t

- [ sc (v) 22l (S(t)x, Ajyx; ) dt.
fa(s)»ﬂ"‘ﬂ i Pl Bt’j TR

(468 (5)x,x] ) dt

We may choose the ¢, (t) so that c, (0) = 0 unless « = /8

- and co(o((o) = 1., Also ﬁg_(O) = %J Integrate by parts to
obtain
o o I NC
MCTCA NS PR TR N PN T el L PO
R(g"(lb(]—) ' ' A .

We observe that Gz(c',x) is a linear function of x which
is ’unifonnly’ bounded as ¢ =2 0. Since it clearly converges
to O for x ¢ Wm it converges to 0O for all x. Con-
sequently, summing over o and using (2.10),
R * *
o lim (x, Ta A *f S (t)x, dt) = (x,x%,).
= =0 X &A™ JR(s) 1 2
This eomple.‘c‘e‘s' the proof of the theorem.
The form T
| lo¢| <m

~ Re > 3 ™. p>0, for any real n-vector §°
lo(l"m d?« S: v P !

as(?xo( is called strongly elliptic if
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Let % | adxg be strongly elliptic and let B be the
K| <m

=

operator associated, by the previous theorem, with the form

-3

l» | (=1) Magtxo( then we have
K| =m

Theorem 8: B is the infinitesimal generator of a semi-group,

U(t), of class H(dy,é,) [7].

Proof: If x € Wm and A is a complex number

ESl

‘ (Bx‘-?\x,T*(p)x*) (= =(-1) " g A x- >\er;:<@);:_*) .
-zt e (T A, x) - N(Tip)x,x

: E(¥i)[°(la°<'Lo((T(p)x,x*) - NMT(p)x,xT).

*)

]

]

Let t = (tl, cooy tn) be a canonical coordinate system of,

say, the first kind associated with {el, voisy en}, in a

neighborhood, V, of the identity and let - % (-1) [d!a L
E ; lo¢ | <m T
= - (—i)lo(lb‘)((t) —Q‘: in this coordinate system., Since
lo¢ | <2m ot |

we may choose the b (t) in such a manner that bo((O) = Ay
the right hand ‘side is uniformly strongly elliptic in a
neighborhood, U/Z_V, of 0. Let K(s-t,r, A\) be the
fundamental solution of E(ai)[dlbx(r“) “l;{ + N considered
in Section 1.. We have established estigztes for K(s-t,r, \)
for lO( Z,5) > © >0, with S a certain sector in the com-
plex plane. Let ¢ t) be an infinitely differentiable func-
tion with support in u and with @(t) =1 if |t] < %1

for some small %lo Then, if |[s]| < 31/29
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ffr(t) K(s-t,t, ) (Bx- Ax,5 (t)x¥) dt

u

¥ . 3 st
B ﬁﬁ(tmsgt’t’x ){(E(“i)ld!b«(“fﬁ £ N8 (0% at
(s=t)y

o o) 2 el s T
- lim (=1) b (t) K(s=t,t, A ) (x,5 (t)x ) do
e—>0 ISnt|~a s-t

o L,
N jc I ¢% ? t)2(-1 lq!bﬁ (t) %LE K(S“tstsv‘)(xss%(t)xp) dt
s=-t|> ,

s
Xo A2

|l 2.2 * N

- b> b ) Kis- s Vs s‘Sf :
§Q(:j-b(+¢‘3 [ 3 c,<(t) }r’éﬁa—f (s=t,t, A)(x,5 (t)x ) dt

|41|<1d] ' -

# Idl Q (S_t )d O(I e o

- - um 'ls-’t]=ez(ﬂt‘i) bo((s%;-;ixcs_tss,)y s (x, 5% (6)x™) dw

- (x,5 (s)x ) = <o

]

~te
>

Here, as before, S (t) =T (p(t)). Also we have used our usual
convention regarding partial derivatives of the function

K(s-t,r, ™). Since |b (s)=q*(t){ < MO{SztI and

a M
2L~ K(s-t,s ﬁ\) - (s-t,t, )] < “‘“‘lgggj we could re-=
Bs Bs |s-t |

place s by t 1in the appropriate places in the surface .

integral. -We now set s = 0; choose an x such that
* *
el = 1, (x,x) = llxll; and make use of the estimates of

paragraph 2 to obtain

Ny | kel Wl
ﬂﬁx@)xll~> Il - —=2 _ i3

5 I

(0(3\ 9(7\,8) p(),S)m
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Consequently, for P()\,S) Z’N#,

el < -Ei—““BP}\xNo
NYE

This inequality remains valid for x € D(A). For x e W;,

consider

(T(p)x,B"% "= Xx") = (T(p)x,-2(-1) %o a® ™ ¥
T Z(i)ldlﬁxﬁda(T(P)X,X*)*"X(T(p)x,x*).

