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Pierre Deligne

Abstract These lectures cover several important topics of motivic homotopy the-
ory which have not been covered elsewhere. These topics include the definition
of equivariant motivic homotopy categories, the definition and basic properties of
solid and ind-solid sheaves and the proof of the basic properties of the opera-
tions of twisted powers and group quotients relative to the A�-equivalences between
ind-solid sheaves.

1 Introduction

The lectures which provided the source for these notes covered several different
topics which are related to each other but which do not in any reasonable sense
form a coherent whole. As a result, this text is a collection of four parts which refer
to each other but otherwise are independent.

In the first part we introduce the motivic homotopy category and connect it with
the motivic cohomology theory discussed in [7]. The exposition is a little unusual
because we wanted to avoid any references to model structures and still prove the
main theorem 2. We were able to do it modulo 6 where we had to refer to the
next part.

The second part is about we the motivic homotopy category of 
-schemes where

 is a finite flat group scheme with respect to an equivariant analog of the Nisnevich
topology. Our main result is a description of the class of A�-equivalences (formerly
called A�-weak equivalences) given in Theorem 4 (also in Theorem 5). For the triv-
ial group 
 we get a new description of the A�-equivalences in the non equivariant
setting.

In the third part we define a class of sheaves on 
-schemes which we call
solid sheaves. It contains all representable sheaves and quotients of representable
sheaves by subsheaves corresponding to open subschemes. In particular the Thom
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spaces of vector bundles are solid sheaves. The key property of solid sheaves can
be expressed by saying that any right exact functor which takes open embeddings
to monomorphisms is left exact on solid sheaves. A more precise statement is
Theorem 6.

In the fourth part we study two functors. One is the extension to pointed sheaves
of the functor from 
-schemes to schemes which takes � to ��
. The other one
is extension to pointed sheaves of the functor which takes � to �] where ? is a
finite flat 
-scheme. We show that both functors take solid sheaves to solid sheaves
and preserve local and A�-equivalences between termwise (ind-)solid sheaves.

The material of all the parts of these notes but the first one was originally devel-
oped with one particular goal in mind – to extend non-additive functors, such as
the symmetric product, from schemes to the motivic homotopy category. More
precisely, we were interested in functors given by

< � � �
 ��] ����


where 
 is a finite flat group scheme, ? is a finite flat 
-scheme and � any

-scheme of finite type. The equivariant motivic homotopy category was introduced
to represent < as a composition

� �
 �] �
 �] � � �
 ��] � ���


and solid sheaves as a natural class of sheaves on which the derived functor L<
coincides with < .

In the present form these notes are the result of an interactive process which
involved all listeners of the lectures. A very special role was played by Pierre
Deligne. The text as it is now was completely written by him. He also cleared up a
lot of messy parts and simplified the arguments in several important places.

Princeton, NJ, 2001.
Vladimir Voevodsky

2 Motivic Cohomology and Motivic Homotopy Category

We will recall first some of last year results (see [7]).

2.1 Last Year

1.1 We work over a field ! which sometimes will have to be assumed to be perfect.
The schemes over ! we consider will usually be assumes separated and smooth of
finite type over !. We note �(�! their category. Three Grothendieck topologies on
�(�! will be useful: Zariski, Nisnevich and etale. For each of these topologies a
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sheaf on ��(�!� amounts to the data for � smooth over ! of a sheaf /- on the
small site �[#) (resp. �.�� , �0� ) of the open subsets � of � (resp. of � 
 �

etale), with /- functorial in � : a map � � � 
 � induces � � � � �/X 
 /- .

1.2 The definition of the motivic cohomology groups of � smooth over ! has the
following form:

(a) One defines for each � � Z a complex of presheaves of abelian groups Z���
on �(�!. It is in fact a complex of sheaves for the etale topology, hence a
fortiori for the Nisnevich and Zariski topology. For any abelian group % the
same applies to %��� �
 %� Z���.

(b) The motivic cohomology groups of � with coefficients in % are the hyperco-
homology groups of the %���, in the Nisnevich topology:

� ������%� �
 H���.�� � %����

For % 
 Z we will write simply � ������.
Motivic cohomology has the following properties:

1. The complex Z��� is zero for � J �. For any � it lives in cohomological degree
� �. As a complex of Nisnevich sheaves it is quasi-isomorphic to Z for � 
 �

and to G����� for � 
 �.
2. � �����,L��!�� 
 �J

� �!� for any , � �.
3. For any � in �(�! one has

� ������ 
 =� ���� �� � ,�

where =� ���� �� � ,� is the ��� � ,�-th higher Chow group of cycles of
codimension �.

4. In the etale topology, for $ prime to the characteristic of !, the complex Z�$���
is quasi-isomorphic to D��

� , giving for the etale analog of � ��� the formula

�
���
0� ���Z�$� �
 H���0� �Z�$���� 
 � ���0� � D

��
� ��

1.3 The category�(=AB�!� is the category with objects separated schemes smooth
of finite type over !, for which a morphism C � � 
 � is a cycle C 
�

$�C� on
� � � each of whose irreducible components C� is finite over � and projects onto
a connected component of � . A morphism C can be thought of as a finitely valued
map from � to � . For � � � , with residue field !���, it defines a zero cycle C���
on ��
��, and the assumption made on C implies that the degree of this 0-cycle is
locally constant on � .

A morphism of schemes � � � 
 � defines a morphism in �(=AB�!�: the
graph of � . This graph construction defines a faithful functor from �(�! to the
additive category �(=AB�!�.

A presheaf with transfers is a contravariant additive functor from the cate-
gory �(=AB�!� to the category of abelian groups. The embedding of �(�! in
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�(=AB�!� allows us to view a presheaf with transfers as a presheaf on �(�!

endowed with an extra structure. A sheaf with transfers (for a given topology on
�(�!, usually the Nisnevich topology) is a presheaf with transfers which, as a
presheaf on �(�!, is a sheaf. The Nisnevich and the etale topologies have the virtue
that if / is a presheaf with transfers, the associated sheaf 7�/ � carries a structure of
a sheaf with transfers. This structure is uniquely determined by / 
 7�/ � being a
morphism of presheaves with transfers. For any sheaf with transfers 
, one has

Hom�7�/ �� 
�
�
 Hom�/�
�

(Hom of presheaves with transfers). All of this fails for the Zariski topology.
The complexes Z��� (or %���) start life as complexes of sheaves with transfers.

1.4 A presheaf / on �(�! is called homotopy invariant if /��� 
 /�� �A��. As
the point � of A� defines a section of the projection of � �A� to � , for any presheaf
of abelian groups / , /��� is naturally a direct factor of /�� �A��; it follows that
the condition “homotopy invariant” is stable by kernels, cokernels and extensions of
presheaves. The following construction is a derived version of the left adjoint to the
inclusion

� A(A�A,. '$v7B'7$� ,BL& L7vL&� � �7M M ,BL& L7vL&�

(a) For � a finite set, let %��� be the affine space freely spanned (in the sense of
barycentric calculus) by � . Over C, or R, %��� contains the standard topo-
logical simplex spanned by � . The schemes 0� �
 %���� � � � � $	� form a
cosimplicial scheme.

(b) For / a presheaf, =��/ � (the “singular complex of / ”) is the simplicial
presheaf =��/ � � � �
 /�� �0��.

Arguments imitated from topology show that for / a presheaf of abelian groups,
the cohomology presheaves of the complex =��/ �, obtained from =��/ � by taking
alternating sum of the face maps, are homotopy invariant. If / has transfers so do
the =��/ � and hence the ��=��/ �. A basic theorem proved last year is:

Theorem 1. Let / be a homotopy invariant presheaf with transfers over a per-
fect field with the associated Nisnevich sheaf 7.���/ �. Then the presheaves with
transfers

� �
 � � ��.�� � 7.���/ ��

are homotopy invariant as well.

The particular case of this theorem for ' 
 � claims the homotopy invariance of
the sheaf with transfers 7.���/ �.

Last year, the equivalence of a number of definitions of Z��� was proven. Equiv-
alence means: a construction of an isomorphism in a suitable derived category,
implying an isomorphism for the corresponding motivic cohomology groups. For
our present purpose the most convenient definition is as follows.
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Let Z� )��� be the sheaf with transfers represented by � (on the category
�(=AB�!�). We set

�� 

'
� for � J �

Z� )�A���Z� )�A� � ��	� for � � �

and Z��� 
 =���������.

2.2 Motivic Homotopy Category

The motivic homotopy category �AA������ (pointed A�-homotopy category of �),
for � a finite dimensional noetherian scheme, will be the category deduced from a
category of simplicial sheaves by two successive localizations.1

One starts with the category �(�� of schemes smooth over � , with the Nis-
nevich topology, and the category of pointed simplicial sheaves on �(�� . For any
site S (for instance ��(���.��), there is a notion of local equivalence of (pointed)
simplicial sheaves. It proceeds as follows:

(a) A sheaf 
 defines a simplicial sheaf 
� with all 
� 
 
 and all simplicial
maps the identities. The functor 
 �
 
� has a left adjoint / �
 ���/ �:

Hom�/�� 
�� 
 Hom����/��� 
�

The sheaf ���/�� can be described as the equalizer of /�



 /�, as well as the

sheaf associated to the presheaf

� �
 ����/��� ���

The same holds in the pointed context. We will often write simply 
 for 
�.
(b) If /� is a simplicial sheaf, and u a section of /� over � , one also disposes of

sheaves �� �/�� u� over � : the sheaves associated to the presheaves

6�� �
 ���/��6 ��� u��

(c) A morphism /� 
 
� is a local equivalence, if it induces an isomorphism
on �� as well as, for any local section u of /�, an isomorphism on all �� . This
applies also to pointed simplicial sheaves: one just forgets the marked point.

One defines �A���(��� as the category derived from the category of pointed sim-
plicial sheaves on ��(���.�� by formally inverting local equivalences. Until made
more concrete, this definition could lead to set-theoretic difficulties, which we leave
the reader to solve in its preferred way.

1 In the Appendix we have assembled the properties of “localization” to be used in this talk and in
the next.
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For 
 a pointed sheaf on �(�� , Proposition 7 applies to 
� and to the localiza-
tion by local equivalences: one has

Hom�*��/�� 
�� 
 Hom�/�� 
�� 
 Hom����/��� 
� (0.1)

Definition 1. An object � of �A���(��� is called A�-local if for any simplicial
sheaf � , one has

Hom�*������
�
 Hom�*��� � A�� � �A�� ��

At the right hand side, � � �A� means that in the product, � � A� is contracted to a
point, the new base point.

Proposition 1. For 
 a pointed sheaf on �(�� , the simplicial sheaf 
� is A�-local
if and only if 
 is homotopy invariant.

Proof. We have ���� � A�� 
 ���� � � A�, so that by (0.1) “A�-local” means that
for any pointed sheaf � , one has

Hom���
� 
 Hom�� � A�� � �A�� 
�

A morphism � 
 
 can be viewed as the data, for each . � ��� �, of � �.� �

�� �, functorial in � and marked point going to marked point. A morphism � �
� �A� 
 
 can similarly be described as data for . � ��� � of ��.� � 
�� �A��.
Homotopy invariance hence implies A�-locality. The converse is checked by taking
for � the disjoint sum of a representable sheaf and the base point. �

Definition 2. (1) A morphism � � �� 
 �	 in �A���(��� is an A�-equivalence if
for any A�-local � , one has in �A���(���

Hom��	� ��
�
 Hom���� ��

(2) The category�AA�����(��� is deduced from�A���(��� by formally inverting
A�-equivalences.

Remark 1. If a morphism in �A���(��� becomes an isomorphism in �A��A�

��(��� it is an A�-equivalence. Indeed, if � in �A���(��� is A�-local, an appli-
cation of Proposition 7 shows that for any � ,

Hom�*������
 Hom�*
��A� �����

is bijective. If � � �� 
 �	 in �A���(��� has an image in �A��A���(��� which
is an isomorphism, it follows that for any A�-local � , one has

Hom�*���	� ��
�
 Hom�*����� ���

Such an � is an A�-equivalence.
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Example 1. Arguments similar to those given before show that if 
 is a homotopy
invariant pointed sheaf, then for any simplicial pointed sheaf /�, one has

Hom�*A���
��(����/�� 
� 
 Hom�/�� 
� 
 �A(����/��� 
�

in particular, if � is smooth over � and if �	 is the disjoint union of � and of a
base point,

Hom�*A���
��	� 
� 
 
�� �

2.3 Derived Categories Vs. Homotopy Categories

For any topos < , which for us will be the category of sheaves on some site � ,
the pointed homotopy category �A���� as well as the derived category E��� are
obtained by localization. For the derived category, one starts with the category of
complexes of abelian sheaves. The subcategory of complexes living in homological
degree � � is naturally equivalent, by the Dold Puppe construction, to the category
of simplicial sheaves of abelian groups. The equivalence is

) � �simplicial /�� �
 complex�
(
���

!LB�>� �� >��

We will write � for the inverse equivalence. For � a point, and � an abelian group,
�����$��� is indeed the Eilenberg–Maclane space ���� $�. For a complex = not
assumed to live in homological degree � �, we define

��=� �
 ��G��=�

where G��= is the subcomplex in = of the form

� � � =�		

=���
 =�	� 
 !LB�-��
 �

Note that = �
 G��= is right adjoint to the inclusion functor

�complexes in homological degree � �� "
 �all complexes�

so that �)��� form a pair of adjoint functors:

�simplicial abelian sheaves�� �complexes of sheaves�

Theorem 2. Assume that � 
 Spec�!� with ! perfect. Then, for / a presheaf with
transfers, and �	 as above, and , � �

Hom�*A���
��	� ��/ �,��� 
 H���.�� � =��/ ��
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In this theorem ��/ �,�� is the simplicial sheaf of abelian groups whose normalized
chain complex is / in homological degree ,.

