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O. Introduction

In this paper I want to consider not just the L-functions introduced by Artin [1] but the
more general functions introduced by Weil [15]. To define these one needs the notion of a Weil
group as described in [3]. This notion will be explained in the first paragraph. For now a
rough idea will suffice. If I is a global field, that is an algebraic number field of finite degree
over the rationals or a function field over a finite field, Cr will be the idéle class group of E.
If E is a local field, that is the completion of a global field at some place [16], archimedean or
nonarchimedean, C'ry will be the multiplicative group of E. If K/ E is a finite Galois extension
the Weil group Wy /g is an extension of &(K/E), the Galois group of K/E, by Ck. Itisa
locally compact topological group.

If £ C E' C K and K/FE is finite and Galois W /g may be regarded as a subgroup of
Wk g Itis closed and of finite index. If ¥ C K C L there is a continuous map of Wy, /g onto
Wk . Thus any representation of W p may be regarded as a representation of Wi, /. In
particular the representations p; of Wi /g and p2 of W, g will be called equivalent if there is
a Galois extension L/ E containing K3 /E and K2/ E such that p; and py determine equivalent
representations of W ,g. This allows us to refer to equivalence classes of representations of
the Weil group of F without mentioning any particular extension field K.

In this paper a representation of Wy, is understood to be a continuous representation
p in the group of invertible linear transformations of a finite-dimensional complex vector
space which is such that p(w) is diagonalizable, that is semisimple, for all w in W 5. Any
one-dimensional representation of Wi, g can be obtained by inflating a one-dimensional repre-
sentation of Wi, = Cg. Thus equivalence classes of one-dimensional representations of the
Weil group of E' correspond to quasi-characters of C'g, that is, to continuous homomorphisms
of Cg into C*.

Suppose £ is alocal field. There is a standard way of associating to each equivalence class
w of one-dimensional representations a meromorphic function L(s, w). Suppose w corresponds
to the quasi-character xg. If F is nonarchimedean and wg is a generator of the prime ideal
Pr of Og, the ring of integers in E, we set

1

L —
G P e YESE

if xg is unramified. Otherwise we set L(s,w) = 1. If E = R and

xe(x) = (sgnz)™ [z]"
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with m equal to 0 or 1 we set
L(s,w) = q~ 3 (+r+m) p stramy.
’ 2

If £ = Cand z € F then, for us, |z| will be the square of the ordinary absolute value. If
XE(z) = |2|"2"2"
where m and n are integers such that m +n > 0, mn = 0, then

L(s,w) =2 (2m)~6Tmm+0) D(s 4 r 4 m +n)

It is not difficult to verify, and we shall do so later, that it is possible, in just one way,
to define L(s,w) for all equivalence classes so that it has the given form when w is one-
dimensional, so that

L(S, w1 P (.UQ) = L(S, wl) L(S, (.UQ)

so that if F’ is a separable extension of E and w is the equivalence class of the representation
of the Weil group of E induced from a representation of the Weil group of E’ in the class ©
then L(s,w) = L(s, O).

Now take E to be a global field and w an equivalence class of representations of the Weil
group of E. It will be seen later how, for each place v, w determines an equivalence class w, of
representations of the Weil group of the corresponding local field E,,. The product

HU L(s,wy)

which is taken over all places, including the archimedean ones, will converge if the real part of s
is sufficiently large. The function it defines can be continued to a function L(s, w) meromorphic
in the whole complex plane. This is the Artin L-function associated to w. Itis fairly well-known
that if w is the class contragredient to w there is a functional equation connecting L(s,w) and
L(1—s,0).

The factor appearing in the functional equation can be described in terms of the local data.
To see how this is done we consider separable extensions £ of the fixed local field F'. If ¥ is a
non-trivial additive character of F'let ¢ g, be the non-trivial additive character of £ defined
by
VYg/p(r) = Yp(SE/rr)
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where Sg,pz is the trace of . We want to associate to every quasi-character x g of Cr and
every non-trivial additive character ¢ of E a non-zero complex number A(xg, V). If E is
nonarchimedean, if P’ is the conductor of x g, and if PL" is the largest ideal on which ¥ is

m—+n

trivial choose any v with Ogvy = B and set

A(xe,VE) = xe(7)

The right side does not depend on . If £ = R,
xe(x) = (sgnz)™ |z["
with m equal to 0 or 1, and ¢z () = €*™*“® then
A(xe,YE) = (i sgnu)™ |ul".
If E=C, c(z) = el Re(wz) and
xc(z) = [z 22"
withm +n >0, mn = 0 then

A(xc, ve) =i xe(w).

The bulk of this paper is taken up with a proof of the following theorem.
Theorem A

Suppose I is a given local field and 1 a given non-trivial additive character of F'. It is
possible in exactly one way to assign to each separable extension X of F' a complex number
A(E/F, 1) and to each equivalence class w of representations of the Weil group of E' a complex
number e(w, ¥ /) such that

(i) Ifw corresponds to the quasi-character x g then

e(w,Ye/r) = AXE, YE/F)-

(ii)
e(w1 ®we, Yr/r) = (w1, Ye/r) (w2, YE/F)-



Introduction 6

(iii) If w is the equivalence class of the representation of the Weil group of F' induced from a
representation of the Weil group of E in the class 0 then

e(w. ¥r) = NE/F, ¢p)™™? £(0,95/r).

a3, will denote the quasi-character v — |x|% of Cr as well as the corresponding equiv-
alence class of representations. Set

_1
e(s,w,p) =¢ (a; ’ Quw, ¢F> :
The left side will be the product of a non-zero constant and an exponential function.

Now take F' to be a global field and w to be an equivalence class of representations of the Weil
group of F'. Let A be the adéle group of F' and let 1) be a non-trivial character of A/F. For
each place v let 1, be the restriction of ¥ to F),. ¢, is non-trivial for each v and almost all the
functions &(s, wy, ¥, are identically 1 so that we can form the product

HU e(s, Wy, o)
Its value will be independent of ¥ and will be written £(s, w).
Theorem B

The functional equation of the L-function associated to w is

L(s,w) =¢(s,w) L(1 — s,w).

This theorem is a rather easy consequence of the first theorem together with the functional
equations of the Hecke L-functions.

For archimedean fields the first theorem says very little. For nonarchimedean fields it can
be reformulated as a collection of identities for Gaussian sums. Four of these identities which
we formulate as our four main lemmas are basic. All the others can be deduced from them
by simple group-theoretic arguments. Unfortunately the only way at present that I can prove
the four basic identities is by long and involved, although rather elementary, computations.
However Theorem A promises to be of such importance for the theory of automorphic forms
and group representations that we can hope that eventually a more conceptual proof of it will
be found. The first and the second, which is the most difficult, of the four main lemmas are due
to Dwork [6]. I am extremely grateful to him not only for sending me a copy of the dissertation
of Lakkis [9] in which a proof of these two lemmas is given but also for the interest he has
shown in this paper.
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Chapter One.

Weil Groups

The Weil groups have many properties, most of which will be used at some point in the
paper. It is impossible to describe all of them without some prolixity. To reduce the prolixity
to a minimum I shall introduce these groups in the language of categories.

Consider the collection of sequences
s:cLate

of topogical groups where A is a homeomorphism of C with the kernel of ;» and 1 induces a
homeomorphism of G/AC with &. Suppose

51:C1LG1 £>Q51

is another such sequence. Two continuous homomorphisms ¢ and ) from G to G'; which take
C into C; will be called equivalent if there is a ¢ in C; such that ¢(g) = cp(g)c™! for all g
in G. S will be the category whose objects are the sequences S and Homg, (S, S1) will be the
collection of these equivalence classes. S will be the category whose objects are the sequences
S for which C' is locally compact and abelian and & is finite; if S and S; belong to S

Homgs(S,S1) = Homg, (S, Sy).

Let P; be the functor from S to the category of locally compact abelian groups which takes S to
C and let P, be the functor from S to the category of finite groups which takes .S to . We have
to introduce one more category S1,9. The objects of S; will be the sequences on S for which
G¢, the commutator subgroup of G, is closed. Moreover the elements of Homg, (S, S1) will be
the equivalence classes in Homs (.9, S ) all of whose members determine homeomorphisms of
G with a closed subgroup fo finite index in G.

If S isin S; let V(S) be the topological group G/G°. If & € Homsg, (S, S1) let ¢ be a
homeomorphism in the class ® and let G = (G). Composing the map G1/G¢ — G/G°
given by the transfer with the map G/ G —a /G¢ determined by the inverse of ¢ we obtain
a map @, : V(S1) — V/(5) which depends only on ®. The map S — V(S) becomes a
contravariant functor from S; to the category of locally compact abelian groups. If S is the

sequence
C —G—06
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the transfer from G to C' determines a homomorphism 7 from G/G* to the group of G-invariant
elements in C. 7 will sometimes be regarded as a map from G to this subgroup.

The category £ will consist of all pairs K /F where F' is a global or local field and K is
a finite Galois extension of F. Hom(K/F, L/FE) will be a certain collection of isomorphisms
of K with a subfield of L under which F' corresponds to a subfield of E. If the fields are of
the same type, that is all global or all local we demand that £ be finite and separable over the
image of F'. If I is global and E is local we demand that £ be finite and separable over the
closure of the image of F. I want to turn the map which associates to each K/ F' the group Ck
into a contravariant functor which I will denote by C*. If ¢ : K/F — L/FE and F and F are
of the same type let K; be the image of K in L and let ¢+ be the composition of Ny /g, with
the inverse of ¢. If I is global and F'is local let K; be the closure in L of the image of K. As
usual C'x, may be considered a subgroup of the group of ideles of K. ¢~ is the composition
of Ny, i, with the projection of the group of ideles onto C.

If K is given let £X be the subcategory of £ whose objects are the extensions with the
larger field equal to K and whose maps are equal to the identity on K. Let C, be the functor
on £X which takes K/F to Cp. If F is given let £ have as objects the extensions with the
smaller field equal to I. Its maps are to equal the identity on F.

A Weil group is a contravariant functor W from £ to S with the following properties:
(i) PLoWisC*.
(i) P2 o W isthe functor® : L/F — &(L/F).

(iii) If ¢ € ®(L/F) C Hom(L/F, L/F) and g is any element of W,/ p, the middle group of
the sequence W (L /F), whose image in &(L/F) is ¢ then the map h — ghg™*
class .

is in the

(iv) The restriction of W to E¥ takes values in S;. Moreover, if K/ F belongs to £
T: WK/F/WIC{/F — CF

is a homeomorphism. Finally, if ¢ : K/F — K/F is the identity on K and ® = ¢,, then

the diagram
c (I)"u C
WK/F/WK/F ’ WK/E/WK/E
T L7
CF — C1E
po*

is commutative and if i : F//F — K/ F is the imbedding, {y is T.
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Since the functorial properties of the Weil group are not all discussed by Artin and Tate,
we should review their construction of the Weil group pointing out, when necessary, how
the functorial properties arise. There is associated to each K /F' a fundamental class ak/r in
H?(8(K/F), Ck). The group W (K/F) is any extension of &(K /F) by C associated to this
element. We have to show, at least, thatif ¢ : K/F — L/FE the diagram

L e | ve

can be completed to a commutative diagram by inserting © : W, — W, p. The map ¢c-
commutes with the action of &(L/E) on U, and C so that p exists if and only if pc-(ar/g) is
the restriction g (ak/r) of px/p to &(L/E). If this is so, the collection of equivalence classes
to which  may belong is a principal homogeneous space of H!(&(L/E), Ck). In particular,
if this group is trivial, as it is when ¢ is an injection, the class of ¢ is uniquely determined.

An examination of the definition of the fundamental class and shows that it is canonical. In
other words, if ¢ is an isomorphism of K and L and of F' and E, then g (i) ) = go‘lozL/E =
o+ (ap/p). f K = Land pis theidentity on K, therelation v (i /) = ar /g = ¢c-(ar/E)
is one of the basic properties of the fundamental class. Thus in these two cases ¢ exists
and its class is unique. Now take K to be global and L local. Suppose at first that K is
contained in L, that its closure is L, and that /' = K N E. Then, by the very definition of
ai /s oK/ F) = @c=(ar k). More generally, if K is theimage of K in L, and F theimage
of F'in E/, we can write g as @1 pops where s : K/F — K /Fy, ¢o : K1/F1 — K1 /KiNE,
and p; : K1/K1NE — L/E. 3 and §s exist. If the closure of K is L then ¢ and therefore
» = P32 also exist. The class of ¢ is uniquely determined.

Artin and Tate show that Wi . is a closed subgroup of Wi/ and that 7 is a home-
omorphism of Wy /p /W /F and Cp. Granted this, it is easy to see that the restriction of
W to ¢X takes values in S;. Suppose we have the collection of fields in the diagram with

L and K normal over F' and L and K’ normal over F’. Let o, 3, and v be the imbeddings
a:L/F—L/K, :L/F —L/K', v:L/F— L/F".
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F

We have shown the existence of a, 3, and V. Itis clear that ﬁB (Wr,K)is contained in a(Wp, /).
Thus we have a natural map

T Dﬁ(WL/K’)/Dﬁ(Wf/K’) - a<WL/K)/a(W£/K)'
Let us verify that the diagram

W /WEer — DB(WLyi) [DBWE) i) == &(Wi ) J&WE i) — Wi /Wi i
7 T
N1
Ck‘/ KK Ck; (A)

is commutative. To see this let W /i be the disjoint union

Then we can choose h/, g;-, 1<i<r, 1<j<ssothat Wy g is the disjoint union

™ S
U., U, Cxani

and U3 (h;) = a(h;). Using these coset representatives to compute the transfer one immedi-
ately verifies the assertion. We should also observe that the transitivity of the transfer implies
the commutativity of the diagram

Wkp/Wiip  — Wi r /Wi g
Tl !
Cr — Crr

Pc*



Chapter 1 11

if ® is the class of an imbedding ¢ where ¢ is an imbedding K/F — K/F’.

We have still not defined ¢y for all ¢p. However we have defined it when ¢ is an
isomorphism of the two larger fields or when the second large field is the closure of the first.
Moreover the definition is such that the third condition and all parts of the fourth condition
except the last are satisfied. The last condition of (iv) can be made a definition without violating
(i) and (ii). What we do now is show that there is one and only one way of extending the
definition of ¢y to all ¢ without violating conditions (i) or (ii) and the functorial property.

Suppose F' C K C L, K/F and L/F are Galois, and 1) is the imbedding L/F — L/K.
It is observed in Artin and Tate that there is one and only class of maps {6} which make the
following diagram commutative

1— Wrx /Wi x — TL\WL/K/QZW[C,/K — WL/F/?ZWE/K — Wi /0Wrx — 1
Tl 10 |

The homomorphism on the right is that deduced from
Wip/Wix = 6(L/F)/6(L/K) =~ &(K/F).

Let ¢, i, and v be imbeddings ¢ : K/F — L/F, p: K/K — L/K, v: K/F — K/K.
Then ) 0 ¢ = pio v, so that U o fi = $ o 1. Moreover ¥ o [i is the composition of the map
7: Wy, xk — Ck and the imbedding of Cx in Wi /. Thus the kernel of ¢ contains @ZWE K
so that ¢ o @Z restricted to Wy i /W7 /K must be 7 and the only possible choice for ¢ is, apart
from equivalence, . To see that this choice does not violate the second condition observe that
the restriction of 7 to C'r, will be Ny, /i and that "(Z is the identity on C'..

Denote the map 6 : Wr,,p — Wy p by 01,k and the map 7 : Wi ,p — Ck by 7/
It is clear that T/ 0 01k is the transfer from Wy, p /Wy /r to "(ZWL /K] @WE /K followed
by the transfer from DWW, /K] @Wf /K o WC = Cp. By the transitivity of the transfer

Tk/F © 01/ = Tr/p. It follows immediately that if ¥ C K C L C L’ and all extensions are
Galois the map 01,k and 01 01,1, are in the same class.

Suppose that ¢ is an imbedding K/F — K'/F’ and choose L so that K’ C L and L/F
is Galois. Letvy : K'/F' — L/F', u: K/F — L/F, v:L/F — L/F' be imbeddings.
Thenyop =vopusothatppov =pop. fa: L/F — L/K, f:L/F'" — L/K' are the
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imbeddings then the kernel of "(Z is ﬁBW]f S which is contained in aW7y JK the kernel of 7.
Thus there is only one way to define @ so that tov = @ o . The diagram

Y

C B ) C
WL/K’/WL/K/ - WL/F'/ﬁWL/K/ WK’/F’

Lwv I @
WL/F//V\BWE/K/ — Wryp/aWy == Wg/p

will be commutative. Since ¢ o 3 = 71, sk and [i o & = T/ diagram (A) shows that ¢ has
the required effect on Ck.

To define ¢y in general, we observe that every ¢ is the composition of isomorphisms,
imbeddings of fields of the same type, and a map K/F — K'/F’ where K is global, K’ is
local, K’ is the closure of K, and F' = F' N K. Of course the identity

(pov)w = Ywew

must be verified. I omit the verification which is easy enough. The uniqueness of the Weil
groups in the sense of Artin and Tate implies that the functor W is unique up to isomorphism.

The sequence
S(n,C): GL(n,C)-% GL(n,C) — 1
belongsto S;. If S : €' — G — & belongs to S; then

Homg, (S, S(n,C))

is the set of equivalence classes of n-dimensional complex representations of G. Let §2,,(S) be
the set of all ® in Homg, (.5, S(n, C)) such that, for each ¢ € ®, p(g) is semi-simple for all g
in G. Q,(S) is a contravariant functor of S and so is Q(S) = J,—; 2,(S). On the category
&1, it can be turned into a covariant functor. If ¢ : S — Sy, if ® € Q(S5), and if p € P,
let 1) associate to ® the matrix representations corresponding to the induced representation
Ind(G1,%(G), p o p~t). Tt follows from the transitivity of the induction process that 2 is a
covariant functor of Sj.

To be complete a further observation must be made.

Lemma 1.1 Suppose H is a subgroup of finite index in G and p is a finite-dimensional
complex representation of H such that p(L) is semi-simple for all h in H. If

o =1Ind(G,H, p)
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then o(g) is semi-simple for all g.

H contains a subgroup H; which is normal and of finite index in GG, namely, the group
of elements acting trivially on H\G. To show that a non-singular matrix is semi-simple one
has only to show that some power of it is semi-simple. Since 6™ (g) = o(¢g") and g" belongs
to Hy for some n we need only show that o (g) is semi-simple for g in H;. In that case o(g) is
equivalentto >, ®p(gigg; ') if G is the disjoint union

UL, #o

Suppose L/F and K/F belong to £ and ¢ € Homg, (L/F, K/F'). Since the maps of
the class oy all take W, p onto W/ p the associated map Q(W (L/F)) — Q(W(K/F))is
injective. Moreover itisindependent of . If L1 /F and Lo/ F belong to £ there is an extension
K /F and maps ¢; € Homg, (L1/F,K/F), @2 € Homg, (L2/F, K/F). wy in Q(W (L1 /F))
and wy in Q(W(Ly/F)) have the same image in Q(W (K /F')) for one such K if and only if
they have the same image for all such K. If this is so we say that w; and w are equivalent.
The collection of equivalence classes will be denoted by Q(F'). Its members are referred to as
equivalence classes of representations of the Weil group of F'.

Let F be the category whose objects are local and global fields. If F' and E are of the
same type Homz(F, F') consists of all isomorphisms of I’ with a subfield of F over which
E is separable. If F'is global and FE is local Hom(F, E) consists of all isomorphisms of F’
with a subfield of E over whose closure F is separable. (2(F') is clearly a covariant functor on
F. Let F44, and Fi,. be the subcategories consisting of the global and local fields respectively.
Suppose F' and E are of the same type and ¢ € Homz(F, E). If w € Q(FE) choose K so that
w belongs to Q(W (K /FE)). We may assume that there is an L/F and an isomorphism ) from
L onto K which agrees with p on F'. Then ¢y : Wi, — W,/ is an injection. Let 0 be the
equivalence class of the representation

o = Ind(Wyp, yw(Wk/E), po @b;vl)

with p in w. I claim that 6 is independent of K and depends only on w and ¢. To see this it
is enough to show thatif L C L', L'/F is Galois, ¥’ is an isomorphism from L’ to K’ which
agrees with 1) on L, and p’ is a representation of W/ in w the class of

o' =Ind(Wy /r, Yw(Wki/E), p'o )

is also ©. Suppose p is a map from Wy /g to Wi /g associated to the imbedding K/E —
K'/E and v is a map from Wy, ,p to Wy r associated to the imbedding L/F — L'/F.
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We may suppose that ¢y o p = v o 1y,. The kernel of p is W¢, /i if, for simplicity of
notation, Wi,k is regarded as a subgroup of Wy, g and that of v is W7y, /L Moreover
@D’W(Wf@/K) =Wr - Take p" = pop. Then o acts on the space V' of functions f on Wg g
satisfying f(vw) = p(y,*(h))f(w) for v in ¢, (Wk,g). Let V' be the analogous space on
which ¢’ acts. Then

Vi={fov| feV}
The assertion follows. Thus Q(F) is a contravariant functor on F,, and Fec.

After this laborious and clumsy introduction we can set to work and prove the two
theorems. The first step is to reformulate Theorem A.
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Chapter Two.

The Main Theorem

It will be convenient in this paragraph and at various later times to regard Wk g as a
subgroup of Wy, pit FC EC K. If F C £ C L C K we shall also occasionally take W g
to be WK/E/W[C(/L

If K/F is finite and Galois, P(K/F') will be the set of extensions E'/E with FF C E C
E’ C K and P, (K /F) will be the set of extensions in P (K /F') with the lower field equal to F.

Theorem 2.1

Suppose K is a Galois extension of the local field F' and v is a given non-trivial additive
character of F. There is exactly one function \(E/F, ) defined on P,(K/F') with the
following two properties

6]
NF/F,¢p) = 1.

(i) If En,...,E,, Ei,..., E! are fields lying between F and K, if xg,, 1 < i < r,isa
quasi-character of C,, if X o 1 < j <'s, is a quasi-character of C B, and if

®©i—y Ind(Wy/p, Wk/E;, XE;)

is equivalent to
@i Ind(Wx/p, Wk/E, XE/)

then ,
Hi:l A(XE, VB, ) p)NE;/F, Yr)

is equal to

szl A(XE;, ey P)NE]/F, ¥F).

A function satisfying the conditions of this theorem will be called a A-function. It is clear
that the function A(E/ F, 1) of Theorem A when restricted to P, (K /F') becomes a A-function.
Thus the uniqueness in this theorem implies at least part of the uniqueness of Theorem A. To
show how this theorem implies all of Theorem A we have to anticipate some simple results
which will be proved in paragraph 4.



Chapter 2 16

First of all a A-function can never take on the value 0. Moreover, if /' C K C L the
A-function on P, (K / F') is just the restriction to P, (K / F’) of the A-function on P, (L/F'). Thus
A(E/F, 9r) is defined independently of K. Finally if £ C E' C E”

NE"/E, ¥5) = NE"/E', g 5)NE' /B, ) EF,

We also have to use a form of Brauer’s theorem [4]. If G is a finite group there are
nilpotent subgroups Ny, ..., N,,, one-dimensional representations x1, ..., Xm of N1,..., N,
respectively, and integers n1, . . ., n,, such that the trivial representation of G is equivalent to

@izy niInd(G, N, xi).
The meaning of this when some of the n; are negative is clear

Lemma 2.2

Suppose F is a global or local field and p is a representation of Wy /. There are inter-
mediate fields E1, . .., Ey,, such that &(K/E;) is nilpotent for 1 < i < m, one-dimensional
representations x g, of Wi /g,, and integers n1, . . ., n,, such that p is equivalent to

@iz nInd(Wx p, Wk /g, XE;)-

Theorem 2.1 and Lemma 2.2 together imply the uniqueness of Theorem A. Before proving
the lemma we must establish a simple and well-known fact.

Lemma 2.3

Suppose H is a subgroup of finite index in the group GG. Suppose T is a representation of
G, o arepresentation of H, and p the restriction of T to H. Then

7® Ind(G,H,0) ~Ind(G,H, p® o).

Let 7 acton V and o on W. Then Ind(G, H, o) acts on X, the space of all functions f on
G with values in W satisfying

f(hg) =a(h) f(9)

while Ind(G, H, p ® o) acts on Y, the space of all functions f on G with values in V @ W
satisfying
f(hg) = (p(h) @ a(h)) f(g).
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Clearly, V ® X and Y have the same dimension. The map of V ® X to Y which sends v ® f
to the function

f'lg) =7(9)v® f(g)

is G-invariant. If it were not an isomorphism there would be a basis vy, ...,v, of V and
functions f1, ..., f,, which are not all zero such that

Sy 7(9)ui @ fi(g) = 0.
This is clearly impossible.

To prove Lemma 2.2 we take the group G of Brauer’s theorem tobe &(K/F'). Let F; be the
tixed field of IV; and let p; be the tensor product of x;, which we may regard as a representation
of Wi, and the restriction of p to W p,. Then

p=p®1 =&l nInd(Wk/p,, pi).

This together with the transitivity of the induction process shows that in proving the lemma
we may suppose that &(K/F) is nilpotent.

We prove the lemma, with this extra condition, by induction on [K : F|. We use the
symbol w to denote an orbit in the set of quasi-characters of Cx under the action of &(K/F).
The restriction of p to C'k is the direct sum of one-dimensional representations. If p acts on
V let V,, be the space spanned by the vectors transforming under Ci according to a quasi-
character in w. V is the direct sum of the spaces V, which are each invariant under Wy .
For our purposes we may suppose that V' = V, for some w. Choose X i in this w and let V{ be
the space of vectors transforming under Cix according to xx. Let E be the fixed field of the
isotrophy group of xi. V) is invariant under Wy, . Let o be the representation of W /g in
Vo. Itis well-known that

p Ind(WK/F, Wk /E, o).

To see this one has only to verify that the space X on which the representation on the right
acts and V' have the same dimension and that the map

F=2 e PO(9)

of X into V' which is clearly Wi, p-invariant has no kernel. It is easy enough to do this.

If £ # F the assertion of the lemma follows by induction. If £ = F' choose L containing
F so that K/ L is cyclic of prime degree and L /F'is Galois. Then p(Wx/,) is an abelian group
and W /L is contained in the kernel of p. Thus p may be regarded as a representation of W /.
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The assertion now follows from the induction assumption and the concluding remarks of the
previous paragraph.

Now take a local field F and a representation p of W . Choose intermediate fields
Es, ..., Ep, one-dimensional representations x g, of Wk ,, and integers ny, . . ., n,, so that
p =~ &%y n; Ind(Wk /g, Wk/E,» XE,)-

If w is the class of p set

ew,vp) =[] AAKm, Vr )M E/E, Up)}™.

Theorem 2.1 shows that the right side is independent of the way in which p is written as a sum
of induced representations. The first and second conditions of Theorem A are clearly satisfied.
If p is the representation above and o the representation

Ind(WK/Fa Wk /E, p)
then
o~ @2 n;Ind(Wx r, Wk /E,, XE:)-

Thus if &’ is the class of o

e(W' Yr) = HZ {A(XE, Ve, P)NEF p) 1™

1

while

The third property follows from the relations

dimw =", n;|F;: E|

(2

and
ANE;/F,p) = MEi/E, Yg/r) ME/F, ) Bl
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Chapter Three.

The Lemmas of Induction
In this paragraph we prove two simple but very useful lemmas.
Lemma 3.1

Suppose K is a Galois extension of the local field F'. Suppose the subset 2 of P(K/F)
has the following four properties.

(i) Forall E,with F C EC K, E/E € 2.
(i) If E”/E' and E'/E belong to 2 so does E" | E.
(iii) If L/ E belongs to P(K/F) and L/ FE is cyclic of prime degree then L/ E belongs to 2.

(iv) SupposethatL/E inP(K/F') isa Galoisextension. LetG = &(L/E). SupposeG = H-C
where H # {1}, HNC = {1}, and C is a non-trivial abelian normal subgroup of G which is
contained in every non-trivial normal subgroup of G. If E' is the fixed field of H and if every
E"/E inP,(L/E) for which [E" : E] < [E': E'|isinUsois E'/E. Then2isall of P(K/F).

It is convenient to prove another lemma first.
Lemma 3.2

Suppose K is a Galois extension of the local field F' and F' % E C K. Suppose that the

only normal subfield of K containing E is K itself and that there are no fields between F' and
E. Let G = &(K/F) and let E be the fixed field of H. Let C' be a minimal non-trivial abelian
normal subgroup of G. Then G = HC, H N C = {1} and C is contained in every non-trivial
normal subgroup of G. In particular if H = {1}, G = C is abelian of prime order.

H is contained in no subgroup besides itself and G contains no normal subgroup but {1}.
Thus if H is normal it is {1} and G has no proper subgroups and is consequently cyclic of
prime order. Suppose H is not normal. Since G is solvable it does contain a minimal non-trivial
abelian normal subgroup C. Since C' is not contained in H, H ; HC and G = HC. Since

H N Cis a normal subgroup of G itis {1}. If D is a non-trivial normal subgroup of G which
does not contain C' then D N C' = {1} and D is contained in the centralizer Z of C. Then
DC'is also and Z must meet H non-trivially. But Z N H is a normal subgroup of G. This is a
contradiction and the lemma is proved.
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The first lemma is certainly true if [K : F] = 1. Suppose [K : F] > 1 and the lemma is
valid for all pairs [K' : F'] with [K' : F'] < [K : F]. If the Galois extension L/E belongs to
P(K/F) then 2N P(L/FE) satisfies the condition of the lemma with K replaced by L and F’
by E. Thus, by induction, if [L : E] < [K : F], P(L/E) C 2. In particular if £’/ E isnotin &
then E = F and the only normal subfield of K containing E’ is K itself. If 2 is not P(K/F')
then amongst all extensions which are not in ® choose one £/ F for which [E : F] is minimal.
Because of (ii) there are no fields between F' and E. Lemma 3.2, together with (iii) and (iv),
show that £//F is in 2. This is a contradiction.

There is a variant of Lemma 3.1 which we shall have occasion to use.
Lemma 3.3

Suppose K is a Galois extension of the local field F'. Suppose the subset 2 of P, (K /F')
has the following properties.

() F/F e 2L
(i) If L/F is normal and L g K thenP,(L/F) C .

(i) If F C E C E' C K and E/F belong to ® then E’/F belong to 2.
(iv) If L/F in P, (K /F) is cyclic of prime degree then L/ F € 2.

(v) Suppose that L/F' in Po(K/F) is Galois and G = &(L/F). Suppose G = HC where
H # {1}, HNC = {1}, and C is a non-trivial abelian normal subgroup of G which is
contained in every non-trivial normal subgroup. If E is the fixed field of H and if every E'/ F
inPo(L/F) forwhich [E': F| < [E : FlisinUsois E/F.

Then A is P, (K /F).

Againif Aisnot P, (K /F) thereis an F/F notin 2 for which [EF : F|is minimal. Certainly
[E : F| > 1. By (ii) and (iii), F is contained in no proper normal subfield of K and there are no
tields between F and F'. Lemma 3.2 together with (iv) and (v) lead to the contradiction that
E/Fisin .
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Chapter Four.

The Lemma of Uniqueness

Suppose K/F is a finite Galois extension of the local field F' and ¢ is a non-trivial
additive character of F'. A function E/F — A(E/F, ¢ r) on P, (K /F) will be called a weak
A-function if the following two conditions are satisfied.

() A(F/F, Up) = 1.

() If E4,...,E,., E, ..., E. are fields lying between F' and K, if p;, 1 < i < r, is a one-
dimensional representation of & (K/E;), if vj, 1 < j < s, is a one-dimensional represen-
tation of &(K/E}), and if

D WdSE/F), 6K/, )

is equivalent to

B, mdSEK/F),6K/E), )

=
then ,
I, AGs. v, p)AE/F, vr)

is equal to

[T_, Al v e)AE)/F, br)

if x g, is the character of C'g, corresponding to y; and x ) is the character of C B} corre-
sponding to v;.

Supposing that a weak A-function is given on P, (K /F'), we shall establish some of its
properties.

Lemma 4.1

(i) If L/ F in P, (K/F) is normal the restriction of \(-,¥r) to Po(L/F') is a weak A-function.
(i) If E/F belongs to Po(K/F) and A\(E/F, 1) # 0 the function on P, (K /E) defined by

MNE'JE, Yg/p) = NE'/F, Yp) NE/F, wF)—[E’:E]

is a weak \-function.
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Any one-dimensional representation i of ®(L/E) may be inflated to a one-dimensional
representation, again called p, of (K /E) and

nd(&(K/F), 6(K/E), u)
is just the inflation to & (K /F') of
Ind(&(L/F),8(L/E), u).
The first part of the lemma follows immediately from this observation.

As for the second part, the relation
ME/E, Yp/r) =1

is clear. If fields F;, 1 < i <r, E;-, 1 < j5 < s, lying between X and K and representations
u; and v; are given as prescribed and if

D, md@K/E), 6K/E), ) =p

is equivalent to

D,

| Ind((K/E), 8(K/E)), 1) = o

then
@;1 Ind(&(K/F), 8(K/E;, w)

S5l

1=

is equivalent to
| Ind(8(K/F), (K/E), 1)
so that .
II_, AGs.vege) MEVF, vr) (A)
is equal to

Hj:1 A(XE;, YErr) MES/F, YF). (B)

Since p and o have the same dimension

Y, [Ei: Bl =%, [E):E]

J

so that . .
[, ME/P )P =TT AEB/F, ).