Change into local coordinates and perform the same calcula-

tions as above to obtain

(2.11) UCPl(’G)Kl(S-t,t,X)(S(t)gc,B*x*mXx*) at

e
K

= - (S(s)x,x ) = c=-

By the proof of the previous theorem, if x*"s;D(B?) we can
chdose a sequence {x:} £ Wg such that '(X,X:) - (xgx*) and
(x,B*ﬁ:),éﬁ (X;B#X*) for all x & X. By the principle of
uniform bauﬁdedﬁess, Hx:“ and HB*X*N' are uniformly bbundedo
Consequently, in uy, (S(t).x,B*x:) = (S(t x-ijx x)
boundedly and (S(t)x,x:) - (S(t)x,x#) boundedly. The
dominated convergence theorem now allows us to assert the
validity of (2.11) for all X e D{B*)o Now, given an

x € DLB¥),$ we choose an x & X such that |lx|l < 1,

* K | e |
(x,x ) gwﬁ%fﬂ, and set s =0 in (2.11) to obtain the in-

equalitv
N'i JL:ZH N? . N? | e
, ,mm('y's?) B x ~>\x I > = >\ = "l - -_T__..i__u_: (]
. P “o\‘( N, 51)8
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Here -we make use of the estimates for the function
K;(s-t,r, A) established in paragraph 2. Consequently, for
P()\,S') > NJ,

v N} ok 3K
x| € ==2=ev IIB'x =N Il

Thus the resolvemt, R(\,B), exists for e(?x,SV),Z Ny
and [RCX,B)I < N5 - if (G(),S) > Nb,’ The theorem is now

a consequence of Theorem 12.8.1 of [7].

5. In this paragraph the strongly elliptic fdrm, Za_X 4
will be fixed. We denote the_pperazor associatéduwith
- i*t<m(ai)‘*|ad3 by B and the semi-group it generates by
U(t).” Since the space, X, on which the group G acts,
will vary,in the cburse of the proof, we shall specify the
space by writing B(X) and .U(t,X) when there is a danger
of confusion. |

Let /¢ De left-invariant Haar measure on G and
let Ll(/L) be the Banach space of functionson G integrable
with respect to e Two’representations*qf, G in Ll(/q)
of particular interest are {L(p)f}(q) = f(p"lq) and
{R(p)f}(q) = f(qp). It is easily shown that these representa-
tations are strongly continuous. Wefﬁay»eailwthem,,respectively,
the reprasentatiqn by left-translations and by right-tran8lations.
A linear operator on Ll(/4) is said to commute with right
translations if it commutes with all operators R(p). We

shall need the following lemma, prbvéd in the general case



nsl*‘Ba
just as it is for the line [7].

Lemma 6: Let S be a bounded linear operator on ngfﬁ)

which commutes with right translations, then there is a .

finite, countébl additive Borel set function, 4/, such

that
(2.12) Sf(p) =‘/£f(qalp)v(dq)
for almost all p. Moreover var{s) = lIS1.

Proof: Let {gk(p)} be an approximation to the identity
on G and let f be a function in Ll(/uJ with compact

support. Set

hk(p) =u/2f(qulp)gk(q)/q(dq)

- =1

—/;f(q )&y (pa) auda).
Then

= -1 \

Th, (p) ~'/;f(q )(Tgk)(PQ) /4(dq)

= Pt '
(2.13) -[Gf(q p) (Tg,) (a) pulda)

- fgf(q“lp)uk(d@
vith 4/, (dq) = (Tg ) (q) m(dq). Si le, |l ) = L
wi (da g, ) (a) Hldq ince llg, L ()
var (ﬂjk) < ITll. Let be an accumulation point of

the sequeuce {¥)} in the space of bounded, countably

additive set functions with its weak-* topology as the conjugate
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space of C_, the space of continuous functions on G vanish-

o’
~ing at infinity. For any f in Ll(ﬂ)’ h, is defined

and (2.13) is valid. Moreover hk > f as k > o; and,
then, Th, —> Tf. But if f is continuous with compact
support fo(q-lp)v(dq) is an accumulation point of (Thk)(p'),

as given by (2.13). Consequnetly, for all f ¢ Ll(/_(),

(Tf) (p) =/Gf(q°lp)v(dq)

for almost all p. Clearly var(v) < Il anda (T

Svar(V). .

