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O. Introduction

In this paper I want to consider not just the Lfunctions introduced by Artin [1] but the

more general functions introduced by Weil [15]. To define these one needs the notion of a Weil

group as described in [3]. This notion will be explained in the first paragraph. For now a

rough idea will suffice. If E is a global field, that is an algebraic number field of finite degree

over the rationals or a function field over a finite field, CE will be the idéle class group of E.

If E is a local field, that is the completion of a global field at some place [16], archimedean or

nonarchimedean, CE will be the multiplicative group ofE. IfK/E is a finite Galois extension

the Weil group WK/E is an extension of G(K/E), the Galois group of K/E, by CK . It is a

locally compact topological group.

If E ⊆ E′ ⊆ K and K/E is finite and GaloisWK/E′ may be regarded as a subgroup of

WK/E . It is closed and of finite index. If E ⊆ K ⊆ L there is a continuous map ofWL/E onto

WK/E . Thus any representation of WK/E may be regarded as a representation of WL/E . In

particular the representations ρ1 ofWK1/E and ρ2 ofWK2/E will be called equivalent if there is

a Galois extensionL/E containingK1/E andK2/E such that ρ1 and ρ2 determine equivalent

representations of WL/E . This allows us to refer to equivalence classes of representations of

the Weil group of E without mentioning any particular extension fieldK .

In this paper a representation ofWK/E is understood to be a continuous representation

ρ in the group of invertible linear transformations of a finitedimensional complex vector

space which is such that ρ(w) is diagonalizable, that is semisimple, for all w inWK/E . Any

onedimensional representation ofWK/E can be obtained by inflating a onedimensional repre

sentation ofWE/E = CE . Thus equivalence classes of onedimensional representations of the

Weil group ofE correspond to quasicharacters of CE , that is, to continuous homomorphisms

of CE into C×.

SupposeE is a local field. There is a standard way of associating to each equivalence class

ω of onedimensional representations ameromorphic functionL(s, ω). Supposeω corresponds

to the quasicharacter χE . If E is nonarchimedean and ̟E is a generator of the prime ideal

PE of OE , the ring of integers in E, we set

L(s, ω) =
1

1 − χE(̟E) |̟E|s

if χE is unramified. Otherwise we set L(s, ω) = 1. If E = R and

χE(x) = (sgnx)m |x|r
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withm equal to 0 or 1 we set

L(s, ω) = π− 1
2 (s+r+m) Γ

(
s+ r +m

2

)
.

If E = C and z ∈ E then, for us, |z|will be the square of the ordinary absolute value. If

χE(z) = |z|rzmz̄n

wherem and n are integers such thatm+ n ≥ 0,mn = 0, then

L(s, ω) = 2 (2π)−(s+r+m+n) Γ(s+ r +m+ n)

It is not difficult to verify, and we shall do so later, that it is possible, in just one way,

to define L(s, ω) for all equivalence classes so that it has the given form when ω is one

dimensional, so that

L(s, ω1 ⊕ ω2) = L(s, ω1)L(s, ω2)

so that if E′ is a separable extension of E and ω is the equivalence class of the representation

of the Weil group of E induced from a representation of the Weil group of E′ in the class Θ

then L(s, ω) = L(s,Θ).

Now take E to be a global field and ω an equivalence class of representations of the Weil

group of E. It will be seen later how, for each place v, ω determines an equivalence class ωv of

representations of the Weil group of the corresponding local field Ev . The product

∏
v
L(s, ωv)

which is taken over all places, including the archimedean ones, will converge if the real part of s

is sufficiently large. The function it defines can be continued to a functionL(s, ω)meromorphic

in thewhole complex plane. This is theArtinLfunction associated toω. It is fairlywellknown

that if ω̃ is the class contragredient to ω there is a functional equation connecting L(s, ω) and

L(1 − s, ω̃).

The factor appearing in the functional equation can be described in terms of the local data.

To see how this is done we consider separable extensionsE of the fixed local field F . IfΨF is a

nontrivial additive character of F let ψE/F be the nontrivial additive character of E defined

by

ψE/F (x) = ψF (SE/Fx)
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where SE/Fx is the trace of x. We want to associate to every quasicharacter χE of CE and

every nontrivial additive character ψE of E a nonzero complex number ∆(χE , ψE). If E is

nonarchimedean, ifPm
E is the conductor of χE , and ifP

−n
E is the largest ideal on which ψE is

trivial choose any γ with OEγ = Pm+n
E and set

∆(χE , ψE) = χE(γ)

∫
UE

ψE

(
α
γ

)
χ−1
E (α)dα

∣∣∫
UE

ψE

(
α
γ

)
χ−1
E (α)dα

∣∣
.

The right side does not depend on γ. If E = R,

χE(x) = (sgnx)m |x|r

withm equal to 0 or 1, and ψE(x) = e2πiux then

∆(χE , ψE) = (i sgnu)m |u|r.

If E = C, ψC(z) = e4πi Re(wz), and

χC(z) = |z|rzmz̄n

withm+ n ≥ 0, mn = 0 then

∆(χC, ψC) = im+n χC(w).

The bulk of this paper is taken up with a proof of the following theorem.

Theorem A

Suppose F is a given local field and ψF a given nontrivial additive character of F . It is

possible in exactly one way to assign to each separable extension E of F a complex number

λ(E/F, ψF ) and to each equivalence classω of representations of theWeil group ofE a complex

number ε(ω,ΨE/F ) such that

(i) If ω corresponds to the quasicharacter χE then

ε(ω, ψE/F ) = ∆(χE , ψE/F ).

(ii)

ε(ω1 ⊕ ω2, ψE/F ) = ε(ω1, ψE/F ) ε(ω2, ψE/F ).
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(iii) If ω is the equivalence class of the representation of the Weil group of F induced from a

representation of the Weil group of E in the class θ then

ε(ω, ψF ) = λ(E/F, ψF )dimθ ε(θ, ψE/F ).

αsF will denote the quasicharacter x −→ |x|sF of CF as well as the corresponding equiv
alence class of representations. Set

ε(s, ω, ψF ) = ε
(
α
s− 1

2

F ⊗ ω, ψF

)
.

The left side will be the product of a nonzero constant and an exponential function.

Now take F to be a global field and ω to be an equivalence class of representations of the Weil

group of F . Let A be the adéle group of F and let ψF be a nontrivial character of A/F . For

each place v let ψv be the restriction of ψF to Fv . ψv is nontrivial for each v and almost all the

functions ε(s, ωv, ψv) are identically 1 so that we can form the product
∏

v
ε(s, ωv, ψv).

Its value will be independent of ψF and will be written ε(s, ω).

Theorem B

The functional equation of the Lfunction associated to ω is

L(s, ω) = ε(s, ω) L(1 − s, ω̃).

This theorem is a rather easy consequence of the first theorem togetherwith the functional

equations of the Hecke Lfunctions.

For archimedean fields the first theorem says very little. For nonarchimedean fields it can

be reformulated as a collection of identities for Gaussian sums. Four of these identities which

we formulate as our four main lemmas are basic. All the others can be deduced from them

by simple grouptheoretic arguments. Unfortunately the only way at present that I can prove

the four basic identities is by long and involved, although rather elementary, computations.

However Theorem A promises to be of such importance for the theory of automorphic forms

and group representations that we can hope that eventually a more conceptual proof of it will

be found. The first and the second, which is themost difficult, of the fourmain lemmas are due

to Dwork [6]. I am extremely grateful to him not only for sending me a copy of the dissertation

of Lakkis [9] in which a proof of these two lemmas is given but also for the interest he has

shown in this paper.
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Chapter One.

Weil Groups

The Weil groups have many properties, most of which will be used at some point in the

paper. It is impossible to describe all of them without some prolixity. To reduce the prolixity

to a minimum I shall introduce these groups in the language of categories.

Consider the collection of sequences

S : C
λ1−→G

µ−→G

of topogical groups where λ is a homeomorphism of C with the kernel of µ and µ induces a

homeomorphism ofG/λC withG. Suppose

S1 : C1
λ1−→G1

µ2−→G1

is another such sequence. Two continuous homomorphismsϕ and ψ fromG toG1 which take

C into C1 will be called equivalent if there is a c in C1 such that ψ(g) = cϕ(g)c−1 for all g

in G. S will be the category whose objects are the sequences S and HomS0
(S, S1) will be the

collection of these equivalence classes. S will be the category whose objects are the sequences
S for which C is locally compact and abelian and G is finite; if S and S1 belong to S

HomS(S, S1) = HomS0
(S, S1).

LetP1 be the functor from S to the category of locally compact abelian groupswhich takes S to
C and letP2 be the functor from S to the category of finite groupswhich takes S toG. We have

to introduce one more category S1,0. The objects of S1 will be the sequences on S for which
Gc, the commutator subgroup ofG, is closed. Moreover the elements of HomS1

(S, S1)will be

the equivalence classes in HomS(S, S1) all of whose members determine homeomorphisms of

G with a closed subgroup fo finite index in G1.

If S is in S1 let V (S) be the topological group G/Gc. If Φ ∈ HomS1
(S, S1) let ϕ be a

homeomorphism in the class Φ and let G = ϕ(G). Composing the map G1/G
c
1 −→ G/G

c

given by the transfer with the mapG/G
c −→ G/Gc determined by the inverse of ϕwe obtain

a map Φv : V (S1) −→ V (S) which depends only on Φ. The map S −→ V (S) becomes a

contravariant functor from S1 to the category of locally compact abelian groups. If S is the

sequence

C −→ G −→ G
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the transfer fromG toC determines a homomorphism τ fromG/Gc to the group ofGinvariant

elements in C. τ will sometimes be regarded as a map fromG to this subgroup.

The category E will consist of all pairs K/F where F is a global or local field and K is
a finite Galois extension of F . Hom(K/F, L/E) will be a certain collection of isomorphisms

of K with a subfield of L under which F corresponds to a subfield of E. If the fields are of

the same type, that is all global or all local we demand that E be finite and separable over the

image of F . If F is global and E is local we demand that E be finite and separable over the

closure of the image of F . I want to turn the map which associates to eachK/F the group CK
into a contravariant functor which I will denote by C∗. If ϕ : K/F −→ L/E and F and E are

of the same type letK1 be the image ofK in L and let ϕC∗ be the composition ofNL/K1
with

the inverse of ϕ. If F is global and E is local letK1 be the closure in L of the image ofK . As

usual CK1
may be considered a subgroup of the group of idèles ofK . ϕC∗ is the composition

ofNL/K1
with the projection of the group of idèles onto CK .

If K is given let EK be the subcategory of E whose objects are the extensions with the
larger field equal toK and whose maps are equal to the identity onK . Let C∗ be the functor

on EK which takes K/F to CF . If F is given let EF have as objects the extensions with the
smaller field equal to F . Its maps are to equal the identity on F .

A Weil group is a contravariant functorW from E to S with the following properties:

(i) P1 ◦W is C∗.

(ii) P2 ◦W is the functorG : L/F −→ G(L/F ).

(iii) If ϕ ∈ G(L/F ) ⊆ Hom(L/F, L/F ) and g is any element ofWL/F , the middle group of

the sequenceW (L/F ), whose image inG(L/F ) is ϕ then the map h −→ ghg−1 is in the

class ϕw .

(iv) The restriction ofW to EK takes values in S1. Moreover, ifK/F belongs to EK

τ :WK/F/W
c
K/F −→ CF

is a homeomorphism. Finally, ifϕ : K/F −→ K/E is the identity onK andΦ = ϕw then

the diagram

WK/F /W
c
K/F

Φv−→ WK/E/W
c
K/E

τ ↓ ↓ τ
CF −→

ϕC∗

CE

is commutative and if ψ : F/F −→ K/F is the imbedding, ψW is τ .
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Since the functorial properties of the Weil group are not all discussed by Artin and Tate,

we should review their construction of the Weil group pointing out, when necessary, how

the functorial properties arise. There is associated to each K/F a fundamental class αK/F in

H2(G(K/F ), CK). The groupW (K/F ) is any extension ofG(K/F ) byCK associated to this

element. We have to show, at least, that if ϕ : K/F −→ L/E the diagram

1 −→ CL −→WL/E −→ G(L/E) −→ 1
↓ ϕC∗ ↓ ϕG

1 −→ CK −→ WK/F −→ G(K/F ) −→ 1

can be completed to a commutative diagram by inserting ϕ̂ : WL/E −→WK/F . The map ϕC∗

commuteswith the action ofG(L/E) onCL andCK so that ϕ̂ exists if and only ifϕC∗(αL/E) is

the restriction ϕ∗
G(αK/F ) ofϕK/F toG(L/E). If this is so, the collection of equivalence classes

to which ϕ̂may belong is a principal homogeneous space ofH1(G(L/E), CK). In particular,

if this group is trivial, as it is when ϕG is an injection, the class of ϕ̂ is uniquely determined.

An examinationof the definitionof the fundamental class and shows that it is canonical. In

otherwords, ifϕ is an isomorphismofK andL and ofF andE, thenϕ∗
G(αK/F ) = ϕ−1αL/E =

ϕC∗(αL/E). IfK = L andϕ is the identity onK , the relationϕ∗
G(αK/F ) = αL/E = ϕC∗(αL/E)

is one of the basic properties of the fundamental class. Thus in these two cases ϕ̂ exists

and its class is unique. Now take K to be global and L local. Suppose at first that K is

contained in L, that its closure is L, and that F = K ∩ E. Then, by the very definition of

αK/F , ϕ
∗
G(αK/F ) = ϕC∗(αL/E). Moregenerally, ifK1 is the imageofK inL, andF1 the image

ofF inE, we canwriteϕ asϕ1ϕ2ϕ3whereϕ3 : K/F −→ K1/F1, ϕ2 : K1/F1 −→ K1/K1∩E,
and ϕ1 : K1/K1 ∩E −→ L/E. ϕ̂3 and ϕ̂2 exist. If the closure ofK1 is L then ϕ̂1 and therefore

ϕ̂ = ϕ̂3ϕ̂2ϕ̂1 also exist. The class of ϕ̂ is uniquely determined.

Artin and Tate show that W c
K/F is a closed subgroup of WK/F and that τ is a home

omorphism of WK/F/W
c
K/F and CF . Granted this, it is easy to see that the restriction of

W to ξK takes values in S1. Suppose we have the collection of fields in the diagram with

L and K normal over F and L and K ′ normal over F ′. Let α, β, and ν be the imbeddings

α : L/F −→ L/K, β : L/F ′ −→ L/K ′, ν : L/F −→ L/F ′.
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F

K

L

F ′

K ′

Wehave shown the existence of α̂, β̂, and ν̂. It is clear that ν̂β̂(WL/K′) is contained in α̂(WL/K).

Thus we have a natural map

π : ν̂β̂(WL/K′)/ν̂β̂(W c
L/K′) −→ α̂(WL/K)/α̂(W c

L/K).

Let us verify that the diagram

WL/K/W
c
L/K′ −→ ν̂β̂(WL/K′)/ν̂β̂(WC

L/K′)
π−→ α̂(WL/K)/α̂(W c

K/K) −→ WL/K/W
c
L/K

↓ τ ↓ τ

Ck′
NK′/K−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ck (A)

is commutative. To see this letWL/K′ be the disjoint union

Uri=1 CKhi.

Then we can choose h′i, g
′
j , 1 ≤ i ≤ r, 1 ≤ j ≤ s so thatWL/K is the disjoint union

⋃r

i=1

⋃s

j=1
CK g

′
jh

′
i

and ν̂β̂(h′i) = α̂(hi). Using these coset representatives to compute the transfer one immedi

ately verifies the assertion. We should also observe that the transitivity of the transfer implies

the commutativity of the diagram

WK/F /W
c
K/F

Φv−→ WK/F ′/W c
K/F ′

τ ↓ ↓
CF −→

ϕC∗

CF ′
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if Φ is the class of an imbedding ϕ̂ where ϕ is an imbeddingK/F −→ K/F ′.

We have still not defined ϕW for all ϕ. However we have defined it when ϕ is an

isomorphism of the two larger fields or when the second large field is the closure of the first.

Moreover the definition is such that the third condition and all parts of the fourth condition

except the last are satisfied. The last conditionof (iv) can bemade a definitionwithout violating

(i) and (ii). What we do now is show that there is one and only one way of extending the

definition of ϕW to all ϕ without violating conditions (i) or (ii) and the functorial property.

Suppose F ⊆ K ⊆ L, K/F and L/F are Galois, and ψ is the imbedding L/F −→ L/K .

It is observed in Artin and Tate that there is one and only class of maps {θ} which make the
following diagram commutative

1 −→ WL/K/W
c
L/K −→ ψ̂WL/K/ψ̂W

c
L/K −→WL/F /ψ̂W

c
L/K −→ WL/F /ψ̂WL/K −→ 1

τ ↓ ↓ θ ↓
1 −−−−−−−→ CK −−−−−−−−−−−−−−−−−−−−−−−−→WK/F −−−−−−−→ G(K/F ) −−−−−−→ 1.

The homomorphism on the right is that deduced from

WL/F /WL/K = G(L/F )/G(L/K) ≃ G(K/F ).

Let ϕ, µ, and ν be imbeddings ϕ : K/F −→ L/F, µ : K/K −→ L/K, ν : K/F −→ K/K .

Then ψ ◦ ϕ = µ ◦ ν, so that ν̂ ◦ µ̂ = ϕ̂ ◦ ψ̂. Moreover ν̂ ◦ µ̂ is the composition of the map
τ : WL/K −→ CK and the imbedding of CK inWK/F . Thus the kernel of ϕ̂ contains ψ̂W

c
L/K

so that ϕ̂ ◦ ψ̂ restricted toWL/K/W
c
L/K must be τ and the only possible choice for ϕ̂ is, apart

from equivalence, θ. To see that this choice does not violate the second condition observe that

the restriction of τ to CL will beNL/K and that ψ̂ is the identity on CL.

Denote the map θ : WL/F −→ WK/F by θL/K and the map τ : WK/F → CK by τK/F .

It is clear that τK/F ◦ θL/K is the transfer from WL/F /W
c
L/F to ψ̂WL/K/ψ̂W

c
L/K followed

by the transfer from ψ̂WL/K/ψ̂W
c
L/K to ψ̂CL = CF . By the transitivity of the transfer

τK/F ◦ θL/K = τL/F . It follows immediately that if F ⊆ K ⊆ L ⊆ L′ and all extensions are

Galois the map θL′/K and θL/KθL′/L are in the same class.

Suppose that ϕ is an imbeddingK/F −→ K ′/F ′ and choose L so thatK ′ ⊆ L and L/F

is Galois. Let ψ : K ′/F ′ −→ L/F ′, µ : K/F −→ L/F, ν : L/F −→ L/F ′ be imbeddings.

Then ψ ◦ ϕ = ν ◦ µ so that µ̂ ◦ ν̂ = ϕ̂ ◦ ψ̂. If α : L/F −→ L/K, β : L/F ′ −→ L/K ′ are the
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imbeddings then the kernel of ψ̂ is ν̂β̂W c
L/K′ which is contained in α̂W c

L/K the kernel of µ̂.

Thus there is only one way to define ϕ̂ so that µ̂ ◦ ν̂ = ϕ̂ ◦ ψ̂. The diagram

WL/K′/W c
L/K′

bβ−→ WL/F ′/β̂W c
L/K′

bψ−−−−−−−−−−−−−−−−−→ WK′/F ′

↓ ν̂ ↓ ϕ̂

WL/F/ν̂β̂W
c
L/K′ −→ WL/F/α̂W

c
L/K

bµ−→ WK/F

will be commutative. Since ψ̂ ◦ β̂ = τL/K′ and µ̂ ◦ α̂ = τK/F diagram (A) shows that ϕ̂ has

the required effect on CK .

To define ϕW in general, we observe that every ϕ is the composition of isomorphisms,

imbeddings of fields of the same type, and a map K/F −→ K ′/F ′ where K is global, K ′ is

local,K ′ is the closure ofK , and F = F ′ ∩K . Of course the identity

(ϕ ◦ ψ)W = ψWϕW

must be verified. I omit the verification which is easy enough. The uniqueness of the Weil

groups in the sense of Artin and Tate implies that the functorW is unique up to isomorphism.

The sequence

S(n,C) : GL(n,C)
id−→GL(n,C) −→ 1

belongs to S1. If S : C −→ G −→ G belongs to S1 then

HomS0
(S, S(n,C))

is the set of equivalence classes of ndimensional complex representations ofG. Let Ωn(S) be

the set of all Φ in HomS0
(S, S(n,C)) such that, for each ϕ ∈ Φ, ϕ(g) is semisimple for all g

in G. Ωn(S) is a contravariant functor of S and so is Ω(S) =
⋃∞
n=1 Ωn(S). On the category

S1, it can be turned into a covariant functor. If ψ : S −→ S1, if Φ ∈ Ω(S), and if ϕ ∈ Φ,

let ψ associate to Φ the matrix representations corresponding to the induced representation

Ind(G1, ψ(G), ϕ ◦ ψ−1). It follows from the transitivity of the induction process that Ω is a

covariant functor of S1.

To be complete a further observation must be made.

Lemma 1.1 Suppose H is a subgroup of finite index in G and ρ is a finitedimensional
complex representation ofH such that ρ(L) is semisimple for all h inH . If

σ = Ind(G,H, ρ)
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then σ(g) is semisimple for all g.

H contains a subgroup H1 which is normal and of finite index in G, namely, the group

of elements acting trivially on H\G. To show that a nonsingular matrix is semisimple one
has only to show that some power of it is semisimple. Since σn(g) = σ(gn) and gn belongs

toH1 for some n we need only show that σ(g) is semisimple for g inH1. In that case σ(g) is

equivalent to
∑r

i=1 ⊕ρ(gigg−1
i ) ifG is the disjoint union

⋃r

i=1
Hgi

Suppose L/F and K/F belong to EF and ϕ ∈ HomEF
(L/F,K/F ). Since the maps of

the class ϕW all takeWK/F ontoWL/F the associated map Ω(W (L/F )) −→ Ω(W (K/F )) is

injective. Moreover it is independent ofϕ. IfL1/F andL2/F belong to EF there is an extension
K/F and maps ϕ1 ∈ HomEF

(L1/F,K/F ), ϕ2 ∈ HomEF
(L2/F,K/F ). ω1 in Ω(W (L1/F ))

and ω2 in Ω(W (L2/F )) have the same image in Ω(W (K/F )) for one such K if and only if

they have the same image for all such K . If this is so we say that ω1 and ω2 are equivalent.

The collection of equivalence classes will be denoted by Ω(F ). Its members are referred to as

equivalence classes of representations of the Weil group of F .

Let F be the category whose objects are local and global fields. If F and E are of the
same type HomF(F,E) consists of all isomorphisms of F with a subfield of E over which

E is separable. If F is global and E is local HomF(F,E) consists of all isomorphisms of F

with a subfield of E over whose closure E is separable. Ω(F ) is clearly a covariant functor on

F . Let Fgℓ, and Floc be the subcategories consisting of the global and local fields respectively.

Suppose F and E are of the same type and ϕ ∈ HomF (F,E). If ω ∈ Ω(E) choose K so that

ω belongs to Ω(W (K/E)). We may assume that there is an L/F and an isomorphism ψ from

L ontoK which agrees with ϕ on F . Then ψW : WK/E −→ WL/F is an injection. Let θ be the

equivalence class of the representation

σ = Ind(WL/F, ψW(WK/E), ρ ◦ ψ−1
W )

with ρ in ω. I claim that θ is independent of K and depends only on ω and ϕ. To see this it

is enough to show that if L ⊆ L′, L′/F is Galois, ψ′ is an isomorphism from L′ to K ′ which

agrees with ψ on L, and ρ′ is a representation ofWK′/F in ω the class of

σ′ = Ind(WL′/F, ψ
′
W(WK′/E), ρ′ ◦ ψ′ −1

w )

is also Θ. Suppose µ is a map from WK′/E to WK/E associated to the imbedding K/E −→
K ′/E and ν is a map from WL′/F to WL/F associated to the imbedding L/F −→ L′/F .
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We may suppose that ψW ◦ µ = ν ◦ ψ′
W . The kernel of µ is W

c
K′/K if, for simplicity of

notation, WK′/K is regarded as a subgroup of WK′/E and that of ν is W
c
L′/L. Moreover

ψ′
W (W c

K′/K) = W c
L′/L. Take ρ

′ = ρ ◦ µ. Then σ acts on the space V of functions f onWK/F

satisfying f(vw) ≡ ρ(ψ−1
w (h))f(w) for v in ψw(WK/E). Let V ′ be the analogous space on

which σ′ acts. Then

V ′ = {f ◦ ν | f ∈ V }.

The assertion follows. Thus Ω(F ) is a contravariant functor on Fgℓ and Floc.

After this laborious and clumsy introduction we can set to work and prove the two

theorems. The first step is to reformulate Theorem A.
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Chapter Two.

The Main Theorem

It will be convenient in this paragraph and at various later times to regard WK/E as a

subgroup ofWK/F if F ⊆ E ⊆ K . If F ⊆ E ⊆ L ⊆ K we shall also occasionally takeWL/E

to beWK/E/W
c
K/L.

If K/F is finite and Galois, P(K/F ) will be the set of extensions E′/E with F ⊆ E ⊆
E′ ⊆ K and P◦(K/F )will be the set of extensions in P(K/F )with the lower field equal to F .

Theorem 2.1

SupposeK is a Galois extension of the local field F and ψF is a given nontrivial additive

character of F . There is exactly one function λ(E/F, ψF ) defined on P◦(K/F ) with the

following two properties

(i)

λ(F/F, ψF ) = 1.

(ii) If E1, . . . , Er, E
′
1, . . . , E

′
s are fields lying between F and K , if χEi

, 1 ≤ i ≤ r, is a

quasicharacter of CEi
, if χE′

j
, 1 ≤ j ≤ s, is a quasicharacter of CE′

j
, and if

⊕ri=1 Ind(Wk/F,WK/Ei
, χEi

)

is equivalent to

⊕sj=1 Ind(WK/F,WK/E′

j
, χE′

j
)

then ∏r

i=1
∆(χEi

, ψEi/F )λ(Ei/F, ψF )

is equal to ∏s

j=1
∆(χE′

j
, ψE′

j/F
)λ(E′

j/F, ψF ).

A function satisfying the conditions of this theorem will be called a λfunction. It is clear

that the functionλ(E/F, ψF ) of TheoremAwhen restricted toP◦(K/F ) becomes aλfunction.

Thus the uniqueness in this theorem implies at least part of the uniqueness of Theorem A. To

show how this theorem implies all of Theorem A we have to anticipate some simple results

which will be proved in paragraph 4.
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First of all a λfunction can never take on the value 0. Moreover, if F ⊆ K ⊆ L the

λfunction onP◦(K/F ) is just the restriction toP◦(K/F ) of the λfunction on P◦(L/F ). Thus

λ(E/F, ψF ) is defined independently ofK . Finally if E ⊆ E′ ⊆ E′′

λ(E′′/E, ψE) = λ(E′′/E′, ψE′/E)λ(E′/E, ψE)[E
′′:E′].

We also have to use a form of Brauer’s theorem [4]. If G is a finite group there are

nilpotent subgroupsN1, . . . , Nm, onedimensional representations χ1, . . . , χm ofN1, . . . , Nm
respectively, and integers n1, . . . , nm such that the trivial representation ofG is equivalent to

⊕mi=1 niInd(G,Ni, χi).

The meaning of this when some of the ni are negative is clear

Lemma 2.2

Suppose F is a global or local field and ρ is a representation of WK/F . There are inter

mediate fields E1, . . . , Em such that G(K/Ei) is nilpotent for 1 ≤ i ≤ m, onedimensional

representations χEi
ofWK/Ei

, and integers n1, . . . , nm such that ρ is equivalent to

⊕mi=1 niInd(WK/F,WK/Ei
, χEi

).

Theorem 2.1 and Lemma 2.2 together imply the uniqueness of TheoremA. Before proving

the lemma we must establish a simple and wellknown fact.

Lemma 2.3

SupposeH is a subgroup of finite index in the groupG. Suppose τ is a representation of

G, σ a representation ofH , and ρ the restriction of τ toH . Then

τ ⊗ Ind(G,H, σ) ≃ Ind(G,H, ρ⊗ σ).

Let τ act on V and σ onW . Then Ind(G,H, σ) acts on X , the space of all functions f on

G with values inW satisfying

f(hg) = σ(h) f(g)

while Ind(G,H, ρ ⊗ σ) acts on Y , the space of all functions f on G with values in V ⊗W

satisfying

f(hg) = (ρ(h) ⊗ σ(h)) f(g).
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Clearly, V ⊗X and Y have the same dimension. The map of V ⊗X to Y which sends v ⊗ f

to the function

f ′(g) = τ(g)v ⊗ f(g)

is Ginvariant. If it were not an isomorphism there would be a basis v1, . . . , vn of V and

functions f1, . . . , fn which are not all zero such that

Σni=1 τ(g)vi ⊗ fi(g) ≡ 0.

This is clearly impossible.

To prove Lemma 2.2we take the groupG of Brauer’s theorem to beG(K/F ). LetFi be the

fixed field ofNi and let ρi be the tensor product ofχi, whichwemay regard as a representation

ofWK/Fi
and the restriction of ρ toWK/Fi

. Then

ρ ≃ ρ⊗ 1 ≃ ⊕mi=1niInd(WK/Fi
, ρi).

This together with the transitivity of the induction process shows that in proving the lemma

we may suppose that G(K/F ) is nilpotent.

We prove the lemma, with this extra condition, by induction on [K : F ]. We use the

symbol ω to denote an orbit in the set of quasicharacters of CK under the action of G(K/F ).

The restriction of ρ to CK is the direct sum of onedimensional representations. If ρ acts on

V let Vω be the space spanned by the vectors transforming under CK according to a quasi

character in ω. V is the direct sum of the spaces Vω which are each invariant under WK/F .

For our purposes we may suppose that V = Vω for some ω. Choose χK in this ω and let V0 be

the space of vectors transforming under CK according to χK . Let E be the fixed field of the

isotrophy group of χK . V0 is invariant underWK/E . Let σ be the representation ofWK/E in

V0. It is wellknown that

ρ ≃ Ind(WK/F,WK/E, σ).

To see this one has only to verify that the space X on which the representation on the right

acts and V have the same dimension and that the map

f −→
∑

WK/E\WK/F

ρ(g−1)f(g)

ofX into V which is clearlyWK/F invariant has no kernel. It is easy enough to do this.

If E 6= F the assertion of the lemma follows by induction. If E = F choose L containing

F so thatK/L is cyclic of prime degree and L/F is Galois. Then ρ(WK/L) is an abelian group

andW c
K/L is contained in the kernel of ρ. Thus ρmay be regarded as a representation ofWL/F .
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The assertion now follows from the induction assumption and the concluding remarks of the

previous paragraph.

Now take a local field E and a representation ρ ofWK/E . Choose intermediate fields

E1, . . . , Em, onedimensional representations χEi
ofWK/Ei

, and integers n1, . . . , nm so that

ρ ≃ ⊕mi=1 ni Ind(WK/E,WK/Ei
, χEi

).

If ω is the class of ρ set

ε(ω, ψE) =
∏m

i=1
{∆(χEi

,ΨEi/E)λ(Ei/E,ΨE)}ni .

Theorem 2.1 shows that the right side is independent of the way in which ρ is written as a sum

of induced representations. The first and second conditions of Theorem A are clearly satisfied.

If ρ is the representation above and σ the representation

Ind(WK/F,WK/E, ρ)

then

σ ≃ ⊕mi=1 niInd(WK/F,WK/Ei
, χEi

).

Thus if ω′ is the class of σ

ε(ω′, ψF ) =
∏m

i=1
{∆(χEi

, ψEi/F )λ(Ei/F, ψF )}ni

while

ε(ω, ψE/F ) =
∏m

i=1
{∆(χEi

, ψEi/F ) λ(Ei/E, ψE/F )}ni .

The third property follows from the relations

dimω = Σmi=1 ni [Ei : E]

and

λ(Ei/F, ψF ) = λ(Ei/E, ψE/F ) λ(E/F, ψF )[Ei:E]
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Chapter Three.

The Lemmas of Induction

In this paragraph we prove two simple but very useful lemmas.

Lemma 3.1

Suppose K is a Galois extension of the local field F . Suppose the subset A of P(K/F )

has the following four properties.

(i) For all E, with F ⊆ E ⊆ K, E/E ∈ A.

(ii) If E′′/E′ and E′/E belong to A so does E′′/E.

(iii) If L/E belongs to P(K/F ) and L/E is cyclic of prime degree then L/E belongs to A.

(iv) Suppose thatL/E inP(K/F ) is aGalois extension. LetG = G(L/E). SupposeG = H ·C
whereH 6= {1}, H ∩ C = {1}, and C is a nontrivial abelian normal subgroup ofG which is
contained in every nontrivial normal subgroup ofG. If E′ is the fixed field ofH and if every

E′′/E in P◦(L/E) for which [E′′ : E] < [E′ : E′] is in A so isE′/E. Then A is all of P(K/F ).

It is convenient to prove another lemma first.

Lemma 3.2

Suppose K is a Galois extension of the local field F and F ⊂
6=
E ⊆ K . Suppose that the

only normal subfield ofK containing E isK itself and that there are no fields between F and

E. Let G = G(K/F ) and let E be the fixed field ofH . Let C be a minimal nontrivial abelian

normal subgroup ofG. Then G = HC, H ∩ C = {1} and C is contained in every nontrivial
normal subgroup ofG. In particular ifH = {1}, G = C is abelian of prime order.

H is contained in no subgroup besides itself andG contains no normal subgroup but {1}.
Thus if H is normal it is {1} and G has no proper subgroups and is consequently cyclic of
prime order. SupposeH is not normal. SinceG is solvable it does contain aminimal nontrivial

abelian normal subgroup C. Since C is not contained in H, H ⊂
6=
HC and G = HC. Since

H ∩ C is a normal subgroup of G it is {1}. If D is a nontrivial normal subgroup of G which
does not contain C then D ∩ C = {1} and D is contained in the centralizer Z of C. Then
DC is also and Z must meet H nontrivially. But Z ∩H is a normal subgroup ofG. This is a
contradiction and the lemma is proved.
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The first lemma is certainly true if [K : F ] = 1. Suppose [K : F ] > 1 and the lemma is

valid for all pairs [K ′ : F ′] with [K ′ : F ′] < [K : F ]. If the Galois extension L/E belongs to

P(K/F ) then A ∩ P(L/E) satisfies the condition of the lemma withK replaced by L and F

byE. Thus, by induction, if [L : E] < [K : F ], P(L/E) ⊆ A. In particular ifE′/E is not inG

then E = F and the only normal subfield of K containing E′ is K itself. If A is not P(K/F )

then amongst all extensions which are not inG choose one E/F for which [E : F ] is minimal.

Because of (ii) there are no fields between F and E. Lemma 3.2, together with (iii) and (iv),

show that E/F is in A. This is a contradiction.

There is a variant of Lemma 3.1 which we shall have occasion to use.

Lemma 3.3

Suppose K is a Galois extension of the local field F . Suppose the subset A of P◦(K/F )

has the following properties.

(i) F/F ∈ A.

(ii) If L/F is normal and L⊂
6=
K then P◦(L/F ) ⊆ A.

(iii) If F ⊂ E ⊆ E′ ⊆ K and E/F belong to G then E′/F belong to A.

(iv) If L/F in P◦(K/F ) is cyclic of prime degree then L/F ∈ A.

(v) Suppose that L/F in P◦(K/F ) is Galois and G = G(L/F ). Suppose G = HC where

H 6= {1}, H ∩ C = {1}, and C is a nontrivial abelian normal subgroup of G which is
contained in every nontrivial normal subgroup. If E is the fixed field ofH and if every E′/F

in P◦(L/F ) for which [E′ : F ] < [E : F ] is in A so is E/F .

Then A is P◦(K/F ).

Again ifA is notP◦(K/F ) there is anE/F not inA forwhich [E : F ] isminimal. Certainly

[E : F ] > 1. By (ii) and (iii),E is contained in no proper normal subfield ofK and there are no

fields between E and F . Lemma 3.2 together with (iv) and (v) lead to the contradiction that

E/F is in A.
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Chapter Four.

The Lemma of Uniqueness

Suppose K/F is a finite Galois extension of the local field F and ψF is a nontrivial

additive character of F . A functionE/F −→ λ(E/F, ψF ) on P◦(K/F )will be called a weak

λfunction if the following two conditions are satisfied.

(i) λ(F/F, ΨF ) = 1.

(ii) If E1, . . . , Er, E
′
1, . . . , E

′
s are fields lying between F and K , if µi, 1 ≤ i ≤ r, is a one

dimensional representation of G(K/Ei), if νj , 1 ≤ j ≤ s, is a onedimensional represen

tation of G(K/E′
j), and if

⊕r

i=1
Ind(G(K/F),G(K/Ei), µi)

is equivalent to ⊕s

j=1
Ind(G(K/F),G(K/Ej), νj)

then ∏r

i=1
∆(χEi

, ψEi/F )λ(Ei/F, ψF )

is equal to ∏s

j=1
∆(χE′

j
ψE′

j/F
)λ(E′

j/F, ψF )

if χEi
is the character of CEi

corresponding to µi and χE′

j
is the character of CE′

j
corre

sponding to νj .

Supposing that a weak λfunction is given on P◦(K/F ), we shall establish some of its

properties.

Lemma 4.1

(i) If L/F in P◦(K/F ) is normal the restriction of λ(·, ψF ) to P◦(L/F ) is a weak λfunction.

(ii) If E/F belongs to P◦(K/F ) and λ(E/F, ψF ) 6= 0 the function on P◦(K/E) defined by

λ(E′/E, ψE/F ) = λ(E′/F, ψF ) λ(E/F, ψF )−[E′:E]

is a weak λfunction.
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Any onedimensional representation µ of G(L/E)may be inflated to a onedimensional

representation, again called µ, of G(K/E) and

Ind(G(K/F),G(K/E), µ)

is just the inflation to G(K/F ) of

Ind(G(L/F),G(L/E), µ).

The first part of the lemma follows immediately from this observation.

As for the second part, the relation

λ(E/E, ψE/F ) = 1

is clear. If fields Ei, 1 ≤ i ≤ r, E′
j, 1 ≤ j ≤ s, lying between E andK and representations

µi and νj are given as prescribed and if

⊕r

i=1
Ind(G(K/E),G(K/Ei), µi) = ρ

is equivalent to ⊕s

j=1
Ind(G(K/E),G(K/E′

j), νj) = σ

then ⊕r

i=1
Ind(G(K/F),G(K/Ei, µi)

is equivalent to ⊕s

j=1
Ind(G(K/F),G(K/E′

j), νj)

so that ∏r

i=1
∆(χEi

, ψEi/F ) λ(E1/F, ψF ) (A)

is equal to ∏s

j=1
∆(χE′

j
, ψE′

j/F
) λ(E′

j/F, ψF ). (B)

Since ρ and σ have the same dimension

Σri=1 [Ei : E] = Σsj=1 [E′
j : E]

so that ∏r

i=1
λ(E/F, ΨF )[Ei:E] =

∏s

j=1
λ(E/F, ψF )[E

′

j :F ].
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Dividing (A) by the left side of this equation and (B) by the right and observing that the results

are equal we obtain the relation needed to prove the lemma.

IfK/F is abelian S(K/F )will be the set of characters of CF which are 1 onNK/FCK .

Lemma 4.2

IfK/F is abelian

λ(K/F, ΨF ) =
∏

µF ∈S(K/F )
∆(µF , ψF ).

µF determines a onedimensional representation of G(K/F ) which we also denote by

µF . The lemma is an immediate consequence of the equivalence of

Ind(G(K/F),G(K/K), 1)

and ⊕
µF ∈S(K/F )

Ind(G(K/F),G(K/F), µF).

Lemma 4.3

SupposeK/F is normal and G = G(K/F ). Suppose G = HC where H ∩ C = {1} and
C is a nontrivial abelian normal subgroup. Let E be the fixed field ofH and L that of C. Let

T be a set of representatives of the orbits of S(K/L) under the action ofG. If µ ∈ T let Bµ be

the isotropy group of µ and let Bµ = G(K/Lµ). Then [Lµ : F ] < [E : F ] and

λ(E/F, ψF ) =
∏

µ∈T
∆(µ′, ψLµ/F ) λ(Lµ/F, ψF ).

Here G(K/Lµ) = G(K/L) · (G(K/Lµ) ∩ G(K/E)) and µ′ is the character of CLµ
associated

to the character ofG(K/Lµ) : g −→ µ(g1) if

g = g1g2, g1 ∈ G(K/L), g2 ∈ G(K/Lµ) ∩ G(K/E),

We may as well denote the given character of G(K/Lµ) by µ
′ also. To prove the lemma

we show that

Ind(G(K/F),G(K/E), 1) = σ

is equivalent to ⊕
µ∈T

Ind(G(K/F),G(K/Lµ), µ
′).
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Since T has at least two elements it will follow that

[E : F ] = dim Ind(G(K/F),G(K/E), 1)

is greater than

[Lµ : F ] = dim Ind(G(K/F),G(K/Lµ), µ
′).

The representation σ acts on the space of functions on H\G. If ν ∈ S(K/L), that is, is a

character of C, let ψν(hc) = ν(c) if h ∈ H, c ∈ C. The set

{ψν | ν ∈ S(K/L)}

is a basis for the functions onH\G. If µ ∈ T let Sµ be its orbit; then

Vµ = Σν∈Sµ
Cψν

is invariant and irreducible under G. Moreover, if g belongs toG(K/Lµ)

σ(g)ψµ = µ′(g)ψµ.

Since

dim Vµ = [G(K/F ),G(K/Lµ)]

the Frobenius reciprocity theorem implies that the restriction of σ to Vµ is equivalent to

Ind(G(K/F),G(K/Lµ), µ
′).

Lemma 4.2 is of course a special case of Lemma 4.3.

Lemma 4.4

λ(E/F,ΨF ) is different from 0 for all E/F in P◦(K/F ).

The lemma is clear if [K : F ] = 1. We prove it by induction on [K : F ]. LetG be the set of

E/F in P◦(K/F ) for which λ(E/F, ψF ) 6= 0. We may apply Lemma 3.3. The first condition

of that lemma is clearly satisfied. The second follows from the induction assumption and the

first part of Lemma 4.1; the third from the induction assumption and the second part of Lemma

4.1. The fourth and fifth follow from Lemmas 4.2 and 4.3 respectively. We of course use the

fact that∆(χE ,ΨE), which is basically a Gaussian sum when E is nonarchimedean, is never

zero.
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For every E′/E in P(K/F )we can define λ(E′/E, ψE/F ) to be

λ(E′/F, ψF ) λ(E/F, ψF )−[E′:E].

Lemma 4.5

If E′′/E′ and E′/E belong to P(K/F ) then

λ(E′′/E, ψE/F ) = λ(E′′/E′, ψE′/F )λ(E′/E, ψE/F )E
′′:E′].

Indeed

λ(E′′/E, ψE/F ) = λ(E′′/F, ψF ) λ(E/F, ψF )−[E′′:E]

which equals

{
λ(E′′/F, ψF )λ(E′/F, ψF )−[E′′:E′]

} {
λ(E′/F, ψF )[E

′′:E′] λ(E/F, ψF )−[E′′:E]
}

and this in turn equals

λ(E′′/E′, ψE′/F ) λ(E′/E, ψE/F )[E
′′:E′].

Lemma 4.6

If λ1(·,ΨF ) and λ2(·,ΨF ) are two weak λfunctions on P◦(K/F ) then

λ1(E
′/E, ψE/F ) = λ2(E

′/E, ψE/F )

for all E′/E in P(K/F ).

We apply Lemma3.1 to the collectionG of all pairsE′/E inP(K/F ) forwhich the equality

is valid. The first condition of that lemma is clearly satisfied. The second is a consequence of

the previous lemma. The third and fourth are consequences of Lemmas 4.2 and 4.3 respectively.

Since a λfunction is also a weak λfunction the uniqueness of Theorem 2.1 is nowproved.
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Chapter Five.

A Property of λ-Functions

It follows immediately from the definition that if ψ′
E(x) = ψE(βx) then

∆(χE , ψ
′
E) = χE(β)∆(χE , ψE).

Associated to any equivalence class ω of representations of the Weil group of the field F is a

onedimensional representation or, what is the same, a quasicharacter of CF . It is denoted

detω and is obtained by taking the determinant of any representation in ω. Suppose ρ is in the

class ω and ρ is a representation ofWK/F . To find the value of the quasicharacter detω at β

choose w inWK/F so that τK/Fw = β. Then calculate det(ρ(w))which equals detω(β).

If F ⊆ E ⊆ K the map τ = τK/F can be effected in two stages. We first transfer

WK/F /W
c
K/F into WK/E/W

c
K/E ; then we transfer WK/E/W

c
K/E into CK . If WK/F is the

disjoint union ⋃r

i=1
WK/Ewi

and if wiw = ui(w)wj(i) then the transfer of w in WK/E/W
c
K/E is the coset to which w

′ =∏r
i=1 ui(w) belongs.

Suppose σ is a representation ofWK/E and

ρ = Ind(WK/F,WK/E, σ).

ρ acts on a certain space V of functions onWK/F and if Vi is the collection of functions in V

which vanish outside ofWK/Ewi then

V =
⊕r

i=1
Vi.

Wedecompose thematrix of ρ(w) into corresponding blocks ρji(w). ρji(w) is 0 unless j = j(i)

when ρji(w) = σ(ui, (w)). This makes it clear that if ιE/F is the representation of WK/F

induced from the trivial representation ofWK/E

det(ρ(w)) = det(ιE/F (w))dimσdet(σ(w′))

or, if θ is the class of σ,

detω(β) = {det ιE/F (β)}dimθ{det θ(β)}.
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Lemma 5.1

Suppose F is a local field and E/F −→ λ(E/F, ψF ) and ω −→ ε(ω, ψE/F ) satisfy

the conditions of Theorem A for the character ψF . Let ψ
′
F (x) = ψF (βx) with β in CF . If

E/F −→ λ(E/F, ψ′
F ) and ω −→ ε(ω, ψ′

E/F ) satisfy the conditions of Theorem A for ψ′
F then

λ(E/F, ψ′
F ) = det ιE/F (β) λ(E/F, ψF )

and

ε(ω, ψ′
E/F ) = detω(β) ε(ω, ψE/F ).

Because of the uniqueness all one has to do is verify that the expressions on the right

satisfy the conditions of the theorem for the character ψ′
F . This can now be done immediately.



Chapter 6 28

Chapter Six.

A Filtration of the Weil Group

In this paragraph I want to reformulate various facts found in Serre’s book [12] as asser

tions about a filtration of the Weil group. Although some of the lemmas to followwill be used

to prove the four main lemmas, the introduction of the filtration itself is not really necessary.

It serves merely to unite in a form which is easily remembered the separate lemmas of which

we will actually be in need.

Let K be a finite Galois extension of the nonarchimedean local field F and let G =

G(K/F ). LetOF be the ring of integers in F and let pF be the maximal ideal ofOF . If i ≥ −1

is an integer let Gi be the subgroup of G consisting of those elements which act trivially on

OF /p
i+1
F . If u ≥ −1 is a real number and i is the smallest integer greater than or equal to u set

Gu = Gi. Finally if u ≥ −1 set

ϕK/F (u) =

∫ u

0

1

[G0 : Gt]
dt.

The integrand is not defined at 1 but that is of no consequence. ϕK/F is clearly a piecewise

linear, continuous, and increasing map of [−1,∞) onto itself. The inverse function* ψK/F will

have the same properties.

We take from Serre’s book the following lemma.

Lemma 6.1

If F ⊆ L ⊆ K and L/F is normal then ϕK/F = ϕL/F ◦ϕK/L and ψK/F = ψK/L ◦ψL/F .

The circle denotes composition not multiplication. This lemma allows us to define ϕE/F
and ψE/F for any finite separable extensionE/F by choosing a Galois extensionL of F which

contains E and setting

ϕE/F = ϕL/F ◦ ψL/E
ψE/F = ϕL/E ◦ ψL/F

* In this chapter ψK/F does not appear as an additive character. Nonetheless, there is a

regrettable conflict of notation.
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because if L′ is another such extension we can choose a Galois extensionK containing both L

and L′ and

ϕL/F ◦ ψL/E = ϕL/F ◦ ϕK/L ◦ ψK/L ◦ ψL/E = ϕK/F ◦ ψK/E = ϕL′/F ◦ ψL′/E

ϕL/E ◦ ψL/F = ϕL/E ◦ ϕK/L ◦ ψK/L ◦ ψL/F = ϕK/E ◦ ψK/F = ϕL′/E ◦ ψL′/F .

Of course ψE/F is the inverse of ϕE/F .

Lemma 6.2

If E ⊆ E′ ⊆ E′′ and E′′/E is finite and separable, ϕE′′/E = ϕE′/E ◦ ϕE′′/E′ and

ψE′′/E = ψE′′/E′ ◦ ψE′/E .

Each of these relations can be obtained from the other by taking inverses; we verify the

second

ψE′′/E′ ◦ ψE′/E = ϕL/E′′ ◦ ψL/E′ ◦ ϕL/E′ ◦ ψL/E = ϕL/E′′ ◦ ψL/E = ψE′′/E .

It will be necessary for us to know the values of these functions in a few special cases.

Lemma 6.3

(i) IfK/F is Galois and unramified ψK|F (u) ≡ u.

(ii) If K/F is cyclic of prime degree ℓ and if G = Gt while Gt+1 = {1} where t is a non
negative integer then

ψK/F (u) = u u ≤ t

= t+ ℓ(u− t) u ≥ t.

These assertions follow immediately from the definitions.

Lemma 6.4

SupposeK/F isGalois andG = G(K/F ) is a productHC whereH 6= {1}, H∩C = {1},
and C is a nontrivial abelian normal subgroup of G which is contained in every nontrivial

normal subgroup.

(i) IfK/F is tamely ramified so thatG1 = {1} thenG0 = C is a cyclic group of prime order

ℓ and [G : G0] = [H : 1] divides ℓ− 1. IfE is the fixed field ofH, ψE/F (u) = u for u ≤ 0

and ψE/F (u) = ℓu for u ≥ 0.
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(ii) If K/F is wildly ramified there is an integer t ≥ 1 such that C = G1 = . . . = Gt while

Gt+1 = {1}. [G0 : G1] divides [G1 : 1] − 1 and every element of C has order p or 1. If E

is the fixed field ofH and L that of C

ψL/F (u) = u u ≤ 0

= [G0 : G1]u u ≥ 0

while

ψE/F (u) = u u ≤ t

[G0 : G1]

=
t

[G0 : G1]
+ [G1 : 1]

(
u− t

[G0 : G1]

)
u ≥ t

[G0 : G1]

We observed in the third paragraph thatC must be its own centralizer. G0 cannot be {1}.
Thus C ⊆ G0. In case (i)G0 is abelian and thus G0 = C. In both cases if ℓ is a prime dividing

the order ofC the set of elements inC of order ℓ or 1 is a nontrivial normal subgroup ofG and

thusC itself. In case (i)C is cyclic and thus of prime order ℓ. Moreover,H which is isomorphic

to G/G0 is abelian and, if h ∈ H, {c ∈ C|hc = ch} is a normal subgroup of G and hence {1}
or C. If h 6= 1 it must be 1. Consequently each orbit ofH in C − {1} has [H : 1] elements and

[H : 1] divides ℓ− 1.

In case (ii)G1 is a nontrivial normal subgroup and hence contains C. G1 and C are both

pgroups. The centralizer of G1 in C is not trivial. As a normal subgroup of G it contains C.

Therefore it is C and G1 is contained in C which is its own centralizer. Since each G1, i ≥ 1,

is a normal subgroup of G, it is either C or {1}. Thus there is an integer t ≥ 1 such that

G1 = Gt = C while Gt+1 = {1}. If i ≥ 0 is an integer let U iK be the group of units of OK

which are congruent to 1 modulo pi+1
K ; let U

(−1)
K = CK , and if U ≥ −1 is any real number

let i be the smallest integer greater than or equal to u and set UuK = U iK . If θt is the map of

Gt/Gt+1 into p
t
K/p

t+1
K and θ0 the map of G0/G1 into U

0
K/U

1
K introduced in Serre then, for g

inG0 and h in C,

θt(ghg
−1) = θ0(g)

tΘt(h).

If h 6= 1, ghg−1 = h if and only if θ0(g)
t = 1 and then g belongs to the centralizer of C, that

is to G1. Again C − {1} is broken up into orbits, each with [G0 : G1] elements and [G0 : G1]

divides [Gi : 1] − 1. Observe that tmust be prime to [G0 : G1].
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It follows immediately from the definitions thatHu = H ∩Gu. In case (i)H0 will be {1}
and ϕK/E(u)will be identically u. Thus ψE/F = ψK/F and, from the definition,ψK/F (u) = u

if u ≤ 0while ψK/F (u) = [G0 : 1]u if u ≥ 0. In case (ii), ϕK/E(u) = u if u ≤ 0 and

ϕK/E(u) =
u

[H0 : 1]
=

u

[G0 : G1]

if u ≥ 0while ψK/F (u) = u if u ≤ 0 and

ψK/F (u) = [G0 : G1]u 0 ≤ u ≤ t

[G0 : G1]

= t+ [G0 : 1]

(
u− t

[G0 : G1]

)
t

[G0 : G1]
≤ u.

The lemma follows.

Lemma 6.5

For every separable extension E′/E the function ψE′/E is convex, and if u is an integer

so is ψE′/E(u).

All we have to do is prove that the assertion is true for all E′/E in P(K/F ) if F is an

arbitrary nonarchimedean local field and K an arbitrary Galois extension of it. To do this

we just combine the previous three lemmas with Lemma 3.1. We are going to use the same

method to prove the following lemma.

Lemma 6.6

For every separable extension E′/E and any u ≥ −1

NE′/E (U
ψE′/E(u)

E′ ) ⊆ UuE .

We have to verify that the setG of allE′/E in P(K/F ) for which the assertion is true satisfies

the conditions of Lemma 3.1. There is no problem with the first two.

Lemma 6.7

E′/E belongs toG if and only if for every integer n ≥ −1

NE′/E

(
U
ψE′/E(n)

E′

)
⊆ UnE
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and

NE′/E

(
U
ψE′/E(n)+1

E′

)
⊆ Un+1

E .

If E′/E belongs to G choose ε > 0 so that ψE′/E(n + ε) = ψE′/E(n) + 1. The smallest

integer greater than or equal to n+ ε is at least n+ 1 so

NE′/E

(
U
ψE′/E(n)+1

E′

)
⊆ Un+ε

E ⊆ Un+1
E .

Conversely suppose the conditions of the lemma are satisfied and n < u < n + 1. Since

ψE′/E(n) is an integer the smallest integer greater than or equal to ψE′/E(u) is at least

ψE′/E(n) + 1. Thus

NE′/E

(
U
ψE′/E(u)

E′

)
⊆ NE′/E

(
U
ψE′/E(n)+1

E′

)
⊆ Un+1

E = UuE .

Lemma 6.8

If L/E is Galois then, for every integer n ≥ −1,

NL/E

(
U
ψL/E(n)

L

)
⊆ UnE

and

NL/E

(
U
ψL/E(n)+1

L

)
⊆ Un+1

E .

The assertion is clear if n = −1. A proof for the case n ≥ 0 and L/E totally ramified is given

in Serre’s book. Since that proof works equally well for all L/E we take the lemma as proved.

Lemma 6.9

SupposeK/F is Galois andG = G(K/F ). SupposeG = HC whereH 6= {1}, H ∩C =

{1}, andC is a nontrivial abelian normal subgroup ofGwhich is contained in every nontrivial
normal subgroup ofG. If E is the fixed field ofH

NE/F

(
U
ψE/F (u)

E

)
⊆ UuF

for all u ≥ −1.
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Let L be the fixed field of C. IfK/F is tamely ramifiedK/E and L/F are unramified so

that ψE/F = ψK/L and U
v
E = CE ∩UvK , UvF = CF ∩UvL for every v ≥ −1. If α belongs to CE ,

then deleteNK/Lα = NE/Fα. SinceK/L is Galois

NE/F

(
U
ψE/F (u)

E

)
⊆ CF ∩NK/L (U

ψK/L(u)

L ) ⊆ CF ∩ UuL = UuF .

IfK/F is not tamely ramified

pnE = E ∩ p[G0:G1]n−m
k

if n ≥ 1 and 0 ≤ m < [G0 : G1]. Thus

UvE = GE ∩ UvK

if −1 ≤ v ≤ 0 and

UvE = CE ∩ U [G0:G1]v
K

if v ≥ 0 or, more briefly,

UvE = CE ∩ UψK/E(v)

K

for all v ≥ −1. In the same way we find

UvF = CF ∩ UψL/F (v)

L

for all v ≥ −1. SinceK/L is normal

NE/F

(
U
ψE/F (u)

E

)
⊆ CF ∩NK/L

(
U
ψK/F (u)

K

)
⊆ CF ∩ UψL/F (u)

L = UuF .

Lemma 6.6 now follows immediately.

Lemma 6.10

(a) Suppose K/F is Galois and G = G(K/F ). Suppose t ≥ −1 is an integer such that

G = Gt 6= Gt+1. Then ψK/F (u) = u for u ≤ t. Moreover NK/F defines an isomorphism

of CK/U
t
K with CF /U

t
F and if −1 ≤ u ≤ t the inverse image of UuF /U

t
F is U

u
K/U

t
K .

However the map of CK/U
t+1
K into CF /U

t+1
F defined by the norm is not surjective.

(b) SupposeK/F is Galois and G = G(K/F ). Suppose s ≥ −1 is an integer andG = Gs. If

F ⊆ E ⊆ K, ψE/F (u) = u for u ≤ s and NE/F defines an isomorphism of CE/U
s
E and

CF /U
s
F . If −1 ≤ u ≤ s the inverse image of UuF /U

s
F is U

u
E/U

s
E .

If t = −1 the assertions of part (a) are clear. If t ≥ 0, K/F is totally ramified. The relation

ψK/F (u) = u for u ≤ t is an immediate consequence of the definition. Since the extension
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is totally ramified NK/F defines an isomorphism of U
−1
K /U0

K and U
−1
F /U0

F . It follows from

Proposition V.9 of Serre’s book that if 0 ≤ n < t the associated map UnK/U
n+1
K −→ UnF /U

n+1
F

is an isomorphism but that the map U tK/U
t+1
K −→ U tF /U

t+1
F has a nontrivial cokernel. The

first part of the lemma is an immediate consequence of these facts.

To prove part (b) we first observe that there is a t ≥ s such that G = Gt 6= Gt+1. It

then follows from part (a) that the map NK/F determines an isomorphism of CK/U
s
K and

CF /U
s
F under which U

u
K/U

s
K and U

u
F /U

s
F correspond if −1 ≤ u ≤ s. Let E be the fixed

field of H . We have Hs = H ∩ Gs = H , so that NK/E determines on isomorphism of

CK/U
s
K and CE/U

s
E under which U

u
K/U

s
K and U

u
E/U

s
E correspond if −1 ≤ u ≤ s. Moreover

if u ≤ s, ψK/F (u) = ψK/E(u) = u so that ψE/F (u) = u. Part (b) follows from these

observations and the relationNK/F = NE/FNK/E .