To prove the theorem we establish the chain of equalities,

H���.�� � =��/ �� 
 Hom�*���	� ��=��/ ��,��� 



 Hom�*
��A� ��	� ��=��/ ��,��� 
 Hom�*

��A� ��	� ��/ �,����
(1.1)

the first equality is proved right before Proposition 4, the second right after Propo-
sition 5 and the last one follows from Lemma 1.

Let �AB�L� be the forgetting functor from abelian sheaves to sheaves of sets. Its
left adjoint is / �
 Z�/ �: the sheaf associated to the presheaf

� �
 �abelian group freely generated by /�� ��

In the pointed context , the adjoint is

�/��� �
 &Z�/ � � Z�/ ��Z���

We have the same adjunction for (pointed) simplicial objects.

Proposition 2. On a site with enough points (and presumably always), one has

(1) The functor /� �
 )Z�/�� from pointed simplicial sheaves to complexes of
abelian groups transforms local equivalences into quasi-isomorphisms

(2) The right adjoint= �
 �AB�L����= �� transforms quasi-isomorphisms to local
equivalences.

The assumption “enough points” applies to �(�! with the Nisnevich topology: for
any � in �(�! and any point � of � , / �
 /��,L��O�

>���� is a point, and they
form a conservative system.

Proof. Local equivalence (resp. quasi-isomorphism) can be checked point by point,
and the two functors considered commute with passage to the fiber at a point. This
reduces our proposition to the case when � is just a point, i.e. to usual homotopy
theory. In that case, (1) boils down to the fact that a weak equivalence induces an
isomorphism on reduced homology, a theorem of Whitehead, and (1.1) reduces to
the fact: for a complex= , �� ���= ��, computed using any base point, is �� �= �. The
�� ���= �� are easy to compute because ��=� has the Kan property. �

Applying Proposition 8, we deduce from Proposition 2 the following.

Proposition 3. Under the same assumptions as in Proposition 2, for /� a pointed
simplicial sheaf and = a complex of abelian sheaves, one has

Hom�*��/�� ��= �� 
 Hom?�) &Z�/��� = � (3.1)
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Let / be a sheaf and /	 be deduced from / by adjunction of a base point. We also
write / and /	 for the corresponding “constant” simplicial sheaf. One has

) &Z�/	� 
 )Z�/ � 
 �Z�/ � in degree zero�

For the pointed simplicial sheaf /	, the group �A(?�Z�/ �� = � which now occurs
at the right-hand side of (3.1) can be interpreted as hypercohomology of = “over /
viewed as a space”, i.e. in the topos of sheaves over / . For / defined by an object
� of the site � , this is the same as hypercohomology of the site ��� . As we do
not want to assume = bounded below (in cohomological numbering), checking this
requires a little care.

For a complex of sheaves � over a site � , not necessarily bounded below,
H������ can be defined as the Hom group in the derived category �A(?�Z� ��.
For / in a topos < and the topos <�/ : “F viewed as a space”, besides the morphism

of toposes �<�/ �
�
 < , i.e. the adjoint pair �+ �� +��, we have for abelian sheaves

an adjoint pair �+`� + ��, with +` and + � both exact. By Proposition 8, �+`� + �� induce
an adjoint pair for the corresponding derived categories. As +`Z 
 Z�/ �, we get

Hom?�Z�/ �� = � 
 H��<�/� + ��= �� (3.2)

hence
Hom�*��/	� ��= �� 
 H��<�/� + ��= �� (3.3)

Let us consider the particular case of �(�! with the Nisnevich topology. For any
complex of sheaves, (3.3) gives for � smooth over !

Hom�*���	� ��= �� 
 H���%���.��� = � (3.4)

Here, �%���.�� is the site ��(����� with the Nisnevich topology. It has however
the same hypercohomology as the small Nisnevich site �.�� . Indeed, one has a
morphism F � �%���. �� 
 �.�� and the functors F� and F� are exact. One again
applies Proposition 8. If we apply (3.4) to a translate (shift) of = , we get

Hom�*���	� ��= �,��� 
 H���.��� = � (3.5)

Applying (3.5) to =��/ � we get the first equality in (1.1).

Proposition 4. Let = be a complex of abelian sheaves on �(�!. The following
conditions are equivalent:

1. ��=� is A�-local.
2. For ' � �, the functor � �
 H� ��� = � is homotopy invariant.
3. For any complex� in cohomological degree� �, one has in the derived category

Hom��� Z�A��� = �
�
 Hom��� = ��
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Proof. By Proposition 3, condition (1) can be rewritten: for any pointed simplicial
sheaf /�.

Hom?�) &Z�/��� = � 
 Hom?�) &Z�/� � A�� � �A���

The operation /� �
 /� �A�� ��A� is better written as a smash product /�  A�
	

with A�
	. For pointed sets � and / , &Z��  / � 
 &Z���� &Z�/ �. It follows that

&Z�/� � A�� � �A�� 
 &Z�/�  A�
	� 
 &Z�/��� &Z�A�

	� 
 &Z�/��� Z�A��

(isomorphisms of simplicial sheaves), hence

) &Z�/� � A�� � �A�� 
 ) &Z�/��� Z�A��

It follows that (1) is the particular case of (3) for � of the form &Z�/��. Similarly, (2)
is the particular case of (3) for � of the form Z�� ��' �, with ' � �.

The suspension 9�/� of a simplicial pointed sheaf /� is its smash product with
the simplicial sphere � � (the '-simplex modulo its boundary). It follows that

&Z�9�/�� 
 &Z�/��� &Z�� ��

(isomorphism of simplicial sheaves), and by Eilenberg–Zilber, the normalized com-
plex )Z�9�/�� is homotopic to the tensor product of the normalized complexes of
&Z�/�� and &Z�� ��. The latter is simply Z�' �:

) &Z�9�/�� � &Z�/���' �

This is just a high-brown way of telling that the reduced homology of a suspension
is just a shift of the reduced homology of the space one started with.

Applying this to /� 
 �	, one obtains that (1)�(3). Indeed, &Z�9��	� is
homotopic to &Z��	��' � 
 Z�� ��' �.

We now prove that (2)�(1). For � a complex, let (*) be the statement that the
conclusion of (3) holds for all ��'�, ' � �. The assumption (2) is that (*) holds
for � reduced to Z�� � in degree �, and we will conclude that it holds for all � in
cohomological degree � � by “devissage”:

(a) The case of a sum of Z�� �, in degree zero, follows from Corollary 10.
(b) Suppose that � is bounded, is in cohomological degree � � and that (*) holds

for all ��.

The functors

 � � � �
 �A(���� = � (3.6)

 �� � � �
 �A(���� Z�A��� = �
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are contravariant cohomological functors, hence give rise to convergent spectral
sequences

�
��
� 
  �������  �	�����

One has a morphism of spectral sequences

��for  ��
 ��for  ���

which is an isomorphism for � � �, and both ��� vanish for , J � or , large. It

follows that  
�����

�
  
������ for $ � �, i.e. that � satisfies (*).

The same argument can be expressed as an induction on the number of ' such that
�� " �. If $ is the largest (with $ � �), the induction assumption applies to V8��,
even to �V8�������, and one concludes by the long exact sequence defined by

�
 ����$�
 �
 V8��
 �

(c) Expressing � as the inductive limit of the V���� and using Proposition 11, one
sees that we need not assume that � is bounded.

(d) If �� 
 ��� is a quasi-isomorphism, �� � Z�A�� 
 ��� � Z�A�� is one too
(flatness of Z�A��), and (*) holds for �� if and only if it holds for ���.

(e) Any abelian sheaf � is a quotient of a direct sum of sheaves Z�� �. For instance,
the sum over ��� &�, & � :�����, of Z�� � mapping to � by &. It follows that
� admits a resolution �� by such sheaves. By (a) and (c), �� satisfies (*).
It follows from (d) that � satisfies (*) and then by (c) that any complex in
degree � � satisfies (*). �

2.4 Application to Presheaves with Transfers

Let / be a presheaf with transfers. A formal argument [7] shows that the presheaves
with transfers � �=��/ � are homotopy invariant. By the basic result (Theorem 1)
recalled in the first lecture, it follows that for any � , one has

H���� =��/ �� 
 H��� � A�� =��/ �� (4.1)

Indeed, as � and � � A� are of finite cohomological dimension, both sides are
abutment of a convergent spectral sequence

�
��
	 
 � ����� �=��/ ��� H�	���� =��/ ��

and the same for � � A�. By Theorem 1 applied to � �=��/ �,

� ����� �=��/ �� �
 � ���� 7� �=��/ ��
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is the same for � 
 � or for � 
 � � A�. Applying (3.5), we conclude from
Proposition 4((2)�(1)) that

Proposition 5. For ! perfect, if / is a presheaf with transfers, for all ,, ��=��/ �

�,�� is A�-local.

Combining Proposition 5 with Proposition 7 we get the second equality in (1.1).

2.5 End of the Proof of Theorem 2

For any pointed simplicial sheaf
�, =��
�� is a pointed bisimplicial sheaf of which
one can take the diagonal0=��
��. For any pointed sheaf 
, one has a natural map

 
 =��
�, and for a pointed simplicial sheaf 
�, those maps for the 
� induce

7 � 
� 
 0=��
��

Proposition 6. The morphism 7 � 
� 
 0=��
�� is an A�-equivalence.

Proof. We deduce Proposition 6 from Proposition 20.
The two maps �� � � /� 
 /�  A�

	 are equalized by /�  A�
	 
 /�, hence

become equal in the A�-homotopy category. If two maps of pointed simplicial
sheaves /�




 
� factor as /�




 /�  A�

	 
 
�, they also become equal. By
the adjunction of  A�

	 and of =���� 
 �A(�A�
	���, such a factorization can be

rewritten as

/� 
 =��
��
 
�

Particular case: the maps =��
�� 
 
�, become equal in the homotopy category.
Evaluated on� , these maps are the restriction maps ��� �� � 
����A��
 
����.

The affine space A� is homotopic to a point in the sense that � � A� � A� 

A� � ��� �� �
 �� interpolates between the identity map (for � 
 �) and the constant
map � (for � 
 �). The map � induces


��� � A��
 
��� � A� � A��

and, composing with �, � in A�, we obtain that


��� � A��



 
��� �A��

the identity map, and the map induced by � � A� 
 A�, are equal in the
A�-homotopy category. The map of simplicial sheaves 
� 
 =�
� is hence an
A�-equivalence. It has as inverse in the A�-homotopy category the map induced by
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� � Spec�!� 
 A� and one applies Remark 1. We now apply Proposition 20 to the
bisimplicial sheaves


�� �
 
�

��� �
 =�
� � � �
 
��� �0��

and to the natural map 
�� 
 ��� . For fixed �, this is just 
��� 
 
�� � A��,
and Proposition 20 gives Proposition 6. �

To prove the last equality in (1.1), it suffices to show that:

Lemma 1. For any abelian sheaf / , / �,� 
 =��/ ��,� induces an A�-equiva-
lence from ��/ �,�� to ��=��/ ��,��.

Proof. For 
 a monoid (with unit), the pointed simplicial set 	�
 is given by

	�
 

'

functors from the ordered set ��� � � � � $� viewed as a category
to 
 viewed as a category with one object

)
This construction can be sheafified, and can be applied termwise to a simplicial
sheaf of monoids, leading to a pointed bisimplicial sheaf of which one can take the
diagonal

	
� �
 0	��
��

This construction commutes with the construction 
� 
 0=��
��. Indeed, 	�
�

is naturally isomorphic to 
�
� , the operation =� commutes with products, and

	�0=��
��� and 0=��	
�� are both diagonals of the trisimplicial pointed sheaf
=�	�
�.

For abelian simplicial sheaves, the operation 	 gives again abelian simplicial
sheaves, hence can be iterated, and 0=� commutes with 	�.

Via Dold–Puppe construction, 	 corresponds, up to homotopy, to the shift ��� of
complexes:

)	
� � �)
������

This can be viewed as an application of the Eilenberg–Zilber Theorem (see
[9, Theorem 8.5.1]): one has

)	
� � 	
� � Tot	�
� (Eilenberg–Zilber),

and for each 
� , the normalization of 	�
� is just 
� ���, so that the double
complexes 	�
� and ��� �
 
� for , 
 �, � otherwise, have homotopic <A� .

If 
� is an abelian simplicial sheaf, applying Proposition 6 to 	�
�, we obtain
that

	�
� 
 0=�	
�
� 
 	�0=�
� (6.1)
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is an A�-equivalence. The functor � transforms chain homotopy equivalences into
simplicial equivalences. For any simplicial abelian group �� (to be 
� or 0=�
�),
we hence have a simplicial homotopy equivalence

	��� 
 �)	��� � ���)����,��

Simplicial homotopy equivalences being A�-equivalences, we conclude that (6.1)
induces an A�-equivalence

���)
���,��
 ��)�0=�
���,��

�

2.6 Appendix: Localization

Let = be a category and � be a set of morphisms of = . The localized category
= ����� is deduced from = by “formally inverting all & � �”. With this definition,
it is clear that one has a natural functor MA� � = 
 =�����, bijective on the set of
objects, and that for any category E,

/ �
 / Æ MA� � Hom�= ������ E�
 Hom�=�E�

is a bijection from Hom�= ������ E� to the set of functors from= toE transforming
morphisms in � into isomorphisms.