We remark that the -V satisfying (2.12) is unique.

We may now state the theorem of this paragraph.

 Theorem 9. 4The:c.e,,.g3_cis,tyfim‘te. countably additive Borel get

functions, /{(t, °), degend.ing‘ only on the form, Zaan(,

and G such that

(2.14) Ult)x =fgfr(p>xf.<t,dp)

at least for L}flsggtg y/z; \l/l<0’<W7U2e

The integral is, of course, a Bochner integral. As ’
the theorem is stated ‘V’l and V/g may vary with the
_representation. It is true, however, that Wl and 2
may be taken to depend only on the form and on G. To
establish this we have only to observe that the. angles of
the sector, outside of which the estimates for R(%,B) were

establishéd, depend only on the form'and on G.




e

uhga

Proof: Consider first the representation L(p) of G

in Ll(/m); The semi-group U(tﬁLl(/q)) generated by the
operator B(Ll(/*)) associated with the form - 2(#i)LXI%%Xx
in this representation commutes with right translations and,

consequently, is given by

(2.15) T(,Lq () £(p) =d/g(q_lp)/w(t,dq)e

This establishes the theorem in this case. We next establish
it for the case of the representation by left translations
in C,. If f is in Ll(/K) and g is in C,» the func-
tion

h(p) = | flpq)glq™) x(dq)
is in C_ and |hil, < el (gl . Let £ = ult L ())f

and set

ht‘p) 2‘/;ft(pq) g(q_l)/A(dq)o

We assert that h, = U(tgﬁa)hﬁ To prove this we

notice that:

o

< Iote, 2y G el N lell,

< Kewt It “Ll( ) “g ”C’g .

/M

Here «w and K are some constants and t is greater than

or equal to zero.
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(11)  Ibe-nl, < Hft«flILl(ﬂ)HgNG =0 as t = 0.
0 o :

(111) dn, - ggfft(oq)g(q“l)/q(dq)

i
S
[l
',.-l
>
c_'_Ha
é
[11°]
£O
LNy
3
oy
Q.

i
‘w
(@]
o
fo
ot

The derivatives are taken in the strong topology.

For t > O the asserted equality now follows from
Theorem 23.7.1 of [7]. By analytic continuation h, = u(tBGQ)h
in the domain common to the two sectors in which they are

defined. We may now write

) -1 -1
(2.16) u(t,0,)n(p) /(;{/;f(r pa) s, ar) &™) wldq)

_ =1
—,}Qh(r p)/q(t,dr)o

Since functions, h, of the above form are dense in Qc the

theorem is established for C In order to complete the

o
proof we must introduce two new spaces of functions. These
function s paces are closely related to the given representa=°
tion, T(p), of G in X. Let T be the space of continuous

functions, f, on G satisfying

(a) el = sup i%f%l§ <o

- q
(b) le(p™ o))l =0 as p = 1.
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For brevity, we have set “T(qlﬂ,+ “T(q-l)“ = Alq). Y is
a Banach space and the representation by left translations

of G in Y is strongly continuous. In particular

-1
IL(p)ely = sup 1E2—g)l

letp i) Mip~ta)
a Np ) M q)

< Al lielly

for “A(p) = '%(p-l) and  Alpq) £ A(p) Wlg). It is important
to netice that if x is in X and x* is in X' then

(T(p“l)x,x*) and “T(pml)x” ‘are functions in Y. Moreover,

if x is in Wl(x) and a is in A, then

sup Jtil{(T(cule(ta))x.x*) - (g™ Y2771 - (T(cml)A(a)xax*l!
1 | (q)

< Il ke~ T (e (ta) )x-x}-a(a)xll = O

as t —> 0. Consequently (T(pnl)x,x%) is in Wy(Y) and
A(a,Y)(T(pbl)x,x%) = (T(pml)A(a)x,xﬁ). The same relation holds

between 'Wk(x) and Wk(Y)o The converse statement is weaker,

:’;:

If fx*(p) = (T(pul)x,x*) is in Wl(Y)’ for every x in
% and (L(e(ta))-I)A(a,Y)fx* = 0(tX) as t == Q0 for some
X >0, then x is in Wy(x). For Ala,Y)f ,(0) = xo(x )
defines a bounded linear functional X, on X*g But

' bre Sk t :
%telim(e(ta))xﬁqﬁﬁx ) = (xg,x )}= %’jﬂ (L{e(ta))-T)A(a,Y)f_,(0)ds
- o :

= 0(t%).
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Consequently ‘Figiﬁgllzzx - X,

in X and X, = A(a)x. The same relation holds between

e = 0(t%);  thus x, is

L,
AR

L

W, (Y) and Wk(X).

The second space, Z, to be introduced is, in a cer-
tain sense, dual to Y. It is the space of measurable func-

tions, f, on G satisfying

(c) j;ff(q)f>\(q)/q(dq) = llly < o.

It is essential to observe that N(q) is lower semi-continuous
and therefdre measurable., The representation by left trans-
lations of G in Z 1is strongly continuous. Z is a subset

of Ll(/'.() and “f“z > "f“Ll( ) Moreover, if f e D(B(Z)),
then f ¢ D(B(Ll(/4))) and B(Z)f = B(Ll(/¢))f. Thus a
solution of normal type of the abstract Cauchy problem for

B(Z) is a solution of normal pype of the abstract Cauchy
problem for B(Ll(/,g))° Again, Theorem 23.7.1 of [7] allows

us to assert that Ult,z)f = U(t,Ll(/4))fo We make use of

(2.15 to write

: _ -1
(2.17) Ult,Z)f(p) /G‘f(q p)/q(t,dq).,

- This is a weaker assertion, in this case, than that of the
theorem. We have not yet shown that Jgf(q‘l°)/4(t,dq)
exists as a Bochner integral. Let f be in Z and g be

in - Y. Consider

_ -1 :
hip) -U/Qf(pq)g(q )/v.f(dq)°
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Then
5 , P =1
Ih(p) | Sv/glf(pq)l lg(q )I/u(dq)
< lely /sta) ) (o)
< Hgﬁy/;if(q)l\,\(p‘lq)/.((dq)
< X (p) lelly el
In other words, h”Y % Hf + We remark another simple

fact, which allows us to assert t.at functions, h, of the

above form are dense in Y. If f has compact support and

44 = 1 h
JA;~(p)/4(dp) then

Ih(p)- - 1 £(pa){glq™ ) -g(p) ] wmldq)
S0 e I/ pal{glq™")-glp)} amldq)l
<-*—-—-—fl (q) | lgq p)-'g(p)l/q dq)

L et B W ALE 0| laa).

qe sup f

Using the same technique as before, we set f. = U{t,2)f and

then set

h, (p) =jc‘}ft<pq)g(q“l>/4(dq>,

Again the uniqueness theorem for the abstract Cauchy problem
assures us that h, = U(t,Y)h. Making use of (2.17) we

may write

(2.18) Ult,7)n / /" r"1pa) (5, ar) el ™) mlda).
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Formally changing the order of integration, we obtain

' =1
- Y = h .
U(t,Y)h(p) '/; (r p)/4(t,dr)
However, we have not yet proved that the integral in (2.18)
is absolutely convergent and we are, consequently, unable

to justify the change in the order of integration.

C is & subset of Y and nngj

e 3gU@;, Consequently,

o
. b )
U(t,C )g is. a solution of normal type of the abstract

Cauchy problem for B(Y). The uniqueness theorem again
implies that U(t,Co)g = U(t,Y)g. Making use of (2.16), we
write
- o
Uult,Y = t,dgl.
(t,Y)eglp) /Gg(q p) mlt,dg)

Then

fpeta e utegall < Iots, 01 lely.

By the usual argument it follows that

o =
J<;|E(q D%iég;l(t.égl,s luie, Yl llgll.

But if f(q) is in Y we can find a sequence {gn(q)} in

CO such that gn+>}f!. Consequently,

/G!f(q'lm | Lalt,d0) < (o) [ute,x) Il lielky.