If E is any nonarchimedean local field and u > −1

UuE = ∩v<uUvE .

If α belongs to CE set

vE(α) = sup{u|α ∈ UuE}.

Then vE(1) = ∞, but vE(α) is finite if α 6= 1 and α belongs to U
vE(α)
E .

If F ⊆ L ⊆ K, τK/F,L/F will be any of the maps WK/F −→ WL/F associated to the

imbedding L/F −→ K/F . We abbreviate τK/F,F/F to τK/F . If w belongs toWK/F , σ(w) is

the image of w inG(K/F ), and E is the fixed field of σ(w), we set

vK/F (w) = ϕE/F (vE(τK/E(w)).

Note that we regardWK/E as a subgroup ofWK/F . If v ≥ −1 let

W v
K/F = {w | vK/F (w) ≥ v}.

We shall show thatW v
K/F is a normal subgroup ofWK/F . These groups provide a filtration of

the Weil group, some of whose properties are established in the following lemmas.

Lemma 6.11

If σ ∈ G(K/F ) and t = sup{u | σ ∈ Gu}, set vK/F (σ) = ϕK/F (t). Then

vK/F (σ) = max{vK/F (w) | σ(w) = σ}.
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If σ = 1 both sides are infinite and the assertion is clear. If σ 6= 1 let E be the fixed field

of σ. If σ(w) = σ, w belongs to WK/E and vK/F (w) = ϕE/F (vK/E(w)). Also vK/F (σ) =

ϕE/F (vK/E(σ)). Consequently it is sufficient to prove the lemma when F = E. The set

S = {τK/F (w) | σ(w) = σ}

is a coset of NK/F (CK) in CF and CF is generated by NK/F (CK) together with any element

of S. Moreover s = max{vF (β) | β ∈ S} is the largest integer such that S ∩ UsF is not empty.
SinceG = Gt 6= Gt+1 the preceding lemma shows that s = t = ϕK/F (t).

Lemma 6.12

(a) For all w and w1 inWK/F , vK/F (w) = vK/F (w−1) and vK/F (w1ww
−1
1 ) = vK/F (w).

(b) If F ⊆ E ⊆ K and w belong toWK/E then

vK/F (w) = ϕE/F (vK/E(w)).

(c) For all w inWK/F , τK/F (w) ⊂ U
vK/F (w)

F .

The first two assertions follow immediately from the definitions and the basic properties

of the Weil group. I prove only the third. Let me first observe that if F ⊆ E ⊆ K and

w ⊂WK/E , then

τK/F (w) = NE/F (τK/E(w)).

To see this, choose a set of representatives w1, . . . , wr for the cosets of CK inWK/E and then

a set of representatives v1, . . . , vs for the cosets ofWK/E inWK/F . Let wiw = aiwj(i) with ai
in CK ; then

τK/E(w) =
∏r

i=1
ai.

However vjwiw = vjaiv
−1
j vjwj(i) so that

τK/F (w) =
∏s

j=1

∏r

i=1
vjaiv

−1
j =

∏s

j=1
vjτK/E(w)v−1

j = NE/F (τK/E(w)).

In particular, ifE is the fixed field ofσ(w), τK/E(w) is containedU
ψE/F (vK/F (w))

E and τK/F (w)

is contained in

NE/F (U
ψE/F (vK/F (w))

E ) ⊆ U
vK/F (w)

F .

Lemma 6.13
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If u and v belong toWK/F then

vK/F (uv) ≥ min{vK/F (u), vK/F (v)}.

Let σ = σ(u) and let τ = σ(v). Because of the second assertion of the previous lemma

we may assume that σ and τ generate G(K/F ). Let E be the fixed field of στ . If

t = {min (ψK/F (vK/F (σ)), ψK/F (vK/F (τ))}

and G = G(K/F ) then G = Gt 6= Gt+1. According to Lemma 6.11, if

s = min{vK/F (u), vK/F (v)},

then t ≥ ψK/F (s)which, by Lemma 6.10, is therefore equal to s. Since τK/F (uv) =

τK/F (u)τK/F (v), τK/F (uv) lies in UsF . On the other hand

τK/F (uv) = NE/F (τK/E(uv))

so that, by Lemma 6.10 again, τK/E(uv) belongs to UsE and

vK/F (uv) ≥ ϕE/F (s) = s.

Thus the sets W x
K/F , x ≥ −1, give a filtration of WK/F by a collection of normal sub

groups. The next sequence of lemmas show that the filtration is quite analogous to the upper

filtration of the Galois groups.

Lemma 6.14

For each x ≥ −1 the map τK/F,L/F takes G
x
K/F intoG

x
L/F .

If w belongs toWK/F let w̄ = τK/F,L/F (w). We must show that

vL/F (w̄) ≥ vK/F (w).

Let σ = σ(w) and let σ̄ = σ(w̄). If E is the fixed field of σ then E = E ∩ L is the fixed field of
σ̄. Since

vL/F (w̄) = ϕE/F (vL/E(w̄))

and

vK/F (w) = ϕE/F (vK/E(w))
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we may suppose E = F . Since τK/F (w) = τL/F (w̄), Lemma 6.12 implies that τL/F (w̄) lies in

U
vK/F (w)

F . Thus

vL/F (w̄) = vF (τL/F (w̄)) ≥ vK/F (w).

Of courseWF/F is CF and, if v ≥ −1, W v
F/F = UvF .

Lemma 6.15

For each v ≥ −1, τK/F mapsW
v
K/F onto U

v
F .

Since v1 ≤ v2 implies W
v2
K/F ⊆ W v1

K/F it is enough to prove the lemma when v = n is

an integer. The lemma is clear if [K : F ] = 1; so we proceed by induction on [K : F ]. If

[K : F ] > 1, choose an intermediate normal extension L so that [L : F ] = ℓ is a prime. Let

G = G(L/F ). Lemma 6.12 implies that

W
ψL/F (v)

K/L = WK/L ∩W v
K/F .

There is an integer t ≥ −1 such that G = Gt and Gt+1 = {1}. It is shown in Chapter V of
Serre’s book that if n > t

NL/F

(
U
ψL/F (n)

L

)
= UnF .

By induction

τK/L

(
W

ψL/F (n)

K/L

)
= U

ψL/F (n)

L .

Since τK/F (w) = NL/F (τK/L(w)) if w is inWK/L,

τK/F (Wn
K/F ) = UnF

if n > t. Suppose σ generates G. Then VL/F (σ) = t. By Herbrand’s theorem there is a σ in

G(K/F ) with vK/F (σ) = t whose restriction to L is σ. By Lemma 6.11 there is a w inWK/F

such that σ = σ(w) and vK/F (w) = t. Then τK/F (w) lies in U tF but not in NL/F (CL). From

Serre’s book again [
U tF : NL/F U

ψL/F (t)

F

]
= ℓ

so that U tF is generated by τK/F (w) andNL/F (U
ψL/F (t)

L ) and hence is contained in the image

of W t
K/F . To complete the proof of the lemma we have only to observe that Lemma 6.10

implies that

UnF = U tF NL/F

(
U
ψL/F (n)

L

)
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if n ≤ t.

Lemma 6.16

Suppose F ⊆ L ⊆ K and L/F and K/F are Galois. Then, for each v ≥ −1, τK/F,L/F
mapsW v

K/F ontoW
v
L/F .

If [L : F ] = 1 this is just the previous lemma so we proceed by induction on [L : F ]. We

have to show that if w belongs to WL/F there is a w in WK/F such that w = τK/F,L/F (w)

and vK/F (w) ≥ vL/F (w). Let σ = σ(w) and let E be the fixed field of σ. If E 6= F

then, by the induction assumption, there is a w in WK/E such that τK/E,L/E(w) = w and

vK/E(w) ≥ vL/E(w). By Lemma 6.12, vK/F (w) ≥ vL/F (w). Moreover, we may assume that

τK/E,L/E is the restriction toWK/E of τK/F,L/F .

SupposeE = F . Then vL/F (w) = vF (τL/F (w)). Choosew1 inWK/F so that τK/F (w1) =

τL/F (w) and vK/F (w1) ≥ vF (τL/F (w)). Letw1 = τK/F,L/F (w1) and setu = w−1
1 w. Certainly

vL/F (u) ≥ vL/F (w). Moreover, τL/F (u) = 1. Let F ⊆ L1 ⊆ L where L1/F is cyclic of prime

order. If u does not belong toWL/L1
the group CF is generated byNL1/F (CL1

) and τL/F (u),

which is impossible since τL/F (u) = 1. Thus u belongs toWL/L1
and, as observed, there is a

u inWK/L1
such that τK/F,L/F (u) = τK/L1,L/L1

(u) = u. Then τK/F,L/F (uw1) = w.
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Chapter Seven.

Consequences of Stickelberger’s Result

Davenport and Hasse [5] have shown that Stickelberger’s arithmetic characterization of

Gaussian sums over a finite field can be used to establish identities between these Gaussian

sums. After reviewing Stickelberger’s result we shall prove the identities of Davenport and

Hasse together with some more complicated identities. However for the proof of Stickel

berger’s result itself, I refer to Davenport and Hasse.

If Z = e
2πi
p and α belongs toGF (p) the meaning of Zα is clear. If κ is any finite field and

S is the absolute trace of κ let ψ0
κ be the character of κ defined by ψ

0
κ(α) = ZS(α). If χκ is any

character of κ∗ and ψκ is any nontrivial additive character of κwewill take the Gaussian sum

τ(χκ, ψκ) to be

−
∑

α∈κ∗
χ−1
κ (α)ψκ(α).

We abbreviate τ(χκ, ψ
0
κ) to τ(χκ).

Let kn be the field obtained by adjoining the n
th roots of unity to the rational numbers.

If ̟ = Z − 1 then in kp the ideal (p) equals (̟p−1). If q = pf and κ has q elements then in

kq−1 the ideal (p) is a product pp′ . . . where the residue fields of pp′, . . . are isomorphic to κ.

In kp(q−1)

(p) = (p p′ . . .)p−1

withP = (p, ̟), P′ = (p′, ̟), and so on. The residue fields ofP,P′, . . . are also isomorphic

to κ. Choose one of these prime ideals, sayP. Once an isomorphism of the residue field with

κ is chosen the map of the (q − 1)th roots of unity to the residue field defines an isomorphism

of κ∗ and the group of (q − 1)th roots of unity. Then χκ can be regarded as a character of the

latter group. Choose α = α(χκ,P) with 0 ≤ α < q − 1 so that χκ(ζ) = ζα for all (q − 1)th

roots of unity. Write

α = α0 + α1p+ . . .+ αf−1p
f−1 0 ≤ αi < p.

Not all of the αi can be equal to p− 1. Set

σ(α) = α0 + α1 + . . .+ αf−1

γ(α = α0!α1! . . . αf−1!

The following lemma is Stickelberger’s arithmetical characterization of τ(χκ).
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Lemma 7.1

(a) τ(χκ) lies in kp(q−1) and is an algebraic integer.

(b) If χκ = 1 then τ(χκ) = 1 but if χκ 6= 1 the absolute value of τ(χκ) and all its conjugates

is
√
q.

(c) Every prime divisor of τ(χκ) in kp(q−1) is a divisor of p.

(d) If β is a nonzero element of the prime field then the automorphism Z −→ Zβ of kp(q−1)

over kq−1 sends τ(χκ) to χκ(β) τ(χκ).

(e) IfP is a prime divisor of p in kp(q−1) and α = α(χκ, p) the multiplicative congruence

τ(χκ) ≡
̟σ(α)

γ(α)
(mod∗P)

is valid.

(f) Suppose ℓ is a prime dividing q − 1 and χκ = χ′
κχ

′′
κ where the order of χ

′
κ is a power of

ℓ and that of χ′′
κ is prime to ℓ. If ℓ

a is the exact power of ℓ dividing q − 1 and λ = ζ0 − 1

where ζ0 is a primitive ℓ
ath root of unity then

τ(χκ) ≡ τ(χ′′
κ) (modλ).

Before stating the identities for Gaussian sums which are implied by this lemma, I shall

prove a few elementary lemmas.

Lemma 7.2

Suppose 0 ≤ α < pf − 1 and

α = α0 + α1p+ . . .+ αf−1p
f−1 0 ≤ αi < p.

Suppose also that 0 ≤ j0 < j1 < . . . < jr = f and set

βs = αjs + αjs+1 p+ . . .+ αjs+1−1 p
js+1−js−1.

If σ =
∑r−1

s=0 βs and γ =
∏r−1
s=0 βs! then

̟σ

γ
=
̟σ(α)

γ(α)
(mod∗P).
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First of all, I remark once and for all that if n ≥ 1, 0 < u ≤ pn − 1, and v = u(mod pn)

then v ≡ u(mod∗p). Thus if 0 ≤ u ≤ pn − 1 and v ≥ 0

(u+ vpn)! = (vpn)!
∏u

w=1
(w + vpn) ≡ u!(vpn)! (mod∗p).

Also if v ≥ 0 ∏pn

w=1
(vpn + w) ≡ (v + 1) pn! (mod∗p)

and, by induction,

(vpn)! ≡ v!(pn!)v (mod∗p).

In particular p(n+1)! ≡ p!(pn!)p ≡ (−p) (pn!)p. Apply induction to obtain

pn! ≡ (−p)
pn

−1
p−1 (mod∗p).

From the relations

p =
∏p−1

i=1
(1 − Zi) = (−̟)p−1

∏p−1

i=1

Zi − 1

Z − 1

and
Zi − 1

Z − 1
= 1 + Z + . . .+ Zi−1 ≡ i (mod∗p).

We conclude that

p = (p− 1)!(−̟)p−1 ≡ −̟p−1 (mod∗p).

The lemma itself is clear if r = f so we proceed by induction downward from f . Sup

pose r < f, js+2 − js = t > 1, and the lemma is valid for the sequence j0, j1, . . . , js+1 −
1, js+1, . . . jr. To prove it for the given sequence we have only to show that if

x = αjs + αjs+1 p+ . . .+ αjs+1−2 p
t−2

and y = αjs+1−1 then

̟x+y

x!y!
≡ ̟x+ypt−1

(x+ ypt−1)!
(mod∗p).

But

̟y(pt−1−1) ≡ (−p)y
pt−1

−1
p−1 (mod∗p)

and

(x+ ypt−1)! = x!y!(pt−1!)y ≡ x!y!(−p)
yt−1

−1
p−1 (mod)∗p).
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Lemma 7.3

Suppose β0, . . . , βr−1 and γ0, . . . , γr−1 are nonnegative integers all of which are less than

or equal to q − 1. Suppose that q = pf is a prime power and

∑r−1

i=0
(βi + γi)q

i < 2(qr − 1).

Suppose also that δi, 0 ≤ i ≤ r − 1, are given such that 0 ≤ δi ≤ q − 1,

∑r−1

i=0
δiq

i < qr − 1

and ∑r−1

i=0
(βi + γi)q

i =
∑r−1

i=0
δiq

i (mod qr − 1).

(a) If
∑r−1
i=0 (βi + γi)q

i < qr−1 and if ν is the number of k, 1 ≤ k ≤ r, for which∑k−1
i=0 (βi + γi) ≥ qk then

∑r−1

i=0
(βi + γi − δi) = ν(q − 1).

(b) If
∑r−1

i=0 (βi + γi)q
i ≥ qr − 1 and if ν is the number of k, 1 ≤ k ≤ r, for which

1 6=
∑k−1
i=0 (βi + γi)q

i ≥ qk then

∑r−1

i=0
(βi + γi − δi) = ν(q − 1).

Observe immediately that if 1 ≤ k ≤ r, then 0 ≤ βk−1 + γk−1 ≤ 2(q − 1) and

∑k−1

i=0
(βi + γi)q

i ≤ 2(q − 1)
∑k−1

i=0
qi = 2(qk − 1).

If r = 1 then β0 + γ0 = δ0 + ε(q − 1) with ε equal to 0 or 1. If ε = 0 we are in case (a) and

ν = 0while β0 + γ0 − δ0 = 0. If ε = 1we are in case (b); here ν = 1 and β0 + γ0 − δ0 = q− 1.

Suppose then that r ≥ 2 and that if β′
0, . . . , β

′
r−1, γ

′
0, . . . , γ

′
r−2, δ

′
0, . . . , δ

′
r−2, and ν

′ are given

as in the lemma (with r replaced by r − 1) then

∑r−2

i=0
(β′
i + γ′i − δ′i) = ν′(q − 1).
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We establish part (a) first. In this case

∑r−1

i=0
(βi + γi)q

i =
∑r−1

i=0
δiq

i

and ∑r−2

i=0
(βi + γi)q

i =
∑r−2

i=0
δiq

i + εqr−1

with ε = δr−1−βr−1−γr−1. If εwere negative the left side of the equationwould be negative;

if ε were greater than 1 the left side would be greater than 2(qr−1 − 1). Since neither of these

possibilities occur ε is 0 or 1.

Suppose first that ε = 0. If
∑r−2
i=0 δiq

i < qr−1−1 choose β′
i = βi, γ

′
i = γi, 0 ≤ i ≤ r−2.

Then δ′i = δi, 0 ≤ i ≤ r − 2, and ν′ = ν. The assertion of the lemma follows in this case. If∑r−2
1=0 δiq

i = qr−1 − 1 then δi = q − 1, 0 ≤ i ≤ r− 2. Then β0 + γ0 ≡ q − 1 (mod q) and, as a

consequence, β0 + γ0 = q − 1. We show by induction that βi + γi = q − 1, 0 ≤ i ≤ r − 2. If

this is so for i < j then ∑r−2

i=j
(βi + γi)q

i =
∑r−2

i=j
(q − 1)qi.

Hence βj + γj ≡ q − 1 (mod q) and βj + γj = q − 1. It follows immediately that ν = 0 and∑r−1
i=0 (βi + γi − δi) = 0.

Now suppose that ε = 1. If

∑r−2

i=0
(βi + γi)q

i = 2(qr−1 − 1)

then βi = γi = q − 1, 0 ≤ i ≤ r − 2, δ0 = q − 2, and δi = q − 1, 1 ≤ i ≤ r − 2. Thus

ν = r − 1 and

∑r−1

i=0
(βi + γi − δi) = 1 + (r − 1) (q − 1) − 1 = (r − 1) (q − 1).

Suppose then that ∑r−2

i=0
(βi + γi)q

i < 2(qr−1 − 1).

From the relation

∑r−2

i=0
(βi + γi)q

i =
∑r−2

i=0
δiq

i + 1 + (qr−1 − 1).

We conclude that
∑r−2
i=0 δiq

i < qr−1 − 1. Then for somem, with 0 ≤ m ≤ r − 2, δm < q − 1.

We choose the minimal value form.

∑r−2

i=0
(βi + γi)q

i = (δm + 1)qm +
∑r−2

i=m+1
δiq

i + (qr−1 − 1).
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Thus if β′
i = βi, γ

′
i = γi, 0 ≤ i ≤ r− 2, then δ′i = 0, i < m, δ′m = δm + 1, and δ′i = δi, m <

i ≤ r − 2. Arguing by congruences as before we see that βi + γi = q − 1 for i < m. Thus

∑k−1

i=0
(βi + γi)q

i = qk − 1

for k ≤ m. However βm + γm 6= q − 1 and thus βm + γm + 1 is prime to q. Moreover if

r − 1 ≥ k > m

1 +
∑k−1

i=1
(βi + γi)q

i ≡ (βm + γm + 1)qm (mod qm+1).

Thus it is greater than or equal to qk if and only if it is greater than or equal to qk+1. It follows

that ν′ = ν +m and that

∑r−2

i=0
(βi + γi − δi) = −m(q − 1) +

∑r−2

i=0
(β′
i + γ′i − δ′i) = ν(q − 1) + 1.

Since βr−1 + γr−1 − δr−1 = −1 the assertion of the lemma follows.

Now let us treat part (b). In this case

∑r−1

i=0
(βi + γi)q

i =
∑r−1

i=0
δiq

i + (qr − 1)

and

1 +
∑r−2

i=0
(βi + γi)q

i =
∑r−2

i=0
δiq

i + εqr−1

with ε = δr−1 − βr−1 − γr−1 + q. Again ε is 0 or 1. If βi = γi = q − 1 for 0 ≤ i ≤ r − 2 then

ε = 1 and δi = q − 1 for 0 ≤ i ≤ r − 2. Also ν = r and

∑r−1

i=0
(βi + γi − δi) = (r − 1) (q − 1) + βr−1 + γr−1 − δr−1 = r(q − 1).

Having taken care of this case, we suppose that

∑r−2

i=0
(βi + γi)q

i < 2(qr−1 − 1).

First take ε = 0. If δ0 = 0 then 1+β0+γ0 ≡ 0 (mod q) and β0+γ0 = q−1. Thus one of them is

less than q−1. By symmetrywemay suppose it is β0. Let β
′
0 = β0 +1, β′

i = βi, 1 ≤ i ≤ r−2,

and γ′i = γi, 0 ≤ i ≤ r − 2. Since δ0 = 0

∑r−2

i=0
δiq

i ≤ qr−1 − q < qr−1 − 1
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and δ′i = δi, 0 ≤ i ≤ r − 1. Also ν = ν′ + 1 so that

∑r−1

i=0
(βi + γi − δi) =

∑r−2

i=0
(β′
i + γ′i − δ′i) − 1 + q = ν(q − 1)

as required. If δ0 > 0 take β′
i = βi and γ

′
i = γi, 0 ≤ i ≤ r− 2. Then δ′0 = δ0 − 1, δ′i = δi, 1 ≤

i ≤ r − 2. Also if k ≤ r − 1

∑k−1

i=0
(βi + γi)q

i ≡ δ0 − 1 6= −1(mod q)

and the lefthand side is greater than or equal to qk if and only if it is greater than or equal to

qk − 1. It follows that ν = ν′ + 1. Consequently

∑r−1

i=0
(βi + γi − δi) =

∑r−2

i=0
(β′
i + γ′i − δ′i) − 1 + q = ν(q − 1).

If ε = 1 take γ′i = γi and β
′
i = βi, 0 ≤ i ≤ r − 2. Then δ′i = δi, 0 ≤ i ≤ r − 2, and ν = ν′ + 1

so that ∑r−1

1=0
(βi + γi − δi) = ν′(q − 1) + (βr−1 + γr−1 − δr−1) = ν(q − 1).

Lemma 7.4

Suppose βi and γi are two periodic sequences of integers with period r. That is βi+r = βi
and γi+r = γi for all i in Z. Suppose 0 ≤ βi ≤ q − 1, 0 ≤ γi ≤ q − 1 for all i and that none of

the numbers

εk =
∑r−1

i=0
(βi+k + γi+k)q

i

is divisible by qr − 1. Let

∑r−1

i=0
(βi + γi)q

i ≡
∑r−1

i=0
δiq

i (mod qr − 1)

with 0 ≤ δi ≤ q − 1 and
∑r−1
i=0 δiq

i < qr − 1. If µ is the number of εk, 1 ≤ k ≤ r, which are

greater than or equal to qr − 1 then

∑r−1

i=0
(βi + γi − δi) = µ(q − 1).

Since ε0 ≤ 2(qr − 1) and is not divisible by qr − 1 it is less than 2(qr − 1). Thus all we

need do is show that the µ of this lemma is equal to the ν of the preceding lemma. Observe

first of all that εj ≥ qr − 1 if and only if εj ≥ qr.
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Suppose ε0 < qr. If 1 ≤ k < r

∑r−1

i=k
(βi + γi)q

i < qr

so that ∑r−1

i=k
(βi + γi)q

i−k < qr−k.

Thus, if εk ≥ qr,

qr ≤
∑r−1

i=r−k
(βi+k + γi+k) q

i +
∑r−k−1

i=0
(βi+k + γi+k)q

i

< qr−k
∑k−1

i=0
(βi + γi)q

i + qr−k

and ∑k−1

i=0
(βi + γi)q

i ≥ qk.

Conversely if 1 ≤ k < r and ∑k−1

i=0
(βi + γi)q

i ≥ qk,

then

∑r−1

i=0
(βi+k + γi+k)q

i ≥
∑r−1

i=r−k
(βi+k + γi+k)q

i

= qr−k
∑k−1

i=0
(βi + γi)q

i ≥ qr.

Thus µ = ν in this case.

Now suppose ε0 ≥ qr. If 1 ≤ k < r

∑r−1

i=k
(βi + γi)q

i ≥ qr −
∑k−1

i=0
(βi + γi)q

i ≥ qr − 2(qk − 1).

If ∑k−1

i=0
(βi + γi)q

i ≥ qk − 1

then

∑r−1

i=0
(βi+k + γi+k)q

i ≥
∑r−1

i=r−k
(βi+k + γi+k)q

i +
∑r−k−1

i=0
(βi+k + γi+k)q

i

= qr−k
∑k−1

i=0
(βi + γi)q

i + q−k
∑r−1

i=k
(βi + γi)q

i

≥ qr−k(qk − 1) + qr−k − 2 + 2q−k.



Chapter 7 47

Thus εk ≥ qr − 1 and hence εk ≥ qr . Conversely if εk ≥ qr,

qr−k
∑k−1

i=0
(βi + γi)q

i =
∑r−1

i=r−k
(βi+k + γi+k)q

i

≥ qr −
∑r−k−1

i=0
(βi+k + γi+k)q

i

≥ qr − 2(qr−k − 1)

= qr − 2qr−k + 2.

Thus ∑k−1

i=0
(βi + γi)q

i ≥ qk − 1

and again µ = ν.

Lemma 7.5

Suppose q = pf is a primepower, ℓ is a positive integer, and (ℓ, q) = 1. Let ℓm ≡ 1 (mod q)

and if x is any integer let ϕ(x), with 0 ≤ ϕ(x) < q, be the remainder of x upon division by q.

If 0 ≤ β < q and if ψ(x) = ϕ(x)!

ℓβ

β!

∏ℓ−1

k=0

ψ((β − k)m)

ψ(−km)
≡ 1(mod∗p).

If ℓ = ℓ1 + uq with ℓ1 > 0 and u ≥ 0 then ℓβ ≡ ℓβ1 (mod∗p). Moreover

∏ℓ−1

k=0

ψ((β − k)m)

ψ(−km)
=

{∏ℓ1−1

k=0

ψ((β − k)m)

ψ(−km)

} {∏ℓ−1

k=ℓ1

ψ((β − k)m)

ψ(−km)

}

and ∏ℓ−1

k=ℓ1
ψ(−km) = {

∏q−1

j=0
j!}u =

∏ℓ−1

k=ℓ1
ψ((β − k)m).

Thus it is enough to prove the lemma with ℓ replaced by ℓ1. In other words we may suppose

that 0 < ℓ < q. The case ℓ = 1 is trivial and we exclude it from the following discussion.

Finally we suppose that 0 < m < q.
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Let q − 1 = rℓ + s with 0 < r and 0 ≤ s < ℓ. Arrange the integers from 0 to q − 1 into

the following array.

0 1 2 . . . . . . . l − 1
l l + 1 l + 2 . . . . . . . 2l − 1
. . .
. . .
. . β − l + 1 .
. . . β .
. . .
. . .

(r − 1)l (r − 1)l + 1 q − l . rl − 1
rl rl + 1 . . . . . rl + s

Since ℓ does not divide q, rℓ+ s = q − 1 does not lie in the last column. Also q − ℓ lies in the

column following that in which rℓ+ s lies.

We replace each number j in the above array by ϕ(jm). The resulting array, which is

written out below, has some special features which must be explained. The first column is

explained by the observation xℓm ≡ x(mod q). The other entries, apart from those at the

foot of each column, are explained by the observation that, when 1 ≤ j and xℓ+ j lies in the

first array, ϕ(x + mj) > r while 0 < ϕ(mj) + x < q + r so that ϕ(x + mj) = ϕ(mj) + x.

The position of q − 1 is explained by the relation m(q − ℓ) ≡ −mℓ ≡ q − 1(mod q). The

other entries at the feet of the columns are explained by the observation that if 1 ≤ j ≤ ℓ− 1

then ϕ(jm) > r ≥ 1 while m(q − k) = m(q − ℓ) + m(ℓ − k) ≡ ϕ((ℓ − k)m) − 1(mod q) if

1 ≤ k ≤ ℓ− 1.

0 m . . . . . . . ϕ((l − 1)m)
l m+ 1 . . . . . . . ϕ((l − 1)m) + 1
. . .
. . .
. . ϕ((β − l + 1)m) .
. . . ϕ(βm) .
. . .
. . .

r − 1 m+ r − 1 q − 1 . ϕ((l − 2 − s)m) − 1
r m+ r . . . . ϕ((l − 1)m) − 1

Suppose first of all that β < ℓ − 1. Then the numbers ϕ((β − k)m), 0 ≤ k ≤ ℓ − 1

constitute the first β + 1 together with the last ℓ − β − 1 numbers in the array. (The order of
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the numbers in the array is the order in which they appear when the array is read as though

it were a printed page.) The numbers ϕ(−km), 1 ≤ k ≤ ℓ − 1, are the last ℓ − 1 numbers of

the array, that is, the numbers after q − 1. Cancelling in the product of the lemma the terms in

numerator and denominator corresponding to the last ℓ− β − 1 terms of the array, we obtain

∏β

j=1

ϕ(jm)!

(ϕ(jm) − 1)!
=
∏β

j=1
ϕ(jm) ≡ mββ! (mod∗p)

as required.

Now take β ≥ ℓ− 1. Then the numbers β, β− 1, . . . , β− (ℓ− 1) occur as indicated in the

first array. In particular there is exactly one in each column. The numerator in the product of

the lemma is the product of the factorials of the corresponding elements of the second array.

The denominator is the product of the factorials of the elements appearing after q − 1. As

indicated t is the element lying above q − 1. Thus t is larger than any element appearing in a

column other than that of t. The product of the lemma is t! times the product of the factorials

of the other elements on the broken line divided by the factorials of the elements at the foot of

the column inwhich they lie. Thus it equals t! divided by the product of all the elements below

the broken line except those which lie directly below t. But t! is the product of all numbers

in the second array except those which lie below t. Thus the quotient is the product of all

numbers which lie above or on the broken line, that is,

∏β

j=1
ϕ(jm) ≡

∏β

j=1
jm = mβ β! (mod∗p)

as required.

Lemma 7.6

Suppose that q = pf is a prime power, that ℓ is a positive integer dividing q − 1, that

0 ≤ α1 < q − 1, that (ℓ, α1) = 1, and that

α2 =
α1

ℓ

qℓ − 1

q − 1
.

Then α2 is an integer and 0 ≤ α2 < q − 1. Moreover if

α2 = γ0 + γ1q + . . .+ γℓ−1 q
ℓ−1

with 0 ≤ γi ≤ q − 1 for 0 ≤ i ≤ ℓ− 1 then

∑ℓ−1

j=0
γj = α1 +

∑ℓ−1

j=1
j · q − 1

ℓ
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and

ℓα1

∏ℓ−1

j=0
γj ! ≡ α1!

∏ℓ−1

j=1

(
jq − 1!

ℓ

)
(mod∗p).

Certainly 0 ≤ α2 < qℓ − 1; moreover

qℓ − 1

q − 1
= 1 + q + . . .+ qℓ−1 ≡ ℓ (mod ℓ)

so that α2 is an integer. Let α1 = mℓ+ k withm ≥ 0 and 0 ≤ k < ℓ and for 0 ≤ j < ℓ let

(ℓ− 1 − j)k = ij + δjℓ

with δj ≥ 0 and 0 ≤ ij < ℓ. Clearly iℓ−1 = δℓ−1 = 0. Also (ℓ− 1)k = ℓ− k+ ℓ(k− 1) so that

i0 = ℓ−k and δ0 = k−1. If j ≥ 1 then (δj−1−δj)ℓ = k+(ij−ij−1). Since−ℓ < ij−ij−1 < ℓ

and 0 < k < ℓ the righthand side is greater than −ℓ and less than 2ℓ so that δj−1 − δj is 0 or

1. If it is 1 then k + ij ≥ ℓ and ij ≥ ℓ− k. If it is 0 then ij = ij−1 − k < ℓ− k. Recalling that

i0 = ℓ− k we see that

S = {j|1 ≤ j ≤ ℓ− 1 and δj−1 − δj = 1} = {j|0 ≤ j < ℓ and ij > ℓ− k}.

We shall prove that

γ0 = m+ i0
(q − 1)

ℓ
+ k − δ0

and

γj = m+ ij
(q − 1)

ℓ
+ δj−1 − δj 1 ≤ j < ℓ.

Since (k, ℓ) = 1 the numbers ij are distinct and it will follow immediately that

∑ℓ−1

j=0
γj = (mℓ+ k) +

∑ℓ−1

j=0
j · q − 1

ℓ
= α1 +

∑ℓ−1

j=1
j · q − 1

ℓ
.

Moreover we will have

∏ℓ−1

j=0
γj! =

{∏ℓ−1

j=0

(
m+ j

(q − 1)

ℓ

)
!

} {
m+i0

q − 1

ℓ
+k−δ0

}{∏
j∈S

(
m+ 1 + ij

(q − 1)

ℓ

)}
.

Recall that k − δ0 = 1. Dividing the first term by

∏ℓ−1

j=0

(
j · (q − 1)

ℓ

)
!
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we obtain ∏ℓ−1

j=0

∏m

n=1

(
n+ j

(q − 1)

ℓ

)
.

The product of the last two terms is

∏ℓ−1

j=ℓ−k

(
m+ 1 + j

(q − 1)

ℓ

)
.

If 1 ≤ n ≤ m and 0 ≤ j ≤ ℓ− 1 then nℓ− j < α1 < q so that the product of ℓmk and the first

of these two expressions is multiplicatively congruent to

∏ℓ−1

j=0

∏m

n=1
(nℓ− j) = (mℓ)!

Moreover, if ℓ− k ≤ j ≤ ℓ− 1, then 0 ≤ (m+ 1)ℓ− j ≤ (m+ 1)ℓ− (ℓ− k) = α1 < q and the

second of these expressions upon multiplication by ℓk becomes multiplicatively congruent to

∏ℓ−1

j=ℓ−k
((m+ 1)ℓ− j) =

∏k

j=1
(mℓ+ j).

The relations together imply the second identity of the lemma.

To verify that the γj , 0 ≤ j < ℓ, have the form asserted, we start with the relation

α2 =
qℓ − 1

q − 1
· mℓ+ k

ℓ
=
∑ℓ−1

j=0
qjm+

∑ℓ−1

j=0

qjk

ℓ
.

The second term is equal to

∑ℓ−1

j=0

{(∑j−1

i=0
qi
)

q − 1

ℓ
k

}
+ k = k +

∑ℓ−2

j=0
(ℓ− 1 − j)qj · q − 1

ℓ
· k.

Thus

α2 =

(
m+ (ℓ− 1)k · q − 1

ℓ
+ k

)
+
∑ℓ−1

j=1

(
m+ (ℓ− 1 − j)k · q − 1

ℓ

)
qj

=

(
m+ i0 ·

q − 1

ℓ
+ k − δ0

)
+
∑ℓ−1

j=1

(
m+ ij ·

q − 1

ℓ
+ δj−1 − δj

)
.

Moreoverm < q−1
ℓ
so that

0 ≤ m+ i0 ·
q − 1

ℓ
+ k − δ0 < ℓ · q − 1

ℓ
+ 1 = q
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and

0 ≤ m+ ij ·
q − 1

ℓ
+ δj−1 − δj < ℓ · q − 1

ℓ
+ 1 = q.

The required relations follow immediately.

Nowwe can state and prove the promised identities for Gaussian sums. Each of these will

amount to an assertion that a certain number in kp(q−1) is 1. To prove this we will show first

that the number is invariant under all automorphisms of kp(q−1) over k(q−1) and thus lies in

kq−1. The only prime ideals occurring in the factorization of the number, which is not a priori

an algebraic integer, into prime ideals will be divisors of p. We show that every conjugate of

the number has absolute value 1 and that it is multiplicatively congruent to 1 modulo every

divisor of p. It will follow that it is a root of unity in kq−1 and hence a (q− 1)th root of unity if

q is odd and a 2(q − 1)th root of unity if q is even. If q is odd the multiplicative congruences

imply that the number is 1. If q is even they imply that the number is ±1. To show that it is

actually 1 some supplementary discussion will be necessary.

Stickelberger’s result is directly applicable only to the normalized Gaussian sum τ(χκ).

We shall have to use the obvious relation τ(χκ,Ψκ) = χκ(β)τ(χκ) if ψκ(α) = ψ0
κ(βα). If κ is

an extension of λ and ψλ is given, we set

ψκ/λ(α) = ψλ(Sκ/λ(α))

for α in κ. If χλ is given χκ/λ is the character defined by

χκ/λ(α) = χλ(Nκ/λ(α)).

Lemma 7.7

If κ is a finite extension of the finite field and χλ and ψλ are given then

τ(χκ/λ, ψκ/λ) = {τ(χλ, ψλ)}[κ:λ].

Since χκ/λ(β) = χλ(β)[κ:λ] it will be enough to show that

τ(χκ/λ) = {τ(χλ)}[κ:λ].

Set

µ =
{τ(χλ)}[χ:λ]

τ(χκ/λ)
.
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Let λ have q = pℓ elements and let κ have pk = qf . It follows immediately from Lemma 7.1

that the absolute value of µ and all its conjugates is 1, that it lies in kp(qf−1), that it is invariant

under all automorphisms of kp(qf−1) over kqf−1, and that its only prime factors are divisors of

p. The mapping β −→ Nκ/λβ sends β to β
qf

−1
q−1 . Thus if α = α(χλ, p) andP divides p

α(χκ/λ, p) =
qf − 1

q − 1
α = α+ αq + . . .+ αqf−1.

Applying Lemmas 7.1 and 7.2, we see that

τ(χλ) ≡
̟α

α!
(mod∗P)

and

τ(χκ/λ) ≡
̟fα

(α!)f
(mod∗P).

Consequently

µ ≡ 1 (mod∗P).

Thus µ = 1 if q is odd and µ = ±1 if q is even. If χλ = 1 then χκ/λ = 1 and, from part (b) of

Lemma 7.1, µ is 1. If q = 2 then χλ = 1. Suppose then q is even and greater than 2. If χλ is

not identically 1 choose a prime r dividing the order of χλ. Set χλ = χ′
λχ

′′
λ where the order of

χ′
λ is a power of r and the order of χ

′′
λ is prime to r. The analogous decomposition of χκ/λ is

χ′
κ/λχ

′′
κ/λ. Of course χλ and χκ/λ have the same order. Define µ

′ and µ′′ in the obvious way.

According to part (f) of Lemma 7.1

µ ≡ µ′′ (mod r).

Since r does not divide 2 this implies that µ = µ′′. Thus one can show by induction on the

number of primes dividing the order of χλ that µ = 1.

Lemma 7.8

Suppose λ is a finite field with q elements, κ is a finite extension of λ, and [κ : λ] = f .

Suppose ℓ is a prime and the order of q modulo ℓ is f . Let T be a set of representatives for the

orbits of the nontrivial characters of κ∗ of order ℓ under the action of G(κ/λ) and let χλ be a

character of λ∗. If ψλ is any nontrivial character of λ

χλ(ℓ
ℓ)τ(χℓλ, ψλ)

∏
µκ∈T

τ(µκ, ψκ/λ) = τ(χλ, ψλ)
∏

µκ∈T
τ(χκ/λ µκ, ψκ/λ).
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Since the isotropy group of each point in T is trivial

χℓλ(β)
∏

µκ∈T
µκ(β) = χλ(β)

∏
µκ∈T

χκ/λ(β)µκ(β)

and we may content ourselves with showing that

χλ(ℓ
ℓ) τ(χℓλ)

∏
µκ∈T

τ(µκ) = τ(χλ)
∏

µκ∈T
τ(χκ/λ µκ).

Of course χλ(ℓ
ℓ) is the value of χλ at the element of the prime field corresponding to ℓ

ℓ. Let

µ be the quotient of the right side by the left. The characters of κ∗ of order ℓ are the characters

µkκ, 0 ≤ k < ℓ, defined by

α(µkκ,P) = k · q
f − 1

ℓ
.

Since the order of q modulo ℓ is f , if T = {µkκ|k ∈ A} every nontrivial character of order ℓ
is representable as µ

η(qik)
κ with 0 ≤ i < f and k ∈ A. η(qik) is the remainder of qik upon

division by ℓ. Thus as we already saw, T has ℓ−1
f elements. Lemma 7.1 again shows that µ

and all its conjugates have absolute value 1 and that µ is invariant under all automorphisms

of kp(qf−1) over kqf−1.

Let α = α(χλ, p) and let β = α(χℓλ, p). Then ℓα = β + ν(q − 1) with ν ≥ 0. If 0 ≤ k < ℓ

let

α(µkκ,P) = k · q
f − 1

ℓ
=
∑f−1

j=0
γkj q

j

with 0 ≤ γkj ≤ q−1. In particular, γk0 is the residue of k · q
f−1
ℓ
modulo q. Moreover if k1 ≡ qik

(modulo ℓ) then

α(µkκ,P) =
∑f−1

j=0
γk1j+i q

j .

It is understood that if j + i ≥ ℓ then γk1j+i = γk1j+i−ℓ. Thus if ϕ(x) is the remainder of x upon

division by q,

{γkj | k ∈ A, 0 ≤ j < f} =

{
ϕ

(
k · q

f − 1

ℓ

)
| 0 < k < ℓ

}
.

Certainly

α(χκ/λ µ
k
κ,P) ≡ qf − 1

q − 1
α+ k · q

f − 1

ℓ
(mod (qf − 1)).
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Let 0 ≤ k′ < ℓ and let ν + k ≡ k′ (mod ℓ). Since, by definition, ℓα = β + ν(q − 1)

qf − 1

q − 1
α+ k

qf − 1

ℓ
≡ qf − 1

ℓ
· β

q − 1
+ k′

qf − 1

ℓ
(mod (qf − 1)).

Since 0 ≤ β < q−1 the right side is nonnegative and at most qf −2. Thus it isα(χκ/λ µ
k
κ,P).

Let

α(χκ/λ µ
k
κ,P) =

∑f−1

j=0
δkj q

j

with 0 ≤ δkj ≤ q − 1. Thus δk0 is the residue of

qf − 1

ℓ
· β

q − 1
+ k′ · q

f − 1

ℓ

modulo q. Since χκ/λ is invariant under automorphisms of κ/λ

α(χκ/λ µ
k
κ,P) =

∑f−1

j=0
δk1j+i q

j

if k1 ≡ qik (mod ℓ). Since the residue of q
f−1
q−1

αmodulo q is α,

{α} ∪ {δkj | 0 ≤ j < ℓ, k ∈ A} =

{
ϕ

(
qf − 1

ℓ
· β

q − 1
+ k

qf − 1

ℓ

)
| 0 ≤ k < ℓ

}
.

Since χλ(ℓ
ℓ) ≡ ℓαℓ (mod∗P) the number µ is multiplicatively congruent modulo P to

the quotient of
̟α̟ε

α!
∏
k∈A

∏ℓ−1
j=0 δ

k
j !
, ε =

∑
k∈A

∑f−1

j=0
δkj

by

ℓβ ̟β ̟ε′

β!
∏
k∈A

∏ℓ−1
j=0 γ

k
j !
, ε′ =

∑
k∈A

∑f−1

j−0
γkj .

Since ∑f−1

j=0

(
α+ γkj

)
qj ≡

∑f−1

j=0
δkj q

j ,

we conclude from Lemma 7.4 that

fα+
∑f−1

j=0

(
γkj − δkj

)
= ρ(q − 1),
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if ρ is the number of i, 0 ≤ i < f , such that

qf − 1

q − 1
α+ α

(
µ
η(qik)
κ ,P

)
≥ qf .

Since
qf − 1

q − 1
· α+ α(µ0

κ,P) =
qf − 1

q − 1
α,

the number

(ℓ− 1)α+
∑

k∈A

∑f−1

j=0

(
γkj − δkj

)

is (q − 1) times the number of k, 0 ≤ k < ℓ, such that

qf − 1

q − 1
α+ k · q

f − 1

ℓ
=
qf − 1

q − 1

β

ℓ
+ (k + ν)

qf − 1

ℓ
≥ qf .

The number of such k is ν because ν < ℓ and

qf − 1

q − 1

β

ℓ
+ (ℓ− ν + ν)

qf − 1

ℓ
≥ 1 + qf − 1 = qf

while
qf − 1

q − 1

β

ℓ
+ (ℓ− 1)

qf − 1

ℓ
<
qf − 1

ℓ
+ (ℓ− 1)

qf − 1

ℓ
= qf − 1.

Thus ∑
k∈A

∑f−1

j=0
(γkj − δkj ) = ν(q − 1) − (ℓ− 1)α = α− β.

If ℓm ≡ 1 (mod q)

ϕ

(
k · q

f − 1

ℓ

)
= ϕ(−km)

and

ϕ

(
qf − 1

ℓ
· β

q − 1
+ k

qf − 1

ℓ

)
= ϕ((β − k)m).

It follows immediately from Lemma 7.5 that

ℓβ α!
∏

k∈A

∏f−1

j=0
δkj ! ≡ β!

∏
k∈A

∏f−1

j=0
γkj !

Thus µ = 1 if q is odd and µ = ±1 if q is even. If χλ = 1 the number µ is clearly 1. This

time too, one can apply part (f) of Lemma 7.1 and induction on the number of primes dividing

the order of χλ to show that µ = 1 if q is even.
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Lemma 7.9

Let λ be a finite field with q elements and let κ be a finite extension of λ with [κ : λ] = ℓ

where ℓ is a prime dividing q − 1. Suppose χλ is a character of λ
∗ whose restriction to the ℓth

roots of unity is not trivial and χκ is a character of κ
∗ such that χℓκ = χκ/λ. If T is the set of

nontrivial characters of λ∗ of order ℓ

χλ(ℓ)τ(χλ, ψλ)
∏

µλ∈T
τ(µλ, ψλ) = τ(χκ, ψκ/λ).

If σ ∈ G(κ/λ) define χσκ by χ
σ
κ(α) = χκ(α

σ−1

). Since χσκ/λ = χκ/λ, χ
σℓ
κ = χκ/λ and

χσ−1
κ is a character of order ℓ. If χσ−1

κ = 1 for some σ 6= 1 then it is 1 for all σ and χκ(α) = 1

if α is a (q − 1)th power, that is, if Nκ/λ(α) = 1. Consequently there is a character νλ of λ
∗

such that χκ = νκ/λ. Then ν
ℓ
λ = χλ and χλ is trivial on the ℓth roots of unity, contrary to

assumption. Thus

{χσ−1
κ | σ 6= 1} = {µκ/λ |µλ ∈ T}.

If β ∈ λ∗ and β = Nκ/λ(γ) then

χκ(β) =
∏

σ
χκ(γ

σ−1) = χκ(γ
ℓ)
∏

σ 6=1
χσ−1
κ (γ) = χλ(β)

∏
σ 6=1

µλ(β),

because µλ(β) = µκ/λ(γ), and it will be enough to show that

χλ(ℓ) τ(χλ)
∏

µλ∈T
τ(µλ) = τ(χκ).

Let µ be the quotient of the left side by the right. Thus µ is a number in Kp(q−1) and the

only primes appearing in the factorization of µ are divisors of p. Since χκ/λ is not identically

1 neither is χκ. Thus the absolute value of µ and all its conjugates is 1. Let α = α(χλ, p) and

let β = α(χκ,P)whereP divides p. Then

ℓβ ≡ α
qℓ − 1

q − 1
(mod(qℓ − 1)).

Since ℓ divides q
ℓ−1
q−1 we can write

β =
qℓ − 1

q − 1
· α
ℓ
− j · q

ℓ − 1

ℓ
.
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Since the restriction of χλ to the ℓth roots of unity is not trivial, α · q−1
ℓ 6≡ 0 (mod (q − 1)).

Thus ℓ does not divide α. For all i ≥ 0

τ
(
χq

i

κ

)
= τ(χκ).

Moreover

α
(
χq

i

κ ,P
)
≡ αℓ − 1

q − 1

α

ℓ
− j

αℓ − 1

ℓ
+ (qi − 1)

qℓ − 1

q − 1

α

ℓ
− j(qi − 1)

qℓ − 1

ℓ

≡ qℓ − 1

q − 1

α

ℓ
+

{
qi − 1

q − 1
α− j

}
qℓ − 1

ℓ
.

Since q
i−1
q−1 ≡ i (mod ℓ)we choose i so that iα ≡ j (mod ℓ); then

α(χq
i

κ ,P) ≡ qℓ − 1

q − 1

α

ℓ
(mod(qℓ − 1)).

Both sides of this congruence are nonnegative and less than qℓ − 1. Thus it is an equality and

we can assume that β = qℓ−1
q−1

· α
ℓ
. The set T consists of the characters µjλ, 1 ≤ j ≤ ℓ − 1,

defined by

α(µjλ,P) =
j

ℓ
(q − 1).

Under the automorphism z −→ zm of kp(qℓ−1) over kqℓ−1 the number µ is multiplied by

χ−1
κ (m) χλ(m)

∏
µλ∈T

µλ(m)which is 1 becausem belongs to λ. Let

β = γ0 + γ1q + . . .+ γℓ−1 q
ℓ−1

with 0 ≤ γi ≤ q − 1. Then

τ(χκ) ≡
̟ε

∏ℓ−1
j=0 γj !

(mod∗P), ε =
∑ℓ−1

j=0
γj ,

and

χλ(ℓ)τ(χλ)
∏ℓ−1

j=1
τ(µjλ) ≡

ℓα̟ε′

α!
∏ℓ−1
j=1

(
j · q−1

ℓ

)
!

(mod∗P), ε′ = α+
∑ℓ−1

j=0
j · q − 1

ℓ
.

Lemma 7.6 implies immediately that µ ≡ 1 (mod∗P). Thus µ = 1 if q is odd and µ = ±1 if q

is even. If ℓ′ is a prime divisor of q−1 different from ℓ, we writeχλ as χ
′
λχ

′′
λ where the order of
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χ′
λ is a power of ℓ

′ and the order of χ′′
λ is prime to ℓ. In a similar fashion we write χκ as χ

′
κχ

′′
κ.

The pair χ′′
λ and χ

′′
κ also satisfy the conditions of the lemma. The final assertion of Lemma 7.1

shows that, if µ′′ is defined in the same way as µ, µ = µ′′. Arguing by induction we see that it

is enough to verify that µ = 1 when the order of χλ is a power of ℓ. Applying the last part of

Lemma 7.1, again we see that there is a prime q dividing ℓ such that

τ(χλ) ≡ τ(χκ) ≡ τ(µjλ) ≡ 1 (mod q).

Since χλ(ℓ) is an ℓ
ωth root of unity for some ω,

χλ(ℓ) ≡ 1 (modq).

Thus µ ≡ 1 (modℓ) and µ = 1.
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Chapter Eight.

A Lemma of Lamprecht

Let F be a nonarchimedean local field and let ψF be a nontrivial character of F . n =

n(ψF ) is the largest integer such that ψF is trivial on P−n
F . If χF is a quasicharacter of

CF , m = m(χF ) is the smallest nonnegative integer such that χF is trivial on U
m
F . If γ inCF

is such that γOF = Pm+n
F set

∆1(χF , ψF ; γ) =

∫
UF

ψF

(
α
γ

)
χ−1
F (α)dα

∣∣∫
UF

ψF

(
α
γ

)
χ−1
F (α)dα

∣∣
.

Then

∆(χF , ψF ) = χF (γ)∆1(χF , ψF , γ).

As suggested by Hasse [8], we shall, in the proofs, of the main lemmas, make extensive

use of the following lemma which is central to the paper [10] of Lamprecht.

Lemma 8.1

(a) Ifm = m(χF ) = 2dwith d integral and positive there is a unit β in OF such that

ψF

(
βx

γ

)
= χF (1 + x)

for all x inPd
F . For any such β

∆1(χF , ψF ; γ) = ψF

(
β

γ

)
χ−1
F (β).

(b) Ifm = m(χF ) = 2d+ 1with d integral and positive there is a unit β inOF such that, for

all x inPd+1
F ,

ψF

(
βx

γ

)
= χF (1 + x).

For any such β, ∆1(χF , ψF ; γ) is equal to

ψF

(
β

γ

)
χ−1
F (β)

∫
OF /PF

ψF

(
δβx
γ

)
χ−1
F (1 + δx)dx

∣∣∫
OF /PF

ψF

(
δβx
γ

)
χ−1
F (1 + δx)dx

∣∣
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if δOF = Pd
F .

Letm = 2d+ ε with ε = 0 in case (a) and ε = 1 in case (b). The function ψF

(
xy
γ

)
, x ∈

OF , y ∈ Pd+ε
F can be regarded as a function on

OF /P
d
F × Pd+ε

F /Pm
F .

For fixed x it is a character of Pd+ε
F /Pm

F which is trivial if and only if x ∈ Pd
F and for fixed y

it is a character of OF /P
d
F which is trivial if and only if y ∈ Pm

F . Thus it defines a duality of

OF /P
d
F andPd+ε

F /Pm
F . The existence of a β such that

χF (1 + x) = ψF

(
βx

γ

)

for x inPd+ε
F follows immediately from the relation

χF (1 + x)χF (1 + y) = χF (1 + x+ y)

which is valid for x inPd+ε
F . The number β must be a unit because χF (1+x) is different from

1 for some x inPm−1
F .

In case (a) ∫

UF

ψF

(
α

γ

)
χ−1
F (α)dα

is equal to
∫

UF /Ud
F

ψF

(
α

γ

)
χ−1
F (α)

{∫

Pd
F

ψF

(
(α− β)x

γ

)
dx

}
dα.

The main integral is 1 or 0 according as α− β does or does not lie inPd
F . Thus this expression

is equal to

ψF

(
β

γ

)
χ−1
F (β) [UF : UdF ]−1.

The first part of the lemma follows.

In case (b) ∫

UF

ψF

(
α

γ

)
χ−1
F (α)dα

is equal to
∫

UF /U
d+1
F

ψF

(
α

γ

)
χ−1
F (α)

{∫

P
d+1
F

ψF

(
(α− β)x

γ

)
dx

}
dα.



Chapter 8 62

The inner integral is 0 unless α− β lies in PdF when it is 1. Thus this expression is equal to

ψF

(
β

γ

)
χ−1
F (β) [UF : UdF ]−1

∫

OF /PF

ψF

(
δβx

γ

)
χ−1
F (1 + δx)dx.

The second part of the lemma follows.

The number β is only determined moduloPd
F . When applying the lemma we shall, after

choosing β, set

∆2(χF , ψF ; γ) = ψF

(
β

γ

)
χ−1
F (β)

and then define∆3(χF , ψF ; γ), which will be 1 whenm is even, by the equation,

∆1(χF , ψF ; γ) = ∆2(χF , ψF ; γ) ∆3(χF , ψF ; γ).

When we need to make the relation between β and χF explicit we write β as β(χF ). To be of

any use to us this lemma must be supplemented by some other observations.

If K is a finite Galois extension of F any quasicharacter χF of CF determines a one

dimensional representation ofWK/F whose restriction toCK is a quasicharacter χK/F ofCK .

The character χK/F may be defined directly by

χK/F (α) = χF (NK/Fα).

More generally, if E is any finite separable extension of F we define χE/F by

χE/F (α) = χF (NE/Fα).

To apply the lemma of Lamprecht we shall need to know, in some special cases, the relation

between β(χF ) and β(χE/F ).

Suppose m is a positive integer and m = 2d + ε where ε is 0 or 1 and d is a positive

integer. Letm′ = ψE/F (m− 1) + 1 and letm′ = 2d′ + ε′ where ε′ is 0 or 1 and d′ is a positive

integer.* Since ψE/F is convex

ψE/F

(
m− 1

2

)
≤ 1

2
ψE/F (m− 1) +

1

2
ψE/F (0) =

1

2
(m′ − 1) < d′ + ε′

* We are here dealing not with an additive character, but with the function of Chapter 6!
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and

d′ + ε′ = ψE/F (u)

with u > m−1
2 . Since the least integer greater than

m−1
2 is d+ ε, Lemma 6.6 implies that

NE/F

(
Ud

′+ε′

E

)
≤ UuF ≤ Ud+εF .

In other words, if x ∈ Pd′+ε′

E then

NE/F (1 + x) − 1 ∈ Pd+ε
F .

Lemma 6.6 also implies that

NE/F (1 + x) − 1 ∈ Pm
F

if x ∈ Pm′

E . If x ∈ Pd′+ε′

E and y ∈ Pm′

E then

NE/F (1 + x+ y) − 1 = NE/F (1 + x)NE/F

(
1 +

y

1 + x

)
− 1

is congruent to

NE/F (1 + x) − 1

moduloPm
F . Thus if x ∈ Pd′+ε′

E and y ∈ Pd′+ε”
E so that xy ∈ Pm′

E , then

NE/F (1 + x+ y) − 1 ≡ NE/F (1 + x+ y + xy) − 1 (modPm
F ).

The right side is

NE/F (1 + x)NE/F (1 + y) − 1,

which equals

{NE/F (1 + x) − 1} + {NE/F (1 + y) − 1} + {(NE/F (1 + x) − 1) (NE/F (1 + y) − 1)}

and this is congruent to

{NE/F (1 + x) − 1} + {NE/F (1 + y) − 1}

moduloPm
F . Thus the map

PE/F : x −→ NE/F (1 + x) − 1
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is a homomorphism fromPd′+ε′

E /Pm′

E toPd+ε
F /Pm

F . If E ⊆ E′ we can replace F by E, E by

E′,m bym′, andm′ by ψE′/E(m′ − 1) + 1, and define PE′/E . Since ψE′/F = ψE′/E ◦ ψE/F
and

NE′/F (1 + x) − 1 = NE/F (1 + (NE′/E(1 + x) − 1)) − 1,

the relation

PE′/F = PE/F ◦ PE′/E

is valid.

If n = n(ψF ) and n′ = n(ψE/F ), choose γF in CF so that γFOF = Pm+n
F and γE in CE

so that γEOE = Pm′+n′

E . I apologize again for the unfortunate conflict of notation. ψE/F is

on the one hand a function on {u ∈ R | u ≥ −1} and on the other a character of E. However,
warned one again, the reader should not be too inconvenienced by the conflict. Define

P ∗
E/F : OF /P

d
F −→ OE/P

d′

E

by the relation

ψF

(
xPE/F (y)

γF

)
= ψE/F

(
P ∗
E/F (x)y

γE

)
.

It will often be necessary to keep in mind the dependence of P ∗
E/F on γF and γE . Then we

shall write

P ∗
E/F (x) = P ∗

E/F (x; γE, γF ).

