STATISTICAL PROPERTIES OF EIGENVALUES OF THE HECKE OPERATORS

Peter Sarnmak

0. Introduction.

Two basic questions concerning the Ramanujan t-function concern

the size and variation of these numbers

11/2
(i) PRamanujan conjecture: [t(p)| < 2p / for all primes p.
(ii) "Sato-Tate" conjecture: ap = IE?; is equidistributed with
P

respect to

3= oxZ ax  4f x| <2

du(x) =
0 otherwise

as p * ®=, We refer to the last as the semicircle distribution.

Concerning the above the following is known: (i) has been
proved by Deligne | 6 B 5 However its generalization to a general
GL(2) cusp form, as well as to more general groups is far from being
solved. (ii) This conjecture is motivated by related questions for
L-functions of elliptic curves [8]. It is conjectured to be true
for t(p) as well as for "typical"” cusp forms in GL(2). It certainly
does not hold for all cusp forms and we will consider this again
later, Our aim here is to outline results which prove averaged
versions of (i) and (ii) in general.

1 have benefited immeasurably from discussions with R. Phillips
and I. Piatetski-Shapiro and some of the results quoted here are

from joint work with them.

1. Classical Hecke Operators.

We begin by considering the simplest example of Hecke
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operators. Let I = SL(2, Z) and h={ z | Im 2z > 0}. Let H be the
2

Hilbert space L (I'/h), that is of all T invariant functions on §

which are square summable over a fundamental domain F for T with

dxd
respect to du(z) = ii. The operators in question are then defined

2
by ¥
_ L az+b
T2y = ):_ $3 )
ad=n
b mod d (1.1)
32 32
ToEla) = “aElm)= “pif=——a=—3E(¥)
ax?  ay?

form =1, 2,00+ »
It is well known that {Tn} forms a commutative family of self-
adjoint operators. Furthermore H decomposes into Hecke invariant

subspaces
H={l} & £ ® Cusp

where {1} spans the constant functions, £ is spanned by Eisenstein
series [3] and Cusp is orthogonal to these and consists of cuspidal
functions. On Cusp we have a simultaneous orthonormal basis of {Tn}

which we denote by uj(z)

T u =p F)”-
(1.2)

i = e e g
et | ]

b e

where ll < lz < 33... .

Thus we use the A”s to order the uj’s.

For these cusp forms uy, very little is known about pj(p) or
rj. Very interesting computations of DI(P) for p < 1000 and rj for
small j appear in Stark [10] and Hejhal [3]. For these, the

Ramanujan conjecture takes the form
ij<p)| <2 (1.3)

for all j and primes p.
We note that since the Ramanujan conjecture holds for the
Eisenstein series E(z, %+ it), as one checks easily by a calcula-

tion, we can restate the Ramanujan conjecture purely in terms of the
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spectrum of Tp‘ Thus the following is equivalent to (1.3). For p

a prime,
i<Tpf,f>[ < 2Kf,£> for all fELz(I‘;’h) for which
B 5w By (1.37)
Put another way U(Tpl )¢ [-2,2]. Here o(T) is the spectrum of
{1} 1 il
T. On the other hand Tpl = (p r'{24» p & )1 and indeed
1 ek
a(p): = IT 1 = p R R (1.4)
It is known that
1/5 =115
o, ] <2 6%+ 7). (1.5)

(This was communicated to the author in a letter from S.J. Patterson
1981).

Definition 1.6. Let X be a topological space. We say that a
sequence X, in X is p-equidistributed where p is a Radon measure on
X, if for all f ¢C (X),

1im % I of(x,) + [ £(x) du(x) . (1.6)
N+ o jeN X

The Sato-Tate conjecture for the numbers pi(p), states that for
fixed 7, pﬁ(p) is p~equidistributed, where u is the semicircle
distribution.