In particular, setting f(q) = HT(q-l)xH/ and setting p =1,

we obtain
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[irtarl |l .00 < 2lote, 111 el

We are now able to justify the inversion of the order of
integration in (2.18). We apply the last inequality to the

space Z and the representation L(p) of G in Z.

-1 - -1
fG/“Gmr pa) | lela™ )1 | ul(t,ar) ulda)
sfc}/;lf(r‘lquk(pm(q)lﬁi(t,dr)ﬂ(dq‘)
o) [ Iete ey pel (s )

< o,

We now show that if x(t) =~/2T(p)X/1(t,dp) then x(t)
= U(t,X)x. We first observe that

(T(qul)X(ﬂ,x*) = j/( ( °1)T(p)x x¥)/q(t,dp)

J/ (T(q~ p)x, )/4(t,dp)

t,Y)(T(q" l)x x).

(]

We know that ()l < 2ute, D) Il IIxll £ Kie 01" lxll, with some
constants c¢; and ) when t > 0. If x e W (x) then
T(q-l)x,x*) is in Wﬁbﬁ);and, taking g =1 in the‘above

equality, it follows that t’li(x(t),x*) - (x,x*)} converges

to (Bx,x*) as t —=>0. In particular, applying the principle

of uniform boundedness;, lx(t)-xll = 0 as t => 0. Since

u(t,Y) is a holomorphic semi-group, (x(t),x*) is a holomorphic

function and x(t) is a holomorphic function. Moreover
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o

(T(q-l)x(t),xw) is in D(Ek(Y)) for any k; the work of the
next paragraph shows that (T(qal)x(t),x$) is in Wk(Y)

for any k. Consequently x(t) is in Wk(X) for any k.

We observe finally that é% (x(t),x*) = (Bx(t),x*) and, thus,
ﬁ%x(t)‘=ﬁ8x(t), Another application of the uniqueness theorem
for the abstract Cauchy problem shows that x(t) = U(t,X x

when x 1is in Wh(X}. Since Wm¢X? is dense in x the

equatién is valid for all x in X.

6. In this paragraph we establish the basic analytical
properties of U(t)x and of /L((t,dp)° U(t)x dis an analytic
k

function of t and BkU(t)x -4 Ult)x =

atk

i Ut )x ' V
k! jp, nk
—e cié We observe that B as a
2TT1 l,o-tl=r (f-t)k+l -

power of B, 1is the operator associated, by Theorem 7, with

=l

the elliptic form (-1)¥(z(-1i) x )€ for it is equal to

2
that operator on W , and its adjoint is equal to that

%
operator's adjoint on ka‘ Let ¥4 Dbe a right-invariant Haar
~measure on G  and let K(p) be an infinitely differentiable

function on G with compact support. If x dis in W then

, 3 - mk?
J;K(p)(ka,T’“(p)x;'7)v(dp)

K(p) = bylhx,T (p)x") g (d
j; P Io(l<mk «Hhyx, T (p)x ) v (dp)

- j;{~ 2(-1) =l L k(6)1 (5,7 (p)x ) (ap)

{Li}, is the set of left-invariant differential operators

introduced in Chapter I. This formula remains valid for x in
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i
]

o~ D(BX). As above, by Lemma 5, if x is in D(BX) then x is

in W, ;. In particular, Ult)x is in r;\( W, and VT(p)U(t)x
is an infinitely differentiable function of p. A B(t)x

is defined for all x in X; we show that it is,a,boﬁnded
linear function of x. If |y| =1, AU(t) 4s a closed,
everywhere defined linear operator on X; consequently, it

is bounded. By induction, it is apparent that AxU(t)u is

a bounded linear operator. Consequently “AdS(t)xH < ﬁd(t)ux“,
T(p)U{tlx is infinitely differentiable as a function of

p and t and

IS s o]

it

' AU(E)x
ﬂfﬁi '/lﬁ-tl-‘r(tiw - 45 “

< N(k,o,t) lkxll.
The equation

i(T(p)U(t)x,x*) = (T(p)BU(t)x,x )
: I z(_i)ldlngcéTLp)U(t)x,x*)