Jj=1
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Dividing (A) by the left side of this equation and (B) by the right and observing that the results
are equal we obtain the relation needed to prove the lemma.

If K/F is abelian S(K/F') will be the set of characters of C'r which are 1 on N ,pCk.
Lemma 4.2

If K/ F is abelian

ME/F,Up) =] A(pr, ¥r).

ur€S(K/F)

pr determines a one-dimensional representation of & (K /F') which we also denote by
ftr. The lemma is an immediate consequence of the equivalence of

Ind(&(K/F), 8(K/K), 1)

and
69uFeS(K/F) Ind(Qj(K/F), ®(K/F>7 MF)-

Lemma 4.3

Suppose K /F is normal and G = &(K/F). Suppose G = HC where H N C = {1} and
C is a non-trivial abelian normal subgroup. Let E be the fixed field of H and L that of C. Let
T be a set of representatives of the orbits of S(K /L) under the action of G. If i € T let B,, be
the isotropy group of jy and let B,, = &(K/L,). Then[L, : F| < [E : F] and

ME/F, ¢p) =[] . AW, ¢r,/r) MLu/F, ¢r).

pneT
Here (K/L,) = &(K/L)- (&(K/L,) N&(K/E)) and ' is the character of C',, associated
to the character of (K /L) : g — p(g1) if

9=9192, 91 € B(K/L), g2€ S(K/L,)NBS(K/E),

We may as well denote the given character of &(K/L,,) by i/ also. To prove the lemma
we show that
Ind(8(K/F),8(K/E), 1) =0

is equivalent to
/
@MGT Ind(@j(K/F)) Qj(K/LM)? 12 )
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Since 7T has at least two elements it will follow that
[E : F] =dimInd(6(K/F),6(K/E), 1)

is greater than
L, : F] = dimInd(6(K/F),&(K/L,), 1').

The representation o acts on the space of functions on H\G. If v € S(K/L), thatis, is a
character of C, let ¢, (hc) = v(c)if h € H, ¢ € C. The set

{4 | v € S(K/L)}
is a basis for the functions on H\G. If ;1 € T let S,, be its orbit; then
Vi=2%0es,Cyy
is invariant and irreducible under G. Moreover, if g belongs to &(K/L,,)

o(9) b = W (9)Yp-

Since
dim V, = [6(K/F),&(K/L,)]

the Frobenius reciprocity theorem implies that the restriction of o to V), is equivalent to
Ind(&(K/F), 6(K/Ly), i').
Lemma 4.2 is of course a special case of Lemma 4.3.
Lemma 4.4
M E/F, ¥ ) is different from 0 for all E/F in P, (K /F).

The lemma is clear if [K : F'] = 1. We prove it by induction on [K : F|. Let & be the set of
E/F in Po(K/F) for which A(E/F, 1¥r) # 0. We may apply Lemma 3.3. The first condition
of that lemma is clearly satisfied. The second follows from the induction assumption and the
tirst part of Lemma 4.1; the third from the induction assumption and the second part of Lemma
4.1. The fourth and fifth follow from Lemmas 4.2 and 4.3 respectively. We of course use the
fact that A(x g, ¥ ), which is basically a Gaussian sum when E is non-archimedean, is never
Zero.
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For every &' /E in P(K/F') we can define A(E'/E, Vg, r) to be

)‘(E//F7 wF) )‘(E/F7 wF)_[E/:E]‘

Lemma 4.5

IfE"/E" and E'/ E belong to P(K/F') then

ME"|E pg/p) = NE"/E g p)NE'/E, dJE/F)E”:E’].

Indeed ”
NE"|E pgr) = NE" |F,pp) NE/F,¢pp)~E"E]

which equals
INE" [ Fpp) NE'F )BTy {NEF ) P E T NE/Fypp)~P5E)

and this in turn equals

)‘(E”/Ela ¢E’/F> /\(E,/E7 ,lvi/F)[E”:E/] .

Lemma 4.6

If A\ (-, ¥p) and A2 (-, V) are two weak \-functions on P, (K /F') then

Al(El/EﬂpE/F) = )‘Q(E//EﬂpE/F)
forall E'/Ein P(K/F).

We apply Lemma 3.1 to the collection & of all pairs E’/ E in P(K / F') for which the equality
is valid. The first condition of that lemma is clearly satisfied. The second is a consequence of
the previous lemma. The third and fourth are consequences of Lemmas 4.2 and 4.3 respectively.

Since a A-function is also a weak A-function the uniqueness of Theorem 2.1 is now proved.
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Chapter Five.

A Property of A-Functions

It follows immediately from the definition that if ¢, (z) = ¥ g (Sz) then

Alxe,¥s) = xe(B)AxE, ¥E).

Associated to any equivalence class w of representations of the Weil group of the field F'is a
one-dimensional representation or, what is the same, a quasi-character of C'r. It is denoted
detw and is obtained by taking the determinant of any representation in w. Suppose p is in the
class w and p is a representation of Wi . To find the value of the quasi-character detw at 3
choose w in W/ so that i) pw = 3. Then calculate det(p(w)) which equals detw(3).

If F C EC Kthemap 7™ = 7 /F can be effected in two stages. We first transfer
WK/F/WIC(/F into WK/E/W[C(/E; then we transfer WK/E/WIC(/E into Cx. If Wi is the
disjoint union

Ui:l Wk pw;
and if wiyw = u;(w)w;(i) then the transfer of w in Wy, /W 5 is the coset to which w’ =
IT;_, ui(w) belongs.

Suppose o is a representation of W, g and
p =Ind(Wk,/r, Wk/g, 7).

p acts on a certain space V' of functions on Wi, and if V; is the collection of functions in V'
which vanish outside of Wi, pw; then

v=a V.

i=1

We decompose the matrix of p(w) into corresponding blocks p;; (w). p;i(w) is 0 unless j = j(4)
when pj;(w) = o(u;, (w)). This makes it clear that if vz, is the representation of Wi /p
induced from the trivial representation of Wi g

det(p(w)) = det (v p(w) ™ 7 det(o(w'))
or, if 6 is the class of o,

detw () = {det e p(B)}™*{det 6(5)}.
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Lemma 5.1

Suppose F' is a local field and E/F — A E/F,¢r) and w — &(w,¥g/p) satisfy
the conditions of Theorem A for the character ¢ p. Let {-(x) = ¢¥p(Bx) with § in Cp. If
E/F — MNE/F,¢F) andw — &(w, ¥} p) satisfy the conditions of Theorem A for ¢, then

NE/F,¢p) = det g p(8) NE/F,%r)

and
5((")7 le/F) = detw(ﬁ) 5((")7 wE/F)

Because of the uniqueness all one has to do is verify that the expressions on the right
satisfy the conditions of the theorem for the character 9. This can now be done immediately.
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Chapter Six.

A Filtration of the Weil Group

In this paragraph I want to reformulate various facts found in Serre’s book [12] as asser-
tions about a filtration of the Weil group. Although some of the lemmas to follow will be used
to prove the four main lemmas, the introduction of the filtration itself is not really necessary.
It serves merely to unite in a form which is easily remembered the separate lemmas of which
we will actually be in need.

Let K be a finite Galois extension of the non-archimedean local field F' and let G =
&(K/F). Let Op be the ring of integers in F' and let p  be the maximal ideal of Op. If i > —1
is an integer let Gi; be the subgroup of GG consisting of those elements which act trivially on
Or/ p?“l. If w > —1is areal number and i is the smallest integer greater than or equal to u set
G, = G;. Finally if u > —1 set

(PK/F(U) = /O [GO 1 Gt] dt.

The integrand is not defined at -1 but that is of no consequence. ¢ is clearly a piecewise
linear, continuous, and increasing map of [—1, c0) onto itself. The inverse function* 1, p will
have the same properties.

We take from Serre’s book the following lemma.
Lemma 6.1
IfF C L C K and L/F isnormal then o /p = ¢r/r 0 i/, and Y p = Y/ 0 VL /-

The circle denotes composition not multiplication. This lemma allows us to define v/
and 1), for any finite separable extension F/ F' by choosing a Galois extension L of I which
contains £ and setting

YE/F = $YL/F ° @DL/E
YE/F =¢L/E°YL/F

* In this chapter 1k, r does not appear as an additive character. Nonetheless, there is a
regrettable conflict of notation.
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because if L’ is another such extension we can choose a Galois extension K containing both L
and L’ and

YrL/F © wL/E =¥YL/FOYK/L° wK/L © ¢L/E = ¥YK/F° wK/E =YL /F° ¢L'/E
YrL/E°VL/F = $L/E° YK/L°VK/L O VL/F = PK/E° VK/F = YL'/E O YL /F-
Of course Y g/ F is the inverse of v /F.
Lemma 6.2

If E C E' C E" and E"/FE is finite and separable, ¢p»/p = ¢p//E © ¢pr /g and
Ve /B =YEr/E ©VE/E-

Each of these relations can be obtained from the other by taking inverses; we verify the
second

Ypr /g oYE B = YL/E" VL /B © YL E ©YL/E = YL/E" ©YL/E = VE"/E-

It will be necessary for us to know the values of these functions in a few special cases.
Lemma 6.3

(i) If K/F is Galois and unramified v x| (u) = u.
(ii) If K/F is cyclic of prime degree { and if G = G while G;+1 = {1} where t is a non-

negative integer then

Vi p(u) = u u<t
=t+Llu—t) u>t

These assertions follow immediately from the definitions.

Lemma 6.4

Suppose K / F' is Galoisand G = &(K /F') isa product HC where H # {1}, HNC = {1},
and C' is a non-trivial abelian normal subgroup of G which is contained in every non-trivial
normal subgroup.

(i) If K/F is tamely ramified so that G; = {1} then Gy = C is a cyclic group of prime order
Cand |G : Go] = [H : 1] divides { — 1. If E is the fixed field of H, ¢g,r(u) = u foru <0
and g, p(u) = fu foru > 0.
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(ii) If K/F is wildly ramified there is an integer t > 1 such that C = G1 = ... = G while
Gi+1 = {1}. [Go : G1] divides [G; : 1] — 1 and every element of C' has orderp or 1. If E
is the fixed field of H and L that of C'

¢L/F(U) =u u<0
= [GO . Gl]u u >0

while

t
[Go G

t t t
T [Go:Ci] el (u_ [Go : Gl]) Y2 Gy G [Go: Gi]

Yp/r(u) =u

We observed in the third paragraph that C' must be its own centralizer. G cannot be {1}.
Thus C' C Gy. In case (i) G is abelian and thus Gy = C'. In both cases if ¢ is a prime dividing
the order of C the set of elements in C' of order £ or 1 is a non-trivial normal subgroup of G and
thus C'itself. In case (i) C is cyclic and thus of prime order ¢. Moreover, H which is isomorphic
to G/Gy is abelian and, if h € H, {c € C|hc = ch} is a normal subgroup of G and hence {1}
or C. If h # 1 it must be 1. Consequently each orbit of H in C'— {1} has [H : 1] elements and
[H : 1] divides ¢ — 1.

In case (ii) G; is a non-trivial normal subgroup and hence contains C'. G; and C' are both
p-groups. The centralizer of GG; in C'is not trivial. As a normal subgroup of G it contains C.
Therefore it is C and (7 is contained in C' which is its own centralizer. Since each G, 7 > 1,
is a normal subgroup of G, it is either C' or {1}. Thus there is an integer ¢ > 1 such that
Gy = Gy = C while Gy1 = {1}. Ifi > 0 is an integer let U’ be the group of units of O
which are congruent to 1 modulo p}}” ; let U I(;U = Ck, and if U > —1 is any real number
let i be the smallest integer greater than or equal to u and set Uj: = U. If 6, is the map of
G¢/Gi41 into pty/ ptJrl and 0y the map of G(/G into Uy /U}, introduced in Serre then, for g
in Gg and hin C,

0:(ghg™") = 00(9)'Ou(h).
If h # 1, ghg~! = hif and only if fy(g)* = 1 and then g belongs to the centralizer of C, that

isto G1. Again C — {1} is broken up into orbits, each with [G¢ : G1] elements and [Gj : G]
divides [G}; : 1] — 1. Observe that t must be prime to [Gy : G1].
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It follows immediately from the definitions that H,, = H N G,,. In case (i) Hy will be {1}
and kg (u) will be identically u. Thus ¥/ r = ¥k and, from the definition, Y x/p(u) = u
if u < 0 while Y p(u) = [Go : Nuif u > 0. In case (i), ¢ x/p(u) = vif u < 0and

er/p(u) = [Hy : 1] - [Go : G1]

if u > 0 while ¥/ p(u) = wif u < 0and

t
Y/ p(u) = [Go : Gilu Vsusia e

=t+[Go: 1] (u—ﬁ) ﬁgu

The lemma follows.
Lemma 6.5

For every separable extension I’/ E the function g/ /g is convex, and if u is an integer

sois g p(u).

All we have to do is prove that the assertion is true for all E'/E in P(K/F) if F' is an
arbitrary non-archimedean local field and K an arbitrary Galois extension of it. To do this
we just combine the previous three lemmas with Lemma 3.1. We are going to use the same
method to prove the following lemma.

Lemma 6.6
For every separable extension E’/E and any u > —1

P

/ (u) u
Npyg(Ug”'") C Ug.

We have to verify that the set & of all '/ E in P(K/F') for which the assertion is true satisfies
the conditions of Lemma 3.1. There is no problem with the first two.

Lemma 6.7

E'/E belongs to & if and only if for every integer n > —1

Y n) n
N (Up") c UR
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and )
Niyp (UpF72 ) cught,

If E'/E belongs to & choose ¢ > 0 so that ¢ /g(n + ¢) = ¥ /g(n) + 1. The smallest
integer greater than or equal to n + ¢ is at least n + 1 so

Conversely suppose the conditions of the lemma are satisfied and n < u < n + 1. Since
Vg p(n) is an integer the smallest integer greater than or equal to ¥g//p(u) is at least
’ng//E(n) —+ 1. Thus

Vg g(u Ve p(n)+1 n w
NE'/E <UE’E /E )) g NE’/E <UE/E /E ) > g UE+1 — UE

Lemma 6.8

If L/ E is Galois then, for every integern > —1,

and

The assertion is clear if n = —1. A proof for the case n > 0 and L/FE totally ramified is given
in Serre’s book. Since that proof works equally well for all L/E we take the lemma as proved.

Lemma 6.9

Suppose K/ F is Galoisand G = & (K /F'). Suppose G = HC where H # {1}, HNC =
{1}, and C is a non-trivial abelian normal subgroup of G which is contained in every non-trivial
normal subgroup of G. If E is the fixed field of H

forallu > —1.
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Let L be the fixed field of C. If K/ F is tamely ramified K/E and L/F are unramified so
that Y/ p = Y/ and Uy = Cp NU, Up = CpNU{ forevery v > —1. If a belongs to C,
then delete Ni ;@ = Ng,pa. Since K/ L is Galois

Ng,r (UEE/F(“)) C Cp N Ny (UP*™y € CpnUE = U,

If K/F is not tamely ramified

p% _ EmpECGO:Gl]n_m
ifn>1and 0 <m < [Gy : G1]. Thus
Up=GgnNUyg

if —1 <v<0and
Uy = CpnUlfocly

if v > 0 or, more briefly,
Uy = Cpn U/

forall v > —1. In the same way we find
Up = Crnuy
forall v > —1. Since K/L is normal
Nesw (U57™) € Cr 0N (UR7™) € Conup ™™ = Up.

Lemma 6.6 now follows immediately.
Lemma 6.10

(a) Suppose K/F is Galois and G = &(K/F). Supposet > —1 is an integer such that
G = G # Gy1. Then Y/ p(u) = u foru < t. Moreover N, defines an isomorphism
of Ck /UL with Cp/U}L and if —1 < u < t the inverse image of U /UL is U /UL
However the map of C /UL into Cp /UL defined by the norm is not surjective.

(b) Suppose K /F is Galois and G = (K /F'). Suppose s > —1 is an integer and G = G. If

FCECK, Yg/p(u) = uforu < s and N, defines an isomorphism of Cg /Uj, and
Cr/Uj. If =1 < u < s the inverse image of U}: /U3, is U JU3,.

If t = —1 the assertions of part (a) are clear. If t > 0, K/ F is totally ramified. The relation
Yg/p(u) = u for u < tis an immediate consequence of the definition. Since the extension
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is totally ramified Ny, defines an isomorphism of U 1 /U% and U /UY. Tt follows from
Proposition V.9 of Serre’s book that if 0 < n < t the associated map Uk /Uptt — UR /U
is an isomorphism but that the map Uk /UL — UL /UL has a non-trivial cokernel. The
tirst part of the lemma is an immediate consequence of these facts.

To prove part (b) we first observe that there is a t > s such that G = G; # Gyy1. It
then follows from part (a) that the map Ng/p determines an isomorphism of Cx /U and
Cr/Uj. under which Uy /Uj, and Uj/Uj correspond if —1 < u < s. Let E be the fixed
field of H. We have H, = HN G, = H, so that N K /E determines on isomorphism of
Ck /Uj, and Cg/Uj, under which U} /U;; and Uj /U} correspond if —1 < u < s. Moreover
if u < s, Yg/p(u) = Yg/p(u) = u so that Yg,p(u) = u. Part (b) follows from these
observations and the relation Ng,r = Ng,p Nk /E-

If F is any non-archimedean local field and u > —1
Ugv — ﬂv <u UE .

If o belongs to Cg; set
vg(a) = sup{u|a € Ug}.

Then vg (1) = oo, but vg(«) is finite if @ # 1 and « belongs to UEE(Q).

If F C L C K, 7g/p,r Will be any of the maps Wx,r — W[, associated to the
imbedding L /F' — K/F. We abbreviate T/ p r/r to Tx/p. If w belongs to Wi/ p, o(w) is
the image of w in &(K/F'), and F is the fixed field of o(w), we set

UK/F(w) = @E/F(UE(TK/E(?U))-
Note that we regard W, as a subgroup of Wi /p. lf v > —1 let
Wi r =A{w|vi/r(w) > v}

We shall show that W7}, /pisa normal subgroup of W, . These groups provide a filtration of
the Weil group, some of whose properties are established in the following lemmas.

Lemma6.11

Ifo € 8(K/F)andt =sup{u|o € G}, setvg,p(0) = pk/p(t). Then

vi/r(0) = max{vgp(w) |o(w) = o}.
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If 0 = 1 both sides are infinite and the assertion is clear. If o # 1 let E be the fixed field
of 0. If o(w) = o, w belongs to Wi ,p and vg/p(w) = ¢p/r(vik/p(w)). Also vk p(o) =
vr/r(vk/E(0)). Consequently it is sufficient to prove the lemma when F' = E. The set

S ={rr/r(w)|o(w) =0}

is a coset of N/ p(Ck) in Cr and Cr is generated by N, r(Ck ) together with any element
of S. Moreover s = max{vp(3) | § € S} is the largest integer such that S N U}, is not empty.
Since G = G # Gy41 the preceding lemma shows that s =t = @i,/ p(1).

Lemma 6.12
(a) Forallw and wy in Wi/ p, vg/p(w) = vK/F(w_l) and UK/F(wlwwl_l) = vk p(w).
(b) It F C F C K and w belong to Wk, then

UK/F(U)) = SOE/F(UK/E(U)))-

(c) Forallwin Wk p, TK/F(w) - U;‘K/F(w)'

The first two assertions follow immediately from the definitions and the basic properties
of the Weil group. I prove only the third. Let me first observe that if /' C E C K and
w C Wk g, then

Ti/F(w) = Ng/r(Tr/B(W)).

To see this, choose a set of representatives wy, . . ., w;. for the cosets of C'x in Wi, and then
a set of representatives v, . . ., vs for the cosets of Wy, g in W, p. Let wyw = a;w;;) with a;
in Ck; then

T

Ti/E(w) = Hi:l Q.

P — . . 1 . . .
However VjW;w = VjaiV; UjWj(;) SO that

i (W) = szl Hi:l Uja'ivj_l = 1_[].:1 UjTK/E(w)Uj_1 = Ng/p(tk/p(W)).

In particular, if E is the fixed field of o(w), Tg,p(w)is contained UEE/F(UK/F(M)) and 7/ p(w)
is contained in

NE/F (U;EPE/F(UK/F(W))) C U;K/F(w)'

Lemma 6.13
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If uw and v belong to W/ then

vr/F(w) = min{vgr(u), vi/r(v)}-

Let 0 = o(u) and let 7 = o(v). Because of the second assertion of the previous lemma
we may assume that o and 7 generate &(K/F). Let E be the fixed field of o7. If

t= {min (@DK/F(UK/F(U)), @DK/F(UK/F(T))}

and G = &(K/F) then G = Gy # G41. According to Lemma 6.11, if

s = min{vg p(u), vg/r(v)},

then t > ¢k, (s) which, by Lemma 6.10, is therefore equal to s. Since 7/ (uv) =
Tk /7 (U)K F(V), T/ r(uv) lies in Ug. On the other hand

Tk /p(uw) = Ng/p(Tr )/ B(uv))

so that, by Lemma 6.10 again, 7, (uv) belongs to U, and

vi/p(uv) > p/p(s) = s.

Thus the sets W JEr T > —1, give a filtration of Wg,r by a collection of normal sub-
groups. The next sequence of lemmas show that the filtration is quite analogous to the upper
filtration of the Galois groups.

Lemma 6.14
For each x > —1 the map Tk 1,/ takes Gﬂf{/p into Gf/F.

If w belongs to Wi/ let w = T /p 1,/ p(w). We must show that

v F(W) > v/ p(w).

Let 0 = o(w) and let & = o (w). If E is the fixed field of o then E = E N L is the fixed field of
0. Since

v r(W) = ‘PE/F(UL/E(ID»
and

vg/r(w) = ¢g,p (Vg E(W))
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we may suppose E = F. Since 7/ p(w) = 7,/ (), Lemma 6.12 implies that 77,/ (@) lies in
U;K/F(w). Thus
vy p(W) = vp(TL/p(W)) > vi ) p(W).

Of course Wy is Cr and, if v > —1, ng/F =Up.
Lemma 6.15
Foreachv > —1, 7x,r maps W}){/F onto Up.

Since v1 < vy implies W, . © W/ . it is enough to prove the lemma when v = n is
an integer. The lemma is clear if [K : F| = 1; so we proceed by induction on [K : F]. If
[K : F] > 1, choose an intermediate normal extension L so that [L : F] = { is a prime. Let

G = 6(L/F). Lemma 6.12 implies that
Wik ™ ) = Wiy N WE

There is an integer ¢ > —1 such that G = G, and ét“ = {1}. It is shown in Chapter V of
Serre’s book thatif n >t

By induction
i (Wi ) = o

Since TK/F(w) = NL/F(TK/L<w)) if w isin WK/LI
Tx/F(Wk, p) = Up

if n > t. Suppose & generates G. Then V, /r(7) = t. By Herbrand’s theorem there is a o in
&(K/F) with vg,p(0) = t whose restriction to L is 7. By Lemma 6.11 there is a w in Wk
such that ¢ = o(w) and v, p(w) = t. Then 7k, p(w) lies in UL, but not in Ny, ,z(Cr). From
Serre’s book again

|:U;7 . NL/F UﬁL/F(t):| = E
so that U}, is generated by 7k /r(w) and Ny, F(UquL/ F(t)) and hence is contained in the image
of Wi, /pe O complete the proof of the lemma we have only to observe that Lemma 6.10
implies that

Up = Up Nuge (U7)
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ifn <t.
Lemma 6.16

Suppose F' C L C K and L/F and K/F are Galois. Then, for eachv > —1, Tx/p.1/F
maps Wy, onto W7, .

If [L : F] = 1 this is just the previous lemma so we proceed by induction on [L : F]. We
have to show that if @ belongs to W /p there is a w in Wi/ such that @ = 7x/p 1/ p(w)
and vg p(w) > vy p(W). Let ¢ = o(w) and let I be the fixed field of 7. If £ # F
then, by the induction assumption, there is a w in Wi, g such that 7, /L /E(w) = w and
v p(w) 2 vy p(W). By Lemma 6.12, v/ p(w) = vp/p(W). Moreover, we may assume that
TK/B,L/E is the restriction to W, /E of Tk /1) F-

Suppose E = F. Then vy, p(w) = vp(7r,/r(w)). Choose wy in Wi/ so that ¢/ p(w1) =
71/ r(W) and v p(wi) > vp(T/p(W)). LetW = Tk /p,L/r(w1) and setw = w; 'w. Certainly
vr,p() > vy p(W). Moreover, 7 p(u) = 1. Let ' C Ly C L where Ly /F is cyclic of prime
order. If % does not belong to Wy, 1, the group CF is generated by Ny, /p(Cr,) and 77, /¢ (%),
which is impossible since 77,/ ¢ (%) = 1. Thus @ belongs to Wy, /1, and, as observed, there is a
uwin Wy, suchthat 7x/p 1/ p(u) = Tk /1,10, (0) = U Then 7x /5 1/ p(uw:) = .
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Chapter Seven.

Consequences of Stickelberger's Result

Davenport and Hasse [5] have shown that Stickelberger’s arithmetic characterization of
Gaussian sums over a finite field can be used to establish identities between these Gaussian
sums. After reviewing Stickelberger’s result we shall prove the identities of Davenport and
Hasse together with some more complicated identities. However for the proof of Stickel-
berger’s result itself, I refer to Davenport and Hasse.

27i

If Z =e» and a belongs to GF(p) the meaning of Z is clear. If « is any finite field and
S is the absolute trace of  let 1/° be the character of  defined by ¢?(a) = Z5(®)_ If x,, is any
character of * and v,; is any non-trivial additive character of x we will take the Gaussian sum

T(Xw, ) to be

SR O AT)
We abbreviate 7(x,, %%) to 7(xx ).

Let £, be the field obtained by adjoining the n'" roots of unity to the rational numbers.
If @ = Z — 1 then in £, the ideal (p) equals (w?~1). If ¢ = p/ and & has ¢ elements then in
t,—1 the ideal (p) is a product pp’ ... where the residue fields of pp’, . .. are isomorphic to k.

Int,,—1)

(p) = (pp’... )"

with P = (p,w), P’ = (p’, @), and so on. The residue fields of P, P, . . . are also isomorphic
to k. Choose one of these prime ideals, say 3. Once an isomorphism of the residue field with

% is chosen the map of the (¢ — 1)'" roots of unity to the residue field defines an isomorphism

of k* and the group of (¢ — 1) roots of unity. Then Y, can be regarded as a character of the

latter group. Choose o = (x4, B) with 0 < a < ¢ — 1 so that x,.(¢) = ¢* for all (g — 1)*8
roots of unity. Write

a:ao-i—alp-l-...-i-ozf_lpf_l 0<a; <p.
Not all of the a; can be equal to p — 1. Set

ola)=ap+ar1+...+ap_1

Y(a=aplog!. . ap_q!

The following lemma is Stickelberger’s arithmetical characterization of 7 ().
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Lemma 7.1

(@) 7(xx) lies in €,(,_1y and is an algebraic integer.

(b) If x, = 1 thenT(xx) = 1 butif x,, # 1 the absolute value of T(x,) and all its conjugates
S \/q.
(c) Every prime divisor of 7(x) in £,(4—1) is a divisor of p.

(d) If B is a non-zero element of the prime field then the automorphism Z — Z B of Eg—1)
overt,_1 sends T7(xx) to xx(8) T(Xx)-

(e) If* is a prime divisor of p in €,,,_1) and o = (X4, p) the multiplicative congruence

T(Xx) = (mod™ %)

is valid.

(f) Suppose ¢ is a prime dividing ¢ — 1 and x,, = X/, X, where the order of X/, is a power of
¢ and that of x!! is prime to (. If {* is the exact power of { dividingq — 1 and A = (p — 1
where (j is a primitive (*-th root of unity then

T(xx) = 7(xn) (mod)).

Before stating the identities for Gaussian sums which are implied by this lemma, I shall
prove a few elementary lemmas.

Lemma 7.2

Suppose 0 < a < p/ — 1 and
a:a0+a1p+...+af_1pf_1 0<a; <p.

Suppose also that0 < jp < j1 < ... < j, = f and set

— . ) ) Js+1—Js—1
BS—a]s+a]s+1p+...+ajs+rlp a1

Ifo ="} Bsandy = [['Zy Bs! then
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First of all, I remark once and for all thatifn > 1,0 < u < p™ — 1, and v = u(mod p™)
then v = u(mod*p). Thusif 0 < u <p" —landv >0

(u~+vp™)! = (vp™)! Hizl(w +op") = ul(vp™)!  (mod™p).

Alsoifv >0

n

Hp (" Fw) = (v+1)p" (mod"p)

and, by induction,
(vp™)! = v!(p™)”  (mod™p).

In particular p(**+ D1 = pl(pn!)P = (—p) (p™!)P. Apply induction to obtain

p"—1

p"=(=p) 7T (mod*p).

From the relations

r=I1_, "1— 77 = leplzl—l

Zt—1
Z -1

and
=1+Z+...+Z" =i (modp).

We conclude that
p=@p-D(-w)’ ' =—-x” ! (mod"p).

The lemma itself is clear if 7 = f so we proceed by induction downward from f. Sup-
pose r < f, jsy2 — js = t > 1, and the lemma is valid for the sequence jo, ji, ..., Js4+1 —
1, js+1,...Jr. To prove it for the given sequence we have only to show that if

t—2
r=0j, tQj 1Pt ta L p

and y = a;j,,, 1 then

Tty oty
= mod*p).
xly! (z +ypt—1)! ( p)
But oy
@D = (—p)P T (mod*p)
and

g1

(z+yp" ) =alyl(p"™ )Y = aly!(=p) 7T (mod)’p).
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Lemma 7.3

Suppose By, . . ., Br—1 and Yo, . . ., Yr—1 are non-negative integers all of which are less than
or equal to g — 1. Suppose that ¢ = p' is a prime power and
q ppP P pP

r—1

Zi:o (Gi + %)qi <2(q" —1).

Suppose also that 6;,0 <7 < r — 1, are given such that0 < ¢, < q—1,

r—1 .
Z‘ 0iq" <q" —1
1=0

and . .
Zz‘:o (G +7i)d" = Zi:o 8;q" (modq" —1).
(a) Ifz::_ol (Bi +vi)¢* < ¢"~! and if v is the number of k, 1 < k < r, for which
Zf:_ol (Bi + i) > " then

r—1

(b) Ifz::_ol(ﬁi +7:)¢" > q" — 1 and if v is the number of k, 1 < k < r, for which
1# 300 (Bi + )¢’ > ¢* then

Z:;;(ﬂi +7vi—0;)=v(g—1).

Observe immediately thatif 1 <k <r,then0 < fBr_1 + vr—1 < 2(¢ — 1) and

k-1 k—1

o Bitrd <20q-1) Y dt=2("~1).

If r = 1then By + v = 6o + (¢ — 1) with € equal to 0 or 1. If ¢ = 0 we are in case (a) and
v = 0 while By +v9 — dp = 0. If e = 1 we are in case (b); here v = 1 and By + 70 — dp = q — 1.
Suppose then that r > 2 and that if 5),...,8._1,7%),-- -, Ve_2s 04, --,0.._5, and v/ are given
as in the lemma (with r replaced by r — 1) then

Z;f(ﬁé +; =) =v'(g—-1).
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We establish part (a) first. In this case

r—1

S l(ﬁﬂr%)q => ., G

r—2 . r—2 .
. Na? — At r—1
Zi:o (Bi +7i)g Zi:o 8iq" +eq
withe = 6,1 — B,_1 —¥r—1. If ¢ were negative the left side of the equation would be negative;

if £ were greater than 1 the left side would be greater than 2(¢"~! — 1). Since neither of these
possibilities occur € is 0 or 1.

and

Suppose first that e = 0. If Z::_(? 8iq" < ¢t —1choose B, = B, vi =", 0<i<r—2.
Then 0, = §;, 0 < i < r —2,and v/ = v. The assertion of the lemma follows in this case. If
;;g&qi =q¢ ! —1thend;=q—1,0<i<7r—2 Then )+ =q—1(modq)and, asa
consequence, 3y + Y9 = ¢ — 1. We show by inductionthat 3; + v, =¢—1, 0 <¢ <r — 2. If

this is so for 7 < j then
r—2

S Q(ﬂﬂr%)q =>,_ (a-1d"

Hence 3; +v; = ¢ — 1 (mod q) and 3; + v; = ¢ — 1. It follows immediately that ¥ = 0 and
Yo (Bi +7i = 8) =0.

Now suppose that e = 1. If

Z:j(ﬁi +7)q =2(¢" " = 1)

then g, =v=q¢q—1,0<i<r—2 0g=q—2,and§; = q—1, 1 <i <r — 2. Thus
v=r—1and

ZT 1(ﬁz+71 5)—1+(7"—1)(q—1)—1:(r—l)(q_l)

Suppose then that
r—2

Do Bitag <2 1),

From the relation

r—2

r—2 .
Bi+r)d' =) 0 +1+ (¢ = 1).