It is clear that

P ∗
E′/F (x; γE′ , γF ) = P ∗

E′/E(P ∗
E/F (x; γE, γF ); γE′ , γE).

Lemma 8.2

LetK/F be abelian and letG = G(K/F ). Suppose there is an integer t such thatG = Gt
whileGt+1 = {1}. Supposem ≥ t+1 andm > 1 and γF is chosen. If µF belongs to S(K/F ),

the set of characters of CF /NK/FCK , thenm ≥ m(µF ) so that for some α(µF ) in OF

µF (1 + x) = ψF

(
α(µF )x

γF

)

for all x inPd+ε
F . The element γK may be taken equal to γF and ifP

∗
K/F (β) = P ∗

K/F (β; γF , γF )

then

NK/F (P ∗
K/F (β)) ≡

∏
µF

(β + α(µF )) (modPd
F)
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for all β in OF .

If t = −1 then n(ψF ) = n(ψK/F ) and m′ = m so that γK may be taken equal to γF . If

t ≥ 0 the extension is ramified. LetP
δK/F

K be the different ofK/F . Then

n(ψK/F ) = [K : F ]n(ψF ) + δK/F .

By definition

ψK/F (m− 1) = t+ [K : F ](m− t− 1).

By Proposition 4 of paragraph IV.2 of Serre’s book δK/F = ([K : F ] − 1)(t+ 1). Thus

m∗ + n(ψK/F ) = [K : F ] (m+ n(ψF ))

and we can again take γK = γF .

Sincem(µF ) = t+ 1 we havem ≥ m(µF ) and

µF (1 + x+ y) = µF (1 + x)µF (1 + y)

for x and y in Pd+ε
F . Thus the existence of α(µF ) is assured. The last assertion of the lemma

will be proved by induction. We will need to know that if x ≡ y(modPd′

K ) then

NK/Fx ≡ NK/F y(modPd
F).

When proving this we may suppose that xOK = Pr
K with r ≤ d′ and that y

x
belongs to OK .

Then

NK/Fx−NK/F y = NK/Fx

{
1 −NK/F

(
1 +

y − x

x

)}
.

If r ≥ d there is nothing to prove. Suppose r ≤ d. If d′ − r = ψK/F (u) and s is the smallest

integer greater than or equal to u the right side belongs toPs+r
F . Since the derivative of ψK/F

is at least one everywhere ψK/F (u+ r) ≥ d′. But

d′ ≥ m′ − 1

2
=

1

2
ψK/F (m− 1) +

1

2
ψK/F (0) ≥ ψK/F

(
m− 1

2

)
.

Thus u+ r ≥ m−1
2 and s+ r ≥ d.

Suppose F ⊆ L ⊆ K and L/F is cyclic of prime order. Let H = G(K/L) and let

G = G(L/F ). Certainly H = Ht whileHt+1 = {1}. Since ψK/F (t) = ψK/L(t) = t, we have

ψL/F (t) = t and, by Herbrand’s theorem,

Gt = G
t
= HGt/H = G/H = G.
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Moreover t+ 1 = ψL/F (t+ δ) with δ > 0 so that

Gt+1 = G
t+δ

= HGt+δ/H = H/H = {1}.

Finally, ψL/F (m− 1)+1 ≥ t+1 so that L/F andK/L, withm replaced by ψL/F (m− 1)+ 1,

satisfy the conditions of the lemma. S(L/F ) is a subgroup of S(K/F ). If µF and νF belong

to S(K/F ) then µL/F = νL/F if and only if µF and νF belong to the same coset of S(L/F ).

Take S to be a set of representatives for these cosets; then

S(K/L) = {µL/F |µF |µF ∈ S}.

We take α(µF νF ) = α(µF ) + α(νF ) if µF belongs to S and νF belongs to S(L/F ). If µF
belongs to S we take α(µL/F ) to be P ∗

L/F (α(µF )). If the lemma is valid for K/L and L/F

then

NK/F (P ∗
K/F (β)) = NL/F (NK/L(P ∗

K/L(P ∗
L/F (β)))

which is congruent modulo PdF to

NL/F

(∏
µF ∈S

(P ∗
L/F (β) + P ∗

L/F (α(µF )))
)

or ∏
µF ∈S

{NL/F (P ∗
L/F (β + α(µF )))}.

This is congruent modulo PdF to
∏

µF ∈S

∏
νF∈S(L/F )

{β + α(µF ) + α(νF )}

which equals ∏
µF ∈S(K/F )

{β + α(µF )}.

Thus it is enough to prove the lemma when K/F is cyclic of prime order. In this case

more precise information is needed and the assertion of the lemma will follow immediately

from it.

Lemma 8.3

IfK/F is unramified andm ≥ 1we may take P ∗
K/F (β) = β.

According to paragraph V.2 of Serre’s book

NK/F (1 + y) − 1 ≡ SK/F (y) (modPm
F )
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if y ∈ Pd′+ε′

K . Thus PK/F (y) = SK/F (y) and

ψF

(
xPK/Fy

γF

)
= ψK/F

(
xy

γF

)
.

Lemma 8.4

Suppose K/F is abelian, totally ramified, and [K : F ] = ℓ is an odd prime. If d ≥ t+ 1

we may take P ∗
K/L(β) = β.

The relation

m′ = t+ 1 + ℓ(m− 1 − t) = ℓm− (t+ 1) (ℓ− 1)

implies thatm′ ≡ m (mod 2), ε′ = ε, and

d′ = ℓd+
ℓ− 1

2
(ε− t− 1) = d+

ℓ− 1

2
(m− t− 1).

Since
ℓ− 1

2
(m− t− 1) ≥ m− t− 1 ≥ d+ ε

we have

d′ + ε′ ≥ 2(d+ ε) ≥ m.

Moreover
2(d′ + ε′) + δK/F

ℓ
≥ m′ + δK/F

ℓ
= m

so that by Lemma 5 of paragraph V.3 of Serre’s book

NK/F (1 + x) − 1 ≡ SK/F (x) (mod Pm
F )

if x ∈ Pd′+ε′

K . The lemma follows.

Let p be the characteristic of OF /PF .

Lemma 8.5

Suppose K/F is abelian, totally ramified, and [K : F ] = ℓ is an odd prime. Suppose

t+1 ≤ m ≤ 2t+1. Choose a nontrivial character µF in S(K/F ). We may choose α = α(µF )

so that αOF = Pv
F , ifm = t+ 1 + v, so that α = NK/Fα1 for some α1 in OK , and so that

µF (1 + x) = ψF

(
αx

γF

)
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for x in Ps
F . Here s is the least integer greater than or equal to

t
2 . If ζ is a (p − 1)th root of

unity in F there is a unique integer j with 1 ≤ j ≤ p − 1 such that ζ − j lies in PF . Set

µζF = µjF . We may take α(µζF ) to be ζα. If β belongs to OF we can find a β1 in OK such that

β ≡ NK/Fβ1(modPd
F). Then

P ∗
K/F (β) ≡ β − β1

α

α1
(mod Pd′

K ).

If

µF (1 + x) = ψF

(
αx

γF

)

for x in Ps
F then, necessarily, αOF = Pv

F . Choose δ1 in OK such that δ1OK = Pv
K and set

δ = NK/F δ1. Set α = ωδ where ω is yet to be chosen. We must have

µF (1 + x) = ψF

(
ωδx

γF

)

if x ∈ Ps
F . This equation determines the unit w modulo Pr

F if r = t − s. Since any unit is

a norm modulo Pt
F we may suppose ω = NK/Fω1. Take α1 = ω2δ1. β1 exists for a similar

reason.

The number ζ − j must lie in pOF . But K/F is wildly ramified, because 2t + 1 ≥ m >

1, ℓ = p and p = SK/F (1) so that, by paragraph V.3 of Serre’s book, p belongs to Pu
F if u is

the greatest integer in
(ℓ− 1)

ℓ
(t+ 1) ≥ t+ 1

2
.

However d+ ε ≥ s so that d+ ε+ u ≥ t+ 1 and, if x belongs toPd+ε
F , (ζ − j)x lies inPt+1

F .

Thus

ψF

(
α(ζ − j)x

γF

)
= µF (1 + (ζ − j)x) = 1

and

µjF (1 + x) = µjF (1 + x) = ψF

(
jαx

γF

)
= ψF

(
ζαx

γF

)
.

Since
2s+ δK/F

ℓ
≥ t+ 1 + δK/F

ℓ
= t+ 1.

The lemmas of paragraph V.3 of Serre’s book imply that

NK/F (1 + x) ≡ 1 + SK/F (x) +NK/F (x) (modPt+1
F )
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if x belongs toPs
K and then

1 = µF (NK/F (1 + x)) = µF (1 + SK/F (x) +NK/F (x)).

As we observed d+ ε ≥ s. Moreover d+ ε ≤ t+ 1 so that

d+ ε+ δK/F

ℓ
≥ d+ ε

and SK/F (x) and NK/F (x) belong toPd+ε
F if x belongs toPd+ε

K . Thus, for such x,

ψF

(
αNK/F (x)

γF

)
= ψF

(−αSK/F (x)

γF

)
.

Again
2(d′ + ε′) + δK/F

ℓ
≥ m

so that

NK/F (1 + x) − 1 = SK/F (x) +NK/F (x) (modPm
F )

if x ∈ Pd′+ε′

K . Moreover

d′ + ε′ = d+ ε+
ℓ− 1

2
(m− t− 1) ≥ d+ ε

so that NK/F (x) and hence SK/F (x) belong toPd+ε
F . Thus

βNK/Fx ≡ αNK/F

(
β1x

α1

)
(mod Pm

F ).

But β1x/α1 belongs toPd′+ε′−v
K and

d′ + ε′ − v = d+ ε+
ℓ− 1

2
v − v ≥ d+ ε

so that

ψF

(
β PK/F (x)

γF

)
= ψF

(
β SK/F (x) + β NK/F (x)

γF

)

which equals

ψF



β SK/F (x) − αSK/F

(
β1x
α1

)

γF


 = ψK/F

((
β − αβ1

α1

)
x

γF

)
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as required.

Lemma 8.6

Suppose K/F is a wildly ramified quadratic extension, m ≥ t + 1, and m = t + 1 + v.

Let µF be the nontrivial character in S(K/F ). If β belongs to OF there is a β1 in OK and a δ

in U tF such that β ≡ δNK/Fβ1(modPd
F ). We can choose α = α(µF ) so that

µF (1 + x) = ψF

(
αδx

γF

)

if x is in Ps
F and so that α = NK/Fα1 for some α1 in OK . Here s has the same meaning as

before. Thus, if r is the integral part of t+1
2
, t+ 1 = r + s. With these choices

P ∗
K/F (β) ≡ β − β1αδ

α1

(
modPd′

K

)
.

If β = 0 the existence of δ and β1 is clear. Otherwise we can find a β1 such thatNK/Fβ1/β

is in U tF . We choose δ accordingly. Ifm = t+ 1 + v and

µF (1 + x) = ψF

(
αδx

γF

)

for x inPs
F then OFα = Pv

F . Choose η1 in OK so that OKη1 = Pv
K and set η = NK/Fη1. Set

α = ωη where ω is yet to be chosen. We must have

µF (1 + x) = ψF

(
ωηδx

γF

)

if x ∈ Ps
F . This equation determines the unit ω moduloPr

F . Since any unit is a norm modulo

Pt
F we may suppose ω = NK/Fω1. Take α1 = ω1η1.

Since the extension is quadratic

NK/F (1 + x) = 1 + SK/F (x) +NK/F (x).

Since
s+ δK/F

2
=
s+ t+ 1

2
≥ s
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both SK/F (x) and NK/F (x) are inPs
F if x belongs toPs

K and

ψF

(
αδNK/F (x)

γF

)
= ψF

(−αδSK/F (x)

γF

)
.

We havem′ = 2m− (t+ 1) and d′ = m− s, so that d′ + ε′ = m− r and d′ + ε′ − v = s. Thus

if x belongs toPd′+ε′

K

βNK/F (x) ≡ αδNK/F

(
β1x

α1

)
(modPm

F )

and β1x/α1 lies inPs
K . Consequently

ψF

(
β PK/Fx

γF

)
= ψK/F

((
β − β1

αδ

α1

)
x

γF

)

as required.

Lemma 8.7

IfK/F is a tamely ramified quadratic extension andm ≥ 2we may take P ∗
K/F (β) = β.

Notice that t + 1 = 1 so that m ≥ t + 1. In this case m′ = 2m − 1, d′ = m − 1, and

d′ + ε′ = m. If x ∈ Pd′+ε′

K

NK/F (1 + x) = 1 + SK/F (x) +NK/F (x)

is congruent to

1 + SK/F (x)

moduloPm
F . The lemma follows.

To complete the proof of Lemma 8.2 we have to show that ifK/F is cyclic of prime order

NK/F (P ∗
K/F (β)) ≡

∏
µF ∈S(K/F )

(β + α(µF )) (modPd
F).

We consider the cases discussed in the previous lemmas one by one. If the extension is

unramified we may take all the numbers α(µF ) to be 0. The congruences then reduce to the

identity βn = βn. The same is true if K/F is cyclic of odd order and d ≥ t + 1 or K/F is

quadratic and t = 0. If K/F is cyclic of odd order ℓ and t + 1 ≤ m ≤ 2t + 1 the right side

becomes

βℓ − βαℓ−1.
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If β ≡ 0 (modPd
F) both sides are congruent to 0 modulo Pd

F . Suppose β does not belong to

Pd
F and βOF = Pu

F . Then β1OK = Pu
K and

NK/F

(
β − β1

α

α2

)

is congruent to

βℓ − βαℓ−1 +
∑ℓ−1

i=1
(−1)iβℓEi

(
β1α

βα1

)

modulo Pd
F . If x ∈ K then Ei(x) is the ith elementary symmetric function of x and its

conjugates. Moreover β1α/βα1 belongs toP
(ℓ−1) (v−u)
K . If ℓ− 1 ≥ i ≥ 1

i(ℓ− 1) (v − u) + (ℓ− 1) (t+ 1)

ℓ
≥ (ℓ− 1) (v + t+ 1)

ℓ
− ℓu.

The right side is
(ℓ− 1)

ℓ
m− pu ≥ d− ℓu.

The argument of paragraph V.3 of Serre’s book shows that

NK/F

(
β − β1

α

α1

)
≡ βℓ − βαℓ−1 (modPd

F).

For a wildly ramified quadratic extension we use the notation of Lemma 8.6. The right

side of the congruence may be taken to be β2 + βαδ. The identity is again nontrivial only if

βOF = Pu
F with u < d. Then the left side may be taken to be

β2 − β2δSK/F

(
β1α

βα1

)
+ δ2αNK/Fβ1

which is congruent to

β2 + αβδ − β2δSK/F

(
β1α

βα1

)

modulo PdF . Since
v − u+ t+ 1

2
≥ m

2
− u ≥ d− u

we have

β2SK/F

(
β1α

βα1

)
≡ 0 (modPd

F).
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Suppose χF is a quasicharacter of CF , m = m(χF ), and β = β(χF ). If, as sometimes

happens,m′ = m(χK/F ) we can take β(χK/F ) = P ∗
K/F (β).

Lemma 8.8

SupposeK/F is Galois andG = G(K/F ). Suppose s ≥ 0 is an integer and Gs = {1}. If
m = m(χF ) andm > s then

m′ = ψK/F (m− 1) + 1 = m(ψK/F ).

It follows from paragraph V.6 of Serre’s book that

NK/F (U
ψK/F (v)

K ) = UvF

if v ≥ s. Thus χK/F is trivial on U
u
K if u > ψK/F (m − 1) but is not trivial on U iK if

u = ψK/F (m− 1).

We can now collect together, with one or two additional comments, the previous results

in a form which will be useful in the proof of the first main lemma. We use the same notation.

Lemma 8.9

SupposeK/F is a cyclic extensionofprimeorder ℓ, χF is aquasicharacterofCF , m(χF ) ≥
t+ 1, m(χF ) > 1, andm(χK/F ) − 1 = ψK/F (m(χF ) − 1).

(a) If K/F is unramified we may take β(χK/F ) = β(χF ) and β(µFχF ) = β(χF ) for all µF
in S(K/F ).

(b) If ℓ is odd and d ≥ t + 1 we may take β(χK/F ) = β(χF ) and β(µFχF ) = β(χF ) for all

µF in S(K/F ).

(c) If ℓ is odd and t+ 1 ≤ m ≤ 2t+ 1 and µF is a given nontrivial character in S(K/F )we

may choose α = α(µF ) = NK/Fα1 as in Lemma 8.5 and β = β(χF ) = NK/Fβ1 for some

β1 in UK . Then we may choose

β(χK/F ) = β − β1
α

α1

and

β(µζFχF ) = NK/F (β1 + ζα1).
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(d) If ℓ is 2 and K/F is wildly ramified we choose α = α(µF ) as in Lemma 8.6. We may

choose β = β(χF ) in the form δNK/Fβ1 with δ in U
t
F . Then we may choose

β(χK/F ) = β − β1
αδ

α1

and

β(µFχF ) = β + αδ.

(e) If ℓ is 2 andK/F is tamely ramified we may take β(χK/F ) = β(µFχF ) = β(χF ).

Only part (c) requires any further verification. It must be shown that

NK/F (β1 + ζα1) ≡ β + ζα (modPd
F).

The left side is congruent to

βNK/F

(
1 +

ζα1

β1

)
.

All we need do is show that

NK/F

(
1 +

ζα1

β1

)
≡ 1 +

ζα

β
(modPd

F).

The right side is

1 +NK/F

(
ζα1

β1

)
.

According to paragraph V.3 of Serre’s book the congruence will be satisfied if

v + (ℓ− 1) (t+ 1)

ℓ
≥ d.

But t+ 1 = d+ x with x ≥ 0 so that d+ x+ v = 2d+ ε and v = d+ ε− x. Thus

v + (ℓ− 1) (t+ 1)

ℓ
=
d+ ε− x+ (ℓ− 1) (d+ x)

ℓ
= d+

ε+ (ℓ− 2)x

ℓ
≥ d.

The preceding discussion has now to be repeated with different hypotheses and different,

but similar, conclusions.

Lemma 8.10
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Suppose K/F is abelian and G = G(K/F ). Suppose there is a t ≥ 0 such that G = Gt
whileGt+1 = {1}. If 2 ≤ m ≤ t+1 thenm′ = ψK/F (m−1)+1 is justm. Let t+1 = m+v, let

δ be such that δOF = P
t+1+n(ψF )
F , let ε1 inOK be such that ε1OK = Pv

K , and let ε = NK/F ε1.

We may choose γF = δ/ε and γK = δ/ε1. Let r be the greatest integer in
t+1
2
and let

s = t+ 1 − r. If µF is a nontrivial character in S(K/F ) thenm(µF ) = t+ 1. Let

µF (1 + x) = ψF

(
β(µF )x

δ

)

for x inPs
F . Then

β
∏

µF 6=1
(βε+ β(µF )) ≡ NK/F (P ∗

K/F (β)) (modPd
F).

The relation m′ = ψK/F (m − 1) + 1 = m is an immediate consequence of the definitions.

Since the extension is totally ramified

n(ψK/F ) = [K : F ]n+ ([K : F ] − 1)(t+ 1)

if n = n(ψF ). Thus

m+ n = (t+ 1 + n) − v

and

m′ + n(ψK/F ) = [K : F ](t+ 1 + n) + (m− t− 1) = [K : F ](t+ 1 + n) − v.

Consequently γF and γK can be chosen as asserted. The results of chapter V of Serre’s book

imply thatm(µF ) = t+ 1 if µF is not trivial.

WesawwhenprovingLemma8.2 that ifx ≡ y(modPd′

K ) thenNK/Fx ≡ NK/Fy(modPd
F)

and that if F ⊆ L ⊆ K both L/F and K/L satisfy the conditions of the lemma. For L/F, ε1
is replaced by NK/Lε1 and, for K/L, ε is replaced by NK/Lε1. Take Q

∗
L/F to be P

∗
L/F in the

special case thatm = t+ 1 and ε1 = 1. Then

ψL/F

(
NK/L(ε1)xP

∗
L/F (β)

δ

)
= ψF

(
εPL/F (x)β

δ

)

by definition. The right side is equal to

ψL/F

(
xQ∗

L/F (εβ)

δ

)
.
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Thus

Q∗
L/F (εβ) ≡ NK/L(ε1)P

∗
L/F (β) (modPs

L).

If µF belongs to S(K/F ) but not to S(L/F ) then m(µL/F ) = m(µF ) and β(µL/F ) may

be taken to be Q∗
L/F (β(µF )). Let S′ be a set of representatives for the cosets of S(L/F ) in

S(K/F )− S(L/F ) and suppose the lemma is true forK/L and L/F . Then

NK/F (P ∗
K/F (β)) = NL/F (NK/L(P ∗

K/L(P ∗
L/F (β))))

is congruent to

NL/F (P ∗
L/F (β)

∏
µF ∈S′

{NK/L(ε1)P
∗
L/F (β) +Q∗

L/F (β(µF ))})

moduloPd
F . This in turn is congruent to

NL/F (P ∗
L/F (β))

∏
µF ∈S′

NL/F (Q∗
L/F (εβ + β(µF ))).

Applying the induction hypothesis to the first part and Lemma 8.2 to the second, we see that

the whole expression is congruent to

β

{
∏

νF ∈S(L/F )
νF 6=1

(εβ + β(νF ))

} {
∏

µF ∈S′

νF ∈S(L/F)

(εβ + β(µF ) + β(νF ))

}

moduloPd
F as required.

Once again we devote a lemma to cyclic extensions of prime order.

Lemma 8.11

SupposeK/F is cyclic of prime order ℓ and 2 ≤ m ≤ t+1. Choose a nontrivial character

µF in S(K/F ). There is an α1 in UK such that if α = NK/Fα1

µF (1 + x) = ψF

(αx
δ

)

for x in PsF . If β belongs to OF there is a β1 in OK such that β ≡ NK/F (β1) (modPt
F). Then

P ∗
K/F (β) ≡ β

ε

ε1
− β1

α

α1
(mod Pd′

K ).
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Since β(µF ) is determined only moduloPs
F and s ≤ twe can take β(µF ) = NK/Fα1 for

some α1 in UK . The existence of β1 also follows as before. Since t+ 1 ≥ m

2(d′ + ε′) + (ℓ− 1) (t+ 1)

ℓ
≥ m+ (ℓ− 1) (t+ 1)

ℓ
≥ m

and

NK/F (1 + x) ≡ 1 + SK/F (x) +NK/F (x) (modPm
F )

if x belongs toPd′+ε′

K . Thus

ψF

(
εPK/F (x)β

δ

)
= ψK/F

(
εxβ

δ

)
ψF

(
NK/F (ε1x)β

δ

)
.

But d′ + ε′ + t ≥ t+ 1 so that

NK/F (ε1x)β ≡ αNK/F

(
ε1β1

α1
· x
)

(mod Pt+1
F )

Since t+ 1 = m+ v, d′ + ε′ + v ≥ s and if y = ε1β1

α1
· x then y which lies inPd′+ε′+v

K also lies

inPs
K . But

2s+ (t+ 1)(ℓ− 1)

ℓ
≥ t+ 1

so that

NK/F (1 + y) ≡ 1 + SK/F (y) +NK/F (y) (mod Pt+1
F ).

Consequently

ψF

(−αNK/F (y)

δ

)
= ψF

(
αSK/F (y)

δ

)
.

In conclusion

ψF

(
εPK/F (x)β

δ

)
= ψK/F

(
ε1
δ

(
ε

ε1
· β − α

α1
· β1

)
x

)

as required.

To complete the proof of Lemma 8.10 we have to show that whenK/F is cyclic of prime

order, ℓ

β
∏

µF 6=1
(βε+ β(µF )) ≡ NK/F (P ∗

K/F (β)) (mod Pd
F)

Since 2 ≤ m ≤ t + 1 the extension is wildly ramified, ℓ = p, and once the character µF is

chosen as in the previous lemma we can define µζF as in Lemma 8.5. The left side is congruent

to

β
(
βℓ−1εℓ−1 + (−1)ℓαℓ−1

)
.
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If β ∈ Pd
F this is congruent to 0 and so is the right side. Suppose βOF = Pu

F with u < d. The

right side is congruent to

NK/F

(
β
ε

ε1
− β1

α

α1

)
≡ βαℓ−1NK/F

(
β

β1

α1

α

ε

ε1
− 1

)
.

Since
(ℓ− 1)(u+ v) + (ℓ− 1)(t+ 1)

ℓ
≥ ℓ− 1

ℓ
· (t+ 1) ≥ t+ 1

2
≥ d

this is congruent to

βαℓ−1

{
NK/F

(
β

β1

α1

α

ε

ε1

)
+ (−1)ℓ

}
. (8.1)

Since

βNK/F
(
β−1

1

)
≡ 1 (mod Pt−u

F ).

We see that

βℓ+1NK/Fβ
−1
1 ≡ βℓ(mod Pt

F)

and that the expression (8.1) is congruent to

βℓεℓ−1 + (−1)ℓβαℓ−1

moduloPd
F .

Lemma 8.12

SupposeK/F is abelian andG = G(K/F ). Suppose there is an integer t such thatG = Gt
while Gt+1 = {1}. Let χF be a quasicharacter of CF and suppose 2 ≤ m(χF ) ≤ t + 1. If

m(χF ) < t+ 1 thenm(χK/F ) = m(χF ). Ifm(χF ) = t+ 1 thenm(µFχF ) < t + 1 for some

µF in S(K/F ) if and only ifm(χK/F ) < m(χF ).

It follows immediately from Lemma 6.7 that if χF is any quasicharacter ofCF andE any

finite separable extension of F then

m(χE/F ) − 1 ≤ ψE/F (m(χF ) − 1).

In the particular case under consideration Lemma 6.10 shows that ifm = m(χF ) ≤ t then

NK/F : Um−1
K /U tK −→ Um−1

F /U tF
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is an isomorphism. Thus χK/F (α)will be different from 1 for some α in Um−1
K andm(χK/F )

will be at leastm. Ifm(χF ) = t+ 1 thenm(µFχF ) is less than t+ 1 for some µF in S(K/F )

if and only if χF is trivial on the image of U
t
K/U

t+1
K in U tF /U

t+1
F . This is so if and only if

m(χK/F ) ≤ t.

We shall need the following lemma in the proof of the first main lemma.

Lemma 8.13

SupposeK/F is cyclic of prime order, χF is a quasicharacter of CF withm(χF ) ≤ t+ 1,

and m(χK/F ) = m(χF ). Choose α, α1, ε, ε1 in Lemma 8.11. We may choose β = β(χF ) =

NK/Fβ1 with β1 in UK and we may choose

β(χK/F ) = β
ε

ε1
− β1

α

α1
.

Moreoverm(µζFχF ) = t+ 1 and we may take

β(µζFχF ) = NK/F (ζα1 + ε1β1).

Since β(χF ) is determined only modulo Pd
F and d ≤ t the existence of β1 is clear. It is

also clear thatm(µζFχF ) = t+ 1. The elements β(χF ), β(χK/F ), and β(µζFχF ) are to satisfy

the following conditions:

(i) If x is inPd
F

χF (1 + x) = ψF

(
εβ(χF )x

δ

)
.

(ii) If x is inPd′

K

χK/F (1 + x) = ψK/F

(
ε1β(χK/F )x

δ

)
.

(iii) If x is inPs
F

µζF (1 + x)χF (1 + x) = ψF

(
β(µζFχF )x

δ

)
.

We have already shown that β(χK/F )may be taken to be

β
ε

ε1
− β1

α

α1
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β(µζFχF )must be congruent to ζα+ εβ moduloPr
F

NK/F (ζα1 + ε1β1) = ζαNK/F

(
1 +

ε1β1

ζα1

)
.

Since
ν + (ℓ− 1)(t+ 1)

ℓ
≥ ℓ− 1

ℓ
(t+ 1) ≥ r.

The right side is congruent to

ζα

{
1 +NK/F

(
ε1β1

ζα1

)}
= ζα+ εβ

moduloPr
F .

∗

∗(1998) The manuscript of Chapter 8 ends here.
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Chapter Nine.

A Lemma of Hasse

Let λ ⊆ κ be two finite fields and letG = G(κ/λ). If x ∈ κ set

ωκ/λ(x) =
∑

xσ1xσ2

where the sum is taken over all unordered pairs of distinct elements ofG. It is clear that

ωκ/λ(x+ y) = ωκ/λ(x) + ωκ/λ(y) + Sκ/λ(x)Sκ/λ(y) − Sκ/λ(xy).

One readily verifies also that if λ ≤ η ≤ κ then

ωκ/λ(x) = ωη/λ(Sκ/η(x)) + Sη/λ (ωκ/η(x)).

Suppose ψλ is a nontrivial character of λ and ϕλ is a nowhere vanishing function on λ

satisfying the identity

ϕλ(x+ y) = ϕλ(x)ϕλ(y)ψλ(xy).

Define ϕκ/λ on κ by

ϕκ/λ(x) = ϕλ(Sκ/λ(x))ψλ(−ωκ/λ(x)).

Then ϕκ/λ(x+ y) is equal to

ϕλ(Sκ/λ(x+ y))ψλ (−ωκ/λ(x) − ωκ/λ(y) − Sκ/λ(x)Sκ/λ(y) + Sκ/λ(xy))

which is

ϕκ/λ(x)ϕκ/λ(y)ψκ/λ(xy).

If the fields have odd characteristic the following lemma is, basically, a special case of

Lemma 7.7. That lemma has been proven in a simple and direct manner byWeil [14]. We shall

use his method to prove the following lemma which in characteristic two, when it cannot be

reduced to the previous lemma, is due to Hasse [8].

Lemma 9.1

Let

σ(ϕλ) = −
∑

x∈λ
ϕλ(x)
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and let

σ(ϕκ/λ) = −
∑

x∈κ
ϕκ/λ(x).

Then

σ(ϕκ/λ) = σ(ϕλ)
[κ:λ].

If

P (X) = Xm − aXm−1 + bXm−2 − + . . .

is any monic polynomial with coefficients in λ setm(P ) = m and

χλ(P ) = ϕλ(a) ψλ(−b).

If the degree of the polynomial is 1, b is taken to be 0; if the degree is 0 both a and b are taken

to be 0. If

P ′(X) = Xm′ − a′ Xm′−1 + b′Xm′−2 − + . . .

then

PP ′(X) = Xm+m′ − (a+ a′)Xm+m′−1 + (b+ b′ + aa′)Xm+m′−2 − + . . .

and

χλ(PP
′) = ϕλ(a+ a′)ψλ(−b− b′ − aa′) = χλ(P )χλ(P

′).

If t is an indeterminate we introduce the formal series

Fλ(t) =
∑

χλ(P )tm(P ) =
∏

(1 − χλ(P )tm(P ))−1.

The sum is overall monic polynomials with coefficients in λ and the product is overall irre

ducible polynomials of positive degree with coefficients in λ. If r ≥ 2

∑
m(P )=r

χλ(P ) = 0

so that

Fλ(t) = 1 − σ(ϕλ)t.

If we replace λ by κ, ϕλ by ϕκ/λ, and ψλ by ψκ/λ, we can define Fκ/λ(t) in a similar way.

If k = [κ : λ] and T is the set of kth roots of unity the problem is to show that

∏
ζ∈T

Fλ(ζt) = Fκ/λ(t
k).



Chapter 9 83

Suppose P is an irreducible monic polynomial with coefficients in λ and P ′ is one of its

monic irreducible factors over κ. Let m = m(P ) and let r be the greatest common divisor of

m and k. The field obtained by adjoining the roots of P to κ has degree mkr over λ and is the

same as the field obtained by adjoining the roots of P ′ to κ. Thus m(P ′) = m
r
and P splits

into r irreducible factors over κ. We shall show that

χκ/λ(P
′) = {χλ(P )} k

r .

Thus if P ′
1, . . . , P

′
r are the factors of P and ℓ = k

r

∏r

i=1
{1 − χκ/λ(P

′
i )t

km(P ′

i )} = {1 − χλ(P )ℓtℓm}r

which equals ∏
ζ∈T

{1 − χλ(P )ζmtm}.

The necessary identity follows.

Let ν be the field obtained by adjoining a root x of P ′ to κ and let µ be the field obtained

by adjoining x to λ. If

P (X) = Xm − aXm−1 + bXm−2 . . .

then

a = Sµ/λ(x)

and

b = ωµ/λ(x).

Thus

χλ(P ) = ϕλ(Sµ/λ(x))ψλ(−ωµ/λ(x)) = ϕµ/λ(x).

Since ϕν/λ(x) is equal to

ϕλ(Sκ/λ(Sν/κ(x)))ψλ(−ωκ/λ(Sν/κ(x)) + Sκ/λ(ων/κ(x)))

which in turn equals

ϕκ/λ(Sν/κ(x))ψκ/λ(−ων/κ(x)).

We conclude that

χκ/λ(P
′) = ϕν/λ(x).

Replacing κ by µ we see that ϕν/λ(x) equals

ϕµ/λ(Sν/µ(x))ψµ/λ(−ων/µ(x)) = ϕµ/λ(ℓx)ψµ/λ

(
−ℓ (ℓ− 1)

2
x2

)
.
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One easily shows by induction that for every integer ℓ

{ϕµ/λ(x)}ℓ = ϕµ/λ(ℓx) Ψµ/λ

(
−ℓ (ℓ− 1)

2
x2

)
. (9.1)

The relation

χκ/λ(P
′) = {χλ(P )}ℓ

follows.

Taking µ = λ in the identity (9.1) we see that

{ϕλ(x)}ℓ = ϕλ(ℓx)ψλ

(
−ℓ (ℓ− 1)

2
x2

)

for every integer ℓ. Moreover {ϕλ(0)}2 = ϕλ(0) so that ϕλ(0) = 1. If the characteristic p of

λ is odd take ℓ = p to see that {ϕλ(x)}p = 1. If the characteristic is 2, take ℓ = 4 to see that

{ϕλ(x)}4 = 1. Suppose ϕ′
λ is another function on λwhich vanishes nowhere and satisfies

ϕ′
λ(x+ y) = ϕ′

λ(x)ϕ
′
λ(y)ψλ(xy).

Then ϕ′
λϕ

−1
λ is a character and for some α in λ

ϕ′
λ(x) ≡ ϕλ(x)ψλ(αx).

Of course

ϕλ(x)ψλ(αx) = ϕλ(x+ α)ϕ−1
λ (α).

Thus

σ(ϕ′
λ) = ϕ−1

λ (α) σ(ϕλ).

If a and b are two nonzero complex numbers andm is a positive integer we write a ∼m b if,

for some integer r ≥ 0,
(
a
b

)mr

= 1.

Lemma 9.2

If α ∈ λ×, the multiplicative group of λ, let ν(α) be 1 or 1 according as α is or is not a

square in λ. Suppose ψ′
λ(x) = ψλ(αx), ϕλ and ϕ

′
λ are nowhere vanishing, and

ϕλ(x+ y) = ϕλ(x)ϕλ(y)ψλ(xy)

while

ϕ′
λ(x+ y) = ϕ′

λ(x)ϕ
′
λ(y)ψ

′
λ(xy).
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Then

σ(ϕ′
λ) ∼p ν(α)σ(ϕλ).

Moreover

σ(ϕλ) ∼2p |σ(ϕλ)|.

Suppose first that p is odd. By the remarks preceding the statement of the lemma it is

enough to prove the assertions for one choice of ϕλ and ϕ
′
λ. For example we could take

ϕλ(x) = Ψλ

(
(x2)
2

)
and if α = β2 we could take ϕ′

λ(x) = ψλ

(
(βx)2

2

)
. In this case it is clear

that σ(ϕλ) = σ(ϕ′
λ). However if α is not a square, we take ϕ

′
λ(x) = ψλ

(
αx2

2

)
. Then

σ(ϕλ) + σ(ϕ′
λ) = 2

∑
x∈λ

ψλ

(x
2

)
= 0.

With this choice of ϕλ,

ϕλ(x) = ψλ

(
−x

2

2

)

so that σ(ϕλ) = ν(−1) σ(ϕλ). Moreover it is well known and easily verified that σ(ϕλ) 6= 0.

Since

{σ(ϕλ)}4 = {ν(−1)}2 |σ(ϕλ)|4 = |σ(ϕλ)|4

we have

σ(ϕλ) ∼2p |σ(ϕλ)|.

The absolute value on the right is of course the ordinary absolute value.

Suppose p is 2. Again any choice of ϕλ and ϕ
′
λ will do. In this case α is necessarily a

square. Let α = β2. We can take ϕ′
λ(x) = ϕλ(βx). Then σ(ϕ′

λ) = σ(ϕλ). It is enough to prove

the second assertion for any ψλ and any ϕλ. Let φ be the prime field and let ψφ be the unique

nontrivial additive character of φ. Take ψλ = ψλ/φ. Let ϕφ(0) = 1, ϕφ(1) = i. One verifies

by inspection that

ϕφ(x+ y) = ϕφ(x)ϕφ(y)ψφ(xy).

Take ϕλ = ϕλ/φ. Since

σ(ϕλ/φ) = {σ(ϕφ)}[λ:φ],

it is enough to verify that

σ(ϕφ) ∼2 |σ(ϕφ)|.

Since σ(ϕφ) = −1 + i, this is no problem.
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If a is a nonzero complex number set

A [a] =
a

|a| .

The following lemma explains our interest in the numbers σ(ϕλ).

Lemma 9.3

Suppose L is a nonarchimedean local field and χL is a quasicharacter of CL with

m = m(χL) = 2d+ 1, where d is a positive integer. Let ψL be a nontrivial additive character

of L and let n = n(ψL). Let γ be such that γOL = Pm+n
L and let β be a unit such that

χL(1 + x) = ψL

(
βx

γ

)

for x inPd+1
L . Choose δ so that δOL = Pd

L and let ψλ be the character of λ = OL/PL defined

by

ψλ(x) = ψL

(
βδ2x

γ

)
.

If ϕλ is defined by

ϕλ(x) = ψL

(
βδx

γ

)
χ−1
L (1 + δx)

then

ϕλ(x+ y) = ϕλ(x)ϕλ(y)ψλ(xy)

and

∆3(χL, ψL, γ) = A [−σ(ϕλ)].

In the statement of this lemma we have not distinguished, in the notation, between an

element of OL and its image in λ. This is convenient and not too ambiguous. It will be done

again. The only questionable part of the lemma is the relation

ϕλ(x+ y) = ϕλ(x)ϕλ(y)ψλ(xy).

Since

(1 + δx) (1 + δy) ≡ (1 + δx+ δy) (1 + δ2xy) (modPm
L )

we have

χ−1
L (1 + δx)χ−1

L (1 + δy) = χ−1
L (1 + δx+ δy)ψL

(
−βδ

2xy

γ

)
.
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The required relation follows immediately.

There are a few remarks which we shall need later. It is convenient to formulate them

explicitly now. We retain the notation of the previous lemma.

Lemma 9.4

Ifm(µL) < m(χL) then

∆3(µL χL, ΨL; γ) ∼p ∆3 (χL,ΨL; γ)

and ifm(µL) ≤ d we may take β(µLχL) = β(χL) and then

∆3(µLχL, ψL; γ) = ∆3(χL, ψL; γ).

In both casesm(µLχL) = m(χL). Moreover if x ∈ P2d
L

ψL

(
β(µLχL)x

γ

)
= µL(1 + x)χL(1 + x) = χL(1 + x)

which in turn equals

ψL

(
β(χL)x

γ

)
.

Thus

β(µLχL) ≡ β(χL) (modPL)

and if

ψλ(x) = ψL

(
β(χL)δ2x

γ

)

while

ψ′
λ(x) = ψL

(
β(µLχL)δ2x

γ

)

then ψλ = ψ′
λ. The first assertion of the lemma now follows from the previous two lemmas.

It is clear that we can take β(µLχL) = β(χL) ifm(µL) ≤ d. Let the common value of the two

numbers be β. Then

ψL

(
βδx

γ

)
µ−1
L (1 + δx)χ−1

L (1 + δx)

is equal to

ψL

(
βδx

γ

)
χ−1
L (1 + δx).
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We see now that the second assertion is completely trivial.

There is a corollary of this lemma which it is convenient to observe.

Lemma 9.5

Supposem(χL) = 2d+ ε where d is a positive integer and ε is 0 or 1. Ifm(µL) ≤ d and

µL is of order r then

∆(µLχL, ψL) ∼r ∆(χL, ψL).

Choose γ in the usual way so that

∆(χL, ψL) = χL(γ) ∆1(χL, ψL; γ)

and

∆(µLχL, ψL) = χL(γ)µL(γ) ∆1(µLχL, ψL; γ).

It is clear that

µL(γ) ∼r 1.

If we take

β(µLχL) = β(χL)

then, clearly,

∆2(µLχL, ψL; γ) ∼r ∆2(χL, ψL, γ).

To complete the proof of Lemma 9.5 we have only to appeal to Lemma 9.4.

Lemma 9.6

SupposeK is an unramified extension of L and χL is a quasicharacter of CL with

m = m(χL) = 2d+ 1

where d is a positive integer. LetψL be a nontrivial additive character of F and let n = n(ψL).

Suppose

χL(1 + x) = ψL

(
βx

̟m+n
L

)

for x inPd+1
L . Take

β(χL) = β(χK/L) = β.

If

ϕλ(x) = ψL

(
β̟d

Lx

̟m+n
L

)
χ−1
L (1 +̟d

Lx)
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and if

ϕκ(x) = ψK/L

(
β̟d

Lx

̟m+n
L

)
χ−1
K/L(1 +̟d

Lx)

for x in κ = 0K/PK then ϕκ = ϕκ/λ. Moreover if [K : L] = ℓ then

∆3(χK/L, ψK/L, ̟
m+n
L ) = (−1)ℓ−1{∆3(χL, ψL, ̟

m+n
L )}ℓ.

Once we prove that ϕκ = ϕκ/λ this lemma will follow from Lemmas 9.1 and 9.3. If x

belongs to K let E2(x) be the second elementary symmetric function of x and its conjugates

over L. If x belongs to OK

NK/F (1 +̟d
Lx) ≡ (1 +̟d

LSK/Lx) (1 +̟2d
L E

2(x)) (modPm
L ).

Since

E2(x) ≡ ωκ/λ(x) (modPF )

we have

ϕκ(x) = ϕλ(SK/Lx)ψλ(−ωκ/λ(x)) = ϕκ/λ(x).

Now supposeK is a ramified abelian extension of L and [K : L] = ℓ is an odd prime. Let

G = G(K/L) and suppose G = Gt whileGt+1 = {1}. Suppose

m = m(χL) = 2d+ 1

is greater than or equal to t+ 1 and

χL(1 + x) = ψL

(
βx

̟m+n
L

)

for x in Pd+1
L . Let

d′ = ℓd−
(
ℓ− 1

2

)
t

and if x belongs to OK set

ϕ′
λ(x) = ψK/L

(
β̟d′

Kx

̟m+n
L

)
χ−1
L (1 + SK/L(̟d′

Kx) +E2(̟d′

Kx)).

Suppose also that

̟L = NK/L̟K .



Chapter 9 90

The assumptions listed, we may now state the next lemma.

Lemma 9.7

If

ε = SK/L

(
̟2d′

K

̟2d
L

)

then ε is a unit. Moreover ϕ′
λ is a function on λ = OL/PL +OK/PK which satisfies

ϕ′
λ(x+ y) = ϕ′

λ(x)ϕ
′
λ(y)ψλ(εxy)

if

ψλ(u) = ψL

(
βu

̟1+n
L

)
.

If

ϕλ(x) = ψL

(
βx

̟d+1+n
L

)
χ−1
L (1 +̟d

Lx)

then

A[σ(ϕλ)]
ℓ = A[σ(ϕ′

λ)].

Since
d′ + (ℓ− 1) (t+ 1)

ℓ
≥ d

the number

SK/L (̟d′

Kx)

lies inPd
L. Moreover E

2(̟d′

Kx) is a sum of traces of elements inP2d′

K . Since

2d′ + (ℓ− 1) (t+ 1)

ℓ
= 2d+

ℓ− 1

ℓ
≥ 2d

it lies inP2d
L . If x lies inPK it lies inPm

L and

SK/L(̟d′

Kx)

lies inPd+1
L because

d′ + 1 + (ℓ− 1) (t+ 1)

ℓ
= d+ 1 +

t(ℓ− 1)

2ℓ
≥ d+ 1.
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Thus if x belongs to PK

ϕ′
λ(x) = ψL

(
β

̟m+n
L

SK/L (̟d′

Kx)

)
χ−1
L (1 + SK/L(̟d′

Kx)) = 1.

Since

E2(̟d′

K(x+ y))

is equal to

E2(̟d′

Kx) + E2(̟d′

Ky) + SK/L(̟d′

Kx)SK/L(̟d′

Ky) − SK/L(̟2d′

K xy),

the expression

1 + SK/L(̟d′

K(x+ y)) +E2(̟d′

K(x+ y))

is congruent moduloPm
L to the product of

1 + SK/L(̟d′

Kx) +E2(̟d′

Kx)

and

1 + SK/L(̟d′

Ky) +E2(̟d′

Ky)

and

1 − SK/L(̟2d′

K xy).

Thus

ϕ′
λ(x+ y) = ϕ′

λ(x)ϕ
′
λ(y)ψλ(εxy).

Since
2d′ + (ℓ− 1) (t+ 1)

ℓ
≥ 2d

the number ε is in OL. We conclude in particular that if y belongs toPK then

ϕ′
λ(x+ y) = ϕ′

λ(x).

If t = 0 let σ be a generator ofG and let̟1−σ
K = ν. In this case 2d′ = 2dℓ and

̟2d′

K

̟2d
L

=

{∏
τ∈G

̟1−τ
K

}2d

≡ νdℓ(ℓ−1) (modPL)

and

ε ≡ ℓνdℓ(ℓ−1) (modPL)
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is a unit. If t > 0

̟2d′

K ≡ ̟2d−t
L ̟t

K (mod PK)

so that

ε ≡ SK/L

(
̟t
K

̟t
L

)
(mod PL).

It is shown in paragraph V.3 of Serre’s book that the right side of this congruence is a unit.

First take p odd and let

ϕλ(x) = ψλ

(
x2

2
+ αx

)
= ψλ

(
(x+ α)2

2

)
ψλ

(−α2

2

)
.

Then

σ(ϕλ) = −ψλ
(−α2

2

) ∑
ψλ

(
(x+ α)2

2

)
= −ψλ

(−α2

2

) ∑
ψλ

(
x2

2

)
.

Making use of the calculations in the proof of Lemma 9.2 we see that

A[σ(ϕλ)]
ℓ = νλ(−1)

ℓ−1
2 ψλ

(−ℓα2

2

)
A

[
−
∑

λ
ψλ

(
x2

2

)]

of νλ is the nontrivial quadratic character of λ
×.

Since

1 + SK/L

(
̟d′

Kx
)

+ E2(̟d′

Kx)

is congruent to

{1 + SK/L(̟d′

Kx)} {1 + E2(̟d′

Kx)}

moduloPm
L the value of ϕ

′
λ(x) is

ψλ

(
(SK/Ly)

2 + 2αSK/Ly − 2E2(y)

2

)

if

y =
̟d′

K

̟d
L

x.

Thus

ϕ′
λ(x) = ψλ

(
(SK/L(y + α)2) − ℓα2

2

)
.
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Replacing x by

x− ̟d
L

̟d′
K

α

and summing we find that

σ(ϕ′
λ) = ψλ

(−ℓα2

2

) {
−
∑

x
ψλ

(
εx2

2

)}
.

Collecting this information together we see that to prove the lemma when the residual

characteristic p is odd we must show that

νλ(−1)
ℓ−1
2 = νλ(ε).

Since νdℓ(ℓ−1) is certainly a square we have to show that

νλ(−1)
ℓ−1
2 = νλ(ℓ)

when t = 0. If the field λ is of even degree over the prime field both sides are 1. If not, an

odd power of p is congruent to 1 modulo ℓ and the relation follows from the law of quadratic

reciprocity. If t > 0 then

ε ≡ SK/L

(
̟t
K

̟t
L

)
(modPL)

and we can appeal to paragraph V.3 for a proof that

ε+ up−1 ≡ 0

has a solution in λ. Thus νλ(ε) = νλ(−1) and we have to show that

νλ(−1)
p−3
2 = 1.

If p ≡ 1 (mod4) then νλ(−1) = 1 and if p ≡ 3 (mod4) the exponent is even.

Before considering the case p = 2, we remark a simple consequence of the preceding

discussion.
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Lemma 9.8

If p is odd let

ϕλ(x) = ψλ

(
x2

2
+ αx

)
.

If t = 0 and

µ = νdℓ
(ℓ−1)

2

then

ϕ′
λ

(
x

µ

)
= ψλ

(
ℓ

(
x2

2
+ αx

))

and if t > 0

ϕ′
λ(x) = ψλ

(
εx2

x

)
.

In both cases

ϕ′
λ(x) = ψλ

(
(SK/L (y + α)2) − ℓα2

2

)

with

y =
̟d′

K

̟d
L

x.

If t = 0 then y = µx. Thus if x belongs to OL, as we may assume,

ϕ′
λ

(
x

µ

)
= ψλ

(
ℓ(x+ α)2 − ℓα2

2

)
= ψλ

(
ℓ

(
x2

2
+ αx

))
.

If t > 0 then ℓ = p is odd and

d′ℓd+ (ℓ− 1) (t+ 1)

ℓ
=

1

ℓ

{
(ℓ− 1) (t− 1) − (ℓ− 1)

2
t

}
=

1

ℓ

{
(ℓ− 1) +

(ℓ− 1)

2
t

}
≥ 1

so that, if x ∈ OF ,

SK/L(y + α)2 ≡ εx2 (modPL).

Now take p = 2 so that t is necessarily 0 and again let

µ = νdℓ
(ℓ−1)

2

so that
̟d′

K

̟d
L

≡ µ (modPK).
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If x is in OL and y = x
µ then

ϕ′
λ

(
x

µ

)
= ϕ′

λ(y)

is equal to

ψL

(
ℓ x

̟d+1+n
L

)
χ−1
L

(
1 + ℓ̟d

Lx+
ℓ(ℓ− 1)

2
̟2d
L x

2

)
.

Since

1 + ℓ̟d
Lx+

ℓ(ℓ− 1)

2
̟2d
L x

2 ≡ (1 + ℓ̟d
Lx)

(
1 +

ℓ(ℓ− 1)

2
̟2d
L x

2

)

moduloPm
L we have

ϕ′
λ

(
x

µ

)
= ϕλ(ℓ x)ψλ

(−ℓ(ℓ− 1)

2
x2

)

which equals

{ϕλ(x)}ℓ.

Moreover

{ϕλ(x)}2 = ϕλ(2x)ψλ(−x2) = ψλ(−x2).

Since the characteristic is 2 there is an α 6= 0 such that

ψλ(x
2) = ψλ(αx).

Then the complex conjugate of ϕλ(x) is

ϕλ(x)ψλ(αx)

and

σ(ϕλ) = −
∑

x
ϕλ(x+ α)

which equals

−
∑

x
ϕλ(x)ϕλ(α)ψλ(αx)

is equal to

ϕλ(α) σ(ϕλ).

Consequently

A[σ(ϕλ)]
ℓ = ϕλ(α)

ℓ−1
2 A[σ(ϕλ)].

Since

{ϕλ(x)}4 = 1
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we have

A[σ(ϕ′
λ)] = A[σ(ϕλ)]

if ℓ ≡ 1 (mod4) and

A[σ(ϕ′
λ)] = A[σ(ϕλ)] = ϕ−1

λ (α) A[σ(ϕλ)]

if ℓ ≡ 3 (mod4).

We have to show that

ϕλ(α)
ℓ−1
2 = 1

if ℓ ≡ 1 (mod4) and that

ϕλ(α)
ℓ+1
2 = 1

if ℓ ≡ 3 (mod4). These relations are clear if ℓ is congruent to 1 or 7 modulo 8. In general if

ℓ ≡ 1 (mod 4)

ϕλ(α)
ℓ−1
2 = ψλ

(
− (ℓ− 1) (ℓ− 3)

8
α2

)

and if ℓ ≡ 3 (mod4)

ϕλ(α)
ℓ+1
2 = ψλ

(
− (ℓ+ 1) (ℓ− 1)

8
α2

)
.

Let φ be the prime field and let ψφ be its nontrivial additive character. Choose α1 such

that

ψλ/φ(x) = ψλ (α2
1x).

Then

ψλ(x
2) = ψλ/φ

(
x2

α2
1

)
= ψλ/φ

(
x

α1

)
= ψλ (α1x)

and α = α1. Thus

ψλ(α
2) = ψλ/φ(1).

The right side is +1 or –1 according as f = [λ : φ] is even or odd. But ℓ divides 2f − 1 so that,

by the second supplement to the law of quadratic reciprocity, f is even if ℓ is congruent to 3 or

5 modulo 8.

There is a complement to Lemma 9.7.

Lemma 9.9
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If m(χL) ≥ 2(t+ 1) choose β(χK/L) = β(χL) = β in OL. If t + 1 < m(χL) < 2(t+ 1)

choose β(χL) = β and

β(χK/L) = β − β1
α

α1

as in Lemma 8.9. Thenm(χK/L) = 2d′ + 1 and

ψK/L

(
β(χK/L)̟d′

Kx

̟m+n
L

)
χ−1
K/L (1 +̟d′

Kx)

is equal to

ψK/L

(
β ̟d′

Kx

̟m+n
L

)
χ−1
L (1 + SK/L (̟d′

Kx) + E2(̟d′

Kx)).

From Lemma 8.8 we have

m(χK/L) = 1 + t+ ℓ(m− 1 − t) = 2

(
ℓ d− (ℓ− 1)

2
t

)
+ 1

as required. If d ≥ t+ 1 then

d′ ≥ (ℓ+ 1)

2
d+

(ℓ− 1)

2
(d− t) ≥ m

because ℓ is odd. Moreover,

3d′ + (ℓ− 1) (t+ 1)

ℓ
≥ m′ + (ℓ− 1) (t+ 1)

ℓ
= m.

Consequently

NK/L(1 +̟d′

Kx) ≡ 1 + SK/L(̟d′

Kx) +E2(̟d′

Kx) (modPm
L )

and the lemma is valid ifm ≥ 2(t+ 1).

If t+ 1 < m < 2(t+ 1) we still have

3d′ + (ℓ− 1) (t+ 1)

ℓ
≥ m

so that

NK/L(1 +̟d′

Kx)
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is congruent to

1 + SK/L(̟d′

Kx) +E2(̟d′

Kx) +NK/L(̟d′

Kx)

moduloPm
L . Since d

′ ≥ d+ 1 this is congruent to

{1 + SK/L(̟d′

Kx) + E2(̟d′

Kx)} {1 +NK/L(̟d′

Kx)}

moduloPm
L . Certainly

χL(1 +NK/L(̟d′

Kx)) = ψL

(
β NK/L(̟d′

Kx)

̟m+n
L

)
.

Moreover, ifm = t+ 1 + v

d′ − v = d+
ℓ− 3

2
v ≥ d ≥ s

if s is the least integer greater than or equal to t
2 . Thus, just as in the proof of Lemma 8.5,

ψL

(
β NK/L(̟d′

Kx)

̟m+n
L

)
= ψL




αNK/L

(
β1

α1
̟d′

Kx
)

̟m+n
L





is equal to

ψL



−SK/L

(
αβ1

α1
̟d′

Kx
)

̟m+n
L


 .

Multiplying the inverse of this with

ψK/L

((
β − αβ1

α1

)
̟d′

Kx

̟m+n
L

)

we obtain

ψK/L

(
β ̟d′

Kx

̟m+n
L

)
.

The lemma follows.

Ifm = t+ 1 we may still choose

β(χK/L) = β − β1
α

α1
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as in Lemma 8.9. However the relation between ϕλ(x) and

ϕK(x) = ψK/L

(
β(χK/L)̟d′

Kx

̟m+n
L

)
χ−1
K/L (1 +̟d′

Kx)

will be more complicated. Here x = OK/PK is the same field as λ = OL/PL. We introduce

it only for notational purposes.

Becausem = t+ 1 the number t is at least 2 and

d = d′ =
t

2
.

Since
3d+ (p− 1) (t+ 1)

p
≥ t+ 1

and
d+ (p− 1) (t+ 1)

p
≥ d+ 1

the expression

NK/L(1 +̟d
Kx)

is congruent to

{1 + SK/L(̟d
Kx) +E2(̟d

Kx)} {1 +̟d
LNK/Lx}

moduloPm
L and

χL(1 + SK/L(̟d
Kx) +E2(̟d

Kx))

is equal to

ΨL

(
β SK/L(̟d

Kx) + β E2(̟d
Kx)

̟m+n
F

)
.

According to Newton’s formulae

SK/L(̟2d
K x

2) − SK/L(̟d
Kx)

2 + 2E2(̟d
Kx) = 0.

Thus

E2(̟d
Kx) ≡ − 1

2
SK/L(̟2d

K x
2) (modPmL ).

Observe that p is equal to ℓ and therefore, in the present circumstances, odd.
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Let µL be a character in S(K/L) as in Lemma 8.9(c) and let

ψL

(
αx

̟d+1+n
L

)
µ−1
L (1 +̟d

Lx) = ψλ

(
ρ
x2

2
+ τ x

)

with

ρ =
α

β
.

Certainly

µL(NK/L(1 +̟d
Kx)) = 1

if x belongs to OK . Replacing x by
β1

α1
x we see that

ψL

(
1

̟m+n
L

{
αSK/L

(
β1

α1
̟d
Kx

)
− α

2
SK/L

(
β2

1

α2
1

̟2d
K x

2

)
+NK/L

(
β1̟

d
Kx
)})

is equal to

ψλ

(
ρ
z2

2
+ τ z

)

if

z =
1

̟d
L

{
SK/L

(
β1

α1
̟d
Kx

)
− 1

2
SK/L

(
β2

1

α2
1

̟2d
K x

2

)
+NK/L

(
β1

α1
̟d
Kx

)}

which is congruent to
β

α
NK/Lx ≡ β

α
xp

moduloPL.

Let

ϕλ(x) = ψL

(
β x

̟d+1+n
L

)
χ−1
L (1 +̟d

Lx)

equal

ψλ

(
x2

2
+ σ x

)
.

If x belongs to OK

χ−1
L

(
1 +̟d

LNK/Lx
)

= ψλ

(
x2p

2
+ σ xp

)
ψL

(
−β NK/Lx
̟d+1+n
L

)
.
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We now put these facts together to find a suitable expression for ϕκ(x). We may as well

take x in OL. Then ϕκ(x) is the product of

ψK/L

(
β ̟d′

Kx

̟m+n
L

)

and

ψK/L

(
− β1α

α1

̟d
Kx

̟m+n
L

)
χ−1
L (1 +̟d

LNK/Lx)

and

ψL

(
− β

̟m+n
L

{
SK/L(̟d

Kx) −
1

2
SK/L(̟2d

K x
2)

})
.