«when;written>in an analytic coordinate system, {si}, about

( ,zm;hﬁxigentitymis,a parabolic eQuatLon;wiﬁh;analyticmcoefficienﬁso
We nbw appl&}the results of QBJ@, Thé facts which we need
from this paper are not explicitly stated as theorems and
the proofs are not given in complete detail° However, since
the proofs are quite complicated and the assertions to be
derived from these facts ancillary to the rest of the thesis,

we prefer not to perform the calculations in detail here.:
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The work in the paper shows that (T(p{s))U(t)x,x*) =u(s,t)
may be extended to an analytie function in a complex neighbor-
hood, N(t), of the origin in s-space. N(t) may be taken,
locally in t, to be independent of t; and the uppér bound
of |uls,t)| in N(t) depends only on upper bounds for the
absolute value of wu(s,t) and a certain number of its de-
rivatives for real s. Thus wu(s,t) may be extended to an
analytic function of s and t in a certain open set, M,

- of complex (s,t)-space, which contains all the points

(s,t) with t 4in the sector in which U(t) was shown to
exist and s real and close to the origin. In a neighborhood
of,anywpoint‘,(sojto), lu(s,t)| is bounded by an expression
K(s,,t,) Il |l Hx*", For fixed x. and varying x*, u(s,t)
defines a bounded linear functional v(s,t,x) on X",
v(s,t,x) is an analytic map of M into ™, But vis,t,x)
is in X for s real and close to the origin; so v(s,t,x)
is in X for all (s,t) in M. In particular, U(t)x is a
well-béhaved vector, in the sense of [5], in the interior of
the sector in which U{t) was shown to exist. Since

Ult)x = x as t = 0, we have

Theorem 10. The well-behaved vectors are dense for any
strongly continuous representation of G.

We now show thét there is a function, h(t,p), analytic
to t and p such that /q(t,dp).“ h(t,p)fa(dp). P is a
left-invariant Haar measure on G. If f(x), in Ll(/ujg



i

8
.

. %

o
P N

.,.5 5 e

is infinitely differentiable with compact support and {si}

is an analytic coordinate system in a neighborhood of the

-identity, then there are analytic functions, a,.(s),

1]
independent of f such that, for small s,

P

2 £(s) = T a. (s)L,5(s).

cov 1]
)si j=1

Conseguently, for small %,

J/ |4 £(s) |ds < 2 k)ﬁ L £(s)|ds
[ Is|<%

s|<$ dsy j=1 J

n
< Kq 23lm~f”Ll(/*)°

j:l J

Theorem 1! implies that if £ is in wi(Ll(/A)) then it may

be approximated by a segquence {fn} of infinitely differ-

entiable functions with compact support in such a manner that

Lsf — L.f in Ly(m). Thus, if £ 1is in Wl(Ll(/¢)) its

n J
distribution derivatives, with respect to {si}, in a

neighborhood, N, of the origin are in L. { ,N) and
A 1M

2

n ; .
——f(s)|lds <K, = [L.f .
Jieslieoie s B

Similar remarks apply to the higher order derivatives. Since,

‘when f is din Ly( M), fp =U(t,I(m))f is in W (L(u))

for any k, we have
A ¥ | |
jl" 25 £, (s) las < o (e) liell

It is well-known [1] that this implies that f, may be taken
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as an infinitely differentiable function in a neighborhood,

O, of the origin and that

(1) £, (s)l< Do) liell
(i) lgl—ft(s)l < Do) el

S

in 0. Consequently, for every p = p(s), sin 0, there

is a bounded measurable function g(t,p,q) such that

£ (p) = J;f(q)g(t,p,q)/q(dq),

Moreover lg(t,p,*) - g(t,l,’)“L ()~ 0O as p - 1. If
. & /’L

f 1is continudus with compact support
£.(p) = [ £(q"1p) u(t,dq)
t Gq /‘lyq
- [ £la) mepaa”™.
G

= g(t,p,q)/4(dq). In particular,
AMlt,dq) = g(t,l,q-l)él(q‘;)/q(dq) = h(t,q)/{(dq)(/4(dq-r)
= Zk(r)/¢jdq), ef. [4], p. 265). Then /4(t,pdq) =

Consequently /M(t,pdqnl)

h(t,Pq}uqu) = g(t,p,qfl)él(q‘l)/m(dq); so that h(t,pq)
= g(t,p,qul)ZS(q-l){ h(t,p) satisfies the following two

conditions

(1) (¢, ) lly = ess sup |A(q)h(t,q)] = ess sup |g(t,1,q71)]
q q

<

(11) ess sup |Alq){n(t,p™Tq) - h(t,q)}]
o] oY B ~
= ess sup |gl(t,p l,q 1y - glt,l,q l)l >0

q
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as p-> 1. As anticipated in the netation, we call the
Banach space of functions satisfying (i) and (ii), with
the norm given by (i),’,V. The functions in V are
equivalent to continuous functions so we take V to be a
space of continuous functions. The representation, L(p),
by left-translations of G in V is strongly continuous.