If one remembers that the categories form a 2-category, and if one agree with the
principle that one should not try to define a category more precisely than up to equiv-
alence (unique up to unique isomorphism), the universal property of =����� given
above is doubly unsatisfactory. The easily checked and useful universal property is
the following: / �
 / Æ MA� is an equivalence from the category �A(�= ������ E�

to the full subcategory of �A(�=�E� consisting of the functors / which map � to
isomorphisms.

Proposition 7. If � in = is such that the functor

 X � = *� 
 �L�& � � �
 HomQ ��� � �

transforms maps in � into bijections, then

�A(Q ��� � �
�
 �A(QUK��V��� � �

Proof. By Yoneda construction � �
  X , = embeds into the category =� of con-
travariant functors from = to Sets, while =����� embeds into =������, identified
by (a) with the full subcategory of =� consisting of / transforming � into bijec-
tions. For � in = , with image �� in =�����, and for any / in =������ � =�, one
has in =�
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Hom� X � / � 
 Hom� $X � / ��

Indeed, by (a) and Yoneda lemma for = and =����� both sides are /�� �. This
means that  $X is the solution of the universal problem of mapping  X into an object
of = ������ � =�. In particular, for � as in (b), i.e. in =������,  $X coincides with
 X , as claimed by (b). �

Proposition 8. Let ���S� be a pair of adjoint functors between categories = and
E. Let � and < be sets of morphisms in = and E. Assume that / maps � to < and
that 
 maps < to � . Then the functors ��, �S between =����� and E�< ��� induced
by � and S again form an adjoint pair.

Proof. The functors �� and �S induced by/ and
 are characterized by commutative
diagrams

=
O�����
 E��� ���

= �����
$O�����
 E�< ���

E
@�����
 =��� ���

E�< ���
$@�����
 =�����

Adjunction can be expressed by the data of F � P- 
 S� and 2 � �S 
 P- such
that the compositions

S
 S�S
 S

�
 �S�
 �

are the identity automorphisms of S and � respectively (see, e.g. [6]).
By the universal property of localization, F induces a morphism �F 
 �S ��,

indeed, to define such a morphism amounts to defining a morphism loc 
 �S ��loc,
and �S ��loc 
 locS�. Similarly, 2 induces �2 � �� �S 
 P- . The morphism
�� 
 �� �S �� 
 �� is induced by � 
 �S� 
 �, similarly for �S 
 �S �� �S 
 �S,
and the proposition follows. �

Proposition 9. Suppose that:

1. The localization =����� gives rise to a right calculus of fractions.
2. Coproducts exist in = , and � is stable by coproducts.

Then, a coproduct in = is also a coproduct in =�����.

For the definition of “gives rise to a right calculus of fractions” see [10]. It implies
that for � in = , the category of & � � � 
 � with & in � is filtering, and that

HomQUK��V��� � � 
 colim��- �
-HomQ ��
�� � �
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Proof. For � in = , let ����� be the filtering category of morphisms � � 
 � in � .
For � the coproduct of �� , � � %, one has a functor “coproduct”:�

������
 �����

It is cofinal: for & � � � 
 � in � , one can construct a diagram

� �
� �����
 ����� ���

� � �����
 �

with &� � � �
� 
 � in � , and

�
&� dominates &. For any � , it follows that

HomQUK��V��� � � 
 colim
KI-�HomQ ��
�� � � 



 colim�
KI-+�Hom�
�

� �
�� � � 
 colim�
KI-+�

�
Hom�� �

�� � � 




�

colimKI-+Hom�� �
�� � � 


�
HomQUK��V���� � ��

meaning that � is also the coproduct of the �� in = �����. �

Corollary 10. Suppose that in the abelian category % arbitrary direct sums exist
and are exact. Then, arbitrary direct sums exist in the derived category E�%�, and
the localization functor

=�%�
 E�%�

commutes with direct sums.

Proof. The functor =�%� 
 E�%� factors through the category ��%� of com-
plexes and maps up to homotopy. Direct sums in =�%� are also direct sums in ��%�.
Indeed,

HomG
2��.��� �� 
 � �Hom��.�� � �� 


 � �

�
Hom����� �� 


�
� �Hom����� ���

as
�

is exact for abelian groups. Exactness of . in % ensures that a direct sum
of quasi-isomorphisms is again a quasi-isomorphism, and Proposition 9 applies to
��%� and the set � of quasi-isomorphisms, proving the corollary. �

If %� , ' � � is an inductive system of objects of %, the colimit of %� is the cokernel

.%�

=
.%� 
 colim%� 
 �
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of the difference of the identity map and of the sum of the %� 
 %�	�. If taking
the inductive limit of a sequence is an exact functor, the map - is injective: it is the
colimit of the

.�
���%� 
.�	�

���%�

each of which is injective, as its graded for the filtration by the.���%� is the identity
inclusion.

Under the assumptions of Corollary 10 if a complex � is the colimit of an
inductive sequence �
��, and if the sequence

�
.�
��

=
.�
�� 
 � 
 � (10.1)

is exact, then for any �, the long exact sequence of cohomology reads


 Hom�����

�

Hom��
��� ��
=

�

Hom��
��� ��


The kernel of - is simply the projective limit of the Hom��
��� ��. The cokernel is
M'(�. One concludes.

Proposition 11. Suppose that in % countable direct sums exist and are exact. If the
complex � is the colimit of the �
��, and if the sequence (10.1) is exact, for instance
if either:

1. In % inductive limits of sequences are exact.
2. In each degree $, each ��


��

 ��


�	��
, is the inclusion of a direct factor.

then, one has a short exact sequence

�
 M'(�Hom��
��� ������
 Hom�����
 M'(Hom��
��� ��
 �

Proof. It remains to check that condition (2) implies the exactness of (10.1). This is
to be seen degree by degree. By assumption, the %� �
 ��


��
, have decompositions

compatible with the transition maps %� 
 .�
���	� . A corresponding decomposi-

tion of (10.1) in direct sum follows, and we are reduced to check exactness of the
particular case (10.1)
2��� of (10.1) when 	� 
 � for ' " $, i.e. when %� is a fixed
% from ' � $, and is � otherwise. Let (10.1)� be the sequence (10.1)Z�� in %8 for
% 
 Z. It is a split exact sequence of free abelian groups. Because direct sums exist,
��%, for � a free abelian group is defined and functorial in �. It is a sum of copies
of %, indexed by a basis of �, and is characterized by

Hom��� %�	� 
 Hom���Hom�%� 	��

(functorial in 	). The sequence (10.1)2�� is (10.1)� � % and, (10.1)� being split
exact, it splits and in particular is exact. �
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The truncation V
�� 
 V���� of a complex � is the subcomplex which coin-
cides with � in homological degree � $ and is � in homological degree 5 $. For
any complex �, one has

� 
 colimV
��

and this colimit satisfies condition (2) of Proposition 11. It follows that

Corollary 12. Under the assumptions of Corollary 10, for any � and �, one has a
short exact sequence

�
 M'(�Hom�V
���������
 Hom�����
 M'(Hom�V
�����
 �

3 A�-Equivalences of Simplicial Sheaves on � -Schemes

3.1 Sheaves on a Site of � -Schemes

We fix a base scheme � , supposed to be separated noetherian and of finite dimen-
sion; fiber product � �K � will be written simply as � � � . We also fix a group
scheme 
 over � , supposed to be finite and flat. We note  - the representable sheaf
defined by � .

Let [��
 be the category of schemes quasi-projective over � , given with an
action of 
. Any � in [��
 admits an open covering ���� by affine open sub-
schemes which are 
-stable. This makes it possible to define a reasonable quotient
��
 in the category of schemes over � (rather than in the larger category of
algebraic spaces). For each �� , ���
 is defined as the spectrum of the equalizer

O��� �



 O��� � 
��

and ��
 is obtained by gluing the ���
. It is a categorical quotient, i.e. the coequal-
izer of 
 � �




 � . The map � 
 ��
 is finite, open, and the topological space

���
� is the coequalizer of the map of topological spaces �
 � � � 


 �� �. One can

show that ��
 is again quasi-projective. Remark 2 below shows that this fact, while
convenient for the exposition, is irrelevant.

One defines on [��
 a pretopology [3, II.1.3] by taking as coverings the family
of etale maps �� 
 � with the following property: � admits a filtration by closed
equivariant subschemes # 
 �� � � � � � �� � �� 
 � such that for each + , some
map �� 
 � has a section over �� � ��	�. The Nisnevich topology on [��
 is
the topology generated by this pretopology. The category[��
 with the Nisnevich
topology is the Nisnevich site �[��
�.�� .

Remark 1. The corresponding topos is not the classifying topos of [2, IV.2.5]. A
morphism � 
 � can become a Nisnevich covering after forgetting the action of

, and not be a Nisnevich covering. Example: � 
 Spec�!�, 
 
 Z��, � 
 � ,
� 
 �

�
� and 
 permutes two copies of � in � .
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Remark 2. Let �affine�
�.�� be the site defined as above, with “quasi-projective”
replaced by “affine”. It is equivalent to �[��
�.�� , in the sense that restriction to
�affine�
�.�� is an equivalence from the category of sheaves on �[��
�.�� to the
category of sheaves on �affine�
�.�� .

Remark 3. If 
 is the trivial group L, the definition given above recovers the usual
Nisnevich topology. For 
 
 L, the condition usually considered: “every point
� of � is the image of a point with the same residue field of some ��”, is indeed
equivalent to the condition imposed above. This is checked by noetherian induction:
if a generic point 3 of � can be lifted to �� , some open neighborhood � � � of 3
can be lifted to �� , and one applies the induction hypothesis to �� 
 �� � ��)0= .

We write �[� �.�� for the category of quasi-projective schemes over � , with the
Nisnevich topology.

Lemma 2. If U � �� 
 � �' � P � is a covering of � in �[��
�.�� , there is a
covering V of ��
 in �[� �.�� whose pull-back to � is finer than U .

Proof. Fix a filtration # 
 �� � � � � � �� 
 � as in the definition of the Nisnevich
topology. We write � for the quotient map � 
 ��
. For � in ��
, ��������)0=
is in some �� � ��	�, by equivariance of the �� , and one of the maps �� 
 �

has an equivariant section & over �� � ��	�. Let ���
��� be the henselization of
��
 at �. The map � being finite, the pull-back of ���
��� to � is the coproduct of
the ��

N for ��.� 
 �. The map from �� to � being etale, the section &, restricted
to �����.��)0= , extends uniquely to a section (automatically equivariant) of �� over�

�
N��� �
�
N . Writing ���
��� as the limit of etale neighborhoods of �, one finds

that � has an etale neighborhood 6��� such that �� has an equivariant section over
� �-I: 6���. The 6��� form the required covering V . �

We define the 
-local henselian schemes to be the schemes � obtained in the
following way. For � in �[��
�, . a point of ��
, and ���
��N the henselization
of ��
 at ., take the fiber product � �
 � �-I: ���
��N . As � is finite over ��
,
this fiber product is a finite disjoint union of local henselian schemes, and 
-local
henselian schemes are simply the 
-equivariant finite disjoint unions of � of local
henselian schemes, for which ��
 is local.

Proposition 13. If � is 
-local henselian, the functor � �
 �A(����� is a
point of the site �[��
�.�� , i.e. it defines a morphism of the punctual site �Sets�
to �[��
�.�� . If � 
 � �-I: ���
��N , the corresponding fiber functor is / �

�AM'(/�� �-I: 6 �, the colimit being taken over the etale neighborhoods of . in
��
. The collection of fiber functors so obtained is conservative.

Proof. The functor � �
 �A(����� commutes with finite limits. It follows from
Lemma 2 that it transforms coverings into surjective families of maps, hence is a
morphism of sites ��L�&�
 �[��
�.�� .
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To check that the resulting set of fiber functors is conservative, it suffices to check
that a family of etale �� � �� 
 � is a covering if for any 
-local henselian � ,�

�A(��� ���
 �A(�����

is onto. The proof, parallel to that of Lemma 2 is left to the reader. �

3.2 The Brown–Gersten Closed Model Structure on Simplicial
Sheaves on � -Schemes

We recall that a commutative square of simplicial sets (or pointed simplicial sets)

� �����
 ���� ���

 �����
 )

(13.1)

is homotopy cartesian (or a homotopy pull-back square) if, when � is replaced by

�� weakly equivalent to it and mapping to ) by (Kan) fibration: �
�
 �� 
 ) , the

map from � to �� �. 
 is a weak equivalence.

Definition 3. A simplicial presheaf /� on �[��
�.�� is flasque if /�#� is con-
tractible and if for any (upper) distinguished square:

	 �����
 ���� ����
%

������
 �

(, – etale, + open embedding, 	 
 ,���%� and � � 	 � � � %), the square

/��� �����
 /�� ���� ����
/�%�

������
 /�	�

is homotopy cartesian.

Theorem 3. Let � � /� 
 / �
� be a morphism of flasque simplicial presheaves.