2 ico

We conclude that Z::_(? 8;¢" < ¢"~' — 1. Then for some m, with0 < m <r —2, §,, < ¢— 1.
We choose the minimal value for m.

Zr Q(ﬁz-l-%) (Om +1)g™ +Z Zq-|- ¢ t—1).
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Thusif 8, = Bi, 7. =7, 0<i<r—2,thend; =0, i <m, I, =6, +1,and 0} =6;, m <
1 < r — 2. Arguing by congruences as before we see that 3; + v; = ¢ — 1 for ¢ < m. Thus

k—1

> Birr)d =d" -1

for k < m. However 3, + vm # ¢ — 1 and thus 3, + ¥, + 1 is prime to ¢. Moreover if
r—1>k>m

1+Z (B + 100" = (B + 9m + 1)g" (mod g™ +1).

Thus it is greater than or equal to ¢* if and only if it is greater than or equal to ¢* + 1. It follows
that v/ = v + m and that

S Bt d) = —mla - )+ Y (Bl -0 =vlg—1) +1
o Wi Yi i) = q o Vi Vi i) =vq .
Since ;-1 + Vr—1 — 0,—1 = —1 the assertion of the lemma follows.

Now let us treat part (b). In this case

r—1

ZT 1(ﬁ1+’72)q _Zi: (qu +(q _1)

and o
_ P r—1
1+ "B+ g = >, i +eq
withe =0,_1 — Br—1 —Vr—1 + ¢ AgainecisOor 1. If 3, =v; =q¢—1for 0 < ¢ <7 — 2 then
e=1landd;, =qg—1for0<¢<r—2. Alsor =rand

Z::_;(Bi +7—0)=(r—-1)(@-1)+F-1+%-1—06-1=r(¢—1).

Having taken care of this case, we suppose that

ZT 2(ﬁz+%)q <2(¢"" = 1).

Firsttakee = 0. If §p = O then 1+ 5y +70 = 0 (mod ¢) and 5yp+~9 = ¢—1. Thus one of them is
less than ¢ — 1. By symmetry we may supposeitis 8y. Let 5 = Go+1, B = 6;, 1 <i <r—2,
and v, =, 0 <i<r—2.Sincedp =0

=2 r—1 r—1
Yo i <d T —a<g T 1
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and 9} = 0;, 0 <i<r —1. Alsorv =1’ + 1 so that

S i)=Y (B0~ 1tg=vlg—1)

as required. If §p > O take 8] = B;and v, = ;, 0 < i <r—2. Thendy = 6o — 1, 0} = 0;, 1 <
1<r—2 Alsoifk<r-—1

k—1

Zi:o (Bi +7i)g" = 6o — 1 # —1(mod g)

and the left-hand side is greater than or equal to ¢” if and only if it is greater than or equal to
q® — 1. It follows that v = 1/ + 1. Consequently

S Gt =3 (B0 1t g=vlg— 1)

Ife =1takey, =v;and 3} =3;, 0<i<r—2.Thend; =0;, 0<i<r—2,andv=1r"+1
so that .

leo(ﬁi +79i—06) =v(q—1) + (Br-1 + -1 — 0p-1) = v(g - 1).

Lemma 7.4

Suppose 3; and vy; are two periodic sequences of integers with period r. That is 3;+, = 3;
and ¥4+, = ; for allt in Z. Suppose 0 < 3; < q—1, 0 <~; < q — 1 forall 7 and that none of
the numbers -

€k = Zi:(} (Bitk + vigr)d'
is divisible by ¢" — 1. Let

r—1

Zi:()

with0 < ¢§; < ¢g—1and Z::_Ol 8;q" < q" — 1. If i is the number of ¢}, 1 < k < r, which are
greater than or equal to ¢" — 1 then

. r—1 .
(Bi +7i)q" = Zi:o diq" (modg" —1)

r—1

>, o Biti=0) =plg—1).

Since €p < 2(¢" — 1) and is not divisible by ¢" — 1 it is less than 2(¢" — 1). Thus all we
need do is show that the . of this lemma is equal to the v of the preceding lemma. Observe
first of all thate; > ¢" — 1ifand only ife; > ¢".
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Supposeeg < ¢". If1 <k <r

r—1 .
Zi:k (Bi +v)q" <q"

so that i
Zi:k (Bi+7)d " <"
Thus, if e, > q",

r—k—1 .
q" < Z ﬂz—l-k + 'VH-k q + Z ﬂz—l-k + 'Vi-l-k)ql

q" ’“Z B )

and

Conversely if 1 < k < rand

then

r—1 r—1 i
Z (Bitk + Yitr)q' > Zi: (@Jrk + Yi+k)q
_ r k Z ﬁz + ’72 > qr'

Thus ¢ = v in this case.

Now supposecg > ¢". If 1 <k <r

k—1

ZT 1(62"‘7@)‘] >q _Z (ﬁz‘l")/z)q >q —2(q —1)

If 1

Zi:o (Bi +7:)d" > ¢" -1
then

r—k—1

Z (ﬁH—k + '72—1-16 q > Z ﬁH—k + 'Yz—i-k q + Z ﬁz—i-k: + %-i—k)qi

=q " Zi:o (B +7vi)d' +q " Zizk (Bi +7:)d"
Z qT‘—k<qk _ 1) +qT—k _ 2+2q—k
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Thus e, > ¢" — 1 and hence €, > ¢". Conversely if e, > ¢,

r—1 .
¢ " Z 51 +7)q" = Zi:r-k(ﬁ”k + Yitr)d'

r—k—1 .
>q - Zz’:o (Bitr + Yitr)d'

>q —2(¢ " - 1)
=q —2¢" " +2.

Thus
k—1

> Bitr)d >d" 1

and again ;1 = v.
Lemma 7.5

Supposeq = p’ isa prime power, { is a positive integer, and (¢, q¢) = 1. Let/m = 1 (mod q)
and if x is any integer let p(x), with 0 < ¢(z) < g, be the remainder of x upon division by q.
If0 < B < qgandify(x) = p(z)!

Hﬁlwﬂ k)m)

) 1(mod*p).

If £ = 01 + ug with /1 > 0 and u > 0 then £ = (¥ (mod*p). Moreover
L P((B-k)m) _ [yt (B = k)m) =1 (B = k)m)
I S = I Sy AL, )
-1

sz:el Y(=km) = {Hj Nt = sz_z (B —k)m).

Thus it is enough to prove the lemma with ¢ replaced by ¢;. In other words we may suppose

and

that 0 < ¢ < g. The case ¢ = 1 is trivial and we exclude it from the following discussion.
Finally we suppose that 0 < m < g.
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Letq—1=17r{+swith0 < rand 0 < s < £. Arrange the integers from 0 to ¢ — 1 into
the following array.

0 1 2 . . ) ) ) ) ol —1
l [+1 [+2 . . ) ) ) ) .20 —-1
B—1+1
&)
r—11 (r—1I01+1 -1l . rl-1
( ) (r—1) q
rl rl+1 . . . . . rl+s

Since ¢ does not divide ¢, ¢ + s = g — 1 does not lie in the last column. Also g — / lies in the
column following that in which r¢ + s lies.

We replace each number j in the above array by ¢(jm). The resulting array, which is
written out below, has some special features which must be explained. The first column is
explained by the observation x¢m = x(modq). The other entries, apart from those at the
foot of each column, are explained by the observation that, when 1 < j and x¢ + j lies in the
first array, p(z + myj) > r while 0 < ¢(mj) + = < g + r so that (x + mj) = p(mj) + .
The position of ¢ — 1 is explained by the relation m(q — ¢) = —mf = ¢ — 1(mod q). The
other entries at the feet of the columns are explained by the observation thatif 1 < j </ —1
then p(jm) > r > 1 while m(q — k) = m(q — ) + m(¢ — k) = o((£ — k)m) — 1(mod q) if
1<k</t-1.

0 m . . . . . . . e((l—1)
l m+1 . . . . . . . e(l=1)m

)
—_

o((B—1+1)m)
@(Bm)

r;l m-l—'r—l g—1 . @((l—Q;S)m)—l
r m-+r . : . op((l=1)m) -1

Suppose first of all that 3 < ¢ — 1. Then the numbers ¢((5 — k)m), 0 < k < ¢ —1
constitute the first 3 + 1 together with the last £ — 3 — 1 numbers in the array. (The order of
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the numbers in the array is the order in which they appear when the array is read as though
it were a printed page.) The numbers p(—km), 1 < k < £ — 1, are the last / — 1 numbers of
the array, that is, the numbers after ¢ — 1. Cancelling in the product of the lemma the terms in
numerator and denominator corresponding to the last / — 3 — 1 terms of the array, we obtain

[T ST =

as required.

Now take 5 > ¢ — 1. Then the numbers 3,5 —1,...,3 — (£ — 1) occur as indicated in the
tirst array. In particular there is exactly one in each column. The numerator in the product of
the lemma is the product of the factorials of the corresponding elements of the second array.
The denominator is the product of the factorials of the elements appearing after ¢ — 1. As
indicated ¢ is the element lying above ¢ — 1. Thus ¢ is larger than any element appearing in a
column other than that of ¢. The product of the lemma is ¢! times the product of the factorials
of the other elements on the broken line divided by the factorials of the elements at the foot of
the column in which they lie. Thus it equals ¢! divided by the product of all the elements below
the broken line except those which lie directly below ¢. But ¢! is the product of all numbers
in the second array except those which lie below ¢. Thus the quotient is the product of all
numbers which lie above or on the broken line, that is,

[T, etm =TI _, jm=m g (mod'p)

j=1
as required.

Lemma 7.6

Suppose that ¢ = p/ is a prime power, that ¢ is a positive integer dividing ¢ — 1, that
0<ay <q-—1,that(¢,aq) = 1, and that

(65} qz—l

Then o is an integer and 0 < oy < q¢ — 1. Moreover if

=" +mg+ .. +y-1¢""

with0 <, <q—1for0<i</{—1then

1 /—1 ) q—l
VTS S

{—

>

1=
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and

Certainly 0 < g < q£ — 1, moreover

1
1 =14q+...+¢"'=¢ (modl)

so that a is an integer. Let a; = mf¢ + kwithm > 0and 0 < k < Zand for 0 < j < /let
(l—=1—=j)k=1i;+;¢

with §; > 0and 0 < i; < £. Clearly iy—; = dp—1 = 0. Also ({ — 1)k = ¢ —k+{(k — 1) so that
io=¢—kand dy = k—1.If j > 1then (5j_1 —(5j>£ = k-l-(ij—ij_l). Since —¢ < ij—ij_l </
and 0 < k£ < £ the right-hand side is greater than —¢ and less than 2/ so that 6,1 — d; is 0 or
1. Ifitis1thenk +4; > fand i; > ¢ — k. Ifitis O then i; = i;_1 — k < £ — k. Recalling that
ig = £ — k we see that

S:{j|1§j§£—1 and 5j_1—5j:1}:{j|0§j<€ and ij>£—]€}.
We shall prove that

(¢q—1)
I

Yo = m + 19 +k —dg

and

—1
vj:m—f—ij %—Fé‘j_l—é‘j 1§j<€

Since (k, ¢) = 1 the numbers 7, are distinct and it will follow immediately that

2.

Moreover we will have

£—1 =1 qg-—1 =1 qg-1
O’yj—(mﬁ-l-k)-i-zjzoj-—Z —ozl-l-zjzlj-—Z :

j=

£—1

Tt = {TI, (e 2 ) fo S tsian T, (15 5200 )

Recall that k — dp = 1. Dividing the first term by

Hj:) <j_(qzl))!
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we obtain

R w (g=1)
HJIO Hn:l (n T J 14 ) ’
The product of the last two terms is

-1

Hj;Z—k <m+1+j(q;1>>'

Ifl<n<mand0<j </{—1thennl—j < a; < g¢so that the product of ™% and the first
of these two expressions is multiplicatively congruent to

[T, I, =)= onoy

Moreover, if { —k < j<{—1,then0 < (m+1){—j < (m+ 1) — (£ —k) = a1 < gand the
second of these expressions upon multiplication by /¥ becomes multiplicatively congruent to

-1 e k o
1, (m+ne-n=TL_ e+,
The relations together imply the second identity of the lemma.

To verify that the v;, 0 < j </, have the form asserted, we start with the relation

0
=1 ml+ ke Hq”f
OQ_q_]_ Z _ijo +Z

The second term is equal to

0—1 i-1 qg—1
ZFOKZi:Oq) —— }+k_k+z (C=1=)g 5= k.

Thus

Moreover m < 4= so that

1
0< m+ig- q7+k: S < £- 7+1_q
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and

-1 —1
O§m+z’j~q7+5j_1—5j <£~q7+1:q.

The required relations follow immediately.

Now we can state and prove the promised identities for Gaussian sums. Each of these will
amount to an assertion that a certain number in £,,_1) is 1. To prove this we will show first
that the number is invariant under all automorphisms of €,,_1) over ,_1) and thus lies in
£,—1. The only prime ideals occurring in the factorization of the number, which is not a priori
an algebraic integer, into prime ideals will be divisors of p. We show that every conjugate of
the number has absolute value 1 and that it is multiplicatively congruent to 1 modulo every
divisor of p. It will follow that it is a root of unity in £,_; and hence a (¢ — 1)th root of unity if
q is odd and a 2(q — 1)th root of unity if g is even. If ¢ is odd the multiplicative congruences
imply that the number is 1. If g is even they imply that the number is +1. To show that it is
actually 1 some supplementary discussion will be necessary.

Stickelberger’s result is directly applicable only to the normalized Gaussian sum 7 ().
We shall have to use the obvious relation 7(x., ¥,) = X« (8)7(Xx) if ¥ () = ¥2(Ba). If k is
an extension of A\ and v, is given, we set

Vi/ala) = Pa(Skya())

for awin k. If X\ is given X,/ is the character defined by

Xr/a(@) = Xa(Ni/a(a)).

Lemma 7.7

If K is a finite extension of the finite field and x ) and 1, are given then

T (X /2o Yieyn) = {70xn, 10) J 1.

Since X, /1 (8) = x(8)!%] it will be enough to show that

T(Xwya) = {T(0) M,

Set
 {rlo)y
T(Xﬁ/)\) ‘
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Let A have ¢ = p® elements and let x have p* = ¢/. It follows immediately from Lemma 7.1

that the absolute value of 1 and all its conjugates is 1, that it lies in £,,,s _1), that it is invariant

p(
under all automorphisms of £,,,s_1) over £, _;, and that its only prime factors are divisors of

of —
p. The mapping 3 — N, /(3 sends 3 to 6711. Thus if & = a(xx, p) and B divides p

¢/ -1

a(Xn/A7p): q—1 Oézoz-i-ozq-i-...-l—ozqf_l.

Applying Lemmas 7.1 and 7.2, we see that

and

Consequently
p=1 (mod™R).

Thus pp = 1if gis odd and p = 1 if g is even. If ) = 1 then x,,» = 1 and, from part (b) of
Lemma 7.1, pnis 1. If ¢ = 2 then x = 1. Suppose then g is even and greater than 2. If x is
not identically 1 choose a prime r dividing the order of x . Set x» = X x where the order of
X is a power of r and the order of X is prime to 7. The analogous decomposition of ¥, is
X' / WX - Of course x and X,/ have the same order. Define x’ and " in the obvious way.
According to part (f) of Lemma 7.1

1

pw=p" (modr).

Since 7 does not divide 2 this implies that 4 = p”/. Thus one can show by induction on the
number of primes dividing the order of x that 1 = 1.

Lemma 7.8

Suppose A is a finite field with q elements, k is a finite extension of A\, and [k : A\] = f.
Suppose { is a prime and the order of ¢ modulo / is f. Let I be a set of representatives for the
orbits of the non-trivial characters of k* of order ¢ under the action of &(x/\) and let x be a
character of \*. If 1, is any non-trivial character of A

a0 1

(s en) = 7000 00) || (Xe/X sy Yryn)-

T T
s €T pue €T
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Since the isotropy group of each point in 7' is trivial

O | ETEIESCIN | SO

and we may content ourselves with showing that

AT T L ) =700 []

T(Xw/x He)-

,LLNGT HNGT

Of course x(£) is the value of  at the element of the prime field corresponding to ¢¢. Let
(¢ be the quotient of the right side by the left. The characters of £* of order ¢ are the characters
,u’;, 0 <k </, defined by
¢/ -1

7

Since the order of ¢ modulo £ is f, if T = {u*|k € A} every non-trivial character of order /
is representable as ,uz(qlk) with 0 < i < f and k € A. 1(¢'k) is the remainder of ¢'k upon
division by /. Thus as we already saw, 1" has E_Tl elements. Lemma 7.1 again shows that
and all its conjugates have absolute value 1 and that p is invariant under all automorphisms

of ,(qr—1) over €;r_.

Let o = a(xa,p) and let 3 = a(x4,p). Then fa = B+ v(g—1) withy > 0. f0 < k < /
let ;
PO ( S et B
a(“m?%) =k- / - ijo Y qj

with 0 < ’yJ’? < ¢— 1. Inparticular, 75 is the residue of k - g’ a ! modulo ¢q. Moreover if k; = ¢’k

(modulo /) then

k )
O‘(Mﬁ? SB) = ijo Vji_i q’.

It is understood that if j 4+ ¢ > £ then %kjﬂ = vfjri_ ;- Thus if p(x) is the remainder of « upon
division by ¢,
k , g/ -1
(ke 0<j<fl=qp(k 10<k<?}.
Certainly
k f— 1 qf - f
a(Xn/x H,B) = +k- (mod (¢’ — 1))
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Let0 < k' < /landletv + k =k’ (mod /). Since, by definition, la = 4+ v(q — 1)

-1 -1 -1 -1
q otk _4q B

1 7 7 1 7 (mod (¢/ —1)).

Since 0 < 3 < g — 1 the right side is non-negative and at most q/ —2. Thusitis a(x, /A pE PB).
Let

f—1
a(Xu/n 1E,P) = ijo o ¢’

with 0 < 5?3 < q—1. Thus 5’0’“ is the residue of

f-1 T
q B T il

l q—l R

modulo g. Since X,/ is invariant under automorphisms of x /A

f—1 ‘
a(Xwx 1, P) = Zj o ¢

=0

if k1 = ¢'k (mod ). Since the residue of q 1 amodulo ¢ is «,

-1 -1
{a}u{5f|0§j<£,k€A}:{4p<q£ .qflmqg )|O§k<£}.

Since x(¢£°) = ¢** (mod*) the number  is multiplicatively congruent modulo B to

the quotient of
ww®
—1 - Z Z J
a! [Thea IT5zg 851 k€A £—j=0

Jj=0"%j
by
0P P f-1
| k:| 5/:Zk€A Z'_OWJI?'
B! erA H] 0'7] J
Since

f—1 . f—1 .
Zj:() (Oé—i—’}/]k) qj = Zj:() 6‘? qj’

we conclude from Lemma 7.4 that
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if p is the number of i, 0 <14 < f, such that

q—1

Since ; ;
g’ —1 0 ¢ -1
q_l a+a(umq3)_ q_l Oé,

the number

is (¢ — 1) times the number of k, 0 < k < /¢, such that

-1 -1 f—1p

q q q

k - = —+(k
q_1a+ 7 1 £+( +v)

f_l
q f
>q’.
l =4

The number of such k is v because v < ¢ and

-1 f—1
q p q f f
o g-l-(é v+v) >1+q q
while ; ; ; ;

¢ -1 p ¢ -1 ¢ -1 ¢ —1

— (-1 (-1 =qf -1

7—1 £+( ) 7 ST + ( ) 7 q

Thus

ZRGAZ;C:_; (fyﬂk_(sf) :V(q_l) _<£_1)O‘:O‘_6-
If f/m =1 (mod q)

and

It follows immediately from Lemma 7.5 that
f-1 f-1
Bl k1 = 3l k|
0ol szeA Hj:O o5t =1 erA Hj:O LA

Thus p = 1if ¢gis odd and ;1 = £1 if ¢ is even. If x, = 1 the number p is clearly 1. This
time too, one can apply part (f) of Lemma 7.1 and induction on the number of primes dividing
the order of ) to show that u = 1 if ¢ is even.



Chapter 7 57

Lemma 7.9

Let \ be a finite field with q elements and let r be a finite extension of A with [k : \] = /¢
where { is a prime dividing ¢ — 1. Suppose X is a character of \* whose restriction to the {th
roots of unity is not trivial and x,, is a character of x* such that X%, = x, /x- IfT is the set of
non-trivial characters of \* of order ¢

XA(E)T(XA/QD)\) H T T(“>\7¢>\> = T(Xﬂadjn/)\)'

puxe

If o € B(k/\) define x7 by x7(a) = X,ﬁ(oz”fl). Since Xi/x = Xr/\s Y2t = X/ and
x2~!is a character of order £. If Y2~ = 1 for some o # 1 then itis 1 for all o and x,(a) = 1
if o is a (¢ — 1)th power, that is, if IV,;/y(a) = 1. Consequently there is a character vy of \*
such that x, = v,/x. Then z/f\ = X and X is trivial on the /th roots of unity, contrary to

assumption. Thus
{2 o # 1} = {menlux € T}

If 3 € A and 3 = N, /»(7) then

xw(B) = 1 e =20 11, X7 ) =2008) ], m(®,

o#l

because 11 (3) = /2 (7), and it will be enough to show that

a0 r00) T 7)) = 7(x)-

HXET

Let 11 be the quotient of the left side by the right. Thus u is a number in &,,—1) and the
only primes appearing in the factorization of y are divisors of p. Since X,/ is not identically
1 neither is y,. Thus the absolute value of x and all its conjugates is 1. Let & = a(x, p) and
let 5 = a(xx,P) where P divides p. Then

V)
—1
6= ol (mod(¢* — 1)).
Since ¢ divides % we can write
Y, V)
¢ —1 « q-—1
B = c— =]
qg—1 ¢ l
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Since the restriction of  to the /th roots of unity is not trivial, « - q771 # 0 (mod (¢ — 1)).
Thus ¢ does not divide «. For all7 > 0

() = (0.

Moreover
i at—1 «o at —1 ¢ -1 a , ¢ -1
q = = i — —ildt —1
oz(mﬁﬁ) el A + (g )q_1 7 i =1) —;
_d—1la f¢-1 ¢ —1
oqg—1 ¢ qg—1 J 14

Since % = ¢ (mod {) we choose i so that ia = j (mod ¢); then

¢ —1
qg—1

i «

ot M =L 2 (mod(a" ~ 1))

Both sides of this congruence are non-negative and less than ¢* — 1. Thus it is an equality and
we can assume that § = % - 7- The set T' consists of the characters ,ug\, 1<53<0-1,
defined by

(1, B) =5 (¢ 1)

|,

Under the automorphism z — 2™ of k,(4¢_1) over kg e_; the number y is multiplied by
xzHm) xa(m) [1,,er #r(m)whichis1because m belongs to A. Let

B=v+vq+...+v-1¢""

with 0 < v; < q— 1. Then

ot (-1
2) = —or— (mod*P), &= 1
") = T ed'®), <=3
and
-1 ) (9 o€ -1 qg—1
J\ = * I — -
RXOLE | (1) = — T G o0 (mod"P), &' =a+d i

Lemma 7.6 implies immediately that y = 1 (mod™). Thus 4 = 1 if gisodd and u = £1if ¢
iseven. If ¢’ is a prime divisor of ¢ — 1 different from ¢, we write x ) as X xy where the order of
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X’ is a power of ¢ and the order of X/ is prime to £. In a similar fashion we write x,. as x/. X/
The pair x\ and /. also satisfy the conditions of the lemma. The final assertion of Lemma 7.1
shows that, if 1"’ is defined in the same way as p, p = p”. Arguing by induction we see that it
is enough to verify that ¢ = 1 when the order of x is a power of ¢. Applying the last part of
Lemma 7.1, again we see that there is a prime q dividing ¢ such that

T(x2) =7(xx) =7(1}) =1 (modaq).
Since xx(¢) is an ¢“th root of unity for some w,
(=1 (modq).

Thus 4 =1 (mod¥) and p = 1.
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Chapter Eight.

A Lemma of Lamprecht

Let F' be a non-archimedean local field and let ¢ be a non-trivial character of F'. n =
n(yr) is the largest integer such that ¢ is trivial on PL". If xp is a quasi-character of
Cr, m = m(xr) is the smallest non-negative integer such that x g is trivial on U%". If vy in Cp

m—+n

is such that yYOp = P "" set

Then
A(xr,¥Yr) = xr(7)AL(XF, YF, 7).

As suggested by Hasse [8], we shall, in the proofs, of the main lemmas, make extensive
use of the following lemma which is central to the paper [10] of Lamprecht.

Lemma 8.1

(@) If m = m(xr) = 2d with d integral and positive there is a unit 3 in O such that
x
vr (2) = xel+2)

for all z in$3<.. For any such (3
Axe e = vr () 6)

(b) If m = m(xr) = 2d + 1 with d integral and positive there is a unit 3 in O such that, for
all x in L,

(2 <%) = xr(1+x).

For any such 3, A1(xr,¥r;7) is equal to

Jo, e F (222) X5' (1 4 0x)da
(o <ﬁ) () O/ F<5;x> -

L Jorsme e (%25) X1+ dz)da



Chapter 8 61

if 6O = PL.
Let m = 2d + € with € = 0 in case (a) and € = 1 in case (b). The function ¥ <%) , T E
Op, y € ‘,]33?r€ can be regarded as a function on
Or /P x P& /PF.

For fixed z it is a character of P /P’ which is trivial if and only if = € 3% and for fixed y

it is a character of O /3% which is trivial if and only if y € B'%. Thus it defines a duality of
Op /PE and PLTE /P, The existence of a (3 such that

xr(l+x)=19p (%)

for 2 in BLTE follows immediately from the relation

xr(l+z)xr(1+y)=xr(1+z+y)

which is valid for z in ‘,13?;“6. The number (§ must be a unit because x (1 + z) is different from

1 for some  in P'p .

In case (a)

is equal to

/UF/Ug VF <%) XF' (a) {/ v (@) daj}doé‘

The main integral is 1 or 0 according as a — 3 does or does not lie in 3%.. Thus this expression
is equal to

AN -
or (2) xi'0) 0w U
The first part of the lemma follows.

In case (b)

is equal to
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The inner integral is 0 unless & — (3 lies in P% when it is 1. Thus this expression is equal to

br (ﬁ ) 6 0 Ug [

0 OFr/Br

Yp (M%) X' (1 + 6z)dx.

The second part of the lemma follows.

The number f3 is only determined modulo 3%. When applying the lemma we shall, after
choosing (3, set

Aol ri7) = b (g) ()

and then define As(xr, ¥r;v), which will be 1 when m is even, by the equation,

A1(XF,Yr;Y) = Da(XF, VEsY) As(Xr, Y 7).

When we need to make the relation between 3 and x r explicit we write 3 as 5(xr). To be of
any use to us this lemma must be supplemented by some other observations.

If K is a finite Galois extension of F' any quasi-character xr of Cr determines a one-
dimensional representation of Wi, r whose restriction to Ck is a quasi-character x i/ r of C.
The character x i/ r may be defined directly by

xk/F(@) = xr(Nk/ra).

More generally, if F is any finite separable extension of /" we define x g, r by

Xe/r(a) = XF(Ng/ra).

To apply the lemma of Lamprecht we shall need to know, in some special cases, the relation
between 3(xr) and B(x5/F)-

Suppose m is a positive integer and m = 2d + € where € is 0 or 1 and d is a positive
integer. Let m’ = g /p(m — 1) + 1 and let m’ = 2d’ + ¢’ where £’ is 0 or 1 and d’ is a positive
integer.* Since ¢/ is convex

m—1

1 1 1
VYE/F (T) < §¢E/F(m— 1)+ §¢E/F(O) =3 (m'—1)<d +¢

* We are here dealing not with an additive character, but with the function of Chapter 6!
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and
d +¢& =vg/r(u)

m—1

with u > -1, Since the least integer greater than

is d + €, Lemma 6.6 implies that
Npsw (UF+) <Up <UE=.
In other words, if x € ‘BdE/“/ then

Ngjp(l+2) - 1€ BEe.

Lemma 6.6 also implies that

ifx € ‘B’ﬁl. Ifx e i]3€]§+5/ andy € ‘B}I}/ then

Ng/p(l+x+y)—1= Ng/p(1+2)Ng/r <1 + 1_{33) -1

is congruent to

modulo P. Thusif z € i]3€]§+5/ and y € 213%4'5” so that zy € P72, then
Ng/p(l+z+y)—1=Ngp(l+2z+y+ay) —1 (modPy).

The right side is
Ng/p(1+2)Ng/p(1+y) — 1,

which equals
{Ne/p(1+2) =1} +{Ng/r(1 +y) =1} + {(Ng/r(1 +2) = 1) (Ng/r(1 +y) — 1)}
and this is congruent to
{Ng/p(1+2x) =1} + {Ng/pr(1+y) — 1}
modulo ‘B'%. Thus the map



Chapter 8 64

is a homomorphism from ﬂ3dEI+EI / ‘,]3’]31/ to 2]3?;4'5 /B If E C E' we can replace F by E, E by
E', mby m',and m’ by Y /p(m’ — 1) + 1, and define Pg//g. Since Y /p = Vg /p 0 Vg
and

Ngyrp(l+2)—1=Ng/p(1+ (Npyp(l+2z)—1)) -1,

the relation
PE'/F :PE/FOPE’/E

is valid.
If n = n(yr)and n' = (g, r), choose v in Cr so that ypOp = TI}H'” and vg in Cg
so that ygOg = P'5 7" . T apologize again for the unfortunate conflict of notation. 1z /F 18

on the one hand a function on {u € R|u > —1} and on the other a character of E. However,
warned one again, the reader should not be too inconvenienced by the conflict. Define

Php: Op /B — Op /P4

by the relation

YF YE

or <xPE/F<y>) e (PE/F<sc>y> |

It will often be necessary to keep in mind the dependence of P, /p ONVE and yg. Then we
shall write

PE/F(@ = PE/F(JJB YE; VF)-
It is clear that
Py p(xive,vr) = Pgyg(Pgyp(@78,7F)i v, VE)-

Lemma 8.2

Let K/ F be abelian and let G = &(K /F'). Suppose there is an integer t such that G = G
while Gy41 = {1}. Supposem > t+1and m > 1 and ~yF is chosen. If i belongs to S(K/F),
the set of characters of Cr /Ny pCr, thenm > m(ur) so that for some o(up) in Op

OC(MF)iC)

YF

uF<1+x>:¢F(

forall x in 2]3?;4'5

then

. The element vk may be taken equal toyp andifPI*(/F(ﬁ) = PI*(/F(B; VEsVE)

Ni/r(Pieye(8) =[] (8 + alpr)) (mod Bit)

HF
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forall 3 in Op.

Ift = —1 then n(vr) = n(Yk,r) and m’ = m so that yx may be taken equal to yp. If
t > 0 the extension is ramified. Let ‘Bi?/ " be the different of K /F. Then

n(Vr/r) =K : Fln(¢r) + 0x/p.

By definition
@DK/F(m—l) =1+ [K : F](m—t—l)

By Proposition 4 of paragraph IV.2 of Serre’s book 6 /p = ([K : F] — 1)(t 4 1). Thus
m* +n(Vg/p) = [K : F] (m+n(Yr))
and we can again take yx = V.
Since m(up) =t + 1 we have m > m(up) and
pr(l+z+y) = pr(l+2)pr(l+y)

for z and y in ‘,B%JFE. Thus the existence of a(up) is assured. The last assertion of the lemma
will be proved by induction. We will need to know that if x = y(mod ‘B%’) then

Nk /p® = Ng/py(mod Pi).

When proving this we may suppose that 1Ox = P with r < d’ and that ¥ belongs to Of.
Then

— X

If r > d there is nothing to prove. Suppose r < d. If d’ — r = Y p(u) and s is the smallest
integer greater than or equal to  the right side belongs to P Since the derivative of ¢/
is at least one everywhere ¥i /p(u + 1) > d'. But

m—1

= %%{/F(m -1+ %¢K/F(O> > YK/ (7) :

m —1
d >
2

- 2

Thusu-i—rzmT_lands-i—rzd.

Suppose ' C L C K and L/F is cyclic of prime order. Let H = &(K/L) and let
G = 6(L/F). Certainly H = H, while H;;; = {1}. Since ¢/ p(t) = Y5 /1(t) = t, we have
Y1 r(t) = t and, by Herbrand’s theorem,

G,=G =HG'/H =G/H =G.
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Moreover t + 1 = ¢/ p(t 4 §) with 6 > 0 so that
— At t+6 . .
G =G =HG™ /H = H/H = {1}

Finally, ¢r,/p(m —1) +1 >t + 1 so that L/F and K /L, with m replaced by ¢1,/p(m — 1) + 1,
satisfy the conditions of the lemma. S(L/F') is a subgroup of S(K/F). If ur and v belong
to S(K/F) then pur/p = vip if and only if 4 and vr belong to the same coset of S(L/F).
Take S to be a set of representatives for these cosets; then

S(K/L) ={pr/r | pr|pr € S}.