The second of these three expressions is equal to the product of

ψλ

(
x2p

2
+ σ xp

)
ψλ

(
−ρ−1 x2p

2
− ρ−1τ xp

)

and

ψK/L

(
− αβ2

1 ̟
2d
K x

2

2α2
1̟

m+n
L

)
= ψλ

(
− ερβ2

1

2α2
1

x2

)

if

ε = SK/L

(
̟2d
K

̟2d
L

)
.

The product of the first and third is equal to

ψλ

(
ε x2

2

)
.

As proven in paragraph V.3 of Serre’s book the elements of UL congruent to

1 + (ε x+ xp)̟t
L

moduloPt+1
L are all norms, so that

ψλ(ρ x
p) = ψλ(−ρε x).

In particular

ψλ

(
− ερβ2

1

2α2
1

x2

)
= ψλ

(
ρ−1 x

2p

2

)
.∗

∗(1998) The manuscript of Chapter 9 ends with this formula.
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Chapter Eleven.

Artin–Schreier Equations

The theory of Artin–Schreier equations is central to Dwork’s proof of the second main

lemma. We first review the basic theory, which we take from Mackenzie and Whaples [11],

and then review Dwork’s rather amazing calculations. These we take from Lakkis [9].

We start with an exercise from Serre’s book [12]. Suppose F is a nonarchimedean local

field and K/F is Galois. Let p be the residual characteristic. With the convention (0) = P∞
F

we let

pOF = Pe
F .

Suppose G = G(K/F ) and σ ∈ Gi with i ≥ 1. Let

̟σ
K = ̟K(1 + a)

with a inPi
K . Let

ϕ(x) = xσ − x.

ϕ is an F linear operator onK . If x = α̟j
K belongs toP

j
K then

ϕ(x) = xσ − x = (ασ − α)̟jσ
K + α(̟jσ

K −̟K)

is congruent to

α̟j
K

(
̟
j(σ−1)
K − 1

)
= α̟j

K {(1 + a)j − 1}

moduloP
i+j+1
K . This in turn is congruent to

(α̟j
K) (ja) = jax

moduloP
i+j+1
K .

If*

ψ(x) = xσ
p − 1

then, as an operator,

ψ = (1 + ϕ)p − 1 =
∑p

k=1

(p
k

)
ϕk.

* We seem to be dealing with yet another use of the symbol ψ!
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If x belongs toP
j
K then

ϕk(x) ≡ j(j + i) . . . (j + (k − 1)i)akx (modP
j+ki+1
K )

and ψ(x) is congruent to

pjax+ j(j + i) . . . (j + (p− 1)i)apx

or to

pjax+ j(jp−1 − ip−1)apx

moduloP
i+j+e′+1
K if pOK = Pe′

K .

We deduce the following congruences:

(i) If (p− 1)i > e′ then

ψ(x) ≡ pjax (mod P
i+j+e′+1
K ).

(ii) If (p− 1)i = e′ then

ψ(x) ≡ pjax+ j(1 − ip−1)apx (modP
i+j+e′+1
K ).

(iii) If (p− 1)i < e′ then

ψ(x) ≡ j(1 − ip−1)apx (mod P
pi+j+1
K ).

Observe that if (j, p) = 1 and σ belongs toGi, with i ≥ 1, then

ϕ(x) ≡ 0 (modP
i+j+1
K )

for all x inP
j
K if and only if σ belongs toGi+1. It follows immediately that if σ belongs toG1

and i ≥ 1 then

ϕ(x) ≡ 0 (modP
i+j
K )

for all x inP
j
K only if σ belongs toGi.

If σ is replaced by σP then ϕ is replaced by ψ. If k > e′

p−1
and Gk 6= {1} then, for some

i ≥ k, Gi 6= {1} and Gi+1 = {1}. Taking (j, p) = 1 we infer from (i) that if σ belongs to Gi
but not to Gi+1 then σ

p is in Gi+e′ but not in Gi+e′+1. This is impossible. Thus Gk = {1} if
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k > e′

p−1 . IfG1 6= {1} then p divides e′ so that if (p− 1)i = e′ the number i is also divisible by

p. The congruence (ii) reduces to

ψ(x) ≡ j (pa+ ap) (modP
i+j+e′+1
K ).

Thus if σ belongs toGi its pth power σ
p lies inGi+e and is therefore 1. Consequently

pa+ ap ≡ 0 (modP
pi+1
K ).

Letting a = α̟i
K and p = β̟e

K we find that

αp + βα ≡ 0 (mod PK).

Since this congruence has only p roots the image of Θi lies in a subset of U
i
K/U

i+1
K with p

elements and Gi is either {1} or cyclic of order p.

If (p − 1) < e′ and (i, p) = 1 the congruence (iii) implies that σp belongs to Gpi+1 if σ

belongs toGi. However if (p− 1)i < e′ and p divides i it shows that σp belongs toGpi but not

toGpi+1 if σ belongs toGi but not toGi+1. Thus σ −→ σp defines an injection ofGi/Gi+1 into

Gpi/Gpi+1. IfGi/Gi+1 is not trivial neither isGpi/Gpi+1 and (p− 1)pi ≤ e′. If (p− 1)pi < e′

we can repeat the process. Thus, for some positive integer h, (p− 1)phi = e′ and Gphi is not

trivial. It is then cyclic of order p. According to Proposition IV.10 of Serre’s book those k ≥ 1

for which Gk/Gk+1 6= {1} are all congruent modulo p. In particular ifGk/Gk+1 is not trivial

for some k ≥ 1 divisible by p it is not trivial only when k is divisible by p. The preceding

discussion shows that if i is the smallest value of k ≥ 1 for whichGk/Gk+1 is nontrivial then

any σ inGi but not inGi+1 generates Gi = G1. In other words:

Lemma 11.1

IfG1 is not cyclic then (i, p) = 1 if i ≥ 1 and Gi/Gi+1 6= {1}.

Lemma 11.2

Suppose K/L is cyclic of prime degree and G = G(K/L) is equal to GL with t ≥ 1 and

(t, p) = 1. Then there is a∆ inK and an a in L such that aOL = P−t
L and

∆p − ∆ = a.

We observe first of all that [K : L]must be p and that if pOK = Pe′K then (p− 1)t < e′. If

x belongs to K the symbol O(x) will stand for an element in xOK and the symbol o(x) will

stand for an element in xPK . If

x =
∑p−1

i=0
ai̟

i
K
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with ai in F then

|x| = max
0≤i<p

|ai| |̟i
K |.

Moreover if σ is a generator ofG

xσ − 1 =
∑p−1

i=1
ai̟

i
K (̟

i(σ−1)
K − 1)

and if̟σ−1
K = (1 + a̟t

K)

|̟i(σ−1)
K − 1| = | (1 + a̟t

K)i − 1| = |̟t
K|

for 1 ≤ i < p. Thus

|xσ − x| = |̟t
K |
{

max
1≤i<p

|ai| |̟i
K |
}

≤ |̟t
K | |x|.

There is equality if a0 = 0. In particular if

y =
∑p−1

i=1
ai̟

i
K

then

xσ − 1 = yσ − 1

and

|yσ − x| = |̟t
K | |y|.

If x belongs toK let

p(x) = xp − x.

Then

p(x+ y) − p(x) − p(y) =
∑p−1

i=1

(p
i

)
xiyp−i (11.1)

Since e′ − (p− 1)t > 0 the right side is o(y) if

vK(x) ≥ −t

and

vK(y) ≥ −t.

We define vK(x) by the equation

|x| = |̟K |vK(x).
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To prove the lemma we construct a sequence Λ0, Λ1, Λ2, . . . and a sequence Θ0, Θ1, . . .

with the following properties:

(i) vK(Λn) = −t for all n ≥ 0.

(ii) If σ is a given generator ofG and ζ is a given (p− 1)th root of unity

Λσn − Λn = ζ + o(1).

(iii)

p(Λσn) − p(Λn) = Θσ
n − Θn

and

|Θσ
n − Θn| = |̟t

K | |Θn|.

(iv)

Λn+1 = Λn + Θn.

(v)

p(Λσn+1) − p(Λn+1) = o(p(Λσn) − p(Λn)).

It will follow from (iii) and (v) that {Θn} is converging to 0. Then (iv) implies that {Λn}
has a limit ∆. (i) implies that vK(∆) = −t and (v) implies that ∆p − ∆ = a belongs to F .

From (ii)

∆σ − ∆ = ζ + o(1).

To construct Λ0 let α belong to U
i
K and consider

ασ

̟σ t
K

− α

̟t
K

=
ασ − α

̟σ t
K

+
α

̟t
K

(
̟
t(1−σ)
K − 1

)
= −taα+ o(1)

if

̟σ
K = ̟K(1 + a̟t

K).

We can choose α so that

−taα = ζ + o(1).

Then we set

Λ0 =
α

̟t
K

.

We observe in passing that conditions (i) and (ii) determine Λn moduloP−t+1
K .
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Suppose Λ0, . . . ,Λn have been defined. Then

p(Λσn) = p(Λn) + p(ζ + o(1)) + o(1)

which equals

p(Λn) + p(ζ) + o(1) = p(Λn) + o(1).

Choose Θn so that

Θσ
n − Θn = p(Λσn) − p(Λn)

and

|Θσ
n − Θn| = |̟t

K | |Θn|.

Then vK(Θn) > −t and if
Λn+1 = Λn + Θn

vK(Λn+1) = −t. Moreover

Λσn+1 − Λn+1 = Λσn − Λn + o(1) = ζ + o(1).

and

p(Λn+1) = p(Λn) + p(Θn) + x

with x = o(Θn). Then

xσ − x = o(Θσ
n − Θn) = o(p(Λσn) − p(Λn)).

Also

p(Θσ
n) − p(Θn) = p(Θσ

n − Θn) + o(Θσ
n − Θn).

Since vK(Θσ
n − Θn) is positive the right side is

−(Θσ
n − Θn) + o(Θσ

n − Θn).

Thus

p(Λσn+1) − p(Λn+1)

which equals

p(Λσn) − p(Λn) − (Θσ
n − Θn) + o(p(Λσn) − p(Λn))

is

o(p(Λσn) − p(Λn)).
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Lemma 11.3

Supposer∆1 belongs toK , a belongs to L, vL(a) = −t and

∆p
1 − ∆1 = a+O(̟r

K)

with r ≥ 1. Define∆n inductively by

∆n+1 = ∆p
n − a.

Then

∆n+1 − ∆n = o(∆n − ∆n−1)

if n ≥ 2 and if r ≥ (e′ − (p− 1)t)

∆n+1 − ∆n = O(̟
r+(n−1) (e′−(p−1)t)
K ).

Moreover

lim
n→∞

∆n = ∆

exists and∆p − ∆ = a.

The last assertion is a consequence of the first. It is clear that

∆2 − ∆1 = O(̟r
K).

Suppose n ≥ 2, and

∆n − ∆n−1 = x = o(1).

Then

∆n+1 − ∆n = ∆p
n − ∆p

n−1 = (∆n−1 + x)p − ∆n−1

is equal to {∑p−1

k=1

(p
k

)
∆k
n−1 x

p−k

}
+ xp

which is o(x) because e′ − (p− 1)t > 0. If

x = O(̟
r+(n−2) (e′−(p−1)t)
K )

and r ≥ e′ − (p− 1)t it is

O(̟
r+(n−1) (e′−(p−1)t)
K ).
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The lemma has a couple of corollaries which should be remarked.

Lemma 11.4

If a is in L, vL(a) = −t, ∆p −∆ = a, and ξ is a (p− 1)th root of unity there is a number

∆ξ such that

∆ξ = ∆ + ξ +O(̟
e′−(p−1)t
K )

and

∆p
ξ − ∆ξ = a.

Relation (11.1) shows that ∆ + ξ satisfies the conditions of the previous lemma with

r = e′ − (p− 1)t.

Lemma 11.5

Suppose∆ belongs toK , b belongs to L, vL(b) = −t and

∆p − ∆ = b.

Then for any u in U t+1
L the equation

Λp − Λ = bu

has a solution inK .

Take, in Lemma 11.3, a = bu and ∆1 = ∆. Lemma 11.5 shows that if S is the set of all in

Lwith vL(a) = −t for which the equation

∆p − ∆ = a

has a solution inK then S = SU t+1
L .

Lemma 11.6

If ℓ is the integral part of t
p
the number of cosets of U t+1

L in S is

p− 1

p
[OL : PL]1+ℓ.

Fix a generator σ of G = G(K/L). If a belongs to S, ∆p − ∆ = a, and ξ is a (p − 1)th

root of unity

(ξ∆)p − ξ∆ = ξ a.
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By Lemma 11.4 there is a (p− 1)th root of unity ζ such that

∆σ = ∆ + ζ + o(1).

Then

(ξ∆)σ = ξ∆ + ξζ + o(1).

Thus if S′ is the set of a in Lwith vL(a) = −t for which

a = ∆p − ∆

with

∆σ = ∆ + 1 + o(1)

the number of cosets if U t+1
L in S is p− 1 times the number of cosets of U t+1

L in S′.

Choose∆0, with vK(∆0) = −t, for which∆p
0 − ∆0 = a0 is in F and

∆σ
0 = ∆0 + 1 + o(1).

If vK(∆) = −t, ∆p − ∆ is in F , and

∆σ = ∆ + 1 + o(1)

then, according to an earlier remark,

∆ = ∆0 + Ω0

with Ω0 = o(∆0).

Choose any Ω0 = o(∆0) and set Λ0 = ∆0 + Ω0. According to the relation (A)

p(Λ0) = p(∆0) + p(Ω0) + o(Ω0).

Since

Ωσ0 − Ω0 = O(̟t
KΩ0) = o(1)

we have

Ωσ p0 − Ωp0 =
∑p−1

i=1

(p
i

)
Ωp−i0 (Ωσ0 − Ω0)

i = o(Ωσ0 − Ω0).

Thus

p(Λ0)
σ − p(Λ0) = Ωσ0 − Ω0 + o(̟t

KΩ0)
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and p(Λ0) is in L only if

Ωσ0 − Ω0 = o(̟t
KΩ0),

that is, only if Ω0 = α0 + o(Ω0) with α0 in L. On the other hand if

Ωσ0 − Ω0 = o(̟t
KΩ0)

and we construct the sequence Λ0, Λ1, Λ2, . . . as before and let

∆ = lim
n→∞

Λn

then

∆ = Λ0 + o(Ω0).

We conclude that the number of cosets inPs
K/P

s+1
K , s > −t, containing an Ω0 such that

(∆0 + Ω0)
p − (∆0 + Ω0)

is in L is 1 if p does not divide s and is [OL : PL] if it does.

Choose∆ so that

∆p − ∆ = a

is in S′. If Ω belongs toPs
K , s > −t, but not toPs+1

K and

(∆ + Ω)p − ∆ − Ω = b

is also in S′ then a and b belong to the same coset of U t+1
L if and only if

b = a+ o(1).

If s > 0

p(∆ + Ω) = p(∆) + o(1)

but if s ≤ 0

p(∆ + Ω) = p(∆) + Ωp − Ω + o(Ω)

and

Ωp − Ω + o(Ω) = o(1)

if and only if s = 0 and

Ω = ξ + o(1)

where ξ is some (p− 1)th root of unity. The lemma follows.
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If x = {x1, . . . , xn} let Ei(x) be the ith elementary symmetric function of x1, . . . , xn and

let

Si(x) =
∑n

k=1
xik.

If Z is an indeterminate and

Q(Z) =
∑n

i=0
(−1)iEi(x)Zi =

∏n

i=1
(1 − xiZ)

then ∑∞

i=1
Si(x)Zi

is clearly −Z times the logarithmic derivative ofQ(Z). Thus

(∑∞

i=1
Si(x)Zi

) (∑n

i=0
(−1)iEi(x)Zi

)
= −

∑n

i=0
(−1)i iEi(x)Zi.

This identity which we refer to as Newton’s identity is equivalent to the formulae of Newton.

It implies in particular that

∑i−1

j=0
(−1)j Si−j(x)Ej(x) = (−1)i+1 iEi(x) (11.2)

if 1 ≤ i ≤ n. We may divide Newton’s identity byQ(Z) and then expand the righthand side

to obtain expressions for the Si(x) as polynominals in E1(x), . . . , En(x). The coefficients are

necessarily integers. To calculate themwe suppose that x1, . . . , xn lie in a field of characteristic

zero. Let

Q(Z) = 1 + P (Z).

Then

log Q(Z) = −
∑∞

k=1

(−1)k

k
(P (Z))k.

The coefficient of Zi−1 in the derivative of the right side is

−
∑

k

∑
α1+...+αn=k

α1+2α2+...+nαn=i

i(k − 1)!

α1! . . . αn!

∏n

j=1
{Ej(x)}αj .

This expression is therefore equal to −Si(x).

Suppose K/L is a ramified cyclic extension of degree p and G = G(K/L). Let G = Gt
and Gt+1 = {1}. Suppose u ≤ t, Λ is inK , and

ΛOK = P−u
K .
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We take {x1, . . . , xn} to be Λ and its conjugates under G. In this case we write

Ei(x) = EiK/L(Λ)

and

Si(x) = SiK/L(Λ).

If 1 ≤ i ≤ p− 1 and γi is any integer less than or equal to

−iu+ (p− 1) (t+ 1)

p

we have

EiK/L(Λ) ≡ 0 (modPγi

L ).

We may take

γi ≥ − iu
p

+
(p− 1)t

p
.

If iu+ t is not divisible by p this inequality may be supposed strict.

Suppose α1, . . . , αp are nonnegative integers,

∑p

i=1
αi = k

and ∑p

i=1
iαi = ℓ.

If

γ =

{∑p−1

i=1
γiαi

}
−uαp.

Then ∏p

i=1
{Ei(Λ)}αi ≡ O (̟γ

K). (11.3)

We have

γ ≥ −ℓ u
p

+
(p− 1)

p
kt− (p− 1)

p
αpt.

The inequality is strict if αi is nonzero for some i such that iu+ t is not divisible by p.

We record now some inequalities that γ satisfies in various special cases. They will be

needed later. We observe first of all that, if 1 ≤ i < p, γi is nonnegative and is positive unless

p divides iu+ t.
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(i) If ℓ = p and k = 2 then

1 + u+ γ ≥ 1 + t.

In this case αp = 0 and the left side is at least

1 +
2(p− 1)

p
t ≥ 1 + t.

If p is odd the inequality is strict.

(ii) If ℓ = p and k = 2 then

γ ≥ 0.

Moreover the inequality is strict if p is odd. This statement is of course weaker than that

of (i).

(iii) If ℓ = p, k ≥ 3, and p is odd, then

γ ≥ u+
t− u

p

αp is again 0. The left side is at least

−u+
3(p− 1)

p
t = u+

t− u

p
+

1

p
{(3p− 4)t− (2p− 1)u}.

The final term is nonnegative. The inequality is strict if u 6= t. If u = t and p does not

divide u it is again strict for then αi 6= 0 for some i < p− 1 and for such an i the number

iu+ t is not divisible by p.

(iv) If k ≤ p then

(p− 1)u+ γ ≥ u+
t− u

p

except when αp = k or αp = p− 1. We have to show that

(p− 2)u+ γ +
u− t

p
≥ 0.

The left side is at least

{
p− 2 − ℓ

p
+

1

p

}
u+

{
p− 1

p

(∑p−1

i=1
αi

)
− 1

p

}
t.
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If αp 6= k the coefficient of t is positive and we need only show that it is at least as great

as the negative of the coefficient of u or in other words that

(p− 1)

(∑p−1

i=1
αi

)
+ (p− 2)p ≥ ℓ.

This follows from the assumption that αp ≤ p− 2.

(v) If k ≤ p− 2 and αp = k then

(p− 1)u+ γ ≥ u.

In this case

γ ≥ −ku.

There are circumstances in which the estimates for γi and therefore those for γ can be

substantially improved. We will discuss them shortly.

Suppose now that K/F is a totally ramified Galois extension and G = G(K/F ) is the

direct product of two cyclic groups of order p. By Lemma 11.1 the sequence of ramification

groups is of the form

G = G−1 = G0 = G1 = . . . = Gu 6= Gu+1 = . . . = Gt 6= Gt+1 = {1}

with (u, p) = 1 and u ≡ t (mod p) or of the form

G = G−1 = G0 = G1 = . . . = Gt 6= Gt+1 = {1}

with (t, p) = 1. In the second case we take u = t. In the first case let L1 be the fixed field ofGt
and in the second let L1 be any subfield ofK of degree p over F . Let L2 be any subfield ofK

different from L1 which is also of degree p over F . LetG
i = G(K/Li) and let

Gi = Gisi
6= Gisi+1 = {1}.

Then s1 = t and s2 = u. According to Proposition IV.4 of Serre’s book

δK/F = (p2 − p) (u+ 1) + (p− 1) (t+ 1)

and

δK/L1
= (p− 1) (t+ 1)

and

δK/L2
= (p− 1) (u+ 1).
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Thus

δL1/F =
1

p
(δK/F − δK/L1

) = (p− 1) (u+ 1)

and

δL2/F =
1

p
(δK/F − δK/L2

) =
(p− 1)

p
((p− 1) (u+ 1) + t+ 1).

IfG
i
= G(Li/F ) and

G
i
= G

i

ti
6= G

i

ti+1 = {1}

then t1 = u and

t2 = u+
t− u

p
.

Lemma 11.7

Suppose∆ belongs toK, vK(∆) = −u, and

∆p − ∆ = a

belongs to L2. If Y belongs to L2 then

vL1
(SK/L1

(Y∆i)) ≥ (p− 1)t2 − it1 + vL2
(Y )

and

vL1
(EiK/L1

(Y∆)) ≥ (p− 1)t2 + i(vL2
(Y ) − t1)

for 1 ≤ i ≤ p− 1.

We show first that if θ belongs to L1 and

θ =
∑p−1

i=0
Yi∆

i

with Yi in L2 then

vL2
(Yi) ≥ it1 + vL1

(θ)

for 0 ≤ i ≤ p− 1. Since t1 = u and

vK(θ) = min
0≤i≤p−1

{vK(Yi) − iu}

the inequality is clear for i = 0. To prove it in general, we use induction one i. Suppose

0 < j ≤ p− 1 and the inequality is valid for i < j.
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Let

pOF = Pe
F .

Applying the exercise at the beginning of the paragraph to the extension L2/F we see that

pe ≥ (p− 1)t2 = (p− 1)

(
u+

t− u

p

)
.

If ξ is any (p− 1)th root of unity then, by Lemmas 11.3 and 11.4, there is a σ in G
2
such that

∆σ = ∆ + ξ +O(̟
p2e−(p−1)u
K ).

We may write

θσ − θ =
∑p−1

i=1
Yi(∆

iσ − ∆i)

as a linear combination ∑p−1

i=0
Xi∆

i

with coefficients from L2. Since

vL2
(θσ − θ) ≥ vL1

(θ) + t1

we may apply the induction assumption to see that

vL2
(Xj−1) ≥ (j − 1))t1 + vL1

(θσ − θ) ≥ jt1 + vL1
(θ).

On the other hand

∆iσ − ∆i = (∆ + ξ)i − ∆i +O(̟
p2e−(p−1)u−(i−1)u
K )

so that θσ − θ is equal to

∑p−1

i=1
Yi
∑i−1

k=0

(
i

k

)
∆kξi−k + η

with

η = O(θ̟
p2e−(p−2)u
K ).

Thus if

η =
∑p−1

i=0
Zi∆

i
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with the Zi in L2 we have

vK(Zj−1) ≥ (j − 1)u+ vK(Θ) + p2e− (p− 2)u.

But

p2e− (p− 2)u+ (j − 1)u ≥ p(p− 1)u− (p− 2)u+ (j − 1)u

which equals

((p− 1)2 + j)u ≥ pju.

Since

Xj−1 =

(∑p−1

i=j
Yi

(
i

j

)
ξi−j

)
+ Zj−1

we have

vL2

(∑p−1

i=j
Yi

(
i

j

)
ξi−j

)
≥ ju+ vL1

(θ)

for all ξ. We obtain the required estimate for vL2
(Yj) by summing over ξ.

We now show that

vL1
(SK/L1

(Y∆i)) ≥ (p− 1)t2 − it1 + vL2
(Y )

for Y in L2 and 1 ≤ i ≤ p − 1. All we need do is show that for any θ in the inverse different

of L1/F

SL1/F (θ̟
−vL2

(Y )+it1−(p−1)t2
L1

SK/L1
(Y∆i)) ∈ OF

or that if θ is in L1 and

vL1
(θ) ≥ −(p− 1) (t1 + 1) + it1 − (p− 1)t2 − vL2

(Y )

then

SL1/F (θ SK/L1
(Y∆i)) = SK/L(θ Y∆i) (11.4)

is in OF .

Let

θ =
∑p−1

j=0
Yj∆

j

with Yj in L2 for 0 ≤ j ≤ p− 1. Then

θ Y∆i =
∑p−1−i

j=0
Y Yj∆

j+i + (a+ ∆)
∑p−1

j=p−i
Y Yj∆

j+i−p.
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Since

∆p − ∆ = a

we have

EiK/L2
(∆) = 0

for 1 ≤ i < p− 1 and

Ep−1
K/L2

(∆) = (−1)p.

The relations (11.2) imply that

SK/L2
(∆i) = 0

for 1 ≤ i < p− 1 and that

SK/L2
(∆p−1) = p− 1.

Thus (11.4) is equal to

(p− 1)SL2/F (Y Yp−1−i) + SL2/F (paY Yp−i)

if i < p− 1 and to the sum of this and

SL2/F (Y Yp−1)

if i = p− 1.

We know that

vL2
(Yj) ≥ jt1 + vL1

(θ)

for each j. Thus

vL2
(Y Yp−1−i) ≥ (p− 1 − i)t1 − (p− 1) (t1 + 1) + it1 − (p− 1)t2

which is at least −(p− 1) (t2 + 1). So is

vL2
(paY Yp−1) ≥ (p− 1)t2 − t1 − (p− 1) (t1 + 1) + it1 + (p− i)t1 − (p− 1)t2.

If i = p− 1

vL2
(Y Yp−1) ≥ (p− 1)t1 − (p− 1) (t1 + 1) + (p− 1)t1 − (p− 1)t2

is also at least−(p− 1) (t2 + 1). All we need do now is observe that

SL2/F (P
−(p−1) (t2+1)
L2

) ⊆ OF .
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To complete the proof of the lemma we have to show that

vL1
(EiK/L1

(Y∆)) ≥ (p− 1)t2 + i(vL2
(Y ) − t1)

for 1 ≤ i ≤ p − 1. This has been done for i = 1; so we proceed by induction. Applying the

relations (11.2) we see that

(−1)i+1 iEiK/L1
(Y∆) =

∑i−1

j=0
(−1)j Si−jK/L1

(Y∆)EjK/L1
(Y∆).

According to the induction assumption and the first part of the lemma, with Y replaced by

Y i−j , a typical term in the sum on the right is O(̟v
L1

)with

v = (p− 1)t2 − (i− j)t1 + (i− j)vL2
(Y ) + (p− 1)t2 + j(vL2

(Y ) − t1)

if j > 0 and

v = (p− 1)t2 − it1 + ivL2
(Y )

if j = 0. The lemma follows.

We apply the second estimate with Y = 1 to improve, when Λ = ∆, L = L1, and certain

auxiliary conditions are satisfied, our estimates on the number γ appearing in (11.3).

(vi) Suppose p is odd and

ℓ = (p− 1)ν + j + 1.

If k ≥ ν + 2 and αp ≤ k − 2 then

jt1 + γ ≥ pt2.

If k ≥ ν + 2 and αp ≤ k − 1 then

jt1 + γ ≥ (p− 1)t2 + t1

and if k ≥ ν + 1 and αp ≤ k − 1

jt1 + γ ≥ (p− 1)t2 − t1.

In the present circumstances

γi ≥ (p− 1)t2 − it1
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for 1 ≤ i ≤ p− 1. Thus

jt1 + γ ≥ jt1 +
∑p−1

i=1
αi((p− 1)t2 − it1) − αpt1

which equals

jt1 + (p− 1)kt2 − ℓt1 − (p− 1)αp(t2 − t1)

or

(p− 1)kt2 − (p− 1)νt1 − t1 − (p− 1)αp(t2 − t1).

If αp ≤ k − 2, this is at least

2(p− 1)t2 + (p− 1) (k − 2 − ν)t1 − t1

which in turn is at least pt2 if p ≥ 3 and k ≥ ν + 2. If αp ≤ k − 1

γ ≥ (p− 1)t2 + (p− 1) (k − 1 − ν)t1 − t1.

The required inequalities follow.

We shall use all these estimates for γ in the next sequence of lemmas.

Lemma 11.8

If∆ is as in Lemma 11.7 and p is odd then

SL1/FNK/L1
∆ ≡ SL2/FNK/L2

∆ (mod P1+t2
F ).

The assertion of the lemma may be reformulated as

SK/L2
NK/L1

∆ ≡ SK/L1
NK/L2

∆ (modP
1+pt2
L1

).

Notice that

pt2 = t+ (p− 1)u.

Earlier we applied Newton’s identity to express SpK/L1
(∆) in terms of the elementary sym

metric functions of∆ and its conjugates. Since

pe ≥ (p− 1)t2

we can apply the estimates (iii) for γ to see that

SpK/L1
(∆)
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is congruent to

pNK/L1
∆ +

p

2

∑p−1

j=1
EjK/L1

(∆)Ep−jK/L1
(∆) + {SK/L1

(∆)}p. (11.5)

Since

∆p − ∆ = a

we have

SK/L1
(∆) = SpK/L1

(∆) − SL2/F (a).

According to Lemma 11.7 the left side belongs toP
(p−1)t2−t1
L1

. In particular it belongs toPL1
.

We need to know that it belongs to P1+t2
L1
. This is clear if p > 3 or t2 > t1. To prove it in

general we first observe that all terms but the last in (11.5) are congruent to 0 modulo P1+t2
L1
.

The middle terms are taken care of by the estimates (ii) for γ. To take care of the first we have

to show that

pe− u ≥ 1 + t2.

We know that pe ≥ (p− 1)t2 and that if t = u the inequality is strict. We need only show that

(p− 1)t2 − u ≥ t2

with a strict inequality if t 6= u. This is clear since t2 ≥ u and t2 > u if t 6= u. Thus

SK/L1
∆ ≡ (SK/L1

∆)p − SL2/F (a) (mod P1+t2
L1

).

We now need only show that

SL2/F (a) ≡ 0 (modP1+t2
L1

).

The left side belongs toP
pb
L1
if b is any integer less than or equal to

−u+ (p− 1)(t2 + 1)

p
.

We may take

b ≥ −u+ (p− 1)t2
p

which is greater than or equal to 1+t2
p except when p = 3 and t = u. In this case, which is the

one to worry about, t2 = u is prime to p and

−u+ (p− 1)(t2 + 1)

p
=
u+ 2

3
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has integral part at least u+1
3 .

We apply (11.5) again to see that

SK/L1
NK/L2

∆ = SK/L1
a = SpK/L1

(∆) − SK/L1
(∆)

is congruent to

−SK/L1
∆ + pNK/L1

∆ +
p

2

∑p−2

j=2
EjK/L1

(∆)Ep−jK/L1
(∆).

We have still to consider

SK/L2
NK/L1

∆. (11.6)

There are some general remarks to be made first. Suppose Λ belongs toK and

vK(Λ) = −u.

If x and z also belong toK and

xΛj ∈ OK

and

z ∈ P
1+t+(p2−1)u
K

then

NK/L1
(x(Λ + z)j+1) ≡ NK/L1

(xΛj+1) (modP
1+pt2
L1

).

It is enough to show that

NK/L1

(
1 +

z

Λ

)j+1

≡ 1 (mod P
1+t+pu
L1

).

This follows from Lemma V.5 of Serre’s book and the relations

1 + t+ p2u ≥ 1 + t+ pu

and
1 + t+ p2u+ (p− 1) (t+ 1)

p
= 1 + t+ pu.

According to Lemmas 11.3 and 11.4 there is for each σ 6= 1 inG2 a (p− 1)th root of unity

ξ = ξ(σ) such that

∆σ = (∆ + ξ)p − a+O (̟
2(p2e−(p−1)u)
K ).
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We have

p2e− (p− 1)u ≥ (p− 1) {(p− 1)u+ t} − (p− 1)u

which equals

(p− 1)t+ (p− 2) (p− 1)u ≥ t+ p(p− 2)u.

If t = u the first of these inequalities is strict and if t > u the last is. Thus

p2e− (p− 1)u ≥ 1 + t+ p(p− 2)u

and

2(p2e− (p− 1)u) ≥ {1 + t+ (p2 − 1)u} + {1 + t+ ((p− 1)2 − 2p)u}.

The second term is positive unless p = 3.

The expression

(∆ + ξ)p − a

is equal to

∆ + ξ +
∑p−1

i=1

(p
i

)
ξi∆p−i.

But (p
i

)
=
p(p− 1) . . . (p− i+ 1)

i!
≡ (−1)i+1 p

i
(mod p2)

and

2p2e− (p− 1)u ≥ 2(p2e− (p− 1)u)

which is, as we have just seen, at least 1 + t+ (p2 − 1)u. Thus if p > 3

∆σ ≡ (∆ + ξ) (1− Z(ξ)) (modP
1+t+(p2−1)u
K )

if

Z(ξ) =
p∆p−1

1 + ξ/∆

∑p−1

i=1

(−1)i

i

(
ξ

∆

)i
.

Expanding the denominator we obtain

Z(ξ) = p∆p−1
∑∞

i=1
ai

(
ξ

∆

)i
.

If i ≥ p− 1

ai = (−1)i
∑p−1

j=1

1

j
≡ 0 (mod p).
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Clearly

Z(ξ) = O(p∆p−2) = O(̟
p2e−(p−2)u
K ).

If p = 3

3(p2e− (p− 1)u) ≥ {1 + t+ (p2 − 1)u} + {2(1 + t) + (2p2 − 6p+ 1)u}.

The second term is at least 3u and in particular, is positive. Lemmas 11.3 and 11.4 show that

∆σ ≡ ((∆ + ξ)3 − a)3 − a (mod P
1+t+(p2−1)u
K ).

The right side equals

(∆ + ξ + 3ξ∆2 + 3ξ2∆)3 − a.

Expanding the cube and ignoring all terms inP
1+t+(p2−1)u
K we obtain

∆ + ξ + 3∆3

{
ξ

∆
+
ξ2

∆2

}
+ 9∆4ξ

which we write as

(∆ + ξ) (1− Z(ξ))

with

Z(ξ) = 3∆2
∑∞

i=1
ai

(
ξ

∆

)i
+ 9∆4

∑∞

i=1

(−ξ
∆

)i
.

Since

2(p2e− (p− 2)u) ≥ 2(p2e− (p− 1)u) + 2u ≥ 1 + t+ p2u

and

p2e− (p− 2)u ≥ 1 + t+ (p− 1)2u ≥ 1 + t+ pu

for all odd p, lemma V.5 of Serre’s book shows that

NK/L1
(x(∆ + ξ)j+1(1 − Z(ξ))j+1) ≡ {NK/L1

(x(∆ + ξ)j+1)} {1 − SK/L1
Z(ξ)}j+1

moduloP
1+t+(p−1)u
L1

if x∆j lies in OK .

The expression (11.6) is equal to

NK/L1
∆ +

∑
σ∈G2

σ 6=1

NK/L1
∆σ.
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The preceding remarks show that, if p > 3, this is congruent to

NK/L1
∆ +

∑
ξ
NK/L1

(∆ + ξ) {1− SK/L1
Z(ξ)}

moduloP
1+t+(p−1)u
L1

. Since

2p2e+ u+ (p− 1)t

p
≥ 2(p− 1)

(
u+

t− u

p

)
tu > t+ pu

we have

NK/L1
(∆ + ξ)SK/L1

(aip∆p−1−iξi) ∈ P
1+pt2
L1

if i ≥ p and we may replace SK/L1
Z(ξ) by

∑p−1

i=1
pξi SK/L1

(ai∆
p−1−i)

if p > 3. Of course

NK/L1
(∆ + ξ) =

∑p

i=0
ξ1−iEiK/L1

(∆).

Putting these observations together we see that, if p > 3, (11.6) is congruent modulo

P
1+pt2
L1

to the sum of

NK/L1
∆ + (p− 1) {SK/L1

∆ +NK/L1
∆}

and

−p(p− 1)
∑p−1

i=1
ai SK/L1

(∆p−1−i)E1+i
K/L1

(∆)

and

−p(p− 1) {pap−1 SK/L1
(∆) + ap−2 SK/L1

(∆)}.

Since

pSK/L1
(∆) ∈ P

1+pt2
L1

the last expression may be ignored as may the term in the second corresponding to i = p− 2.

Since

ap−1 =
∑p−1

j=1

1

j
≡ 0 (mod p)

and

SK/L1
(∆0) = p

and

3p2e− t2 ≥ 1 + pt2
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the sum in the second expression need only be taken from 1 to p−3. The relation (11.2) implies

that

pSp−1−i
K/L1

(∆)E1+i
K/L1

(∆) ≡ (−1)ip(p− 1 − i)Ep−1−i
K/L1

(∆)E1+i
K/L1

(∆)

moduloP
1+pt2
L1

. To complete the proof of Lemma 11.8, for p > 3, we need only show that

iai−1 + (p− i) ap−i−1 ≡ (−1)i (mod p)

for p− 2 ≥ p− i ≥ i ≥ 2. This amounts to showing that

i
∑i−1

j=1

1

j
+ (p− i)

∑p−i−1

j=1

1

j
≡ −1 (mod p).

We may replace the p− i in front of the second sum by −i. Making the obvious cancellations
we obtain

−i
∑p−i−1

j=i

1

j
≡ −1 − i

∑p−i

j=i

1

j
.

If 1
j occurs in the sum on the right so does

1
p−j .

The proof for p = 3 can proceed in exactly the same way provided we show that

9
∑

{NK/L1
(∆ + ξ)} {SK/L1

(ξi∆4−i)} (11.7)

lies inP1+3t2
L1

for i ≥ 1. Since

2p2e− u ≥ 2(p− 1)t2 − u ≥ 3t2

and one of the inequalities is strict

9NK/L1
(∆ + ξ) ∈ P1+3t2

L1
.

The expression

ξi SK/L1
(∆4−i)

is clearly integral for i ≥ 4. By, for example, Lemma 11.7 it is also integral if i is 2 or 3. Thus

i = 1 is the only case to cause a problem. If i = 1we sum over ξ to see that (11.7) equals

18{E2
K/L1

(∆)SK/L1
(∆3) + SK/L1

(∆3)}.

The terms appearing in the expression in brackets have been shown to lie in OL1
.
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There is one more lemma to be proved before we come to the basic fact of this paragraph.

If x is inK we set

g(x) = SL1/F (NK/L1
∆SK/L1

(x)) − SL2/F (NK/L2
∆SK/L2

(x))

and

h(x) = SL1/F (NK/L1
(x∆)) − SL2/F (NK/L2

(x∆)).

In the following lemma p is supposed odd.

Lemma 11.9

(a) Suppose x is in L2, 0 ≤ j ≤ p− 1, and x∆j lies inP1+t2−t1
K . If j 6= p− 2 then

g(x∆j) ≡ 0 (modP1+t2
F )

but if j = p− 2, there is an ω in L2 such that

ωx ≡ −xEp−1
K/L1

(∆) (mod P
1+pt2
K )

and

g(x∆j) ≡ −{SL2/Fx− SL2/F (xω)} (mod P1+t2
F ).

(b) Suppose x is in L2, 0 ≤ j ≤ p− 1, and x∆j lies inPK . If j 6= p− 2

h(x∆j) ≡ 0 (modP1+t2
F )

but if j = p− 2

h(x∆j) ≡ (p− 1) (1 − {Ep−1
K/L1

(∆)}p)NK/L1
x

moduloP
1+pt2
L1

.

The congruences moduloP1+t2
F are of course equivalent to congruences moduloP

1+pt2
L1

.

We start with part (a). If x belongs to OL2
then

g(x) = SK/L1
(xSK/L2

(NK/L1
∆) − pxa).

Because of the previous lemma this is congruent to

SK/L1
(xSL2/Fa− pxa) = SL2/F xSL2/Fa− pSL2/F (xa)
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moduloP1+t2
F . We saw before that

SL2/Fa ∈ P1+t2
L1

.

The same argument shows that

SL2/F (xa) ∈ P1+t2
L1

.

p belongs toP
(p−1)t2
L1

. Since the integral part of

(p− 1) (t2 + 1)

p

is at least
(p− 1)t2

p
,

so does SL2/Fx. This takes care of the case j = 0.

If 1 ≤ j = p− 1 then g(x∆j) is equal to

SL2/F (xSK/L2
(∆j NK/L1

∆)) − (p− 1)δ SL2/F (xa)

where δ = 0 if j 6= p− 1 and δ = 1 if j = p− 1. Consider

Zj = xSK/L2
(∆j NK/L1

∆).

It lies in L2 and is equal to

x∆j NK/L1
∆ +

∑
σ∈G2

σ 6=1

x∆σ j NK/L1
∆σ.

We observe first of all that if Λ is in K, vK(Λ) = −u, x is in L2, xΛ
j lies in P1+t2−t1

K ,

and z lies inP
(p−1) (pt2−t1)
K then

x(Λ + z)jNK/L1
(Λ + z) ≡ xΛjNK/L1

Λ (mod P
1+pt2
K )

provided p is greater than 3. To establish this congruence we show that

(
1 +

z

Λ

)j
NK/L1

(
1 +

z

Λ

)
≡ 1 (modP

(p−1)t2+(p+1)t1
K ).
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To show this, one has only to observe that z
Λ
and all its conjugates lie inP

(p−1)pt2−(p−2)t1
K and

that

(p− 1)pt2 − (p− 2)t1 ≥ (p− 1)t2 + ((p− 1)2 − (p− 2))t1

which equals

(p− 1)t2 + ((p− 1) (p− 2) + 1)t1 ≥ (p− 1)t2 + (p+ 1)t1

if p > 3.

Suppose for now that p > 3. Since

p2e− (p− 1)u ≥ (p− 1) (pt2 − t1).

Lemma 11.4 implies that Zj is congruent to

x∆j NK/L1
∆ +

∑
ξ
x(∆ + ξ)j NK/L1

(∆ + ξ)

moduloP
1+pt2
K

NK/L1
(∆ + ξ) = ξ

{
1 +

1

ξ
NK/L1

∆ +
∑p−1

i=1
ξ−iEiK/L1

(∆)

}
.

According to Lemma 11.7 this is congruent to

ξ +NK/L1
∆ + ξ Ep−1

K/L1
(∆)

moduloP
pt2
K . Thus if x∆

j belongs toP1+t2−t1
K

Zj ≡ x∆j NK/L1
∆ +

∑
ξ
x(∆ + ξ)j (ξ +NK/L1

∆ + ξ Ep−1
K/L1

(∆))

moduloP
1+pt2
K . We expand (∆ + ξ)j and sum over ξ to obtain

px∆j NK/L1
∆ (11.8)

if j < p− 2. If j = p− 2 we obtain

px∆j NK/L1
∆ + (p− 1)x (1 + Ep−1

K/L1
(∆))
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and if j = p− 1 we obtain

px∆j NK/L1
∆ + (p− 1)x {NK/L1

∆ + (p− 1)∆ + (p− 1)∆Ep−1
K/L1

(∆)}.

The expression (11.8) lies in

P
1+p2e−pt1
K

provided x∆j lies in PK .

p2e− pt1 ≥ p(p− 1)t2 − pt1 ≥ pt2.

Since

L2 ∩ P
1+pt2
K = P1+t2

L1

and

SL2/F (P1+t2
L2

) ⊆ P1+t2
F ,

we have

g(x∆j) ≡ 0 (modP1+t2
F )

if 1 ≤ j < p− 2 and x∆j lies inP1+t2−t1
K .

Since

Ep−1
K/L1

(∆)

lies in OL1
,

Zj = (ω − 1)x

with

ω x = Zj + x ≡ −xEp−1
K/L1

(∆) (mod P
1+pt2
K )

if j = p− 2. We may take ω in L2 and then

g(x∆j) ≡ −{SL2/Fx− SL2/F (xω)} (modP1+t2
F ).

If j = p− 1 then

g(x∆j) = SL2/F (Zj − (p− 1)xa)

and

Zj − (p− 1)xa
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is congruent to

(p− 1)x {NK/L1
∆ + p∆ + (p− 1)∆Ep−1

K/L1
(∆) − ∆p}

moduloP
1+pt2
K . The product

{(p− 1)x} {p∆}

lies inP
1+pt2
K and

(p− 1)Ep−1
K/L1

(∆) ≡ −Ep−1
K/L1

(∆) (modP
1+pt2
K ).

It is easily seen that

∆p + ∆Ep−1
K/L1

(∆) −NK/L1
∆

is equal to

−
∑p−2

i=1
(−1)i ∆p−iEiK/L1

(∆).

Recalling that x∆p−1 is supposed to lie inPK we appeal to Lemma 11.7 to see that the product

of this expression with x lies inP
1+pt2
K . Thus

g(x∆j) ≡ 0 (modP1+t2
F ).

If p = 3 and ξ = ξ(σ) then

∆σ = ∆ + ξ + 3ξ∆2 + 3ξ2∆ + z

with

z = O(̟
2(p2e−(p−1)u)
K ).

If

∆σ = ∆ + ξ + 3ξ∆2

then

∆σ = ∆σ + 3ξ2∆ + z.

If we can show that

3ξ2∆ + z = O(̟
(p−1)t2+pt1
K )

it will follow that

x∆σ jNK/L1
∆σ ≡ x∆j

σNK/L1
∆σ (modP

1+pt2
K ) (11.9)
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if x∆j lies inP1+t2−t1
K

3ξ2∆ = O(̟p2e−t1
K )

and

p2e− t1 ≥ p(p− 1)t2 − t1 ≥ (p− 1)t2 + pt1

because (p− 1)2 ≥ p. Moreover

2(p2e− (p− 1)u) ≥ 2(p(p− 1)t2 − (p− 1)t1)

which is at least

(p− 1)t2 + ((2p− 1) (p− 1) − 2(p− 1))t1

and

(2p− 1) (p− 1) − 2(p− 1) = (2p− 3) (p− 1) ≥ p.

We want to replace NK/L1
∆σ by

NK/L1
(∆ + ξ)

in the right side of (11.9). To do this we have to show that

NK/L1

(
∆σ

∆ + ξ

)
≡ 1 (modP(p−1)t2+(p+1)t1

K ).

Since
∆σ

∆ + ξ
= 1 +O(̟p2e−t1

K )

and

p2e− t1 ≥ p(p− 1)t2 − t1,

we have only to verify that

p{p(p− 1)t2 − t1} ≥ (p− 1)t2 + (p+ 1)t1 (11.10)

and that the integral part of

p(p− 1)t2 − t1 + (p− 1) (t+ 1)

p
(11.11)

is at least
(p− 1)t2 + (p+ 1)t1

p
.
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The inequality (11.10) is clear. Since t ≥ t1 the integral part of (11.11) is at least

p(p− 1)t2 + (p− 2)t1
p

≥ (p− 1)t2 + ((p− 1)2 + (p− 2))t1
p

and

(p− 1)2 + (p− 2) ≥ p+ 1.

Just as when p > 3we may replace NK/L1
(∆ + ξ) in (11.9) by

ξ +NK/L1
∆ + ξ Ep−1

K/L1
(∆).

Thus Zj is congruent to

x∆jNK/L1
∆ +

∑
ξ
x(∆ + ξ + 3ξ∆2)j (ξ +NK/L1

∆ + ξ E2
K/L1

(∆))

moduloP
1+pt2
K if p = 3, j is 1 or 2, and x∆j belongs to P1+t2−t1

K . If j = 1 this expression is

equal to

px∆j NK/L1
∆ + 2x(1 + 3∆2) (1 +E2

K/L1
(∆)) (11.12)

and if j = 2 it is equal to

px∆j NK/L1
∆ + 2x{2(1 + 3∆2)∆(1 + E2

K/L1
(∆)) + (1 + 3∆2)2NK/L1

∆}. (11.13)

The term

px∆j NK/L1
∆

can be ignored as before because it lies inP
1+pt2
K . Also

3x∆j+1 = O(̟1+p2e+t2−2t1
K )

because x∆j lies inP1+t2−t1
K and

p2e+ t2 − 2t1 ≥ p(p− 1)t2 − t1 ≥ pt2.

We may also replace the factor 2 in (11.12) by 1. Thus (11.12) is congruent to

−x(1 + E2
K/L1

(∆))
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modulo P
1+pt2
K . At this point we may argue as we did for p > 3. To simplify (11.13), we

observe that

9∆4NK/L1
∆ = O(̟2p2e−7t1

K )

and that

2p2e− 7t1 ≥ 12t2 − 7t1 ≥ 3t2.

Moreover

3x∆2NK/L1
∆ = O(̟1+p2e−3t1

K )

if x∆2 belongs toPK and

p2e− 3t1 ≥ 6t2 − 3t1 ≥ 3t2.

Thus (11.13) is congruent to

2x{2∆(1 +E2
K/L1

(∆)) +NK/L1
∆}

moduloP1+3t2
K . We may again argue as we did for p > 3.

We turn to the second part of the lemma. We observe first that if x belongs toL2, y belongs

toK , and

xy ∈ PK

then

h(xy) ≡ h(y)NK/L1
(x) (mod P1+t2

F ).

The left side is

SL1/F (NK/L1
xNK/L1

y∆) − SL2/F (xpNK/L2
y∆).

SinceNK/L2
x = NL2/Fx lies in F this equals

{NK/L1
x}h(y) + SL2/F {NK/L2

(y∆) (NL2/Fx− xp)}.

The second term is the trace from L2 to F of

{NK/L2
(xy∆)}

{
NL2/Fx− xp

NK/L2
x

}

if, as we may as well assume, x 6= 0. All we need do is show that this expression lies inP1+t2
L2

for then its trace will lie inP1+t2
F . The first factor lies inP1−t2

L2
. The second factor is equal to

{∏
σ∈G

2 x
σ−1

}
− 1.
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Since p ≥ 3 it will be sufficient to show that the image of the homomorphism

x −→ ϕ(x) =
∏

σ∈G
2 x

σ−1

of CL2
into UL2

is contained in U
(p−1)t2
L2

. Let ρ be a generator of G
2
and let P (X) be the

polynomial ∑p−1

i=1
(X i − 1) =

∑p−1

i=0
X i − p

then

ϕ(x) = xP (ρ).

Let

Q(X) = (X − 1)p−1.

If 1 ≤ i ≤ p− 1 the ith coefficient ofQ(X) is

(−1)p−1−i (p− 1) . . . (p− i)

i!
≡ 1 (mod p).

Since both P (X) and Q(X) are divisible byX − 1

P (X) = Q(X) + p(X − 1)R(X)

where R(X) is a polynomial with integral coefficients. For all z in CL2
,

zρ−1 = 1 + w

with w = O(̟t2
L2

). Then

zp(ρ−1) = (1 + w)p ≡ 1 + wp ≡ 1 (modP
pt2
L2

)

and

zp(ρ−1)R(ρ) ∈ Upt2L2
.

If a ≥ 1 and

w ∈ Pa
L2

then

(1 + w)p−1 =
1 + wp

1 + w
= 1 +

wp − w

1 + w
≡ 1 (modPa+t2

L2
).

One then shows easily by induction that, for all z in CL2
and all n ≥ 1,

z(ρ−1)n ∈ Unt2L2
.



Chapter 11 137

If x lies inPK we may take y = 1. Applying Lemma 11.8 we see that

h(x) ≡ NL2/F xh(1) ≡ 0 (mod P1+t2
F ).

If 1 ≤ j ≤ p− 1, x lies in L2, and x∆
j lies inPK ,

h(x∆j) ≡ Pj −Qj (mod P1+t2
F )

with

Pj = NL2/F xSL1/F (NK/L1
∆j+1)

and

Qj = NL2/FxSL2/F (NK/L2
∆j+1).

The expression Pj is congruent to

NL2/Fx{NK/L1
∆j+1 +

∑
ξ
NK/L1

(∆ + ξ)j+1 {1 − SK/L1
Z(ξ)}j+1} (11.14)

moduloP
1+pt2
L1

. Since we are working moduloP
1+pt2
L1

we need only consider

(1 − SK/L1
Z(ξ))j+1 (11.15)

moduloP
pt2+t1
L1

. Suppose first that p > 3. Then

Z(ξ) = O(̟
p2e−(p−2)u
K )

and

p2e− (p− 2)u ≥ p(p− 1)t2 − (p− 2)u ≥ p(p− 2)t2.

Moreover the integral part of

p(p− 2)t2 + (p− 1) (t+ 1)

p

is at least

(p− 2)t2 −
(p− 1)

p
t

and twice this is at least pt2 + t1. We replace (11.15) by

1 − (j + 1)SK/L1
Z(ξ).
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Since

Z(ξ) ≡ p∆p−1
∑p−2

i=1
ai

(
ξ

∆

)i
(mod p2) (11.16)

and

p2 = O(̟2p2e
K )

while

2p2e ≥ 2p(p− 1)t2 ≥ p(pt2 + t1),

we may replace Z(ξ) by the right side of (11.16). By Lemma 11.7

pSK/L1
(∆p−1−i) = O(̟pe+it2

L1
)

if 1 ≤ i ≤ p− 2 and

pe+ it2 ≥ (p− 1)t2 + it2 ≥ pt2 + t1

if i ≥ 2. We replace Z(ξ) by

pa1ξ∆
p−2.

We may write (11.14) as

NL2/FxNK/L1
∆j+1

{
1 +

∑
ξ
NK/L1

(
1 +

ξ

∆

)j+1

{1 − SK/L1
(pa1ξ∆

p−2)}
}
.

When we expand

NK/L1

(
1 +

ξ

∆

)j+1

and sum over ξ we will obtain

NL2/FxNK/L1
∆j+1

{
1 +

∑
ξ
NK/L1

(
1 +

ξ

∆

)j+1}

which we write as

NL2/Fx

{
NK/L1

∆j+1 =
∑

ξ
NK/L1

(∆ + ξ)j+1

}

plus a sum of terms of the form

αpNL2/FxNK/L1
∆j+1 EiK/L1

(
1

∆

)
SK/L1

(∆p−2)
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where α is rational and lies in OF and i is at least 1. Since

EiK/L1

(
1

∆

)
= O(̟t1

L1
)

for i ≥ 1 and

pSK/L1
(∆p−2) = O(̟pt2

L1
)

these supplementary terms may be ignored.

Now take p = 3.∗

∗(1998) This is where and how the manuscript of Chapter 11 breaks off.
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Chapter 12.

The Second Main Lemma

Suppose K is a normal extension of the local field F and G = G(K/F ) is the direct

product of two cyclic groups of prime order ℓ. LetXK be a quasicharacter ofCK . If σ belongs
toG define X σ

K by the relation

X σ
K(α) = XK(ασ

−1

).

Suppose that X σ
K = XK for all σ in G but that for no quasicharacter XF of CF does XK =

XK/F . If F ⊆ L ⊆ K and [K : L] = ℓ then XK can be extended to a quasicharacter ofWK/L

becauseWK/L/CK is isomorphic toG(K/L)which is cyclic. If this quasicharacter isXL then
XK = XK/L.

Lemma 12.1

Suppose L1 and L2 are two fields lying between F and K and [K : L1] = [K : L2] = ℓ.

Suppose XL1
is a quasicharacter of CL1

, XL2
is a quasicharacter of CL2

, and

XK = XK/L1
= XK/L2

.

Then

∆(XL1
, ψL1/F )

∏
µF ∈S(L1/F )

∆(µF , ψF )

is equal to

∆(XL2
, ψL2/F )

∏
µF ∈S(L2/F )

∆(µF , ψF ).

Because of the assumption on G(K/F ) the field F must be nonarchimedean. To prove

the lemma in general it is enough to prove it for a given L1 and all L2. There are three

possibilities to consider.

(i) The sequence of groups of ramification takes the form

G = G−1 6= G0 = . . . = Gt 6= Gt+1 = . . . = {1}.

(ii) The sequence of groups of ramification takes the form

G = G−1 = G0 = G1 = . . . = Gu 6= Gu+1 = . . . = Gt 6= Gt+1 = . . . = {1}.
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(iii) The sequence of groups of ramification takes the form

G = G−1 = G0 = G1 = . . . = Gt 6= Gt+1 = . . . = {1}.

In the first two cases we take G1 = G(K/L1) to be Gt. In the third case the choice of L1 is

immaterial.

If the relationX σ
Li

= XLi
obtains for one σ different from 1 inG

i
= G(Li/F ) it obtains for

all such σ andXLi
is of the formXLi/F for some quasicharacter XF ofCF . Then XK = XK/F

which is contrary to assumption. Thus the characters X σ−1
Li

with σ inG
i
are distinct. They are

clearly trivial onNK/Li
CK so

{X σ−1
Li

| σ ∈ G
i} = S(K/Li) = {µLi/F |µF ∈ S(Lj/F )}.

Here j is 2 or 1 according as i is 1 or 2.

Let ti ≥ −1 be that integer for which

G
i
= G

i

ti

while

G
i

ti+1 = {1}.

Then

δi = δ(Li/F ) = (ti + 1) (ℓ− 1).

In the first case L1/F is unramified and L2/F is ramified. We choose̟L2
arbitrarily and take

̟K = ̟L2
. Also we set

̟L1
= ̟F = NL2/F̟L2

.

In the second and third cases K/L1 and K/L2 are ramified and K/F is totally ramified. We

choose̟k first and set

̟Li
= NK/Li

̟K

and

̟F = NK/F̟K .

Letmi = m(XLi
). Them(X σ

Li
) = mi and

m(X σ−1
Li

) ≤ mi.
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Thusm(ν) ≤ mi if ν belongs to S(K/Li). IfG
i = G(K/Li) and if

Giui
= Gi

while

Giui+1 = {1}

thenm(ν) = ui + 1 if ν is nontrivial. Thus ui + 1 ≤ mi. Since νXLi
is of the form X σ

Li
for all

ν in S(K/Li),

m(νXLi
) = m(XLi

).

Lemma 8.8 and 8.12 imply that*

m(XK) = ψK/Li
(mi − 1) + 1.

Thism(XK) = mi ifK/Li is unramified and

m(XK) = ℓmi − δ(K/Li)

ifK/Li is ramified. If n = n(ψF ) then ni = n(ψLi/F ) is n if Li/F is unramified and is ℓn+ δi
if Li/F is ramified.

In the first case

δ(K/L2) = δ(L1/F ) = 0.

The relations

δ(K/F ) = δ(K/L1) + ℓδ(L1/F ) = δ(K/L1) = (t+ 1) (ℓ− 1)

and

δ(K/F ) = δ(K/L2) + δ(L2/F ) = δ2 = (t2 + 1) (ℓ− 1)

imply that t2 = t. Also

m(XK) = m2 = ℓm1 − δ(K/L1) = ℓm1 − δ2

so that

m2 + n2 = ℓ(m1 + n1).