In order to use this fact we must observe that

-1 g
/Qh(tl’q »p)h(tz,q)/uqu) = h(t;+t,,p).

To prove this we notice that for f in Co

-1 |
Jé}(q r)h(tl+t2,q)/q(dq) = u(t1+t2,85)f(r)

]

u(tl;CO)u(téiﬁo)f(r)
=/(;{f(p'lq-lr),h(tl,p)/q(d‘p)}h(tz,q)/.((dq)

=/(;{ﬁf(p"lr)h(tl,q-lp)/u(dp)}h(tz,q)/.\(dq)
- /Gf(p-‘lr){fc}h(tl,q‘lp>h(t2,q)/u(dq>}/q(dp)o.

However, setting u(tz,V)h(tl,-) = h,

& (tl,'), we also have

2

htz(tl’p) =‘jgh(tl,q-lp)h(tz,q)/4(dq). Consequently

h(ty+t,,p) = htz(tl,p). Then h(ty+t,,q"1:) = L(g)h, (tq,-)

: 2
is an analytic function of t, and q with values in Z.

;Applying the linear functional which evaluates a function

at the identity we see that h(t,p) is am anzlytic function

of t and p.



L

[1]

(2]

[3]

(4]

(51

[6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

BIBLIOGRAPHY

Browder, F. E. _ngthé,fegglaritz,groperties of solu-
tions of elliptic differential equations, Comm.
Pure Appl. Math., vol. 9, 1956. ’

Chevalley, C. Theory of Lie Groups, Princeton University
Press, Princeton, 1946. ‘

Eidelman, S. D. On the fundamental solutions ggy.
parabé;;gmsvstems, Mat. Sb., 38 805, 1956.

Halmos, P. P. Measure theorz, D. van Nostrand Co.,
New York, 1950. PN L ,

Harish-Chandra. Representations of a semi-simple Lie
group on a Banach space. I., Trans. of the AM.S,

vol. 75, 1953.

Hille, B. Lie theory of semi-groups of linear trans-
formations, Bull. of the A.M.S., vol. 56, 1950.

and R. S. Phillips 'Functional Analysis and
 Semi-Groups, A.M.S. Goll. Publ. 31, 1957

Hopf, E. Uber den funktionalen, insbesondere den
analytischen Charakter der LBsungen elliptischer
Differentialgleichungen zweiter Ordnung., Math,
Zeit., 34, 1931.

K. DBrownian motion in a Lie grou , Proc. Jap.
‘acad., 26, 1950,

John, F. Plane Waves and Spherical Means Applied to
- Partial Differential Equations, Interscience Publishers
New York,.1955.

$

deLeeuw, K. On the adjoint semi-group and Some problems
in the theory of approximation, to appear.

Lions, J. L. Lectures on Elliptic Partial Differential

Equations, Tata Institute of Fundamental Research,
Bombay, 1957. ,

Nelson, E., and W. F. Stinespring, Representation of
elliptic operators in an enveloping algebra, Amer.
Jour, Math., vol. 81, 1950, :

Pontrjagin, L. Topological Groups, Princeton University
Press, Princeton, 1939.



[15]
[16]

[17]

(181

[19]

=50~

Résenbloom P. C. Linear Partial Differential Equa-
- tionms, Surveys in Appl. Math., V, John Wiley and
Sons, New York, 1958,

Segal, I. E. A class of operator algebras whlch are

determined Q1 roups, Duke Math Jourﬁal vol, 18,
1951,

Hypermaximality of certain‘ogerators4g_
Lie groups, Proc. of the A.M.S., vol. 3, 1952,

Silov,,G E.‘ On conditions for the correctness of the
Cauchy problem _gg,sxstems—ef partial dlfferentlal
eguat1_gg,w1th constant coefflclents Usp. Mat.
Nauk, vol. 10, 1955 , '

Yosida, K. Stochastic Qrocesses bullt from flows,
; Prec. Jap. Aead., 26, 1950 ’

H