We take o(pupvr) = a(ur) + a(vp) if ur belongs to S and v belongs to S(L/F). If up
belongs to S we take a(ur/r) to be PE/F(Oz(,uF)). If the lemma is valid for K/L and L/F
then

Ni/r(Pi p(B)) = Noyr(Ni/o (P (PLp(8)))
which is congruent modulo P% to
Nuse ([T, o (Pisr(8)+ Piyplatue)

[T, N0 (PLyp(B+ alum))}.

This is congruent modulo P to

HuFeS HVFES(L/F){ﬂ + alpr) + o(vr)}

which equals

HuFes(K/F){ﬁ + opr)}

Thus it is enough to prove the lemma when K/F is cyclic of prime order. In this case
more precise information is needed and the assertion of the lemma will follow immediately
from it.

Lemma 8.3
If K/F is unramified and m > 1 we may take Py, .(3) = (.

According to paragraph V.2 of Serre’s book

Ng/p(1+y) — 1= Sk/r(y) (mod Py')
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ify € ‘,]3%%/. Thus Px/r(y) = Sk, r(y) and
x Px/ry x
Yr <7K/F ) =YK/F (_y) :
YF YF

Lemma 8.4

Suppose K/ F' is abelian, totally ramified, and [K : F| = { is an odd prime. Ifd > t + 1
we may take P;{/L(ﬂ) =f.

The relation
m =t+1+4(m—-1—t)=Im—(t+1)(¢—1)

implies that m’ = m (mod 2), ¢’ = ¢, and

-1 -1
d’:£d+£ (6—t—1):d+£T(m—t—1).
Since
/-1
T(m—t—l)zm—t—lzd—i-e
we have
d+¢e >2(d+e)>m.
Moreover

Q(d/ + 5/) + 6K/F > m' + 6K/F
14 - 14
so that by Lemma 5 of paragraph V.3 of Serre’s book

Ng/p(1+x) — 1= Sk/p(z) (mod PF')

ifre i]3§;+5,

. The lemma follows.
Let p be the characteristic of O /P .
Lemma 8.5

Suppose K/ F' is abelian, totally ramified, and [K : F| = { is an odd prime. Suppose
t+1 < m < 2t+ 1. Choose a non-trivial character i in S(K/F'). We may choose o = ()
so that aOp = PL., if m =t + 1 + v, so that « = Nk, pa; for some oy in Ok, and so that

ur(l+ @) = vp (j—j)
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for x in B3.. Here s is the least integer greater than or equal to 5. If  is a (p — 1)th root of
unity in F' there is a unique integer j with 1 < j < p — 1 such that ( — j lies in ‘Ppr. Set
,u% = u‘%. We may take a(u%) to be (a. If 3 belongs to O we can find a 31 in Ok such that
3= NK/Fﬂl(mod‘B%). Then

P p(B) =5~ B C% (mod BiY).

If

ur(l+2) = pr (j—j)

for x in P73 then, necessarily, aOr = B%. Choose §; in Ok such that 610k = P and set
0 = Nk, rd1. Set @ = wd where w is yet to be chosen. We must have

pr(l+z) =Y (w_&x)
YF

if z € P%. This equation determines the unit w modulo P}, if r = ¢ — s. Since any unit is
a norm modulo ‘,]3% we may suppose w = Ng pwi. Take oy = wody. B exists for a similar
reason.

The number { — j must lie in pOp. But K/F is wildly ramified, because 2t + 1 > m >
1, £ = pand p = Sk,r(1) so that, by paragraph V.3 of Serre’s book, p belongs to ‘B if u is

the greatest integer in
(¢—1) t+1
t+1) > ——.
=g
However d + & > sso thatd + & 4+ u > t + 1 and, if = belongs to PE, (¢ — j)x lies in P4 .

Thus

o (D) 14 (6 - ) =1

and )
(14 a) = b+ ) = (220) —up (47,
YF YF

Since
23+6K/F S t+1+5K/F -

14 - 14
The lemmas of paragraph V.3 of Serre’s book imply that

t+1.
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if x belongs to B3 and then

1 =pp(Ng/p(1+x)) = pr(l+ Sk/r(z) + Ni/r(z)).
As we observed d + ¢ > s. Moreover d + ¢ < t + 1 so that

d+5+6K/F
14

d+e
F

>d+e¢

and Sk, p(r) and Nk, (z) belong to B 4F€. Thus, for such z,

or (aNK/F(x)) o (—ozSK/F(x)).

if z belongs to ‘3

TF TF
Again
2(d" +¢') +dk/r > m
so that
Ng/p(l+x) —1=Sk/r(z) + Ng/p(z) (mod BE)
ifr e ‘B%HI. Moreover

-1
d'—l—a':d—f—s—i—%(m—t—l)Zd—i—s

so that N/ p(7) and hence S /() belong to PLE. Thus
_ bz m
But $12/a; belongs to ‘}3%“/_” and

d+e —v=d+ec+

v—v>d+te

so that

Y (ﬁpiif(x)) — e (BSK/F(«f);‘FﬁNK/F(x))

which equals

BSk/r(T) — aSk,r (%) af\ =z
vr YF N wK/F << ) )
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as required.
Lemma 8.6

Suppose K/ F is a wildly ramified quadratic extension, m >t + 1, and m =t + 1 + v.
Let pup be the non-trivial character in S(K/F). If 3 belongs to Op thereisa [}, in Ok and a §
in U}, such that 8 = 6N 1 (mod PBE.). We can choose o« = a(pup) so that

adx

(1 + ) = v (7—F)

if x is in ‘B3 and so that a« = Nk, pa; for some oy in Ok . Here s has the same meaning as
before. Thus, if r is the integral part of %, t + 1 = r + s. With these choices

prad

a1

Prp(B) = B — <mod7>;1') .

If 8 = 0 the existence of J and /3, is clear. Otherwise we can find a 31 such that N, p 31/
isin U%.. We choose ¢ accordingly. If m =t + 1 + v and

ur(l+ ) = gp (@)
YF

for x in P then Opa = P7. Choose 1 in Ok so that Oxm = P and set n = Nk pni. Set
o = wn where w is yet to be chosen. We must have

pr(1-+a) = v (200
YF

if x € P7. This equation determines the unit w modulo PB’%.. Since any unit is a norm modulo
P’ we may suppose w = N, pw;. Take oy = wi;.

Since the extension is quadratic
Ng/p(14+2) =14+ Sk p(x) + Ng/p(2).

Since
8+5K/F B s+t+1 >

2 5 =
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both Si/p(x) and Nk, p(z) are in PB% if 2 belongs to P and
0Nk p(z)\ —adSk/r ()
Vp | ———— ) =¢p | ————|.
TF TF

Wehavem’ =2m — (t+1)and d' = m — s,sothatd' + ¢’ =m —rand d’' +¢' — v = s. Thus
if x belongs to P +*

prx

BNk r(z) = adNk/F <a—1) (mod PF)

and (1 /aq lies in P5. Consequently

P,
v (P — e (8- ) 2 )
TF o/ TF

as required.
Lemma 8.7
If K/F is a tamely ramified quadratic extension and m > 2 we may take Py, .(8) = (.

Notice that t + 1 = 1sothatm >t + 1. Inthiscase m’ = 2m — 1, d = m — 1, and
d+¢e =m. Ifx € PLTe

Ng/p(1+ ) =14 Sk r(x) + Ng/p(2)

is congruent to
1+ Sk/r(x)

modulo ‘B’%. The lemma follows.

To complete the proof of Lemma 8.2 we have to show that if K/ F is cyclic of prime order

Ni/r(Piese(8) = [ (B+alur)) (modPi).

nr€S(K/F)
We consider the cases discussed in the previous lemmas one by one. If the extension is
unramified we may take all the numbers «(p ) to be 0. The congruences then reduce to the
identity 5™ = (™. The same is true if K/F is cyclic of odd order and d > t + 1 or K/F'is
quadratic and ¢t = 0. If K/F is cyclic of odd order £ and t + 1 < m < 2t 4 1 the right side
becomes

ﬁ[ . ﬁO/_l.
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If 3 = 0 (mod‘P¢) both sides are congruent to 0 modulo B%. Suppose 3 does not belong to
PB4 and BOr = PY%. Then 3,0k = P% and

o
Ng/r (ﬁ — B —)
a2
is congruent to

— 0 i [ B
— Ba 1—|—Z ﬁE (ﬁm)

modulo PL. If x € K then E'(x) is the ith elementary symmetric function of x and its
conjugates. Moreover 31/ Ba; belongs to ‘B(]f_l) =) r—1>i>1

(=) @=-w)+ =1 (+1) _ (=1 @+t+1)

7 7 — fu.

The right side is
(t-1)
14

The argument of paragraph V.3 of Serre’s book shows that

m — pu > d — fu.

Nic/r (ﬁ 4 O%) = 5~ B’ (mod PY).

For a wildly ramified quadratic extension we use the notation of Lemma 8.6. The right
side of the congruence may be taken to be 3> + ad. The identity is again non-trivial only if
BOF = P% with u < d. Then the left side may be taken to be

Bro

32 — 3205k r (ﬁ

) + 5204NK/F51

which is congruent to

3%+ afs — B°0Sk/F <g;a)

modulo 73%. Since

v—u+t+1 m
2

we have

BQSK/F <—> =0 (modinF).
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Suppose xr is a quasi-character of Cr, m = m(xr), and 5 = B(xr). If, as sometimes
happens, m' = m(xk,/r) we can take B(xx/r) = P;{/F(ﬁ).

Lemma 8.8

Suppose K/ F' is Galois and G = &(K /F'). Suppose s > 0 is an integer and G* = {1}. If
m = m(xr) and m > s then

m' =Yg p(m—1) +1=mYx/r).

It follows from paragraph V.6 of Serre’s book that
NK/F(U;?K/F(U)) _ U%
if v > s. Thus xg/p is trivial on Uy if u > g p(m — 1) but is not trivial on U if
u =1 p(m—1).

We can now collect together, with one or two additional comments, the previous results
in a form which will be useful in the proof of the first main lemma. We use the same notation.

Lemma 8.9

Suppose K/ F is a cyclic extension of prime order{, x r isaquasi-characterofCr, m(xr) >
t+1, m(xr) > 1, and m(xx/r) — 1 = Y /r(m(xr) —1).
(a) If K/F is unramified we may take 3(xx/r) = B(xr) and B(prxr) = B(xr) forall pp
in S(K/F).
(b) If{ is odd and d > t + 1 we may take 3(xk,/r) = B(xr) and B(urxr) = B(xr) for all
ppin S(K/F).

(c) If¢isodd andt +1 < m < 2t + 1 and ur is a given non-trivial character in S(K/F') we
may choose o = a(ur) = Nk pay asin Lemma 8.5and 3 = 3(xr) = N1 for some
B1 in Uk. Then we may choose

B(xx/r) =B — b <

03]

and
ﬁ(M%XF) = Ng/r(B1 + Cau).
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(d) If ¢ is 2 and K/ F is wildly ramified we choose & = a(up) as in Lemma 8.6. We may
choose 3 = 3(xr) in the form N 31 with § in U},. Then we may choose

B(xx/r) =B — P il

aq

and
Blprxr) = B+ ad.

(e) If ¢ is 2 and K/ F is tamely ramified we may take ((xx/r) = B(urxr) = B(XF).

Only part (c) requires any further verification. It must be shown that

N p(B1 + Car) = B+ Co (mod Bh).

The left side is congruent to
BN/ (1 n ﬂ) .
5

All we need do is show that

Ni/r (1 + ﬂ) 1452 (mod Y.
A g
The right side is
1+ NK/F (ﬂ) .
A

According to paragraph V.3 of Serre’s book the congruence will be satisfied if

v+ (L—1)(t+1) Ny
7 > d.

Butt+1=d+zwithx >0sothatd+x+v=2d+candv = d + € — x. Thus

v+ —-1)(t+1) dte—z+({—-1)(d+z) e+ (0 —2)x
7 = 7 _d+#zd.

The preceding discussion has now to be repeated with different hypotheses and different,
but similar, conclusions.

Lemma 8.10



Chapter 8 75

Suppose K/ F' is abelian and G = &(K /F'). Suppose there is at > 0 such that G = G
whileGyyq = {1}. If2 < m < t+1thenm' = i p(m—1)+1isjustm. Lett+1 = m+wv, let
0 be such that 6O = ‘,B?HRWF),Ietel in Ok be such thate1Ox = P, and lete = N /peq.
We may choose v = &/¢ and yx = &/e1. Let r be the greatest integer in ‘31 and let
s =t+1—r. If up is a non-trivial character in S(K/F') thenm(up) =t + 1. Let

(1 + ) = p (5(#51:)33)

for x in*PB%. Then
BI1, (3= +Bur)) = Nic/p(Pic/p(8))  (mod Bg).

The relation m' = ¥g/p(m — 1) + 1 = m is an immediate consequence of the definitions.
Since the extension is totally ramified

n(Vi/p) = [K: Fln+ ([K: F] = 1)(t+1)

if n = n(¢r). Thus
m+n=({t+1+n)—v

and
m' +n(xp) =K :Flt+1+n)+(m—t—1)=[K:F](t+14n)—o.

Consequently v and i can be chosen as asserted. The results of chapter V of Serre’s book
imply that m(pup) = t + 1 if pp is not trivial.

We saw when proving Lemma 8.2 that if z = y(mod P ) then Ng/rt = Ng/py(mod Pih)
and thatif F C L C K both L/F and K/L satisfy the conditions of the lemma. For L/F, &,
is replaced by N ,re1 and, for K/L, € is replaced by Ni /1. Take Q*L/F to be PE/F in the
special case thatm =t + 1 and 1 = 1. Then

(NK/L(&);?PDF(@> _ <6PL/§($W)

VYr/F

by definition. The right side is equal to

b1/ (795@;;/;(55 )>.
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Thus
Q1 p (€68) = Ngyr(e1)Pr,p(B)  (modBy).

If pr belongs to S(K/F) but not to S(L/F) then m(ur/r) = m(pr) and B(ur,r) may
be taken to be Q7 - (B(pr)). Let S’ be a set of representatives for the cosets of S(L/F) in
S(K/F)— S(L/F) and suppose the lemma is true for K /L and L/F. Then

Ni/p(Prp(8)) = Nojp(Nk/o(Pg/(Prr(8))))

is congruent to

Np/p(Prp(B) H {Ni/r(e1)Pp,p(B) + QL/r(B(kr))})

nr€S’

modulo $B%. This in turn is congruent to

Nr/r(Prp(B)) HHFES’ Np/p(QL r(eB + B(pr))).

Applying the induction hypothesis to the first part and Lemma 8.2 to the second, we see that
the whole expression is congruent to

5{HVFGS;L1/F)(55+5(VF)>} {H ppes’ (55+5(MF)+5(VF))}

vpES(L/F)

modulo B¢ as required.
Once again we devote a lemma to cyclic extensions of prime order.
Lemma 8.11

Suppose K/ I is cyclic of prime order { and 2 < m < t+ 1. Choose a non-trivial character
pr in S(K/F). There is an oy in Uy such thatif a« = N pay

ax

ur(l+a) = vr (5)

for x in Py, If 3 belongs to O there is a 3, in O such that 3 = N /p(81) (modBy,). Then
o'
aq

v (B) =0 5 — B — (mod P).
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Since (. r) is determined only modulo ‘B% and s < ¢ we can take 3(ur) = Ng/pay for
some 7 in Uk . The existence of (3; also follows as before. Sincet +1 > m

2d +eHY+ (L —-1)(t+1) S m+ (£ —1)(t+1) -
¢ - 14 -

and
Ng/p(l+x) =1+ Sk/p(z) + Ng/p(z) (mod BE)

if z belongs to ‘}3%“/. Thus

o () o (7)o (22,

Butd +¢ +t>1t+ 1sothat

Ng/r(e12)B = aNg/p <% . az) (mod P&)

Sincet+1=m+wv, d+e'+v>sandify = % -z then y which lies in ‘B%H/“’ also lies
in P7. But
2s+(t+1)(¢—1)

>t+1
7 >t+

so that
Ni/r(1+y) =1+ Sk/r(y) + Niyp(y) (mod PE™).

or <—O<Nf5</F(y)) — op (aSKgF(y)) '

P, B
Vr (%) = YK/F <%1 <§—1'ﬂ—o%'ﬂ1)£€)

To complete the proof of Lemma 8.10 we have to show that when K/ F is cyclic of prime
order, ¢

Consequently

In conclusion

as required.

81, (3= +B(ur)) = Ni/p(Picsi(8)) - (mod )

Since 2 < m < t + 1 the extension is wildly ramified, ¢ = p, and once the character i is

chosen as in the previous lemma we can define u% as in Lemma 8.5. The left side is congruent

to
ﬁ (ﬁ[—lgﬁ—l + (_1)Za/£—1) )
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If B € PB4 this is congruent to 0 and so is the right side. Suppose 30 = PB% with u < d. The
right side is congruent to

Nik/r (ﬁs—l — b1 g) = Ba' N/ (ﬁ 4 E 1) :

o1 Bi a e
Since (-1 C—1)(t+1 -1 t+1
(= Dt) £ (D) ST L
l l 2
this is congruent to
0—1 p oap e )
o N — — — |+ (=1)" ;. 8.1
5 {K/F(ﬁlml) <>} (s.1)
Since
BNk (Br) =1 (modPr™).
We see that

5€+1NK/F51_1 = ((mod Pt
and that the expression (8.1) is congruent to
Blet=1 1 (~1)¢Bat
modulo P4
Lemma 8.12

Suppose K/ F' is abelian and G = &(K / F'). Suppose there is an integert such that G = G
while Gy11 = {1}. Let xr be a quasi-character of C'r and suppose 2 < m(xp) < t+ 1. If
m(xr) <t+1thenm(xg/r) = m(xr). If m(xr) =t+ 1 thenm(urxr) <t +1 for some
pr in S(K/F) if and only if m(x g r) < m(xF).

It follows immediately from Lemma 6.7 that if x ¢ is any quasi-character of C'r and E any
finite separable extension of I’ then

m(xg/r) — 1 <Yg/p(m(xr) —1).
In the particular case under consideration Lemma 6.10 shows that if m = m(xr) < t then

Ngyp: U™ /U — U™ /U
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is an isomorphism. Thus yx/r(c) will be different from 1 for some a in U~ and m(xx,r)
will be at least m. If m(xp) =t + 1 then m(upxr) is less than t + 1 for some pp in S(K/F)
if and only if xF is trivial on the image of U/ U;(Jrl in UL/ Uffl. This is so if and only if
m(xx/r) <t

We shall need the following lemma in the proof of the first main lemma.
Lemma 8.13

Suppose K/ F is cyclic of prime order, x  is a quasi-character of Cr withm(xr) <t+1,
and m(xx/r) = m(xr). Choose o, ay,¢,¢1 in Lemma 8.11. We may choose 8 = 3(xr) =
Ny pp1 with 81 in Uk and we may choose

3 «

B(Xk/p) =B — —B1 —.

€1 a
Moreover m(,u%xp) =t + 1 and we may take

5(M%XF) = Ng/p(Cor +e151).

Since 3(xr) is determined only modulo B¢ and d < t the existence of 3; is clear. It is
also clear that m(,u%xp) =t + 1. The elements 3(xr), B(xx/r), and B(,u%xp) are to satisfy
the following conditions:

(i) If z is in P&

(i) If zisin %%
xi/r(1+2) = v p (M) |

(iii) If z is in P}

S (1 + )X (1 +2) = (W) .

We have already shown that 3(x i, ) may be taken to be
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g (u% X r) must be congruent to (o + 8 modulo P

Ng/p(Car +e161) = CaNg/p (1 +

Since
v+ —1)(t+1) - -1

14 - !

The right side is congruent to

e1b
Can

(t+1)>r.

modulo P’ *

*(1998) The manuscript of Chapter 8 ends here.

).
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Chapter Nine.

A Lemma of Hasse

Let A C & be two finite fields and let G = &(k/\). If x € K set

Wm/A(-T) _ mexaz

where the sum is taken over all unordered pairs of distinct elements of G. It is clear that

Wi/ A (T +Y) = Wi a (1) + Wi ya (YY) + S /a(2)Siya(y) — Siya(xy).

One readily verifies also that if A\ <7 < k then

w/{/k(fw = wn/k(sfs/n(m» + Sn/A (w/{/n(x»'

Suppose 1y is a non-trivial character of A and ¢ is a nowhere vanishing function on A
satisfying the identity
ea(@ +y) = pa@)ea(y) Yaley).
Define ¢,/ on k by
P/ (1) = PA(Sk/a () PA(=wie/a(2))-

Then ¢,/ (z + y) is equal to

OASkyn (@ + 1)) Un (—we/a(®) — we/a(Y) = Su/a(2)Se/a(y) + Sk/a(zy))

which is
/A T) /A (Y)Y 2 (2Y).

If the fields have odd characteristic the following lemma is, basically, a special case of
Lemma 7.7. That lemma has been proven in a simple and direct manner by Weil [14]. We shall
use his method to prove the following lemma which in characteristic two, when it cannot be
reduced to the previous lemma, is due to Hasse [8].

Lemma 9.1

Let

a(pa) = —ZI@ er(z)
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and let
U(@/{/A) = _ZIGK, (IOK/A(:E)
Then
o (pryn) = o(ion) ",
If

PX)=X"—aX™ 1 4+ bX™2 - 1 .
is any monic polynomial with coefficients in A set m(P) = m and
Xa(P) = @ala) Ya(=b).

If the degree of the polynomial is 1, b is taken to be 0; if the degree is 0 both a and b are taken
tobe 0. If
P(X)=X"™ —a X™ 14/ X™ 2 - ..

then
PP(X)= X" —(a+d) X" 1 4 (b+V +ad) X" 24

and
XA(PP') = @a(a+a") Ya(=b—b" —aa’) = xa(P)xr(P').

If ¢ is an indeterminate we introduce the formal series

Fat) = 3 Py =TI = (P,

The sum is overall monic polynomials with coefficients in A and the product is overall irre-
ducible polynomials of positive degree with coefficients in . If r > 2

P)=20
Z7n(P):T X)\( )

so that
FA(t) = 1 — O'(g0>\)t.

If we replace A by k, @) by ¢,/ and ¥ by 9,./5, we can define F), /) (t) in a similar way.
If k = [k : A] and T is the set of kth roots of unity the problem is to show that

1., B2 = Fupn ().
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Suppose P is an irreducible monic polynomial with coefficients in A and P’ is one of its

monic irreducible factors over x. Let m = m(P) and let r be the greatest common divisor of
mk
same as the field obtained by adjoining the roots of P’ to x. Thus m(P’) = ™ and P splits
into r irreducible factors over k. We shall show that

m and k. The field obtained by adjoining the roots of P to s has degree over \ and is the

(B

XeA(P') = {xa(P)}r

Thus if P}, ..., P! are the factors of P and / = %

3

Hz’:1{1 - X“//\<Pi/)tkm(P{)} = {1—xa(P)t'm}"
which equals
HCET {1 = xa(P)¢mt™}.
The necessary identity follows.

Let v be the field obtained by adjoining a root = of P’ to x and let i be the field obtained
by adjoining x to A. If
P(X)=X"—aX™ 1 4+ pX™ 2 ..

then

a=S,x(x)
and

b= wu/(z).
Thus

XA(P) = o (Su/a (@) Ya(—wu/a () = @u/a(z).

Since ¢, /() is equal to

OA(Sk/A(Sy k() Ur(—wi A (Sy /(7)) + S ya(wy /i (2)))
which in turn equals
Prc /2 (S (2)) Y pa (—wr ().
We conclude that
Xr/a(P') = @u/a(z).
Replacing by 1 we see that ¢, /() equals

ot (S (@) Bppn (~w1 /() = Dy (€) Wy (-e ey x) |
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One easily shows by induction that for every integer ¢

(0@} = @ (l2) Uy (—z ey x) . 0.1)

The relation
Xu/a(P') = {xa(P)}

follows.

Taking ;1 = A in the identity (9.1) we see that

[or(@)} = pa(t) (—e € x)

for every integer . Moreover {¢x(0)}? = ¢, (0) so that ¢, (0) = 1. If the characteristic p of
A is odd take £ = p to see that {p)(x)}P = 1. If the characteristic is 2, take ¢ = 4 to see that
{pr(z)}* = 1. Suppose ) is another function on A which vanishes nowhere and satisfies

O\ (@ +y) = O\ (2) O\ (y) Ya(zy).

Then gp&gp}l is a character and for some ain A

P\ () = pa () Pa(aw).
Of course
ox(@)vr(az) = pr(z + a)py ' ().
Thus
a(P)) = @5 (@) o ().

If @ and b are two non-zero complex numbers and m is a positive integer we write a ~, b if,

for some integer r > 0, (%)m =1

Lemma 9.2

If o € \*, the multiplicative group of A, let v(«) be 1 or -1 according as « is or is not a
square in \. Suppose )\ (x) = P¥x(ax), px and ¢, are nowhere vanishing, and

ox(r +y) = pa(@)ex(y)vr(zy)

while
O\ (x +y) = A () (W) Yi(zy).
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Then

o () ~p v(a)o(er).
Moreover

o(px) ~2p |o(er)l-

Suppose first that p is odd. By the remarks preceding the statement of the lemma it is

enough to prove the assertions for one choice of ¢y and ¢). For example we could take
oa(z) = Uy <@) and if « = 3% we could take ¢\ (z) = <@) In this case it is clear

QIQ

that o(px) = o(¢)). However if « is not a square, we take ¢\ (z) = 1\ (T) Then

ol tol) =23 o (3)=0.

aw - (-3)

so that o(py) = v(—1) o(pa). Moreover it is well known and easily verified that o(¢y) # 0.
Since

With this choice of ¢,

{o(e} = {v(=1)}* lo(ea)l* = o ()"

we have
a(pa) ~2p |o(pa)l-

The absolute value on the right is of course the ordinary absolute value.

Suppose p is 2. Again any choice of ¢y and ¢/, will do. In this case « is necessarily a
square. Let o = 3%. We can take ¢\ () = o, (Bz). Then o () ) = (¢, ). Itis enough to prove
the second assertion for any ¢, and any ¢,. Let ¢ be the prime field and let 14 be the unique
non-trivial additive character of ¢. Take 1)\ = v /4. Let 04(0) = 1, ¢4(1) = i. One verifies
by inspection that

(T +Y) = 0o (2) s (Y) Ve (y).

Take o) = ¢y /4. Since
(pr/0) = {o () YN,
it is enough to verify that
a(pp) ~2 |o(pg)l-

Since o(py) = —1 + 1, this is no problem.
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If a is a non-zero complex number set

The following lemma explains our interest in the numbers o (¢ ).
Lemma 9.3

Suppose L is a non-archimedean local field and Xy, is a quasi-character of C, with
m = m(xr) = 2d + 1, where d is a positive integer. Let 1}, be a non-trivial additive character
of L and letn = n(31). Lety be such that yOy, = P;**™ and let 3 be a unit such that

xo(1+z) =g (%)

for x in ‘}3%“. Choose § so that §Oy, = B¢ and let 1)), be the character of A = Oy, /B, defined

by
2
(@) = i (ﬁ‘;x).

If v, is defined by

erte) =vn (220) i1+ o)
then
ox(r +y) = pa(@)ex(y)r(zy)
and

As(xL, Yr, v) = Al=0(pa)]-

In the statement of this lemma we have not distinguished, in the notation, between an
element of Oy, and its image in A. This is convenient and not too ambiguous. It will be done
again. The only questionable part of the lemma is the relation

ox(r +y) = pa(z)pa(y)a(zy).

Since

(1+62) (14 6y) = (1 + 6z +dy) (1+6%zy) (modP})

we have

2
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The required relation follows immediately.

There are a few remarks which we shall need later. It is convenient to formulate them
explicitly now. We retain the notation of the previous lemma.

Lemma 9.4
Ifm(pr) < m(xr) then
Az(pr xr, Yriv) ~p Az (xr.¥Yr;7)

and if m(pur) < d we may take B(urxr) = B(xr) and then

As(prxr,¥Yr;v) = As(xL, ¥r; ).

In both cases m(urxz) = m(x1). Moreover if x € 324

oL (ﬁ(uLxL)x

; )Zﬂd1+®xdl+@zxd1+®

o <5(X7L)517) .

which in turn equals

Thus
Blprxe) = B(xr) (modPr)
and if
Uale) = i (W)
Y
while )
R e

then ¢\ = 9. The first assertion of the lemma now follows from the previous two lemmas.
It is clear that we can take 5(urxr) = B(xr) if m(pr) < d. Let the common value of the two
numbers be 3. Then

Py, <&ix> ,uzl(l-l—(Sx)le(l-l-éx)

is equal to

¥r (ﬁéf) i (L4 6).
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We see now that the second assertion is completely trivial.
There is a corollary of this lemma which it is convenient to observe.
Lemma 9.5

Suppose m(x1,) = 2d + ¢ where d is a positive integer and ¢ is 0 or 1. If m(p1,) < d and
(1, is of order r then

Alprxr,¥r) ~r Alxe,¥r)-

Choose -y in the usual way so that

A(xr,¥r) = xo(v) Ar(xz,YL:7)

and
A(prxe,¥r) = xo(Vpc(y) A(prxe, Yriv)-
It is clear that
pr(y) ~r L.
If we take

Bprxr) = B(xr)

then, clearly,
Ao(prXxr,¥r;y) ~r As(Xr,YrL,7)-

To complete the proof of Lemma 9.5 we have only to appeal to Lemma 9.4.
Lemma 9.6

Suppose K is an unramified extension of L and X, is a quasi-character of C'j, with
m=m(xr)=2d+1

where d is a positive integer. Let 1), be a non-trivial additive character of F' and letn = n(iy,).
Suppose

xr(1+z)=19r (?nix—im)
w

L
for x in ‘ISdLH. Take
B(xr) = B(xx/L) = B-
If

d
ox(@) = i (—ﬁ Zﬁi) i1+ i)
wr,
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and if .
Bw§x _
en(T) = YK/L (wTi” XKl/L(l—i—w%a:)
L

forz in k = O [Pk then ¢, = ¢, /r. Moreover if [K : L] = { then

As(xr 0 Yy, @) = (=1 As(xe, Yo, wp )}

Once we prove that ¢,, = ¢,/ this lemma will follow from Lemmas 9.1 and 9.3. If
belongs to K let E%(z) be the second elementary symmetric function of = and its conjugates
over L. If x belongs to Ok

Ny p(l+@iz) = (1+ @Sk rz) (1 + wi'E*(x)) (mod PT).

Since
FE?(x) = we/x(x) (modPr)

we have
0r(T) = OA(SK/LT)UA(~wi /A (T)) = Pr/a ().

Now suppose K is a ramified abelian extension of L and [K : L] = {is an odd prime. Let
G = B(K/L) and suppose G = G; while G;+1 = {1}. Suppose

m=m(xr)=2d+1

is greater than or equal to ¢ + 1 and

xo(1+2) = (ﬂTﬁ)
w

L

for z in Pg“. Let

/ 5“%9’7 -1 d’ 2/ _d
O\ () =YKL —mn | XL (1+ Sk/p(wkr) + E*(wk)).

Suppose also that
wr = Ng/LWk.
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The assumptions listed, we may now state the next lemma.

i
€= Sk/L 2d
wr,

then ¢ is a unit. Moreover ¢, is a function on A\ = Or,/Pr, + Ok [Pk which satisfies

Lemma 9.7

If

O\ (x +y) = O\ () o\ (Y)Ya(ery)

if 3
U
wA(U) =YL (W) .
If
ox(r) =YL ( ﬁin) L (L+wix)
wr,
then

Since
d+(—1)(t+1)

>d
/ 2

the number
Sk (wha)

. . / . . / .
lies in B¢ . Moreover E?(w$ ) is a sum of traces of elements in P22 . Since

2d +(£_£1)(t+1>:2d+£;122d

it lies in P22, If x lies in P it lies in P and
SkyL(wie)

lies in i]3%+1 because

i _ _
d +1+(£Z 1 (t+1) :d+1+t(£2£1) it
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Thus if = belongs to Pk

) =vn (e Sipn (@) ) it (14 Sgn(fia)) =1
L

Since
E*(wi(z +y))

is equal to
E*(wiex) + E*(@ky) + Skyn(@k) Sx/p(@iey) — Skyo(@i zy),

the expression
L+ Sk/o(@ic(@ +y)) + E* (@i (z +y))

is congruent modulo ‘B’* to the product of

14 S/ (wke) + BX(wla)

and
1+ Sk/(@ky) + B> (@ky)
and
1 — Sk (@i ay).
Thus
Pz +y) = or (@) (y)valey).
Since

2d'+ (0 —1)(t+1)
l

the number ¢ is in O,. We conclude in particular that if y belongs to B i then

> 2d

o\ +y) = o\ (z).

If t = 0 let o be a generator of G and let @y 7 = v. In this case 2d’ = 2d/ and

wid/ 1— 2 de(e—1)
w2 - {HTGG Wk } =V (mod P

and
e = (=Y (mod P)
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isaunit. If t > 0

!
w3 = @ 'wle (mod P

so that

wt

e =Sk/L <w—f) (mod PBy).

L

It is shown in paragraph V.3 of Serre’s book that the right side of this congruence is a unit.