Our approach here is to study these questions concerning pj(p)
in both variables j and p. Thus we consider seriously the operator
Tp‘Cusp i.e. the variation in j for fixed p. Our first result is a
density result concerning the number of exceptions Tp may have to
the Ramanujan conjecture. We recall Weyl”s law, see Selberg [91]

2

1
N(K) = # {rj <K} ~J7 K. (1.7)

For ¢ » 2 (and p fixed) we set

N(a,K) = #{j | r, <K, 1pi(p>l >al.

i
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Theorem 1.1. 5. 1og af2

N(a,K) € X OB P

In panticuban almost alld D.](P) (in the sense of density in i) Lie in
[=2;2}),

Concerning the variation of the pi(p) in j and p, let
X, = 0p(2Y, p.€3)y (5] ans)
h Yy p_‘l( !
so that %y eX =1 [-n(p), n(p)l.

P

Theorem 1.2. {xj}, j=1,2,000 48 1 equidistnibuted in X whene
p=1Iyp and
P

ey
P -k i Ixl <2
2n(n( )2 - x2)
4, (x) = .
P 0 otherwise .

The following Corollary was first proved by Phillips and Sarnak [7]
by completely different methods. In that paper approximate eigen—

functions for Tp were constructed directly.

Corollary 1.3. Llet Ops By m = 1,2,...,k be numbers satisfying
-2 < < p— ;
2<a <B <2 and £el Py;PpseessP  bek primes. Then

lim 1
s #{rj < K|pj(pm) G[am, sml, m=1l,...,k} >0.

It follows that any given finite sequence of numbers, satisfying the
Ramanujan bound may be approximated by the eigenvalues of a cusp

form.

In the above we study the behavior of pj(p) as a vector in p as
j + = . 1If, as expected, the Sato—Tate holds for each j, we might
hope that the interchange of the two limits would agree. It is
clear that

lim g = u the semicirele distribution!
p*® p



325

What this shows is that in this way of averaging the numbers pj(p),
we do have equidistribution with respect to the semicircle. There
are obvious advantages in averaging over j, since if for example we
consider cusp forms for TO(N), N > 1, then there is a subset of the
j”s (the number of which whose rj < K, is of order K) for which the
Sato-Tate conjecture is false. These are cusp forms coming from the
Maass-Hecke construction [4]. 0f course these disappear in our
averaging and indeed we still find that the generic cusp form has
the semicircle behaviour. These Maass—Hecke cusp forms have their
eigenvalues equidistributed with respect to "p above, with p = 1!
The measures uD therefore interpolate between this distribution at

p =1, and the semicircle at p = = ,

A final comment concerning the semicircle. As p + = the
operators TP are presumably becoming random, at least that is what
we are showing. For it is known that the eigenvalues of a random
Hermitian matrix, whose size tends to = , become distributed accord-
ing to the semicircle distribution. This is due to Wigner (see [6])
and is known as the Wigner semicircle law.

We will discuss the general case in Section 4. We first turn
to a general phenomenon which is at the heart of the above

considerations.

2. A Weyl law.

In this section we describe an extension of the classical Weyl
theorem on eigenvalues of the Laplacian to the case where we have a
family of operators commuting with the Laplacian. Let M be a
compact Riemannian manifold and M 2 S its universal cover. Let G be
the isometry group of S and so I = Hl(M) is a discrete subgroup of
G. & will denote the Laplacian on M or S. Now suppose we are given
a family of operators T;,T,,... on LZ(M) for which the family
4, TI’TZ"" is commutative. We take the Tj to be bounded, with say

ITkE = . We my then simultaneously diagonalize the family:

Tu, =p.(k) u, (2.1)
kj k| hj

Tu, =-bu, = A,u,
*® 3 ] J ]

where {“j}j=l 2 .. is an orthonomal basis for L2(M), and are
gy nw
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ordered by increasing Aj. The asymptotics of Aj is well known, this
being Weyl“s law

12 (2.2)

NOO = #{y <A~ ol
where C is an appropriate non—-zero constant and n = dim M. Let
Bk = {z €C | |z| < nk} and

X =

B (2.3)

I .
x k
For j = 1,2,... we obtain a point X5 in X where

xy = (Dj(l), ojCZ), pj(3) cee)s

The question is how do these xi's distribute themselves in X as
j = = 7 To obtain an answer we assume further the Tk's are "Hecke
like" operators. So we assume T, to be selfadjoint (normal would

suffice) and is of the form

g
TG0 = § £V (2.4)
220

k

where S( ) € G. The important assumption is that

Ty LZ(TIS) * Lz(F/S), which can be arranged with appropriate Sgk)
if the commensurator of I in G is non-trivial [11].