If the induced morphism of simplicial sheaves 7/� 
 7/ �
� is a local equivalence,

then, for any � in [��
, /��� �
 / �
��� � is a weak equivalence.
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Proof. For a 
-scheme � let �.�� be the small Nisnevich site of � and for a
presheaf / on �[��
� let /�- be the restriction of / to �.�� . Our assumption that
7/� 
 7/ �

� is a local equivalence implies that 7/���> 
 7/ �
���>

is a local equiva-
lence. The map � 
 ��
 defines a morphism of sites , � �.�� 
 ���
�.�� and
Lemma 2 implies that the direct image functor ,� commutes with the associated
sheaf functor and takes local equivalences to local equivalences. Therefore the mor-
phism 7,��/���> � 
 7,��/

�
���>

� is a local equivalence. The presheaves ,��/���> �

and ,��/
�
���>

� are flasque on ���
�.�� and by [8, Lemma 3.1.18] we conclude that

/��� � 
 ,��/���> ����
�
 ,��/
�
���> ����
� 
 / �

��� �

is a weak equivalence. �

In [1], Brown and Gersten define a simplicial closed model structure on the cat-
egory of pointed simplicial sheaves on a Noetherian topological space of finite
dimension. As in Jardine [11], the equivalences are the local equivalences . The
homotopy category is hence the same as Joyal’s, but the model structure is different:
less cofibrations, more fibrations.

The arguments of [1] work as well in the Nisnevich topology, for the big as well
as for the small Nisnevich site, or for �[��
�.�� , once Theorem 3 is available.

We review the basic definitions, working in �[��
�.�� . Let Y��� be the sub-
simplicial set of >0�, union of all faces but the !-th face. For $ 
 �, Y��� 
 #. One
takes as generating trivial cofibrations the maps of the form �; �:

�;#� �Y��� �  -�	 
 �0� �  -�	
�;%� for � 
 � an open embedding,

�0� �  >
�

\�����%

Y��� �  - �	 
 �0� �  - �	

One then defines the fibrations to be the morphisms , having the right lifting
property with respect to generating trivial cofibrations (see, e.g. [5]), the (weak)
equivalences to be the local equivalences, the trivial fibrations to be fibrations which
are also (weak) equivalences, and the cofibrations to be the morphisms having the
left lifting property with respect to trivial fibrations.

Following [1] and using Theorem 3, one proves that the trivial fibrations can be
equivalently described as morphisms having the right lifting property with respect
to the following class of morphisms �P �:

�P#� �>0� �  - �	 � �0� �  - �	
�P%� for � 
 � open embedding,

�0� �  >
�

 ^���%

>0� �  - �	 
 �0� �  - �	

The maps of the form �P � are called generating cofibrations.



376 P. Deligne

For � and � pointed simplicial sheaves, one defines a pointed simplicial set
���� � � by

���� � �� 
 �A(��  �0��	� � �

Following [1], one sees that the classes of cofibrations, (weak) equivalences, fibra-
tions, and � are a simplicial closed model structure in the sense of []. This has the
following consequences.

Corollary 14. If � is cofibrant and � fibrant, for any pointed simplicial set �, one
has in the relevant homotopy categories

Hom�*��  �� � � 
 Hom�*��� ���� � ��

In particular, taking ! 
 �0��	 one gets

Hom�*��� � � 
 ������ � �

Corollary 15. If � 
 � is a cofibration and C a cofibrant object, then �  C 

�  C is a cofibration.

Corollary 16. If � is cofibrant and � is fibrant, then for any C

Hom�*�C�Hom��� � �� 
 Hom�*�C  �� � � (16.1)

In (16.1), Hom��� � � is the pointed simplicial sheaf with components the sheaves
of homomorphisms from �  �0��	 to � .

We now apply this framework to prove the following criterion for A�-locality.

Proposition 17. Let / be a pointed simplicial sheaf on �[��
�. If, as a simplicial
presheaf, / is flasque, then / is A�-local if and only if, for any � in �[��
�,

/�� �
 /�� � A��

is a weak equivalence.

We recall that A�-local means that for any � one has the following in the homotopy
category

�A(�*��� / � 
 �A(�*��  � A��	� / � (17.1)

Lemma 3. A fibrant pointed simplicial sheaf is flasque.

Proof. The right lifting property of / 
 � relative the morphisms �;%� means that
for � � � an open embedding, the morphism /��� 
 /�� � is a Kan fibration.
As / is a sheaf, an upper distinguished square
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	 �����
 ���� ���
% �����
 �

gives rise to a Cartesian square

/��� �����
 /�� ���� ���
/�%� �����
 /�	�

As /�� �
 /�	� is a Kan fibration, this square is also homotopy Cartesian. �

Lemma 4. Proposition 17 holds of the assumption “/ is flasque” is replaced by
the assumption “/ is fibrant”.

Proof. “Only if” �P#� for $ 
 � says that for any � , � > �	 is cofibrant. By
Corollary 14, for any pointed simplicial set �, one has

Hom�*�� > �	  ��/ � 
 Hom�*��� ��� > �	� / ��

and ��� > �	� / � is just /�� �. If in (17.1) we take � 
 �  � > �	, so that �  
� A��	 
 �  � >�A��	 we get

Hom�*��� /�� � A��� 
 Hom�*��� /�� ��

That this holds for any� means that /�� �
 /�� �A�� becomes an isomorphism
in the homotopy category , hence is a weak equivalence.
“If” We apply Corollary 16. As � A��	 is cofibrant and / fibrant,

Hom�*��  � A��	� / � 
 Hom�*���Hom�� A��	� / ��

and it suffice to show that

/ 
 Hom�� A��	� / �

is a local equivalence. This Hom is a simplicial sheaf � �
 /�� � A�� and the
claim follows. �

Proof. We can now finish the proof of Proposition 17. Let / 
 / � be a fibrant
replacement of / . As / and / � are flasque, /�� �
 / ��� � is a weak equivalence
for any � . That all /�� �
 /�� � A�� be weak equivalences is hence equivalent
to all / ��� �
 / ��� �A�� be weak equivalences, while / is A�-local if and only
if / � is. �
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3.3 ��-Closed Classes

The proof of the main theorem of this section will be postponed.

Definition 4. A class � of morphisms of pointed simplicial sheaves is 0-closed if:

1. (Simplicial) homotopy equivalences are in � .
2. If two of � , � and �� are in � then so is the third.
3. � is stable by finite coproducts.
4. If /�� 
 
�� is a morphism of pointed bisimplicial sheaves, and if all

/�� 
 
�� are in � , so is the diagonal 0�/ �
 0�
�.

Definition 5. The class � is �0-closed if, in addition, it is stable by arbitrary coprod-
ucts and colimits of sequences �/� 
 
��� with the property that, degree by
degree, �/��� 
 �/���	� (resp. �
��� 
 �
���	�) is isomorphic to an embedding
% � %

�
	 of pointed sheaves.

Theorem 4. The class of A�-equivalences is the �0-closure of the union of the
classes of:

1. Local equivalences
2. Morphisms �� � A��	 
 �	 for � in �(�!

In particular, the class of A�-equivalences is �0-closed.

3.4 The Class of A�-Equivalences Is ��-Closed

The properties 4(1), 4(2), 4(3) are clear. The last property is proved in Proposi-
tion 20.

Lemma 5. Let % be a pointed simplicial set and � a pointed simplicial sheaf. If �
is fibrant and A�-local, then �2 is A�-local.

Proof. Because � is fibrant, for any � , one has in the homotopy category

Hom�*����
2� 
 Hom�*�%  ���� (17.1)

Applying this to � and �  �A�
	� and using

�%  � �  �A�
	� 
 %  ��  �A�

	��

one deduces from the A�-locality of � that of �2. �

Lemma 6. Let � � � 
 � be a morphism of pointed simplicial sheaves and% be a
pointed simplicial set. If � is an A�-equivalence, then so is �  % � � %
 �  %.
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Proof. One has to check that for any A�-local � one has in the homotopy category

Hom�*�%  ���� 
 Hom�*�%  ����

Replacing � by a fibrant replacement, one may assume � fibrant. Applying (17.1)
one is reduced to Lemma 5. �

Lemma 7. Let � � � 
 � be a morphism of pointed simplicial sheaves. If � and
� are cofibrant, then � is a A�-equivalence if and only if for any fibrant A�-local
� , the morphism of simplicial sets

������
 ������

is a weak equivalence.

Proof. “If” Taking �� one deduces from the assumptions that

Hom�*�����



 Hom�*�����

“Only if” The assumptions imply that ������ and ������ are fibrant. For any
pointed simplicial set % one has

Hom�*�%� ������� 
 Hom�*��  %���

and similarly for � and one applies Lemma 6. �

Proposition 18. The coproduct of a family of A�-equivalences

�� � �� 
 ��

is an A�-equivalence.

Proof. There are commutative diagrams

� �����
 � �
�


 �+�����
 � �
���� ��� ���

� �����
 ��


+�����
 ��

where morphisms on the first line are cofibrations, and where the vertical maps are
local equivalences, and similarly for � . Replacing �� (resp. ��) by � �

� (resp. � �
�)

we may and shall assume that the �� and �� are cofibrant. The coproducts
�

��,�
�� are then cofibrant too. One has

��
�

��� �� 

�

����� ��
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and similarly for the ��, and one applies Lemma 7, and the fact that a prod-
uct of a family of weak equivalences of fibrant pointed simplicial sets is a weak
equivalence. �

Proposition 19. The colimit

� � colim/� 
 colim
�

of an inductive sequence of A�-equivalences �� � /� 
 /� is again an A�-
equivalence.

Proof. One inductively constructs an inductive sequence of commutative squares

/ �
�


 �������
 
�
���� ���

/�


������
 
�

in which the vertical maps are local equivalences, the / �
� and 
�

� are cofibrant and
the transition maps / �

� 
 / �
�	�, 


�
� 
 
�

�	� are cofibrations. A colimit of local
equivalences being a local equivalence, it is sufficient to prove the proposition for
the sequence �� �

��. We hence may and shall assume that � 
 /� 
 � � � 
 /� 

is a sequence of cofibrations and similarly for the � 
 
� 
 � � � 
 
� 
. The
colimits / and 
 of those sequences are then cofibrant.

If � is fibrant and A�-local, ��
���
 ��/��� is the limit of the sequence of
weak equivalences

��
�� ��
 ��/�� ��

In the sequences ��
�� �� and ��/�� �� the transition maps are fibrations of
fibrant objects. It follows that the limit is again a weak equivalence: the �� of the
limit map onto the limit of �� , with fibers �M'(���	��-torsors. It remains to apply
Lemma 7. �

Proposition 20. Let /�� 
 
�� be a morphism of pointed bisimplicial sheaves. If
all /�� 
 
�� are A�-equivalences, so is 0�/ �
 0�
�.

To prove Proposition 20 we will functorially attach to /�� an inductive sequence
of pointed simplicial sheaves / 
��, whose colimit maps to 0�/ � by a local equiv-
alence. We will then inductively prove that / 
�� 
 

�� is an A�-equivalence, and
apply Proposition 19. We begin with preliminaries to the construction of the / 
��.

Proposition 21. Let 0��� be the category of finite ordered sets 0� 
 ��� � � � � $�

and increasing injective maps. For any category = with finite coproducts,
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the forgetting functor

\ � 0*�= 
 0
*�
���=

has a left adjoint \�: “formally adding degenerate simplicies”: �\���� is the
coproduct, over all , and all increasing surjective maps & � 0� 
 0� , of copies
of ��

�\���� 

�
�

��

We define the wrapping functor ? B � 0*�= 
 0*�= as the composite ? B �

\�\. For = the category of sets or of pointed sets one has the following.

Lemma 8. The adjunction map 7 � ? B���
 � is a weak equivalence.

Proof. We will prove it for = the category of sets. The pointed case is similar. The
fundamental groupoid of � is the category with set of objects ��, in which all maps
are isomorphisms, and universal for the property that:

(1) V � �� defines a morphism � �V� � >��V�
 >��V�.
(2) For G � �	, � �>�G� 
 � �>�G�� �>	G�.

One has �� 
 ? B����. To handle �� and �� it suffice to show that 7 induces
an isomorphism of fundamental groupoids. For any � and any , � ��, � �&��,�� is
the identity of ,. This results from (2) applied to &�&��,� which gives

� �&��,�� 
 � �&��,��� �&��,��

As generators of the fundamental groupoid, it hence suffices to take non degenerate
V � ��. For relations, it then suffices to take those coming from non degenerate
G � �	: the degenerate G give nothing new.

If we apply this to ? B���, we find as set of generators��, and relations indexed
by �	, the same relations as for � .

The functor? B commutes with passage to connected components and to passage
to a covering. To handle higher �� , this reduces us to the case where � (and hence
? B���) is connected and simply connected. In this case it suffices to check that
7 induces an isomorphism in homology. It does because one has a commutative
diagram

=����
�
 =��? B�����degeneracies
6 7

=�����degeneracies

in which the first arrow is an isomorphism, the second the effect of 7 on homology,
and the composite is a homotopy equivalence. �

Proposition 22. For � a pointed simplicial sheaf, let &!���� be the n-th skeleton
of � , i.e. simplicial subsheaf of � for which �&!������ is the union of the images
of the degeneracies �� 
 �� for � � $. One has push-out squares
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��	�  �>0�	��	 �����
 &!��? B������� ���
��	�  �0�	��	 �����
 &!�	��? B����

(22.1)

Let now/ be bisimplicial. Each/��� is simplicial, and they form a simplicial system
of pointed simplicial sheaves. Let us apply ? B and &!� to the first variable, i.e. to
the simplicial sheaf /

� �� for each fixed (. We again have diagrams (22.1) and,
taking the diagonal 0, one obtains push-out squares:

/�	�  �>0�	��	 �����
 0�&!��? B�/ ������ ���
/�	�  �0�	��	 �����
 0�&!�	��? B�/ ���

(22.2)

where /� now stands for the pointed simplicial sheaf /��� . This way the simplicial
sheaf0�? B�/ ��, which by Lemma 8 maps to0�/ � by a local equivalence, appears
as an inductive limit of (22.2).