Moreover

XL1
(̟m1+n1

L1
) = XK (̟m1+n1

L2
)

* We are encountering once again the conflicting uses of the symbole ψ.
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is equal to

XL2
(̟m2+n2

L2
) = XL2

(̟m1+n1

F )

{
XL2

(∏
σ∈G

2 ̟
1−σ
L2

)}m1+n1

and ∏
σ∈G2

XL2
(̟1−σ

L2
) =

∏
µF ∈S(L1/F )

µL2/F (̟L2
)

is equal to ∏
µF ∈S(L1/F )

µF (̟F ) = (−1)ℓ−1.

If

S′
i = S(Li/F ) − {1}

then ∏
S′

1

µF (̟t1+1+n
F ) = (−1)n(ℓ−1)

and ∏
S′

2

µF (̟t2+1+n
F ) = 1.

Thus we have to show that

(−1)m1(ℓ−1) ∆1(XL1
, ψL1/F ̟

m1+n1

F )

is equal to

∆1(XL2
, ψL2/F , ̟

m1+n1

F )
∏

S′

2

∆1(µF , ψF , ̟
t+1+n
F ).

In the second and third cases the relations

m(XK) = ℓm1 − δ(K/L1) = ℓm2 − δ(K/L2)

and

δ(K/F ) = δ(K/L1) + ℓδ1 = δ(K/L2) + ℓδ2

imply thatm1 + δ1 = m2 + δ2 and hence thatm1 + n1 = m2 + n2. Thus

XL1
(̟m1+n2

L1
) = XK (̟m1+n1

K ) = XL2
(̟m2+n2

L2
).

Since ∏
S′

i

µF (̟ti+1+n
F ) = 1
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we have to show that

∆1(XL1
, ψL1/F , ̟

m1+n1

L1
)
∏

S′

1

∆1(µF , ψF , ̟
t1+1+n
F )

is equal to

∆1(XL2
, ψL2/F , ̟

m2+n2

L2
)
∏

S′

2

∆1(µF , ψF , ̟
t2+1+n
F ).

Suppose X ′
F is a quasicharacter of CF . According to Lemma 10.1

∆(X ′
L1/F

, ψL1/F )
∏

µF ∈S(L1/F )
∆(µF , ψF )

is equal to ∏
µF ∈S(L1/F )

∆(µFX ′
F , ψF ) (12.1)

and

∆(X ′
L2/F

, ψL2/F )
∏

µF ∈S(L2/F )
∆(µF , ψF )

is equal to ∏
µF ∈S(L2/F )

∆(µFX ′
F , ψF ). (12.2)

Supposem′ = m(X ′
F ) = 2d′ + ε′ and d′ is greater than or equal to both 1 + t1 and 1 + t2.

Choose γ in F such that

γ OF = Pm′+n
F

and then choose β = β(XF ). By Lemma 9.4 the expression (12.1) is equal to

{∆(X ′
F , ψF )}ℓ

{∏
µF ∈S(L1/F )

µF

(
γ

β

)}

and (12.2) is equal to

{∆(X ′
F , ψF )}ℓ

{∏
µF ∈S(L2/F )

µF

(
γ

β

)}
.

Consequently

∆(X ′
L1/F

, ψL1/F )

{∏
µF ∈S(L1/F )

µF

(
β

γ

)
∆(µF , ψF )

}
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is equal to

∆(X ′
L2/F

, ψL2/F )

{∏
µF ∈S(L2/F )

µF

(
β

γ

)
∆(µF , ψF )

}
.

Suppose that bothm1 = m(XL1
) andm2 = m(XL2

) are at least 2 and letmi = 2di + εi.

Suppose that

m(X−1
Li

X ′
Li/F

) ≤ di

for i equal to 1 and 2. Then

mi = m(X ′
Li/F

) = ψLi/F (m′ − 1) + 1.

If

X ′
Li/F

(1 + x) = ψLi/F

(
βix

γ

)

for x inPdi+εi

Li
then, by Lemma 9.4 again,

∆(XLi
, ψLi/F ) = X−1

Li
X ′
Li/F

(
βi
γ

)
∆ (X ′

Li/F
, ψLi/F ).

Thus to prove Lemma 12.1 in the present circumstances we have only to verify that

X−1
L1

X ′
L1/F

(
β1

γ

) ∏
µF ∈S(L1/F )

µF

(
γ

β

)

is equal to

X−1
L2

X ′
L2/F

(
β2

γ

) ∏
µF ∈S(L2/F )

µF

(
γ

β

)
.

Suppose first that ℓ is odd. Then

∏
µF ∈S(Li/F )

µF

(
γ

β

)
= 1

and we need only verify that

X−1
L1

(
γ

β1

)
X ′
L2/F

(
γ

β2

)
= X−1

L2

(
γ

β2

)
X ′
L2/F

(
γ

β2

)
.

According to Lemmas 8.3 and 8.4 we may take β1 = β2 = β.
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Certainly

X ′
L1/F

(
γ

β

)
= X ′

F

(
γℓ

βℓ

)
= X ′

L2/F

(
γ

β

)
.

Since CF is the product ofNL1/FCL1
and NL2/FCL2

we may write γβ as a product

γ

β
= NL1/F δ1NL2/F δ2.

Consider

XLi
(NLj/F δj) = XK(δj)

where j is 1 or 2 according as i is 2 or 1. The right side equals

XLj
(δℓj) = XLj

(NLj/F δj)
∏

σ∈G(Lj/F )
XLj

(δ1−σj ).

The product is equal to ∏
µF ∈S(Li/F )

µLj/F (δj)

which is 1 because ℓ is odd.

Before discussing the case ℓ = 2 we consider the circumstances under which, for a given

XL1
and XL2

, a quasicharacter X ′
F with the properties described above exists.

Lemma 12.2

(a) If Li/F is unramified, x belongs to U
ui+1
Li

, and

NLi/F (x) = 1

then

XLi
(x) = 1.

(b) If Li/F is ramified,K/Li is unramified, x belongs to U
ti+1
Li
, and

NLi/F (x) = 1

then

XLi
(x) = 1.

(c) If Li/F andK/Li are ramified, x belongs to U
ui+ti+1
Li

, and

NLi/F (x) = 1
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then

XLi
(x) = 1.

Choose some nontrivial σi inG
i
= G(Li/F ). Then

µLi
= X σ−1

i −1
Li

is a nontrivial character in S(K/Li) and

m(µLi
) = ui + 1.

Since Li/F is cyclic there is a y in CLi
such that

x = yσi−1.

We shall show that y can be taken in Uui+1
Li

. Then

XLi
(x) = µLi

(y) = 1.

Suppose Li/F is unramified. If we cannot choose y in U
ui+1
Li

there is a largest integer

a ≥ −1 such that we can choose y in UaLi
where a is of course less than ui + 1. Choose such a

y. Then a is not 1 because we can always divide y by a power of̟F . If awere 0 then y could

not be congruent to an element of UF modulo PF . Then y
σi−1 would not be in U1

F . Since

ui + 1 > 0 in the present situation this is impossible. Let

y = 1 + ε̟a
F .

Then ε cannot be congruent to an element of OF moduloPF . Thus

εσi − ε 6≡ 0 (modPLi
)

and

yσi−1 ≡ 1 + (εσi − ε)̟a
F (modPa+1

Li
)

is not in Ua+1
Li
. This is a contradiction.

Now suppose Li/F is ramified andK/Li is unramified. Then ti + 1 ≥ 1 and ui + 1 = 0.

We need only show that y can be taken to be a unit. Write

y = ε̟b
Li
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where ε is a unit. If b is congruent to 0 modulo ℓ we can divide y by some power of ̟F to

obtain an element of UF = U0
F . To see that bmust be congruent to 0 modulo ℓwe suppose the

contrary. Then

yσi−1 = εσi−1 (̟σi−1
Li

)b ≡ (̟σi−1
Li

)b (modPti+1
Li

).

If ti = 0 the residue of̟σi−1
Li

moduloPLi
is a nontrivial ℓth root of unity and

(̟σi−1
Li

)b 6≡ 1 (modPLi
).

If ti > 0 then

̟σi−1
Li

= 1 + α̟ti
Li

where α is a unit. Thus

(̟σi−1
Li

)b ≡ 1 + α b ̟ti
Li

(modPti+1
Li

).

The right side is not congruent to 0 moduloPti+1
Li
.

Now suppose Li/F and K/Li are both ramified. Then ℓ = p and both ui and ti are at

least 1. Again suppose that y cannot be chosen in Uui+1
Li

and let a be the largest integer such

that y can be chosen in Ua. The argument just used shows that a ≥ 0. Since Li/F is ramified

U
kp

Li
= UkF U

kp+1
Li

.

Therefore a is not divisible by p and in particular is at least 1. Let

y = 1 + ε̟a
Li

where β is a unit. Then

yσi−1 = (1 + εσi̟aσi

Li
) (1 + ε̟a

Li
)−1.

Let

εσi = ε+ η ̟ti+1
Li

and

̟σi−1
Li

= 1 + α̟ti
Li

where α is a unit. Then yσi−1 is equal to

{
1 + (ε+ η ̟ti+1

Li
) (1 + α̟ti

Li
)a̟a

Li

} {
1 + ε̟a

Li

}−1
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which is congruent to

1 + aαε̟ti+a
Li

moduloPti+a+1
Li

. Therefore a ≥ ui + 1. This is a contradiction.

Lemma 12.3

If L1/F is unramified we can choose X ′
F such that

m(X−1
L1

X ′
L1/F

) = t+ 1

and

m(X−1
L2

X ′
L2/F

) = t+ 1.

Ifm(XL1
) > t+ 1 thenm(X ′

F ) will equalm(XL1
).

By the previous lemma we can define a quasicharacter X ′
F of

NL1/FU
u1+1
L1

by setting

X ′
F (NL1/Fx) = XL1

(x).

We extend X ′
F to a quasicharacter, which we again denote by X ′

F , of CF . Then

m(X−1
L1

X ′
L1/F

) ≤ u1 + 1.

HoweverX−1
K X ′

K/F , X
−1
L1

X ′
L1/F

, andX−1
L2

X ′
L2/F

satisfy the conditions of Lemma 12.1. There

fore

m(X−1
L1

X ′
L1/F

) ≥ u1 + 1.

Since L1/F is unramified u1 and t2 are both equal to t. Thus

m(X−1
L1

X ′
L1/F

) = t+ 1

and

m(X−1
L2

X ′
L2/F

) = ℓ(u1 + 1) − δ2 = ℓ(u1 + 1) − (ℓ− 1) (t2 + 1) = t+ 1.

The last assertion of the lemma is clear.

Lemma 12.4
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IfK/F is totally ramified then

m(XLi
) ≥ ti + ui + 1.

There exists X ′
F such that

m(X−1
Li

X ′
Li/F

) = ti + ui + 1

for i equal to 1 and 2.

In the present circumstances ti and ui are both at least 1. Choose a nontrivial σi in G
i

and let

µLi
= X σ−1

i −1
Li

as before. Choose y in Uui

Li
so that

µLi
(y) 6= 1.

Then

XLi
(yσi−1) 6= 1.

However if

y = 1 + ε̟ui

Li

where ε is a unit then

yσi−1 ≡ 1 + uiα ε̟
ti+ui

Li
(modPti+ui+1

Li
)

if

̟σi−1
Li

= 1 + α̟ti
Li
.

In particular

yσi−1 ∈ U ti+ui

Li

so that

m(XLi
) ≥ ti + ui + 1.

Just as in the previous lemma we can find a quasicharacter X ′
F of CF such that

m(X−1
L1

X ′
L1/F

) = t1 + u1 + 1.

We have seen thatm1 + δ1 = m2 + δ2. The same argument shows that

m(X−1
L1

X ′
L1/F

) + δ1 = m(X−1
L2

X ′
L2/F

) + δ2.
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To complete the proof of the lemma we show that

t1 + u1 + δ1 = t2 + u2 + δ2.

Since

δi = (ℓ− 1) (ti + 1)

we have only to show that

u1 + 1 + ℓ(t1 + 1) = u2 + 1 + ℓ(t2 + 1).

Multiplying the left or the right side by ℓ − 1 we obtain δ(K/F ). The equality follows

immediately.

Lemmas 12.3 and 12.4 together with the remarks which provoked them allow us to prove

Lemma 12.1 in many, but by no means all, cases. We shall not however apply these lemmas

immediately. We shall rather begin the systematic exposition of the proof of Lemma 12.1 taking

up the cases to which these lemmas apply in their turn.

Suppose first that L1 is unramified over F . As beforemi = m(XLi
). Then

m2 = m1 + (ℓ− 1) (m1 − t− 1) ≥ m1

because u1 = t. Since the numberm1 is at least t+ 1 and t ≥ 0 it is at least 1. Ifm1 = 1 then

t = 0 andm2 = 1. Once we have treated this case, as we shall immediately, we may suppose

thatm2 ≥ m1 > 1.

Ifm2 = 1 let

λ = OL2
/PL2

= OF /PF

and let

κ = OK/PK = OL1
/PL1

.

κ is an extension of λ. The restriction of XL1
to UL1

defines a character Xλ of λ∗ and the
restriction of XL2

to UK defines a character Xκ of κ∗. The restriction of XK to UK defines a
character of κ∗ which is equal to Xκ/λ and to X ℓ

κ so that

X ℓ
κ = Xκ/λ.

As σ varies over G
2
, ̟σ−1

L2
, taken modulo PL2

, varies over the ℓth roots of unity in λ and if

X σ−1−1
L2

= ν
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then

Xλ(̟σ−1
L2

) = ν(̟L2
).

The right side is not 1 if σ 6= 1 because ν is then nontrivial. Thus the restriction ofXλ to the ℓth
roots of unity is not trivial. To every µF in S(L2/F ) is associated a character µλ of λ

∗ which

is of order 1 if µF = 1 and of order ℓ otherwise. If ψλ is the additive character of λ defined by

ψλ(x) = ψF

(
x

̟1+n
F

)

then

∆1(µF , ψF , ̟
1+n
F ) = A [−τ(µλ, ψλ)]

if µF is not trivial. Moreover

ψL2/F

(
x

̟1+n
F

)
= ψλ(ℓ x)

and

∆1(XL2
, ψL2/F , ̟

1+n
F ) = A [−Xλ(ℓ)τ(Xλ, ψλ)].

Finally

∆1(XL1
, ψL1/F , ̟

1+n
F ) = A [−τ(Xκ, ψκ/λ)].

Thus the required identity is a consequence of the relation

τ(Xκ, ψκ/λ) = Xλ(ℓ)τ(Xλ, ψλ)
∏

µλ 6=1
τ(µλ, ψλ)

which we proved as Lemma 7.9.

Retaining the assumption that L1/F is unramified we now suppose thatm1 > 1. There

are two possibilities.

(a)

m1 ≥ 2(t+ 1)

(b)

t+ 1 ≤ m1 < 2(t+ 1).

The second possibility occurs only when t > 0.
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Ifmj ≥ 2(t+ 1) choose X ′
F so that

m(X−1
Li

X ′
Li/F

) = t+ 1

for i = 1 and 2. It is clear that

m(X−1
L1

X ′
L1/F

) ≤ d1

ifmi = 2di+ εi. Sincem2 ≥ m1 we also have

m(X−1
L2

X ′
L2/F

) ≤ d2.

Moreover

m′ = m(X ′
F ) = m1

so that d′ is greater than or equal to both 1 + t2 = 1 + t and 1 + t1 = 0. Lemma 12.1 for L1/F

unramified andm1 ≥ 2(t+ 1), follows immediately if ℓ is odd. Suppose ℓ = 2.

If t = 0 we can invoke Lemmas 8.3 and 8.7 to see that if β = β(X ′
F ) we may choose

β1 = β(χL1/F ) and β2 = β(X ′
L2/F

) equal to β. If µ
(1)
F is the nontrivial element of S(L1/F )

and µ
(2)
F is the nontrivial element of S(L2/F )we have only to show that

XL1

(
γ

β

)
X ′
L1/F

(
β

γ

)
µ

(1)
F

(
γ

β

)

is equal to

XL2

(
γ

β

)
X ′
L2/F

(
β

γ

)
µ

(2)
F

(
γ

β

)
.

Certainly

X ′
L1/F

(
β

γ

)
= X ′

L2/F

(
β

γ

)

and we need only show that if δ is in CF then

XL1
(δ)µ

(1)
F (δ) = XL2

(δ)µ
(2)
F (δ).

We may write

δ = NL1/F δ1 NL2/F δ2.

Then

µ
(i)
F (NL1/F δi) = 1
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and, if j is 1 or 2 according as i is 2 or 1,

XLi
(NLj/F δj) = XK(δj) = XLj

(δ2j )

which equals

XLj
(NLj/F δj)µ

(i)
Lj/F

(δj) = XLj
(NLj/F δj)µ

(i)
F (NLj/F δj).

The required equality follows immediately.

If t is positive we may still choose β1 = β. Ifm1 − t− 1 = v then, by Lemma 8.6, we may

choose β2 in the form

β2 = β + η

with η inPv
L2
. Since v ≥ t+ 1

X−1
L2

(β2)X ′
L2/F

(β2) = X−1
L2

(β)X ′
L2/F

(β).

This observation made, we can proceed as before.

Some preparation is necessary before we discuss the second possibility. Suppose that t is

positive so that ℓ is equal to the residual characteristic p. The finite field λ1 = OL1
/PL1

is an

extension of degree p of φ = OF /PF .

The map

x −→ xp − x

is an additive endomorphism of φwith the prime field as kernel. Choose a y in φwhich is not

in the image of this map and consider the equation

xp − x = y.

If x, in some extension field of φ, satisfies this equation and φ has q elements then xq 6= x.

However

(xq − x)p − (xq − x) = (xp − x)q − (xp − x) = yq − y = 0.

So

xq − x = z

where z is a nonzero element of the prime field. Then

xq
2

= (x+ z)q = xq + z = x+ 2z
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and in general

xq
n

= x+ nz.

Thus the lowest power n of q such that xq
n

= x is n = p and x determines an extension of

degree p. Consequently xmay be chosen to lie in λ1 and then λ1 = φ(x).

Let Er(x) be the rth elementary symmetric function of x and its conjugates. Since

xp − x+ (−1)pNλ1/φx = 0 (12.3)

we have

Er(x) = 0 (12.4)

if 1 ≤ r < p− i,

Ep−1(x) = (−1)p (12.5)

and, of course,

Ep(x) = Nλ1/φx. (12.6)

If λ is a nonzero element of the prime field we can replace y by λy. Then x is to be replaced

by λx. Also we can replace x by x+ λ without changing y.

Let R(L1) be the set of (qp − 1)th roots of unity in L1. Choose a γ in R(L1) whose

image in λ1 is x. If we are dealing with fields of power series γ will also satisfy the equations

(12.3), (12.4), (12.5) and (12.6). Let us see how these equations are to be modified for fields of

characteristic zero. F and L1 are then extensions of the padic field Qp. Let F
0 and L0

1 be the

maximal unramified extensions of Qp contained in F and L1 respectively. R(L1) is a subset

of L0
1 and p generates the idealPF 0 and the idealPL0

1
. Thus

γp − γ + (−1)pNL1/F γ ≡ 0 (mod p)

and

Er(γ) ≡ 0 (mod p)

if 1 ≤ r < p− 1while

Ep−1(γ) ≡ (−1)p (mod p).

Let

Sr(γ) =
∑

σ∈G(L1/F )
γrσ.

The following relations are special cases of Newton’s formulae.
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S1(γ)− E1(γ) = 0

S2(γ) −E1(γ)S1(γ) + 2E2(γ) = 0

S3(γ)− E1(γ)S2(γ) +E2(γ)S1(γ) − 3E3(γ) = 0

...

Sp−1(γ) −E1(γ)Sp−2(γ) + . . .+ (−1)p−1(p− 1)Ep−1(γ) = 0

Sp(γ) − E1(γ)Sp−1(γ) + . . .+ (−1)ppEp(γ) = 0.

We infer that

Sr(γ) ≡ 0 (mod p)

if 1 ≤ r < p− 1 and that

Sp−1(γ) ≡ (−1)p(p− 1)Ep−1(γ) (mod p).

Combining the first of these congruences with Newton’s formulae we obtain

Sr(γ) ≡ r(−1)r+1Er(γ) (mod p2)

if 1 ≤ r ≤ p− 1. If p is odd

Sp(γ) − pEp(γ) ≡ E1(γ)Sp−1(γ) −Ep−1(γ)S1(γ) (mod p2).

The right side is equal to

E1(γ) (Sp−1(γ) − Ep−1(γ)) ≡ 0 (mod p2).

If p is even

S2(γ) + 2E2(γ) = {E1(γ)}2.

Since

E1(γ) ≡ 1 (mod2)

we have

S2(γ) + 2E2(γ) ≡ 1 (mod4).

If σ 6= 1 belongs toG(L1/F ) there is a (p− 1)th root of unity ζ such that

γσ − γ ≡ ζ (mod p).
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By a suitable choice of y the root ζ can be made to equal, for a given σ, any chosen (p− 1)th

root of unity.

The above relations are of course also valid when F is a field of power series.

Choose a nontrivial character µF in S(L2/F ) and choose α so that

µF (1 + x) = ψF

(
αx

̟t+1+n
F

)

if x is inPs
F . Here s is the least integer greater than or equal to

t+1
2 . If ζ is a (p− 1)th root of

unity we define µζF to be µ
j
F if j is the unique integer such that

ζ ≡ j (mod p).

As we observed in the proof of Lemma 8.5

µζF (1 + x) = ψF

(
α ζx

̟1+t+n
F

)

if x is inPs
F .

Letmi = 2di + εi as usual. If β1 in L1 is such that

XL1
(1 + x) = ψL1/F

(
αβ1x

̟m1+n1

F

)

for x inPd1+ε1
L1

then, if σ 6= 1 belongs toG
1

= G(L1/F ) and x belongs toPd1+ε1
L1

,

ψL1/F

(
α(βσ1 − β1)x

̟m1+n2

F

)
= X σ−1

L1
(1 + x)

is equal to

ψL1/F

(
αζσx

̟1+t+n
F

)

if ζσ is such that

X σ−1
L1

= µζσ

F .

Thus if

v = m1 − 1 − t
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we have

βσ1 − β1 ≡ ζσ̟
v
F (mod Pd1

L1
).

It is clear that

ζστ ≡ ζτσ + ζσ (modPL1
).

Suppose

γσ − γ ≡ ξσ (mod p)

where ξσ is also a (p− 1)th root of unity. Then

ξστ ≡ ξτσ + ξσ (mod PL1
).

We observed that we could arrange that

ξσ = ζσ

for one nontrivial σ. Once we do this the equality will hold for all σ. Then γpσ − γp ≡
ξσ (mod p) and

(β1 − γp̟v
F )σ ≡ β1 − γp̟v

F (modPd1
L1

)

for all σ because, as we observed in the proof of Lemma 8.5, p belongs to PrL1
if r + s = t+ 1

and

2(r + v) ≥ t+ 2v = 2m1 − 2 − 2t+ t

which is at least

(m1 − 1) + (m1 − 1 − t) ≥ m1 − 1

so that r + v ≥ d1. Since L1/F is unramified there is therefore a β in F such that

β1 − γp̟v
F ≡ β (modPd1

L1
).

We may suppose that

β1 = β + γp̟v
F .

β is a unit unless v = 0. If v = 0 then, by replacing γ by a root of unity congruent to γ + 1

moduloPL1
if necessary, we can still arrange that β is a unit. β is congruent to a normNL2/Fβ

′

modulo PtF . Since d1 ≤ t we∗

∗(1998) At the moment this is all that could be found of Chapter 12.
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Chapter Thirteen.

The Third Main Lemma

SupposeK/F is Galois and G = G(K/F ). SupposeG = HC whenH 6= {1}, H ∩ C =

{1}, andC is a nontrivial abelian normal subgroup ofGwhich is contained in every nontrivial
normal subgroup ofG.

Lemma 13.1

Let E be the fixed field ofH and let XF be a quasicharacter of CF . Ifm = m(XF ) then

m(XE/F ) = ψE/F (m− 1) + 1.

Set

m′ = m(XE/F ) − 1.

Observe thatm′ − 1 is the greatest lower bound of all real numbers v > −1 such that XE/F is
trivial on UvE and thatm− 1 is the greatest lower bound of all real numbers u such that XF is
trivial on UuF . Since

NE/F (U
ψE/F (u)

E ) ⊆ UuF

we see immediately that

m′ − 1 ≤ ψE/F (m− 1).

To prove the lemma we need only show that

NE/F (U
ψE/F (m−1)

E ) ⊇ Um−1
F .

We show this withm− 1 replaced by any u ≥ −1.

By Lemma 6.15, τK/F maps W
u
K/F onto U

u
F . The projection of W

u
K/F on G is a normal

subgroup ofG. Thus it is either {1} or a subgroup containing C. If it is {1} then

Wu
K/F = Wu

K/F ∩ CK = U
ψK/F (u)

K

and

UuF = NK/F (U
ψK/F (u)

K ) = NE/F (NK/EU
ψK/F (u)

K )
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which, by Lemma 6.6, is contained in

NE/F (U
ψE/F (u)

E ).

Suppose the projection is not {1}. If L is the fixed field of C the groupWu
K/F contains

{wvw−1v−1 |w ∈WK/F , v ∈Wu
K/F ∩WK/L}. (13.1)

Since C is generated by

{σρσ−1ρ−1 | σ ∈ G, ρ ∈ C}

the group generated by the set (13.1) contains a set of representatives for the cosets of CK in

WK/L. This group clearly lies in the kernel of τK/F . Thus every element ofW
u
K/F is congruent

modulo the kernel of τK/F inW
u
K/F to an element of

Wu
K/F ∩WK/E = W

ψE/F (u)

K/E

and

UuF = τK/F (Wu
K/F ) = τK/F (W

ψE/F (u)

K/E )

which is

NE/F (τK/E(W
ψE/F (u)

K/E ))

and this set is contained in

NE/F (U
ψE/F (u)

E ).

Suppose F1 is nonarchimedean, K1/F1 is Galois and F1 ⊆ E1 ⊆ K1. Let µ1 be a

character of G(K1/E1). We may also regard µ1 as a character of CE1
. Let σ be an element of

G(K1/F1) and define the character of µ
σ
1 of G(K1/E

σ
1 ) by

µσ1 (ρ) = µ1(σρσ
−1)

for ρ ∈ G(K1/E
σ
1 ) or, what amounts to the same

µσ1 (α) = µ1(α
σ−1

)

for α ∈ CEσ
1
. Since

ψEσ
1 /F1

(α) = ψE1/F1
(ασ

−1

)

the next lemma is a congruence of the definitions.
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Lemma 13.2

∆(µσ1 , ψEσ
1 /F1

) = ∆(µ1, ψE1/F1
).

We return to the extensionK/L and the groupG. Let T be a set of representatives for the

orbits under G of the nontrivial characters in S(K/L). If µ ∈ T let Gµ be the isotropy group

of µ and let Fµ be the fixed field ofGµ. LetHµ = H ∩Gµ. SinceC is contained inGµ we have
Gµ = Hµ · C. Then µmay also be regarded as a character of C. Let µ′ be the character of Gµ
defined by

µ′(hc) = µ(c)

if h ∈ Hµ and c ∈ C. Eventually we must show that

∆(XE/F , ψE/F )
∏

µ∈T
∆(µ′, ψFµ/F ) (13.2)

is equal to

∆(XF , ψF )
∏

µ∈T
∆(µ′XFµ/F , ψFµ/F ) (13.3)

if XF is a quasicharacter of CF . At the moment we content ourselves with a special case. The
next lemma will be referred to as the Third Main Lemma.

Lemma 13.3

IfK/F is tamely ramified the expressions (13.2) and (13.3) are equal.

As we observed in Lemma 6.4 the extension L/F will be unramified and ℓ = [C : 1]

will be a prime. Choose a generator ̟F of PF . Since Fµ/F is unramified we may choose

̟Fµ
= ̟F . Choose̟E so that NE/F ̟E = ̟F . Certainly

δL/F = δK/E = 0

while

δK/L = ℓ− 1.

Since

δK/F = δK/L + ℓ δL/F = δK/E + δE/F

we conclude that

δE/F = ℓ− 1.
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Clearly ∑
µ
[Fµ : F ] =

∑
µ
[H : Hµ] =

∑
µ
[G : Gµ]

is just the number of nontrivial characters in S(K/L), that is ℓ− 1. Moreoverm(µ′) = 1. Let

Eµ be the fixed field ofHµ. Then

NEµ/Fµ
(̟E) = NE/F (̟E) = ̟F .

Thus, as an element ofCFµ
, ̟F lies in the image ofWK/Eµ

under τK/Fµ
and hence µ′(̟F ) =

1. Also

n(ψE/F ) = ℓn(ψF ) + δE/F = ℓn+ (ℓ− 1)

while

n(ψFµ/F ) = n.

Ifm = m(XF ) = 0 then

m(XE/F ) = m(XFµ/F ) = 0

and

XE/F (̟ℓn+ℓ−1
E ) = XF (̟ℓn+ℓ−1

F ) = XF (̟n
F )
∏

µ
XFµ/F (̟1+n

F )

so that the lemma amounts to the equality

∏
µ

∆1(µ, ψFµ/F , ̟
1+n
F ) =

∏
µ

∆1(µ, ψFµ/F , ̟
1+n
F ).

Ifm > 0 then, by Lemma 6.4,

m(XE/F ) = ℓm− (ℓ− 1)

and

m(XE/F ) + n(ψE/F ) = ℓ(m+ n).

SinceK/E is unramified

m(XK/F ) = m(XE/F ) = ℓm− (ℓ− 1).

However

XK/F = (µ′XFµ/F )K/Fµ
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so that

ψK/Fµ
(m(µ′XFµ/F ) − 1) ≥ m(XK/F ) − 1 = ℓ(m− 1)

or

m(µ′XFµ/F ) − 1 ≥ ϕK/Fµ
(ℓ(m− 1)) = m− 1.

Consequently

m(µ′XFµ/F ) ≥ m.

Since it is clearly less than or equal tom it is equal tom. Because

XE/F (̟m+n
F ) = XF (̟

ℓ(m+n)
F ) = XF (̟m+n

F )
∏

µ
XFµ/F (̟m+n

F )

we have to show that

∆1(XE/F , ψE/F , ̟m+n
F )

∏
∆1(µ

′, ψFµ/F , ̟
m+n
F )

is equal to

∆1(XF , ψF , ̟m+n
F )

∏
∆1(µ

′XFµ/F , ψFµ/F , ̟
m+n
F ).

Let φ be the field OF /PF , let λ = OL/PL, let q be the number of elements in φ, and let

f = [λ : φ] = [L : F ].

Let θ be the homomorphism of C into λ∗ introduced in Chapter IV of Serre’s book. Thus

θ(c) = ̟c−1
E (modPF )

so that if h ∈ H

θ(h−1ch) ≡ (̟h−1c−h−1

E ) ≡ (̟c−1
E )h ≡ θ(c)h.

Let h0 be that element ofH such that

αh0 = αq

if α ∈ λ and let c0 be a generator of C. Then θ(c0) has order ℓ and, since the centralizer of C

inH is {1},
θ(h−r0 chr0) = θ(c0)

qr

is θ(c0) if and only if f divides r. On the other hand, it is θ(c0) if and only if ℓ divides q
r − 1.

Thus the order of q modulo ℓ is f . We also observe that both C and its dual group are cyclic of

prime order so that any element of H which fixed an element of T would act trivially on the

dual group and therefore on C itself. It follows that Fµ = L for all µ in T .
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Suppose first thatm = 1. Let ψφ be the character

ψφ(x) = ψF

(
x

̟1+n
F

)

on φ. Since OE/PE is naturally isomorphic to OF /PF and the map x −→ NE/Fx gives the

map x −→ xℓ of φ into itself while the map x −→ SE/Fx induces the map x −→ ℓx the

required identity reduces to the equality of

Xφ(ℓℓ)τ(X ℓ
φ, ψφ)

∏
µ∈T

τ(µλ, ψλ/φ)

and

τ(Xφ, ψφ)
∏

µ∈T
τ(µλXλ/φ, ψλ/φ).

This equality has been proved in Lemma 7.8.

Now letm be greater than 1. Since Fµ = 1 for all µ we are trying to show that

∆1(XE/F , ψE/F , ̟m+n
F )

∏
∆1(µ, ψL/F , ̟

m+n
F )

is equal to

∆1(XF , ψF , ̟m+n
F )

∏
∆1(µXL/F , ψL/F , ̟m+n

F ).

Since the action of H on C is not trivial ℓ cannot be 2. If µ lies in T and µ−1 lies in the

orbit of ν then

∆1(ν, ψL/F , ̟
m+n
F ) = ∆1(µ

−1, ψL/F , ̟
m+n
F )

is µ(−1) times the complex conjugate of

∆1(µ, ψL/F , ̟
m+n
F ).

Since the order of µ is ℓ, µ(−1) = 1 and, if µ 6= ν, the product of the two terms corresponding

to µ and ν is 1. If

µ−1 = µq
r

with 0 ≤ r < f lies in the orbit of µ then ℓ divides qr + 1. Thus ℓ divides q2r − 1 and 2r = f .

By Lemma 7.1

| τ(µλ, ψλ/φ) | =
√
q
f

= qr

and

τ(µλ, ψλ/φ) = −∆1(µ, ψL/F , ̟
1+n
F )qr
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if ψλ/φ has the same meaning as before and µλ is the character of λ
∗ induced by µ. Since

δ = ∆1(µ, ψL/F , ̟
1+n
F )

is its own complex conjugate, it is±1. If α ∈ φ then

µ−1(α) = µ(αq
r

) = µ(α).

Since u(α) is an ℓth root of unity it is 1. Thus

τ(µλ, ψλ/φ) = τ(µλ).

However it follows from Lemma 7.1 that

τ(µλ) ≡ 1 (mod η)

where η is a number in kp(qf−1) which is not a unit and whose only prime divisors are divisors

of ℓ. Thus

−δqr = τ(µλ) ≡ 1 (mod ℓ)

and δ = 1. We are reduced to showing that

∆1(XE/F , ψE/F , ̟m+n
F )

is equal to

∆1(XF , ψF , ̟m+n
F )

∏
∆1(µXL/F , ψL/F , ̟m+n

F )

Let β = β(XF ). By repeated applications of Lemma 8.9 we see that we may take

β(XL/F ) = β(XK/F ) = β(µXL/F ) = β.

If β(XE/F ) is chosen we could also take

β(XK/F ) = β(XE/F ).

Thus if

m′ = m(XE/F ) = m(XK/F ) = 2d′ + ε′

we have

β ≡ β(XE/F ) (mod Pd′

K).
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Since both sides of the congruence lie in E

β ≡ β(XE/F ) (modPd′

E )

and we may take

β(XE/F ) = β.

Then

∆2(XE/F , ψE/F , ̟m+n
F ) = ψF

(
ℓβ

̟m+n
F

)
X−1
F (βℓ)

while

∆2(XF , ψF , ̟m+n
F )

∏
µ∈T

∆2(µXF , ψL/F , ̟m+n
F )

is equal to

ψF

(
ℓβ

̟m+n
F

)
X−1
F (βℓ).

To complete the proof of the lemma we have to show that

∆3(XF , ψF , ̟m+n
F )

∏
µ∈T

∆3(µXF , ψL/F , ̟m+n
F ) (13.4)

is equal to

∆3(XE/F , ψE/F , ̟m+n
F )

when one, and hence both, ofm andm′ is odd.

As remarked in Lemma 9.4

∆3(µXL/F , ψL/F , ̟m+n
F ) = ∆3(XL/F , ψL/F , ̟m+n

F ).

According to Lemma 9.6 the right side is equal to

ε∆3(XF , ψF , ̟m+n
F )[L:F ]

where ε is 1 if f = [L : F ] is odd and 1 if it is even. Thus (13.4) is equal to

ε
ℓ−1

f {∆3(XF , ψF , ̟m+n
F )}.

As before

φ = OF /PF = OE/PE .
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Let ϕφ be the function on φ defined by

ϕφ(x) = ψF

(
βx

̟d+1+n
F

)
X−1
F (1 +̟d

Fx)

ifm = 2d+ 1. Thenm′ = 2ℓd+ 1 so that d′ = ℓd. Let ϕ′
φ be the function on φ defined by

ϕ′
φ(x) = ψE/F

(
βx

̟d+1+n
F

)
X−1
E/F (1 +̟d

Fx).

Because of Lemma 9.3, to complete the proof of the lemma we have only to show that

ε
ℓ−1

f A[σ(ϕφ)
ℓ] = A[σ(ϕ′

φ)].

Since d′ ≥ m and
3d′ + ℓ− 1

ℓ
≥ m

we have

NK/L(1 +̟d
Fx) ≡ 1 +̟d

F SK/Lx+̟2d
F E

2
K/L(x) (modPm

L )

if E2
K/L(x) is the second elementary symmetric function of x and its conjugates over L. Thus

NE/F (1 +̟d
Fx) ≡ 1 +̟d

FSE/Fx+̟2d
F E

2
E/F (x) (modPm

F ).

This in turn is congruent to

(1 +̟d
F SE/Fx) (1 +̟2d

F E
2
K/F (x)).

Thus

ϕ′
φ(x) = ϕφ(ℓx)ψφ(−E2

λ/φ(x))

if

ψφ(x) = ϕF

(
βx

̟1+n
F

)

or

ϕ′
φ(x) = ϕφ(ℓx)ψφ

(−ℓ(ℓ− 1)

2
x2

)
= {ϕφ(x)}ℓ.
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Suppose first that p is odd and let

ϕφ(x) = ψφ

(
x2 − 2αx

2

)

so that

ϕ′
φ(x) = ψφ

(
ℓx2 − 2ℓαx

2

)
= ψφ

(
ℓ(x− α)2

2

)
ψφ

(−ℓα2

2

)
.

Referring to the observations in paragraph 9 we see that we must show that

ε
ℓ−1

f νφ(−1)
ℓ−1
2 ψφ

(−ℓα2

2

)
= νφ(ℓ)ψφ

(−ℓα2

2

)

or

ε
ℓ−1

f = νφ(−1)
ℓ−1
2 νφ(ℓ)

if νφ is the quadratic character of φ
∗. Let q be the number of elements in φ. If q is an even

power of p the right side is 1 and if q is an odd power of p the right side is, by the law of

quadratic reciprocity, ω(p) if ω is the quadratic character of the field with ℓ elements. Thus in

all cases the right side is ω(q). If f is odd then qf is a quadratic residue of ℓ if and only if q is.

Since

qf − 1 ≡ 0 (mod ℓ).

q is a quadratic residue and both sides of the equation are 1. If f is odd the left side is (−1)
ℓ−1

f .

Since f is the order of q modulo ℓ this is ω(q).

Now suppose that p = 2. If

ψφ(−x2) = ψφ(αx)

then, by the remarks in the proof of Lemma 9.7, we have to show that

ε
ℓ−1

f ϕφ(α)
ℓ−1
2 = 1

if ℓ ≡ 1(mod4) and that

ε
ℓ−1

f ϕφ(α)
ℓ+1
2 = 1

if ℓ ≡ 3 (mod4). We also saw in paragraph 9 that

{ϕφ(α)}2 = ψφ(α
2)

was +1 or 1 according as q is or is not an even power of p. By the second supplement to the

law of quadratic reciprocity

ϕφ(α)
ℓ−1
2 = ω(q)
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if ℓ ≡ 1 (mod4) and

ϕφ(α)
ℓ+1
2 = ω(q)

if ℓ ≡ 3 (mod4). We have just seen that

ε
ℓ−1

f = ω(q).

The lemma is proved.
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Chapter Fourteen.

The Fourth Main Lemma.

In the previous paragraph we said that we would eventually have to show that

∆(χE/F , ψE/F )
∏

µ∈T
∆(µ′, ψFµ/F ) (14.1)

is equal to

∆(χF , ψF )
∏

µ∈T
∆(µ′χFµ/F , ψFµ/F ). (14.2)

However we verified that the two expressions are equal only when K/F is tamely ramified.

In this paragraph we shall show that they are equal if Theorem 2.1 is valid for all pairsK ′/F ′

in P(K/F ) for which [K ′ : F ′] < [K : F ].

Lemma 14.1

SupposeK/F is wildly ramified and Theorem 2.1 is valid for all pairsK ′/F ′ in P(K/F )

for which [K ′ : F ′] < [K : F ]. If χF is any quasicharacter of CF the expressions (14.1) and

(14.2) are equal.

If a and b are two nonzero complex numbers andm is a positive integer we again write

a ∼m b if, for some nonnegative integer r, a
b
is an mrth root of unity. Define the nonzero

complex number ρ by demanding that

∆(χE/F , ψE/F )
∏

µ∈T
∆(µ′, ψFµ/F )

be equal to

ρ∆(χF , ψF )
∏

µ∈T
∆(µ′χFµ/F , ψFµ/F ).

We have to show that ρ = 1. Lemma 14.1 will be an easy consequence of the following four

lemmas.

Lemma 14.2

Ifm(χF ) is 0 or 1 then ρ = 1 and in all cases p ∼2p 1.

Lemma 14.3

If [G : G1] is a power of 2 then ρ ∼p 1.
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Lemma 14.4

If the induction assumption is valid, if F ⊆ F ′ ⊆ L, if F ′/F is normal, and if [F ′ : F ] = ℓ

is a prime then p ∼ℓ 1.

Lemma 14.5

SupposeH = H1H2 whereH2 is a cyclic normal subgroup ofH, [H2 : 1] is a power of a

prime ℓ, and [H1 : 1] is prime to ℓ. If the induction assumption is valid ρ ∼ℓ 1.

Grant these four lemmas for a moment and observe that if m and n are relatively prime

then ρ ∼m 1 and ρ ∼n 1 imply that ρ = 1. If ℓ is a prime which divides [G : G0] there is

a field F ′ containing F and contained in L so that F ′/F is normal and [F ′ : F ] = ℓ. Thus

Lemma 14.1 follows from Lemma 14.4 unless [G : G0] is a prime power. Lemma 14.1 follows

from Lemmas 14.2 and 14.4 unless [G : G0] is a power of 2 or p. Suppose [G : G0] is a power

of 2 or p. Then ρ ∼[G:G0] 1 except perhaps when [G : G0] = 1. If ℓ is a prime which does not

divide [G : G0] but does divide [G0 : G1] let H2 be the ℓSylow subgroup of G0/G1. H2 is a

normal subgroup of G/G1 which we may identify with H and H/H2 has order prime to H2.

Thus, by a wellknown theorem of Schur [7], H = H1H2 where H1 ∩H2 = {1} and H1 has

order prime to H2. It follows from Lemma 14.5 that ρ = 1 unless [G : G0] = 1 or [G : G1] is

a power of 2 or p. If [G : G0] = 1 and ℓ is a prime dividing [G0 : G1] there is a field F
′ with

F ⊆ F ′ ⊆ L such that F ′/F is normal and [F ′ : F ] = ℓ. Thus if [G : G0] = 1 it follows from

Lemma 14.4 that ρ = 1 unless [G : G1] is a power of 2. However if [G : G1] is a power of 2

there certainly is an F ′ inLwith [F ′ : F ] = 2. It follows from Lemmas 14.3 and 14.4 that ρ = 1

in this case unless p = 2. If [G : G1] is a power of p then G0 = G1 and G/G1 is abelian. By

assumption the abelian pgroup G/G1 acts on the pgroup C = G1 faithfully and irreducibly.

This is impossible.

We prove Lemma 14.2 first. Let t ≥ 1 be such that C = Gt while Gt+1 = {1}. Let θt be
the homomorphism of Gt into Pt

K/P
t+1
K and θ0 the homomorphism of G0/G1 into U

0
K/U

1
K

introduced in Serre’s book. If σ ∈ G0 and γ ∈ Gt then

θt(σγσ
−1γ−1) = (θt0(σ) − 1)θt(γ).

If σ is not in G1 then θ
t
0(σ) is not 1 and γ → σγσ−1γ−1 is a onetoone map of C onto itself.

Thus, if σ ∈ G0,

µ(σγσ−1) = µ(γ)

implies µ = 1 or σ ∈ G1. Consequently if µ 6= 1, Gµ ∩ G0 = G1 and L/Fµ is unramified.

Since µ = µ′
L/Fµ

,

m(µ′) = m(µ) = t+ 1.
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Observe also that tmust be relatively prime to [G0 : G1]. In particular if t is even [G0 : G1] is

odd.

The relations

δK/L = ([Gt : 1] − 1) (t+ 1)

δL/F = [G0 : G1] − 1

δK/E = [G0 : G1] − 1

and

δK/F = δK/L + [G1 : 1] δL/F = δK/E + [G0 : G1]δE/F

obtained from Proposition 4 of Chapter IV of Serre’s book, imply that

δE/F = ([G1; 1] − 1)

(
t

[G0 : G1]
+ 1

)
.

If n = n(ψF ) then

n(ψFµ/F ) = [G0 : G1]n+ [G0 : G1] − 1

and

n′ = n(ψE/F ) = [G1 : 1]n+ ([G1 : 1] − 1)

(
t

[G0 : G1]
+ 1

)
.

Choose a generator̟K ofPK and a generator̟E ofPE . Then set̟L = NK/L̟K and

̟F = NE/F̟E . There is a unit δ inK such that

̟1+n
F

̟1+n′

E

= δ
̟t
K

̟t
L

.

Taking the norm fromK to L of both sides we see that if q = [G1 : 1] and k = [G0 : G1] then

̟
t(q−1)
L

̟
t
(q−1)

k

F

= NK/Lδ.

Letm = m(χF ). If m − 1 is equal to t
[G0:G1]

then [G0 : G1] divides t and [G0 : G1] is 1.

Suppose that

m <
t

[G0 : G1]
+ 1.
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Then

m(χFµ/F ) < ψFµ/F

(
t

[G0 : G1]

)
+ 1.

However ψFµ/F = ϕL/Fµ
◦ ψL/F = ψL/F so that

ψFµ/F (u) = [G0 : G1]u

if u ≥ 0. Thus m(χFµ/F ) < t + 1 and m(µ′χFµ/F ) = t + 1. Moreover, by Lemmas 13.1 and

6.4,m′ = m(χE/F ) = m. Choose a generator̟Fµ
ofPFµ

. Then

NFµ/F (̟t
Fµ

) = γµ̟
t
[Fµ:F ]

k

F

where γµ is a unit. The order of̟
1+n
F ̟t

Fµ
in Fµ is 1 + t+ n(ψFµ/F ). Observing that

∑
µ
[Fµ : F ] = q − 1

we see that

∆1(χE/F , ψE/F ′̟m′+n′

E )
∏

µ∈T
∆1(µ

′, ψFµ/F , ̟
1+n
F ̟t

Fµ
)

is equal to

p

{∏
µ
χF (γµ)

}
{∆1(χF , ψF , ̟

m+n
F }

{∏
µ

∆1(µ
′χFµ/F , ψFµ/F , ̟

1+n
F ̟t

Fµ
)

}
.

It is now clear that ρ = 1 ifm = 0.

If

m ≥ t

[G0 : G1]
+ 1

so that in particularm ≥ 2, then

m′ = m(χE/F ) = [G1 : 1]m− ([G1 : 1] − 1)

(
t

[G0 : G1]
+ 1

)

is also greater than or equal to 2 and

m′ + n′ = [G1 : 1] (m+ n).

Sincem′ ≥ 2 andK/E is tamely ramified

m(χK/F ) = ψK/E(m(χE/F ) − 1) + 1 = ψK/F (m− 1) + 1.
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Since

m(χFµ/F ) ≤ ψFµ/F (m− 1) + 1

and

ψFµ/F (m− 1) + 1 ≥ ψFµ/F

(
t

k

)
+ 1 = t+ 1

we have

m(µ′χFµ/F ) ≤ ψFµ
(m− 1) + 1.

However

χK/F = (µ′χFµ/F )K/Fµ

so that

ψK/Fµ
(ψFµ/F (m− 1)) + 1 = ψK/F (m− 1) + 1 = m(χK/F )

is at most

ψK/F (m(µ′χFµ/F ) − 1) + 1.

Thus

m(µ′χFµ/F ) = ψFµ/F (m− 1) + 1.

Consequently

m(µ′χFµ/F ) + n(ψFµ/F ) = [G0 : G1] (m+ n).

Since the range of each µ′ lies in the group of qth roots of unity

∆1(χE/F , ψE/F , ̟
m+n
F )

∏
µ

∆1(µ
′, ψFµ/F , ̟

n+1
F ̟t

Fµ
)

is equal to

σ∆1(χF , ψF , ̟
m+n
F )

∏
µ

∆1(µ
′χFµ/F , ψFµ/F , ̟

m+n
F )

with σ ∼p ρ.

The next step in the proof of the lemma is to establish a simple identity. As usual let r be

the integral part of t+1
2
and let r + s = t+ 1. Choose β(µ′) so that

ψFµ/F

(
β(µ′)x

̟1+n
F ̟t

Fµ

)
= µ′(1 + x)

for x inPs
Fµ
. There is a unit αµ in L such that αµ̟

t
Fµ

= ̟t
L. Then

ψL/F

(
αµβ(µ′)x

̟1+n
F ̟t

L

)
= µ(1 + x)
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for x inPs
L. We take β(µ) = αµβ(µ′). If σ ∈ G a possible choice for β(µσ) is

β(µ)σ
̟t
L

̟σ t
L

.

Let φ = OF /PF = OE/PE and let ψφ be the additive character of φ defined by

ψφ(x) = ψF

(
x

̟1+n
F

)
.

There is a unique α in φ such that

ψφ(αx) = ψφ(x
q).

Finally let

ω1 = SE/F

(
̟1+n
F

̟1+n′

E

)
.

I want to show that ∏
µ
γµ =

ωq1
αq

∏
µ
NFµ/Fβ(µ′) (14.3)

in φ.

Let λ = OL/PL = OK/PK . If

ω = SK/L

(
̟t
K

̟t
L

)

then ω1 = δω in λ. We need the following lemma.

Lemma 14.6

Suppose K ′/F ′ is an abelian extension and G′ = G(K ′/F ′). Suppose there is a t ≥ 1

such that G′ = G′
t and G

′
t+1 = {1}. Let ̟K′ be a generator of P′

K , let ̟F ′ = NK′/F ′(̟K′),

and let

ω = SK′/F ′

(
̟t
K′

̟t
F ′

)
.

Also let q = [K ′ : F ′]. There are numbers a, . . . , f in OF ′ such that for all x in OF ′

NK′/F ′(1 + x̟t
K′)
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is congruent to

1 + (xq + ax
q
p + . . .+ fxp + ωx)̟t

F ′

moduloPt+1
F ′ .

SupposeF ′ ⊆ L′ ⊆ K ′ and the lemma is true forK ′/L′ andL′/F ′. The lemma forK ′/F ′

follows from the relations

[K ′ : F ′] = [K ′ : L′] [L′ : F ′]

and

NK′/F ′(1 + x̟t
K′) = NL′/F ′(NK′/L′(1 + x̟t

K′))

and

SK′/F ′

(
̟t
K′

̟t
F ′

)
≡ SL′/F ′

(
̟t
L′

̟t
F ′

)
SK′/L′

(
̟t
K′

̟t
L′

)
.

The lemma for extensions of prime order is proved in Serre’s book.

Suppose then

NK/L(1 + x̟t
K) ≡ 1 + (xq + . . .+̟x)̟t

L (modPt+1
L )

for x in OL. Since

ψλ/φ(αx) = ψφ(αSλ/φ(x)) = ψφ((Sλ/φ(x))
q)

which in turn equals

ψφ(Sλ/φx
q) = ψλ/φ(x

q)

we conclude that

ψλ/φ(y(x
q + . . .+ ωx)) = ψλ/φ((αy

1
q + . . .+ ωy)x).

Also (
αy

1
q + . . .+ ωy

)q
= αqy + . . .+ ωqyq

is a polynomialQ(y) in y.

For each ν in S(K/L), we choose β1(ν) so that

ψL/F

(
β1(ν)x

̟1+n
F ̟t

L

)
= ν(1 + x)

for x in PsL. Since kp = k in λ

ψλ/φ(kβ1(ν)(x
q + . . .+ ωx) = ψλ/φ(β1(ν) [(kx)q + . . .+ ωkx])



Chapter 14 177

if x is in OF . The left side is also equal to

ψL/F

(
β1(ν)PK/L(x̟t

K)

̟1+n
F ̟t

L

)
= 1.

ThusQ(kβ1(ν)) = 0. Since β1(ν1) = β2(ν2) (modPL) implies ν1 = ν2 we have found all the

roots ofQ(y) = 0. Thus

αq

ωq
≡
∏

ν 6=1
kβ1(ν) ≡

∏
ν 6=1

β1(ν) (mod PL).

LetMµ be a set of representatives for the cosets ofGµ inG. Then

∏
µ∈T

NFµ/Fβ(µ′) =
∏

µ∈T

∏
σ∈Mµ

β(µ′)σ

is congruent to {∏
ν 6=1

β1(ν)

} {∏
µ∈T

∏
σ∈Mµ

ασµ
̟t
L

̟σ t
L

}−1

moduloPL. To verify the identity (14.3) we have to show that

{∏
µ

∏
σ∈Mµ

ασµ
̟t
L

̟σ t
L

} {∏
µ
γµ

}
≡ δq (modPK).

Since

γµ =

{∏
σ∈Mµ

̟σ t
L

ασµ

}
̟

−t
[Fµ:F ]

k

F

the congruence reduces to

̟
t(q−1)
L

̟
t
(q−1)

k

F

≡ δq (mod PK)

which is valid because the left side isNK/Lδ and

NK/Lδ ≡ δq (modPK).

Ifm = 1 thenm(χFµ/F ) ≤ 1 and we can take β(µ′χFµ/F ) = β(µ′). Then

∆2(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
)
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is equal to

χF (NFµ/F (β(µ′))) ∆2(µ
′χFµ/F , ψFµ/F , ̟

1+n
F ̟t

Fµ
).

Lemma 9.4 implies that

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) = ∆3(µ

′χFµ/F , ψFµ/F , ̟
1+n
F ̟t

Fµ
).

If x belongs to OE then

ψE/F

(
x

̟1+n′

E

)
= ψφ(ω1x).

If χφ is the character of φ
∗ determined by χF then

∆1(χF , ψF , ̟
1+n
F ) = A[−τ(χφ, ψφ)]

and

∆1(χE/F , ψE/F , ̟
1+n′

E ) = χφ(ω
q
1) A[−τ(χqφ, ψφ)].

The right side of this expression is equal to

χφ(ω
q
1α

−q) A[−τ(χφ, ψφ)].

The identity (14.3) now shows that ρ = 1whenm = 1.

Suppose that

1 < m <
t

[G0 : G1]
+ 1.

Let β be a given choice of β(χF ). Then

β(χE/F ) ≡ P ∗
E/F (β,̟m′+n′

E , ̟m+n
F ) (mod Pd′

E )

ifm′ = 2d′ + ε′. On the other hand

ψL/F (m− 1) + 1 + n(ψL/F ) = [G0 : G1](m− 1) + 1 + [G : G0]n+ [G0 : G1] − 1

which equals [G0 : G1](m+ n) and Lemmas 8.3, 8.4 and 8.7 imply that

P ∗
L/F (β,̟m+n

F , ̟m+n
F ) ≡ β (modPd1

L )

if

ψL/F (m− 1) + 1 = 2d1 + ε1.
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If

ψK/F (m− 1) + 1 = 2d′1 + ε′1

then

P ∗
K/E(β(χE/F , ̟

m′+n′

E , ̟m′+n′

E ) ≡ β(χE/F ) (modP
d′1
K ).

Thus

β(χE/F ) ≡ P ∗
K/F (β,̟m′+n′

E , ̟m+n
F ) (mod P

d′1
K ).

Let

v = t+ 1 − (ψL/F (m− 1) + 1) = t− [G0 : G1] (m− 1).

If

γ =
̟t−v
L

̟m−1
F

and

γ′ =
̟m′+n′

E ̟v
K

̟1+n
F ̟t

L

then

P ∗
K/F (β,̟m′+n′

E , ̟m+n
F ) ≡ P ∗

K/L(β,̟m′+n′

E , ̟m+n
F ) (modP

d′1
K )

is congruent to

γ′P ∗
K/L(γβ,̟1+n

F ̟t
L̟

−v
K , ̟1+n

F ̟t−v
L )

moduloP
d′1
K .

It is clear that

∆2(χE/F , ψE/F , ̟
m′+n′

E ) ∼p χ−1
F (NE/F (β(χE/F )))

and that

∆2(µ
′, ψFµ/F , ̟

n+1
F ̟t

Fµ
) ∼p 1.

If we choose

β(µ′χFµ/F ) = β(µ′) + β
̟t
Fµ

̟m−1
F

then

∆2(µ
′χFµ/F , ψFµ/F , ̟

n+1
F ̟t

Fµ
) ∼p χ−1

F

(
NFµ/F

(
β(µ′) + β

̟t
Fµ

̟m−1
F

))
.
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Moreover

∆2(χF , ψF , ̟
m+n
F ) ∼p χ−1

F (β).

Let

∆2(χE/F , ψE/F , ̟
m′+n′

E )
∏

µ
∆2(µ

′, ψFµ/F , ̟
n+1
F ̟t

Fµ
)

equal

τ∆2(χF , ψF , ̟
m+n
F )

{∏
µ

∆2(µ
′χFµ/F , ψFµ/F , ̟

n+1
F ̟t

Fµ
)

} {∏
µ
χF (γµ)

}
.

Since

χF (u) ∼p 1

if u ∈ U1
F , all we need do to show that τ ∼p 1 is prove that

β
∏

µ
NFµ/F

(
β(µ′) + β

̟t
Fµ

̟m−1
F

)

is congruent to

NE/F (β(χE/F ))
∏

µ
γµ

moduloPF .

As before we choose β(µ) = αµ(β(µ′). If ν = µσ a possible choice for β(ν) is

ασµβ(µ′)σ
̟t
L

̟σ t
L

.

We can also choose

β(µχL/F ) = αµβ(µ′) + β
̟t
L

̟m−1
F

= αµ

(
β(µ′) + β

̟t
Fµ

̟m−1
F

)
.

Then a possible choice forB(µσχL/F ) is

ασµ

{
β(µ′) + β

̟t
Fµ

̟m−1
F

}σ
̟t
L

̟σ t
L

= ασµ(β(µ′)σ
̟t
L

̟σ t
L

+ β
̟t
L

̟m−1
F

.