F cee
or vl ¥ uz & 4 ur € N let

M(ul, Vgsreses vr) = the number of words of the type

W W, sesw = I (mod I') where w,_is a (2.5)
12 T k
(k) (k) (k)
word in Sl ,S2 P Sn(k) of length vy e

In this case, since we are assuming that the Tk’s are self-adjoint,

our space X in (2.3) is a product of intervals.

Theorem 2.1 et Ty be as above, then the sequence {xj}1=1,2)__‘ € X
i u equidistnibuted, where v 4is the measwre given by the moments

/ tlvl . -

W
. k du(tl,...} = M(ul,...,vk) 2

k
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Notice that since ¥ is compact, one sees easily that p exists and is

unique. We now examine some simple instances of the above theorem.

Example 2.2. Suppose that the original mnifold M admits a non-

trivial isometry S : M + M of order k (k may be infinite). Let

12 s L2 be the unitary operator given by
Tf{x) = £(Sx).

T commutes with A and let uj be as above with

T uj =mjuj F o=1,2. 00 "
Clearly |mj! = 1. The theorem then asserts that w, is

p—equidistributed on the circle where

( i) u puts mass 1/k at the k—th roots of 1 if k < =
(ii) wu is d©/2m on the circle, if k = =

2

Example 2.3, M = 8" = R/Z, A= —s uj(x) =e

Z"ijx. Let

= = 2wijaoy
Opseee50% ¢Rand Tk(x) x + e In this case pj(k) e k.

The theorem thus asserts that the sequence j(a},09,000,0),

j = 1,2,... 1is yp-equidistributed in the k-torus. Clearly
M(ul,...,uk) = 0 if 1l,09,09,.0.,0 are linearly independent over Q,
so that in this case the sequence is equidistributed with respect to

Lebesgue measure. This is the well known result of Weyl [12].

The main application of the theorem is however to the Hecke
operators in symmetric spaces. In the case of I' = SL(2,Z) as in
Section 1, there are added complications in the proof of the above
type of theorem due to the noncompactness. We will outline the
proof in that case in the next section. The proof of Theorem 2.l in
the general case combines the ideas outlined in the next section,
with the standard derivation of Weyl”s law via differential equation
methods - e.g. small time behavior of the fundamental solution to

the wave equation on M.

In the I = SL(2,Z) case of Section 1, if we ignore the
difficulties coming from the Eisenstein series (which in this case

are not difficult to overcome) we can compute the number M(v) for Tp
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quite easily from the well known identity

T =T 4T >
P P Pn+l pn—I
We find
- 0 , 4if v is odd
N(v) = j_w " du (v) = & " _
1 (<n2j> - (n—?—l)) p I, if v = 2n.

The inverse moment problem is easily solved giving the up’s in
Theorem 1.2. The fact that p is a product of the up’s follows from

the multiplicative property of the Hecke operators.

3. Outline of Proofs.

We now outline proofs of the results in Section 1, details will
appear elsewhere. The basic ingredient is the Selberg trace formula
but it is not the full formula cthat is needed. Indeed such a
formula cannot be used to prove Theorem 2.1. Basically what we need

is the "singularity at 0" in the trace formula.