First take p odd and let

e (G e (252) o ()
o(iex) = —¥a < ) > (*’3"‘70‘) =~y <_7042) PR <%2) :

Making use of the calculations in the proof of Lemma 9.2 we see that

)l (3)

Then

Alo(pa)] = va(~1)F 45 (

of v, is the non-trivial quadratic character of A*.

Since

is congruent to
{1+ Sk L(@ka)} {1+ B> (wha)}

modulo P}’ the value of ¢ () is

" <(SK/L?J)2 +2a Sk Ly — 2E2(y)>

2
if d/
Wk
=Lz
Y w%
Thus
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Replacing z by

and summing we find that

o (h) = (‘E;Q) {—wa (?)}

Collecting this information together we see that to prove the lemma when the residual
characteristic p is odd we must show that

Since v¥(*~1) is certainly a square we have to show that

£—1

va(=1)"7 =wuy(¢)

when ¢ = 0. If the field ) is of even degree over the prime field both sides are 1. If not, an
odd power of p is congruent to 1 modulo ¢ and the relation follows from the law of quadratic

reciprocity. If £ > 0 then
¢
w

e = Sk/L <w—f) (mod‘Bp)

L
and we can appeal to paragraph V.3 for a proof that
e+uP™ =0
has a solution in A. Thus v)(¢) = v,(—1) and we have to show that
va(=1)7=2 =1
If p=1 (mod4) then vy(—1) = 1 and if p = 3 (mod 4) the exponent is even.

Before considering the case p = 2, we remark a simple consequence of the preceding
discussion.
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Lemma 9.8
If p is odd let
72
ox(x) = Py (? + aa:) .

Ift = 0 and -

Iu — yd‘eT
then ,

A ()= (e (5 )

and ift > 0

o5 ()

ex?
=y (—) .
T
In both cases

. S Y+ a)?) — la?
)= (Gt o)1y
with p
w
y=—""Ly

wr,

If t = 0 then y = px. Thus if z belongs to Oy, as we may assume,

AG) e () e (1 (5 )

2
If t > 0 then £ = pis odd and

d/gd-l—(é;l)(t-l—l) :% {(5_1)“_1)_ (£—1>t}:

2

~|
—N
—~
~
|
—_
N—
+
—~
~
|
—_
SN—
~
——
V
—_

so that, if z € Op,
Sk/o(y+ a)? =ex® (modPy).
Now take p = 2 so that ¢ is necessarily 0 and again let

(-1
M e yde 2

so that
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Ifzisin Op and y = %then

is equal to

Lz _ (-1
YL (w) XL (1+zng+ ( 5 >w%dw2).

—1
1D 2

Since

W_l)w%d 2= (1+twia) <1+

A (%) = oa(lx)ihn (# xz)

{pa(2)}".

1+ twla +

L

modulo ‘B we have

which equals

Moreover
{oa(@)}? = oA (22) Ya(—2?) = Ya(—2?).
Since the characteristic is 2 there is an « # 0 such that

Va(x?) = x(aw).

Then the complex conjugate of ) (z) is

ox(x)r(ar)

and

olpr) = — ZI or(z + )
which equals

- Z ex(@)or(a)ihr(ax)

is equal to
pala) o(en).
Consequently
Alo(pa)]' = pala) T Alo(pn)
Since
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we have

if { =1 (mod4) and

if ¢ =3 (mod4).

We have to show that

pal@)® =1

if ¢ =1 (mod4) and that
441

pala) = =1
if £ = 3 (mod4). These relations are clear if ¢ is congruent to 1 or 7 modulo 8. In general if
¢=1 (mod4)

/= (—1)(—3
o =y (- 21D )

and if / = 3 (mod 4)

£l (+1)(—1
e = (- DD )
Let ¢ be the prime field and let ¢4 be its non-trivial additive character. Choose o such
that
Yaso(r) = ¥ (af).
Then
@) =vuse () =t (Z) =t (o)
)\—A/qba%—k/(ﬁal—Al

and a = «1. Thus
Ya(0?) =1y /4(1).

The right side is +1 or —1 according as f = [\ : ¢] is even or odd. But ¢ divides 2/ — 1 so that,
by the second supplement to the law of quadratic reciprocity, f is even if £ is congruent to 3 or
5 modulo 8.

There is a complement to Lemma 9.7.

Lemma 9.9
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If m(xr) > 2(t + 1) choose B(xk/r) = B(xr) = FinOr. Ift +1 < m(xr) < 2(t + 1)
choose (3(xr) = [ and

Blxx/) =B - B —

aq

as in Lemma 8.9. Then m(x k1) = 2d’ + 1 and

Bxr/) wha\ /
@DK/L ( /m+n S XKl/L (1-}-@?{33)
wL
is equal to

ﬁwd/az _ / y
Yr/L (WTI—;L Xzt (1+ Sk/L (whz) + E*(wka)).
L

From Lemma 8.8 we have

m(XK/L)zl—f—t—f—Z(m—l—t):Q(Zd— (Z_Dt)—i—l

as required. If d > ¢ + 1 then

(t+1) ,, (€-1)

d >
- 2 2

(d—t)>m

because ¢ is odd. Moreover,

3d'+(£—1)(t+1) S m' +(—1)(t+1)
14 - 14

Consequently
Nijo(1+ @) =1+ Sk (@ks) + B (wkz)  (mod PT)
and the lemma is valid if m > 2(¢ + 1).
Ift +1 <m < 2(t + 1) we still have

3+ (L—1)(t+1) _
; >

m

so that
d/
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is congruent to
1+ SK/L(w?{x) + EQ(wf,l(:B) + NK/L(wf,l(x)

modulo PB7*. Since d’ > d + 1 this is congruent to
{1+ SK/L(W.%JT) + E*(wha)} {1+ NK/L(W%QJ)}

modulo B7'. Certainly

/ N d
xe(1+ Niyu (i) = (ﬂ f;iif”)).
L

Moreover,if m =t¢t+1+v

d—v=d+

v>d> s

if s is the least integer greater than or equal to 5. Thus, just as in the proof of Lemma 8.5,

BNy (wh) @ N1 (% w%m)
(03 =YL

wTLn-l—n wTLn-l—n
is equal to
!
. —Sk/L (_aa611 wg(x)
L
w’L”JF"

Multiplying the inverse of this with

B %
e ((-52) )

Bwlha
Vr/L (W .

L

we obtain

The lemma follows.

If m = t + 1 we may still choose

BxxL) =B— O%
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as in Lemma 8.9. However the relation between ¢ (z) and

Blxr/r) @k '
e (®) = YK/ ( w/m-l-n E XKl/L (14 @)
L

will be more complicated. Here © = Ok /P is the same field as A = O, /P1. We introduce
it only for notational purposes.

Because m =t + 1 the number ¢ is at least 2 and

t
d:d/:§'
Since
3d+ (p—1)(t+1) St
p
and
d+(p—1)(t+1) S a4

p

the expression
Nier(1+ wica)

is congruent to
{1+ Sxyn(wi) + B*(@ka)} {1 + @] Ni/ra}

modulo ‘BT and
XL(1+ Sk (wica) + B> (wic))

is equal to

m—+n
Wp

v (ﬁ Skp(@whx) + BE%@}Qx))
L )

According to Newton’s formulae
SK/L(W%(de) - SK/L<W?{Q3)2 +2E%(wix) = 0.

Thus 1
F*(wha) = — 5 Sk r(@iz?)  (mod PP").

Observe that p is equal to ¢ and therefore, in the present circumstances, odd.



Chapter 9 100

Let uur, be a character in S(K/L) as in Lemma 8.9(c) and let

2
ax . d T
YL (W) pr (L4 @rz) = ¥a (p 74‘71')

with
o
pP= 5
B

Certainly
pr(Ngyp(l+ wha)) =1

if x belongs to Ok . Replacing x by % x we see that

Y (; {a SK/L (& wfrl(a:) _ ¢ SK/L (ﬂ—% w%(de) JrNK/L (ﬁl w?{x)})
w?”” oy 2 af
2
() (P % + TZ)

1 P 1 Bt _od 2 P _a
z= w—% {SK/L (a—l wKa:) —3 Sk/L (a—%wKa: + Nk/1 a—lea:

which is congruent to

is equal to

— NK/L{L' =—z?

modulo Py
Let
px -1 d
QO)\(I’) =YL dri+n | XL (1 + wL$>
wr
equal
2

U (% + Ux)

If x belongs to Ok

B z?P —BNk/Lx
XLl (1+w%NK/Lx) :¢A <7+qup) ¢L (Tl‘(‘n .
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We now put these facts together to find a suitable expression for ¢,;(x). We may as well
take z in Op. Then ¢, (z) is the product of

Bt
VK/L (wan

L
and .
pra wiw -1 d
- 1 N
¢K/L< ar Xr (1+@f Ng/rx)
and

YL (- % {SK/L(wg(x) — % SK/L(w%(da:Q)}) :

L

The second of these three expressions is equal to the product of

x2P x2P
(5 <7 + 037p) (5 <—p_1 ——p 7 pr)

2
and 2_2d,..2 2
aff wif'x epBT o
- - o — _ €T
i/ ( 203 w?”") ¥a ( 202
if o
w
e=S —K .
e/t <W%d)

The product of the first and third is equal to

2
T
(O3 (T) -
As proven in paragraph V.3 of Serre’s book the elements of Uy, congruent to
1+ (ex+2P) =t
modulo ‘,]3?'1 are all norms, so that

Ya(paP) = Ya(—pe ).

2 2p
(Y (- %332) =V (P_l %) -

*(1998) The manuscript of Chapter 9 ends with this formula.

In particular
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Chapter Eleven.

Artin—Schreier Equations

The theory of Artin-Schreier equations is central to Dwork’s proof of the second main
lemma. We first review the basic theory, which we take from Mackenzie and Whaples [11],
and then review Dwork’s rather amazing calculations. These we take from Lakkis [9].

We start with an exercise from Serre’s book [12]. Suppose F' is a non-archimedean local
field and K/ F is Galois. Let p be the residual characteristic. With the convention (0) = P
we let

pOFr = P%.
Suppose G = (K /F)and 0 € G; withi > 1. Let
wy = wk(l+a)

with a in P Let
o(z) =27 — x.
@ is an F'-linear operator on K. If x = awi( belongs to ‘}3%( then

g

() =127 —x = (o — ) @) + (@l — wi)

is congruent to
ol (@7 =1) = awf {1 +a) - 1)

modulo ‘B?’j 1 This in turn is congruent to
(a @) (ja) = ja
itj+1
modulo P,

If*
Y(a) =" ~1

then, as an operator,

b=(+pr—1=3" (V)¢

k=1

* We seem to be dealing with yet another use of the symbol 9!
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If  belongs to ‘}3%( then
@) =0 +i). G+ (b= Di)ara (mod P
and v (z) is congruent to
pjax + (i +i)...(j + (p—1)i)aPz

or to
pjax + j(jP =t — i aPx
modulo ‘B?’ﬂ'elﬂ if pOx = P

We deduce the following congruences:

(i) If (p — 1)i > €’ then
Y(x) = pjaxr (mod %?‘He +1).

(ii) If (p — 1)i = €’ then

Y(z) = pjax + j(1 — " 1aPx (modm?jﬂlﬂ).

(iii) If (p — 1)i < €’ then

P(x) = j(1 — P HaPr  (mod Pt

Observe that if (j,p) = 1 and o belongs to G;, with i > 1, then
p(2) =0 (mod ™)

for all x in ‘,]3‘}( if and only if o belongs to G;11. It follows immediately that if o belongs to G;
and ¢ > 1 then o
p(x) =0 (mod Py

for all z in ‘,]3;7,( only if o belongs to G;.

If o is replaced by o PP then ¢ is replaced by . If k > pe_/l and G}, # {1} then, for some

i>k, G;#{1}and G;41 = {1}. Taking (j,p) = 1 we infer from (i) that if o belongs to G,
but not to G;41 then o? is in G; . but not in G4 41. This is impossible. Thus G, = {1} if
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’

k> 55, If Gy # {1} then p divides €’ so that if (p — 1)i = ¢’ the number ¢ is also divisible by
p. The congruence (ii) reduces to

¥(w) = j(pata”) (mod P+,
Thus if o belongs to G its pth power o? lies in G and is therefore 1. Consequently
pa+a? =0 (mod ‘B’;?H).
Letting a = aw?’- and p = Sw$ we find that
ol + fa=0 (modPk).

Since this congruence has only p roots the image of ©; lies in a subset of U’/ U?'l with p
elements and G; is either {1} or cyclic of order p.

If (p —1) < € and (i,p) = 1 the congruence (iii) implies that o? belongs to G)p;+1 if &
belongs to G;. However if (p — 1)i < €’ and p divides 7 it shows that o” belongs to G,,; but not
to Gpi+1 if o belongs to G; but not to G;+1. Thus 0 — oP defines an injection of G; /G 41 into
Gpi/Gpit1. If Gi/Giy1 is not trivial neither is Gp; /Gpiy1 and (p — D)pi < €. If (p— 1)pi < €
we can repeat the process. Thus, for some positive integer h, (p — 1)p"i = €’ and G,
trivial. It is then cyclic of order p. According to Proposition IV.10 of Serre’s book those k£ > 1
for which G, /Gj+1 # {1} are all congruent modulo p. In particular if Gy, /G4 is not trivial
for some k > 1 divisible by p it is not trivial only when k is divisible by p. The preceding
discussion shows that if i is the smallest value of k > 1 for which G /G is non-trivial then
any o in G; but not in GG; 41 generates G; = G;. In other words:

is not

Lemma 11.1
If Gy is not cyclic then (i,p) = 1 ifi > 1 and G;/G;4+1 # {1}.
Lemma 11.2

Suppose K /L is cyclic of prime degree and G = & (K /L) is equal to G, witht > 1 and
(t,p) = 1. Then thereis a A in K and an a in L such that aOy, = ;" and

AP — A =aq.
We observe first of all that [K : L] must be p and that if pOx = P% then (p — 1)t < ¢’. If

x belongs to K the symbol O(x) will stand for an element in zOk and the symbol o(z) will
stand for an element in P . If
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with a; in F' then

_ . 7
|| = Jnax. |a;| ||

Moreover if o is a generator of G

-1 . .
27 —1= Zé_l a; W (w}gg_l) - 1)

and if @5 ' = (1 + awl)
1(oc—1 1
Y =1 = (1 + awl) — 1] = ||
for1 <7 < p. Thus
o __ — t ) 7 < t ‘
o7 — ol = il lail [kl | < [kl Ja

There is equality if ag = 0. In particular if

then
2 —1=9y" -1
and
ly” — 2l ==kl lyl-
If z belongs to K let
p(zr) =af —x.
Then

pr+y)—p) —pw) => (1) ayr (11.1)

i=1 /)
Since ¢/ — (p — 1)t > 0 the right side is o(y) if
and

We define v (z) by the equation
2] = [k [*€ ™.
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To prove the lemma we construct a sequence Ag, A, Ag, ... and a sequence O, O, ...
with the following properties:

(i) vk (A,) = —tforallmn > 0.

(i) If o is a given generator of G and ( is a given (p — 1)th root of unity

A% — A, =C+o(1).

(iii)
p(A7) —p(A,) = OF — O,

n

and

07 = On| = [@k] [On].

(iv)
Api1 = Ay + O,

\
P(AT41) = P(Ans1) = o(p(AT) — p(An)).

It will follow from (iii) and (v) that {©,,} is converging to 0. Then (iv) implies that {A,, }
has a limit A. (i) implies that vx (A) = —t and (v) implies that AP — A = a belongs to F.
From (ii)
A —A=(+o(1).

To construct Ag let a belong to U’ and consider

g o aU

= =+ = (@K 1) = ~taa +o()
TDK wK wK WK

«

if
ol = wi (1l + awk).

We can choose « so that

—tac = ¢ + o(1).
Then we set
«
AO = —t
Wk

We observe in passing that conditions (i) and (ii) determine A,, modulo ‘,]3;(t+1.
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Suppose Ay, ..., A, have been defined. Then

p(A7) = p(An) +p(¢ +o(1)) + o(1)
which equals
p(An) + p(C) + 0(1> = p(An> + 0(1)'

Choose ©,, so that
G);TL - G)n = p(AZ) - p<An)

and
07 — O = |wk]| |On].

Then vk (©,,) > —t and if
An—|—1 = An + C'_')n

vi (Ap41) = —t. Moreover
m1 — A1 = A7 = Ap +0(1) = (+0(1).

and

p(Ant1) =p(An) +p(0,) + 2
with x = 0(0,,). Then

Also
p(©7) —p(On) = p(O; — 0,) +0(6] — 6,).

Since vk (OF — ©,,) is positive the right side is
—(0) —0,)+0(0) —06,).

n

Thus
p(A7 1) —p(Anyr)

which equals

is
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Lemma 11.3

Supposer Ay belongs to K, a belongs to L, vy, (a) = —t and
AT~ Ay = a+ O(w)
withr > 1. Define A,, inductively by
Api = AP —a.

Then
An—|—1 - An = O(An - An—l)

ifn>2andifr > (¢! — (p— 1)t)
A1 — Ay = O(jd (D= 0700)

Moreover
lim A, =A
n—oo

exists and AP — A = a.

The last assertion is a consequence of the first. It is clear that
AQ — Al = O(@TK)

Suppose n > 2, and
A, —A,_1=x=o0(1).

Then
An—i—l - An = AZ - Alyol_l = (An—l + x,)p - An—l

is equal to
p=l p k p—k p
{Zkz_l (k:) Ana }-I—as
which is o(x) because ¢’ — (p — 1)t > 0. If

= O(w;(-l—(n—?) (6'—(p—1)t)>

andr >¢e — (p—1)titis
O(w! =D ¢ ~o=1)0))
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The lemma has a couple of corollaries which should be remarked.
Lemma 11.4

Ifaisin L, vp(a) = —t, AP — A = qa,and £ is a (p — 1)th root of unity there is a number
A¢ such that
Ae=A+E+ 0wy PV

and
Af = A¢ = a.
Relation (11.1) shows that A + ¢ satisfies the conditions of the previous lemma with
r=e¢ —(p— 1.
Lemma 11.5
Suppose A belongs to K, b belongs to L, vy, (b) = —t and
AP — A =b.
Then for any u in UL the equation
AP — A =bu
has a solution in K.

Take, in Lemma 11.3, a = bu and A; = A. Lemma 11.5 shows that if S is the set of all in
L with vy (a) = —t for which the equation

AP — A =a
has a solution in K then S = SU z+1_

Lemma 11.6

If ¢ is the integral part of 1% the number of cosets of Ut! in S is

—1
pT [OL ZmL]l_'_Z.

Fix a generator o of G = &(K/L). If a belongs to S, AP — A =a,and {isa (p — 1)th
root of unity

(€A) — €A =¢a.
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By Lemma 11.4 there is a (p — 1)th root of unity ¢ such that
A=A+ (+o0(1).

Then
(EA)7 = EA +£C+o(1).

Thus if S’ is the set of a in L with vy (a) = —t for which
a=AP — A

with
A =A+14o0(1)

the number of cosets if UEH in S is p — 1 times the number of cosets of UEH in S’

Choose A, with vx (Ag) = —t, for which Al — Ay = ag isin F and
AF = Ag+1+0(1).
Ifog(A)=—t, AP —Aisin F,and
A =A+1+0(1)
then, according to an earlier remark,
A=Ag+Q

with Qg = o(Ay).

Choose any 2y = 0(Ap) and set Ag = Ag + Q. According to the relation (A)

p(Ao) = p(Ao) + p(Q0) + 0(£2).

Since
Qg — QO = O(W%Qo) = 0(1)
we have -1 /p ‘
apr—ap =" () 2798 - 20" = (25 — Q).
Thus

p(Ao)” — p(Ag) = QF — Qo + o(@x Q)
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and p(Ao) isin L only if
Qg — QO = O(TD%Q()),

that is, only if Qy = g + 0(€2y) with ag in L. On the other hand if

Qg — QO = O(TD%Q(ﬁ

and we construct the sequence Ay, Aj, A, ... as before and let
A= lim A,
then
A= AO + O(Qo).

We conclude that the number of cosets in B3 /B3, s > —t, containing an Qg such that
(Ao +0)” = (Ao + )
isin L is 1if p does not divide s and is [Oy, : P ] if it does.

Choose A so that
AP — A =aqa

isin S’. If Q2 belongs to P35, s > —t, but not to 213‘?1 and
(A4+QP—-A-Q=0b

is also in S’ then a and b belong to the same coset of U} if and only if

b=a+o(1).
Ifs>0
P(A+Q) =p(A) +0o(1)
butif s <0
P(A+Q)=p(A)+ Q7 —Q+0(Q)
and

QP —Q+0(22) =0(1)

if and only if s = 0 and
Q=¢+o(1)

where ¢ is some (p — 1)th root of unity. The lemma follows.
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Ifx = {x1,...,7,} let E*(z) be the ith elementary symmetric function of z1, . . ., z,, and

let .
S'(z) = Zk:1 Ty,

If Z is an indeterminate and

then -
Zizl SH(xz)Z'

is clearly —Z times the logarithmic derivative of Q(Z). Thus

(Zzl S'(x) Zi) (Z;O(—l)"Ei(x)Zi) - —Z;O(—l)iiEi(as)Zi.

This identity which we refer to as Newton’s identity is equivalent to the formulae of Newton.
It implies in particular that

1—1

D (D ST (@) Bl (2) = (-1) B () (11.2)

if 1 <i < n. We may divide Newton’'s identity by )(Z) and then expand the right-hand side
to obtain expressions for the S?(z) as polynominals in E'(z), ..., E™(x). The coefficients are
necessarily integers. To calculate them we suppose that zy, . . ., z,, liein a field of characteristic
zero. Let

QZ)=1+P(Z).
Then

oo (—1)k k
log Q(Z) ==, ~—— (P(D)"

The coefficient of Z*~! in the derivative of the right side is

DD DR k-1 szl (B ()}

a1 +2azs+...+na, =1 al' PN O{n!
This expression is therefore equal to —S* ().

Suppose K/L is a ramified cyclic extension of degree p and G = &(K/L). Let G = G,
and Gy41 = {1}. Suppose u < t, Aisin K, and

AOk = m;(u
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We take {z1,...,2,} tobe A and its conjugates under G. In this case we write
E'(z) = B/ (A)

and
S'(z) = Sk, (A).

If 1 <7 <p-—1and ~; is any integer less than or equal to

—iu+(p—1) (t+1)

p
we have
Ep(A) = 0(mod P}").
We may take
' — 1)t
Vi = L (p—1) .
p p

If 7u + t is not divisible by p this inequality may be supposed strict.

Suppose a1, . . ., oy, are non-negative integers,

IR

and »
Z, 1o, =4
i=1
If
p—1
Y = {Zizl 'yiozi}—uap.
Then ,
[ _ {(E@y* =0 (@) (11.3)
We have y ) )
NN -1, - )apt.
p p p

The inequality is strict if cv; is non-zero for some ¢ such that iu + t is not divisible by p.

We record now some inequalities that - satisfies in various special cases. They will be
needed later. We observe first of all that, if 1 < i < p, ~; is non-negative and is positive unless
p divides 1u + t.
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(i)

(ii)

(iii)

(iv)

If / = pand k = 2 then
l+u+y>1+t

In this case o, = 0 and the left side is at least

2(p—1)
p

1+ t>1+t.

If p is odd the inequality is strict.

If / = pand k = 2 then
v = 0.

Moreover the inequality is strict if p is odd. This statement is of course weaker than that
of (i).

If¢{ =p, k>3, and pisodd, then

o is again 0. The left side is at least

p

n % {(3p— 4t — (2p — L)},

The final term is non-negative. The inequality is strict if w # ¢t. If v = ¢ and p does not
divide w it is again strict for then o; # 0 for some 2 < p — 1 and for such an 7 the number
1u + ¢ is not divisible by p.

If k < p then
t—u
(p—l)u—f—’YZU"i‘T

except when «y, = k or o, = p — 1. We have to show that
u—t
(p—2)u—|—’y+7 > 0.

The left side is at least

¢ 1 p—1 p—1 1
p—2———|——}u—i—{— < ' ai)——}t.
oz {550 (S0
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If o), # k the coefficient of ¢ is positive and we need only show that it is at least as great
as the negative of the coefficient of u or in other words that

(p—1) (Zf_ll ozi) +(p—2)p>L.

This follows from the assumption that a, < p — 2.

(v) If k <p—2and o) = k then
p—Du+vy>u.

In this case
v > —ku.

There are circumstances in which the estimates for ~; and therefore those for v can be
substantially improved. We will discuss them shortly.

Suppose now that K/ F is a totally ramified Galois extension and G = &(K/F) is the
direct product of two cyclic groups of order p. By Lemma 11.1 the sequence of ramification
groups is of the form

G:G—IZGO:Gl:---:Gu#Gu—i—l:---:Gt%Gt—‘,—l:{l}
with (u,p) = 1 and u = t (mod p) or of the form
G:G_l:G():Gl:...:Gt?éGt_i_lz{]_}

with (¢, p) = 1. In the second case we take u = t. In the first case let L, be the fixed field of G
and in the second let L; be any subfield of K of degree p over F'. Let Ly be any subfield of K
different from L; which is also of degree p over F. Let G* = &(K/L;) and let

G =Gl G, ={1}.
Then s; =t and s = u. According to Proposition IV.4 of Serre’s book
Oxyp =" —p)(u+ 1)+ (p—1)(t+1)

and

O/, = (p—1)(t+1)
and

Or/L, = (p— 1) (u+1).
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Thus

1
Or,/F = » (0x/F —0r/r,) = (p—1) (u+1)
and
(p—1)

(Ok/r — OK/L,) = (p=1D (u+1)+t+1).

D=

O, /F =

G = ®(L;/F)and -
then t; = v and

t—u
to =u-+

Lemma 11.7

Suppose A belongs to K, vk (A) = —u, and
AP —A=a
belongs to Lo. It Y belongs to Ly then
vr, (Skyr, (YAY)) > (p— D)ty — ity + v, (Y)

and
vr, (B, (YA)) > (p— Dtg +i(vr, (Y) — t1)

forl <:<p-1.

We show first that if 6 belongs to L; and

o=37, v

with Y; in Ly then
UL, (Y;) >ty +or, (9)

for0 <¢ < p— 1. Sincet; = u and

vg(0) = min {vg(Y;) —iu}

0<i<p—1

the inequality is clear for « = 0. To prove it in general, we use induction one ¢. Suppose
0 < j < p — 1 and the inequality is valid for ¢ < j.
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Let
pOr = P&.

Applying the exercise at the beginning of the paragraph to the extension Ly /F we see that

t—u
pez == (s 1),
If £ is any (p — 1)th root of unity then, by Lemmas 11.3 and 11.4, thereisa o in G such that

AT = A+ &+ O(wh P,

We may write
p—1 ; ;
07 -0=D VAT - )
as a linear combination o1
S

with coefficients from Lq. Since
UL, (eg - 9) > VL, (9) +t

we may apply the induction assumption to see that

VL, (Xj-1) > (= 1))t1 + v, (07 — 0) > jt1 +vp, (0).

On the other hand

AZO’_A’L:<A+£) Al—f—O( pe(p Du—(i— 1)“)

so that 7 — 0 is equal to

p=1 ' kgimk 4
SRS () et
with ,
=09l -~ P72,

Thus if _—
n= Zi:o Z; A"
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with the Z; in L, we have
vr(Zj-1) 2 (j — Du+vk(0) +p’e — (p — 2)u.

But
pe—(p—2u+(G—Du=plp—Nu—(p—2)u+(j—1u

which equals
((p—1)* +j)u > pju.

Xj—l = (Zj:]l Y; (;) fi—j) + Zj_l

Since

we have
p—1 { i ,
o (Zz‘:j Y <J) ¢ J) = Juten(0)
for all £. We obtain the required estimate for vz, (Y;) by summing over &.

We now show that
v, (Skyp, (YAY)) > (p— )ty — ity + vp, (V)

forY in Ly and 1 < ¢ < p — 1. All we need do is show that for any 6 in the inverse different
of Ll/F
Spyp(Bmy TR gL (YAY) € OF

or thatif # is in L, and

v, (0) 2 —(p—1) (b1 + 1) +ith — (p— 1)t — v, (V)

then
St r(0Sk/,(YA")) = Sk/(0YA") (11.4)
isin Op.
Let -
— AJ
0=>_ Vi

with Y in Lo for0 < j < p — 1. Then

. —1—1 L -1 o
YA =" Yy ATt L (ara) YT vy artior,

Jj=0 j=p—1t
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Since
AP —A=aqa

we have
K/1,(A) =0

forl <7 <p-—1and

Ep 1, (A) = (1),

The relations (11.2) imply that
Sk/p,(A") =0

for1 <7 < p—1and that
SK/LZ(Ap_l) =Dp— 1.

Thus (11.4) is equal to
(p—1)Sr,p(YYp_1-4) + S, /r(paYY,_;)
if i < p — 1 and to the sum of this and
SLo/p(YYpo1)
ifi=p—1.

We know that
UL, (1/;) > jtl +vr, (6)

for each j. Thus
v, (YYp 1) > (p—1—i)ty — (p—1)(t1 + 1) +ity — (p— 1)t
which is at least —(p — 1) (t2 + 1). So is
vL,(PaYY, 1) > (p—Dta—t1 —(p—1) (L1 + 1) + ity + (p —9)t1 — (p — 1)ta.
fi=p—1
v, (YYp 1) 2 (p—-Dti—(p-1)(t+1)+(p—1t1— (p—Dt2
is also at least —(p — 1) (t2 + 1). All we need do now is observe that

SLQ/F(&BZEP_U (t2+1)) C Op.
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To complete the proof of the lemma we have to show that
vy (i, (YA)) 2 (p = Dtz +i(vr, (V) — 1)

for 1 < ¢ < p — 1. This has been done for ¢ = 1; so we proceed by induction. Applying the
relations (11.2) we see that

) ) i—1 L .
()" iE L, (YA) =) S S, (YA By (YA).

j=

According to the induction assumption and the first part of the lemma, with Y replaced by
Y77, a typical term in the sum on the right is O(cww} ) with

v=(p =Dtz = (0 =5)tr + (0 = )vr,(Y) + (p = D2 + j (v, (Y) = 1)

if 5 > 0and
v=(p— 1)ty —ity +ivp,(Y)

if 7 = 0. The lemma follows.

We apply the second estimate with Y = 1 to improve, when A = A, L = L;, and certain
auxiliary conditions are satisfied, our estimates on the number v appearing in (11.3).

(vi) Suppose p is odd and
(=(p—-1v+j+1

Ifk >v+2and ap < k — 2then
Jti +v 2 pta.
Ifk >v+2and ap < k —1then
jti1+v>(p—Dta+ t4
andifk >v+landa, <k -1
Jjti+v = (p— 1tz —ta.

In the present circumstances
Yi = (p—1t2 —ita
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forl <i <p—1. Thus

. . p—1 .
Jt1+v > jt1 + Zizl a;((p— Dtg —ity) — apty

which equals
jtl + (p — 1)]€t2 — Etl — (p — 1)Oép(t2 — t1>

(p — 1)]€t2 — (p — 1)Vt1 — tl — (p — 1)Oép<t2 — tl).

If o, <k — 2, this is at least
20-De+(p—-1)(k=2-v)t1 — 1
which in turnis atleast pto if p > 3and k > v + 2. If a, < k -1
T2 @—Diz+(p—-1)(k-1-v)ty -t
The required inequalities follow.
We shall use all these estimates for v in the next sequence of lemmas.
Lemma 11.8

If A is as in Lemma 11.7 and p is odd then
Sty PN/, A= Sp, p Nk, A (mod P 72).
The assertion of the lemma may be reformulated as
Sk/LoNK/o, A = Sk/0, Nk /n,A (mOdiBlLJlrth)-

Notice that
pto =t + (p— 1)u.

Earlier we applied Newton’s identity to express ST, i (A) in terms of the elementary sym-
metric functions of A and its conjugates. Since

pe > (p— 1)tz
we can apply the estimates (iii) for -y to see that

Sp

ALY



Chapter 11 122

is congruent to

p p—1 . o
PN/ A+ 5 ijl Bt p, (A) Ex 7 (A) + {Sk/r, (A)}P. (11.5)

Since
AP — A =a

we have
Sk/p, (D) = S% (D) = Sp,/r(a).

According to Lemma 11.7 the left side belongs to ‘B(Lpl_l)tz M In particular it belongs to P, .

We need to know that it belongs to ‘,]31;1”52. This is clear if p > 3 or to > t;. To prove it in

general we first observe that all terms but the last in (11.5) are congruent to 0 modulo ‘431;1"52.

The middle terms are taken care of by the estimates (ii) for -y. To take care of the first we have
to show that
pe —u > 1+ ts.

We know that pe > (p — 1)t5 and that if ¢ = u the inequality is strict. We need only show that
(p— Dt —u>ts
with a strict inequality if ¢ # u. This is clear since to > wand t > wift # u. Thus
Sk, A= (SK/Ll AP — SLQ/F(G) (mod ‘B};Jlrw)'
We now need only show that
SLoyr(a) =0 (mod P ™).
The left side belongs to ‘Bﬁbl if b is any integer less than or equal to

—u+ (p—1)(t2 +1)
. .