We apply Lemma 8.10 with F replace by L,

δ = ̟1+n
F ̟t

L
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and ε1 = ̟v
K . It implies that

NK/L

(
β(χE/F )

γ′

)

is congruent to

γβ
∏

µ∈T

∏
σ∈Mµ

{
ασµ

(
β(µ′) + β

̟t
Fµ

̟m−1
F

)σ
̟t
L

̟σ t
L

}

moduloPL. The last expression is equal to

γβ

{∏
µ∈T

NFµ/F

(
β(µ′) + β

̟t
Fµ

̟t
F

)} {∏
µ∈T

∏
σ∈Mµ

ασµ
̟t
L

̟σ t
L

}

and we have to show that

γNK/L(γ′)

{∏
µ
γµ

} {∏
µ∈T

∏
σ∈Mµ

ασµ
̟t
L

̟σ t
L

}

is congruent to 1 moduloPL. First of all

NK/L(γ′) = ̟
m′+n′−q(1+n)
F ̟−qt+v

L = γ−1 ̟
(q−1)t

k

F

̟
(q−1)t
L

.

Since

γµ =

{∏
σ∈Mµ

ασµ
̟σ t
L

}−1

̟
−t

[Fµ:F ]

k

F

the required relation follows.

Define η by setting

η∆3

(
χE/F , ψE/F , ̟

m′+n′

E

) ∏
µ∈T

∆3

(
µ′, ψFµ/F , ̟

1+n
F ̟t

Fµ

)

equal to

∆3(χF , ψF , ̟
m+n
F )

∏
µ∈T

∆3

(
µ′χFµ/F , ψFµ/F , ̟

1+n
F ̟t

Fµ

)
.

We now know that η ∼p ρ. We shall show that η ∼p 1. This will prove not only the assertion

of Lemma 14.2 but also that of Lemma 14.3, provided of course that

m− 1 <
t

[G0 : G1]
.
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Lemmas 9.2 and 9.3 imply directly that η ∼p 1 if p is 2.

Suppose p is odd. Lemma 9.4 implies that

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p ∆3(µ

′χFµ/F , ψFµ/F , ̟
1+n
F ̟t

Fµ
).

Sincem′ = m all we need do is show that

∆3(χE/F , ψE/F , ̟
m′+n′

E ) ∼p ∆3(χF , ψF , ̟
m+n
F )

when m is odd. Let φ = OF /PF = OE/PE . Let β
′ = β(χE/F ) and let β = β(χF ). If ψ′

φ is

the character of φ defined by

ψ′
φ(x) = ψF

(
β x

̟n+1
F

)

and ψ′′
φ is the character of φ defined by

ψ′′
φ(x) = ψE/F

(
β′x

̟n′+1
E

)

and ifψ′′
φ(x) = ψ′

φ(δx) then, by Lemmas 9.2 and 9.3, all we have to do is show that δ is a square

in φ. If

ω1 = SE/F

(
̟n+1
F

̟n′+1
E

)

then δ = ω1
β′

β in φ. To show that δ is a square we show that δ
q is a square.

δq ≡ NE/Fα ≡ β1−q NE/F (β′)

β
ωq1.

We saw that

NE/F (β′)

β
=

{∏
µ
γµ

}−1 {∏
µ
NFµ/F

(
β(µ′) + β

̟t
Fµ

̟m−1
F

)}

in φ. But

β
̟t
Fµ

̟m−1
F

≡ 0 (modPL)
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because t > [G0 : G1](m− 1). We also saw that

{∏
µ
γµ

}−1 {∏
µ
NFµ/Fβ(µ′)

}
=
αq

̟q
1

in φ. Since β1−q is clearly a square, we need only check that α is a square. The character

x −→ ψφ (xq − αx)

is identically 1, so that the kernel of the map

x −→ xq − αx

is nontrivial. Thus α = xq−1 for some x in φ.

Now suppose that

m− 1 ≥ t

[G0 : G1]
.

We have to show that the complex number σ defined at the beginning of the proof satisfies

σ ∼2p 1. To prove Lemma 14.3 we will have to show that σ ∼p 1 if [G : G1] is a power of 2.

Given β = β(χF )we may choose β(χL/F ) = β(χFµ/F ) = β. Moreover

β(χE/F ) ≡ P ∗
E/F (β,̟m+n

F , ̟m+n
F ) (modPd′

E )

ifm′ = m(χE/F ) = 2d′ + ε′. By Lemmas 8.3, 8.4 and 8.7

P ∗
K/F (β,̟m+n

F , ̟m+n
F ) ≡ P ∗

K/E(β(χE/F ), ̟m+n
F , ̟m+n

F ) ≡ β(χE/F )

modulo Pd
′

1

K if

ψK/F (m− 1) + 1 = 2d′1 + ε′1.

Thus

β(χE/F ) ≡ P ∗
K/L(β,̟m+n

F , ̟m+n
F ) (modP

d′1
K ).

If

ψFµ/F (m− 1) + 1 = 2dµ + εµ

and

ψFµ/F

(
α(µ′)x

̟m+n
F

)
= µ′(1 + x)
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for x inP
dµ+εµ

Fµ
we may take

β(µ′χFµ/F ) = β + α(µ′).

If

ψL/F (m− 1) + 1 = 2d1 + ε1

then

µ(1 + x) = ψL/F

(
α(µ′)x

̟m+n
F

)

for x inPd1+ε1
L . If ν = µσ then

ν(1 + x) = ψL/F

(
α(µ′)σx

̟m+n
F

)

for x inPd1+ε1
L . Lemma 8.2 implies that

NE/F (β(χE/F )) = NK/L(β(χE/F ))

is congruent to

β
∏

µ∈T

∏
σ∈Mµ

(β + α(µ′)σ)

moduloPL. The last expression is equal to

β
∏

µ∈T
NFµ/F (β + α(µ′)).

Moreover

∆2(χF , ψF , ̟
m+n
F ) ∼p χ−1

F (β)

∆2(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p 1

∆2(χE/F , ψE/F , ̟
m+n
F ) ∼p χ−1

F (NE/F (β(χE/F )))

∆2(µ
′χFµ/F , ψFµ/F , ̟

m+n
F ) ∼p χ−1

F (NFµ/F (β + α(µ′))).

Define τ by demanding that

∆3(χE/F , ψE/F , ̟
m+n
F )

∏
µ

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
)

be equal to

τ ∆3(χF , ψF , ̟
m+n
F )

∏
µ

∆3(µ
′, χFµ/F , ψFµ/F , ̟

m+n
F ).
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Since χF (u) ∼p 1 if u ∈ U1
F the preceding discussion shows that σ ∼p τ . Lemmas 9.2 and 9.3

show that τ ∼2p 1. Lemma 14.2 is now completely proved. To prove Lemma 14.3 we have to

show that τ ∼p 1 if [G : G1] is a power of 2. We may suppose that p is odd.

There are a number of possibilities.

(i.a) t is even andm is odd. [G0 : G1]must be odd and hence 1, for we are now assuming that

[G : G1] is a power of 2. Since

m(χFµ/F ) = [G0 : G1] (m− 1) + 1

and

m(χE/F ) = [G1 : 1] (m− 1) − ([G1 : 1] − 1)t

[G0 : G1]
+ 1

bothm(χFµ/F ) andm(χE/F ) are odd.

(i.b) t is even andm is even. Again [G0 : G1] is 1. This time bothm(χFµ/F ) andm(χE/F ) are

even.

(ii.a) t is odd andm is odd. Thenm(χFµ/F ) is odd. If

[G1 : 1] − 1

[G0 : G1]

is evenm(χE/F ) is odd. Otherwise it is even.

(ii.b) t is odd andm is even. If [G0 : G1] is odd, that is 1, thenm(χFµ/F ) is odd andm(χE/F )

is even. If [G0 : G1] is even thenm(χFµ/F ) is odd andm(χE/F ) is even or odd according

as
[G1 : 1] − 1

[G0 : G1]

is even or odd.

If t is odd then clearly

∏
µ

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p 1.

We are going to show that this is also true if t is even. Then L/F , and hence Fµ/F , is

unramified. Let φµ = OFµ
/PFµ

. If

ψφµ
(x) = ψFµ/F

(
β(µ′)x

̟1+n
F

)
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and if ϕφµ
is a nowhere vanishing function on φµ satisfying

ϕφµ
(x+ y) = ϕφµ

(x)ϕφµ
(y)ψφµ

(xy)

then

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p A[−σ(ϕφµ

)].

If α belongs to φ∗µ let νφµ
(α) equal +1 or 1 according as α is or is not a square in φµ. If

φ = OF /PF then

νφµ
(α) = νφ (Nφµ/φ(α)).

If

ψφ(x) = ψF

(
x

̟1+n
F

)

then, according to paragraph 9,

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p νφ(NFµ/F (β(µ′))) {A[−σ(ϕφ)]}[Fµ:F ]

if ϕφ is any nowhere vanishing function on φ satisfying

ϕφ(x+ y) = ϕφ(x)ϕφ(x)ψφ(xy).

Thus if a is the number of µ in T

∏
µ

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
)

is equal to

η(−1)a νφ

(∏
µ
NFµ/F (β(µ′))

)
A[σ(ϕφ)

q−1]

where η ∼p 1 and q = [G1 : 1].

We saw in paragraph 9 that

A[σ(ϕφ)
2] ∼p νφ(−1) A[|σ(ϕφ)|2] = νφ(−1).

Since t is even G0 = G1 and G/G1 = G/G0 is abelian. If σ ∈ G

{µ ∈ S(K/L) | µ = µσ}
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is a subgroup of S(K/L) invariant under G. It is necessarily either S(K/L) or {1}. If σ is not
in G1 it is not S(K/L). Thus Gµ, the isotropy group of µ, is G1 for all µ in T and Fµ = L.

Moreover ∏
µ
NFµ/F (β(µ′)) =

∏
µ

∏
σ∈G/G1

β(µ′)σ.

Wemay regard C = G1 as a vector space over the field with p elements. If σ ∈ G/G1 and

the order of σ divides p− 1 then all the eigenvalues of the linear transformation c −→ σcσ−1

lie in the prime field. Since the linear transformation also has order dividing p − 1 it is

diagonalizable. SinceG/G1 is abelian and acts irreducibly on C the linear transformation is a

multiple of the identity. In particular if σ0 is the unique element of order 2 then σ0cσ
−1
0 = c−1

for all c. As a consequence µσ0 = µ−1 and

β(µ′)σ0 ≡ −β(µ′) (modPL)

if we choose, as we may since Fµ/F is unramified, ̟Fµ
= ̟F . If D is the group {1, σ0} and

M is a set of representatives for the cosets ofD inG/G1 then

∏
µ∈T

∏
σ∈G/G1

β(µ′)σ = γγσ0

if

γ =
∏

µ∈T

∏
σ∈M

β(µ′)σ.

Clearly

γγσ0 = (1−)
q−1
2 γ2 (mod PL).

If χ is the nontrivial character ofD and

v : G/G0 −→ D

is the transfer then

γσ = χ(v(σ))aγ

for all σ inG/G0. νφ(γ
2) = 1 if and only if χ(v(σ))a is 1 for all σ. If σ is a generator ofG/G0

then

v(σ) = σ
[G:G0]

2 = σ0

so that νφ(γ
2) = (−1)a. Putting all these facts together we see that

∏
µ

∆3(µ
′, ψFµ/F , ̟

1+n
F ̟t

Fµ
) ∼p 1.
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Observe that if we had taken ̟Fµ
to be δµ̟F then NFµ/Fβ(µ′) would have to be multiplied

by

{NFµ/F δµ}t

which is a square moduloPF because t is even. Thus the result is valid for all choices of̟Fµ
.

Eventually wewill have to discuss the various possibilities separately. There are however

a number of comments we should make first. Ifm is odd andm(χFµ/F ) is odd then

∆3(µ
′χFµ/F , ψFµ/F , ̟

m+n
F ) ∼p νφµ

(β + α(µ′)) A[−σ(ϕφµ
)]

if

ψφµ
(x) = ψFµ/F

(
x

̟1+n
F

)
.

Observe that, because m is odd, we may take the number δ in Lemma 9.3 to be ̟
m−1

2

F . Of

course ϕφµ
is any function on φµ which vanishes nowhere and satisfies

ϕφµ
(x+ y) = ϕφµ

(x) ϕφµ
(y)ψφµ

(xy).

Applying Lemma 9.1 we see that

A[−σ(ϕφµ
)] ∼p −νφ

(
k

[Fµ:F ]

k

)
A
[
σ(ϕφ)

[Fµ:F ]

k

]

if k = [G0 : G1], if

ψφ(x) = ψF

(
x

̟1+n
F

)

and if ϕφ bears the usual relation to ψφ. We use, of course, the relation

kSφµ/φ(x) = SFµ/F (x).

Observe also that

νφµ
(β + α(µ′)) = νφ(Nφµ/φ(β + α(µ′))).

Ifm is odd

∆3(χF , ψF , ̟
m+n
F ) ∼p −νφ(β) A[σ(ϕφ)].

If bothm andm′ = m(χE/F ) are odd and if β′ = β(χE/F ) then

∆3(χE/F , ψE/F , ̟
m+n
F ) ∼p −νφ(β′) A[σ(ϕ′

φ)]



if ϕ′
φ bears the usual relation to the character

ψ′
φ(x) = ψE/F


 x

̟1+n
F ̟

(q−1)t
k

E


 .

There is a unit ε in OK such that̟E = ε̟q
K . If σ ∈ C then

̟σ−1
E = εσ−1̟

(σ−1)q
K ≡ 1 (mod PK)

because t ≥ 1. Thus the multiplicative congruence

̟q
E ≡ NE/F̟E = ̟F (mod∗ PE)

is satisfied and
1

̟
(q−1)t

k

E

≡ ̟1+n
F

̟1+n′

E

(mod∗ PE).

If

ω1 = S

(
̟1+n
F

̟1+n′

E

)

as before, then

ψ′
φ(x) = ψF

(
ω1x

̟1+n
F

)
.

Since

νφ(β
′) = νφ(β

′)q = νφ(NE/Fβ
′)

we have

∆3(χE/F , ψE/F , ̟
m+n
F ) ∼p −νφ(NE/Fβ′) νφ(ω1) A[σ(ϕφ)].

Define η by demanding that

∆3(χE/F , ψE/F , ̟
m+n
F )

be equal to

η∆3(χF , ψF , ̟
m+n
F )

∏
µ

∆3 (µ′χFµ/F , ψFµ/F , ̟
m+n
F ).

We have to show that η ∼p 1. If both t and m are even this is clear. If t is even andm is odd

we are to show that

νφ(NE/Fβ
′)νφ(ω1) ∼p (−1)a νφ(−1)

q−1
2k νφ(k)

q−1
k νφ(β)

∏
µ
νφ(Nφµ/φ(β + α(µ′)))
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if a is the number of elements in T . Since t is even k is 1. As before

β
∏

µ
Nφµ/φ(β + α(µ′)) = β

∏
µ

∏
σ∈G/G1

(β + α(µ′)σ)

is congruent to NE/Fβ
′ moduloPK . All we need do is show that

νφ(ω1) = (−1)a νφ(−1)
q−1
2 .

Since t is even each γµ is a square in φ. Applying the identity (14.3) we see that

νφ(ω1) = νφ(ω
q
1) = νφ(α)ν−1

φ

(∏
µ
NFµ/Fβ(µ′)

)
.

We have seen that α is a square in φ so that νφ(α) = 1. We also saw that

νφ

(∏
µ
NFµ/Fβ(µ′)

)
= (−1)a νφ(−1)

q−1
2

when t is even. The required relation follows.

We suppose henceforth that t is odd. The discussion will be fairly complicated. Suppose

first thatm is also odd. Then

[G0 : G1](m− 1) 6= t

and

m− 1 >
t

[G0 : G1]

so that

β + α(µ′) ≡ β (mod PL)

and

∏
µ

∆3(µ
′χFµ/F , ψFµ/F , ̟

m+n
F ) ∼p (−1)a νφ

(
k

q−1
k

)
νφ

(
β

q−1
k

)
A[σ(ϕφ)]

q−1
k .

Thus if q−1
k
is odd we have to show that

(−1)a+1 νφ(k) νφ(−1)
q−1
2k + 1

2 ∼p 1 (14.4)

and if q−1
k
is even we have to show that

νφ(ω1) ∼p (−1)a νφ(−1)
q−1
2k . (14.5)
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Now suppose m is even. If [G0 : G1] is 1 there is nothing to prove. If k = [G0 : G1] is

even then

m− 1 >
t

[G0 : G1]

and

β + α(µ′) ≡ β (modPL).

If

ψ′
φµ

(x) = ψFµ/F


β

̟
k(m−1)
Fµ

x

̟m+n
F




and ϕ′
φµ
is a function on φµ which vanishes nowhere and satisfies

ϕ′
φµ

(x+ y) = ϕ′
φµ

(x)ϕ′
φµ

(y)ψ′
φµ

(xy)

then

∆3(µ
′χFµ/F , ψFµ/F , ̟

m+n
F ) ∼p A[−σ(ϕ′

φµ
)].

If

εµ̟
m−1
F = ̟

k(m−1)
Fµ

then εµ is a unit and

ψφµ
(x) = ψφµ/φ(kβεµx)

if, as before,

ψφ(x) = ψF

(
x

̟1+n
F

)
.

By Lemma 9.1, A[−σ(ϕφµ
)] is equal to

−νφ
(
k

[Fµ:F ]

k

)
νφ

(
β

[Fµ:F ]

k

)
νφ(Nφµ/φεµ) A[σ(ϕφ)]

[Fµ:F ]

k .

If q−1
k is even we have to show that

(−1)a νφ

(∏
µ
Nφµ/φεµ

)
νφ(−1)

q−1
2k ∼p 1 (14.6)

If q−1
k
is odd thenm′ = m(χE/F ) is odd. If

ψ′′
φ(x) = ψE/F

(
β′̟

m′−1
E x

̟m+n
F

)
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and ϕ′′
φ bears the usual relation to ψ

′′
φ then

∆3(χE/F , ψE/F , ̟
m+n
F ) ∼p A[−σ(ϕ′′

φ)].

Now νφ(β
′) = νφ(β

′)q and

(β′)q ≡ NE/Fβ
′

which in turn is congruent to

β
∏

µ∈T

∏
σ∈Mµ

(β + α(µ′)σ) ≡ βq

moduloPK . Let

ε1̟
m+n
F = ̟

q(m+n)
E

and, as before,

ω1 = SE/F

(
̟1+n
F

̟1+n′

E

)

then

A[−σ(ϕ′′
φ)] ∼p νφ(ω1) νφ(ε1) νφ(β) A[−σ(ϕφ)].

We saw that

̟q
E ≡ ̟F (mod∗ PE)

so that

ε1 ≡ 1 (modPE).

Thus we have to show that

νφ(ω1) ∼p (−1)a+1 νφ(k) νφ(−1)
q−1
2k − 1

2 νφ

(∏
µ
Nφµ/φεµ

)
. (14.7)

The four identities (14.4), (14.5), (14.6), and (14.7) look rather innocuous. However to

prove them is not an entirely trivial matter. We first consider the case that G/G1 is abelian. If

σ0 ∈ G/G1 is of order 2, the argument used before shows that σ0cσ
−1
0 = c−1 for all c in C.

Since the representation ofG/G1 on C is faithfulG/G1 has only one element of order 2 and is

therefore cyclic. In this case Fµ = L for all µ and a = q−1
[G:G1]

. We may choose̟Fµ
= ̟L. If

NL/F̟L = γ̟
[G:G0]
F

then γµ = γt and ∏
µ
γµ = γat.
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If [G0 : G1] = 1 we may choose ̟L = ̟F so that γ = 1. The argument used before

shows that

νφ

(∏
µ∈T

∏
σ∈G/G1

β(µ′)σ
)

= (−1)a νφ(−1)
q−1
2 .

The identity (14.3) shows that

νφ(ω1) = (−1)a νφ(−1)
q−1
2k .

The identity (14.5) which is the only one of concern here becomes

νφ(−1)
q−1
2 = νφ(−1)

q−1
2k

which is clear because k = [G0 : G1] = 1.

Now take [G : G0] = 1. We may choose ̟E = NK/E̟K so that ̟F = NL/F̟L and γ

is again 1. It is perhaps worth pointing out these special choices are not inconsistent with any

choices yet made in this paragraph. This is necessary because the arguments appearing in the

functions∆2 must be the same as those appearing in the functions∆3. We previously defined

δ =
̟1+n
F

̟1+n′

E

· ̟
t
L

̟t
K

and showed that

NK/Lδ =
̟
t(q−1)
L

̟
t(q−1)

k

F

.

Observe that
̟k
L

̟F
=
∏

σ∈G/G1

̟1−σ
L ≡

∏
θ0(σ)−1 ≡ −1 (modPL)

because

{θ0(σ) | σ ∈ G/G1}

is just the set of kth roots of unity in φ and k is a power of 2. It is not 1 because

[G0 : G1] = [G : G1] > 1.

Since

δq ≡ NK/Lδ (modPK)

we have

νφ(δ) = νφ(−1)
q−1

k .
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If as before

ψL/F

(
β1(ν)x

̟1+n
F ̟t

L

)
= ν(1 + x)

for x inPs
L and ν in S(K/L) then, as we saw when proving the identity (14.3),

ωq1 ≡ δqαq
{∏

ν 6=1
β1(ν)

}
(mod PL).

Thus

νφ(ω1) = νφ(−1)
q−1

k

∏
ν 6=1

νφ(β1(ν)).

We can choose q−1
p−1 elements νi in S(K/L) so that every nontrivial element of S(K/L) is of

the form νji , 0 < j < p. Then

∏
ν 6=1

νφ(β1(ν)) = νφ

(∏ q−1
p−1

i=1

∏p−1

j=1
jβ(νi)

)
= νφ(−1)

q−1
p−1

because

νφ(β(νi))
p−1 = 1.

Whenm is even

νφ(εµ) = νφ

(
̟k
L

̟F

)
= νφ(−1).

Since a = q−1
k the identities (14.4), (14.5), (14.6) and (14.7) become

νφ(k) νφ(−1)
q−1
2k + 1

2 = 1 (14.4′)

νφ(−1)
q−1
p−1 = νφ(−1)

q−1
2k (14.5′)

νφ(−1)
q−1
2k = 1 (14.6′)

νφ(−1)
q−1

k νφ(−1)
q−1
p−1 = νφ(k) νφ(−1)

q−1
2k + 1

2 νφ(−1)
q−1

k . (14.7′)

If p ≡ 1 (mod4) the identities (14.5′) and (14.6′) are clearly valid. Moreover for (14.5′) and

(14.6′) the number q−1
k is even. Since k is a positive power of 2, q is an even power of p if

p ≡ 3 (mod4). If q = p2f then

q − 1

p− 1
= 1 + p+ . . .+ p2f−1 ≡ 0 (mod4)
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and the left side of (14.5′) is 1. If q−1
2k is even (14.5

′) and (14.6′) are now clear. If it is odd, 4

divides k because 8 divides q − 1. But {θ0(σ) | σ ∈ G0/G1} is the set of kth roots of unity in
OL/PL = φ so 1 is a square in φ, νφ(−1) = 1, and the relations are valid in this case too. The

relations (14.4′) and (14.7′) are obvious if the degree of φ over the prime field φ0 is even. Since

φ× contains the kth roots of unity and k is a power of 2 the degree can be odd only if k divides

p− 1. Since
q − 1

k
=
q − 1

p− 1
· p− 1

k

and q−1
k is now odd

p−1
k must also be odd and by quadratic reciprocity

νφ(k) = νφ0
(k) = νφ0

(−1) νφ0

(
p− 1

k

)
= νφ0

(−1) νφ0
(−1)

p−1
2k − 1

2

because

p ≡ 1

(
mod

p− 1

k

)
.

If p ≡ 1 (mod4) the two relations are now clear. If p ≡ 3 (mod 4) and q = pf

q − 1

p− 1
= 1 + p+ . . .+ pf−1

must be odd. It is therefore congruent to 1 modulo 4. (14.4′) becomes

νφ0
(−1) νφ0

(−1)
p−1

k = 1

and (14.7′) becomes

νφ0
(−1) = νφ0

(−1).

There is no question that both these relations are valid.

We have still to treat the case that G/G1 is abelian while neither [G : G0] nor [G0 : G1] is

1. Then

NFµ/Fβ(µ′) ≡
{∏

σ∈G/G0

β(µ′)

}k
(modPFµ

)

is a square in φ and the identity (14.3) implies that

νφ(ω1) = νφ(γ
a)

CF /NL/FCL is cyclic of order [G : G1]. It has a generator which contains an element of the

form γ1̟F . Moreover the coset of

(γ1̟F )[G:G0]NL/F̟
−1
L = γ

[G:G0]
1 γ−1
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is a generator ofUF /UF ∩NL/FCL. The order of this group is a power of 2 and p is odd so every
element of UF ∩NL/FCL is a square. Consequently γ cannot be a square and νφ(γ) = −1. If

m is even and F ′ is the fixed field ofG0 then

εµ =

(
̟k
L

̟F

)m−1

=

(
NL/F ′̟L

̟F

)m−1 (∏
σ∈G0/G1

̟1−σ
L

)m−1

which is congruent to

−
(
NL/F ′̟L

̟F

)m−1

moduloPL. Since [F ′ : F ] is even

Nφµ/φ εµ = NF ′/F εµ =

(
NL/F̟L

̟
[G:G0]
F

)m−1

= γm−1

and

νφ(Nφµ/φ εµ) = νφ(γ) = −1.

Because

a =
q − 1

[G : G1]

is integral, q−1
k is even, and we need only worry about the identities (14.5) and (14.6). They

both reduce to

νφ(−1)
q−1
2k = 1.

To prove this we show that q−1
2k
is even if νφ(−1) = −1. Since

k = [UF : UF ∩NL/FCL]

and this index must divide the order of φ∗ the number νφ(−1) is 1 only if k = 2. Of course

p will be congruent to 3 modulo 4. Since 4 divides q − 1, q is an even power of p and

q ≡ 1 (mod8). Thus
q − 1

2k
=
q − 1

4
is even.

Now suppose thatG/G1 is not abelian. Let σ −→ x(σ) be a given isomorphism ofG0/G1

with Z/kZ and let x −→ σ(x) be its inverse. Let τ −→ λ(τ) be that homomorphism ofG/G0

into the units of Z/kZwhich satisfies

x(τστ−1) = λ(τ) x(σ).
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There is precisely one element of order 2 in G0/G1, namely σ
(
k
2

)
, and it lies in the center of

G/G1. SinceG/G0 is cyclic,G/G1 is nonabelian only if k > 2. Choose a fixed σ0 inGwhich

generates G/G0 and set

µ0 = λ(σ0)

and

y0 = x(σ
[G:G0]
0 ).

We shall sometimes regard C as a vector space over the field with p elements. If σ belongs to

G/G1 let π(σ) be the linear transformation

c −→ σcσ−1.

The dual spacewill be identifiedwithS(K/L) and π∗will be the representation contragredient

to π.

The relation

NFµ/Fβ(µ′) ≡
{∏

σ∈G/GµG0

β(µ′)σ
}k

together with the identity (14.3) implies that

νφ(ω1) = νφ

(∏
µ
γµ

)
.

Moreover ifm is even and F ′
µ is the fixed field ofGµG0

εµ =

(
̟k
Fµ

̟F

)m−1

=

{
NFµ/F ′

µ
̟Fµ

̟F

}m−1{∏
σ∈G0/G1

̟1−σ
Fµ

}m−1

which is congruent to {
−
NFµ/F ′

µ
̟Fµ

̟F

}m−1

moduloPFµ
. Since

{Nφµ/φ εµ}t = NF ′
µ/F

{
−
NFµ/F ′

µ
̟Fµ

̟F

}(m−1)t

which equals

(−1)t[φµ:φ] γm−1
µ
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and t is odd

νφ(Nφµ/φ εµ) = νφ(−1)[φµ:φ] νφ(γµ).

These relations will be used frequently and without comment.

I want to discuss the case [G : G0] = 2 and µ0 ≡ −1 (mod4) first. Since

(−µ0)
2 = µ2

0 = λ(σ2
0) ≡ 1 (mod k)

we must have

−µ0 ≡ 1 (mod k)

or, if k > 4,

−µ0 ≡ k

2
+ 1 (mod k).

Then

µ0 ≡ −1 (mod k)

or

µ0 ≡ k

2
− 1 (mod k).

Since

µ0 − 1 ≡ 2 (mod 4)

the centralizer of σ0 inG0/G1 consists of the identity and σ
(
k
2

)
. Thus x(σ2

0) is 0 or
k
2 .

Suppose µ0 ≡ −1 (mod k) and x(σ2
0) = k

2 . If σ belongs to G0/G1 then σ0σσ
−1
0 = σ−1

and (σ0σ)2 = σ2
0 . Thus σ

(
k
2

)
is the only element of order 2 in G/G1. If σ belongs to G/G1

then σ has a nontrivial fixed point in S(K/L) if and only if π(σ) has 1 as an eigenvalue. If

σ 6= 1 there is an integer n such that σn has order 2. Then π(σn) also has 1 as an eigenvalue.

Thus if any nontrivial element of G/G1 has a nontrivial fixed point there is an element τ of

order 2 such that π(τ) has 1 as an eigenvalue. The usual argument shows that

π

(
σ

(
k

2

))
= −I

so that, in the case under consideration, only the identity has fixed points. Then

a =
q − 1

[G : G1]
.
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In particular q−1
k is even. We choose̟Fµ

= ̟L and let

γ̟
[G:G0]
F = NL/F̟L.

Only identities (14.5) and (14.6) are to be considered. (14.5) reduces to

νφ(γ)at = (−1)a νφ(−1)
q−1
2k

and (14.6) reduces to

(−1)a νφ(−1)a[G:G0] νφ(γ)at νφ(−1)
q−1
2k = 1.

Since [G : G0] is even they are equivalent. Suppose φ has r elements. If x ∈ λ = OL/PL then

xσ0 = xr
f

for some f . If σ belongs toG0/G1 then

θ0(σ)µ0r
f

= θ0(σ0σσ
−1
0 )r

f ≡
(
̟σ0σ
L

̟σ0

L

)rfσ−1
o

≡ θ0(σ).

Thus

µr
f

0 ≡ 1 (mod k)

and

r ≡ −1 (mod4)

so that νφ(−1) = −1. Since, in the present case,

a =
q − 1

2k

the identities become

νφ(γ)at = 1.

The map

τL/F : WL/F −→ CF

determines a map of G/G1 onto CF /NL/FCL. The image of σ0 contains an element of the

form γ1̟F where γ1 is a unit. The image of σ
2
0 is 1 because the commutator subgroup contains

{σ((µ0 − 1)x)} = {σ(x) | x ≡ 0 (mod2)}

and in particular contains σ2
0 . Since [G : G0] = 2 the number γγ−2

1 lies in UF ∩NL/FCL. The
index of the commutator subgroup ofG/G1 inG/G1 is 4 so

[UF : UF ∩NL/FCL] = 2.



Chapter 14 200

Consequently γγ−2
1 and γ are both squares and νφ(γ) = 1.

Now suppose µ0 ≡ −1 (mod k) and x(σ2
0) = 0. Every element of the form σ0σ, σ ∈

G0/G1, has order 2. If π(σ0σ) = −I then σ0σ lies in the center of G/G1 which is impossible.

Thus π(σ0σ) has 1 as an eigenvalue. If τ ∈ G0/G1 then

τ−1σ0στ = σ0στ
2

so there are two conjugacy classes in the set σ0G0/G1. One has σ0 as representative and the

other has σ1 = σ0σ(1).

Let V be a nontrivial subspace of S(K/L) invariant and irreducible under the action of

G0/G1. Suppose first that V is also invariant under π
∗(σ0) so that V = S(K/L). Choose

v0 6= 0 so that π∗(σ0)v0 = v0. Let λ
′ be the field obtained by adjoining the kth roots of unity

to the prime field. Certainly λ′ ⊆ λ and, since

θ0(σ)σ0 = θ0(σ
−1
0 σσ0),

λ′ is not contained in φ. Let φ′ = φ∩λ′. Wemay regard {1, σ0} asG(λ′/φ′). The map ϕwhich

sends σ inG0/G1 to (θ−1
0 (σ), 1) and σσ0 to (θ−1

0 (σ), σ0) is an isomorphism ofG/G1 with the

semidirect product of the kth roots of unity in λ′ andG(λ′/φ′). There is a unique map, again

denoted by ϕ, of V onto λ′ such that ϕ(v0) = 1 while

ϕ(π∗(τ)v) = ϕ(τ)ϕ(v)

for τ in G/G1. Of course the kth roots of unity act on λ
′ by left multiplication. The Galois

group acts by σ0α = ασ
−1
0 . Putting the actions together we get an action of the semidirect

product. To study the action of G/G1 on V we study the equivalent action of the semidirect

product in λ′.

It is best to consider a more general situation. Suppose φ′ is a finite field with pf elements,

λ′ is an extension of φ′ with pℓ elements and Γ is the semidirect product of the group of kth

roots of unity, where k divides pℓ − 1, and G(λ′/φ′). Γ acts on λ′ as before. Let ℓ = nf . If

0 ≤ j1 < n, j = (j1, n), and ρ is the automorphism x −→ xp
f

of λ′/φ′ then the number of

elements of λ′ fixed by a member of Γ of the form (α, ρji) where α is a kth root of unity is the

same as the number of elements fixed by some other member of the form (β, ρ−j). Indeed if

b
j1
j

≡ −1

(
mod

n

j

)
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and b is prime to the order of (α, ρj1)we can take

(β, ρ−j) = (α, ρj1)b.

Let θ be a generator of the multiplicative group of λ′. The equation

β θmρ
j

= θm

can be solved for β if and only if θm(pjf−1) has order dividing k, that is, if and only if pℓ − 1

divides km(pjf − 1) or, if

u =
pℓ − 1

k

if and only if u dividesm(pjf − 1). Let u(j) be the greatest common divisor of u and pjf − 1.

u dividesm(pjf −1) if and only if u
u(j)
dividesm. The number of suchmwith 0 ≤ m < pℓ−1

is
u(j)

u
(pℓ − 1) = u(j)k.

Oncem and j are chosen α is determined. The number of nonzero x in λ′ which are fixed by

some (β, ρ−j)where j divides n but by no (β, ρ−i)where i properly divides j is

∑
i|j

µ

(
j

i

)
u(i)k

if µ(·) is the Möbius function. The number of orbits formed by such x is

1

jk

∑
i|j

µ

(
j

i

)
u(i)k

so that the total number of orbits of Γ in the multiplicative group of λ′ is

a =
∑

i|n

∑
j
∣∣n

i

µ(j)

ij
u(i)

which equals
∑

i|n

∏
π
∣∣n

i

(
1 − 1

π

)
u(i)

i
.

The product is over primes.

Lemma 14.7
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If p
ℓ−1
k
is odd then

(−1)a+1 νφ′(k) νφ′(−1)
pℓ

−1
2k + 1

2 = 1.

The identity of the lemma is equivalent to

(−1)a+1 νφ′(u) νφ′(−1)
u−1

2 = 1

because

νφ′(k) = νφ′(−1) νφ′(u).

By the law of quadratic reciprocity the left side of the identity is equal to

(−1)a+1 (pf |u)

if (pf |u) is Jacobi’s symbol. If u = 1 there is only one orbit so

(−1)a+1 = 1.

Of course (pf |1) = 1 so the identity is clear in this case.

We prove it in general by induction on the number of prime factors of u. Let π0 be a

prime factor of u and let u = πx0v with v prime to π0. Let v(j) be the analogue of u(j). Then

u(j) = π
x(j)
0 v(j). Leb b be the analogue of a. Then

ν = a− b =
∑

i|n

∏
π
∣∣n

i

(
1 − 1

π

)
v(i)

i
(π
x(i)
0 − 1).

Observe that π0 and all v(i) are odd. To prove the lemma by induction we must show that

(−1)ν (pf | πx0 ) = 1. (14.8)

Let

n = 2yn1

with n1 odd. There are two possibilities to be considered.

(i)

π0 ≡ 1 (mod 2y+1).
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Since the order of pf modulo π0 divides n the quotient of π0 − 1 by this order is even and

pf is a quadratic residue of π0. Also if i divides n

π
x(i)
0 − 1

i

is divisible, in the 2adic field, by 4 if 2 divides ni and is always divisible by 2. Thus ν is

even and (14.8) is valid.

(ii)

π0 = 1 + 2cw

with c ≤ y and w odd. Let i 6= n1 divide n1 and consider

∑y

j=0

∏
π
∣∣ n

2ji

(
1 − 1

π

)
v(2ji)

2ji
(π
x(2ji)
0 − 1). (14.9)

If x(2yi) = 0 the sum is zero. If x(2yi) 6= 0 let z be the smallest integer for which

x(2zi) 6= 0. If j < z then x(2ji) = 0. If j ≥ z

p2jif − 1 =
(
p2zif − 1

)(∑2j−z−1

d=0
p2zcif

)
.

The residue of the sum modulo π0 is 2
j−z . Thus

x(2ji) = x(2zi)

if j ≥ z and (14.9) is equal to

1

i

{∏
π
∣∣n1

i

(
1 − 1

π

)} {
v(2yi)

2y
+
∑y−1

j=z

v(2ji)

2j+1

}(
π
x(2yi)
0 − 1

)
.

We write
v(2yi)

2y
+
∑y−1

j=z

v(2ji)

2j+1

as
v(2zi)

2z
+
∑y

j=z+1

v(2ji) − v(2j−1i)

2j
.

If k is replaced by pℓ−1
v the number of elements of λ∗ fixed by some (α, ρ−2ji) but by no

(α, ρ−2j−1i) is

{v(2ji) − v(2j−1i)} pℓ − 1

v
.
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The collection of such elements is invariant under the group obtained by replacing k by pℓ−1
v

and φ′ by the field with pif elements. The isotropy group of each such point has a generator

of the form (α, ρ−2ji) and, therefore, has order n
2ji and index

2j(pℓ−1)
v . Thus

2j(pℓ−1)
v divides

{v(2ji) − v(2j−1i)} pℓ − 1

v

so that 2j divides

v(2ji) − v(2j−1i).

Since n1

i is divisible by at least one prime, the expression (14.9) is congruent, in the 2adic field,

to
1

i

{∏
π
∣∣n1

i

(
1 − 1

π

)}
v(2zi)

2z

(
πx(2

yi) − 1
)

modulo 4. Since z ≤ c and the product is not empty this is congruent, in the 2adic field again,

to 0 modulo 2. Thus ν is even or odd according as

∑y

j=0

{∏
π
∣∣2y−j

(
1 − 1

π

)}
v(2jn1)

2jn1

(
π
x(2jn1)
0 − 1

)

is or is not divisible by 2 in the 2adic field. Consequently

ν ≡
∑y

j=0

{∏
π
∣∣ 2y−j

(
1 − 1

π

)}
v(2jn1)

2j
(π
x(2jn1)
0 − 1) (mod2).

Of course x(2yn1) = x 6= 0. Let z again be the smallest integer for x(2zn1) 6= 0. Then

z ≤ c and

x(2jn1) = x(2zn1)

if j ≥ z. The sum above is equal to

{
v(2zn1)

2z
+
∑y

j=z+1

v(2jn1) − v(2j−1n1)

2j

}
(πx0 − 1).

As before this is congruent modulo 2 to

v(2zn1)

2z
(πx0 − 1).

If z < c this is even and the order of p modulo π0 divides
π0−1

2 so that (p|π0) = 1. If z = c

then
πx0 − 1

2z
=

1

2c

∑x

i=1

(x
i

)
(2cw)i ≡ x (mod2)
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so that ν ≡ x (mod 2). However the order of pf modulo π0 is divisible by 2z so that it does

not divide π0−1
2
and (

pf | πx0
)

= (−1)x.

The relation (14.8) is now easily verified.

We return to the original problem. Since λ′ is a quadratic extension of φ′ and λ′ is not

contained inφ the degree ofφ over φ′ is odd. Since V and λ′ have the same number of elements

q = pℓ. If q−1
k
is odd the relation (14.4) follows immediately from the equality

(−1)a+1 νφ(k) νφ(−1)
q−1
2k + 1

2 = (−1)a+1 νφ′(k) νφ′(−1)
q−1
2k + 1

2

and the preceding lemma.

The number of µ in T with isotropy group of order 2 is u(1) and the number of µ with

trivial isotropy group is
u(2)−u(1)

2
. For points of the second type [φµ : φ] = 2 and for points of

the first type [φµ : φ] = 1. Since, as we verified earlier,

νφ(ω1) = νφ

(∏
µ
γµ

)

and

νφ(Nφµ/φ εµ) = νφ(−1)[φµ:φ] νφ(γµ)

the identity (14.7) reduces to

u(1) ≡ 1 (mod 2)

which is true because u(1) divides u = pℓ−1
k which, when (14.7) is under consideration, is odd

by assumption.

The identity (14.5) may be formulated as

νφ

(∏
µ
γµ

)
= (−1)a νφ(−1)

q−1
2k

and (14.6) as

νφ

(∏
µ
γµ

)
νφ(−1)

P
µ[φµ:φ] = (−1)a νφ(−1)

q−1
2k .

For these two identities q−1
k
is even. Again

∑
[φµ : φ] ≡ u(1) (mod2).
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But

u(2) = u =
pℓ − 1

k
=
q − 1

k

and

2a = u(1) + u(2)

so u(1) is even. It will be enough to verify (14.5).

We may choose T so that if µ is in T then its isotropy group is trivial or contains one of σ0

or σ1. If σ0 lies in the isotropy group of µ and ν in the orbit of µ corresponds to θ
m in λ′ then

α2θmρ = θm

for some kth root of unity α. This is possible if and only if pℓ − 1 divides km2 (pf − 1) or 2u

divides m(pf − 1). This is the same as requiring that 2u
u(1) divide

m(pf−1)
u(1) . The number u is

even. We have already observed that if r is the number of elements in φ so that xσ0 = xr for x

in φ then

µ0r ≡ 1 (mod k)

and in particular

µ0r ≡ 1 (mod4).

Since [φ : φ′] is odd and µ0 ≡ −1 (mod4) the highest power of 2 dividing pf − 1 is 2. Thus
2u
u(1)
and pf−1

u(1)
are relatively prime so that 2u

u(1)
divides

m(pf−1)
u(1)

if and only if 2u
u(1)
dividesm.

There are
u(1)k

2 such m with 0 ≤ m < pℓ − 1. The corresponding characters ν fall into u(1)
2

orbits. Thus there are
u(1)

2
elements in T whose isotropy group contains σ0 and

u(1)
2
whose

isotropy group contains σ1. Let L0 be the fixed field of σ0 and L1 the fixed field of σ1. Let̟L0

and̟L1
generatePL0

andPL1
respectively and let

NL0/F̟L0
= γ0̟F

NL1/F̟L1
= γ1̟F

NL/F̟L = γ̟2
F .

We have to show that

νφ

(
γ

u(1)
2

0 γ
u(1)

2
1 γ

u(2)−u(1)
2

)
= (−1)a νφ(−1)

q−1
2k .

First we prove a lemma, special cases of which we have already seen.
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Lemma 14.8

SupposeL/F is normal but nonabelian and [L : F ] is a powerof 2. SupposeH = G(L/F )

and the first ramification groupH1 is {1} but [H : H0] > 1 and [H0 : H1] > 1. Let̟L generate

the prime ideal ofOL, let̟F generate the prime ideal ofOF , and let

NL/F ̟L = γ̟
[H:H0]
F .

Then γ is a square in UF .

The hypotheses imply that the residue field has odd characteristic. LetA be the fixed field

ofH0 and L
′ be the fixed field of the commutator subgroup ofH . Then A ⊆ L′ and if

̟L′ = NL/L′̟L

then

NL′/F̟L′ = γ̟
[A:F ]
F .

Of course [A : F ] = [H : H0]. Since H is nilpotent but not abelian L
′ cannot be a cyclic

extension. If γ is not a square in UF then γ
−1 generates UF /UF ∩NL′/FCL. Since

̟
[A:F ]
F ≡ γ−1 (modNL′/FCL′).

̟F would then generate CF /NL′/FCL′ which is impossible.

Returning to the problem at hand, we observe that the quotient of G/G1 by the squares

in G0/G1 is a group of order 4 in which every square is 1. The fixed field F
′ of this group is

the composite of all quadratic extensions of F . F0 = F ′ ∩ L0 and F1 = F ′ ∩ L1 are the two

different ramified quadratic extensions of F . Define

̟F0
= NL0/F0

̟L0

and

̟F1
= NL1/F1

̟L1
.

Then

NF0/F̟F0
= γ0̟F

and

NF1/F̟F1
= γ1̟F .
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We need to show that

νφ(γ0γ1) = νφ

(
γ0

γ1

)
= −1.

If not, γ0γ1 is a square and thus inNF1/FCF1
. Then γ0̟F belongs to

NF0/FCF0
∩NF1/FCF1

= NF ′/FCF ′ .

This is impossible because F ′ contains an unramified extension.

We observed before that since

µ0 = λ(σ0) ≡ −1 (mod 4)

the number νφ(−1) is−1. The identity (14.5) reduces to

(−1)
u(1)

2 = (−1)a (−1)
q−1
2k .

Since

a =
u(1)

2
+
u(2)

2

and

u(2) =
q − 1

k

this relation is clearly valid.

We continue to suppose that µ0 ≡ −1 (mod k) and that σ2
0 = 1 but now we suppose that

V is not invariant under π∗(σ0). Since π
∗(σ0)V ∩V and π∗(σ0)V +V are both invariant under

G/G1 the first is 0 and the second is S(K/L) so that S(K/L) is the direct sum V ⊕ π∗(σ0)V .

Let V have pℓ elements so that q = p2ℓ. If λ′ is again the field generated over the prime field

by the kth roots of unity λ′ has pℓ elements. If φ′ = λ′ ∩ φ has pf elements then pℓ = p2f so

that pℓ ≡ 1 (mod8). Also k divides pℓ − 1 so that

q − 1

k
=

(
pℓ − 1

k

)
(pℓ + 1)

is even.

If σ ∈ G0/G1 the nonzero fixed points of σ0σ are the elements of the form

v ⊕ π∗(σ0σ)v
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with v 6= 0. There are (pℓ − 1)k of them altogether and they fall into pℓ − 1 orbits. The

remaining

(p2ℓ − 1) − (pℓ − 1)k

elements fall into
1

2k
{(p2ℓ − 1) − (pℓ − 1)k}

orbits. Thus

a =
pℓ − 1

2
+
p2ℓ − 1

2k
.

Since, for the same reasons as before, νφ(−1) = −1 the identity (14.5) becomes

νφ

(∏
µ
γµ

)
= (−1)

pℓ
−1
2 (14.10)

while (14.6) becomes

νφ

(∏
µ
γµ

)
νφ(−1)Σ[φµ:φ] = (−1)

pℓ
−1
2 .

Since ∑
[φµ : φ] ≡ pℓ − 1 ≡ 0 (mod2)

only (14.5) need be proved. (14.4) and (14.7) are not to be considered because q−1
k is even.

We proceed as before. The points in T can be chosen so that their isotropy groups are

either trivial or contain σ0 or σ1.
pℓ−1

2
will have isotropy groups containing σ0 and

pℓ−1
2
will

have isotropy groups containing σ1. The argument used above shows that the left side of

(14.10) is equal to

(−1)
pℓ

−1
2

as desired.

Now suppose k ≥ 8 and

µ0 = λ(σ0) ≡
k

2
− 1 (mod k).

We are of course still supposing that [G : G0] = 2. If σ belongs toG0/G1 then

σσ0σ
−1 = σ0σ

k
2−2

and

(σ0σ)2 = σ2
0σ

k
2 .
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Thus

x((σ0σ)2) = x(σ2
0) +

k

2
x(σ).

Since x(σ2
0) is 0 or

k
2 , we can make the sum on the right 0. Replacing σ0 by σ0σ if necessary,

we suppose that σ2
0 = 1. Then (σ0σ)2 = 1 if and only if

k

2
x(σ) ≡ 0 (mod k)

which is so if and only if σ0σ is conjugate to σ.

Take V in S(K/L) as before. If V is invariant under π∗(σ0) and λ
′ with pℓ elements and

φ′ with pf elements have the same meaning as before then

pf =
k

2
− 1 + wk

for some integer w so that

q − 1 = p2f − 1 = k · k
4
− k + 2wk

(
k

2
− 1

)
+ (wk)2

and
q − 1

k
≡ k

4
− 1 (mod 2)

is odd. Thus the identities (14.5) and (14.6) are not to be considered. The identities (14.4) and

(14.7) follow from Lemma 14.7 exactly as above.

Suppose then S(K/L) is the direct sum V ⊕ π∗(σ0)V . If V has p
ℓ elements then q = p2ℓ

and
q − 1

k
=
pℓ − 1

k
(pℓ + 1)

is even because k divides pℓ − 1. The nonzero elements of S(K/L)which are fixed points of

some σ0σ with σ a square inG0/G1 are the elements

v ⊕ π∗(σ0σ)v

with v 6= 0. There are (pℓ − 1) k2 such elements and they fall into
pℓ−1

2 orbits. The remaining

(p2ℓ − 1) − (pℓ − 1)
k

2
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nonzero elements have trivial isotropy group and fall into

1

2k

{
(p2ℓ − 1) − (pℓ − 1)

k

2

}

orbits. Thus

a =
p2ℓ − 1

2k
+
pℓ − 1

4
.

Since, as before, νφ(−1) = −1 the identity (14.5) becomes

νφ

(∏
µ
γµ

)
= (−1)

pℓ
−1
4 (14.11)

while (14.6) becomes

νφ

(∏
µ
γµ

)
(−1)Σ[φµ:φ] = (−1)

pℓ
−1
4 .

Again
∑

[φµ : φ] ≡ pℓ − 1

2
≡ 0 (mod2)

so that it is enough to prove (14.11). The identities (14.4) and (14.7) need not be considered.

If λ′ and φ′ are defined as before and φ′ has pf elements then λ′ has pℓ = p2f elements so

that

pℓ ≡ 1 (mod 8)

and pℓ−1
4
is even. We may suppose that each µ in T either has trivial isotropy group or is fixed

by σ0. Lemma 14.8 shows that those µ with trivial isotropy group contribute nothing to the

left side of (14.11). If L0 is the fixed field of σ0 and

NL0/F̟L0
= γ0̟F

the left side ofK is

νφ(γ0)
pℓ

−1
2

which is 1. The truth of the identity is now clear.

We return to the general case so that [G : G0] may be greater than 2 and µ0 may be

congruent to 1 modulo 4. Of course [G : G0] is still even. Let

λ0 = λ
(
σ

1
2 [G:G0]
0

)
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so that

λ0 = µ
1
2 [G:G0]
0 .

If [G : G0] > 2 then

λ0 ≡ 1 (mod4).

If [G : G0] = 2 then λ0 = µ0. Since the case that [G : G0] = 2 and µ0 ≡ −1 (mod 4) is

completely settled we may suppose that λ0 ≡ 1 (mod4). Set

τ0 = σ
1
2 [G:G0]
0 .

Any element of G/G1 which does not lie in G0/G1 and whose square is 1 is of the form

σ(x)τ0. If

σ
[G:G0]
0 = σ(y0)

then

(σ(x)τ0)
2 = σ((λ0 + 1)x)τ2

0 = σ(y0 + (λ0 + 1)x).

SinceG/G1 is not cyclic y0 is even. Since

λ0 + 1 ≡ 2 (mod 4)

there are exactly two solutions of the equation

y0 + (λ0 + 1)x ≡ 0 (mod k).

Let x0 be one of them. Then x0 + k
2
is the other. We may suppose that k does not divide x0.

Set

ρ0 = σ(x0)τ0.

We observed before that if σ 6= 1 belongs to G/G1 and π
∗(σ) has a nonzero fixed point then

some power of σ is of order 2 and has a nonzero fixed point. Since σ
(
k
2

)
has no nonzero

fixed point this power must be ρ0 or σ
(
k
2

)
ρ0. Since σ

(
k
2

)
lies in the center ofG/G1, σ must lie

in the centralizer of ρ0.

The group {
1, σ

(
k

2

)
, ρ0, σ

(
k

2

)
ρ0

}

is of order 4 and every element in it is of order 2 so it cannot be contained in the center of

G/G1. However it is a normal subgroup and its centralizer H
∗ has index 2 in G/G1. G/G1
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may be identified with H . Every element σ of H such that π∗(σ) has a nonzero fixed point

lies inH∗. S(K/L) is the direct sum of V andW where

V = {v | π∗(ρ0)v = v}
W = {w | π∗(ρ0)w = −w}.

If σ inH does not belong toH∗ then π∗(σ)V = W and π∗(σ)W = V . The number of nonzero

orbits ofH in V ∪W is the same as the number a′ of nonzero orbits of H∗ in V . If V has pℓ

elements so that q = p2ℓ the number of nonzero orbits ofH in V ⊕W − (V ∪W ) is

a′′ =
(pℓ − 1)2

[G : G1]
=
pℓ − 1

k
· pℓ − 1

[G : G0]
.

The action of H∗ on V must be irreducible although it is not faithful. However the action of

H∗ ∩H0 = H∗
0 is faithful.

Let F ′ be the fixed field of H∗ in L or, what is the same, of H∗C in K . Let C1 ⊆ C be

the orthogonal complement of V and let H1 be the subgroup of H which acts trivially on V .

H1C1 is a normal subgroup ofH∗C and its fixed fieldK ′ is normal over F ′. IfH ′ = H∗/H1

and C′ = C/C1 then G′ = G(K ′/F ′) = H ′C′. Moreover H ′ ∩ C′ = {1} and H ′ 6= {1}
because σ

(
k
2

)
does not lie in H1. Since the action of H ′ on C′ is faithful and irreducible C′

is contained in every nontrivial normal subgroup of G′. To complete the proof of the four

identities (14.4), (14.5), (14.6), and (14.7) we use induction on [K : F ].

Let k′ be the order ofH ′
0 and let φ

′ = OF ′/PF ′ . IfK/F is replaced byK ′/F ′ the identity

(14.4) becomes

(−1)a
′+1 νφ′(k′) νφ′(−1)

pℓ
−1

2k′ + 1
2 = 1. (14.4′′)

T is to be replaced by T ′, a set of representatives for the nonzero orbits of H ′ or H∗ in V ,

which may be identified with the character group of C′. We may suppose that T ′ is a subset

of T . BecauseH ′
0 6= {1} the identity (14.5) for the fieldK ′/F ′ may be written as

νφ′

(∏
µ∈T ′

γ′µ

)
= (−1)a

′

νφ′(−1)
pℓ

−1
2k′ . (14.5′′)

Of course

NFµ/F ′(̟t
Fµ

) = γ′µ̟
t[Fµ:F ′]

k′

F ′ .

Recall that t is odd. By Proposition IV.3 of Serre’s book, t has the same significance forK ′/F ′

as it had forK/F . The identity (14.6) may be written as

(−1)a
′

νφ′

(∏
µ∈T ′

γ′µ

)
νφ′(−1)Σµ∈T ′ [φµ:φ′] νφ′(−1)

pℓ
−1

2k′ = 1. (14.6′′)



Chapter 14 214

and (14.7) as

(−1)a
′+1 νφ′(k′) νφ′(−1)

pℓ
−1

2k′ − 1
2 νφ′(−1)Σµ∈T ′ [φµ:φ′] = 1 (14.7′′)

Assuming (14.4′′), (14.5′′), (14.6′′), and (14.7′′) we are going to prove (14.4), (14.5), (14.6), and

(14.7).

SinceH ′
0 is isomorphic toH

∗
0 either k

′ = k or k′ = k
2
. Suppose first that q−1

k
is odd. Then

k′ = k
2 for if not

q − 1

k
=

(
pℓ − 1

k

)
(pℓ + 1)

would be even. ThusH0 = G0/G1 is not contained inH
∗ and F ′/F is ramified so that φ′ = φ.

Since
q − 1

k
=

(
pℓ − 1

k′

)
(pℓ + 1)

2

the number p
ℓ−1
k′ is odd. To prove (14.4) we have to show that

(−1)a
′′

νφ(2) νφ(−1)δ = 1

if

δ =
p2ℓ − 1

2k
− pℓ − 1

k
=
pℓ − 1

k

{
pℓ + 1

2
− 1

}
.

SinceG0/G1 is not contained inH
∗, τ0 does not commutewithG0/G1 and the map λ ofG/G0

into the units of Z /k Z is faithful. Thus

λ0 6≡ 1 (mod k).

But

λ0 ≡ 1 (mod4)

so that k ≥ 8. In general if k ≥ 4, the group of units of Z /k Z is the product of {1,−1} and

{α | α ≡ 1 (mod4)}.

If

α = 1 + 2bx

with x odd and 4 ≤ 2b ≤ k then

α2 = 1 + 2b+1y
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with y odd. One shows easily by induction that the order of α is 2−bk so that

{α | α ≡ 1 (mod 4)}

is cyclic of order k4 . This implies in the particular case under consideration that [G : G0]

divides k4 . Write

a′′ =

(
pℓ − 1

k′

)(
pℓ − 1

2[G : G0]

)
.

a′′ is odd if and only if

2[G : G0] = k′.

We consider various cases separately. As before µ0 = λ(σ0). If φ has p
f elements then

µ0p
f ≡ 1 (mod 8)

(i)

µ0 ≡ 1 (mod 8).

Then

νφ(2) = νφ(−1) = 1

and the order of µ0 in the units of Z /k Zwhich is equal to [G : G0] divides
k
8 . Thus a

′′ is

even. The identity (14.4) follows.

(ii)

µ0 ≡ 3 (mod 8).

Then

νφ(2) = νφ(−1) = −1.

Since µ0 ≡ 3 (mod8) the numbers µ0 and λ0 are different. Thus λ0 is a square and hence

congruent to 1 modulo 8. Then k > 8 and

pℓ ≡ 1 (mod 8).

Then

δ ≡ pℓ + 1

4
− 1

2
≡ 0 (mod2).

Since µ0 6= λ0 the index [G : G0] is not 2. Thus the order of µ0 is at least 4 and is therefore

the order of −µ0. Since−µ0 ≡ 5 (mod8) its order is k
4
and

[G : G0] =
k

4
.
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Consequently a′′ is odd. Again (14.4) is satisfied.

(iii)

µ0 ≡ 5 (mod 8).

Then νφ(2) = −1 while νφ(−1) = 1. The order of µ0 which equals [G : G0] is again
k
4 so

that a′′ is odd and (14.4) is satisfied.

(iv)

µ0 ≡ 7 (mod 8).

Then νφ(2) = 1while νφ(−1) = −1. Again k > 8 and

δ ≡ 0 (mod2).

The order of µ0 is again at least 4 and therefore equal to the order of−µ0 and that divides
k
8
. Thus [G : G0] divides

k
8
and a′′ is even. (14.4) follows once more.

Since φ′ = φ all we need to prove (14.7) once (14.4) and (14.7′′) are granted is show that

∑
µ∈T−T ′

[φµ : φ] ≡ 0 (mod2).

This is clear because, for these µ, Fµ = L and φµ = OL/PL is of even degree over φ.

Finally we have to assume that q−1
k is even and prove (14.5) and (14.6). First a lemma.