Proof of Proposition 20: With the notations of 22 it suffice to show that the

0&!�? B�/ �
 0&!�? B�
�

(with &!�? B applied in the first variable) are A�-equivalences. We prove it by
induction on $.

For $ 
 �, 0&!�? B�/ � 
 /�, and /� 
 
� is assumed to be an A�-
equivalence. From $ to $� �, we have a morphism of push out squares

(22.2) for / 
 (22.2) for 


As /�	� 
 
�	� is an A�-equivalence, by Lemma 6, so are its smash product with
�>0�	��	 and �0�	��	. It remain to apply the

Lemma 9. Suppose given a morphism of push out squares

1 �����
 2��� ���
3 �����
 4

�

1� �����
 2���� ���
3� �����
 4�

which is an A�-equivalence in positions 1� 2 and 3. If in each square the first vertical
map is injective, then the morphism of squares is an A�-equivalence in position 4 as
well.

Proof. Replacing the push out squares by push out squares of local equivalent
objects, we may and shall assume that all objects considered are cofibrant, and that
the vertical maps are cofibrant.
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If � is fibrant applying ���� �� to each of the squares we get a morphism
of cartesian squares, of pointed simplicial sets in which the vertical maps are
cofibrations:

��4� �� �����
 ��3� ����� ���
��2� �� �����
 ��1� ��

��
��4�� �� �����
 ��3�� ����� ���
��2�� �� �����
 ��1�� ��

If � is in addition A�-local, it is a weak equivalence in positions 1� 2 and 3,
hence also in position 4. By Lemma 7, this proves Lemma 9, finishing the proof
of Proposition 20 as well as of the claim that the class of A�-equivalences is
�0-closed. �

3.5 The Class of A�-Equivalences as a ��-Closure

In this section we finish the proof of Theorem 4.

Proposition 23. The homotopy push-out of a diagram

[ �
� �����
 ����



(23.1)

is the push-out �A of

[ �
� 5� �����
 
 5 ����

�  �0��	

(23.2)

where the vertical map� �0�
�

0��	 
 � �0��	 is induced by >�� >� � 0� 

0� mapping 0� to � (resp. �) in 0�. In the case of simplicial sets, ��A� maps to
�0�� 
 ��� �� with fibers �
 � above �, ��� above �, and ��� above ��� ��.

The homotopy push-out �A is the diagonal of the bisimplicial object with
columns 
 5�#� 5 � obtained by formally adding degeneracies to

�



 
 5 �

in 0
*�
���0

*��� 
�
� (cf. 21) [>� maps � to �, >� maps � to 
 ]. If � � [ 
 [� is

a morphism of diagrams (23.1), the induced morphism from �A to �A� is hence in
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the closure of the three components of � for the operation of finite coproduct and
diagonal (4(3), (4)).

A commutative square
� �����
 ���� ���

 �����
 )

(23.3)

induces a morphism �A 
 ) .

Example 1. Let � � � 
 � be a morphism. The homotopy push-out of

� �����
 �

�=

���
�

is the cylinder �.M�� � of � . The morphisms

�
 �.M�� �
 �

are homotopy equivalences. To check that the composite cyl�� �
 �
 cyl�� � is
homotopic to the identity, one observes that cyl�� � is the push-out of

� �����
 ����
�  �0��	

(the vertical map induced by >� � 0� 
 0� mapping0� to �) and that the composite
�.M�� � 
 �.M�� � is induced by 0� 
 0� 
 0�, homotopic to the identity by a
homotopy fixing �.

Similar arguments would show that the homotopy push out cyl��� � of

�
�=�����
 ����




is homotopic to � by �
 cyl����
 �.

Example 2. In any category with finite coproducts, a coprojection is a map isomor-
phic to the natural map % 
 %

�
	 for some % and 	 . If in a push-out square of

pointed simplicial sheaves
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�

�����
 ���� ���


 �����
 )

(23.4)

the morphism � is a coprojection: � 
 � 5 %, the square (23.4) is the coproduct
of the squares

�
�=�����
 ���� ���



�=�����
 


and

� �����
 %��� ���
� �����
 %

(23.5)

and the resulting morphism �A 
 ) is a homotopy equivalence, being the coprod-
uct of the homotopy equivalences of Example 1 resulting from the two squares
(23.5). The same conclusion applies if � 

 is a coprojection.

A morphism of pointed simplicial sheaves � 
 � is a termwise coprojection
if each �� 
 �� is a coprojection of pointed sheaves. Example: for any diagram
(23.1), the morphisms ��
 
 �A are termwise coprojections. For any morphism
� � � 
 �, this applies in particular to ���
 �.M�� �.

Proposition 24. If in a cocartesian square (23.3) either � 
 � or � 
 
 is
a termwise coprojection, then the resulting morphism from �A to ) is in the 0-
closure of the empty set of morphisms.

Proof. For each $, we have a cocartesian square of pointed sheaves

[� �
�� �����
 ����� ���

� �����
 )�

Let us view it as a cocartesian square of pointed simplicial sheaves. By Example 2,
it gives rise to a homotopy equivalence �A� 
 )�. One concludes by observing
that �A 
 ) is the diagonal of this simplicial system of morphisms. �

Corollary 25. If in a cocartesian square (23.3):

�

�����
 �

�

��� �����




 ������
 )

� or � is a termwise coprojection, then:

1. � � is in the 0-closure of �� 	.
2. �� is in the 0-closure of ��	.
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Proof of (1): The morphism of cocartesian squares

[� �
�

�=�����
 ���� ���



�=�����
 


�
 [ �
� �����
 ���� ���

 �����
 )

defines a commutative square

�A� �����
 �A��� ���

 �����
 )

in which the vertical maps are in the 0-closure of the empty set by Proposition 24,
while the first horizontal map is in the 0-closure of � by 8.

Proof of (2): One similarly uses

[� �
� �����
 �

�=

��� ����=
�

������
 �

�
 [ �
� �����
 ���� ���

 �����
 )�

Proposition 26. A pointed simplicial sheaf /
�

is reliably compact if it coincides
with its $-skeleton for some $ and each /� is compact in the sense that the functor
�A(�/� ��� commutes with filtering colimits. This property is stable by /

�

 /

�
 

� for � a finite pointed simplicial set (finite number of non degenerate simplices)
and implies that /

�
is compact.

Construction 27. Let � and ) be classes of morphisms such that:

(a) Sources and targets are reliably compact.
(b) Each � in ) is a termwise coprojection.

We will construct a functor�� from pointed simplicial sheaves to pointed simplicial
sheaves and a morphism P- 
 �� such that:

(i) For any / , / 
 ���/ � is in the �0-closure of �
(ii) If � � � 
 � is in �, the morphism

����������
 ���������� (27.1)

is a weak equivalence.
(iii) If � � � 
 � is in ) , the morphism (27.1) is a Kan fibration.
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Let us factorize � � � 
 � as � 
 cyl�� � 
 �. As the second map is
a homotopy equivalence, the first is in the 0-closure of �. In the corresponding
factorization of (27.1):

�������/ ��
 ��cyl�� �� ���/ ��
 �������/ ��

the first map is a homotopy equivalence. To obtain (ii), it hence suffices that
��cyl�� �� ���/ ��
 �������/ �� be a weak equivalence.

Replacing each � � � 
 � in � by the corresponding � 
 cyl�� �, this
reduces us to the case where

(c) each � in � is a termwise coprojection,

and we will construct in this case a functor �� such that

(iii)� for � in �, (27.1) is a trivial fibration.

The conditions (ii), (iii)� are lifting properties:

for � in �, in squares:

>0�
	 �����
 �������/ ����� ���

0�
	 �����
 �������/ ��

for � in ) , in squares:

�Y�
�
�	 �����
 �������/ ����� ���

0�
	 �����
 �������/ ��

In the first case, the data are morphisms0�
	 � 
 ���/ � and >0�

	 �
 ���/ �

agreeing on >0�
	  �, i.e. a morphism

�0�
	  ��

�
 ^�
�

�G

�>0�
	  ��
 ���/ �

and we want it to extend to 0�
	 �. Similarly in the second case, with >0� replaced

by Y�
� :

for � in �:
�0�

	  ��
�

 ^�
�

�G�>0
�
	  �� �����
 ���/ ���� ���

0�
	  � �����
 �

(27.2)
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for � in ) :

�0�
	  ��

�

\�

� ���G��Y
�
��	  �� �����
 ���/ ���� ���

0�
	  � �����
 �

(27.3)

The left vertical maps are termwise coprojections, and their sources are compact.
One now uses the standard trick of defining ���/ � as the inductive limit of the
iterates of functors / 
 < �/ �, where < �/ � is deduced from / by push out,
simultaneously for all

�0�
	  ��

�
 ^�
�

�G

�>0�
	  ��
 ���/ � �� � � 
 � in ��

and

�0�
	  ��

�

\�

����G

��Y�
��	  ��
 ���/ � �� � � 
 � in )�

The push out is by �
�sources�


�
�0�

	  ��

a morphism which is a termwise coprojection. By 26, to check that the resulting
/ 
 ���/ � is in the �0-closure of �, it suffices to check that the left vertical
morphism in (27.2) (resp. (27.3)) is in the 0-closure of � (resp. of the empty set).

For (27.2), this is the map marked 3 in

>0�
	  �

1�����
 >0�
	  ���� ���

0�
	  �

2�����
 � � �
3�����
 0�

	  �

The morphisms 1 and 3 Æ 2 are in the 0-closure of �. So is 2 by 26 and one applies
the 2 out of 3 property.

For (27.3), the diagram is

�Y�
�
�	  � �����
 �Y�

�
�	  ����1

���2

0�
	  � �����
 � � �

3�����
 0�
	  �
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with 1 and 3 Æ 2 in the 0-closure of the empty set. Indeed, Y�
�

and 0� are both
contractible.

Remark 4. Let � be a property of pointed simplicial schemes stable by coproduct,
and suppose that:

(a) For � � � 
 � in �, the �� and �� have property � .
(b) For � � � 
 � in ) , � is in degree $ isomorphic to the natural map �� 


�� 5 % for some % having property � .

The functor �� constructed in Construction 27 is then such that for any �, each
morphism �� 
 ������ is isomorphic to some �� 
 �� 5 % where % has
property � . In particular, if the �� have property � , so have the ������.

Proposition 28. (Proof of Theorem 4) We apply Construction 11, on the site [��
,
taking for � and ) the following classes.

�: For any � in the site, the morphism

�� � A��	 
 �	 (28.1)

and for any upper distinguished square

	 �����
 ���� ���
% �����
 ��

(28.2)

the morphism
��A�	 
 �	 (28.3)

) : For any � in the site,
�#�	 
 �	 (28.4)

If a pointed simplicial sheaf 
 is of the form ���/ �, that (28.4) is in ) ensures
that each 
��� is Kan. That (28.3) is in � ensures that for each upper distinguished
square (28.2), the morphism


���
 ����A�	� 
�

is a weak equivalence. As each 
�� � is Kan, ����A�	� 
� is the homotopy fiber
product of 
�%� over 
�	�, and


��� �����
 
�%���� ���

�� � �����
 
�	�

is homotopy cartesian: 
 is flasque.
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Further, as (28.1) is in �, for each � ,


���
 
�� � A��

is a weak equivalence: by Theorem 3, 
 is A�-local.
Suppose now that � � / 
 
 is a A�-equivalence. In the commutative diagram

/ �����
 
��� ���
���/ � �����
 ���
�

the vertical maps are in the �0-closure of the morphisms (28.1) and (28.2), the later
being local equivalences. In particular, they are A�-equivalences and ���/ � 

���
� is an A�-equivalence between A�-local objects , hence is a local equivalence.
It follows that � is in the required �0-closure, proving Theorem 4.

The functor �� used introduced in 28 can also be used to prove the following
lemma.

Lemma 10. If / 
�� 
 / 
� � is a filtering system of A�-equivalences, then / 
�� 

�AM'(�/


�� is again an A�-equivalence.

Proof. Consider the square:

/ 
�� �����
 �AM'(�/

����� ���

���/ 
��� �����
 ����AM'(�/

����

Since the functor �� commutes with filtering colimits, the bottom arrow is a filter-
ing colimit of local equivalences, hence a local equivalence. The vertical maps are
A�-equivalences, hence the top map is an A�-equivalence. �

3.6 One More Characterization of Equivalences

Denote by �[��
�	 the full subcategory in the category of pointed sheaves on
[��
 generated by all coproducts of sheaves of the form � -�	.

Theorem 5. The class of local equivalences (resp. A�-equivalences) in 0*�

�[��
�	 is the smallest class ? which contains morphisms ��A�	 
 �	 for
[ upper distinguished and has the following properties:

1. Simplicial homotopy equivalences (resp. and A�-homotopy equivalences) are
in ? .
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2. If two of � , � and �� are in ? then so is the third.
3. If/ 
�� 
 / 
� � is a filtering system of termwise coprojections in? , then / 
�� 


�AM'(�/

�� is again in ? .

4. If /�� 
 / �
�� is a morphism of bisimplicial objects, and if all /�� 
 / �

�� are
in ? , so is the diagonal 0�/ �
 0�/ ��.

The proof is given in 32.

Lemma 11. If the morphism � � / 
 
 is such that, for each � , /�� �
 
�� �

is a weak equivalence, and if the /� and 
� are all of the form �
�

 >� �	, then � is
in the �0-closure of the empty set.

The proof will use the following construction.