Consider the case of T = SL(2,Z). Let k(z,z) be a point pair
invariant [3], which we assume to have very small support. That is
k(z,z) = 0, if d(z,z) > e, where d(z,z) is the non-Euclidian

distance from z to g. Let

K(z,z) = | k(z,vZ) . (3.1)
yeT

We have the spectral expansion [3]

K(z,g) = ] h(rj)uj(Z)uj(c) + ﬁ [ h(©)E(z, Yo+ it)E(z, 1+ it) at.
3 ' - (3.2)

For what follows we ignore the contribution from the Eisenstein
series since in this case as was mentioned before they are known

explicitly, and may be dealt with easily. It follows that

T, R(z,2) = ] h(r;)(p;(p)"u

(2) W (D) + ... (3.3)
] 4

3
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and hence

v v 2
[T) K(z,0)],_. % LICICA D) ]uj(c)[ £ e (3.4)

However one can calculate [T; K(z,;)]z=; asymptotically as € + 0 :

v, 1
[TK(z,0)] _ =—F75 1 k(S, S, ...8 2z, YO)| __
P G A iy L

so that unless [ is the fixed point of some Y_IS Si "'Si , the

114, v

above is zero for € small enough.
On integrating with respect to ¢ one finds the main contribution

comes from exactly those Si Si "’Si =1 (mod T) . This, combined
| B v
with (3.4) leads naturally to the asymptotics

T ]r;m (p, (PN ~ UV (3.5)
]

Theorems 2.1 and 1.2 follow from this type of argument. If one is

more careful in the amalysis in the case I =SL(2,Z), and keeps track

of all contributions above, one finds: (i) that the contribution

from the continuous spectrum is controlled by the constant term of

the Eisenstein series which is essentially the zeta function.

(ii) the number of terms ¥ Si S:i. ...Si with fixed points in F is
1 72 v

easily majorized by elementary bounds for class numbers of binary

quadratic forms. This leads to the inequality:

T |pj(p>|2k < 52 & pReF (3.6)

.| <K
=)

Theorem 1.1 is an immediate consequence.

4. General Case.

The results in this section are joint with I. Piatetski-
Shapiro. The first thing to observe is that the measures W, are
none other than the spherical Plancherel measures for SLz(Qp), see
for example MacDonald [5]. He uses the variable @ where
x =2 cos © . One my also see that this is so by carrying out the

above proof using the adelic trace formula for GLZ(Q);GLQ(AQ) (2].
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The case of a compact quotient such as that coming from a quaternion
algebra and its generalizations, is particularly simple and an
analogue of Theorem 1.2 my be proved in complete generality, i.e.
for a reductive algebraic group defined over a number field. In
this case the existence of a limiting distribution follows from

Theorem 2.1 but the point is that one can avoid solving the inverse
moment problem, ‘since these limiting distributions are spherical
Plancherel measures, which have been computed in complete generality
- see MacDonald [5]. In the general noncompact case such as
G = SL(n,R), T = SL(n,Z) there are technical problems coming from
the continuous spectrum. We expect the same answer for the limiting
distribution, but so far have not been able to verify it in general.

For GL(n,Z) the eigenvalues of the p-th Hecke operators on u,

(cusp forms) may be parametrized by a(l)(p), . agn)(p) where

]
agl)...agn) =1. The corresponding limiting distribution for

these is the spherical Plancherel measure for SL(n,Qp), and lives on
the n—-1 torus. As in Section 1, one takes the limit p + « of these

measure and this turns out to be the measure

ie, 1ej 2
du(®) ;400,08 ) = C [ e -e | do
n-1 n y
k<]

eeo dO (4.1)
=

1 1

where
k,j = 1,2,00.,n and 61 + @2 seet B, = 0.

This gives a natural generalization of the semicircle or Sato-Tate
distribution. Indeed the above results prove this conjecture in the
average over the cusp forms (in the sense of Section 1). There are
other theoretical ways of arriving at the measure in (4.1), we note
in particular that it is the measure obtained by projecting Haar
measure on SU(n) to its mximal torus. If n = 2 then the measure
(4.1) is Cy sinZG d@ which is of course the semicircle distribution

for the variable p = 2 cos 0.
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