Lemma 14.9

If q−1
k is even,

λ
(
σ

1
2 [G:G0]
0

)
≡ 1 (mod4),

and G/G0 acts faithfully onG0/G1, then

(−1)a νφ(−1)
q−1
2k = 1.

Since the action is faithful G0/G1 is not contained in H
∗ and k′ = k

2 . As before λ0 ≡
1 (mod4) and λ0 6≡ 1 (mod k) together imply that k ≥ 8 and k′ ≥ 4. Since k′ divides pℓ − 1,

pℓ ≡ 1 (mod 4)

and pℓ+1
2 is odd. Since

q − 1

k
=

(
pℓ − 1

k′

)(
pℓ + 1

2

)
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the number p
ℓ−1
k′
is even.

If σ belongs toH∗ and σ acts trivially onH∗
0 then

λ(σ) ≡ 1

(
mod

k

2

)

so that

λ(σ2) ≡ 1(mod k)

and σ2 belongs toH0. Thus σ belongs to ρ0H0 ∪H0. Since ρ0 belongs toH
1 the image of σ in

H ′ lies in H ′
0. Thus G

′/G′
0 acts faithfully on G

′
0/G

′
1. If σ belongs to H

1 then σ acts trivially

onH∗
0 because the representation ofH

∗
0 on V is faithful. Thus H

1 is contained in ρ0H0 ∪H0

and is therefore just {ρ0, 1}. Thus

[G′ : G′
0] = [H ′ : H ′

0] = [H∗ : H∗
0H

1] =
1

2
[G : G0].

Suppose that

(−1)a νφ′(−1)
pℓ

−1
2k′ = 1. (14.12)

Since φ′ = φ and, because k′ ≥ 4 divides pℓ − 1,

q − 1

2k
=

(
pℓ − 1

2k′

)(
pℓ + 1

2

)
≡
(
pℓ − 1

2k′

)
(mod2),

all we need do to establish the lemma is to show that

a′′ ≡ 0 (mod2).

As before [G : G0] divides
k
4
. If

k

4
= n[G : G0]

then

a′′ =
1

k

(pℓ − 1)2

[G : G0]
= n

(
pℓ − 1

k′

)2

is certainly even because 2k′ divides pℓ − 1.

If [G : G0] ≥ 4 let

λ′0 = λ
(
σ

1
4 [G:G0]
0

)
.
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If

λ′0 ≡ 1 (mod4)

we may suppose that (14.12) is true by induction. If [G : G0] = 4 and

λ′0 ≡ 3 (mod4)

or if [G : G0] = 2we must establish it directly.

Suppose first that [G : G0] = 2. If φ has pf elements then

λ0 ≡ µ0 ≡ pf ≡ 1 (mod4)

so that νφ(−1) = 1. It is clear that in this case

a′ =
pℓ − 1

k′
.

a′ is thus even and (14.12) is valid.

Now suppose [G : G0] = 4 so that [G′ : G′
0] = 2. If σ′

0 generates G
′ modulo G′

0 then

λ′0 is the image of σ
′
0 in the group of units of Z /k

′ Z. We have already studied the case that

λ′0 ≡ 3 (mod4) intensively. Let

x : σ′ −→ x(σ′)

be the map of G′
0/G

′
1 onto Z /k′ Z. If λ′0 ≡ −1 (mod k′) and x((σ′

0)
2) = k′

2 we showed,

incidentally, that (14.12) is valid. If λ′0 ≡ −1 (mod k′), x((σ′
0)

2) = 0, and the action ofH ′
0 on

S(K ′/L′) is reducible we saw that pℓ is a square p2ℓ′ and that the left side of (L) is

(−1)
pℓ′

−1
2 .

But the field with pℓ
′

elements must contains the k′th roots of unity and k′ ≡ 0 (mod 4). Thus

pℓ
′ − 1 ≡ 0 (mod4)

and (14.12) is again valid. If k′ ≥ 8,

λ′0 ≡ k′

2
− 1 (mod k′)

and the action ofH ′
0 on S(K ′/L′) is reducible, the left side of (14.12) is

(−1)
pℓ′

−1
4 .
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This time

pℓ
′ − 1 ≡ 0 (mod8).

To complete the proof of the lemma we show that in the case under consideration the

action ofH ′
0 and S(K ′/L′) or, what is the same, the action ofH∗

0 on V is reducible. If not the

field generated over the prime field by the k′th roots of unity has pℓ elements. Thus

pℓ ≡ 1 (mod4).

However as we have observed repeatedly, the number of elements in φ is congruent to 3

modulo 4. Thus ℓ is even. Let ℓ = 2ℓ′. Either pℓ
′ − 1 or pℓ

′

+ 1 is congruent to 2 modulo 4. If

pℓ
′

+ 1 ≡ 2 (mod4) then k′ divides pℓ
′ − 1 because

pℓ − 1

k′
=

(
pℓ

′ − 1

k′

)
(pℓ

′

+ 1)

is even. Since k′ cannot divide pℓ
′ − 1 we have

pℓ
′ ≡ 3 (mod4)

and ℓ′ is odd. Indeed it is 1 but that does not matter. Since k divides pℓ − 1, the kth roots of

unity are contained in the field with pℓ elements. Adjoining them to φ = OF /PF we obtain a

quadratic extension because 4 does not divide ℓ. Therefore if σ belongs toG0/G1

θ0(σ) = θ0(σ)σ
−2
0 = θ0(σ)λ(σ2

0)

so that

λ(σ2
0) ≡ 1 (mod k).

This contradicts the assumption thatG/G0 acts faithfully onG0/G1.

Returning to the proof of (14.5), we suppose first thatH0 is not contained inH
∗ so that the

action of G/G0 on G0/G1 is faithful. Because of Lemma 14.9 the identity (14.5) is equivalent

to

νφ

(∏
µ∈T

NFµ/F γµ

)
= 1.

If µ belongs to T but not to T ′ then Fµ = L and, by Lemma 14.8,

νφ(NFµ/F γµ) = 1.
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If µ belongs to T ′ then Gµ is contained in H
∗C so that Fµ contains F

′. Moreover we do not

change Fµ if we replaceK/F byK
′/F ′. Let̟F ′ generatePF ′ and take̟F = NF ′/F̟F ′ . If

E′ is the fixedfield ofH∗ we may suppose that

̟F ′ = NE′/F ′̟E′

and that

̟E = NE′/E̟E′ .

Then

̟F = NE/F̟E

as required. Let

NFµ/F , ̟
t
Fµ

= γ′µ̟
t[Fµ:F ′]

k′ .

Then

γµ = NF ′/F γ
′
µ.

Since F ′/F is ramified γµ is a square in UF and (14.5) is proved. To prove (14.6) we have to

show that

νφ(−1)Σµ∈T [φµ:φ] = νφ′(−1)Σµ∈T ′ [φµ:φ′] = 1.

But p
ℓ−1
k′ is even and this follows from the simultaneous validity of (14.5

′′) and (14.6′′).

We have yet to treat the case that q−1
k is even and H0 is contained in H

∗. Then F ′/F is

unramified and k′ = k. Suppose first of all that p
ℓ−1
k is also even. Then

q − 1

2k
=

(
pℓ − 1

k

) (
pℓ + 1

2

)

is even. H0 is contained in H
∗ and H is generated by σ0 and H0. Consequently σ0 is not

contained inH∗ and

σ0ρ0σ
−1
0 = σ

(
k

2

)
ρ0.

Since ρ0 = σ(x0)τ0

(µ0 − 1)x0 ≡ k

2
(mod k)

if µ0 = λ(σ0). If

y0 = x
(
σ

[G:G0]
0

)
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and m is the greatest common divisor of y0 and k then by the definition of x0 the greatest

common divisor of x0 and k is
m
2
. Therefore k

m
is the greatest common divisor of µ0 − 1 and

k. In particularm < k. The order of σ0 inH is

k

m
[G : G0].

Therefore [G : G0] divides
k

2m [G : G0] andH
∗ contains a cyclic subgroup of order

k

2m
[G : G0].

If σ is the element of order 2 in this subgroup, then σ belongs to H0 and π
∗(σ) does not have

1 as an eigenvalue. Thus no nonzero element of V is fixed by any element of this cyclic

subgroup and

pℓ − 1 ≡ 0

(
mod

k

2m
[G : G0]

)
.

In particular [G : G0] divides p
ℓ − 1 and

a′′ =

(
pℓ − 1

k

)(
pℓ − 1

[G : G0]

)

is even. As before νφ(γµ) = 1 if µ belongs to T and Fµ = L. If Fµ 6= L then µ belongs to T ′

and Gµ lies in H
∗C so that Fµ contains F

′. In the present situation F ′/F is unramified and

we may take̟F ′ = ̟F . If

NFµ/F ′̟t
Fµ

= γ′µ̟
t[Fµ:F ′]

k

F

then

NFµ/F̟
t
Fµ

= (NF ′/F γ
′
µ)̟

t[Fµ:F ]

k

F .

The identity (14.5) reduces to

νφ

(∏
µ∈T ′

NF ′/F γ
′
µ

)
= (−1)a

′

or

νφ′

(∏
µ∈T ′

γ′µ

)
= (−1)a

′

.

Since φ′ is a quadratic extension of φ the number νφ′(−1) is 1 and this relation is equivalent to

(14.5′′). To prove (14.6) we have to show that

νφ(−1)Σµ∈T [φµ:φ] = 1.
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This is clear because 2 divides each of the degrees [φµ : φ].

Finally we have to suppose that p
ℓ−1
k is odd. Since [φ′ : φ] = 2 the relation (14.4′′)

amounts to

(−1)a
′+1 = 1.

Again

νφ

(∏
µ∈T

γµ

)
= νφ′

(∏
µ∈T ′

γ′µ

)
. (14.13)

If µ belongs to T ′ and σ 6= 1 belongs to Gµ then some power of σ will equal ρ0. Since

pℓ − 1

k
=
∑

µ∈T ′

[Fµ : F ′]

k

is odd and
[Fµ : F ′]

k

is a power of 2 there is at least one µ in T ′ for which [Fµ : F ′] = k. Then Gµ must contain an

element of the form σ(z0)σ
2
0 . Then

ρ0 = σ(x0)τ0 = (σ(z0)σ
2
0)

1
4 [G:G0] = σ

((
µ

1
2 [G:G0]
0 − 1

µ2
0 − 1

)z0)τ0
.

Thus (
µ

1
2 [G:G0]
0 − 1

µ2
0 − 1

)
z0 ≡ x0 (mod k).

Let
1

4
[G : G0] = 2b.

Since

µ2
0 ≡ 1 (mod4)

and, as before, the greatest common divisor of x0 and k is
m
2 if the greatest common divisor of

y0 and k ism, we infer that

µ
1
2 [G:G0]
0 − 1

µ2
0 − 1

=
∏b

j=1
· µ

2j+1

0 − 1

µ2j

0 − 1
=
∏b

j=1
µ2j

0 + 1

is multiplicatively congruent to
[G : G0]

4
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modulo 2 and that the greatest common divisor of z0 and k is

2m

[G : G0]
.

In particular
[G:G0]

2 dividesm. z0 is odd if and only if

m =
1

2
[G : G0].

If µ0 ≡ 1 (mod 4) the order of µ0 in the group of units of Z /k Z ism because as we observed

when treating the case that p
ℓ−1
k is even, the greatest common divisor of µ0 − 1 and k is k

m .

However

µ
1
2 [G:G0]
0 ≡ λ(τ0) ≡ 1 (mod k)

and in this casem divides 1
2

[G : G0]. Thus

m =
1

2
[G : G0]

if µ0 ≡ 1 (mod 4).

We shall define a sequence of fields F (i), L(i), K(i), 1 ≤ i ≤ n. n is an integer to be

specified. We will have F (i) ⊆ L(i) ⊆ K(i) and K(i)/F (i) and L(i)/F (i) will be Galois. Let

G(i) = G(K(i)/F (i)) and C(i) = G (L(i)/F (i)). There will be a subgroup H(i) of G(i) such

that H(i) 6= {1}, H(i) ∩ C(i) = {1}, and G(i) = H(i)C(i). C(i) will be a nontrivial abelian

normal subgroup ofG(i) which is contained in every other nontrivial normal subgroup. H(n)

will be abelian butH(i) will be nonabelian if i < n. Moreover k(i) = [H
(i)
0 : 1]will be at least

4 for all i and k(i) will equal 2k(i+1) if i < n. If x is an isomorphism ofH
(i)
0 with Z /k(i) Z and

σ belongs toH(i) let

x(στσ−1) = λ(i)(σ)x(τ).

Then λ(i)(σ)will be congruent to 1 modulo 8 if i < n. If q(i) is the number of elements in C(i)

then
q(i) − 1

k(i)

will be odd.

F ′ andK ′ have already been defined. L′ is just the fixed field of C′.

q′ − 1

k′
=
pℓ − 1

k
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is odd. If σ′ inH ′ is the image of σ inH∗C then

λ′(σ′) ≡ λ(σ) (mod k).

Since σ is a square moduloH0

λ′(σ′) ≡ 1 (mod k).

IfF (i), L(i), andK(i) havebeendefinedandH(i) is not abelianwecandefineF (i+1), L(i+1),

K(i+1) by the process we used to pass from F, L, K to F ′, L′, K ′. We have seen that if

q(i) − 1

k(i)

is odd then
q(i+1) − 1

k(i+1)

is also odd and that

k(i) = 2k(i+1).

We have also seen that k(i) ≥ 8 ifH(i) is not abelian. IfH(i) is abelian we take n = i.

When we pass from the ith stage to the (i+1)th we break up T (i), the analogue of T , into

T (i+1) and a complementary set U (i). We may think of T (i) as lying in T . If σ
(i)
0 generates

H(i) moduloH
(i)
0 then

λ′(σ
(i)
0 ) ≡ 1 (mod8).

We saw that this implies that U (i) has an even number of elements. If µ belongs to U (i) then

Fµ is equal to L
(i). Thus we may suppose that

νφ′

(∏
µ∈U(i)

γ′µ

)
= 1.

Moreover L(i)/F (i) is nonabelian and therefore L(i)/F (i) is not totally ramified. Thus µ is

not in U (i) if [Fµ : F ′] = k.

Since L(n)/F (n) is abelian the isotropy group in H(n) of any µ in T (n) is trivial so that

Fµ = L(n) for such µ. Since

∑
µ∈T ′

[Fµ : F ′]

k
≡
∑

µ∈T (n)

[L(n) : F ′]

k
(mod2).
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There are an odd number of elements in T (n) and

[L(n) : F ′] = k.

Choose z0 so that σ(z0)σ
2
0 lies inG(L/L(n)). It then fixes each µ in T (n).

Since L(n)/F ′ must be totally ramified there is a δ in UF such that

NL(n)/F ̟L(n) = δ̟2
F .

The right side of (14.13) is equal to νφ(δ). L
(n) is contained in L. Choose w0 inWL/F so that

τL/F (w0) = ̟F . We may suppose that σ0 has been chosen to be σ(w0). Let L0 be the fixed

field ofH0. Choose u0 inWL/L0
so that σ(u0) = σ(z0) and so that τL/L0

(u0) is a unit. Clearly

z0 is even if and only if τL/L0
(u0) or

NL0/F

(
τL/L0

(u0)
)

= τL/F (u0)

is a square. Since σ(z0)σ
2
0 lies inG(L/L(n)),

u0w
2
0

lies inWL/L(n) . We may take

̟L(n) = τL/L(n) (u0w
2
0).

Then

NL(n)/F (̟L(n)) = τL/F (u0w
2
0) = τL/F̟

2
F

and δ = τL/F (u0) is a square if and only if z0 is even.

Since (−1)a
′+1 = 1 the relation (14.5) amounts to

(1)a
′′−1 νφ(−1)

q−1
2k = (−1)z0 .

(14.6) is equivalent to (14.5) because each [φµ : φ] = 2[φµ : φ′] is even. Recall that

a′′ =

(
pℓ − 1

k

)(
pℓ − 1

[G : G0]

)
≡ pℓ − 1

[G : G0]
(mod2)

and that
q − 1

2k
=

(
pℓ − 1

k

)(
pℓ + 1

2

)
≡ pℓ + 1

2
(mod2).
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If

µ0 ≡ 1 (mod4)

then νφ(−1) = 1 and, as we observed earlier, z0 is odd. We have to show that a
′′ is even.

We showed before that H∗ has to contain a cyclic subgroup of order k
2m

[G : G0] and that
k

2m [G : G0] has to divide p
ℓ − 1. But km is the greatest common divisor of µ0 − 1 and k. Since

4 divides µ0 − 1 and k it divides k
m
and 2[G : G0] divides p

ℓ − 1. Thus a′′ is even.

If

µ0 ≡ 3 (mod4)

then νφ(−1) = −1. Moreover k > 2 so that pℓ ≡ 1 (mod 4) and

q − 1

2k
≡ pℓ + 1

2
≡ 1 (mod2).

We have to show that a′′ is odd if

m =
1

2
[G : G0]

and even otherwise. But µ0 ≡ 3 (mod4) so that k
m

= 2 and m = k
2
. Thus [G : G0] = 2m if

and only if [G : G0] = k. If [G : G0] = k then

a′′ ≡ pℓ − 1

k
(mod2)

is odd. Otherwise 2[G : G0] divides k and a
′′ is even.

Lemma 14.3 is now completely proved, so we turn to Lemma 14.4. In the proof of both

Lemma 14.4 and 14.5, we will combine the induction assumption with Lemma 15.1 which is

stated and proved in paragraph 15, the following paragraph. Suppose F ⊆ F ′ ⊆ L and F ′/F

is cyclic of prime degree ℓ. LetG(K/F ′) beH ′C whereH ′ ⊆ H and letE′ be the fixed field of

H ′. Then E′/E is cyclic of prime order ℓ. If S(F ′/F ) is the set of characters of CF /NF ′/FCF ′

then

S(E′/E) = {νE/F | νF ∈ S(F ′/F )}.

From Lemma 15.1 we see that for any quasicharacter χF ,

Ind(WK/E,WK/E′ , χE′/E) ≃ ⊕νF ∈S(F ′/F ) νE/F χE/F .

Therefore

Ind(WK/F ,WK/E′ , χE′/E) ≃ ⊕νF
Ind(WK/F ,WK/E, νE/F χE/F )
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which is equivalent to

⊕νF
{(⊕µ∈T Ind(WK/F ,WK/Fµ

, µ′ νFµ/F χFµ/F )) ⊕ νFχF }.

If T ′ is a set of representatives for the nontrivial orbits ofH ′ in S(K/L) then

Ind(WK/F ′ ,WK/E′ , χE′/F ) = σ

is equivalent to

(⊕µ∈T ′Ind(WK/F ′,WK/F ′
µ
, µ′ χF ′

µ/F
)) ⊕ χF ′/F .

Moreover

Ind(WK/F ,WK/F ′, σ) ≃ Ind(WK/F ,WK/E′ , χE′/E).

Applying the induction assumption to L/F we see that

{∏
νF

∆(νF , χF , ψF )

} {∏
νF

∏
µ∈T

∆(µ′νFµ/F χFµ/F , ψFµ/F )λ(F/F, ψF )

}

is equal to

{∆(χF ′/F , ψF ′/F )λ(F ′/F, ψF )}
{∏

µ∈T ′
∆(µ′χF ′

µ/F
, ψF ′

µ/F
)λ(F ′

µ/F, ψF ). (14.14)

The application is legitimate because the fields F ′, Fµ, and F
′
µ all lie between F and L. By

Lemma 4.5

λ(F ′
µ/F, ψF ) = λ(F ′

µ/F
′, ψF ′/F )λ(F ′/F, ψF )[F

′

µ:F ′].

Also

λ(F ′/F, ψF )

{∏
µ∈T ′

λ(F ′/F, ψF )[F
′

µ:F ′]

}
= λ(F ′/F, ψF )[E

′:F ′].

Since the fields F ′ and F ′
µ lie between F

′ and K we can apply the induction assumption to

K/F ′ to see that (14.14) is equal to the product of

λ(F ′/F, ψF )[E
′:F ′]

and

∆(χE′/F , ψE′/F ) λ(E′/F ′, ψF ′/F ).

Applying the induction assumption toK/E we see that

∆(χE′/F , ψE′/F )
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is equal to {∏
νF ∈S(F ′/F )

∆(νE/F χE/F , ψE/F )

}
λ(E′/E, ψE/F )−1.

We conclude that the quotient

∏
νF

{
∆(νF χF , ψF )

∏
µ∈T ∆(µ′νFµ/F χFµ/F , ψFµ/F

∆(νE/F χE/F , ψE/F )

}
(14.15)

is independent of χF . Taking χF to be trivial we see that it equals

∏
νF

{
∆(νF , ψF )

∏
µ∈T ∆(µ′ νFµ/F , ψFµ/F )

∆(νE/F , ψE/F )

}
. (14.16)

It is easily seen that the complex conjugate of∆(νF , ψF ) is

νF (−1) ∆(ν−1
F , ψF ).

Thus

∆(νF , ψF ) ∆(ν−1
F , ψF ) = νF (−1).

If ℓ is odd the right side is 1. Since

∆(1, ψF ) = 1

and νF 6= ν−1
F if ℓ is odd, the product

∏
νF∈S(L/F )

∆(νF , ψF ) = 1.

For the same reasons ∏
νF ∈S(L/F )

∆(νE/F , ψE/F ) = 1.

However, if ℓ is 2

∆(νF , ψF ) = ∆(ν−1
F , ψF )

has square ±1 and is therefore a fourth root of unity. Thus

∏
ν∈S(L/F )

∆(νF , ψF ) ∼
∏

ν∈S(L/F )
∆(νE/F , ψE/F ) ∼2 1.

On the other hand,m(µ′) = t+ 1 ≥ 2whilem(νFµ/F ) ≤ 1. Thus Lemma 9.5 shows that

∆(µ′νFµ/F , ψFµ/F ) ∼ℓ ∆(µ′, ψFµ/F ).



Chapter 14 229

Thus the expression (14.16) and therefore the expression (14.15) is equal to

η

{∏
µ∈T

∆(µ′, ψFµ/F )

}ℓ

where η ∼ℓ 1.

If m(χF ) is 0 or 1, Lemma 14.4 is a consequence of Lemma 14.2. We suppose therefore

thatm(χF ) ≥ 2. In this case Lemma 9.5 implies that

∏
νF

∆(νF χF , ψF ) ∼ℓ ∆(χF , ψF )ℓ

and that ∏
νF

∆(νE/F χE/F , ψE/F ) ∼ℓ ∆(χE/F , ψE/F )ℓ.

We also saw in the beginning of the paragraph that, in all cases,m(µ′χFµ/F ) ≥ 2. Thus

∆(µ′νFµ/FχFµ/F , ψFµ/F ) ∼ℓ ∆(µ′χFµ/F , ψFµ/F ).

Putting these facts together we see that if

σ

{
∆ (χF , ψF )

∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )

}ℓ

is equal to {
∆(χE/F , ψE/F )

∏
µ∈T

∆(µ′, ψFµ/F )

}ℓ

then σ ∼ℓ 1. Since σ = ρℓ we conclude that

ρ ∼ℓ 1.

Finally we have to prove Lemma 14.5. Let F ′ be the fixed field of H1C and let L
′ be the

fixed field ofH2C. Let E
′ be the fixed field ofH1 and letK

′ be the fixed field ofH2. Let P be

a set of representatives for the orbits under G(L/F ) of the characters in S(L/L′). If ν is one

of these representatives, let HνH2C with Hν and H1 be its isotropy group and let Fν be the

fixed field of HνH2C. Applying the induction assumption and Lemma 15.1 to the extension

L/F we see that

∆(χF ′/F , ψF ′/F ) ρ (F ′/F, ψF )
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is equal to ∏
ν∈P

∆(ν′χFν/F , ψFν/F )λ(Fν/F, ψF ). (14.17)

Let

R = {ν ∈ P | Fν = F}

and let S be the complement of R in P . R consists of the elements of S(L/L′) fixed by each

element of G(L/F ). It is a subgroup of S(L/L′) and its order r must therefore be a power of

ℓ. The expression (14.17) may be written as

{∏
ν∈R

∆(ν′χF , ψF )

} {∏
ν∈S

∆(ν′χFν/F , ψFν/F )λ(Fν/F, ψF )

}
.

If F is replaced by E and F ′ by E′ then P is replaced by

{νK′/L′ | ν = νL′ ∈ P}.

Also Fν is replaced byEν , the fixed field ofHνH2, and ν
′ is replaced by ν′Eν/Fν

. Applying the

induction assumption toK/E we see that

∆(χE′/F , ψE′/F )λ(E′/E, ψE/F )

is equal to the product of {∏
ν∈R

∆(ν′E/F χE/F , ψE/F

}

and {∏
ν∈S

∆(ν′Eν/Fν
χEν/Fν

, ψEν/F )λ(Eν/E, ψE/F

}
.

This equality will be referred to as relation (14.18).

To derive this equality we have used not only the induction assumption but also Lemma

15.1 which implies that

Ind(WK/E,WK/E′ , χE′/F )

is equivalent to

{⊕R Ind(WK/E ,WK/E, ν
′
E/F χE/F )} ⊕ {⊕S Ind(WK/E,WK/Eν

, ν′Eν/Fν
χEν/F )}.

Thus

Ind(WK/F ,WK/E′ , χE′/F )
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will be equivalent to the direct sum of

⊕R Ind(WK/F ,WK/E, ν
′
E/F χE/F )

and

⊕S Ind(WK/F ,WK/Eν
, ν′Eν/Fν

χEν/F ).

If ν is in R we can apply Lemma 15.1 to see that

Ind (WK/F ,WK/E, ν
′
E/F χE/F )

is equivalent to

{⊕µ∈T Ind(WK/F ,WK/Fµ
, µ′ν′Fµ/F

χFµ/F )} ⊕ ν′χF .

We can obtain

Ind (WK/F ,WK/Fν
, ν′Eν/Fν

χEν/F )

by first inducing fromWK/Eν
toWK/Fν

and then fromWK/Fν
toWK/F .

If Tν is a set of representatives for the orbits of S(K/L) under the action ofG(K/Fν) and

Fν,µ is the fixed field of the isotropy group of µ in Tν then, by Lemma 15.1 again,

Ind (WK/Fν
,WK/Eν

, ν′Eν/Fν
χEν/F )

is equivalent to

⊕Tν
Ind (WK/Fν

,WK/Fν,µ
, µ′ν′Fν,µ/Fν

χFν ,µ/F ).

Since [K : Fν ] < [K : F ] if ν belongs to S, we can apply the induction assumption to see that

∆(ν′Eν/Fν
χEν/F , ψEν/F )λ(Eν/Fν , ψFν/F )

is equal to ∏
µ∈Tν

∆(µ′ν′Fν,µ/Fν
χFν,µ/F , ψFν/F )λ(Fν,µ/Fν , ψFν/F ).

This equality will be referred to as relation (14.19).

It also follows that

Ind(WK/F ,WK/Eν
, ν′Eν/Fν

χEν/F )

is equivalent to

⊕µ∈Tν
Ind(WK/F ,WK/Fν,µ

, µ′ν′Fν,µ/Fν
χFν,µ/F ).
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The fields Fν and Fν,µ all lie between F and L. Thus we have expressed

Ind(WK/F ,WK/E′ , χE′/F ) (14.20)

as a direct sum of terms of the form

Ind(WK/F ,WK/M , χM ) (14.21)

whereM lies between F and L. Moreover such a representation is in fact a representation of

WK/F obtained by inflating a representation ofWL/F , namely, by inflating

Ind(WL/F ,WL/M , χM ).

Thus any other expression of (14.20) as a sum of representations of the form (14.21) will lead,

by an application of the induction assumption to L/F , to an identity between the numbers

∆(χM , ψM/F ).

To obtain another such expression, we observe that the representation (14.20) can be

obtained by first inducing from WK/E′ to WK/F ′ and then from WK/F ′ to WK/F . If T
′ is

a set of representatives for the orbits of nontrivial characters in S(K/L) under the action of

G(K/F ′) and F ′
µ is the fixed field of the isotropy group in G(K/F ′) of µ in T ′ then

Ind(WK/F ′,WK/E′ , χE′/F )

is equivalent to

{⊕µ∈T ′ Ind(WK/F ′,WK/F ′
µ
, µ′χF ′

µ/F
} ⊕ χF ′/F .

Thus (14.20) is equivalent to the direct sum of

Ind(WK/F ,WK/F ′, χF ′/F )

and

⊕µ∈T ′ Ind(WK/F ,WK/F ′
µ
, µ′ χF ′

µ/F
).

We shall describe the resultant identity in a moment. We first apply the induction assumption

to the extensionK/F ′ to see that

∆(χE′/F , ψE′/F )λ(E′/F ′, ψF ′/F )

is equal to

∆(χF ′/F , ψF ′/F )
∏

µ∈T ′
∆(µ′χF ′

µ/F
, ψF ′

µ/F
)λ(F ′

µ/F
′, ψF ′/F ).



Chapter 14 233

This equality will be relation (14.22).

The two expressions for the representation (14.20) lead to the conclusion that the product

of ∏
ν∈R

∆(ν′χF , ψF ) (14.23)

and ∏
ν∈R

∏
µ∈T

∆(µ′ν′Fµ/F
χFµ/F , ψFµ/F )λ(Fµ/F, ψF ) (14.24)

and ∏
ν∈S

∏
µ∈Tν

∆(µ′ν′Fν,µ/Fν
χFν,µ/F , ψFν,µ/F )λ(Fν,µ/F, ψF ) (14.25)

is equal to the product of

∆(χF ′/F , ψF ′/F )λ(F ′/F, ψF )

and ∏
µ∈T ′

∆(µ′χF ′
µ/F

, ψF ′
µ/F

)λ(F ′
µ/F, ψF ).

Applying relation (14.22) and Lemma 4.5 we see that the second of these two products is equal

to

∆(χE′/F , ψE′/F )λ(E′/F ′, ψF ′/F )λ(F ′/F, ψF )[E
′:F ′].

According to the relation (14.18) this expression is the product of

{∏
ν∈R

∆(ν′E/FχE/F , ψE/F )

} {∏
ν∈S

∆(ν′E/FχE/F , ψE/F )

}

and ∏
ν∈S

λ(Eν/E, ψE/F )

and

λ(E′/E, ψE/F )−1 λ(E′/F ′, ψF ′/F )λ(F ′/F, ψF )[E
′:F ′]. (14.26)

Equating this final product to the product of (14.23), (14.24), and (14.25) and then making

certain cancellations by means of (14.19), we see that the product of (14.23) and (14.24) and

∏
ν∈S

∏
µ∈Tν

λ−1(Fν,µ/Fν , ψFν/F )λ(Fν,µ/F, ψF )

is equal to the product of ∏
ν∈R

∆(ν′E/F χE/F , ψE/F )
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and ∏
ν∈S

λ−1(Eν/Fν , ψFν/F )λ(Eν/E, ψE/F )

and the expression (14.26).

In particular, the expression

∏
ν∈R

{
∆(ν′χF , ψF )

∏
µ∈T ∆(µ′ν′Fµ/F

χFµ/F , ψFµ/F )

∆(ν′E/F χE/F , ψE/F )

}

is independent of χF . Taking χF to be trivial we see that

∏
ν∈R

{
∆(ν′χF , ψF )

∏
µ∈T ∆(µ′ν′Fµ/F

χFµ/F , ψFµ/F )

∆(ν′E/F χE/F , ψE/F )
∏
µ∈T ∆(µ′ν′Fµ/F

, ψFµ/F )

}

is equal to
∏

ν∈R

∆(ν′, ψF )

∆(ν′E/F , ψE/F )
.

The set

R′ = {ν′ | ν ∈ R}

is a group of characters of CF or ofH . Regarded as characters ofH the elements ofR
′ are just

those characters which are trivial on H1. As a group R
′ is cyclic and its order is a power of ℓ.

The argument used in the proof of Lemma 14.4 shows that

∏
ν∈R

∆(ν′, ψF ) ∼ℓ 1

and ∏
ν∈R

∆(ν′E/F , ψE/F ) ∼ℓ 1.

Ifm(χF ) is 0 or 1, Lemma 14.5 is a consequence of Lemma 14.2. We may as well suppose

therefore that m(χF ) > 1. If ν belongs to R then ν′ is 1 on NL/FCL. Therefore m(ν′), as

well as m(ν′Fµ/F
) and m(ν′E/F ) is at most 1. We saw in the beginning of this paragraph that

m(χE/F ) would also be at least 2. We also saw that m(µ′χFµ/F ) would be either t + 1 or
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ψFµ/F (m − 1) + 1. In any case it is at least 2. Also m(µ′) = t + 1 is at least 2. Lemma 9.5

therefore implies the following relations:

∆(ν′χF , ψF ) ∼ℓ ∆(χF , ψF )

∆(ν′E/F χE/F , ψE/F ∼ℓ ∆(χE/F , ψE/F )

∆(µ′ν′Fµ/F
χFµ/F , ψFµ/F ∼ℓ ∆(µ′χFµ/F , ψFµ/F )

∆(µ′ν′Fµ/F
, ψFµ/F ) ∼ℓ ∆(µ′, ψFµ/F ).

We conclude finally that

{
∆(χF , ψF )

∏
µ∈T ∆(µ′χFµ/F , ψFµ/F )

∆(χE/F , ψE/F )
∏
µ∈T ∆(µ′, ψFµ/F )

}r
∼ℓ 1

if r is the number of elements in R. The lemma follows.
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Chapter Fifteen.

Another Lemma

Suppose K/F is normal and G = G(K/F ). Suppose H is a subgroup of G and C is an

abelian normal subgroup ofG. LetE be the fixed field ofH and L that ofC. If µ is a character

of C and h belongs toH , define µh by

µh(c) = µ(hch−1).

The set of characters of C may be identified with S(K/L). If α belongs to CL

µh(α) = µ(h(α)).

The set of elements in S(K/L)which are trivial onH ∩C is invariant underH . Let T be a set
of representatives for the orbits ofH in this set. If µ ∈ T letHµ be the isotropy group of µ, let

Gµ = HµC and let Fµ be the fixed field ofGµ. Define a character µ
′ ofGµ by

µ′(hc) = µ(c)

if h ∈ Hµ and c ∈ C. µ′ may be regarded as a character of CFµ
.

Lemma 15.1

If χF is a quasicharacter of CF then

ρ = Ind(WK/F ,WK/E, χE/F )

is equivalent to

⊕µ∈T Ind(WK/F ,WK/Fµ
, µ′χFµ/F ).

LetG′ = HC and let F ′ be the fixed field ofG′. F ′ is contained inE and in the fields Fµ.

Because of the transitivity of the induction process it is enough to show that

Ind(WK/F ′,WK/E, χE/F )

is equivalent to

⊕µ∈T Ind(WK/F ′,WK/Fµ
, µ′χFµ/F ).
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If

χ′
F ′ = χF ′/F

then

χE/F = χ′
E/F ′

and

χFµ/F = χ′
Fµ/F ′ .

Consequently we may suppose, with no loss of generality, that F ′ is F .

IfK ′ is the fixed field ofH ∩C and ν ∈ S(K ′/L) let ϕν be the function onWK/F defined

by

ϕν(hc) = χF (τK/F (hc)) ν(τK/L(c))

for h inWK/E, c inWK/L. ρ acts on the space of all functions ϕ onWK/F satisfying

ϕ(hg) = χF (τK/F (h)) ϕ(g)

for all h inWK/E and all g inWK/F . The set

{ϕν | ν ∈ S(K ′/L)}

is a basis for this space. Clearly

ρ(c)ϕν = χF (τK/F (c)) ν(τK/L(c))ϕν

if c belongs toWK/L and

ρ(h)ϕν = χF (τK/F (h))ϕν′ ,

with ν′ = νh
−1

, if h belongs toWK/E . Thus ifR is an orbit ofH in S(K ′/L)

⊕ν∈RCϕν
= V

is an invariant subspace.

Let µ be the element common to T and R and consider

σ = Ind(WK/F ,WK/Fµ
, µ′χFµ/F ).

IfWK/F is the disjoint union ⋃r

i=1
WK/Fµ

hi
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and if ϕi(w) = 0 unless

w ∈WK/Fµ
hi

while

ϕi(whi) = µ′χFµ/F (τK/Fµ
(w))

for w inWK/Fµ
then

{ϕi | 1 ≤ i ≤ r}

is a basis for the space U on which σ acts. If νi = µhi and if λ is the map from U to V which

sends ϕi to χ
−1
F (τK/F (hi))ϕνi

then, as one verifies easily,

λσ(w) = ρ(w)λ

for all w inWK/F . The lemma follows.

The lemma has a corollary.

Lemma 15.2

If Theorem 2.1 is valid forK/F then

∆(χE/F , ψE/F )
∏

µ∈T
∆(µ′, ψFµ/F )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).

If Theorem 2.1 is valid

∆(χE/F , ψE/F )λ(E/F, ψF )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ) λ(Fµ/F, ψF ).

Taking χF = 1, we see that

λ(E/F, ψF ) =
∏

µ∈T
∆(µ′, ψFµ/F ) λ(Fµ/F, ψF ).

Substituting this into the first equality and cancelling the nonzero factor

∏
µ∈T

λ(Fµ/F, ψF )

we obtain the lemma.



Chapter 15 239

To define the λfunction we shall need the following lemma.

Lemma 15.3

Suppose Theorem 2.1 is valid for all Galois extensions K1/F1 with F ⊆ F1 ⊆ K1 ⊆ K

and [K1 : F1] < [K : F ]. Then

∆(χE/F , ψE/F )
∏

µ∈T
∆(µ′, ψFµ/F )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).

The conclusion of this lemma is the same as that of the previous one. There is however a

critical difference in the assumptions.

Let F ′ be the fixed field ofHC. If

ψ′
F ′ = ψF ′/F

then for all separable extensions E′ of F ′

ψ′
E′/F ′ = ψE′/F .

If [K : F ′] < [K : F ] the relation of the lemma is a consequence of the induction assumption

and the previous lemma. We thus suppose that F = F ′ and G = HC.

Suppose in addition that there is a subgroup C1 of C, which is neither C nor {1}, whose
normalizer contains H . C1 is then a normal subgroup of G. Let F1 be the fixed field of HC1

and L1 the fixed field of C1. Lemma 15.1 applies to the extensionK/F1. Thus there are fields

A1, . . . , Ar lying between F1 and L1 and quasicharacters χA1
, . . . , χAr

such that

Ind(WK/F1
,WK/E, χE/F )

is equivalent to

⊕ri=1 Ind(WK/F1
,WK/Ai

, χAi
).

The induction assumption then implies that

∆(χE/F , ψE/F )λ(E/F1, ψF1/F ) (15.1)
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is equal to ∏r

i=1
∆(χAi

, ψAi/F )λ(Ai/F1, ψF1/F ). (15.2)

Inducing the first of these two representations fromWK/F1
toWK/F , we obtain

Ind(WK/F ,WK/E, ψE/F ).

Thus

⊕µ∈T Ind(WK/F ,WK/Fµ
, µ′χFµ/F ) (15.3)

is equivalent to

⊕ri=1 Ind(WK/F ,WK/Ai
, χAi

). (15.4)

We recall that there exist surjective homomorphisms

τK/F,L1/F : WK/F −→ WL1/F

τK/Ai,L1/Ai
: WK/Ai

−→ WL1/Ai

τK/Fµ,L1/Fµ
: WK/Fµ

−→ WL1/Fµ

whose kernels are all equal to the commutator subgroup W c
K/L1

of WK/L1
. Moreover the

diagrams

WK/Ai
−→WL1/Ai

↓ ↓
WK/F −→WL1/F

and

WK/Fµ
−→WL1/Fµ

↓ ↓
WK/F −→WL1/F

may be supposed commutative. Since W c
K/L1

lies in the kernel of χAi
and µ′χFµ/F the

equivalence of (15.3) and (15.4) amounts to the equivalence of

⊕µ∈T Ind(WL1/F ,WL1/Fµ
, µ′χFµ/F )

and

⊕ri=1Ind(WL1/F ,WL1/Ai
, χAi

).
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The induction assumption applied to the extension L1/F implies that∏r

i=1
∆(χAi

, ψAi/F )λ(Ai/F, ψF )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

It also implies that

λ(Ai/F, ψF ) = λ(Ai/F1, ψF1/F )λ(F1/F, ψF )[Ai:F1].

Since ∑
i
[Ai : F1] = [E : F1]

we infer from the equality of (15.1) and (15.2) that

∆(χE/F , ψE/F )λ(E/F1, ψF1/F )λ(F1/F, ψF )[E:F1]

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

Taking χF = 1 to find the value of

λ(E/F1, ψF1/F )λ(F1/F, ψF )[E:F1]

and then substituting the result into the equation and cancelling the common factors we obtain

the assertion of the lemma.

Now suppose that H contains a normal subgroup H1 6= {1} which lies in the centralizer
of C. H1 is a normal subgroup of G if, as we are assuming, G = HC. K1, the fixed field of

H1, contains E and all the fields Fµ. Lemma 15.1 together with the argument just applied to

L1 shows that

Ind(WK1/F ,WK1/E , χE)

is equivalent to

⊕µ∈T Ind(WK1/F ,WK1/Fµ
, µ′χFµ/F ).

In this case the assertion of the lemma follows from the induction assumption applied toK1/F .

We have finally to suppose that G = HC, C contains no proper subgroup invariant

under H , and H contains no normal subgroup lying in the centralizer of C. In particular

H ∩C = {1}. If Z is the centralizer ofC then Z = (Z ∩H)C and Z ∩H is a normal subgroup
ofH . Consequently Z = C. IfD is a normal subgroup ofG andD does not contain C then

D ∩ C = {1}.
This implies thatD is contained in Z. ThusD is contained in C andD = {1}. IfH 6= {1} the
assertion of the lemma is that of the third and fourth main lemmas. If H = {1} then G = C

and C is cyclic of prime order so that the assertion is that of the first main lemma.
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Chapter Sixteen.

Definition of the λ Functions

In this and the next three paragraphs, we take a fixed Galois extension K/F , assume

that Theorem 2.1 is valid for all Galois extensions K ′/F ′ with F ⊆ F ′ ⊆ K ′ ⊆ K and

[K ′ : F ′] < [K : F ], and prove that it is valid for K/F itself. The first step is to define and

establish some simple properties of the function which will serve as the λfunction.

Lemma 16.1

Suppose

E/F ′ −→ λ(E/F ′, ψF ′)

is a weak λfunction on P0(K
′/F ′). If σ ∈ G(K ′/F ′) let

Eσ = {σ−1(α) | α ∈ E}.

Then

λ(Eσ/F ′, ψF ′) = λ(E/F ′, ψF ′).

If µ is a character of G(K/E) let µσ be the character of G(K/Eσ) defined by

µσ(ρ) = µ(σρσ−1).

According to Lemma 13.2

∆(µσ, ψEσ/F ′) = ∆(µ, ψE/F ′).

The representation

Ind(G(K ′/F ′), G(K ′/E), µ)

acts on the space U of functions ϕ onG(K ′/F ′) satisfying

ϕ(ρτ) = µ(ρ) ϕ(τ)

for all τ inG(K ′/F ′) and all ρ inG(K ′/E). The map ϕ −→ ψ with

ψ(τ) = ϕ(στ)
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is a G(K ′/F ′) isomorphism of U with the space on which

Ind(G(K ′/F ′), G(K ′/Eσ), µσ)

acts. Thus the two representations are equivalent.

If

⊕ri=1Ind(G(K ′/F ′), G(K ′/Ei), µi)

is equivalent to

⊕sj=1Ind(G(K ′/F ′), G(K ′/Fj), νj)

then

⊕ri=1Ind(G(K ′/F ′), G(K ′/Eσi ), µσi )

is equivalent to

⊕sj=1Ind(G(K ′/F ′), G(K ′/F σj ), νσj )

and, with the conventions of the fourth paragraph,

∏r

i=1
(χEσ

i
, ψEσ

i /F
′)λ(Eσi /F

′, ψF ′)

is equal to ∏s

j=1
∆(χFσ

j
, ψFσ

j /F
′)λ(F σj /F

′, ψF ′).

Since

∆(χFσ
j
, ψFσ

j /F
′) = ∆(χFj

, ψFj/F ′)

and

∆(χEσ
i
, ψEσ

i /F
′) = ∆(χEi

, ψEi/F ′).

We conclude that ∏r

i=1
∆(χEi

, ψEi/F ′)λ(Eσi /F
′, ψF ′)

is equal to ∏s

j=1
∆(χFj

, ψFj/F ′)λ(F σj /F
′, ψF ′).

In other words

E/F ′ −→ λ(Eσ/F ′, ψF ′)

is aweakλfunctiononP0(K
′/F ′). Lemma16.1 follows from theuniqueness of such functions.

We return to the problem of defining a λfunction on P0(K/F ). Choose a nontrivial

abelian normal subgroup C of G = G(K/F ) and let L be the fixed field of C. If E is any
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field lying between F and K let H be the corresponding subgroup of G. Choose the set T

of characters and the fields Fµ as in the previous paragraph. Since Fµ ⊆ L the numbers

λ(Fµ/F, ψF ) are defined.

Lemma 16.2

Suppose F ⊆ E ⊆ K1 ⊂
6=
K withK1/F normal so that λ(E/F, ψF ) is defined. Then

λ(E/F, ψF ) =
∏

µ∈T
∆(µ′, ψFµ/F )λ(Fµ/F, ψF ).

Let K1 be the fixed field of H1. If H1 ∩ C 6= {1} we may enlarge K1 and replace H1 by

H1∩C. Thus wemay suppose that eitherH1 is contained inC orH1∩C = {1}. In either case
H1 is contained in the centralizer of C. We saw in the previous paragraph that under these

circumstance

Ind(WK1/F ,WK1/E , 1) ≃ ⊕µ∈T Ind(WK1/F ,WK1/Fµ
, µ′).

Consequently

λ(E/F, ψF ) =
∏

µ∈T
∆(µ′, ψFµ/F )λ(Fµ/F, ψF ).

In general, we define

λ(E/F, ψF ) =
∏

µ∈T
∆(µ′, ψFµ/F )λ(Fµ/F, ψF )

if E/F is in P0(K/F ) T is, of course, not always uniquely determined. We may replace any

µ in T by µσ with σ inH . ThenHµ andGµ are replaced by σ
−1Hµσ and σ

−1Gµσ while Fµ is

replaced by F σµ and µ
′ is replaced by (µ′)σ . Since

∆(µ′, ψFµ/F )λ(Fµ/F, ψF ) = ∆((µ′)σ, ψFσ
µ /F

)λ(F σµ /F, ψF )

the number λ(E/F, ψF ) does not depend on T . A priori, it may depend on C but that is

unimportant since C is fixed and, the uniqueness having been proved, we are interested only

in the existence of a λfunction.

We shall need only one property of the function just defined.

Lemma 16.3
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If F ⊆ E ⊆ E′ ⊆ K then

λ(E′/F, ψF ) = λ(E′/E, ψE/F )λ(E/F, ψF )[E
′:E].

If E = F then

λ(E′/E, ψE/F ) = λ(E′/F, ψF )

and if E 6= F

λ(E′/E, ψE/F )

is the value of the λfunction of P(K/E), which is defined by assumption, at E′/E. Since

λ(F/F, ψF ) = 1

the assertion is clear if E = F . It is also clear if E = E′.

Let E be the fixed field of H as before and let F ′ be the fixed field of HC. We suppose

thatH 6= G. Lemma 4.5 and the induction assumption imply that

λ(Fµ/F, ψF ) = λ(Fµ/F
′, ψF ′/F )λ(F ′/F, ψF )[Fµ:F ′].

The relation

[E : F ′] =
∑

[Fµ : F ′]

implies that

λ(E/F, ψF ) = λ(E/F ′, ψF ′/F )λ(F ′/F, ψF )[E:F ′].

There is a similar formula for λ(E′/F, ψF ). If F ′ 6= F the induction assumption implies that

λ(E′/E, ψE/F )λ(E/F ′, ψF ′/F )[E
′:E] = λ(E′/F ′, ψF ′/F ).

Since

[E′ : F ′] = [E′ : E] [E : F ′]

the assertion of the lemma is proved simply by multiplying both sides of this equation by

λ(F ′/F, ψF )[E
′:F ′].

Now suppose that G = HC and H ∩ C = {1}. Let E′ be the fixed field of H ′ and let

F ′ be the fixed field ofH ′C = G′. Each character of H ′ may be identified with a character of



Chapter 16 246

CE′/NK/E′CK and each character ofG
′ may be identified with a character of CF ′/NK/F ′CK .

Any character χE′ ofH ′ may be extended to a character χF ′ ofG′ by setting

χF ′(ρσ) = χE′(ρ)

if ρ ∈ H ′ and σ ∈ C. Then

χE′ = χE′/F ′ .

It follows from Lemma 15.1 that there are fields of Fi(E
′), 1 ≤ i ≤ m(E′), lying between F ′

and L and characters µFi(E′) such that

Ind(WK/F ′,WK/E′ , χE′)

is equivalent to

⊕m(E′)
i=1 Ind(WK/F ′ ,WK/Fi(E′), µFi(E′)χFi(E′)/F ′).

If E 6= E′ so that F 6= F ′ the induction assumption implies that

∆(χE′ , ψE′/F )λ(E′/F ′, ψF ′/F )

is equal to
∏m(E′)

i=1
∆(µFi(E′)χFi(E′)/F ′ , ψFi(E′)/F )λ(Fi(E)/F ′, ψF ′/F ).

We have seen that the lemma is valid for any pairE′, E for whichHC 6= G. In particular,

it is valid for the pair E′, F ′ and the pairs Fi(E
′), F ′. Multiplying the equality just obtained

by

λ(F ′/F, ψF )[E
′:F ′]

we see that

∆(χE′ , ψE′/F )λ(E′/F, ψF ) (16.1)

is equal to
∏m(E′)

i=1
∆(µFi(E′)χFi(E′)/F ′ , ψFi(E′)/F )λ(Fi(E

′)/F, ψF ). (16.2)

If F ′ = F the equality of (16.1) and (16.2), for a suitable choice of the fields Fi(E
′), results from

Lemma 15.1, Lemma 15.3, and the definition of

λ(E′/F, ψF ).

In any case the equality is valid for all fields lying between E andK .
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SupposeE1, . . . , Er, E
′
1, . . . , E

′
s are such fields, χEi

is a character ofCEi
/NK/Ei

CK , χE′

j

is a character of CE′

j
/NK/E′

j
CK , and

⊕ri=1Ind(WK/E,WK/Ei
, χEi

)

is equivalent to

⊕sj=1Ind(WK/E,WK/E′

j
, χE′

j
).

Then ∑r

i=1
[Ei : E] =

∑s

j=1
[E′
j : E] (16.3)

and, by the transitivity of the induction process,

⊕ri=1 ⊕
m(Ei)
k=1 Ind(WK/F ,WK/Fk(Ei), µFk(Ei) χFk(Ei)/Fi

)

is equivalent to

⊕sj=1 ⊕
m(E′

j)

ℓ=1 Ind(WK/F ,WK/Fℓ(E
′

j), µFℓ(E
′

j) χFℓ(E
′

j)/F
′

j
).

If Ei is the fixed field of Hi and E
′
j the fixed field of H

′
j then Fi and F

′
j are the fixed fields of

HiC andH
′
jC. This equivalence and the induction assumption for L/F imply that

∏r

i=1

∏m(Ei)

k=1
∆(µFk(Ei) χFk(Ei)/Fi

, ψFk(Ei)/F )λ(Fk(Ei)/F, ψF )

is equal to

∏s

j=1

∏m(E′

j)

ℓ=1
∆(µFℓ(E

′

j) χFℓ(E
′

j)/F
′

j
, ψFℓ(E

′

j)/F )λ(Fℓ(E
′
j)/F, ψF ).

This equality, the equality of (16.1) and (16.2), and the relation (16.3) imply that

∏r

i=1
∆(χEi

, ψEi/F )λ(Ei/F, ψF )λ(E/F, ψF )−[Ei:E]

is equal to ∏s

j=1
∆(χE′

j
, ψE′

j/F
)λ(E′

j/F, ψF )λ(E/F, ψF )−[E′

j :E].

Consequently

E′ −→ λ(E′/F, ψF )λ(E/F, ψF )−[E′:E]

is a weak λfunction on P0(K/E). The lemma of uniqueness implies that

λ(E′/F, ψF )λ(E/F, ψF )−[E′:E] = λ(E′/E, ψE/F ).



Chapter 16 248

This is, of course, the assertion of the lemma.

At this point, we have proved the lemma when various supplementary conditions are

satisfied. Before proving it, in general, we make an observation. Suppose

F ⊆ E ⊆ E′ ⊆ E′′ ⊆ K

and the assertion of the lemma is valid for E′′/E′ and E′/E. Then

λ(E′′/F, ψF ) = λ(E′′/E′, ψE′/F )λ(E′/F, ψF )[E
′′:E′]

and

λ(E′/F, ψF ) = λ(E′/E, ψE/F )λ(E/F, ψF )[E
′:E].

Moreover, by induction,

λ(E′′/E, ψE/F ) = λ(E′′/E′, ψE′/F )λ(E′/E, ψE/F )[E
′′:E′].

The assertion for E′′/E is obtained by substituting the second relation in the first and simpli

fying according to the third.

If the lemma is false in general, chose amongst all the extensions in P(K/F ) for which it

is false one E′/E for which [E′ : E] is a minimum. Let E be the fixed field of H and E′ that

of H ′. According to the previous discussion G = HC, H ∩ C 6= {1}, and there are no fields
lying between E and E′. If H ′ ∩ C = H ∩ C, which is a normal subgroup of G, the fields
F, E, and E′ are contained in the fixed field of H ∩ C and the assertion is a consequence of
the induction assumption. ThusH ′ is a proper subgroup ofH ′(H ∩ C). Because there are no

intermediate fieldsH = H ′(H ∩ C).

As we have seen there are fields E1, . . . , Er lying between E and the fixed field K1 of

H ∩ C and characters µE1
, . . . , µEr

such that

Ind(WK/E ,WK/E′ , 1)

is equivalent to

⊕ri=1Ind(WK/E ,WK/Ei
, µEi

).

Then

λ(E′/E, ψE/F ) =
∏r

i=1
∆(µEi

, ψEi/E)λ(Ei/E, ψE/F ).

By the induction assumption, applied toK1/F ,

λ(Ei/E, ψE/F )λ(E/F, ψF )[Ei:E] = λ(Ei/F, ψF ).
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Thus

λ(E′/E, ψE/F )λ(E/F, ψF )[E
′:E]

is equal to ∏r

i=1
∆(µEi

, ψEi/E)λ(Ei/F, ψF ). (16.4)

Moreover, by the transitivity of the induction process,

Ind(WK/F ,WK/E′ , 1) (16.5)

is equivalent to

⊕ri=1Ind(WK/F ,WK/Ei
, µEi

). (16.6)

On the other hand, there are fields F1, . . . , Fs contained in L and characters νF1
, . . . , νFs

such

that (16.5) is equivalent to

⊕sj=1Ind(WK/F ,WK/Fj
, νFj

) (16.7)

and such that, by definition,

λ(E′/F, ψF ) =
∏s

j=1
∆(νFj

, ψFj/F )λ(Fj/F, ψF ). (16.8)

Since the representations (16.6) and (16.7) are equivalent the induction assumption, applied to

K1/F , shows that (16.4) is equal to the right side of (16.8). This is a contradiction.
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Chapter Seventeen.

A Simplification.

We shall use the symbol Ω to denote an orbit in the set of quasicharacters of CK under

the action of G(K/F ) or, what is the same, under the action of WK/F on CK by means of

inner automorphisms. If χK is a quasicharacter of CK its orbit will be denoted Ω(χK). If

ρ is a representation ofWK/F the restriction of ρ to CK is the direct sum of onedimensional

representations. Let S(ρ) be the collection of quasicharacters to which these onedimensional

representations correspond.

Suppose

ρ = Ind(WK/F ,WK/E, χE).

LetWK/F be the disjoint union ⋃m

i=1
WK/Ewi.

Define the function ϕi by

ϕi(wwj) = 0 w ∈WK/E , j 6= i

ϕi(wwi) = χE(τK/Ew) w ∈WK/E .

{ϕ1, . . . , ϕm} is a basis for the space of functions of which ρ acts. If a ∈ CK then

wwja = w(wjaw
−1
j )wj

and wjaw
−1
j belongs to CK which, of course, lies inWK/E . Thus

ρ(a)ϕi = χE(τK/E(wiaw
−1
i ))ϕi = χσi

K/E(a)ϕi

if σi is the image of wi inG(K/F ). Thus

S(ρ) = Ω(χK/E).

SupposeE1, . . . , Er, E
′
1, . . . , E

′
s lie between F andK,χEi

is a quasicharacter ofEi, and

χE′

j
is a quasicharacter of E′

j . Let

ρi = Ind(WK/F ,WK/Ei
, χEi

)
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and let

ρ′j = Ind(WK/F ,WK/E′

j
, χE′

j
).

Suppose ρi acts on Vi and ρ
′
j acts on V

′
j . The direct sum of the representations ρi acts on

V = ⊕ri=1Vi

and the direct sum of the representations ρ′j acts on

V ′ = ⊕sj=1V
′
j .

Let

VΩ = ⊕{i |χK/Ei
∈Ω}Vi

V ′
Ω = ⊕{i |χK/E′

j
∈Ω}V

′
j .

Any isomorphism of V with V ′ which commutes with the action ofWK/F takes VΩ to V
′
Ω.

If χK/Ei
∈ Ω(χK) there is a σ in G(K/F ) such that χK = χσK/Ei

. Then

ρi ≃ Ind(WK/F ,WK/Eσ
i
, χσEi

)

and

∆(χEi
, ψEi/F )λ(Ei/F, ψF ) = ∆(χσEi

, ψEσ
i /F

)λ(Eσi /F, ψF ).

We conclude that Theorem 2.1 is a consequence of the following lemma.

Lemma 17.1

Suppose χK is a quasicharacter of CK . Suppose E1, . . . , Er, E
′
1, . . . , E

′
s lie between F

andK,χEi
is a quasicharacter of CEi

, χE′

j
is a quasicharacter of CE′

j
, and

ρ = ⊕ri=1Ind(WK/F ,WK/Ei
, χEi

)

is equivalent to

ρ′ = ⊕sj=1 Ind(WK/F ,WK/E′

j
, χE′

j
).

If χK/Ei
= χK/E′

j
= χK for all i and j then

∏r

i=1
∆(χEi

, ψEi/F )λ(Ei/F, ψF )
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is equal to ∏s

j=1
∆(χE′

j
, ψE′

j/F
), λ(E′

j/F, ψF ).

Let F (χK) be the fixed field of the isotropy group of χK . Let ρ act on V and let ρ
′ act on

V ′. Let

V (χK) = {v ∈ V | ρ(a)v = χK(a)v for all a in CK}.

Define V ′(χK) in a similar fashion. It is clear that any isomorphism of V with V ′ which

commutes with the action ofWK/F takes V (χK) to V ′(χK). The groupWK/F (χK) leaves both

V (χK) and V ′(χK) invariant and its representations on these two spaces are equivalent.