We may take
—u+ (p— 1)ts
p

which is greater than or equal to 1+th except when p = 3 and ¢ = u. In this case, which is the
one to worry about, {3 = u is prime to p and

b>

—u+(p—-1)(t2+1) u+2

P 3
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. +1
has integral part at least “7=.

We apply (11.5) again to see that

Sk/tNr/r,A = Sk/r,a = S%/Ll(A) — Sk, (A)

is congruent to

S AdtpNey AL ST Ei (AVEP (A
“RPK/Ly +p K/Ly +§ Zj:Q K/Ll( ) K/L1( )

We have still to consider
Sk/r, Nk/r, A. (11.6)

There are some general remarks to be made first. Suppose A belongs to K and

UK(A) = —u.
If z and z also belong to K and
Z‘Aj € Ok
and ,
= m}("‘t"‘(p —1)u
then

Nic/ny (@(A +2)*1) = Niey, (247F1) - (mod 1),
It is enough to show that

z\J+1 u
Nige, (142)7 =1 (mod 347,

This follows from Lemma V.5 of Serre’s book and the relations
L+t+pu>1+t+pu

and
l+t+p’u+(p—1)(t+1)

p

=141+ pu.

According to Lemmas 11.3 and 11.4 there is for each o # 1in G? a (p — 1)th root of unity
¢ = £(o) such that

A=A+ —a+0 (w%pze—(p—l)u)>'
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We have
pe—(p—Du>p—-D{lp-u+t}—(p—1)u

which equals
P—1t+(@—=2)(p—Du=t+plp-2u

If t = w the first of these inequalities is strict and if ¢ > u the last is. Thus
ple—(p—Du>1+t+plp—2)u

and
2p%e — (p—Du) > {1 +t+ (P> — Du}+ {1 +t+ ((p—1)% —2p)u}.

The second term is positive unless p = 3.

The expression

(A+&)PF -
is equal to
Ave+d () i
o -1 pit)
(1) =B g2
and

2p’e — (p — 1)u > 2(p’e — (p — 1)u)

which is, as we have just seen, at least 1 + ¢ + (p2 — 1)u. Thusifp > 3
A% = (A+€)(1-2(6) (modPT® )
if .
pAP~! &\’
Z (&) = )
O=Lros 2o S (&
Expanding the denominator we obtain
= pAP~! Zoo s é i )
i=1 © \A

Ifi>p—1
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Clearly
2(8) = O(pA"2) = O(ah =72,

Iftp=3
3(p%e— (p— Du) > {1+t + (p* — Du} + {2(1 +t) + (2p* — 6p + 1)u}.
The second term is at least 3u and in particular, is positive. Lemmas 11.3 and 11.4 show that

A% =((A+¢)? —a)®—a (mod ‘}3}:“@2_1)“).

The right side equals
(A4 € +36A% +3¢%A)% — a.
Expanding the cube and ignoring all terms in i]3}{+t+(p =D e obtain

2

A+£+3A3{§+p}+%4§

which we write as

(A+&) (1 —2(¢)
with

26 =323 " (%) +9At S (—Kg)

Since
2(p’e — (p — 2)u) > 2(p%e — (p — Vu) +2u > 1+t + p*u

and
pre—(p—2u>1+t+(p—1)>%u>1+t+pu

for all odd p, lemma V.5 of Serre’s book shows that
Niyo, (@(A+ 61 = Z(€)) ) = (N, (@(A + 1 = Sk, Z(6) Y
modulo ‘BlLTH(p_l)u if zAJ lies in Ok

The expression (11.6) is equal to

Ny A+ geqe Niyo, A7
o#£l
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The preceding remarks show that, if p > 3, this is congruent to

N/, A+ Zé Nip (A +8) {1 = Sk/r,Z(8)}

modulo EBEH@ D Since
2p? — 1)t t—
petut =Dt o0 <u+—“)tu>t+pu
p p

we have
N, (A +€) Sy, (aip AP 77¢7) € e

if i > p and we may replace Si 1, Z(&) by

p—1 )
Zi L pE' Skyp, (a; AP~

if p > 3. Of course

b —i i
Ngjp, (A+§) = Zi:o ¢! B, (D).
Putting these observations together we see that, if p > 3, (11.6) is congruent modulo
‘BlLJlrp "2 to0 the sum of

NK/L1A+ (p— 1) {SK/L1A+NK/L1A}

and
p—1 —1-i i
_p(p — 1) Zi:l a; SK/L1 (Ap 1 )E;(7L1(A)
and
—p(p — 1) {pap—1 Sk/r,(A) + ap—2 Sk, (A)}.
Since

PSk/r,(A) € PP

the last expression may be ignored as may the term in the second corresponding to i = p — 2.

Since
tpr =3 S=0 (modp)
and
Sk, (A%) = p
and

3p%e —ty > 1+ pty
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the sum in the second expression need only be taken from 1 to p — 3. The relation (11.2) implies
that . .
PSILHA) B () = (—1)p(p — 1 — i) BYL(A) B (A)

1+pt2

modulo P L, - To complete the proof of Lemma 11.8, for p > 3, we need only show that

ia;_1 + (p—1i) ap—i—1 = (1)’ (modp)

forp — 2 > p — i >4 > 2. This amounts to showing that

Y -0 Y =1 (modp).

j=1 Jj=1 5

We may replace the p — ¢ in front of the second sum by —i. Making the obvious cancellations

_ Zj:_l 1o —sz: %

J

we obtain

If % occurs in the sum on the right so does ﬁ.

The proof for p = 3 can proceed in exactly the same way provided we show that

9 {Nk/1, (A+E} {Sk/r, (€A} (11.7)
lies in ‘BlLJlr?’tz for7 > 1. Since
2p’e —u > 2(p— 1)ty —u > 3ty
and one of the inequalities is strict
Nk, (A +6) € Pz,

The expression

" Sy, (A

is clearly integral for 7« > 4. By, for example, Lemma 11.7 it is also integral if 7 is 2 or 3. Thus
t = 1 is the only case to cause a problem. If i = 1 we sum over £ to see that (11.7) equals

18{E?(/L1 (A) SK/Ll (Ag) + SK/Ll <A3)}

The terms appearing in the expression in brackets have been shown to lie in Oy, .
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There is one more lemma to be proved before we come to the basic fact of this paragraph.
If z is in K we set

9(x) =S, )r(Ng/p, A Sk 1, (%)) = Sr,/r(Ni /0, A Sk /1, (7))

and
h(z) = Sp,/r(Ni/p,(2A)) = Sp,/r(Ni /L, (2A)).

In the following lemma p is supposed odd.
Lemma 11.9
(a) Supposerisin Ly, 0 < j <p—1,and xAJ lies in ‘,13}(“2_“. If j # p — 2 then
g(zA7) =0 (mod P "2)
butif j = p — 2, there is an w in L4 such that

wr = —x B2} (A) (mod B3 7")

and
g(xAj) = —{SLQ/FSC - SLz/F(SW)} (mOd‘B}r+t2)~

(b) Supposez isin Ly, 0 < j <p—1,and zA7 liesin By Ifj # p — 2
h(zA7) =0 (mod PL*)

butifj =p—2
h(zd) = (p—1) (1= {EY, 1 (A)})Nkyp,

1+4pt
modulo ‘,BLTP 2,

14t : 14pt
The congruences modulo ‘B F+ ? are of course equivalent to congruences modulo ‘3 LJlrp 2

We start with part (a). If x belongs to O, then
g(a:) = SK/L1 (l.SK/Lz(NK/LlA) — pxa).
Because of the previous lemma this is congruent to

SK/L1 (xSLz/Fa — pra) = SLQ/F Z’SLZ/FCE - pSLz/F(l'CO
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modulo ‘B}ft?. We saw before that

1+t
SLz/FCL € ;/BLT 2,

The same argument shows that

SLQ/F(ZL’CL> S m}jb .

p belongs to ‘B%Dl_l)t2. Since the integral part of

(p—1)(ta+1)
p

is at least
(p— 1)tz

PR
so does S,/ pe. This takes care of the case j = 0.
If1 < j=p—1then g(zA7) is equal to
Sta/r(@Sk/r, (A Nijp, A)) = (p— 1)6 Sp,/r(za)
where § =0if j #p—1land § = 1if j = p — 1. Consider
Zj =2 Sk/1, (N Niyp, A).

It lies in L9 and is equal to

IL'AJ NK/LlA + ZU€G2 ZL’AUj NK/LIAU.
o#1

We observe first of all that if A isin K, vx(A) = —u, xisin Lo, A/ lies in ‘}3};”2_“,

and z lies in ‘B(lg_l) (Pt2=t1) 4 an
provided p is greater than 3. To establish this congruence we show that

2! Z\ _ (p—1)t2+(p+ 1)1
(1+5) Ney, (1+5) =1 (mod B ).
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To show this, one has only to observe that £ and all its conjugates lie in ‘3
that

(p—Dpta—(p—2)t1 = (p— D2+ (p—1)> = (p—2))ts

which equals
P=Dta+((p-D(p-2)+ Dt = (p-Di2+ (p+ 1t

if p > 3.

Suppose for now that p > 3. Since
ple—(p—Du=(p—1)(pt2 — ta).
Lemma 11.4 implies that Z; is congruent to

xAN Nyjp, A+ Zg (A +€) Niyr, (A+8)

modulo ‘B?’p t2

1 -1
Nk, (A+¢&) = 5{1 + ¢ Ni/o, A+ Zj’:f g—zE}(/Ll(A)}.

According to Lemma 11.7 this is congruent to
E4 N/, A+ B (A)
modulo ‘,]3%2. Thus if A7 belongs to ‘,]3}(‘”2_161
Zj = 2N Nijp, A + Zg (A +8) (§+ Ny, A+ EEY 1 (D)
modulo ‘IE}{H’ '2. We expand (A + €)7 and sum over ¢ to obtain
pr A7 Ni/o, A
ifj <p—2.1fj =p— 2weobtain

prA Ny yp, A+ (p— 1)z (1+ E?(_/lLl (A))

gz{)—l)Ptz —(p—2)t1 and

(11.8)
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and if j = p — 1 we obtain

peA Ny, A+ (p— D)a {Ng/p,A+ (p—1)A+ (p— 1A EY

The expression (11.8) lies in
1+pe—pt;
K

provided zAJ lies in Pk.

p?e — pty > p(p — D)ty — pt1 > pto.

Since
Lo NP2 = gyt
and
Spa/r(Prs™) S Br™,
we have

g(zAT) =0 (mod P ")

if1 <j<p—2andzAJ lies in ‘}3}(“2_“.

Since
Ef 1, (A)
liesin Op,,,
Zj = (w — 1)1’

with
wr=2Zj+r=—x Ef(_/lLl(A) (mod B3 7")

if j = p — 2. We may take w in Ly and then

g(afAj) = —{SLz/FﬂU - SLz/F(SW)} (mOd‘B}r+t2)~

If j =p—1then
9(@A) = S, /r (Z; — (p— D)za)

and
Z; — (p—1)aa

K/L;

(A)}-
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is congruent to
(p = Do {Niyo, A+ pA+ (p = DAL (A) - A7}

modulo B P**. The product
{(p =Dz} {pA}

lies in P} 7" and

(p—1) Byp, (A) = =B (A) (mod Pil™™).

K/Ly K/Lx
It is easily seen that

AP + AEK/L (A) = Nk, A
is equal to

—Z Y AP B (A).

Recalling that zAP~! is supposed to lie in B ;¢ we appeal to Lemma 11.7 to see that the product
of this expression with z lies in ‘}3};”7 2 Thus

g(xAT) =0 (mod PL ).

If p=3and { = £(o) then

A% = A+ E+3EA% +36°A + 2

with
Z:O( ?{(P e—(p— 1)“))
If
Ay = A+ €4 3EA?
then

A% = A, + 332A + 2.

If we can show that
3E2A + 2 = O(wi™ 1)

it will follow that

{ZJAUjNK/LlAU = .’L‘A‘ZTNK/LIAU (mod%};—ptz) (119)
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if A7 lies in ‘IE}(H?_“
3¢2A = O(wl ™)

and
2
p e—t1 >plp—1)ta —t1 > (p— 1)ta + pta

because (p — 1)? > p. Moreover
2(p%e — (p— Du) = 2(p(p — Dt2 — (p — 1)t1)

which is at least
(p—Dt2+(2p—1)(p—1)=2(p— 1)t

and
2p-1)p-1)-20-1)=2p-3)(p—1) > p.

We want to replace N1, A, by

Ngyr, (A+¢)

in the right side of (11.9). To do this we have to show that

1 (mod P~ Vit

S
&
>
e
78 2%
N——
Il

Since
A,

Até

=1+ 0(w@h ™)

and
p’e —t1 > p(p — Dta — t,

we have only to verify that
plplp—Dta —t1} > (p— D2+ (p+ 1)ta (11.10)
and that the integral part of

plp—Dta —t1 +(p—1)(t+1)
b

(11.11)

is at least
(p—Dta+ (p+ 1)ty

p
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The inequality (11.10) is clear. Since t > t; the integral part of (11.11) is at least

plp=Dta+(p—=2tr _ (p=Dt2 +((p—1)*+ (p = 2))ta
p - p

and
(p—1)°+(p—-2)>p+1.

Just as when p > 3 we may replace Ng /., (A + &) in (11.9) by
E4 N/, A+EEY ] (A).
Thus Z; is congruent to

PO N/, A+ Y o(A+E+3EA%) (€4 Ny, A + & By, (A))

modulo ‘,]3};”7 2 ifp =3, jis1or2, and zAJ belongs to 213}(“2_“. If j = 1 this expression is
equal to
prA) Ngjp, A +22(1 4 3A%) (14 E% 1 (D)) (11.12)

and if j = 2 itis equal to
prA’ Nicjp, A+ 22{2(1 4+ 3A%)A(1 + E%/p, (A)) + (14 3A%)° Ny, A} (11.13)

The term
pZL'AJ NK/L1 A

can be ignored as before because it lies in ‘B?’p 2. Also
. 2 _
3xAJ+1 _ O(w}(-l-P e+ta 2t1>

because xA’ lies in P and

14ty —ty
K

p2€ +ty —2t1 > p(p — 1>t2 —t1 > pto.
We may also replace the factor 2 in (11.12) by 1. Thus (11.12) is congruent to

—o(1+ Exyp, (D))
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modulo ‘}3?” 2. At this point we may argue as we did for p > 3. To simplify (11.13), we
observe that

9A4 NK/LlA = O(@?Qe_’?tl)

and that
2p26 — 7t1 Z 12t2 — 7t1 2 3t2.

Moreover ,
31’A2 NK/LlA = O(TD}(—HD e—3t1)

if 2A? belongs to P and
p°e — 3ty > 6ty — 3ty > 3ta.

Thus (11.13) is congruent to
20{2A(1+ B3 1y, (A)) + Nicyz, A}

modulo 3", We may again argue as we did for p > 3.

We turn to the second part of the lemma. We observe first that if x belongs to Lo, y belongs
to K, and

ry € Pr

then
h(zy) = h(y) NK/Ll(Jf) (mod ‘13}:”2)-

The left side is
St/ r(Nk/p, @ Nk /o, yA) — Spy r(2? Ngp,yA).

Since Nk /r,* = N, /px lies in I this equals

{Nk/r,2}h(y) + Sp,/r{Nk/L, WD) (Np, pz — 2F)}.

The second term is the trace from Lo to F’ of

{Ni /L, (zyA)} {w}

NK/L2{ZJ

if, as we may as well assume, x # 0. All we need do is show that this expression lies in 2324:52

for then its trace will lie in ‘B}ft?. The first factor lies in ‘BleQ. The second factor is equal to

{Haeaz xg_l} - L
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Since p > 3 it will be sufficient to show that the image of the homomorphism

A | e

ceG

of Cr, into Uy, is contained in U £p2 "D et p be a generator of G and let P(X) be the

polynomial
p=1 p—1 __.
Zi:l (X' =1) = i:OX R
then
p(z) ="@.
Let

QX) = (X 1P %
If 1 <i < p— 1 the ith coefficient of Q(X) is

(_1)p—1—i (p — 1) Z' : (p B 2) =1

(mod p).
Since both P(X) and Q(X) are divisible by X — 1
P(X) = Q(X) +p(X — )R(X)
where R(X) is a polynomial with integral coefficients. For all z in C7,,,
P =1+w

withw = O(thzz). Then

LD —(14wP=14uwP =1 (mod BY?)

and
2P(P=1)R(p) Ufiz'
Ifa > 1and
w € P,
then
(wp = T o1 S (mod ).

One then shows easily by induction that, for all zin C'z, and alln > 1,

(p—1)" nta
z S UL2 .
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If z lies in ‘P x we may take y = 1. Applying Lemma 11.8 we see that
h(z) = Np,/rpoh(1) =0 (mod PR ™).
If1<j<p—1, zliesin Ly, and A7 lies in P,
h(zAT)=P; — Q; (mod PL?)
with
P; = Np,/raSp, /r(Nijp, A1)
and
Qj = Np,/pa Sp,/p(Ni/r, A7)
The expression P; is congruent to
N, ra{Ng/p, A + Zg Nic /o (A4 &7 {1 = Sk, Z(6) P} (11.14)
modulo ‘,]31pr *2, Since we are working modulo ‘,]31;1'7’ *2 we need only consider
(1= Sk/r, Z(§)) (11.15)

modulo ‘Bitf 4 Suppose first that p > 3. Then

Z(€) = O(eh, <=2

and
pie—(p—2)u>p(p— 1tz = (p—2)u > p(p - 2)ta.
Moreover the integral part of

plp—2)ta+(p—1)(t+1)
p

is at least

(-1,
p

and twice this is at least pto + t;. We replace (11.15) by

(p—2)t2 —

1—(j+1)Sk/r, Z(§).
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Since )
= p—1 p=2 . é 2
Z(€) = pA Zi:l a; (A) (mod p?) (11.16)
and ,
P’ =O(wi )
while

2p*e > 2p(p — 1)ts > p(pta +t1),

we may replace Z (&) by the right side of (11.16). By Lemma 11.7
PSk/L, (AP717) = O(wgefitz)

ifl <i7<p-—2and
pe-l—itg > (p—l)tg'i‘itz > pto + 1

ifi > 2. We replace Z(¢) by
pa EAPT2,

We may write (11.14) as

j+1
Ny, paNg, AT {1 + Z& Nk, <1 + %) {1- SK/Ll(Pa1§AP_2)}}-

When we expand

g Jj+1
NK/Ll (1 + Z)

and sum over ¢ we will obtain

Jj+1
orems K (5))

which we write as
NLQ/F*”{NK/LlN“ = Zg Ni/p, (A +¢€) +1}

plus a sum of terms of the form

. . 1 _
ap Np, Nk, NN B (Z) Src/r, (AP7?)
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where « is rational and lies in O and 7 is at least 1. Since

) 1
KL <Z) = O(wy)

for: > 1 and
PSk /L, (AP7?) = O(w]'?)

these supplementary terms may be ignored.

Now take p = 3.*

*(1998) This is where and how the manuscript of Chapter 11 breaks off.
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Chapter 12.

The Second Main Lemma

Suppose K is a normal extension of the local field F' and G = &(K/F) is the direct
product of two cyclic groups of prime order /. Let X'k be a quasi-character of C'x. If o belongs
to G define X7 by the relation

1

XZ(a) = Xg(a” ).

Suppose that X7 = Xk for all o in G but that for no quasi-character Xz of C'r does X =
Xg/p- fF C L C Kand [K : L] = { then Xk can be extended to a quasi-character of Wi,
because Wi, /Ck is isomorphic to &(K /L) which is cyclic. If this quasi-character is X7, then
X = Xk/L-

Lemma 12.1

Suppose L and Ly are two fields lying between F and K and [K : L] = [K : Ly] = /.
Suppose X, is a quasi-character of C'r,,, X, is a quasi-character of C,,, and

Xk = XL, = XK /Lo

Then

A(XL,, YL, /F) H A(pr,Yr)

nwr€S(L1/F)

is equal to

A<XL27¢L2/F) H A(Mp,lpp)

preS(L2/F)

Because of the assumption on & (K /F) the field F' must be non-archimedean. To prove
the lemma in general it is enough to prove it for a given L; and all Ly. There are three
possibilities to consider.

(i) The sequence of groups of ramification takes the form

G:G—l%GOZ---:Gt#Gt—I—lz---:{l}-

(ii) The sequence of groups of ramification takes the form

G:G—l:GOZGl:---:Gu%Gu—l—l:---:Gt#Gt—l—lz---:{l}-
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(iii) The sequence of groups of ramification takes the form

G=G_1=GCGy=Gi=...=Gy# Gy =...={1}.

In the first two cases we take G! = &(K/L;) to be G;. In the third case the choice of L is
immaterial.

If the relation X7 = X, obtains for one o different from 1 in G = &(L;/F) it obtains for
all such o and &, is of the form X, /- for some quasi-character Xz of Cr. Then X = X/ p

which is contrary to assumption. Thus the characters X gz__l with o in G are distinct. They are
clearly trivial on N /1, Cx so

(X770 € G} = S(K/Li) = {pr,/r | 1 € S(Lj/F)}.
Here j is 2 or 1 according as ¢ is 1 or 2.
Let t; > —1 be that integer for which
G =G,
while

5;+1 ={1}.

Then
0; =0(L;/F)=(t; +1) (£ —1).

In the first case L; /F is unramified and Lo/ F is ramified. We choose wy,, arbitrarily and take
WK = wWL,. Also we set
wWr, = WF = NL,/FTL,-

In the second and third cases K/L; and K /L2 are ramified and K/F is totally ramified. We
choose oy, first and set
wr, = Nk/L, 7K

and
wWp = NK/F’(I/'K.

Let m; = m(&XL,). The m(X7 ) = m; and

m(.)(fi_l) S my;.
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Thus m(v) < m, if v belongs to S(K/L;). If G = &(K/L;) and if
G, =G

while
witl = {1}

then m(v) = u; + 1 if v is non-trivial. Thus u; + 1 < m;. Since v X, is of the form X fz for all
vin S(K/L;),
m(V‘XLz‘> = m(XLz>

Lemma 8.8 and 8.12 imply that*
m(Xk) = Vi, (mi —1) + 1.
This m(Xk ) = m; if K/L; is unramified and
m(Xg) = tm; — 6(K/L;)

if K/ L; is ramified. If n = n(¢r) thenn; = n(¢r, ) isnif L;/F' is unramified and is £n + J;
if L;/F is ramified.

In the first case
0(K/Ly) =0(L1/F)=0.

The relations
O(K/F) = 06(K/L) +65(L/F) =6(K/L1) = (t+1)({—1)

and
§(K/F)=0(K/L2) +0(L2/F)=0d2=(ta+1)({—1)

imply that ¢, = ¢. Also
m(XK) = M9 = Eml — (5(K/L1> = Eml — (52

so that
mo + Ng = E(ml +n1).

Moreover
Xp, (@) = X (w]h ™)

* We are encountering once again the conflicting uses of the symbole ).
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is equal to
X, (w2 ™2) = Xy, (gt ™) {XLz (nggz wif)} o
and
Haeég XLz(wEU) = HuFeS(Ll/F) Pr,/F(TL,)
is equal to
HuFeS(Ll/F) pr(wp) = (=1)
If
Si=S(Li/F) — {1}
then
[1,, nr(@itm = (e
and

Thus we have to show that
(—1)m =) A (X, Yp,  p gt

is equal to
AI(Xsz ¢L2/F7 w?lﬂ‘”l) HS/ Al(ﬂFa ¢F7 th‘+1+n>'

2
In the second and third cases the relations
m(XK) = Zml — 5(K/L1) = ng — (5(K/L2)

and
6(K/F) = 0(K/L1) + €51 = 6(K/La) + €52

imply that m; + 6; = mg + d2 and hence that m; + ny = mgy + ny. Thus

Xp, (@) 7?) = X (wig ™) = Xpy (w2 ™).

Since
i+l
s :“F(w%Jr +n) =1
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we have to show that
A1(‘)([/1 ) ¢L1/F7 wznll—’_nl) HS, A1(/“LF7 ¢F7 w?‘—’_l—’_n)
1

is equal to
Al(XL27¢L2/F7w[7Z2+n2) | |S, Al(NF7¢F7 w?—’_l—’_n)'
2

Suppose X7} is a quasi-character of Cr. According to Lemma 10.1

/
A(XL, /g ¥rLy/F) HuFeS(Ll/F) Apr, Yr)
is equal to
A(ppX; 12.1
HHFGS(Ll/F) (urXp,VF) (12.1)
and
/
A(XL, /p VL, F) HuFeS(Lz/F) Apr, Yr)
is equal to
A(ppX; . 12.2
HMFGS(LQ/F) (luF F7¢F> ( )

Suppose m’ = m(X},) = 2d’ + ¢’ and d’ is greater than or equal to both 1 +¢; and 1 + t».
Choose 7 in F' such that
YOp =P+

and then choose = (X ). By Lemma 9.4 the expression (12.1) is equal to

{A(X, vr)} {Hupes(Ll/m HE (%)}

and (12.2) is equal to

{A(Xp, ¥p)} {HMFGS(LQ/F) e (%)}

Consequently

/ B
A(XL, /e L,/ F) {HHFGS(LI/F) 03 (;) A(NFﬂpF)}



Chapter 12 145

is equal to

/ B
A(XLZ/F’¢L2/F> {H,UFGS(LQ/F) wr <;) A(“F7¢F>}

Suppose that both m; = m(XL,) and ma = m(XyL,) are at least 2 and let m; = 2d; + ¢;.
Suppose that

for i equal to 1 and 2. Then
m; =m(Xp, p) =Yr,r(m — 1)+ 1.

If

Pix
1 p(L+x) =9, /p ( S
for z in ﬂ3dLii+Ei then, by Lemma 9.4 again,

A(Xp,, YL r) = X X p (%) A(XL, 5 VL, F)-

k3

Thus to prove Lemma 12.1 in the present circumstances we have only to verify that

X XL, E (%) H,u,FGS(Ll/F) a (%)
is equal to
i ¥/ <%> | <%) .
Suppose first that £ is odd. Then

H ue (L) =1
ur€S(L;/F) ﬁ

and we need only verify that

i () Hor (5) =2 (5) %o ()

According to Lemmas 8.3 and 8.4 we may take 3; = B2 = 3.
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V4
o ()= () -r ()

Since CF is the product of N, /pCp, and Ny, ,pCp, we may write % as a product

Certainly

Y
— = Nr,/r01 N, /F 02.

g

Consider
X, (Np,/rd;) = Xk (05)

where j is 1 or 2 according as 7 is 2 or 1. The right side equals

X1,(07) = X, (Np,/r85) 1] X, (6;77):

c€G(L;/F)
The product is equal to

HuFes(Li/F) pr;/r(05)
which is 1 because ¢ is odd.

Before discussing the case ¢ = 2 we consider the circumstances under which, for a given
Xr, and X, a quasi-character X} with the properties described above exists.

Lemma 12.2

(a) If L;/ F is unramified, x belongs to UEH, and

Np,r(z) =1

then

(b) If L;/F is ramified, K /L; is unramified, x belongs to U ﬁ_“, and
Np,r(z) =1

then

(c) If L;/F and K/ L; are ramified, x belongs to Uﬁ:HiH, and

Np,r(z) =1
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then

k2

Choose some non-trivial o; in G = &(L;/F). Then

-1
o, —1

is a non-trivial character in S(K/L;) and

m(pr,) =ui+ 1.

Since L;/F is cyclic there is a y in C,, such that

o;i—1

r =1

We shall show that y can be taken in U g:“. Then

Xp,(z) = pr,(y) = 1.

Suppose L;/F' is unramified. If we cannot choose y in Uﬁ:“ there is a largest integer
a > —1 such that we can choose y in U g where a is of course less than u; + 1. Choose such a
y. Then a is not -1 because we can always divide y by a power of wp. If a were 0 then y could

—1

not be congruent to an element of Ur modulo Br. Then y°~! would not be in U}. Since

u; + 1 > 0 in the present situation this is impossible. Let
y=1+cwh.
Then ¢ cannot be congruent to an element of Or modulo Lr. Thus
€7 —e#0 (mod*Pr,)

and
y T =14 (" —e)wg  (mod PiT)

is not in Uzﬂ. This is a contradiction.

Now suppose L;/F is ramified and K/L; is unramified. Thent; +1 > land u; + 1 = 0.
We need only show that y can be taken to be a unit. Write

_ b
y - EwLi
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where ¢ is a unit. If b is congruent to 0 modulo ¢ we can divide y by some power of wF to
obtain an element of Up = U%. To see that b must be congruent to 0 modulo £ we suppose the
contrary. Then

y = (@) = (@) (mod Py
If t; = O the residue of wzi_l modulo P, is a non-trivial /th root of unity and
(@7 )" #1 (modPr,).

If t; > 0 then
o =1+ aw

where « is a unit. Thus

(wzii_l)b 1+ab th (mod Pzifl).

The right side is not congruent to 0 modulo ‘Btﬁj’l

Now suppose L;/F and K/L; are both ramified. Then ¢ = p and both u; and t; are at
least 1. Again suppose that y cannot be chosen in UE’H and let a be the largest integer such
that y can be chosen in U®. The argument just used shows that a > 0. Since L;/F' is ramified

U =UkUptt
Therefore a is not divisible by p and in particular is at least 1. Let
y=1+ewy,
where 3 is a unit. Then
YTl = (14 %@ (1+ewd )L

Let

g; __ ti+1
€' =e+nwr,

and
wp = awr,

o;i—1

where « is a unit. Then y is equal to

{1+ (+nwst™) 1 +awh)ws } {1+ews } 7
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which is congruent to

modulo ‘,BtLij'aH.

Lemma 12.3

1+ aae th?Jra

Therefore a > u; + 1. This is a contradiction.

If Ly / F is unramified we can choose X}, such that

and

m(X XL p) =t+1

1

m(X XL, p) =t+ 1,

2

Ifm(Xy,) > t+ 1 then m(X},) will equal m(XL,).

By the previous lemma we can define a quasi-character X7, of

by setting

We extend X, to

U1+1
NLl/FULl

XI{T‘(NL1/F:E> = XLl (ZL’)

a quasi-character, which we again denote by X, of Cp. Then

m(X XL p) <up + 1

1

However X' Xk p> XL_ll X1, prand X! X}, r satisfy the conditions of Lemma 12.1. There-

fore

2

m(XL_llXil/F) > uy + 1.

Since L, /F is unramified u; and t2 are both equal to t. Thus

and

m(X X p) =t+1

1

m(.)(gl.XiQ/F) :£(U1+1)—52 :€(U1+1)—(€—1) (tg-i-l) =t+1.

2

The last assertion of the lemma is clear.

Lemma 12.4
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If K/ F is totally ramified then
m(z’\sz) >t +u; + 1.

There exists X}, such that
m(X XL ) =t +ui+ 1

[

fori equal to 1 and 2.

In the present circumstances t; and u; are both at least 1. Choose a non-trivial o; in G
and let

-1
KHL; = Xz;
as before. Choose y in U i‘: so that
ILLLi(y) 7£ 1.
Then
X, (y7h) # 1.
However if

y=1+ewy

where ¢ is a unit then

il =14 uiaaw?r“i (mod‘BtLi:r“iH)

i

if
O‘i—]. _ ti
wp = 1—|—ozwLi.

In particular
yai—l c Uzii-i-ui

so that
m(Xr,) > ti +u; + 1.

Just as in the previous lemma we can find a quasi-character X'}, of Cr such that

m<XEIX£1/F) = tl —|— U1 —|— 1

1

We have seen that m; + d; = mgy + J2. The same argument shows that

1

m(X51X£1/F) + 61 = m<X521X£2/F) + 52.
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To complete the proof of the lemma we show that
t1 + uy + 61 = to + us + 0o.

Since

5= (—1)(t; +1)

we have only to show that

Multiplying the left or the right side by ¢ — 1 we obtain (K /F). The equality follows
immediately.

Lemmas 12.3 and 12.4 together with the remarks which provoked them allow us to prove
Lemma 12.1 in many, but by no means all, cases. We shall not however apply these lemmas
immediately. We shall rather begin the systematic exposition of the proof of Lemma 12.1 taking
up the cases to which these lemmas apply in their turn.

Suppose first that L; is unramified over F'. As before m; = m(XL,). Then
m2:m1+(£—1)(m1—t—1) Zml

because u; = t. Since the number mq is atleastt + 1 and ¢ > 0 itis at least 1. If m; = 1 then
t = 0 and mg = 1. Once we have treated this case, as we shall immediately, we may suppose
that mg > mq > 1.

If mo = 1let
A= OLz/le = OF/‘BF

and let
k=Ok/PBrx =0r,/PBL,.

k is an extension of A. The restriction of X7, to U, defines a character X\ of A\* and the
restriction of A7, to Uk defines a character X, of k*. The restriction of Xk to Uk defines a
character of x* which is equal to X; /5 and to &, ‘50 that

¢
X=X )x
. —2 _ . . .
As o varies over G, wZQ ! taken modulo Pr,, varies over the /th roots of unity in A and if

-1
o -1
XLQ =V
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then
Xa(@57 ) = v(ww,).