Construction 29. Let = be a category, and let =� be a set of objects of = , such that
any isomorphism class has a representative in =�. Let '� be the functor which to a
presheaf of pointed sets on = attaches the family of pointed sets �/�� ��>�Q� . It has
a left adjoint '�:

family �%> �>�Q� �

�
>

�� > �	  %> � 



 �disjoint sum over the � � =� and �%> � �� of  > �	

If =� is viewed as a category whose only morphisms are identities, the natural
functor

' � =� 
 =

defines a morphism of sites = 
 =�, both endowed with the trivial topology
(any presheaf a sheaf), and '�, '� are the corresponding direct and inverse image
of pointed sheaves.

By a general story valid for any pair of adjoint functors, for any pointed presheaf
/ on = , the �'�'��

�	��/ � form a pointed simplicial presheaf S�/ � augmented
to / :

7 � S�/ �
 /

Further:

(a) If / is of the form '�%, i.e. of the form �
�

 >� �	, 7 is a homotopy equivalence.
(b) For any / , '��7� is a homotopy equivalence: for each � in = , S�/ ��� � 


/�� � is a homotopy equivalence.

For a simplicial presheaf / we define

S�/ � 
 0�simplicial system of S�/���



392 P. Deligne

Proposition 30. (Proof of Lemma 11) Let us say that � in [��
 is connected
if it is not empty and is not a disjoint union: 
 should act transitively on the set
of connected components of � . Let = � [��
 be the full subcategory of con-
nected objects. A sheaf / on [��
 is determined by its restriction to = . Indeed,
/�
�

��� 

�

/����. To apply Construction 29, we will use this remark to identify
the category of sheaves on [��
 to a full subcategory of the category of presheaves
on = . For any =� as in Construction 29, the functor '� takes values in sheaves, that
is in the restriction of sheaves to = . Indeed, for � connected, �

�
 >� �	��� is the

same, whether
�

and 	 are taken in the sheaf or in the presheaf sense.

Fix � � / 
 
 as in Lemma 11. For each $, the assumption on /� ensures that
S�/��
 /� is in the 0-closure of the empty set, and similarly for 
.

For each (connected)� , the morphism of pointed simplicial sets /�� �
 
�� �

is a weak equivalence, hence in the �0-closure of the empty set. It follows that
'�'��/ �
 '�'��
�: the 5 over =� of the

� > �	  /�� �
 � > �	  
�� �

is in the �0-closure of the empty set. Iterating one finds the same for �'�'����/ �

�'�'��

��
�, and S�/ �
 S�
� is in this �0-closure too. It remains to apply the two
out of three property to

S�/ � �����
 S�
���� ���
/ �����
 


Lemma 12. If � � / 
 
 is a local equivalence and if the /� and 
� are all of
the form �

�
 >� �	, then � is in the �0-closure of the ��A�	 
 �	 for [ upper

distinguished.

Proof. We will use the Construction 27 for � the class of morphisms ��A�	 

�	 for [ upper distinguished, and for ) the class of morphisms � 
 �	.
By Remark 4, if the /� are of the form �

�
 >� �	, so are the ���/ ��. In the

commutative diagram
/ �����
 
��� ���

���/ � �����
 ���
�

the vertical maps are in the required 0-closure. They are in particular local equiva-
lences and so is ���� �. One verifies as in 28 that ���/ � and ���
� are flasque.
By Construction 27(ii), for each � , ���� ��� � is a weak equivalence, and it
remains to apply Lemma 11 to Ex(f). �

Lemma 13. If � � / 
 
 is an A�-equivalence and if the /� and 
� are all of
the form �

�
 >� �	, then � is in the �0-closure of the ��A�	 
 �	 for [ upper

distinguished and �� � A� 
 ��	 for � � [� .

Proof. Similar to the proof of Lemma 12. �
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Proposition 31. Since for any simplicial sheaf / the map S�/ � 
 / is a local
equivalence Lemmas 12 and 13 imply that for any local (resp. A�-) equivalence
� � / 
 
, the morphism S�� � belongs to the �0-closure of the ��A�	 
 �	

for [ upper distinguished (resp. the ��A�	 
 �	 for [ upper distinguished and
�� � A� 
 ��	 for � � [� ).

Proposition 32. Proof of Theorem 5: We consider only the case of A�-equivalences.
Proposition 20 and Lemma 10 imply that A�-equivalences contain the class ? . In
view of Lemma 13 it remains to see that ? is �0-closed. The only condition to check
is that it is closed under coproducts. Let

�� � / 
�� 
 � 
��� � � %

be a family of morphisms in ? . For a finite subset P in % set

aD 
 �
�
��D

� 
���
�

�
�

��2�D

/ 
���

For P � ; we have a morphism aD 
 aF and the map
�


+
is isomorphic to the

map
a� 
 colimD�2aD

It remains to show that aD 
 aD� � is in ? . This morphism is of the form
P-�

�
�� � / 
 / �� where � is in ? . Using the fact that ? is closed for diag-

onals we reduce to the case � 
 �
� > �	. Using the same reasoning as above we

further reduce to the case � 
 � > �	.
Consider the class of � such that P-
�% ��

�
� is in ? . This class clearly con-

tains morphisms ��A�	 
 �	, has the two out of three property and is closed
under filtering colimits. It also contains simplicial homotopy equivalences. It con-
tains morphisms of the form ,	 � �� � A��	 
 �	 because such morphisms are
A�-homotopy equivalences.

4 Solid Sheaves

4.1 Open Morphisms and Solid Morphisms of Sheaves

We fix � and 
 as in Sect. 3.1, and will work in �[��
�.�� . The story could be
repeated in ��(���.��.

Definition 6. A morphism of sheaves � � / 
 
 is open if it is relatively rep-
resentable by open embeddings, i.e. if for any morphism u �  - 
 
 (that is,



394 P. Deligne

u � 
���, � in [��
), the fiber product / �:  - mapping to  - is isomorphic
to  > 
  - for � a 
-stable open subset of � .

In other words: � should identify / with a subsheaf of 
 and, for any & � 
���,
there is � open in � and 
-stable such that the pull-back of & with respect to
� 
 � is in /�� � if and only if � maps to � .

The property “open” is stable under composition. It is also stable by pull-back:
if in a cartesian square

/ �

 ������
 
���� ���u

/

�����
 


(32.1)

� is open, then � � is open. This follows from transitivity of pull-backs. Conversely,
if � � is open and u is an epimorphism, then � is open. Indeed,

Lemma 14. For / 
  - a morphism, the property that / is represented by �

open in � is local on � (for the Nisnevich topology).

Proof. Suppose that the �� cover � , and that each /� 
 / ���  -+ is represented
by �� � �� . For � 
 ��, /X �
 / ���  X is then represented by �X � � with
�X the inverse image of ��. By descent for open embedding, the �� come from

some � � � , we have locally on � an isomorphism /
�
  > and by descent for

isomorphisms of sheaves one has /
�
  > . �

Given a square of the form (32.1) with � � open and u an epimorphism, if & is in

���, & can locally be lifted to a section of 
�. As � � is open, it follows that locally
on� , /�: - is represented by an open subset. Applying Lemma 14 one concludes
that � is open. The same argument shows that if we have cartesian diagrams

/ �
�


 �+�����
 
�
���� ���u+

/

�����
 


with each � �
� open and

�
u� �

�

�

� 
 
 onto, then � is open.

Proposition 33. The property “open” is stable by push-outs.

Proof. Suppose

/

�����
 
��� ���

/ �

 ������
 
�
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is a cocartesian diagram, with � open. In particular � is a monomorphism, and it
follows that � � is a monomorphism and that the square is cartesian as well. The
morphism / �

�

 
 
� is onto. The pull-back of � � by � � � / � 
 
� is an

isomorphism (� � being a monomorphism) hence open. The pull-back of � � by
 


� is just � , open by assumption. It follows that � � is open. �

We now fix a class = of open embeddings � 
 6 in �[��
�. We require the
following stabilities

Conditions 34. 1. If � 
 � � 
 6 are open embeddings and if � 
 6 is in = ,
so is � � 
 6 .

2. If � 
 6 is an open embedding in = , and if � � 6 � 
 6 is etale, with
� ���� � � � for � the complement of � in 6 , then � ���� �
 6 � is in = .

The classes = we will have to consider are the following:

1. The open embeddings � 
 6 with 6 smooth.
2. The open embeddings � 
 6 with 6 smooth such that the action of 
 is free

on 6 � � . Equivalently: 6 is the union of � and the open subset on which the
action of 
 is free.

3. When working in ��(���: all open embeddings.

Definition 7. A morphism � � / 
 
 is = -solid if it is a composite / 
 /� 

/� 
 � � � 
 /� 
 
 where each /� 
 /�	� is deduced by push-out from some
 > 
  - , � � � in = .

A sheaf / is solid if # 
 / is = -solid.
In the pointed context, a pointed sheaf is (pointed) = -solid if the morphism

,� 
 / is = -solid.

Example 1. For � open in � , let  -I> be the sheaf  - , with the subsheaf  > con-
tracted to a point ,. If � 
 � is in = , then , � ,� 
  -I> is solid: it is the
push-out of  > 
  - by  > 
 ,� . Thom spaces are of this form: starting from
a vector bundle 6 on � , one contracts, in the total space of this vector bundle, the
complement of the zero section to a point.

The class of solid morphisms is the smallest class closed by compositions and push-
outs which contains all  > 
  - for � � � in = . By Proposition 33 solid
morphisms are open.

For / 
 
 a monomorphism of sheaves, define 
�/ to be the pointed sheaf
obtained by contracting / to a point: one has a cocartesian square

/ �����
 
��� ���
,� �����
 /�
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By transitivity of push-out, any cocartesian diagram

/ �����
 
��� ���
/ � �����
 
�

induces an isomorphism 
�/ 
 
��/ �.

Proposition 35. A morphism of sheaves � � / 
 
 is = -solid if and only if it is
a composite / 
 /� 
 /� 
 � � � 
 /� 
 
 of monomorphisms where each
/��/�	� is isomorphic to some  TI> 
  T� > for � � 6 in = .

Proof. If a morphism / 
 
 is deduced by push-out from � 
 6 , 
�/ is
isomorphic to  TI> . From this, “only if” results. Conversely, if we have

/ �����
 
��� ���
� �����
  TI>

�

 > �����
  T��� ���
� �����
  TI>

(35.1)

cocartesian, and if  T 
  TI> lifts to 
, then / 
 
 is deduced by push-out from
 > 
  T . Indeed, the diagrams (35.1) being cartesian as well as cocartesian, we
have a cartesian

 > �����
  T��� ���
/ �����
 


If 
� is deduced from  > 
  T by push-out:

 > �����
  T
������
  T��� ��� ���

/ �����
 
� �����
 


then 
��/ � 
�/ and it follows that 
� 
 
.
Let us suppose only that we have v � &6 
 6 etale, inducing an isomorphism

from &6 � v���� � to 6 � � and a lifting of  &T 
  TI> to 
. If &� �
 v���� �,
 &T I &> 
  TI> is an isomorphism. This is most easily checked by applying the fiber
functors defined by a 
-local henselian � : a morphism � 
 6 , if it does not map
to � , lifts uniquely to a morphism to &6 . The assumptions made hence imply that
/ 
 
 is a push-out of  &> 
  &T . Note that by the second stability property of = ,
&� 
 &6 is in = .

We will reduce the proof of “if” to that case. We have to show that if a monomor-
phism � � / 
 
 is such that 
�/ �  TI> with � 
 6 in = , then � is = solid.
The cocartesian square
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/ �����
 
��� ���
,� �����
 /�


(35.2)

induces an epimorphism ,�
�


 
  TI> . The natural section of  TI> on 6 can
hence locally be lifted to ,� or to 
: for some filtration # 
 C� � � � � � C� �
C� 
 6 of 6 by closed equivariant subschemes, we have etale maps I� � �� 
 6

with a (equivariant) section over C� �C�	�, and a lifting of  X� 
  TI> to ,� or to

. Note 6� �
 6 �C�	�. We may:

1. Start with 6� 
 � , taking �� 
 � : here the lifting is to ,�
2. Assume 6� " 6�	�; the succeeding liftings then cannot be to ,� : they must

be to 

3. Shrink �� , first so that it maps to 6� , next so that it induces an isomorphism from

�� � I� �6���� to C� �C�	�

As / 
 
 is a monomorphism the cocartesian (35.2) is cartesian as well. The
composition

,� 
  T�I> 
  T�I> 
 � � �
  TI>

gives by pull-back a factorization of / 
 
 as

/ 
 /� 
 � � �
 


with each
/� �����
 /�	���� ���

 T� I> �����
  T���
��

cartesian and cocartesian, hence /�	��/� �  T���
� T� . Further, the morphism

I�	� �  X���

  T���


  TI> lifts to 
, hence  X���

  T���I> lifts to /�	�.

It follows that /� 
 /�	� is a push-out of I��
�	��6� � 
 ��	�, which is in = , and

solidity follows. �

Remark 1. Another formulation of Proposition 35 is: a morphism / 
 
 is = -
solid if and only if the pointed sheaf 
�/ is an iterated extension of  TI> ’s with
� 
 6 in = , in the sense that there are morphisms

,� 
 �� 
 � � �
 �� 
 
�/

with each ��	���� of the form  TI> .

Proposition 36. If � � / 
 
 is open and 
 is = -solid, then � is = -solid.

Proof. In the proof we say “solid” instead of “= -solid”. Let (*) be the property of
a sheaf 
 that any open � � / 
 
 is solid. If 
 is solid, 
 sits at the end of a
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chain # 
 
� 
 
� 
 � � � 
 
� 
 
 with each 
� 
 
�	� push out of some
 > 
  - for � 
 � in = . We prove by induction on ' that 
� satisfies (*).