Let

Ind(WK/F ,WK/Ei
, χEi

)

acts on Vi and define Vi(χK) in the obvious manner. Then

V (χK) = ⊕ri=1Vi(χK).

Defining V ′
j and V

′
j (χK) in a similar manner, we have

V ′(χK) = ⊕sj=1V
′
j (χK).

It is clear that the representation ofWK/F (χK) on Vi(χK) is equivalent to

Ind(WK/F (χK),WK/Ei
, χEi

).

Thus

⊕ri=1Ind(WK/F (χK),WK/Ei
, χEi

)

is equivalent to

⊕sj=1Ind(WK/F (χK),WK/E′

j
, χE′

j
).

If F (χK) 6= F the assertion of the lemma follows from the induction assumption and Lemma

16.3.
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Chapter Eighteen.

Nilpotent Groups.

In this paragraphweprove Lemma17.1 assuming thatF = F (χK) and thatG = G(K/F )

is nilpotent.

Lemma 18.1

Suppose D is a normal subgroup of G of prime order ℓ which is contained in the center

of G. LetM be the fixed field ofD. Suppose F ⊆ E ⊆ K and χE is a quasicharacter of CE .

Suppose also that F (χK/E) = F .

(a) There are fields F1, . . . , Fr contained inM and quasicharacters χF1
, . . . , χFr

such that

χK/Fi
= χK/E and such that

Ind(WK/F ,WK/E, χE)

is equivalent to

⊕ri=1Ind(WK/F ,WK/Fi
, χFi

).

(b) If Theorem 2.1 is valid for all Galois extensionsK ′/F ′ inP(K/F )with [K ′ : F ′] < [K : F ]

then

∆(χE , ψE/F )λ(E/F, ψF )

is equal to ∏r

i=1
∆(χFi

, ψFi/F )λ(Fi/F, ψF ).

We prove the lemma by induction on [K : F ]. LetH be the subgroup ofG corresponding

to E; let G′ = HD and let F ′ be the fixed field of G′. If F ′ 6= F the induction assumption

implies that there are fields F1, . . . , Fr contained inM and quasicharacters χF1
, . . . , χFr

such

that χK/Fi
= χK/E for each i and such that

Ind(WK/F ,WK/E, χE)

is equivalent to

⊕ri=1Ind(WK/F ′,WK/Fi
, χFi

).



The first part of the lemma follows from the transitivity of the induction process. The second

part follows from Lemma 16.3 and the assumed validity of Theorem 2.1 for the extension

K/F ′.

We suppose now that G = HD. Suppose that H contains a normal subgroup H1 of G

which is different from {1} and suppose that, if K1 is the fixed field of H1, F (χK1/E) = F .

If M1 is the fixed field of H1D then, according to the induction assumption, there are fields

F1, . . . , Fr contained inM1 and quasicharacters χF1
, . . . , χFr

such that

χK1/Fi
= χK1/E

and such that

Ind(WK1/F ,WK1/E , χE)

is equivalent to

⊕ri=1Ind(WK1/F ,WK1/Fi
, χFi

).

It follows immediately that

χK/Fi
= χK/E

and that

Ind(WK/F ,WK/E, χE)

is equivalent to

⊕ri=1Ind(WK/F ,WK/Fi
, χFi

).

The equality of (b) is a consequence of the assumed validity of Theorem 2.1 forK1/F .

We assume now that G = HD and that if H1 is a normal subgroup of H different from

{1}with fixed fieldK1 the field F (χK1/E) is not F . If w1 belongs toWK/E and w2 belongs to

WK/M then

w1w2w
−1
1 w−1

2 ∈ CK .

Let χK = χK/E . Since F (χK) = F

χK(w1w2w
−1
1 w−1

2 ) = χK(w2w
−1
1 w−1

2 w1) = χK(w−1
1 w−1

2 w1w2) = χK(w−1
2 w1w2w

−1
1 ).

Denote the common value of the expressions by ω(w1, w2). Then ω(v1w1, w2) is equal to

χK(v1w1w2w
−1
1 v−1

1 w−1
2 ) = χK(w−1

2 w1w2w
−1
1 v−1

1 w−1
2 v1w2).

The right side is

ω(v1, w2) ω(w1, w2).
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In the same way ω(w1, v2w2) is

χK(w1v2w2w
−1
1 w−1

2 v−1
2 ) = χK(w−1

1 v−1
2 w1v2w2w

−1
1 w−1

2 w1)

which equals

ω(w1, v2) ω(w1, w2).

If either w1 or w2 belong to CK , we have

ω(w1, w2) = 1.

Thus, for each w2,

w1 −→ ω(w1, w2)

is a homomorphism ofH = WK/E/CK into C∗ and, for each w1,

w2 −→ ω(w1, w2)

is a homomorphism ofD = WK/M/CK into C∗. If w belongs toWK/F then

ω(ww1w
−1, ww2w

−1) = ω(w1, w2).

Thus there is a normal extensionK1 containing E such that

WK/K1
= {w1 | ω(w1, w2) = 1 for all w1 ∈WK/M}.

But F (χK1/E) will be F so thatK1 must beK .

It follows immediately thatH is isomorphic to a subgroup of the dual group ofD. Thus

H = {1} or H is cyclic of order ℓ. In either case H must lie in the centralizer of D so that
E/F is normal and G(E/F ) is isomorphic to D. If H = {1} then χE may be extended from
CE = CK to a quasicharacter ofWE/F . In other words, there is a quasicharacter χF of CF
such that χE = χE/F . Then

Ind(WK/F ,WK/E, χE)

is equivalent to

⊕µF ∈S(E/F ) Ind(WK/F ,WK/F , µFχF ).

Suppose H 6= {1}. SinceWK/M/CK is cyclic there is a quasicharacter χM of CM such

that χK = χK/M . If w1 belongs to WK/E let χw1
be the character of WK/M or, what is the

same, of CM defined by

χw1
(w2) = ω(w1, w2)
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and if w2 belongs toWK/M let

χw2
(w1) = ω(w1, w2).

Clearly

{χw1
| w1 ∈WK/E} = S(K/M)

and

{χw2
| w2 ∈WK/M} = S(K/E).

If σ1 is the image of w1 inH and σ2 the image of w2 inD then

χσ2

E (w1) = χE(w2w1w
−1
2 w−1

1 w1) = χ−1
w2

(w1)χE(w1)

and

χσ1

M (w2) = χM (w1w2w
−1
1 w−1

2 w2) = χw1
(w2)χM (w2).

LetWK/F be the disjoint union

⋃ℓ

i=1
WK/Evi

with vi inWK/M . Define the function ϕi onWK/F by

ϕi(wvj) = 0

if w ∈WK/E and j 6= i and by

ϕi(wvi) = χE(w)

if w ∈WK/E . Then

{ϕi | 1 ≤ i ≤ ℓ}

is a basis for the space U on which

Ind(WK/F ,WK/E, χE)

acts. Let ψi, 1 ≤ i ≤ ℓ be the functionWK/F defined by

ψi(w2w1) = χM (w2)χ
σ(vi)
E (w1)

if w1 belongs toWK/E and w2 belongs toWK/M . Here σ(vi) is the image of vi in G(K/F ). It

is necessary, but easy, to verify that ψi is welldefined. The collection

{ψi | 1 ≤ i ≤ ℓ}
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is a basis for the space V on which

Ind(WK/F ,WK/M , χM )

acts. It is easily verified that the isomorphism of U with V which sends χM (vi)ϕi to ψi is an

isomorphism. Thus

Ind(WK/F ,WK/E, χE) ≃ Ind(WK/F ,WK/M , χM ).

This takes care of the first part of the lemma.

WhetherH = {1} or not,
Ind(WK/F ,WK/E, 1)

is equivalent to

⊕µF ∈S(E/F ) Ind(WK/F ,WK/F , µF ).

IfH 6= 1we may apply Theorem 2.1 to E/F to see that

λ(E/F, ψF ) =
∏

µF ∈S(E/F )
∆(µF , ψF ).

IfH = {1} this equality is just the definition of the left side. In this case the second part of the
lemma asserts that

∆(χE , ψE/F )
∏

µF ∈S(E/F )
∆(µF , ψF ) (18.1)

is equal to ∏
µF ∈S(E/F )

∆(µFχF , ψF )

where χE = χE/F . This is a consequence of the first main lemma. If H 6= {1}, Theorem 2.1
applied toM/F , shows that

λ(M/F, ψF ) =
∏

µF ∈S(M/F )
∆(µF , ψF )

and the second part of the lemma asserts that (18.1) is equal to

∆(χM , ψM/F )
∏

µF ∈S(M/F )
∆(µF , ψF ).

This is a consequence of the second main lemma.

A nontrivial nilpotent group always contains a subgroup D satisfying the conditions of

the previous lemma. Lemma 17.1 is clear ifK = F . IfK 6= F and G(K/F ) is nilpotent it is a

consequence of the following lemma.



Chapter 18 258

Lemma 18.2

Suppose K/F is normal and Theorem 2.1 is valid for all normal extensions K ′/F ′ in

P(K/F ) with [K ′ : F ′] < [K : F ]. Suppose F ⊆ M ⊂
6=
K and M/F is normal. Suppose

E1, . . . , Er,

E′
1, . . . , E

′
s lie between F andM,χEi

is a quasicharacter of CEi
, χE′

j
is a quasicharacter of

CE′

j
, and

⊕ri=1Ind(WK/F ,WK/Ei
, χEi

)

is equivalent to

⊕sj=1Ind(WK/F ,WK/E′

j
, χE′

j
).

Then ∏r

i=1
∆(χEi

, ψEi/F )λ(Ei/F, ψF )

is equal to ∏s

j=1
∆(χE′

j
, ψE′

j/F
)λ(E′

j/F, ψF ).

The representation

Ind(WK/F ,WK/Ei
, χEi

)

can be obtained by inflating the representation

Ind(WM/F ,WM/Ei
, χEi

)

fromWM/F toWK/F . A similar remark applies to the representations induced from the χE′

j
.

Thus

⊕ri=1Ind(WM/F ,WM/Ei
, χEi

)

is equivalent to

⊕sj=1Ind(WM/F ,WM/E′

j
, χE′

j
).

Applying Theorem 2.1 to the extensionM/F we obtain the lemma.
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Chapter Nineteen.

Proof of the Main Theorem.

We shall first prove Lemma 17.1 when there is a quasicharacter χF of CF such that

χK = χK/F . Implicit in the statement of the following lemma as in that of Lemma 17.1, is the

assumption that Theorem 2.1 is valid for all pairs K ′/F ′ in P(K/F ) for which [K ′ : F ′] <

[K : F ]. Recall that we have fixed a nontrivial abelian normal subgroup C of G = G(K/F )

and that L is its fixed field.

Lemma 19.1

Suppose F ⊆ E ⊆ K, χF is a quasicharacter of CF , χE is a quasicharacter if CE , and

χK/E = χK/F . There are fieldsF1, . . . , Fr contained inL and quasicharactersχFi
, 1 ≤ i ≤ r,

such that χK/Fi
= χK/F ,

Ind(WK/F ,WK/E, χE)

is equivalent to

⊕ri=1Ind(WK/F ,WK/Fi
, χFi

)

and

∆(χE , ψE/F )λ(E/F, ψF )

is equal to ∏r

i=1
∆(χFi

, ψFi/F )λ(Fi/F, ψF ).

We prove the lemma by induction on [K : F ]. Let E be the fixed field ofH and let F ′ be

the fixed field ofHC. If F ′ 6= F then, by induction, there are fields F1, . . . , Fr lying between

F ′ and L and quasicharacters χF1
, . . . , χFr

such that χK/Fi
= χK/F and

Ind(WK/F ′,WK/E, χE)

is equivalent to

⊕ri=1Ind(WK/F ′,WK/Fi
, χFi

).

In this case the lemma follows from the transitivity of the induction process, the assumed

validity of Theorem 2.1 forK/F ′ and Lemma 16.3.
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We suppose henceforth that G = HC. There is a character θE in S(K/E) such that

χE = θEχE/F . θE may be regarded as a character of H . If H ∩ C = {1} we may define a
character θF ofG by setting

θF (hc) = θE(h)

if h is inH and c is in C. θF may be regarded as a character of CF and θE = θE/F . Replacing

χF by θF χF we suppose that χE = χE/F . Then in the notation of Lemma 15.1, we may take

{F1, . . . , Fr} = {Fµ | µ ∈ T}

and if Fi = Fµ,

χFi
= µ′χFµ/F .

The assertions of the lemma are consequences of Lemmas 15.1 and 15.3.

We suppose now not only that G = HC but also that H ∩ C 6= {1}. Let S be the set
of characters in S(K/L) whose restriction to H ∩ C agrees with the restriction of θE . S is

invariant under the action ofH on S(K/L). If ν belongs to S let ϕν be the function onWK/F

defined by

ϕν(wv) = χE(w)χL/F (v) ν(v)

if w is inWK/E and v is in WK/L. ν is a character of C and may therefore be regarded as a

character ofWK/L or of CL. It is easy to verify that ϕν is welldefined. If

ρ = Ind(WK/F ,WK/E, χE)

then

{ϕν | ν ∈ S}

is a basis for the space of functions on which ρ acts. If w belongs toWK/E

ρ(w)ϕν = χE(w)ϕν′

with ν′ = νσ
−1

is σ is the image of w in G(K/F ). If v belongs toWK/L

ρ(v)ϕν = χL/F (v) ν(v)ϕν .

Thus if R is an orbit in S under the action ofH , the space

VR =
∑

ν∈R
Cϕν

is invariant underWK/F and ρ is the direct sum of its restrictions to the spaces VR.
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If µ belongs toR letHµ be the isotropy group of µ, letGµ = HµC, and let Fµ be the fixed

field ofGµ. Extend µ to a character µ
′ ofGµ by setting

µ′(hc) = θE(h) µ(c)

if h is in Hµ and c is in C. µ
′, which is easily seen to be welldefined, may be regarded as a

character ofWK/Fµ
of CFµ

. LetWK/F be the disjoint union

⋃s

i=1
WK/Fµ

wi

with wi inWK/E and let σi be the image of wi in G(K/F ). Let ϕi be the function ofWK/F

defined by

ϕi(wwj) = 0 w ∈WK/Fµ
, j 6= i

ϕi(wwi) = µ′(w)χFµ/F (w) w ∈WK/Fµ
.

The collection

{ϕi | 1 ≤ i ≤ s}

is a basis for the space Vµ on which the representation

σµ = Ind(WK/F ,WK/Fµ
, µ′χFµ/F )

acts. Let

ψi = χE(wi)ϕi.

If w belongs toWK/L

σµ(w)ψi = µσi(w)χL/F (w)ψi.

If w belongs toWK/E and wjw = vwi with v inWK/Fµ
then

σµ(w)ψi = χE(w)ψj .

Thus the isomorphism of Vµ with VR which takes ψi to ϕµσi commutes with the action of

WK/F . If T is a set of representatives for the orbits in S

ρ ≃ ⊕µ∈Tσµ.

IfK1 is the fixed field ofH ∩ C thenK1/F is normal and ρ is the inflation toWK/F of

Ind(WK1/F ,WK1/E , χE) (19.1)
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and σµ is the inflation of

Ind(WK1/F ,WK1/Fµ
, µ′χFµ/F ).

Thus the representation (19.1) is equivalent to

⊕µ∈T Ind(WK1/F ,WK1/Fµ
, µ′χFµ/F ).

Applying Theorem 2.1 toK1/F we see that

∆(χE , ψE/F )λ(E/F, ψF )

is equal to ∏
µ∈T

(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

If there is a quasicharacter χF such that χK = χK/F , Lemma 17.1 follows from Lemma

18.2 and the lemma just proved. To complete the proof of Theorem 2.1 we have to prove

Lemma 17.1 when F = F (χK), G is not nilpotent, and there is no quasicharacter χF of CF
such that χK = χK/F . In this case none of the fieldsE1, . . . , Er, E

′
1, . . . , E

′
s is equal to F and

Theorem 2.1 may be applied toK/Ei andK/E
′
j .

Lemma 19.2

Suppose A and B lie between F andK . Suppose χA and χB are quasicharacters of CA
andCB respectively. There are fieldsA1, . . . , Am lyingbetweenA andK , fieldsB1, . . . , Bm ly

ingbetweenB andK , elementsσ1, . . . , σm inG, andquasicharactersχA1
, . . . , χAm

, χB1
, . . . , χBm

such that Bi = Aσi
i , χBi

= χσi

Ai
, and such that the tensor product

Ind(WK/F ,WK/A, χA) ⊗ Ind(WK/F ,WK/B, χB)

is equivalent to

⊕mi=1Ind(WK/F ,WK/Ai
, χAi

)

and to

⊕mi=1Ind(WK/F ,WK/Bi
, χBi

).

Let

ρ = Ind(WK/F ,WK/A, χA)

σ = Ind(WK/F ,WK/B, χB).
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Let α be the restriction of σ toWK/A and β the restriction of ρ toWK/B . By Lemma 2.3

ρ⊗ σ ≃ Ind(WK/F ,WK/A, χA ⊗ α)

and

ρ⊗ σ ≃ Ind(WK/F ,WK/B, χB ⊗ β).

LetWK/F be the disjoint union

⋃m

i=1
WK/AwiWK/B.

If Ui is the space of functions in U , the space on which ρ acts, which are zero outside of the

double cosetWK/AwiWK/B then Ui is invariant under β. Define the field Bi by demanding

that

WK/Bi
= WK/B ∩ w−1

i WK/Awi.

If σi is the image of wi inG(K/F ) let χ′
Bi
be the restriction of χσi

A toWK/Bi
. If U ′

i is the space

of functions on which

Ind(WK/B,WK/Bi
, χ′

Bi
)

acts, the map of Ui to U
′
i which sends ϕ to the function ϕ

′ defined by

ϕ′(w) = ϕ(wiw)

if w is inWK/B is an isomorphism which commutes with the action ofWK/B . Thus

β ≃ ⊕mi=1Ind(WK/B,WK/Bi
, χ′

Bi
)

and, if χBi
= χBi/B χ

′
Bi
,

χB ⊗ β ≃ ⊕mi=1Ind(WK/B,WK/Bi
, χBi

).

Similar considerations apply if the roles of A and B are interchanged. The double coset

decomposition becomes ⋃m

i=1
WK/Bw

−1
i WK/A

and

WK/Ai
= WK/A ∩ wiWK/Bw

−1
i = wiWK/Bi

w−1
i .

Thus Bi = Aσi
i . It is also clear that χBi

= χσi

Ai
.
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To complete the proof of Lemma 17.1 we use Brauer’s theorem in the following form.

There are fields F1, . . . , Fn lying between F andK such thatG(K/Fk) is nilpotent for each k,

characters χFk
of CFk

/NK/Fk
CK , and integersm1, . . . , mn such that

1 ≃ ⊕nk=1mk Ind(WK/F ,WK/Fk
, χFk

).

Since we are assuming thatG is not nilpotent none of the Fk are equal to F and we may apply

Theorem 2.1 to each of the extensionsK/Fk.

We shall apply the previous lemma with A = Ei, B = Fk and with A = E′
j, B = Fk. m

will be denoted bym(ik) orm′(jℓ). Aℓ will be denoted byEikℓ orE
′
jkℓ andBℓwill be denoted

by Fikℓ or F
′
jkℓ. Observe that

∆(χEikℓ
, ψEikℓ/F λ(Eikℓ/F, ψF ) (19.2)

is equal to

∆(χFikℓ
, ψFikℓ/F )λ(Fikℓ/F, ψF ) (19.3)

and that

∆(χE′

jkℓ
, ψE′

jkℓ/F
)λ(E′

jkℓ/F, ψF ) (19.4)

is equal to

∆(χF ′

jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψF ). (19.5)

χEi
may be regarded as a onedimensional representation of WK/Ei

and as such is

equivalent to

⊕nk=1 ⊕
m(ik)
ℓ=1 mk Ind(WK/Ei

,WK/Eikℓ
, χEikℓ

).

Therefore

1 =
∑n

k=1

∑m(ik)

ℓ=1
mk [Eikℓ : Ei]

and

∆(χEi
, ψEi/F )

is equal to
∏n

k=1

∏m(ik)

ℓ=1
{∆(χEikℓ

, ψEikℓ/F )λ(Eikℓ/Ei, ψEi/F )}mk .

Multiplying both of these expressions by λ(Ei/F, ψF ), we see that

∆(χEi
, ψEi/F )λ(Ei/F, ψF ) (19.6)
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is equal to
∏n

k=1

∏m(ik)

ℓ=1
{∆(χEikℓ

, ψEikℓ/F )λ(Eikℓ/F, ψF )}mk . (19.7)

The same argument establishes that

∆(χE′

j
, ψE′

j/F
)λ(E′

j/F, ψF ) (19.8)

is equal to
∏n

k=1

∏m′(jk)

ℓ=1
{∆(χE′

jkℓ
, ψE′

jkℓ/F
)λ(E′

jkℓ/F, ψF )}mk . (19.9)

We are trying to show that the product over i of the expressions (19.6) is equal to the

product over j of the expressions (19.8). It will be enough to show that the product of the

expressions (19.7) is equal to the product of the expressions (19.9).

The representations

⊕ri=1 ⊕
m(ik)
ℓ=1 Ind(WK/Fk

,WK/Fikℓ
, χFikℓ

)

and

⊕sj=1 ⊕
m′(jk)
ℓ=1 Ind(WK/Fk

,WK/F ′

jkℓ
, χF ′

jkℓ
)

are equivalent. Therefore
∑r

i=1

∑m(ik)

ℓ=1
[Fikℓ : Fk] =

∑s

j=1

∑m′(jk)

ℓ=1
[F ′
jkℓ : Fk].

Denote the common value of these expressions by N(k). Moreover
∏r

i=1

∏m(ik)

ℓ=1
∆(χFikℓ

, ψFikℓ/F )λ(Fikℓ/Fk, ψFk/F )

is equal to
∏s

j=1

∏m′(jk)

ℓ=1
∆(χF ′

jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψFk/F ).

Multiplying both of these expressions by

λ(Fk/F, ψF )N(k)

we see that ∏r

i=1

∏m(ik)

ℓ=1
∆(χFikℓ

, ψFikℓ/F )λ(Fikℓ/F, ψF ) (19.10)

is equal to
∏s

j=1

∏m′(jk)

ℓ=1
∆(χF ′

jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψF ). (19.11)

Because of the equality of (19.2) and (19.3) the product over i of the expressions (19.7) is equal

to the product over k of of the mkth powers of the expressions (19.10). The product over j

of the expressions (19.9) is equal to the product over k of themkth powers of the expressions

(19.11). Lemma 17.1, and with it Theorem 2.1, is now completely proved.
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Chapter Twenty.

Artin L-functions.

Suppose ω is an equivalence class of representations of the Weil group of the non

archimedean local field F . Let K be a Galois extension of F and let σ be a representation

of WK/F in the class ω. Suppose σ acts on V . Let V
0 be the subspace of V fixed by every

element ofW 0
K/F . SinceW

0
K/F is a normal subgroup ofWK/F the space V

0 is invariant under

WK/F and on V
0we get a representation σ0. SinceW 0

K/F = τ−1
K/F (u0

F ) the class of σ0 depends

only on w. σ0 breaks up into the direct sum of 1dimensional representations corresponding

to unramified generalized characters µ1, . . . , µr of CF . We set

L(s, w) =
∏r

i=1

1

1 − µi(πF ) |πF |s .

This we take as the local function. It is clear that when w is onedimensional the present

definition agrees with that of the introduction and that of ω = ω1 ⊕ ω2. Then

L(s, ω) = L(s, ω1) ⊕ L(s, ω2).

Suppose F ⊆ E ⊆ K, ρ is a representation ofWK/E , and

σ = Ind(WK/F ,WK/E, ρ).

We have to show that if θ is the class of ρ then

L(s, ω) = L(s, θ).

Let ρ act onW . Then V is the space of functions f onWK/F with values inW which satisfy

f(uv) = ρ(u)f(v)

for u inWK/E and v inWK/F . If f lies in V0 and u lies inW
0
K/E then

ρ(u)f(v) = f(uv) = f(vv−1uv) = f(v)

because v−1 lies inW 0
K/F . Thus f takes values inW

0. In other words, we may as well assume

thatW = W 0. Indeed we may as well go further and assume thatW = W 0 has dimension

one.
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Let NE/F πE = επfF where ε is a unit and choose w0 in WK/F so that τK/Fw0 = πF .

Then wf = u0v0 with u0 in W
0
K/F and v0 in WK/E such that τK/Ev0 = πE . Clearly, V

0

consists of the functions f with values inW which satisfy f(uw) = f(w) for u inW 0
K/F and

f(uw) = µ(τK/Eu)f(w) if ρ is associated to the generalized character µ of CE . Take as basis

of V 0 the functions ϕ0, . . . , ϕf−1 defined by

ϕi(uvw
j
0) = µ(τK/Ev)δ

j
i x

where x is a nonzero vector inW , u belongs toW 0
K/F , v belongs toWK/E , 0 ≤ j < f , and δji

is Kronecker’s delta. The matrix of σ(w0) with respect to this basis is

A =




0 · · · µ(τK/Ev0)
1 0 ·

1
. . . ·
. . .

. . . ·
0 1 0




and

L(s, ω) =
1

det(I −A |πF |s)
=

1

1 − µ(πE) |πF |fs
= L(s, θ)

since |πF |f = |πE|.

For archimedean fields we proceed in a different manner. If we write ω, as we may, as a

sum of irreducible representations the components are unique up to order. If ω =
∑r
i=1 ⊕ωi,

we will have to have

L(s, ω) =
∏r

i=1
L(s, ωi).

Thus it is a matter of defining L(s, ω) for irreducible ω. If ω is onedimensional this was done

in the introduction. If ω is not onedimensional then F must be R. Let σ be a representation

of WC/R in the class ω. WC/R is an extension of the group of order 2 by C∗. Let WC/R =

C× ∪ w0C×. If σ acts on V there is a nonzero vector x in V and a generalized character µ

of C× such that σ(a)x = µ(a)x for all a in C×. Then the space spanned by {x, σ(w0)x} is
invariant and therefore all of V . Since V is not onedimensional σ(w0)x is not a multiple of x.

Notice that σ(a)σ(w0)x = σ(w0)σ(w−1
0 aw0)x = µ(a)σ(w0)x. If

µ(z) = |z|r zmzn

|z|m+n
2
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withm+ n ≥ 0, mn = 0 we set

L(s, ω) = 2(2π)−(s+r+ m+n
2 ) Γ

(
s+ r +

m+ n

2

)
.

The initial choice of µ is of course not uniquely determined. However if µ0 is one choice the

only other choice is the charactera→ µ0(a). Thus the resulting localLfunction is independent

of the choice.

The only point to be checked is that the localLfunction behaves properly under induction.

We have to verify that if ρ is a representation of C∗ = WC/C in the class θ and

σ = Ind(WC/R,WC/C, ρ)

is in the class w then L(s, w) = L(s, θ). We may as well assume that ρ is irreducible and

therefore onedimensional. Let it correspond to the generalized character ν. If σ is irreducible

we could choose the generalized character µ above to be ν and the equality of the two L

functions becomes a matter of definition. If σ is irreducible it breaks up into the sum of two

onedimensional representatives. It follows easily that ν(a) = ν(a) for all a. Thus ν is of the

form ν(a) = |a|r and
L(s, θ) = 2(2π)−(s+r) Γ(s+ r).

If µR = µ is the generalized character x→ |x|r ofR× then ν = µC/R and, as we saw in chapter

10, the representation σ is equivalent to the direct sum of the onedimensional representations

corresponding to µ and to µ′ where µ′(x) = sgnxµ(x). Thus

L(s, ω) =

{
π− 1

2 (s+r) Γ

(
s+ r

2

)}{
π− 1

2 (s+r+1) Γ

(
s+ r + 1

2

)}
.

The required result is thus a consequence of the familiar duplication formula

22z−1 Γ(z) Γ(z + 1/2) = π1/2 Γ(2z).

If F is a global field and ω is an equivalence class of representations of the Weil group of

F , we define as in the introduction, the global Lfunction to be

L(s, ω) =
∏

p
L(s, ωp).

I repreat that the product is taken over all primes, including those at infinity. It is not difficult

to see that the product converges in a halfplane Re s > c. One need only verify it for ω
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irreducible. Choose a Galois extension K of F so that there is a representation σ of WK/F

in the class ω. The restriction of σ to CK is equivalent to the direct sum of 1dimensional

representations corresponding to generalized characters µ(1), . . . , µ(r) of CK . For each i and

j there is a σ in G(K/F ) such that µj(a) ≡ µi(σ(a)). Then |µ−1
i µj(a)| = |µi(a−1σ(a))| = 1

because a−1σ(a) belongs to the compact group of i idèle classes of norm 1. Let |µ′(a)| = |a|r.
Let νF be the generalized character a → |a|r of CF . Replacing σ by ν−1

F ⊗ σ we replace

L(s, wp) by L(s − r, wp) and µ
(i) by |µ(i)|−1µ(i). Thus we may as well suppose that all µ(i)

are ordinary characters. Since CK is of finite index inWK/F the eigenvalues of σ(w) will all

have absolute 1 for any w in WK/F and at any nonarchimedean prime the local Lfunction

will be of the form ∏s

i=1

1

1 − αi |πFp
|s

with s ≤ dimw and |αi| = 1, 1 ≤ i ≤ s. The required result follows from the wellknown

fact that ∏1 1

1 − |πFp
|s

converges from Re s > 1. This product is taken only over the nonarchimedean primes.
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Chapter Twenty-one.

Proof of the Functional Equation.

Choose a nontrivial character ψF ofAF /F . Before we can write down the factor appear

ing in the functional equation of the global Lfunctionwe have to verify that ε(s, ωγ, ψFγ
) = 1

for all but a finite number of γ.

Let ω be realized as a representation σ of WK/F and let the restriction of σ to CK be

equivalent to the direct sumof 1dimensional representations corresponding to the generalized

characters µ(1), . . . , µ(r). All but finitely many primes p will satisfy the following conditions.

(i) p is nonarchimedean.

(ii) n(ψFp
) = 1.

(iii) p does not ramify inK .

(iv) m(µ
(i)
P ) = 0 for allP dividing p and all i.

Choose one such p and let P divide p. Corresponding to the map K/F −→ KP/Fp is a

map ϕp : WKP/Fp
−→ WK/F . ωp is the class of σp = σ ◦ ϕp. The kernel of σp contains UKP

.

Since KP/Fp is unramified the quotient of WKP/Fp
by UKP

is abelian and σp is the direct

sum of onedimensional representations. Let them correspond to the generalized characters

ν
(1)
p , . . . , ν

(r)
p ofCFp

. Since τKP/Fp
takesUKP

ontoUFp
each of these characters is unramified.

Thus

ε(s, ωp, ψFp
) =

∏r

i=1
∆
(
α
s− 1

2

Fp
ν

(i)
p , ψFp

)
= 1.

Ifψ′
F is another nontrivial character ofAF/F there is aβ inF

∗ such thatψ′
F (x) ≡ ψF (βx).

According to Lemma 5.1

ε(s, ω, ψFp
) = α

s− 1
2

Fp
(β)detωp(β) ε(s, ω, ψFp

).

Since ∏
p
αFp

(β)s−
1
2 detωp(β) = |β|s− 1

2 detω(β) = 1

the function

ε(s, ω) =
∏

p
ε(s, ωp, ψFp

)

is indeed independent of ψF .



Chapter 21 271

We can infer from Tate’s thesis not only thatL(s, ω) is meromorphic in thewhole complex

plane if ω is onedimensional but also that it satisfies the functional equation

L(s, ω) = ε(s, ω)L(1− s, ω̃)

if ω̃ is contragredient to ω. As is wellknown, Lemma 2.2 then implies thatL(s, ω) is meromor

phic in the whole complex plane for any ω. In any case, Theorem B is true for onedimensional

ω and, granting this, we have to establish it in general.

First we need a lemma.

Lemma 21.1

Suppose F is a global field,K is a Galois extension of F , E is a field lying between F and

K , χ is a generalized character of CE and

σ = Ind(WK/F ,WK/E, χ).

If ω is the class of σ and, for each prime q of E, χq is the restriction of χ to CEq
then for each

prime p of F

ε(s, ωp, ψFp
) =

∏

q|p

{ε(s, χq, ψEq/Fp
) ρ (Eq/Fp, ψFp

)}.

Let P be a prime of K dividing p. The first step is to find a set of representatives for the

double cosets WK/E wWKP/Fp
. Since CK ⊆ WK/E is a normal subgroup of WK/F we can

factor out CK and merely find a set of representatives for the double cosets

G(K/E)σG(KP/Fp).

LetP1, . . . ,Pr be the primes ofK dividing p and letP1 divide qi inE. G(K/F ) is the disjoint

union ⋃r

i=1
σiG(KP/Fp)

where σi(P) = Pi. If σi and σj belong to the same double coset qi = qj . Conversely, if qi = qj

there is a ρ in G(K/E) such that ρ(Pi) = Pj . Then ρσi(P) = σj(P) and

ρσi ∈ σj G(KP/Fp).

Thus we may write G(K/F ) as the disjoint union

⋃
τ∈S

G(K/E)τ G(KP/Fp)
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so that ifP divides q inE the collection {τ(q) | τ ∈ S} is the collection of distinct primes in E
dividing p.

For each τ in S choose a representative w(τ) inWK/F . For each τ in S the restriction of σ

toWKP/Fp
leaves invariant the space of functions f on the double cosetWK/Ew(τ)WKP|Fp

which satisfy f(vw) = χ(τK/E(v))f(w) for all v inWK/E . The representation ofWKP/Fp
on

this space is equivalent to

Ind(WKP/Fp
,WKP/E

τ
qτ
, χ′

qτ

if Eτ = τ−1(E) and

χ′
qτ (a) = χ(τ(a)).

Thus

ε(s, ωq, ψFp
) =

∏
τ∈S

ε(s, χ′
qτ , ψEτ

qτ /Fp
) ρ(Eτqτ/Fp, ψFp

)

which is of course equal to

∏
τ∈S

ε(s, χq, ψEq/Fp
) ρ(Eq/Fp, ψFp

).

We set

ρ(E/F ) =
∏

q

∏
q|p

ρ(Eq/Fp, ψFp
).

The preceding discussion together with Lemma 5.1 shows that it does not depend on ψF .

However that does not really matter since we are about to show that for any choice of ψF it is

1. Observe first of all that the previous lemma implies immediately that if ω is the class of

σ = Ind(WK/F ,WK/E, χ)

then

ε(s, ω) = ε(s, χ) ρ(E/F ).

Given an arbitrary class ω realizable as a representation of WK/F we can find fields

E1, . . . , Er lyingbetweenF andK , generalized charactersχE1
, . . . , χEr

, and integersm1, . . . , mr

such that ∑r

i=1
⊕mi Ind(WK/F ,WK/Ei

, χEi
)

is in the class ω. Then

ε(s, ω) =
∏r

i=1
{ε(s, χEi

)mi ρ(Ei/F )mi}.
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On the other hand

L(s, ω) =
∏r

i=1
L(s, χEi

)mi

and

L(s, ω̃) =
∏r

i=1
L(s, χ−1

Ei
)mi .

Since

L(s, χEi
) = ε(s, χEi

)L(1 − s, χ−1
Ei

)

we have

L(s, ω) =
∏r

i=1
ε(s, χEi

)mi L(1 − s, ω̃)

because ω̃ contains ∑r

i=1
⊕mi Ind(WK/F ,WK/Ei

, χ−1
Ei

).

Consequently ∏r

i=1
ε(s, χEi

)mi

depends only on ω and not on the particular way it is written as a sum of induced representa

tions. Thus ∏r

i=1
ρ(Ei/F )mi

also depends only on ω. We call itH(ω). It is clear that to prove Theorem B we have to show

thatH(ω) = 1 for all ω or, what is the same, that ρ(E/F ) = 1 for all E and F .

Suppose F ⊆ E ⊆ E′. Denote the primes of F by p, those of E by q, and those of E′ by

q′. Then

ρ(E′/F ) =
∏

p

∏
q′|p

ρ(E′
q′/Fp, ψFp

).

Apply Lemma 4.5 to see that the right side equals

∏
p

∏
q|p

∏
q′|q

{
ρ(E′

q′/Eq, ψFq/Fp
) ρ(Eq/Fp, ψFp

)[E
′

q:Eq]
}
.

Since ∑

q′|q

[E′
q′ : Eq] = [E′ : E]

this may be written as

{∏
q

∏
q′|q

ρ(E′
q′/Eq, ψFq/Fp

)

} {∏
p

∏
q|p

ρ(Eq/Fp, ψFp
)

}[E′:E]
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which is of course

ρ(E′/E) ρ(E/F )[E
′:E]. (20.1)

Suppose E/F is an abelian extension and ω is the class of the representation of WE/F

induced from the trivial representation of CE = WE/E . Then H(ω) = ρ(E/F ). On the

other hand, ω is the direct sum of [E : F ] onedimensional representations; so H(ω) =

ρ(F/F )[E:F ] = 1. It follows immediately not only that ρ(E/F ) = 1 if E/F is abelian but

also that ρ(E/F ) = 1 if E can be obtained from F by a succession of abelian extensions. In

particular if F ⊆ E ⊆ L and L/F is nilpotent ρ(E/F ) = 1.

Observe that (20.1) together with Lemma 2.2 and the transitivity of induction imply that

if ω is the class of

σ = Ind(WK/F ,WK/E, ρ)

and θ is the class of ρ then

H(ω) = H(θ) ρ(E/F )dim θ.

To complete the proof we will show thatH(ω1 ⊗ω2) = H(ω2)
dim ω1 for all ω1 and ω2. Taking

ω2 = 1 we find H(ω1) = 1. It is enough to prove the equality when ω1 and ω2 are both

realizable as representations of WK/F and there is a field E lying between E and K with

G(K/E) nilpotent and a generalized character χE such that ω2 is the class of

Ind(WK/F ,WK/E, χE).

Then H(ω2) = ρ(E/F ). If ρ is a representation in the restriction of ω1 to WK/E then, by

Lemma 2.3, ω1 ⊗ ω2 is the class of

Ind(WK/F ,WK/E, ρ⊗ χE).

Let θ be the class of ρ⊗ χE . H(θ) is of the form

∏r

i=1
ρ(Ei/E)mi

where E ⊆ Ei ⊆ K and is therefore 1. Thus

H(ω1 ⊗ ω2) = H(θ)ρ(E/F )dim θ = ρ(E/F )dimω1 .

as required.
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Chapter Twenty-two.

Appendix.

There is clearly notmuch to be said about the functions ε(s, ω, ψF)whenF is archimedean.

However for nonarchimedean F their properties are more obscure. In this appendix we shall

describe and prove some properties whichwere not needed in the proofs of the main theorems

and so found no place in the main body of the paper but which will be used elsewhere.

The first step is to define the Artin conductor of ω. We follow a welltrodden path. If

K is a finite Galois extension of the local field F then W 0
K/F contains UK as a subgroup of

finite index and is therefore compact. It is, in fact, a maximal compact subgroup of WK/F .

Choose that Haar measure dw onWK/F which assigns the measure 1 toW
0
K/F . If f is a locally

constant function onWK/F and u is a nonnegative real number set

f̂(u) =

{∫

Wu
K/F

dw

}−1 ∫

Wu
K/F

{f(1) − f(w)}dw.

SinceWu
K/F is an open subgroup ofWK/F it is meaningful to restrict dw to it. f̂(u) is bounded,

continuous from the left, and 0 for u sufficiently large. SinceWu
K/F = W 0

K/F for 1 < u ≤ 0

we have f̂(u) = f̂(0) for such u. The integral

∫ ∞

−1

f̂(u)du

is welldefined.

There are some simple lemmas to be verified.

Lemma 22.1

Suppose F ⊆ K ⊆ L and L/F is also a Galois extension. Define g onWL/F by g(w) =

f(τL/F ,K/F (w)). Then ĝ(u) = f̂(u) for all u.

This is immediate because by Lemma 6.16, τL/F,K/F mapsW
u
L/F ontoW

u
K/F for every u.

When we want to make the roles ofK and F explicit we write f̂(u) = f̂K/F (u).

Lemma 22.2
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Suppose F ⊆ E ⊆ K and g is a function onWK/E satisfying g(wzw
−1) = g(z) for all z

and w inWK/E . RegardWK/E as a subgroup ofWK/F and set

f(w) =
∑

z∈WK/E\WK/F

g(z−1wz).

IfNE/F πE is a unit times π
fE/F

F andP
δE/F

E is the different of E/F

∫ ∞

−1

f̂K/F (u)du = fE/F

∫ ∞

−1

ĝK/E(u)du+ fE/F δE/F g(1).

Let dwK/F be the normalized Haar measure onWK/F and let dwK/E be the normalized

Haar measure onWK/E . OnWK/E

dwK/E = [W 0
K/F : W 0

K/E ]dwK/F .

Suppose at first that g(1) = 0. Denote also by g the function onWK/F which equals the given

g onWK/E but is 0 outside ofWK/E . Then

f̂K/F (u) = [WK/F : WK/E ] ĝK/F (u).

SinceWu
K/F ∩WK/E = W v

K/E if v = ψE/F (u)

ĝK/F (u) = −[W 0
K/F : Wu

K/F ]

∫

Wu
K/F

g(w)dwK/F

= −
[W 0

K/F : Wu
K/F ]

[W 0
K/F : W 0

K/E]

∫

W v
K/E

g(w)dwK/E

=
1

[W 0
K/F : W 0

K/E ]

[W 0
K/F : Wu

K/F ]

[W 0
K/E : W v

K/E ]
ĝK/E(v).

Recall that

fE/F =
[WK/F : WK/E]

[W 0
K/F : W 0

K/E]
.

Moreover
[W 0

K/F : Wu
K/F ]

[W 0
K/E : W v

K/E ]
=

[W 0
K/F : Wu

K/F U
0
K ]

[W 0
K/E : W v

K/E U
0
K ]

·
[U0
K : U0

K ∩Wu
K/F ]

[U0
K : U0

K ∩W v
K/E]
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and U0
K ∩Wu

K/F = U0
K ∩W v

K/E . By Lemma 6.11 the first term in this product is equal to

[G0 : Gu]

[H0 : Hv]

ifG = G(K/F ) andH = G(K/E). But

[G0 : Gu] = ψ′
K/F (u)

and

[H0 : Hv] = ψ′
K/E(v)

while

ψ′
K/F (u) = ψ′

K/E(v)ψ′
E/F (u).

Thus

∫ ∞

−1

f̂K/F (u)du = fE/F

∫ ∞

−1

ĝK/E(ψE/F (u))ψ′
E/F (u)du

= fE/F

∫ ∞

−1

ĝK/E(v)dv.

To complete the proof of the lemma, we have to show that if g(w) = 1 so that ĝK/E(u) ≡ 0

then ∫ ∞

−1

f̂K/F (u)du = fE/F δE/F .

In this case

f̂K/F (u) = [G : H] − [G : H]

[G0 : H0]

[G0 : Gu]

[H0 : Hv]

if v = ψE/F (u). After some simple rearranging this becomes

[G : H]

[Gu : 1]
{[Gu : 1] − [Hv : 1]} =

[G : H]

[Gu : 1]
{([Gu : 1] − 1) − ([Hv : 1] − 1)}.

The factor
[G : H]

[Gu : 1]
=

[G : G0]

[H : 1]
ψ′
K/F (u)

and, from paragraph IV.2 of [ ],

∫ ∞

1

([Gu : 1] − 1)ψ′
K/F (u)du =

∫ ∞

−1

([Gx : 1] − 1)dx = δK/F
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while ∫ ∞

−1

([Hv : 1] − 1)ψ′
K/F (u)du =

∫ ∞

−1

([Hv : 1] − 1)ψ′
K/E(v)dv = δK/E .

Thus ∫ ∞

−1

f̂K/F (u)du =
[G : G0]

[H : 1]
(δK/F − δK/E) = fE/F δE/F

because

δK/F = δK/E + [H0 : 1] δE/F .

Suppose ω is an equivalence class of representations of the Weil group of F and σ is a

representation ofWK/F in the class of ω. Let fσ be the character of σ. It follows from Lemma

22.1 that the value of ∫ ∞

−1

f̂σ(u)du

depends only on ω and not on σ. We call it the order of ω and denote it bym(ω). Since f̂σ(u) is

clearly nonnegative for all u and vanishes identically if and only ifW 0
K/F is contained in the

kernel of σ, the orderm(ω) is always nonnegative and equals zero if and only if the kernel of

each realization σ of ω containsW 0
K/F .

Lemma 22.3

(a) If ω = ω1 ⊕ ω2 thenm(ω) = m(ω1) +m(ω2).

(b) If

ω = Ind(WK/F ,WK/E, ν)

then

m(ω) = fE/Fm(ν) = fE/F δE/F dimν.

(c) m(ω) is a nonnegative integer.

The first property is immediate. The second is a consequence of Lemma 22.2. To verify

the third we merely have to show that m(ω) is integral. If ω = µ ⊕ ν and the assertion is

true for any two of µ, ν and ω it is true for the third. This observation, together with part

(b) and Lemma 2.2, shows that it is enough to verify (c) when ω is the onedimensional class

corresponding to a generalized character χF of CF . To do this we show thatm(ω) = m(χF ).

If f(a) = χF (a) for a in CF = WF/F then f̂(u) = f̂(m) form− 1 < u ≤ m and

f̂(m) = [U0
F : UmF ]

∫

Um
F

{1 − χF (a)}da.
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The right side is 1 ifm < m(χF ) and 0 ifm ≥ m(χF ). Thus

m(ω) =

∫ m(χF )−1

−1

du = m(χF ).

The function ω −→ m(ω) is characterized by (a) and (b) together with the fact that

m(ω) = m(χF ) if ω is the class of χF .

Lemma 22.4

If ω is an equivalence class of representations of the Weil group of the nonarchimedean

local field F and ψF is a nontrivial additive character of F setm
′(ω) = m(ω) +n(ψF ) dimω.

There is a nonzero complex constant a(ω) such that, as a function of s,

ε(s, ω, ψF ) = a(ω) |πF |m
′(ω)s.

If ω = µ ⊕ ν and the lemma is true for any two of µ, ν, and ω, it is true for the third.

Applying Lemma 2.2 we see that it is enough to verify it when ω contains a representation

Ind(WK/F ,WK/E, χE).

Then

ε(s, ω, ψF ) = ∆(α
s− 1

2

E χE , ψE/F ) ρ(E/F, ψF ).

Clearly

∆(α
s− 1

2

E χE , ψE/F ) = α
s− 1

2

E

(
π
m(χE)+δE/F

E π
n(ψF )
F

)
∆(χE , ψE/F ).

But

αE

(
π
m(χE)+δE/F

E π
n(ψF )
F

)
= αF

(
NE/F

(
π
m(χE)+δE/F

E π
n(ψF )
F

))

and the argument on the right is the product of a unit and

π
fE/F (m(χE)+δE/F )+n(ψF ) dimω

F = π
m′(ω)
F .

The lemma follows.

The next lemma is rather technical and to prove it we will have to use the notations and

results of paragraphs 8 and 9.

Lemma 22.5
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Let ω be an equivalence class of representations of theWeil group of the nonarchimedean

local field F and m1 a positive integer. There is a positive integer m2 such that if χF and

µ1, . . . , µr with r = dimω, are generalized characters of CF and m(χF ) ≥ m2, m(µi) ≤
m1, 1 ≤ i ≤ r, while ∏r

i=1
µi = detω

then for any nontrivial additive character ψF

ε(s, χF ⊗ σ, ψF ) =
∏r

i=1
ε(s, µiχF , ψF ).

Choose, as a start,m2 ≥ 2m1 +1. If µF is a generalized character ofCF andm(µF ) ≤ m1

while m(χF ) ≥ m2 then m(µFχF ) = m(χF ) = m. Let n = n(ψF ) and choose γ so that

OFγ = Pm+n
F . If β = β(χF ) we may choose β(µFχF ) = β. Appealing to Lemmas 8.1 and

9.4 we see that

ε(s, µFχF , ψF ) = ∆(α
s− 1

2

F µFχF , ψF )

= (α
s− 1

2

F µF )

(
γ

β

)
∆(χF , ψF ).

In particular

∏r

i=1
ε(s, µiχF , ψF ) = α

r(s− 1
2 )

F

(
γ

β

)
detω

(
γ

β

)
{∆(χF , ψF )}r.

If ω = µ⊕ ν then

ε(s, χF ⊗ ω, ψF ) = ε(s, χF ⊗ µ, ψF ) ε(s, χF ⊗ ν, ψF )

and all three terms are different from zero. Thus if the lemma is true for two of µ, ν and ω it is

true for the third. Using Lemma 2.2 once again, we see that it is enough to prove the lemma

when there is an intermediate field E and a generalized character µE of CE such that ω is the

class of

Ind(WK/F ,WK/E, µE).

Then χF ⊗ ω is the class of

Ind(WK/F ,WK/E, µE χE/F )

and

ε(s, χF ⊗ ω, ψF ) = ∆(α
s− 1

2

E µEχE/F , ψE/F ) ρ(E/F, ψF ).

There are two simple lemmas which we need before we can proceed further and we

digress to prove them.
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Lemma 22.6

Let E be a separable extension of F . Ifm is sufficiently large

ψE/F (m− 1) + 1 = meE/F − δE/F

if eE/F is the index of ramification of F in E.

Suppose F ⊆ E ⊆ K where K/F is Galois and the assertion is true forK/F and K/E.

Subtracting 1 from both sides of the equation, applying ψK/E , and then adding 1, we obtain

the equivalent equation

ψK/F (m− 1) + 1 = ψK/E(meE/F − δE/F − 1) + 1.

By assumption, the left side equals

meK/F − δK/F

and the right side equals

(meE/F − δE/F ) eK/E − δK/E .

Since eK/F = eK/EeE/F and δK/F = δK/E + eK/EδE/F these two expressions are equal and

we have only to prove the lemma for Galois extensions.

Suppose F ⊆ K ⊆ L and L/F andK/F are Galois. Suppose also that the lemma is true

for L/K andK/F . Then

ψL/F (m− 1) + 1 = ψL/F (ψK/F (m− 1)) + 1

= ψL/F (meK/F − δK/F − 1) + 1

= (meK/F − δK/F ) eL/K − δL/K

= meL/F − δL/F

as before. Thus, if we use induction, we need only verify the lemma directly for a Galois

extensionK/F of prime degree.

We apply Lemma 6.3. If K/F is unramified, eK/F = 1 and δK/F = 0 while ψK/F (m −
1) = m − 1; so the relation follows. If K/F is ramified there is an integer t such that

δK/F = ([K : F ] − 1)(t+ 1) while ψK/F (m− 1) + 1 = [K : F ]m− ([K : F ] − 1)(t+ 1) for

m− 1 ≥ t. Since eK/F = [K : F ] the relation follows again.
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If n = n(ψF ) then

n′ = n(ψE/F ) = n eE/F + δE/F .

Thus ifm is sufficiently large andm′ = ψE/F (m− 1) + 1

m′ + n′ = (m+ n) eE/F

and if OFγ = Pm+n
F then OEγ = Pm′+n′

E . We define

P ∗
E/F (x) = P ∗

E/F (x; γ, γ)

as in paragraph 8.

Lemma 22.7

Ifm1 is a given positive integer then form sufficiently large

P ∗
E/F (x) ≡ x (mod Pm1

E ).

As in paragraph 8, let d be the integral part of m2 , d
′ the integral part of m

′

2 , and let

m = 2d + ε, m′ = 2d′ + ε′. P ∗
E/F (x) depends only on the residue of x modulo Pd

F and is

only determined moduloPd′

E . Recall that if

PE/F (y) = NE/F (1 + y) − 1

for y in Pd′+ε′E then

ψE/F

(
P ∗
E/F (x)y

γ

)
= ψF

(
xPE/F (y)

γ

)
.

To show that P ∗
E/F (x) ≡ x (modPm1

E )whenm is sufficiently large, we have to show that

ψF

(
xPE/F (y)

γ

)
= ψE/F

(
xy

γ

)

for y inPm′−m1

E . To do this we show that

PE/F (y) ≡ SE/F (y) (modPm
F )

whenm is sufficiently large and y is inPm′−m1

E .
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To put it another way, we have to show that ifK/F is any Galois extension the assertion

is true for all intermediate fieldsE. For this we use induction on [K : F ] together with Lemma

3.3. There are three facts to verify:

(i) If E/F is a Galois extension of prime degree then

PE/F (y) ≡ SE/F (y) (modPm
F )

whenm is sufficiently large and y is inPm′−m1

E .

(ii) Suppose F ⊆ E ⊆ K and K/F is Galois. Let G = G(K/F ) and let E be the fixed field

ofH . SupposeH 6= {1} andG = HC whereH ∩C = {1} and C is a nontrivial abelian
normal subgroup ofG which is contained in every other nontrivial normal subgroup. If

the induction assumption is valid

PE/F (y) ≡ SE/F (y) (modPm
F )

whenm is sufficiently large and y is inPm′−m1

E .

(iii) Suppose F ⊆ E ⊆ E′ ⊆ K andm′′ = ψE′/F (m− 1) + 1. If, for any choice ofm1,

PE/F (y) ≡ SE/F (y) (modPm
F )

whenm is sufficiently large and y is inPm′−m1

E and, for any choice ofm′
1,

PE′/E(y) ≡ SE′/E(y) (modPm′

E )

whenm, orm′, is sufficiently large and y is inP
m′′−m′

1

E′ then, for any choice ofm′
1,

PE′/F (y) ≡ SE′/F (y) (modPm
F )

ifm is sufficiently large and y is inP
m′′−m′

1

E′ .

We first verify (i) for E/F unramified. By paragraph V.2 of [12]

PE/F (y) = NE/F (1 + y) − 1 ≡ SE/F (y) (modPm
F )

if y belongs toPd′+ε′

E . In this casem = m′ and we takem > 2m1 so thatm
′ −m1 > d′ + ε′. If

E/F is ramified and of degree ℓwe again choosem sufficiently large thatm′ > 2m1. Ifm > t

2(m′ −m1) + (ℓ− 1)(t+ 1)

ℓ
≥ m′ + (ℓ− 1)(t+ 1)

ℓ
= m
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so that by Chapter V of [12],

PE/F (y) ≡ SE/F (y) +NE/F (y) (modPm
F )

if y belongs toPm′−m1

E . t of course has its usual meaning. SinceNE/F (y) belongs toPm′−m1

F

all we have to do is arrange thatm′ −m1 ≥ m. Since

m′ −m1 = ℓm− (ℓ− 1) (t+ 1) −m1

and ℓ ≥ 2, this can certainly be done by choosingm sufficiently large.

To verify the second fact let L be the fixed field of C. We can assume that the required

assertion is true for the extensionK/L. Let ℓ = ψL/F (m− 1) + 1 and ℓ′ = ψK/F (m− 1) + 1.

Ifm is sufficiently large andH0 is the inertial group ofH

ℓ = [H0 : 1]m− ([H0 : 1] − 1)

and

ℓ′ = [H0 : 1]m′ − ([H0 : 1] − 1).

Thus

Pℓ
L ∩ F = Pm

F

and if ℓ1 = [H0 : 1]m1 then

Pℓ′−ℓ1
K ∩E = Pm′−m1

E .

Ifm and therefore ℓ is sufficiently large

PK/L(y) = NK/L(1 + y) − 1 ≡ SK/L(y) (modPℓ
L)

if y belongs toPℓ′−ℓ1
K . Thus if y belongs toPm′−m1

E

PE/F (y) = PK/L(y) ≡ SK/L(y) = SE/F (y) (mod Pm
F ).

To verify the third fact we choose, oncem′
1 is given,m1 so that

SE′/E

(
P

−δE′/E−m′

1

E′

)
= P−m1

E .

Ifm is sufficiently large

m′′ = m′ eE′/E − δE′/E
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and if y belongs toP
m′′−m′

1

E′

SE′/E(y) ∈ Pm′−m1

E .

Taking in even larger if necessary, we have

PE′/F (y) ≡ PE/F (PE′/E(y))

≡ PE/F (SE′/E(y))

≡ SE/F (SE′/E(y))

≡ SE′/F (y) (modPm
F ).

Returning to the proof of Lemma 22.5, we choose

β′ = β(χE/F ) = P ∗
E/F (β).

Ifm(χF ) and thereforem(χE/F ) is sufficiently large,

∆(α
s− 1

2

E µE χE/F , ψE/F ) = α
s− 1

2

E

(
γ

β′

)
µE

(
γ

β′

)
∆(χE/F , ψE/F ).

Both β and β′ are units and therefore

α
s− 1

2

E

(
γ

β′

)
= α

r− 1
2

E

(
γ

β

)
= α

s− 1
2

F

(
NE/F

(
γ

β

))
= α

r(s− 1
2 )

F

(
γ

β

)
.

Ifm(χF ) is sufficiently large

β′ ≡ β
(
modP

m(µE)
E

)

and µE(β′) = µE(β). In paragraph 5 we saw that

detω

(
γ

β

)
= µE

(
γ

β

)
det ιE/F

(
γ

β

)
,

if ιE/F is the representation of WK/F induced from the trivial representation of WK/E . We

are reduced to showing that

det ιE/F

(
γ

β

)
{∆(χF , ψF )}r = ∆(χE/F , ψE/F ) ρ(E/F, ψF ) (22.1)

ifm(χF ) is sufficiently large. Of course r = [E : F ].
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What we do is show that for each Galois extension K/F the relation (22.1) is true for all

fields E lying betweenK and F . For this we use induction on [K : F ]. LetG = G(K/F ) and

let C be a nontrivial abelian normal subgroup of G. Let L be the fixed field of C. We saw in

Chapter 13 that there are fields F1, . . . , Fs lying between F and L and generalized characters

µ1, . . . , µs of CF1
, . . . , CFs

respectively such that

ιE/F ≃ ⊕si=1Ind(WK/F ,WK/Fi
, µi).

Then

χF ⊗ ιE/F ≃ ⊕si=1Ind(WK/F ,WK/Ei
, µi χFi/F )

and by Theorem 2.1, the Main Theorem, the right side of (22.1) is equal to

∏s

i=1
∆(µi χFi/F , ψFi/F ) ρ(Fi/F, ψF ).

We just saw that ifm(χF ) is sufficiently large this is equal to

{∏s

i=1
µi

(
γ

β

)} {∏s

i=1
∆(χFi/F , ψFi/F ) ρ(Fi/F, ψF )}.

Since ∑s

i=1
[Fi : F ] = [E : F ]

we see upon applying the induction assumption to L/F that this equals

{∏s

i=1
µi

(
γ

β

)
det ιFi/F

(
γ

β

)}
{∆(χF , ψF )}r.

We complete the proof of (22.1) by appealing to Chapter 5 to see that

det ιE/F =
∏s

i=1
µidet ιFi/F .
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