The right sideisnot 1 if 0 # 1 because v is then non-trivial. Thus the restriction of X\ to the /th
roots of unity is not trivial. To every pp in S(Lo/F’) is associated a character ) of A* which
is of order 1 if ur = 1 and of order ¢ otherwise. If v is the additive character of A defined by

Ua(@) = (%)

then
Av(pp, vp, wp ™) = A [=7(ux, V)]

if pr is not trivial. Moreover

x
Vi, F <@) =a(lx)
and
A ( XLy, Ypymwp ™) = A [0 (OT(Xx, ¥a)].
Finally

Al(XLl,lDLl/F,wFrn) = A [-7(Xs, Yuyr)]-

Thus the required identity is a consequence of the relation

T(Xesyn) = Xa(O7( X0, 00) T 7(uasn)

HAF£lL

which we proved as Lemma 7.9.

Retaining the assumption that L; /F is unramified we now suppose that m; > 1. There
are two possibilities.

(a)
my > 2(t+ 1)

(b)
t+1<my <2(t+1).

The second possibility occurs only when ¢ > 0.
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If mj > 2(t + 1) choose X}, so that

m(XL_legi/F) =t+1

i

for7 =1 and 2. Itis clear that
m(Xp Xy p) < da

if m; = 2di + ¢;. Since my > my we also have

m(X XL, p) < da.

2

Moreover
m' =m(Xp) = my

so that d’ is greater than or equal toboth 1+t = 1+t and 1 +#; = 0. Lemma 12.1 for L,
unramified and m; > 2(¢ + 1), follows immediately if £ is odd. Suppose ¢ = 2.

If ¢t = 0 we can invoke Lemmas 8.3 and 8.7 to see that if § = ((X}.) we may choose
Pr = B(xr,/r) and B2 = B(X} 1) equal to 3. If ug) is the non-trivial element of S(L;/F')

and ,u(z) is the non-trivial element of S(Ly/F') we have only to show that

F
e () e () )
e () 2 () ()
e (2) s )

and we need only show that if ¢ is in Cr then

is equal to

Certainly

X, (6) 2 (8) = x1,(8) 1 ().

We may write
(S: NLl/F(Sl NLQ/F52'

Then .
ue (N, yp 0i) = 1
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and, if j is 1 or 2 according as 7 is 2 or 1,
Xp,(Np,/p6;) = Xic(6;) = X, (65)
which equals

AL, (NLj/F 51)“(;])»/F(6j> = &L, (NLj/F 53‘)#%) (NLj/F d5)-
The required equality follows immediately.

If ¢ is positive we may still choose 3; = 3. If m; —t — 1 = v then, by Lemma 8.6, we may
choose (35 in the form

Bo=0B+n
with ninB7 . Sincev > ¢+ 1

X (B2) iz/p(ﬁz):/"{/;_;(ﬁ) 1o/ F(B)-

This observation made, we can proceed as before.

Some preparation is necessary before we discuss the second possibility. Suppose that ¢ is
positive so that ¢ is equal to the residual characteristic p. The finite field A\; = O, /Pr, is an
extension of degree p of ¢ = Op /Pp.

The map
r—aP —x

is an additive endomorphism of ¢ with the prime field as kernel. Choose a y in ¢ which is not
in the image of this map and consider the equation

2 —x=y.

If x, in some extension field of ¢, satisfies this equation and ¢ has ¢ elements then x? # x.
However
(29— &) — (29 ) = (2" — 2)" — (2" — ) =y —y = 0.

So
g —x =2

where 2 is a non-zero element of the prime field. Then

2 = (x42) =29+ 2 =242z
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and in general
n
z? =z +nz.

Thus the lowest power n of ¢ such that 29" = 2 is n = p and = determines an extension of
degree p. Consequently x may be chosen to lie in A; and then A\; = ¢(z).

Let E7(x) be the rth elementary symmetric function of = and its conjugates. Since

2P — 2+ (=1)P Ny, o7 =0 (12.3)
we have
E"(x)=0 (12.4)
ifl<r<p-—i,
EP~H(z) = (-1)P (12.5)
and, of course,
EP(z) = Ny, /. (12.6)

If A is a non-zero element of the prime field we can replace y by A\y. Then z is to be replaced
by Az. Also we can replace = by = + X\ without changing y.

Let R(L;) be the set of (¢ — 1)th roots of unity in L;. Choose a 7 in R(L;) whose
image in \; is . If we are dealing with fields of power series  will also satisfy the equations
(12.3), (12.4), (12.5) and (12.6). Let us see how these equations are to be modified for fields of
characteristic zero. F and L; are then extensions of the p-adic field Q,. Let F¥ and L{ be the
maximal unramified extensions of Q, contained in F' and L respectively. R(L1) is a subset
of LY and p generates the ideal B o and the ideal B 9. Thus

YW =9+ (=)’ N, ypy=0 (modp)

and
E"(y)=0 (modp)

if 1 <r <p—1while
EP~H(y) = (=1)" (modp).

Let
S (Fy> - ZUG@(L1/F) v

The following relations are special cases of Newton’s formulae.
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S*(y)—E'(v) =0
S*(v) —E'(7) S'(7) + 2E%(y) = 0
S(v) = E'(v) S*(7) + E*(7) S' () —=3E*(7) = 0

SPH) BN ST A (CD)P T = DEPTH () =
SP(y) = EY(y) SPTHy) + ..+ (F1)PP EP(y) =

We infer that
S"(y) =0 (modp)

if 1 <r <p—1and that
Sy = (=1)P(p— 1) E''(y) (modp).
Combining the first of these congruences with Newton’s formulae we obtain
S"(y)=r(=1)"" E"(y) (modp?)
ifl<r<p-11Ifpisodd
SP(y) = pEP(7) = E'(7) ") = EP7H(7) S'(7)  (modp?).
The right side is equal to

E'(v)(SP71(7) = EP7H (7)) =0 (modp?).

If p is even
S2(7) +2E%(y) = {E'(7)}*.
Since
E'(y)=1 (mod?2)
we have

S%(y) +2E%*(y) =1 (mod4).
If o # 1 belongs to (L /F) there is a (p — 1)th root of unity ¢ such that

7 =y =(¢ (modp).
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By a suitable choice of y the root ¢ can be made to equal, for a given ¢, any chosen (p — 1)th
root of unity.

The above relations are of course also valid when F'is a field of power series.

Choose a non-trivial character 1 in S(Ly/F') and choose « so that
ax
prp(l+z) =1p (m)
Wr

if z is in P7.. Here s is the 1east integer greater than or equal to “52. If (is a (p — 1)th root of
unity we define u% to be 7. if j is the unique integer such that

(=j (modp).

As we observed in the proof of Lemma 8.5
alx
po(1+z) =g (m)
W
if  is in P
Let m; = 2d; + €; as usual. If 81 in Ly is such that
afix
X, (1+2) =dr,/p (m)
W

for x in ‘ISdLllJrEl then, if 0 # 1 belongs to G = &(L1/F) and x belongs to q3dL11+51,

Yry/F (W) =X7'(1+w)
W

is equal to
aly,T
Vi, /P (m)
if (, is such that
Xgl_l = u%".

Thus if
v=m;—1—t
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we have
B =B =C(owp  (mod P ).
It is clear that
CG’T = C;-— + Ccr (mOd mL1)~
Suppose

v —y=¢&, (modp)

where &, is also a (p — 1)th root of unity. Then

60'7' = 5; + 50 (mOd ile)'

We observed that we could arrange that

gU:CO‘

for one non-trivial 0. Once we do this the equality will hold for all o. Then y?7 — 4P =
¢» (mod p) and
(B —'@p)” = i —y'wh (mod PY)

for all o because, as we observed in the proof of Lemma 8.5, p belongs to Py ifr +s=1t+1
and
2r+v)>t+2v=2my —2 -2t +t

which is at least
(ml—l)—l—(ml—l—t)Zml—l

so that r + v > d;. Since L /F is unramified there is therefore a ( in F’ such that
B —APwp =6 (mod PP).

We may suppose that
pr =B +~"wp.

B is a unit unless v = 0. If v = 0 then, by replacing 7 by a root of unity congruent to v + 1
modulo B, if necessary, we can still arrange that 3 is a unit. (3 is congruent toanorm Ny, /p (3’
modulo P%. Since d; < t we*

*(1998) At the moment this is all that could be found of Chapter 12.
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Chapter Thirteen.

The Third Main Lemma

Suppose K/ F is Galois and G = &(K/F'). Suppose G = HC when H # {1}, HNC =
{1}, and C'is a non-trivial abelian normal subgroup of G which is contained in every non-trivial
normal subgroup of G.

Lemma 13.1

Let E be the fixed field of H and let X be a quasi-character of Cp. If m = m(Xp) then

m(Xg/p) = Yp/p(m—1)+ 1.

Set

Observe that m’ — 1 is the greatest lower bound of all real numbers v > —1 such that X /5 is
trivial on Uy, and that m — 1 is the greatest lower bound of all real numbers u such that X is
trivial on Uy. Since

Ner(UpE ") c U

we see immediately that

[o prove the lemma we need Ol’lly show that
F(m—1 m—
N y (lﬂl’E/ ( )) U 1‘

We show this with m — 1 replaced by any v > —1.

By Lemma 6.15, 7/ maps Wy . onto Ug.. The projection of Wy . on G is a normal
subgroup of G. Thus it is either {1} or a subgroup containing C'. If itis {1} then

Wit e = Wityp 0 Cic = U™

and
Up = Nig/p(U"' ™) = Ny o (Nie Ui * ™)
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which, by Lemma 6.6, is contained in

NE/F<U;§E/F(U))'

Suppose the projection is not {1}. If L is the fixed field of C' the group W}, /F contains

{wow v w e Wk p,v € W}é/F NWg/r}

Since C'is generated by
{opc~p~toe@G, peC}

(13.1)

the group generated by the set (13.1) contains a set of representatives for the cosets of C'g in
W - This group clearly lies in the kernel of 7/ . Thus every element of W /F is congruent

modulo the kernel of 7/ in Wy /r toan element of

Wit p "Wi/p = W?;}/EF(U)

and B
which is

NE/F(TK/E(W;/J(I/ZEF(U) )

and this set is contained in o)
NE/F(UEE/F u >'

Suppose Fi is non-archimedean, K;/F; is Galois and F; C E; C K. Let puy be a
character of &(K/E;). We may also regard (; as a character of Cg, . Let o be an element of

& (K7 /F1) and define the character of u{ of (K, /EY) by

15 (p) = p(opo™")

for p € (K, /EY) or, what amounts to the same
-1

pi (o) = pr(a” )

for a € Cgg. Since
—1

VYpo /(@) =Yg (@ )

the next lemma is a congruence of the definitions.
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Lemma 13.2

A(p], Yee/r) = A(us, YE, /r)-

We return to the extension K /L and the group G. Let T be a set of representatives for the
orbits under G of the non-trivial characters in S(K/L). If n € T' let G, be the isotropy group
of pand let F), be the fixed field of G),. Let H,, = H N G,. Since C'is contained in G, we have

G, = H,, - C. Then ;1 may also be regarded as a character of C. Let i’ be the character of G,
defined by

w' (he) = p(c)

if h € H, and c € C. Eventually we must show that

A(Xg/rVE/F) H A, Yr,/r) (13.2)

peT

is equal to

A(Xe, ) [

if X is a quasi-character of C'r-. At the moment we content ourselves with a special case. The

/
eT A(WXp,/r,VE, F) (13.3)

next lemma will be referred to as the Third Main Lemma.
Lemma 13.3
If K/ F is tamely ramified the expressions (13.2) and (13.3) are equal.

As we observed in Lemma 6.4 the extension L/F' will be unramified and ¢ = [C : 1]
will be a prime. Choose a generator wy of Pr. Since F,/F is unramified we may choose
wr, = wr. Choose wg so that Ng,r wg = wp. Certainly

op/F = 0rx/p =10
while
Srcp =0 —1.

Since
Ox/r =0k +€0r/F = 0K /E +0E/F

we conclude that
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Clearly
Z#[FM L F] = ZH[H P Hy = Z#[G - Gyl

is just the number of non-trivial characters in S(K /L), thatis ¢ — 1. Moreover m(u’) = 1. Let
E,, be the fixed field of H,,. Then

Ng,/r,(wg) = Ng/r(wE) = @F.

Thus, as an element of C'F,,, @ lies in the image of W, under 7, and hence pi/(wr) =
1. Also

n(Yp/r) =n(r) +6g/p =tn+ (£ —1)

while
n(Vr,/r) = n.

If m = m(XFr) = 0 then

m(Xg/r) = m(Xp, /r) =0

and
X p(@wg ™) = Xp(@f ™) = Xp(wh) H Xp, (@ ™)

so that the lemma amounts to the equality

Hu Al wF /F?wF H A1 wF /F?wF+ )

If m > 0 then, by Lemma 6.4,
m(Xg/p) =tm — (£ —1)

and
m(Xg/p) +n(Ye/rp) = £(m+n).

Since K/ F is unramified

m(Xx r) = m(Xg/r) =Lm — (£ —1).

However
Xip= WXk, )r)K/F,
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so that
Vyp, (m(W' Xp, yp) — 1) > m(Xg/p) —1=4L(m —1)
or
m(p' Xp, jr) =1 > og/p,(€(m —1)) =m — 1.
Consequently

m(u' Xp, /) > m.

Since it is clearly less than or equal to m it is equal to m. Because
m-+n L(m—+n m-+n m-Tn
Xp p(wp™™) = XF(wF( - )) = Xp(wp™) Hu Xp, /p(wp™™)
we have to show that

Al(XE/F,lDE/F,w?Jm) H Al(ﬂiyﬁbF#/F,w}:nJrn)

is equal to
Al(XF7¢FawZ}+n) H Al(H/XF#/F,lDFu/F,W?Jrn)-

Let ¢ be the field Op /Pr, let A = O, /Py, let g be the number of elements in ¢, and let
f=MNol=IL:F]
Let 6 be the homomorphism of C into A* introduced in Chapter IV of Serre’s book. Thus
b(c) =" (mod Pr)

sothatifh € H ) )
O(h~tch) = (why " )= ()" = 0(c)".

Let hg be that element of H such that

ho

a™ =l

if @ € X and let ¢g be a generator of C. Then 6(c() has order ¢ and, since the centralizer of C
in His {1}, |
0(hg"chh) = 0(co)?

is 0(cp) if and only if f divides r. On the other hand, it is 6(c) if and only if ¢ divides ¢" — 1.
Thus the order of ¢ modulo Zis f. We also observe that both C' and its dual group are cyclic of
prime order so that any element of H which fixed an element of 7" would act trivially on the
dual group and therefore on C'itself. It follows that F,, = L for all yin T'.
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Suppose first that m = 1. Let ¢4 be the character

volo) =vr ()

F

on ¢. Since O /P is naturally isomorphic to Or /P r and the map x — Ng,px gives the
map x — ' of ¢ into itself while the map z — Sg s induces the map z — (z the
required identity reduces to the equality of

Xy (0T (X5, ) HMETT(HA,%M))

and
(X t09) [ L 70r®6090/0)-

This equality has been proved in Lemma 7.8.

Now let m be greater than 1. Since I}, = 1 for all u we are trying to show that

Ay(Xgyp, Yp/m g ™) H Ay (s r e @i )

is equal to
AL (X, @) [T AvwXeyp, Yo e =i ™).

Since the action of H on C is not trivial £ cannot be 2. If  lies in T and p~*! lies in the
orbit of v then

A, ¥, @) = A (w e, wE T

is p1(—1) times the complex conjugate of

A (p,Yr r, @i t™).
Since the order of pis ¢, p(—1) = 1 and, if u # v, the product of the two terms corresponding
topand vis 1. If

pt=pt
with 0 < r < f lies in the orbit of x then ¢ divides ¢" + 1. Thus / divides ¢*>" — 1 and 2r = f.
By Lemma 7.1

| T(xs ase) | = V@ =4

and

T(px, ¥aj) = —A1 (Y py @it ™)g

'
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if 1) /¢ has the same meaning as before and 1, is the character of A* induced by p. Since
§ =AMy (p Y r, wp ™)
is its own complex conjugate, itis £1. If o € ¢ then
pa) = p(a?) = p().

Since u(«) is an fth root of unity it is 1. Thus

T(1x, ¥asp) = T(1a)-
However it follows from Lemma 7.1 that

7(ux) =1 (modn)

where 7 is a number in €
of £. Thus

»(¢/ —1) Which is not a unit and whose only prime divisors are divisors

—0q¢" =7(ux) =1 (mod¥)

and 6 = 1. We are reduced to showing that

A(Xg/p, Vp/p, g )

is equal to
A (X, ) T Av(wdeyp, Yoy, @i ™)

Let § = 3(XF). By repeated applications of Lemma 8.9 we see that we may take

B(Xr r) = B(Xk/r) = B(uXr/p) = B.

If 3(Xg,r) is chosen we could also take

B(Xk/r) = B(Xg/r).

Thus if
m' = m(XE/F) = m(XK/F) = 2d/ + 6/

we have

B=pB(Xe/r) (modPk).
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Since both sides of the congruence lie in £/

B=pB(Xe/r) (modPE)

and we may take

B(Xe/r) = B.
Then
Ao(Xg/p, Vp/p, @i ") =g (%) X8
while
Ao(Xp,Yp, whit™) HHGT Ag(uXp,Yp p, wp ™)
is equal to

b (‘T@) X (),
()

F

To complete the proof of the lemma we have to show that

As(Xe, or,wp ™) [] . As(pXe, rp, @i ™) (13.4)

peT

is equal to
Az (XE/F7 wE/Fa W?Jrn)

when one, and hence both, of m and m’ is odd.

As remarked in Lemma 9.4
As(pXpp, Y p, @i ™) = As( Xy p, Y p, @i ).
According to Lemma 9.6 the right side is equal to
eA3(Xp, g, it EF]

where ¢ is 1if f = [L : F]is odd and -1 if it is even. Thus (13.4) is equal to

6% {A3(XF7 ¢F7 w?—i—n)}

As before
¢=O0r/PBr =O0r/PE.
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Let ¢4 be the function on ¢ defined by

pp(2) = ¢p (%) X' (1 4 o)
Wg

if m = 2d + 1. Then m’ = 2{d + 1 so that d’ = /d. Let y;, be the function on ¢ defined by

pa -
Po(T) =Yg/ r (W XE/lF(l +wha).
F

Because of Lemma 9.3, to complete the proof of the lemma we have only to show that

£4—1

T Alo(pe)] = Alo(})]

Since d’ > m and
3d +0—-1 o

7 = m

we have
Ngjp(1+ @) =1+ @f S/ + @i B (x)  (mod PBT)

if B2 /L (x) is the second elementary symmetric function of x and its conjugates over L. Thus

Ng/r(l+ wha) =1+ oh S/ pa + w%dE%/F(aj) (mod P7).
This in turn is congruent to

(1+wh Sp/re) (1+ @i B p(@)).

Thus
0y (1) = o (Lr)hy(—E3 ()
if
val) = or (257
Wr
or

¢ule) = ealteys (G 0) = (pato)
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Suppose first that p is odd and let

pol) = s (25222

o) = (EHE) =gy (B8 ), (22,

Referring to the observations in paragraph 9 we see that we must show that

-1 e—1 — o By
€7 vp(=1)"7 by ( éa ) = vy (0)y ( 4204 )

so that

or £—1 £—1
T = vy(—1) T u(0)

if vy is the quadratic character of ¢*. Let ¢ be the number of elements in ¢. If ¢ is an even
power of p the right side is 1 and if ¢ is an odd power of p the right side is, by the law of
quadratic reciprocity, w(p) if w is the quadratic character of the field with ¢ elements. Thus in
all cases the right side is w(q). If f is odd then ¢l isa quadratic residue of ¢ if and only if g is.
Since

¢ —1=0 (mod).

q is a quadratic residue and both sides of the equation are 1. If f is odd the left side is (—1) E
Since f is the order of ¢ modulo ¢ this is w(q).

Now suppose that p = 2. If
Yo (—2%) = y(az)

then, by the remarks in the proof of Lemma 9.7, we have to show that

if ¢ = 1(mod 4) and that
041

T pu(a) T =1
if ¢ = 3 (mod 4). We also saw in paragraph 9 that
{po(a)}? = vy(a?)

was +1 or -1 according as g is or is not an even power of p. By the second supplement to the
law of quadratic reciprocity
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if ¢ =1 (mod4) and

if ¢ =3 (mod4). We have just seen that

e7 =w(g).

[

The lemma is proved.
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Chapter Fourteen.

The Fourth Main Lemma.

In the previous paragraph we said that we would eventually have to show that

A(XE/F,YE/F) H A, Yp, ) r) (14.1)

peT

is equal to
A(xF,YF) HMGT A(W'XF,/pyYF, 1 F)- (14.2)

However we verified that the two expressions are equal only when K/ F is tamely ramified.
In this paragraph we shall show that they are equal if Theorem 2.1 is valid for all pairs K'/F’
in P(K/F) for which [K" : F'] < [K : F].

Lemma 14.1

Suppose K/ F is wildly ramified and Theorem 2.1 is valid for all pairs K'/F' in P(K/F)
for which [K' : F'] < [K : F]. If xr is any quasi-character of C'r the expressions (14.1) and
(14.2) are equal.

If a and b are two non-zero complex numbers and m is a positive integer we again write
a

a ~p, b if, for some non-negative integer r, 3

complex number p by demanding that

is an m'th root of unity. Define the non-zero

A(XE/r, VE/F) H A, vp, /7)

pneT

be equal to

pA(xr vr) [ |

We have to show that p = 1. Lemma 14.1 will be an easy consequence of the following four
lemmas.

/
LeT Ap XF,/Fs @DFH/F)-

Lemma 14.2
If m(xr) is O or 1 then p = 1 and in all cases p ~2), 1.
Lemma 14.3

If[G : G4] is a power of 2 then p ~,, 1.
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Lemma 14.4

If the induction assumption is valid, if ' C F' C L, if F'/F isnormal, and if [F' : F] ={
is a prime thenp ~ 1.

Lemma 14.5

Suppose H = Hy Hy where H is a cyclic normal subgroup of H, [Hs : 1] is a power of a
prime ¢, and [H; : 1] is prime to £. If the induction assumption is valid p ~ 1.

Grant these four lemmas for a moment and observe that if m and n are relatively prime
then p ~,,, 1 and p ~,, 1 imply that p = 1. If ¢ is a prime which divides [G : G| there is
a field F’ containing F' and contained in L so that F’/F' is normal and [F’ : F] = {. Thus
Lemma 14.1 follows from Lemma 14.4 unless [G : G| is a prime power. Lemma 14.1 follows
from Lemmas 14.2 and 14.4 unless |G : Gy] is a power of 2 or p. Suppose |G : Gy] is a power
of 2 or p. Then p ~¢c., 1 except perhaps when [G : G| = 1. If £ is a prime which does not
divide [G : Go] but does divide [Gy : G1] let Hs be the ¢-Sylow subgroup of Go/G;. Hs is a
normal subgroup of G/G; which we may identify with H and H/H» has order prime to Ho.
Thus, by a well-known theorem of Schur [7], H = H,Hs where H; N Hy = {1} and H; has
order prime to Hs. It follows from Lemma 14.5 that p = 1 unless [G : Gy] = 1 or [G : G4] is
apower of 2 or p. If [G : Gy] = 1 and / is a prime dividing [G( : G1] there is a field F’ with
F C F' C L such that F'/F isnormal and [F’ : F| = {. Thus if [G : Gy] = 1 it follows from
Lemma 14.4 that p = 1 unless [G : G1] is a power of 2. However if [G : G1] is a power of 2
there certainly is an F in L with [F" : F] = 2. It follows from Lemmas 14.3 and 14.4 thatp = 1
in this case unless p = 2. If [G : G4] is a power of p then Gy = G; and G/ is abelian. By
assumption the abelian p-group G/G; acts on the p-group C' = G, faithfully and irreducibly.
This is impossible.

We prove Lemma 14.2 first. Let t > 1 be such that C' = G; while G;;1 = {1}. Let 6, be
the homomorphism of G into Bk /PB4 and 6y the homomorphism of Gy /G into U /U
introduced in Serre’s book. If o € Gy and v € G, then

Oc(oyo~1y7h) = (05(0) — 1)8: (7).

! is a one-to-one map of C' onto itself.

If o is not in G then (o) isnot 1 and v — oyo 1y~
Thus, if o € Gy,
ployo™") = pu(v)
implies p = 1 or 0 € G4. Consequently if 4 # 1, G, NGy = Gy and L/F), is unramified.
Since p = M/L/F#'
m(p') =m(p) =t + 1.
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Observe also that t must be relatively prime to [Gy : G1]. In particular if ¢ is even [G : G1] is
odd.

The relations
Syp = ([Gr s 1] = 1) (¢4 1)

6L/F = [GO . Gl] — 1
6K/E = [GO : Gl] -1

and
dx/p =0k/L +[G1:1]0r/Fp =6k e + [Go : G1]dg/F

obtained from Proposition 4 of Chapter IV of Serre’s book, imply that

5y = (1Gas1] — 1) (ﬁ-%l)

If n = n(yp) then
n(@bpu/p) = [GO : Gl]n-i- [GO : Gl] -1

and

' =n(pp) =[Gy n+ ([Gy:1] - 1) (ﬁ + 1) .

Choose a generator wg of P x and a generator wr of Pr. Then set wy, = Nk /L@ K and
wr = Ng/rpwg. There is a unit ¢ in K such that

14+n t
Wg 5 Wk
1+n/ t -

Taking the norm from K to L of both sides we see that if ¢ = [G : 1] and k = [G) : G1] then

t(g—1)
w

t(‘l;l)
Wr

Let m = m(xp). If m — 1is equal to -2~ then [Gq : G1] divides t and [Gy : G4] is 1.

[Go:G1]
Suppose that
t
m < ———= + L.
[GO . Gl]
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Then

m(Xr,/F) < Yp,/F (ﬁ) + 1.

However Yr, /r = ¢r/F, ©¥r/r = %1 ,/F so that
Yr, r(u) = [Go: Gi]u

if u > 0. Thus m(xp, r) < t+1and m(p'xF,/r) =t + 1. Moreover, by Lemmas 13.1 and
6.4, m" = m(xg/r) = m. Choose a generator wr, of fr,. Then

where v, is a unit. The order of w}ﬁ”w}u in F,is 1+t +n(¢p, ). Observing that

ZM[FMZF]:Q_l

we see that

Ai(xg/rs Yoy ) H As (' p, p w5 ")

peT

is equal to

p{HH XF(%)} {A(xF,Yp, gt} {HH Ai(W'XF, psYE, P W}:Jrnw%u)}

It is now clear that p = 1 if m = 0.

If .
m> —— —+1
_[GoiGl]

so that in particular m > 2, then

is also greater than or equal to 2 and
m' +n' =[Gy : 1] (m+n).
Since m’ > 2 and K/E is tamely ramified

m(xx/r) = Yx/p(mxe/r) —1) +1=¢g/p(m—1)+ 1.
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Since

m(xr,/r) < Yp, r(m—1)+1
and

Ve, p(m—1)+1>vYp /p (%) +1=t+1

we have

m(W'xp,/r) < p,(m—1)+ 1.
However

XK/F = (N/XFH/F)K/FH
so that
Vi, (Vp,  p(m—1)) +1=vg/p(m—1)+1=m(xk/r)
is at most
Vi p(m(p' xr, ) p) — 1) + 1.
Thus
m(W' xr,)r) = Yp,/p(m—1)+ 1.

Consequently

m(W'xr,/r) +1(¢F,/r) = [Go : Gi] (m +n).

Since the range of each p’ lies in the group of gth roots of unity
AI(XE/F7¢E/F7W?+R> HH Al(u',@bpu/p,w?“?D%H)

is equal to
oA1(xF, Vr, @p ™) HM A (X, psp, p @R )

with o ~, p.

The next step in the proof of the lemma is to establish a simple identity. As usual let r be
the integral part of “t! and let r + s = ¢ + 1. Choose 3(1') so that

VYr,/F (M) =4/ (1+ )

14+n
Wrp WF,
for x in PS. . There is a unit o, in L such that a,, @t = w?’. Then
F, n pwE, L

YL/ (%) =p(l+z)

Wg L
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for z in P73 . We take 5(p) = o, 5(1). If o € G a possible choice for 5(u”) is

B(r)” =25

wr,
Let = Op/Br = Op/PE and let ¢4 be the additive character of ¢ defined by

T

VYp(z) = YF (—) -

14+n
Wg

There is a unique « in ¢ such that

g (o) = Yo ().

Soyr | ZE
w1 =0p/F | —77 |-
/ wi_}—i—n

q
Wi

Hu T = — " NFH/Fﬂ(M/) (14.3)

o4

Finally let

I want to show that

in ¢.
Let A = OL/PL = OK/PK. If

ot
e
/ th

then w; = dw in A. We need the following lemma.
Lemma 14.6

Suppose K'/F’ is an abelian extension and G' = &(K'/F"). Suppose thereisat > 1
such that G' = G} and G, | = {1}. Let wg- be a generator of P, let wr = N/ pr(wk),

and let .
wK/
o= Sk (@) |

Also let ¢ = [K' : F']. There are numbers a, . . ., f in Op: such that for all z in O

NK//F/(]_ + l’w%/)
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is congruent to
1+ (2% 4 az? + ...+ fa? + wz)wh,

modulo ‘B?Il.

Suppose F' C L' C K'and the lemmais true for K'/L' and L’/ F’. The lemma for K'/F’
follows from the relations
[K': F'|=[K':L|[L": F'|

and
NK’/F’(]- -I—a:w%/) = NL//F’(NK’/L’(]- -i—a:w}(/))

t t t
IS W\ _ IS Wi, S (2
K//F/ T = L//F/ t K//L/ —t .
WF/ WF/ WL/

The lemma for extensions of prime order is proved in Serre’s book.

and

Suppose then
Nig/p(l+zwy) =14 (274 ... + wz)w], (mod P4Ht)

for z in Op,. Since
asp(aw) = hg(aSy/e(x)) = ¥e((Sx/e(2))?)
which in turn equals

Vo (Srjpr?) = xs(x?)

we conclude that

Q=

Uasp(y(@? + ... Fwr)) =y p((ays + ... +wy)z).

Also q
1
(ay5+...+wy) =aly+...+wly?

is a polynomial Q(y) in y.

For each v in S(K/L), we choose (31 (v) so that
B1(v)x )
S ) =1+
¢L/F (w1+nwt V( fL’)
for x in P}. Since kP = kin A

Uasg(kBL(v)(x? + ... +wz) = Yy/e(B1(v) [(kx)T + ... + wkx])



Chapter 14 177

if z is in Op. The left side is also equal to

bi/r (51( ﬂfi/f(xw%)) .

FwL

Thus Q(kB1(v)) = 0. Since (1 (v1) = B2(v2) (mod ‘P ) implies v; = v, we have found all the
roots of Q(y) = 0. Thus

af

it | 9 kBi(v) = H#l fr(v)  (modPy).

w4

Let M, be a set of representatives for the cosets of G, in G. Then

H F /FB HMET HUEM

is congruent to

{H”ﬂﬁl } {HMET HJE . Ut}_l

modulo *B,. To verify the identity (14.3) we have to show that

{11, .., WWLL} {0} =0 @noaw)

Since

ot [F:F]
Yy = H L\ R
H oc€M, ozz F
the congruence reduces to
t(g—1)
w
L q
t(q 1) =9 (mOde)
Wr

which is valid because the left side is Ng .6 and

NK/L(S =04 (mOde>

If m = 1 then m(xp,/r) < 1 and we can take 3(p'xr, /r) = B(1'). Then

No(W g, g " @)
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is equal to
_|_

Xr(Ng, /e (B(1') Do (' XF, 0y Y, s g @)
Lemma 9.4 implies that

Az (i, wFH/F, w}jnwh) = AS(//XFH/F7 wFH/F, W}jnw%ﬂ)

If x belongs to O then
x
—— | = Yp(wr1z).
YE/F <w1+”> Vg (wiz)

E

If x4 is the character of ¢* determined by x r then

Ai(xr ¥, @ ") = Al=7(xgs Vo))

and

’

Al(XE/F,¢E/F,w}3+n ) = Xo(w]) A[=T(X%s ¥s)]-
The right side of this expression is equal to
Xo(Wia™®) A[=7(x¢, Ve)].
The identity (14.3) now shows that p = 1 when m = 1.

Suppose that

t
l<m< ———%—+1
[G():Gl]

Let (3 be a given choice of 3(xr). Then
Bxe/r) = Ppyp(B @ @i ™) (mod B)
if m’ = 2d’ 4 ¢’. On the other hand
Yryr(m—1)+14n(Yr/r) =[Go: Gi](m — 1) + 1+ [G : Goln + [Go : G1] — 1
which equals [Gy : G1](m + n) and Lemmas 8.3, 8.4 and 8.7 imply that
P p(Bwp ™ wi ™) =5 (mod PBY)

if
¢L/F(m— 1)+ 1=2dy +¢e;.
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If
then
* m/ m ’I’l _ d/
PK/E(ﬁ(XE/F,WE o WE o )= 5(XE/F) (mod PBE ).
Thus
m ’I’L m-Tn d/
ﬁ(XE/F) K/F(ﬁ, + WF+ ) (mOd‘BKl)-
Let
U:t+1—(’QDL/F(m—l)-Fl):t—[GO:Gl] (m—l)
If "
o v
Y= L_1
Wpg
and
o v
'7/ - E1+n K
Wp wL
then

m n/ m-+n ’I’TL n m-r+n d/
PK/F(ﬁﬁ " WF+) PK/L(ﬂa o WF+) (mod Py )

is congruent to

/ 1+ 1+
P;(/L(’YﬁﬂﬂF nwLwK y Wk nwL ‘)

modulo ‘B% .