For ' 
 �, 
� 
  - is representable and # 
 � is in = . If � � / 
 
� is
open, it is of the form  > 
  - for � open in � , hence solid by Condition 34(1).
It remains to check that if in a cocartesian square

 > �����
  -��� ���

� �����
 


(36.1)

the sheaf 
� satisfies (*), so does 
. In (36.1),  > 
  - is a monomorphism and
the square (36.1) hence cartesian as well as cocartesian.

Fix � � / 
 
 open, and take the pull-back of (36.1) by � . It is again a
cartesian and cocartesian square and, � being open, it is of the form

 T �����
  X��� ���
/ � �����
 /

(36.2)

where � is open in � and 6 
 � � � . The diagram

/ � �����
 / �����
  XIT��� ��� ���

� �����
 
 �����
  -I>��� ��� ���


��/ � �����
 
�/ �����
  -I
>�T �

expresses 
�/ as an extension of  -I
>�X � by 
��/ � and one concludes by
Remark 1 using (*) for 
� and the fact that � � � 
 � is in = . �

Proposition 37. The pull-back of a solid morphism � by an open morphism & is
solid. In particular, if � � / 
 
 is open and if 
 is solid, so is / .

Proof. Since the pull-back of an open morphism is open, it suffices to check the
proposition for � a push-out of  > �  - for � open in � :

 > �����
  -��� ���

�


�����
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Pulling back by �, we obtain a cocartesian square

 > � �����
  - ���� ���
/ � �����
 /

with � � open in � and � � open in � . This shows that / � 
 / is solid. �

Suppose now that we are given two classes = and = � of open embeddings satis-
fying conditions 34. We define = � = � as the smallest class stable by Condition 34
containing the

�� � 6 �� � �� � � 6 � � 6 � 6 �

for � � 6 in = and � � � 6 � in = �.

Example 2. If = is a class of all open embeddings and = � is the class of those
� � � 6 � for which 
 acts freely outside � �, then = � = � 
 = �.

Proposition 38. If the pointed sheaves / and / � are respectively = and = �-solid,
the /  / � is = � = �-solid.

Proof. By assumption, / is an iterated extension in the sense of Remark 1 of
pointed sheaves  T�I>� with �� 
 6� in = . Similarly for / �, with � �

� 
 6 �
� in

= �. The smash product /  / � is then an iterated extension of the

 T� I>�   T �� I>
�
�

  T��T �� I

>��T �� ��
T��> �� ��

�

taken for instance in the lexicographical order, hence it is = � = � solid. �

Definition 8. A morphism is called ind-solid relative to = if it is a filtering colimit
of = -solid morphisms.

Exercise 39. We take 
 to be the trivial group. A section on � of a push-out

 > �����
  -

7

��� ���
/ �����
 


can be described as follows. For an open subset 6 of � and a section I of / on 6

consider on the small Nisnevich site �.�� of � the presheaf a�6� I� which sends
7 � ? 
 � to the set of morphisms � � ? 
 � such that � ���� � 
 7���6 � and
I�#��
T � 
 � ��N�. A section of 
 on � is given by data:

1. An open subset 6 of � .
2. A section I of / on 6 .
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3. A section of '��7.��a�6� I�� on � � 6 where ' is the closed embedding
� � 6 
 � and 7.�� denotes the associated Nisnevich sheaf.

Exercise 40. In the notations of Exercise 39, if / is a sheaf for the etale topology, so
is 
. For any � , the �6� I� as in (1),(2) above form a sheaf for the etale topology. It
hence suffices to prove that for �6� I� fixed, the datum (3) forms a sheaf for the etale
topology. This is checked by using the following criterion to check if a Nisnevich
sheaf is etale. For . � � , and for � a finite separable extension of !N , let O�

O�N

be deduced by “extension of the residue field” from the henselization O�
N of � at

.. The criterion is that �,L���� �
 /��,L��O�
O�N�� should be an etale sheaf on

�,L��!N�0� .

Exercise 41. It follows from Exercises 39 and 40 that if � � / 
 
 is ind solid,
and if / is etale, then 
 is etale. In particular, a solid sheaf, as well as a pointed
solid sheaf, are etale sheaves.

Remark 2. The same formalism of open and solid morphisms holds in the site of all
schemes of finite type over � with the etale topology.

4.2 A Criterion for Preservation of Local Equivalences

We work with pointed sheaves on [��
. Our aim in this section is to prove the
following result

Theorem 6. Let a be a functor from pointed sheaves to pointed sets. Suppose
that a commutes with all colimits, and that for any open embedding � 
 � ,
a�� > �	� 
 a�� - �	� is a monomorphism. Then if � � /

�

 


�
is a

local equivalence and if /� and 
� are (pointed) ind-solid, then a�� � is a weak
equivalence.

Suppose that

[ �
	 �����
 ���� ���
% �����
 �

is an upper distinguished square. Adding a base point, we obtain [	. The morphism
�A� 
 �	 is then a local equivalence. Let us check that a��A��
 a��	� is a
weak equivalence. As a commutes with coproducts, this morphism is deduced from
the commutative square

a�� ��	� �����
 a�� X �	���� ���
a�� 2�	� �����
 a�� - �	�
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by applying the same construction (23.3). This square is cocartesian because [ is.
The top horizontal line being a monomorphism, it is homotopy cocartesian, and the
claim follows. As a commutes with colimits, this special case implies that more
generally one has

Lemma 15. If � is in the �0-closure of the ��A�	 
 �	 as above, then a�� � is
a weak equivalence.

Proposition 42. (Proof of Theorem 6) For any pointed sheaf / , S�/ � 
 / is a
local equivalence. Indeed for any connected � in [��
, S�/ ���� 
 /��� is
a weak equivalence by Construction 29. It follows that for � � / 
 
 a local
equivalence,

S�/ � �����
 S�
���� ���
/ �����
 


is a commutative square of local equivalences. By Lemmas 15 and 12,a�S�� �� is a
weak equivalence. It remains to see that a�S�/ ��
 a�/ � is a weak equivalence –
and the same for 
. For this it suffices to see that for a pointed ind-solid sheaf / ,
a�S�/ �� 
 a�/ � is a weak equivalence. As a and S commute with filtering
colimits, the ind-solid reduces to solid, and by the inductive definition of solid, it
suffices to prove the following lemma.

Lemma 16. Let � 
 � be an open embedding. If in a cartesian square of pointed
sheaves

[ �
� > �	 �����
 � - �	��� ���
/ �����
 


/ is such that aS�/ �
 a�/ � is a weak equivalence, the same holds for 
.

Proof. Consider the cocartesian square

[� �
S�� > �	� �����
 S�� - �	���� ���
S�/ � �����
 S

One can easily see that the top morphism is a monomorphism. It follows that [� is
point by point homotopy cocartesian, and S 
 S�
� is a local equivalence. The
functor '�'� of Construction 29 transforms a monomorphism into a coprojection of
the form % 
 % 5 ��

�
 >� �	�. It follows that each S� is of the form �

�
 >� �	

and, by Lemmas 15 and 12, a�S� 
 a�S�
�� is a weak equivalence. It remains
to show that a�S�
 a�
� is a weak equivalence.
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Let us apply a to the morphism of cocartesian squares [� 
 [. By Con-
struction 29 both S�� > �	� 
 � > �	 and S�� - �	� 
 � - �	 are homotopy
equivalences, and remain so by applying a. We assumed aS�/ � 
 a�/ � to be a
weak equivalence. As a�[�� and a�[� are cocartesian with a top morphism which
is a monomorphism (by the assumption on a, for [), it follows that a�S�
 a�
�

is a weak equivalence. Hence so is a�S�
��
 a�
�. �

5 Two Functors

5.1 The Functor � �� ���

One has a natural morphism of sites

2 � �[��
�.�� 
 �[� �.��

given by the functor

2
 � [� 
 [��
 � � �
 �� with the trivial 
-action�

Indeed, the functor 2
 commutes with finite limits and transforms covering families
into covering families.

In particular the functor 2
 is continuous: if / is a sheaf on �[��
�.�� , the
presheaf

� �
 /�� with the trivial 
-action�

is a sheaf on �[� �.�� . The functor 2
 has a left adjoint Q
 � � �
 ��
. As 2


is continuous, the functor Q
 is cocontinuous, and the functor 2� from sheaves on
�[� �.�� to sheaves on �[��
�.�� is

/ �
 �sheaf associated to the presheaf � �
 /���
��

Proposition 43. The cocontinuous functor Q
 � � �
 ��
 is also continuous, that
is, if / is a sheaf on �[� �.�� , the presheaf� �
 /���
� on �[��
�.�� is a sheaf.

Proof. By Lemma 2 it is sufficient to test the sheaf property of � �
 /���
� for a
covering of � deduced by pull-back from a Nisnevich covering 6� 
 ��
 of ��
.
Passage to quotient commutes with flat base change. Taking as base ��
, this gives
that

� �-I: 6� 
 6�

identifies 6� with the quotient of � �-I: 6� by 
. Similarly, if 6�� 
 6� �-I: 6� ,
the quotient by 
 of the pull-back to � of 6�� is 6�� again. This reduces the sheaf
property of � �
 /���
�, for the covering of � by the � �-I: 6� , to the sheaf
property of / for the covering �6�� of ��
. �
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The functor Q
 � � �
 ��
 gives rise to a pair of adjoint functors �Q�� Q
��

between the categories of presheaves on �[��
� and �[� �, with Q��/ � being
� �
 /���
�. As Q
 is continuous , it induces a similar pair of adjoint functors
between the categories of sheaves. This pair is

�2# �
 �associated sheaf� Æ Q�� 2� 
 Q���

so that one has a sequence of adjunctions �2#� 2
�� 2��. If / on �[��
� is repre-

sentable: / 
  - , then 2#�/ � 
  -I: . In particular, 2# transforms the final sheaf
 K on �[��
�.�� , also called “point”, into the final sheaf on �[� �.�� , and �2#� 2

��

is a pair of adjoint functors in the category of pointed sheaves as well. It is clear that
2# takes solid sheaves to solid sheaves. We also have the following.

Proposition 44. Let / be a pointed sheaf solid with respect to open embeddings
� � 6 of smooth schemes such that the action of 
 on 6 is free outside � . Then
2#�/ � is solid with respect to open embeddings of smooth schemes.

Proof. If 6 � is the open subset of 6 where the action of 
 is free, then � �6 � 
 6

and if � � �
 � � 6 �, a push-out of � 
 6 is also a push-out of � � 
 6 �: we
gained that the action is free everywhere. The next step is applying 2#, from pointed
sheaves on �[��
� to pointed sheaves on �[� �. This functor is a left adjoint, hence
respects colimits and in particular push-outs. It transforms  > to  >I: , and in par-
ticular, for � 
 � , the final object into the final object. To check that it respects
solidity it is hence sufficient to apply:

Lemma 17. If 
 acts freely on � smooth over � , then ��
 is smooth.

Proof. If 
 is finite etale, for instance ��, the case which most interests us, this is
clear, resulting from � 
 ��
 being etale. In general one proceeds as follows.
The assumption that 
 acts freely on � implies that � is a 
-torsor over ��
.
In particular, � 
 ��
 is faithfully flat. As � is flat over � , this forces ��
 to
be flat over � . To check smoothness of ��
 over � it is hence sufficient to check
it geometric fiber by geometric fiber. For �& a geometric point of � , smoothness
of ���
�$� amounts to regularity. As �$� is smooth over �&, hence regular, and �$� 

���
�$� is faithfully flat, this is [4] (an application of Serre’s cohomological criterion
for regularity). �

Proposition 45. The functor 2# respects local (resp. A�-) equivalences between
termwise ind-solid simplicial sheaves.

Proof. Let � � / 
 / � be a local equivalence between termwise ind-solid simpli-
cial sheaves on [��
. To verify that 2#�� � is a local equivalence it is sufficient to
check that for any � in [� and � � � the map

2#�/ ���,L�O�
-���
 2#�/

����,L�O�
-���



404 P. Deligne

is a weak equivalence of simplicial sets. Since 2# is a left adjoint, the functor

/ �
 2#�/ ���,L�O�
-��� (45.1)

commutes with colimits. For an open embedding � 
 6 in [��
, ��
 
 6�


is again an open embedding and we can apply to (45.1) Theorem 6.
Let � � / 
 / � be an A�-equivalence. Consider the square

S�/ �
@

 ������
 S�/ ����� ���

/

�����
 / �

By the first part of proposition 2# takes the vertical maps to local equivalences.
Since 2# commutes with colimits, Lemma 13 implies that 2#�S�� �� is in the �0-
closure of the class which contains 2#���A�	 
 �	� for [ upper distinguished
and 2#��� � A��	 
 �	� for � in [��
. By Theorem 4 it suffice to prove that
morphisms of these two types are A�-equivalences. For morphisms of the first type
it follows from the first half of the proposition. For the morphism of the second type

it follows from the fact that morphisms 2#��� � A��	 
 �	� and 2#��	
D=� �!


�� � A��	� are mutually inverse A�-homotopy equivalences. �

Define L2# � �A
�

 �A

�
(and similarly on �AA���) setting

L2#�/ � �
 2#�S�/ ��

where S�/ � is defined in Construction 29. Proposition 45 shows that L2# is well
defined and that for a termwise ind-solid / one has L2#�/ � � 2#�/ �.

5.2 The Functor � �� ��

As in Sect. 3.1, we fix 
 and � . We also fix ? in [��
 which is finite and flat
over � .

For / a presheaf on [��
, we define /] to be the internal hom object
Hom� ] � / �. Its value on � is /�� �K ? �. If / is a sheaf, so is /] .

Example 6. Take 
 and ? deduced from the finite group �� acting on ��� � � � � $	
by permutations. In that case, if / is represented by � , with a trivial action of ��,
then /] is represented by ��, on which �� acts by permutation of the factors.

Remark 1. If / is representable (resp. and represented by � smooth over �), so is
/] . More precisely, if / is represented by � in [��
, consider the contravariant
functor on �� �� of morphisms of schemes from ? to � , that is the functor
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� �
 �A(> �? �K ��� �K ��

This functor is representable, represented by some � quasi-projective over � (resp.
and smooth). This � carries an obvious action @ of
, and ��� @� in[��
 represents
/] . Proof: by attaching to a morphism ? 
 � its graph, one maps the functor
considered into the functor of finite subschemes of ? �K � , of the same rank as ? ,
that is the functor

� �

'

subschemes of �? �K �� �K � finite and flat over � ,
with the same rank as ? �K � over � .

)
The later functor is represented by a quasi-projective scheme Hilb, by the theory of
Hilbert schemes. The condition that : � ? �K � be the graph of a morphism from
? to � is an open condition. This means: let : � �? �K ���K � be a subscheme
finite and flat over � . There is � � open in � such that for any base change 6 
 � ,
the pull-back :T of : is the graph of some 6 -morphism from ? �K 6 to ? �K �

if and only if 6 maps to � �. This gives the existence of the required � , and that it
is open in Hilb. If � is smooth the smoothness of � follows from the infinitesimal
lifting criterion. The quasi-projectivity follows from that of Hilb. On the functors
represented, the action ��.� 
 �.��� of 
 is clear. For < in [��
, one has

HomAZI:�<� � � 
 Hom:�<�Hom�?���� 
 Hom:�< �K ?��� 



 HomAZI:�< �K ?��� 
 /] �< �

Let = be a class of open embeddings in �[��
�.�� . We will simply say “solid” for
“= -solid”.

Theorem 7. If / is a solid sheaf on �[��
�.�� , so is /] .

If a morphism of sheaves % 
 / is open, i.e. relatively representable by
open (equivariant) embeddings, there is a natural sequence of sheaves intermedi-
ate between %] and /] . In the case considered in Example 6, and for  > 
  - ,
they are represented by the open equivariant subschemes ��� � ��

�
of �� consisting

of those n-uples ���� � � � � ��� for which at least ! of the �� are in � . The formal
definition is as follows.

A section of /] over < is a section & of / over ? �K < . Let ��&� be the
equivariant open subscheme of ? �K < on which & is in %. The sheaf �/� %�]

�
is

the subsheaf of / ] consisting of those & such that all fibers ��&�� of ��&� over <
are of degree at least !. The condition that the fiber at ! be of degree� ! is open in
� , and it follows that the inclusion of �/� %�]

�
in /] is open. For ! 
 �, �/� %�]

�

is simply /] . For ! large, it is %] .

Lemma 18. Suppose that % 
 / is deduced by push-out from an open map
	 
 
, so that we have a cocartesian square
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	 �����
 
��� ���
% �����
 /

(45.2)

Then, for each !, the cartesian square

�fiber product� �����
 �%
�


�%�]
���� ���

�/� %�]
�	�

�����
 �/� %�]
�

(45.3)

is cocartesian as well.

Proof. The site �[��
�.�� has enough points: as a consequence of Lemma 2, for
each � in [��
 and � � ��
, the functor

/ �
 �AM'( /�� �-I: 6 ��

the limit being taken over the Nisnevich neighborhoods of � in ��
, is a point (
 a
fiber functor). The class of all such functors is clearly conservative. Such a functor
depends only on � �
 � �-I: ���
��� , where ���
��� is the henselization of ��

at �, and � can be any equivariant �-scheme which is a finite disjoint union of local
henselian schemes essentially of finite type over � , and for which ��
 is local. We
call such a scheme 
-local henselian, and write / �
 /�� � for the corresponding
fiber functor.

We will show that (45.3) becomes cocartesian after application of any of the fiber
functors/ �
 /�� � defined above. It suffices to show that for any & in �/� %�]

�
�� �,

the fiber of (45.3)�� � above & is cocartesian in �L� . This fiber is of the form

� � � �����
 ���� ���
� �����
 �&	

and such a square is cocartesian if and only if whenever � or � is empty, the other
is reduced to one element. Here, we also know that �
 �&	 is a injective. It hence
suffice to check that if � is empty, then � is reduced to one element. Fix & in
�/� %�]� �� �, and view it as a section of / over ? �K � . Let � � ? �K � be
the open equivariant subset where it is in %. The assumption that & be in �/� %�]

�

means that the degree of the fiber �� of � 
 � at a closed point . of � is at least
!. By 
-equivariance of � , this degree is independent of the chosen .. We have to
show that if & is not in �/� %�]

�	�
�� �, that is if this degree is exactly !, then & is the

image of a unique element of �%
�


�%�]
�

.
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The scheme ? �K � is a disjoint union of 
-local henselian schemes �? �K

� �� . By assumption, (45.2)��? �K � �� � is cocartesian, hence if & is not in % on
�? �K � �� , then on �? �K � �� it comes from a unique &&� in 
. Let �? �K � �

� be
the union of those �? �K � �� on which & is in %, and �? �K � ��� be the union of
�? �K � �� on which it is not. That & is in �/� %�]� but not in �/� %�]�	�, means that
�? �K � �

� is of degree - 
 ! over � . On �? �K � �
�, & is in %. On �? �K � �

��, it
comes from a unique && in 
. The section

&� �
 �& in % on �? �K � �
�, && on �? �K � �

���

of %
�


 over ? �K � is a section of �%
�


�%�]� on � lifting &. It is the unique
such lifting: any other lifting &	, viewed as a section of %

�

 on ? �K � , can be in

% at most on �? �K � �
�, hence must be in % on the whole of �? �K � �

� which has
just the required degree over � . This determines &	 uniquely on �? �K � ��, where
it is in %, as well as on �? �K � �

��, where it is the unique lifting of & to 
. �

Proof of Theorem 7: The induction which works to prove Theorem 7 is the follow-
ing. As / is solid, it sits at the end of a sequence

# 
 /� 
 � � �
 /� 
 /

where each /� 
 /�	� is a push-out of some open embedding in [��
. We prove
by induction on ' that for any � , �/�

�
 X �

] is solid. For ' 
 �, /� is representable,
hence so is �/�

�
 X �

] (1). A fortiori, �/�

�
 X �

] is solid. For the induction step
one applies the following lemma to /�

�
 X 
 /�	�

�
 X .

Lemma 19. Let
 > �����
  -��� ���
/ �����
 


be a cocartesian square with � open in � . Suppose that for any C, �/
�

 [�
] is

solid. Then /] 
 
] is solid.

Proof. As / 
 
 is open by Proposition 33, the �
� / �]� are defined. It suffices
to prove that for each + , the open morphism �
� / �]�	� 
 �
� / �]� is solid.

By Lemma 18, this morphism sits in a cartesian and cocartesian square

�fiber product�
U	V�����
 �/

�
 - � / �]

���� ���
�
� / �]�	�

U�V�����
 �
� / �]�

(45.4)

By assumption, �/
�

 - �
] is solid. It follows that �/

�
 - �

]
�

is solid too (apply
Proposition 37 to the open morphism �/

�
 -�

]
�

 �/

�
 - �

] ). As ��� is open,
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so is ���, and by Proposition 36, ��� is solid. The map ��� is then solid as a push-out
of a solid map. �

Example 7. It is not always true that if � � % 
 	 is a solid morphism, so is
� ] . Take 
 the trivial group and ? two points (i.e. �

�
�). Then /] 
 / 	. For

any sheaf / , the inclusion � of / in /
�
,� is solid (deduced by push-out from

# 
 ,�), and applying ���] , we obtain / 	 
 / 	
�

/
�
/
�
,� . Pulling back

by the natural map from / to one of the summands / (an open map), we see that if
� ] is solid, so is / .

Corollary 46. If � � / 
 
 is open and 
 solid, then � ] � /] 
 
] is solid.
In particular, if 
 is pointed solid, so is 
] .

Proof. � ] is open and one applies Theorem 7 and Proposition 36. �

We now define for pointed sheaves on �[��
�.�� a “smash” variant of the con-
struction / �
 /] . If we assume that the marked point ,� 
 / is open, it is

/ �] �
 /] ��/� ,��]�

that is /] with �/� ,��]� contracted to the new base point. This definition can be
repeated for any pointed sheaf if, for any monomorphism%
 / , we define�/� %�]�
to be the following subsheaf of /] : a section & of /] ��� 
 /�� � ? � is in
�/� %�]� if for any non empty � � 
 � , there exists a commutative diagram

� �� �����
 � �?��� ���
� � �����
 �

with � �� non empty and & in % on � ��.

Example 8. Under the assumptions of Example 6, if � is open in � with comple-
ment C and if / 
  -� > , then / �] is  -�� -��[� , where �� has the natural
action of ��. In particular, if / is the Thom space of a vector bundle � over � (that
is,  / with  /���
X � contracted to the base point), then / �] is the Thom space of
the ��-equivariant vector bundle.,B�� � on � �.

Proposition 47. If a pointed sheaf / is pointed solid, that is if ,� 
 / is solid,
then so is / �] .

Proof. As / ] is solid, the open morphism �/� ,��]� 
 /] is solid too (Proposi-
tion 36), and ,� 
 / �] is deduced from it by push-out. �

The definition of / �] immediately implies the following:

Lemma 20. Let � be a 
-local henselian scheme. Then

/ �] �� � 

*
�

/��? � � �� �
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where �? � � �� are 
-local henselian schemes such that

? � � 

�
�

�? � � ��

Proposition 48. The functor / �] respects local and A�-equivalences.

Proof. Let � � / 
 � be a local equivalence. To check that / ] 
 �] is a local
equivalence it is enough to show that for any 
-local henselian � , the map

/] �� � 
 /�� �? �
 ��� �? � 
 �] �� �

is a weak equivalence of simplicial sets. This follows from Lemma 20.
Let � be an A�-equivalence. By the first part it is sufficient to show that

S�� �] � S�/ �] 
 S���] is an A�-equivalence. We use the characterization of
A�-equivalences given in Theorem 5. Since / �
 / �] commutes with filtering col-
imits and preserves local equivalences it suffices to check that it takes A�-homotopy
equivalences to A�-homotopy equivalences. This is seen using the natural map

/ �]  � A��	 
 �/  � A��	�
�] �

�

Acknowledgements Supported by the NSF grants DMS-97-29992 and DMS-9901219 and The
Ambrose Monell Foundation.

References

1. K.S. Brown and S.M. Gersten. Algebraic �-theory and generalized sheaf cohomology. Lecture
Notes in Mathematics, vol. 341. Springer, Heidelberg, 1973, pp. 266–292.

2. A. Grothendieck, M. Artin, and J.-L. Verdier. Theorie des topos et cohomologie etale des
schemas (SGA 4). Lecture Notes in Mathematics, vols. 269, 270, 305. Springer, Heidelberg,
1972–1973.

3. A. Grothendieck and M. Demazure. Schemas en groupes (SGA 3). Lecture Notes in Mathemat-
ics, vols. 151, 152, 153. Springer, Heidelberg, 1970.

4. A. Grothendieck and J. Dieudonne. Etude Locale des Schemas et des Morphismes de Schemas
(EGA 4). Publ. Math. IHES 20,24,28,32, 1964–1967.

5. Mark Hovey. Model categories. AMS, Providence, 1999.
6. S. MacLane. Categories for the working mathematician. Graduate texts in Mathematics, vol. 5.

Springer, Berlin, 1971.
7. Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic cohomology.

Clay Mathematics Monographs, vol. 2. American Mathematical Society, Providence, RI, 2006.
8. Fabien Morel and Vladimir Voevodsky. A�-homotopy theory of schemes. Publ. Math. IHES,

90:45–143, 1999.
9. Charles A. Weibel. An introduction to homological algebra. Cambridge University Press,

Cambridge, 1994.
10. P. Gabriel and M. Zisman Calculus of fractions and homotopy theory, Springer-Verlag, Berlin,

1967.
11. J.F. Jardine Simplicial presheaves, J. Pure Appl. Algebra, 47, 1987, 35–87.


	Voevodsky's Lectures on Motivic Cohomology 2000/2001
	1 Introduction
	2 Motivic Cohomology and Motivic Homotopy Category
	2.1 Last Year
	2.2 Motivic Homotopy Category
	2.3 Derived Categories Vs. Homotopy Categories
	2.4 Application to Presheaves with Transfers
	2.5 End of the Proof of Theorem 2
	2.6 Appendix: Localization

	3 A1-Equivalences of Simplicial Sheaves on G-Schemes
	3.1 Sheaves on a Site of G-Schemes
	3.2 The Brown–Gersten Closed Model Structure on Simplicial Sheaves on G-Schemes
	3.3 -Closed Classes
	3.4 The Class of A1-Equivalences Is -Closed
	3.5 The Class of A1-Equivalences as a -Closure
	3.6 One More Characterization of Equivalences

	4 Solid Sheaves
	4.1 Open Morphisms and Solid Morphisms of Sheaves
	4.2 A Criterion for Preservation of Local Equivalences

	5 Two Functors
	5.1 The Functor XX/G
	5.2 The Functor XXW

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.001 841.997]
>> setpagedevice