It is clear that

Ao (XE/F zbE/F,wE'*”') ~p X5 (Ng/r(B(xE/F)))
and that
AQ(M/7 wFu/FW w;‘—i_lw%’u) ~p L.

If we choose -
F

Bu'xp, r)=0)+ 3 p——r
Wg
then

t
A / n+l__t -1 N ’ WE,
2(,u XF#/FADF“/F,@UF WFJ ~p XF F,/F 5(#)“‘5 P .
F
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Moreover
A (XF7 ¢F7 m+n) ~p X;‘l(ﬁ>
Let
A2(XE/F7 Ve P, Wy o ) Hu A (4, 7»[JF#/F, w%“%h)
equal

Ao (XF, Yr, " {H DNo('Xp, /7y E, P @ le } {H XF (Y }

Since
XF(U> ~p 1

if u € U}, all we need do to show that 7 ~,, 1 is prove that

/ w%,u
ﬁHu Np,/r | B(W) -

is congruent to

Ng/rp(B(xe/F)) HM Vi
modulo Pr.

As before we choose 3(1) = a, (B(1'). If v = 7 a possible choice for 5(v) is

wt

o o L
Oé/j,ﬂ(/’l//) wzt ‘

We can also choose

E / w%u
B(NXL/F) :O‘uﬁ(ﬂ)‘i'ﬁ T T = O Bu') + B 1 | -
Wg Wg
Then a possible choice for B(u”xr,/r) is
t o t t t
o / wFﬁL wL _ o o wL wL
az{ o) + 5 w?_l} =BT T s
We apply Lemma 8.10 with F replace by L,
14+n

6 =wp "wh
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and 1 = wy. It implies that

is congruent to

t g t
o / wFﬁL WL
7B HMET HUEMH {au (ﬂ(ﬂ ) +ﬁ o -1 w%t
modulo ‘Br,. The last expression is equal to

w

t
w{HMET NF,/r (ﬂ(u’) +0 WZ

ot
wr

T
q

h(‘h

—

)L TL, o

and we have to show that

t
s (T, { T, Ty, o S )

is congruent to 1 modulo ‘By,. First of all

lg—1)t

k
n_ _m'+n'—q(l4n) _—qt+v _ 1 Wp
NK/L(V) =Wpg wr, - (g—1)t"
L

Since

T e
= w
T ceM, wl? F

the required relation follows.

Define 7 by setting

nAs (XE/FJPE/F,WEL o ) HueT Az (Nl7¢FH/F7w}r+nw%u>

equal to
As(xr, Yr, g ™) HueT As (M/XFH/F7¢FH/F7W}E‘+nw%‘H> :

We now know that n ~,, p. We shall show that 1 ~,, 1. This will prove not only the assertion
of Lemma 14.2 but also that of Lemma 14.3, provided of course that
t
m—1< ———.

[GO . Gl]
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Lemmas 9.2 and 9.3 imply directly that  ~, 1if pis 2.
Suppose p is odd. Lemma 9.4 implies that

A3(M/, ¢FH/F, wiﬂ*”w}%ﬂ) ~p AB(N/XFH/Fa ¢FH/F, W}J"w}ﬁ)-

Since m’ = m all we need do is show that

’

As(xXm/r, Ve @y ) ~p As(xr, ¥p, @™

when m is odd. Let ¢ = Op/PBr = Op/Pr. Let ' = B(xp/r) and let 8 = B(xr). If ), is
the character of ¢ defined by
Bx
vhta) = vr (L

and wg is the character of ¢ defined by

" g
Vy(x) = vE/F (ﬁ)

E

and if ¢ (z) = 1}, (6x) then, by Lemmas 9.2 and 9.3, all we have to do is show that § is a square

in ¢. If
n+1
w
w1 = SE/F (%)
WE

then § = w; %/ in ¢. To show that ¢ is a square we show that 7 is a square.

0 = N pa = gl-a LE/g(ﬁ/)wiI‘
We saw that
NE/F ! %
{H %} {Hu N, r | B(u') + 6 - }
WE
in ¢. But
wh
I6; = =0 (mod®Pr)

m
F
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because t > [Gy : G1](m — 1). We also saw that

{HM w}_l {H“ NFH/Fﬂ(NI>} = ;—z}

in ¢. Since 3!~ is clearly a square, we need only check that « is a square. The character

. — g (2 — ax)
is identically 1, so that the kernel of the map
r— z!—ax

is non-trivial. Thus a = 297! for some z in ¢.

Now suppose that
t

= [Go: Gyl

We have to show that the complex number o defined at the beginning of the proof satisties
o ~gp 1. To prove Lemma 14.3 we will have to show that o ~,, 1if [G : G1] is a power of 2.

m—12>

Given 8 = ((xr) we may choose 3(xr,/r) = B(XF,,/r) = 3. Moreover
B(xm/r) = Ppyp(B.wp ", @™ (mod PB)
if m" = m(xg/r) = 2d’ + €'. By Lemmas 8.3, 8.4 and 8.7

Py p(B,wp ™ wip ™) = P g (B(xeyr), @i " @i ") = Blxe/r)

modulo P;l(/l if
Yryp(m—1)+1=2d +¢i.

Thus
Blxe/r) = Piey (B, i) (mod B).
It
@DFH/F(m —1)+1=2d,+¢,
and

Yr, P (jiﬁjﬁf) =u'(1+2)

F
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. nd
forz in ‘P . e we may take

B xp,r) =6+ a(y).

If
wL/F(m— 1) +1= 2d1 + &1

then

Wt +o) =y (%)

for z in PL 1. If v = p” then

a(u')’x
) = v (20 )
for z in ‘BdLlJrEl . Lemma 8.2 implies that

Ng/r(B(xe/r)) = Nr/o(B(xE/F))

is congruent to
o
811, 11, ., (B +ale))

modulo ‘By,. The last expression is equal to

811, Newr (B +a()).

Moreover
AQ (XF7 ¢F7 w?_'_n) ~p X;‘l(ﬁ)

AQ(,LL/7 wFH/FU w}?‘—i—nw%’u) ~p 1
No(XE/r e/ @i ™) ~p X5 (Ngp(B(xe/F)))

Ao(t'xp, /5 YF, py @ ") ~p X5 (N, p(B+ aly))).
Define 7 by demanding that
AS(XE/F7 wE/F,W?Jrn) Hu A3(M/7 wFH/F7W}r+nw%#)

be equal to

’TA?,(XF,'QDF,@?—’_”) HH AS(M,7XF#/F7¢FM/F7W?+R>'
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Since xr(u) ~p 1if u € Uf the preceding discussion shows that o ~,, 7. Lemmas 9.2 and 9.3
show that 7 ~9,, 1. Lemma 14.2 is now completely proved. To prove Lemma 14.3 we have to
show that 7 ~,, 1if [G : G1] is a power of 2. We may suppose that p is odd.

There are a number of possibilities.

(i.a) tiseven and misodd. [Gy : G1] mustbe odd and hence 1, for we are now assuming that
[G : G1] is a power of 2. Since

m(xr,/r) = [Go: Gl (m—1)+1

and
([Gh:1] = 1)t

+1
[GO . Gl]

m(XE/F) =[G1:1](m—1) -

both m(xr,/r) and m(x g,/ r) are odd.

(i.b) tiseven and m is even. Again [Gy : G1]is 1. This time both m(xr, /) and m(x g, r) are
even.

(ii.a) tis odd and m is odd. Then m(xf, /r) is odd. If
Gy :1]—1
[GO . Gl]
is even m(x g, ) is odd. Otherwise it is even.

(ii.b) tis odd and m is even. If [Gy : G1] is odd, that is 1, then m(xF, /r) is odd and m(xg/F)
iseven. If [Gy : G1] is even then m(xf, /) is odd and m(x g, ) is even or odd according
as

[Gl . 1] —1
[GO . Gl]

is even or odd.

If ¢ is odd then clearly
Hu A3(H/7¢FH/F,W}+nTD%H) ~p L.

We are going to show that this is also true if ¢ is even. Then L/F, and hence F),/F, is
unramified. Let ¢, = Of, /Br,. If

Vg, () = V¥r, /P (%)

F
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and if ¢4 , is a nowhere vanishing function on ¢, satisfying

0o, (@ +y) =g, () P, (Y)Ve, (TYy)

then

A3(H/7¢FH/F,WII:+TLW%H> ~p Al—o(ps,)]-

If a belongs to ¢7, let vy, () equal +1 or -1 according as « is or is not a square in ¢,. If
¢ = Op/Pr then

v, (@) = vy (Ng,/9(@))-
If

bo(@) = vp (%)

Wp

then, according to paragraph 9,
As(p's e, r, w}f"w%ﬂ) ~p V6(Np,/r(B(1'))) {A[—0(ipp)]
if ¢4 is any nowhere vanishing function on ¢ satisfying
vo(r +y) = @4() 0o () Yo (2y)-
Thus if a is the number of pin T’
HH Az, VF,/F Wll;rnw%u)

is equal to
n(=0vs ([T, Nr /e (80)) Alo(p)"™)
where ~, land ¢ = [G; : 1].
We saw in paragraph 9 that
Alo(4)°] ~p vo(=1) Allo(pg)[*] = vs(-1).

Since t iseven Gy = G and G/G1 = G/Gy is abelian. If 0 € G

{pe S(K/L) | p=p"}
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is a subgroup of S(K/L) invariant under G. It is necessarily either S(K/L) or {1}. If o is not
in Gy itis not S(K/L). Thus G, the isotropy group of y, is G for all pin T and F,, = L.

Moreover
L, MrrBw)) =11, 11, .60, 807

We may regard C' = (3 as a vector space over the field with p elements. If o € G/G; and
the order of o divides p — 1 then all the eigenvalues of the linear transformation ¢ — oco ™1
lie in the prime field. Since the linear transformation also has order dividing p — 1 it is
diagonalizable. Since G/G is abelian and acts irreducibly on C' the linear transformation is a

multiple of the identity. In particular if o is the unique element of order 2 then ogcoy ! !
~1

= C

for all c. As a consequence ;17° = 1~ and

Bu')? = =pw') (modPr)

if we choose, as we may since F},/F is unramified, @ F, = wp. If D is the group {1,000} and
M is a set of representatives for the cosets of D in G/G; then

HueT HUGG/Gl B)” =
if
7= HMET HUEM Bl

Clearly ) —
170 =(1=)"7 " (modPyr).

If x is the non-trivial character of D and
v:G / G() — D

is the transfer then
a

77 = x(v(a))*y

for all 0 in G/Gy. v4(7?) = 1if and only if x(v(c))®is 1 for all o. If o is a generator of G/Gy
then

so that v4(y?) = (—1)®. Putting all these facts together we see that

Hu Ag(ul,lpFH/F,W};_nw%ﬂ) ~p 1.
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Observe that if we had taken @, to be §,@F then Np, ,rB(1’) would have to be multiplied
by
{NF;L/F(SN }t

which is a square modulo P because ¢ is even. Thus the result is valid for all choices of @wF,.

Eventually we will have to discuss the various possibilities separately. There are however
a number of comments we should make first. If m is odd and m(xr, /r) is odd then

AS(N/XFH/F7¢FH/F7W?+R) ~p Vg, (B+a(u)) Al—o(vgs, )]
if
T
quu(af) = wFH/F (@) .

m—1

Observe that, because m is odd, we may take the number ¢ in Lemma 9.3 to be wFT. Of
course ¢4 , is any function on ¢, which vanishes nowhere and satisfies

0g, (T +Y) =g, () vy, (V)Ve, (TY).

Applying Lemma 9.1 we see that

Al=a(ps,)) ~p —ve (k5 ) Alo(pg) ]

ifk = [GO . Gl],lf
sole) = vr (= )

Wg

and if 4 bears the usual relation to 1)4. We use, of course, the relation

kSs,4(2) = Sr,/F(2)-

Observe also that
vg, (B+a(p')) = ve(Ng, /(B + a(i))).

If m is odd
A3(XF7 ¢F7 w?—’_n) ~p _V(ﬁ(ﬁ) A[U(@dy)]

If both m and m' = m(xg,r) are odd and if 3" = B(xg/r) then

A3(XE/F,¢E/F,W}R+H) ~p —Vqs(ﬁ/) A[U(%s)]



if <p;5 bears the usual relation to the character

s
VYy(x) =tp/p | —==¢

14+n %
Wp Wg

There is a unit € in Ok such that wg = 5w§{. If 0 € C then
wl = 5”‘1w§?_1)q =1 (mod%Pk)
because t > 1. Thus the multiplicative congruence
wy = Ng/pwp = wr  (mod” Pg)

is satisfied and -
n
1 _ W
(a—Dt =
k
Wk

- (mod* )
w};_n ( sBE)

w}f"
w1 =5\ —5
Wg

W) = v (“’—+) |

Wp

If

as before, then

Since
ve(B') = vy(8')! = vg(Ng rf')
we have
As(XE/r Ve r @ ") ~p —Vs(Ng ') vg(wi) Alo(pg)].
Define 1 by demanding that

AB(XE/F7 wE/F, W?Jrn)

be equal to
nA?’(XF? ¢F7 w?_'_n) HH A3 (M/XFH/FW wFH/FW w?_'_n)‘

We have to show that 7 ~,, 1. If both ¢ and m are even this is clear. If ¢ is even and m is odd
we are to show that

vo(Ne/pB g (wn) ~p (=) (1) T vo (k)T vs(8) [T ve (N /(5 + o))
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if a is the number of elements in 7. Since ¢ is even k is 1. As before

OIL, Nouso(B+a) =11 TI 4, B+ ()

is congruent to Ny, 3 modulo B x. All we need do is show that

g—1

vp(wr) = (=) ve(=1)=.

Since t is even each 7, is a square in ¢. Applying the identity (14.3) we see that

vo(wr) = vo(wt) = vs(@)vy" (TT, N, /e8(0))

We have seen that « is a square in ¢ so that v4(a) = 1. We also saw that

q—1

vo (T1, N, e80)) = (=1)" vo(=1) T
when t is even. The required relation follows.

We suppose henceforth that ¢ is odd. The discussion will be fairly complicated. Suppose
tirst that m is also odd. Then
[Go:Gi](m—1)#t

and ;
m—-1>——
[GO . Gl]
so that
B+a()=p3 (modPr)
and

TT, 200X, s, 2 ™) vy (1) v () vy (87 ) Alo(a)) 7
Thus if qT_l is odd we have to show that
(—1)" T v (k) vp(~1) 5 T2~y 1 (14.4)
and if qT_l is even we have to show that

qg—1

Vs (w1) ~p (—1) vg(—1) . (14.5)
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Now suppose m is even. If [Gy : G1] is 1 there is nothing to prove. If k = [Gy : Gi] is
even then

t
_ 1 >
mn [GO . Gl]
and
B+a(p)=pp (modPyr).
If
wiﬂ(m_l)x
b, () = Vp, | B—mgm—
Wpg

and 90;’)“ is a function on ¢,, which vanishes nowhere and satisfies

Po, (T +y) = @y () O}, () Py, (xY)
then
A3(M,XF#/F7¢FH/F7W?+H> ~p A[_U(wiﬁ#)]'
If
éuw?_l = w?im_l)
then ¢, is a unit and
Vo, (v) =Yg, /¢ (kBeuT)

if, as before,

Vo(z) = Yp (%) :

Wk
By Lemma 9.1, A[—0(¢g, )] is equal to

[Fu:F]

s (K57 ) wo (BF ) ws(N, o) Alor(ia)]F

If q—;l is even we have to show that

q—1

(=0 s (T Nowsom) vo(-1F ~y 1 (14.6)

If %1 is odd then m’ = m(xg,/r) is odd. If

m'—1
Vy(z) =Yg/ r (ﬁ/ TDEernx)

F
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and ¢y bears the usual relation to ¢ then

AS(XE/F,@bE/F,W?Jm) ~p A[—U(wi;)]-

Now v4 (') = v(6")? and
(8)'= Ng/pf'

which in turn is congruent to
N\ — 29
O11,cp 1, ey B+ al)) =6

modulo P . Let

élwg”r” = qu(m+n)

Sopr | ZE
w1 =Sp/F | 17w
/ wi_}—i—n

and, as before,

then
Al=o ()] ~p ve(wr) ve(er) ve(B) Al—o(ps)].
We saw that
wh =wrp (mod" Pg)
so that

e1 =1 (modPg).

Thus we have to show that

vp(wi) ~p (1) uy (k) 1/¢(—1)q2—_kl_% Ve <Hu N%/qbau) . (14.7)

The four identities (14.4), (14.5), (14.6), and (14.7) look rather innocuous. However to
prove them is not an entirely trivial matter. We first consider the case that G/G; is abelian. If
oo € G/G is of order 2, the argument used before shows that oycoy L— ¢ 1forallcinC.
Since the representation of G/G1 on C'is faithful G /G has only one element of order 2 and is

therefore cyclic. In this case [}, = L for all and a = [5—_6:11] We may choose wp, = wr. If

Npjrpwr = ’YWE:G:GO]

then y, = ' and

Hu Yy = ,_yat.
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If [Go : G1] = 1 we may choose wy, = wp so that 7 = 1. The argument used before

shows that
o _ (_1\a _ a-i
6 (T, IL, e, 5007 = (1 a1
The identity (14.3) shows that

The identity (14.5) which is the only one of concern here becomes

g—1 qg—1

vo(~1)'T = vy(~1)
which is clear because k = [Gy : G1] = 1.

Now take [G : Go| = 1. We may choose wg = Nk /pwk so that wp = Ny pwr and v
is again 1. It is perhaps worth pointing out these special choices are not inconsistent with any
choices yet made in this paragraph. This is necessary because the arguments appearing in the
functions Ay must be the same as those appearing in the functions As. We previously defined

s =
le—l—n’ wt
and showed that )
q—
‘]VK/L(S = t(g—1)
wp "
Observe that i
“L _ 1-—0 — -1 _
Ty, =" = [ o0lo) ™ = =1 (mody)
because

{00(0) | 0 € G/G1}
is just the set of kth roots of unity in ¢ and k is a power of 2. It is not 1 because
[GO : Gl] = [G : Gl] > 1.

Since

09 = Ng,6 (modPr)

we have
Vp(0) = vp(—1)"% .
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If as before

fi(v)z \
Y/ (M) =v(l+2)

for z inPB7 and v in S(K/L) then, as we saw when proving the identity (14.3),

wi = §%a {H#l ﬂl(V)} (mod B).

Thus
q—1

vo(wr) = vp(=1)"F

I1,,, ve(3:).

We can choose 1=} elements v; in S(K/L) so that every non-trivial element of S(K/L) is of

the form Vf, 0 < j < p. Then

IL,,, ve(i0) = vo (T15 TIZ, 380 ) = va(-0)#

because

When m is even

vo(k) vg(—1) 7 3 =1 (14.4')

Vo(—1)771 = vy(—1) 5 (14.5)

ve(—1)%% =1 (14.6")

Vs (—1) T v (~1) 3T = vy (k) ve(—1) T HE pg(—1)'F (14.7)

If p = 1 (mod4) the identities (14.5") and (14.6) are clearly valid. Moreover for (14.5") and
(14.6’) the number q—;l is even. Since k is a positive power of 2, ¢ is an even power of p if
p =3 (mod4). If ¢ = p?/ then

-1
q—1:1+p+...+p2f_150 (mod4)
p—
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and the left side of (14.5") is 1. If q2;kl is even (14.5') and (14.6') are now clear. If it is odd, 4
divides k because 8 divides ¢ — 1. But {6y(c) | 0 € Go/G1} is the set of kth roots of unity in
Or/PBr = ¢ so-lisasquarein ¢, vy(—1) = 1, and the relations are valid in this case too. The
relations (14.4") and (14.7’) are obvious if the degree of ¢ over the prime field ¢ is even. Since
¢ contains the kth roots of unity and k is a power of 2 the degree can be odd only if £ divides

p — 1. Since
g—1 q—1 p—-1
ko p—1 k

and qT_l is now odd % must also be odd and by quadratic reciprocity

p—1

6(0) = Voo () = v (1) v (25 ) = v (1) i (1) B

p—1
=1 d——— ).
P <mo k )

If p= 1 (mod 4) the two relations are now clear. If p = 3 (mod4) and ¢ = p/

because

—1
T —gpt.. 4p!
p—1

must be odd. It is therefore congruent to 1 modulo 4. (14.4’) becomes

p—1

V¢0(_1) V¢0(_1>T =1

and (14.7) becomes
V¢7o(_1) = V¢0<_1)'

There is no question that both these relations are valid.

We have still to treat the case that G/G is abelian while neither [G : G| nor [Gy : G1] is
1. Then

k
Nk, /rB(1') = {HUEG o ﬁ(u’)} (mod Pr,)

is a square in ¢ and the identity (14.3) implies that

vp(w1) = ve(v*)
Cr/Np, / rCp is cyclic of order [G : G1]. It has a generator which contains an element of the
form vy wpr. Moreover the coset of

(nwp) SN pwp ! = Gl
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is a generator of Ur /Ur NN, ,pCr. The order of this group is a power of 2 and pis odd so every
element of Ur N Ny ,pCy is a square. Consequently y cannot be a square and vy (y) = —1. If
mis even and F"’ is the fixed field of G then

L\ m—1 N m—1 m—1
. wr, . L/F’wL 1—o
Q= (2 = (M=) T
woE wrp O'GG()/Gl
which is congruent to
_ NL/F’wL m—1
Wk

modulo P, Since [F’ : F]is even

m—1
NL/FWL m—
Nowso€n = Nevjpeu = < (GGl ) =

Wk
and
Vo(No,/o€u) = vo(y) = —1.
Because
_a-1
RNTErYeh|

is integral, q—;l is even, and we need only worry about the identities (14.5) and (14.6). They
both reduce to

g—1

I/d,(—l)W =1.

To prove this we show that qz—_kl is even if v4(—1) = —1. Since
k= [UF . UF ﬂNL/FCL]

and this index must divide the order of ¢* the number v4(—1) is -1 only if k£ = 2. Of course
p will be congruent to 3 modulo 4. Since 4 divides ¢ — 1, ¢ is an even power of p and
g =1 (mod8). Thus

is even.

Now suppose that G/G is not abelian. Let 0 — z(0) be a given isomorphism of G /G
with Z/kZ and let © — o(z) be its inverse. Let 7 — A(7) be that homomorphism of G/Gj
into the units of Z/kZ which satisfies

z(tor™h) = \1) 2(0).
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There is precisely one element of order 2 in Gy/G1, namely o (%), and it lies in the center of
G/G. Since G/Gj is cyclic, G/G is non-abelian only if & > 2. Choose a fixed o in G which
generates G/Gy and set

to = A(0o)

and

We shall sometimes regard C' as a vector space over the field with p elements. If o belongs to
G/G1 let (o) be the linear transformation
c— aco b

The dual space will be identified with S(K/L) and 7* will be the representation contragredient
tom.

The relation

k
N — o
Np,/pBp') = {HUEG/GHGO Bl }
together with the identity (14.3) implies that

volwn) = vo ([T, %)

Moreover if m is even and I ;L is the fixed field of GG

k m—1 m—1 m—1
wFH NFM/F[LWF# l1—0o
o= (S} S ERmER T o
wF WF UEGo/Gl M

which is congruent to

modulo B, . Since

NF;L/F[L wE, (m—1)¢
wF

{No,spent’ = NF,/F {_

which equals
(—1)tn:9] VLH_I
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and ¢ is odd
Vo(Ng, o 1) = V(= 1)1y (4,).

These relations will be used frequently and without comment.

I want to discuss the case [G : Gy] = 2 and pp = —1 (mod 4) first. Since
(—10)? = 1 = A(03) = 1 (mod k)

we must have

or,if k > 4,
k
—Ho =5 +1 (modk).
Then
po = —1 (modk)
or
k
o =5 — 1 (modk).
Since

o —1=2 (mod4)
the centralizer of o in G/G consists of the identity and o (£). Thus z(03) is 0 or £.

1 1

Suppose yp = —1 (mod k) and 2(c) = £. If o belongs to Go/G1 then ogooy ' = o~
and (0¢0)? = of. Thus o (%) is the only element of order 2 in G/G. If o belongs to G/G4
then o has a non-trivial fixed point in S(K/L) if and only if 7(c) has 1 as an eigenvalue. If
o # 1 there is an integer n such that ¢” has order 2. Then 7(¢™) also has 1 as an eigenvalue.
Thus if any non-trivial element of G/G has a non-trivial fixed point there is an element 7 of
order 2 such that 7(7) has 1 as an eigenvalue. The usual argument shows that

e (2) -

so that, in the case under consideration, only the identity has fixed points. Then

q—1
[GGl]

a =
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In particular %1 is even. We choose wp, = @y, and let

’}/WE:GO] = NL/FwL'

Only identities (14.5) and (14.6) are to be considered. (14.5) reduces to

qg—1

ve (7)™ = (=1)" ve(—1) 7%

and (14.6) reduces to

qg—1

(1) sy (1)1 1y (7)1 (1) T = 1,

Since [G : Gy is even they are equivalent. Suppose ¢ has r elements. If z € A = O, /B, then
290 = 2™ for some f. If o belongs to G /G then

Fo—1
rf —1yrf w7’ "o
Op(o) " = Op(opooy )" = (wafo ) = 0y(0)
L
Thus
ugf =1 (modk)
and
r=-—1 (mod4)
so that v4(—1) = —1. Since, in the present case,
qg—1
a=-—-
2k
the identities become
ve(7)" =1

The map
TL/F : WL/F — CF

determines a map of G /G onto Cr/Np/pCr. The image of oy contains an element of the
form 1w where 7 is a unit. The image of o3 is 1 because the commutator subgroup contains

{o((po —V)x)} ={o(x) | =0 (mod2)}

and in particular contains oZ. Since [G : Go] = 2 the number vv; * liesin Ur N N, zCr. The
index of the commutator subgroup of G/G; in G/G} is 4 so

[UF : UFﬂNL/FCL] =2
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Consequently 7, and +y are both squares and v (7) = 1.

Now suppose jig = —1 (mod k) and x(03) = 0. Every element of the form oq0, o €
Go/G1, has order 2. If m(0go) = —I then oo lies in the center of G/G; which is impossible.
Thus 7(0p0) has 1 as an eigenvalue. If 7 € Go/G1 then

r logoT = ogot?

so there are two conjugacy classes in the set 0oGo/G1. One has oy as representative and the
other has o1 = ggo(1).

Let V be a non-trivial subspace of S(K/L) invariant and irreducible under the action of
Go/G1. Suppose first that V' is also invariant under 7*(0g) so that V. = S(K/L). Choose
vy # 0 so that 7*(0p)vg = vg. Let A’ be the field obtained by adjoining the kth roots of unity
to the prime field. Certainly A’ C X and, since

Oo(0)?° = 90(00_1000),

A is not contained in ¢. Let ¢’ = ¢N . We may regard {1, o} as &(\'/¢’). The map ¢ which
sends 0 in G /G to (0 *(0), 1) and oo to (65 (o), 0¢) is an isomorphism of G/G'; with the
semi-direct product of the kth roots of unity in A" and &()\'/¢’). There is a unique map, again
denoted by ¢, of V onto A’ such that ¢(vg) = 1 while

for 7 in G/G;. Of course the kth roots of unity act on X' by left multiplication. The Galois
group acts by opa = a% § Putting the actions together we get an action of the semi-direct
product. To study the action of G/G; on V we study the equivalent action of the semi-direct
product in \'.

It is best to consider a more general situation. Suppose ¢’ is a finite field with p/ elements,
) is an extension of ¢’ with p’ elements and T" is the semi-direct product of the group of kth
roots of unity, where k divides p* — 1, and &(X\'/¢'). T acts on )’ as before. Let £ = nf. If
0 < j1 <n,j= (j1,n), and p is the automorphism x — 2P’ of X' /@' then the number of
elements of \’ fixed by a member of I of the form (c, p?") where « is a kth root of unity is the
same as the number of elements fixed by some other member of the form (3, p~7). Indeed if

b ‘7—1 =1 (modﬁ)
J J



Chapter 14 201

and b is prime to the order of (a, p’!) we can take
(B,p77) = (a, p")".
Let 6 be a generator of the multiplicative group of A’. The equation
gome = om

can be solved for (3 if and only if Om(pjf_l) has order dividing , that is, if and only if p* — 1
divides km(p’f — 1) or, if

if and only if u divides m(p’f — 1). Let u(j) be the greatest common divisor of u and p’/ — 1.
u divides m(p?/ — 1) if and only if ﬁ divides m. The number of such m with 0 < m < p*—1

M(pz—l>

- — u(j)k.

Once m and j are chosen « is determined. The number of non-zero x in A’ which are fixed by
some (3, p~7) where j divides n but by no (3, p~¢) where i properly divides j is

2 “(%) uli)k

if p(+) is the Mobius function. The number of orbits formed by such z is

jik > u(%) u(i)k

so that the total number of orbits of I in the multiplicative group of A’ is

=D 2

%<1_%) @

Mui
T

which equals

2 1L

The product is over primes.

Lemma 14.7
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If p‘T—1 is odd then

(=) g (k) vy (1) 77 +3 =1,
The identity of the lemma is equivalent to
(~1)* vy () i (—1) 7 = 1
because
vy (k) = vy (—1) vg (u).
By the law of quadratic reciprocity the left side of the identity is equal to
(=1 (p'fu)
if (p/|u) is Jacobi’s symbol. If u = 1 there is only one orbit so
(-1t =1.
Of course (p/|1) = 1 so the identity is clear in this case.

We prove it in general by induction on the number of prime factors of u. Let my be a
prime factor of u and let u = 7{v with v prime to 7. Let v(j) be the analogue of u(j). Then
u(j) = ngv(j). Leb b be the analogue of a. Then

v=a-b=3 HW‘% <1— %) @(wg“) —1).

Observe that my and all v(7) are odd. To prove the lemma by induction we must show that

(=1 (@ | 75) = 1. (14.8)

Let
n=2Yn,

with n; odd. There are two possibilities to be considered.

(i)

mo=1 (mod2¥™h).
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Since the order of p/ modulo 7y divides n the quotient of 7y — 1 by this order is even and
p/ is a quadratic residue of 7. Also if i divides n

7r§ @) _ 1
{
is divisible, in the 2-adic field, by 4 if 2 divides % and is always divisible by 2. Thus v is
even and (14.8) is valid.

(ii)
o =1+ 2°w

with ¢ < y and w odd. Let i # n; divide n; and consider

Y 1\ v(271) | a4
Zj:() 1_‘[7r # (1 - ;) W (WO - 1) (149)

If £(2Yi) = 0 the sum is zero. If x(2Yi) # 0 let z be the smallest integer for which
2(2%) #0.If j < zthen x(274) = 0. If j > 2

;. . A | .
274f 1 < 2%if ) 2 2%cif
p L={(p 1 (E g P :

The residue of the sum modulo 7 is 27~%. Thus

x(274) = x(2%)

if 7 > z and (14.9) is equal to
1 1 v(2Y%4) y—1 v(279) 2(2%%)
i {H“ + (1 - ;)} { T Zj:z 2J+1 (WO - 1) :

v(2Y1) N Zy—l v(274)

We write

as

v(2%17) n Zy v(274) — v(2974) '

2z j=z+1 27

If k is replaced by # the number of elements of \* fixed by some («, p_2ji) but by no

(a, p=2' 1) is )
(0(271) — (277 14)} Z’T‘l.
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The collection of such elements is invariant under the group obtained by replacing k by pr—1
and ¢’ by the field with p/ elements. The isotropy group of each such point has a generator

of the form (a, p_zjz) and, therefore, has order 57; and index 2 (p = Thus Z (p D divides

l
(o) —v(@ 1y L1

()

so that 27 divides
v(277) — (277 1).

Since “! is divisible by at least one prime, the expression (14.9) is congruent, in the 2-adic field,

N

modulo 4. Since z < cand the product is not empty this is congruent, in the 2-adic field again,

to 0 modulo 2. Thus v is even or odd according as

S AT (1 5) ) S ()

is or is not divisible by 2 in the 2-adic field. Consequently
v 1N v(2m1) | w(@in)
V= Zj:() {Hﬂ_ ‘ ou— (1 — ;) } T (7'('0 — 1) (mod 2)

Of course z(2Yn1) = = # 0. Let 2z again be the smallest integer for z(2°n,) # 0. Then
z < cand
z(27n1) = 2(2°n;)

if 7 > z. The sum above is equal to

{w Ly m) @iy } (x 1),

2% j=z+1 27

As before this is congruent modulo 2 to

If z < c this is even and the order of p modulo 7 divides T%— so that (p|mg) = 1. If z = ¢

then

2

Wg_l_i x
2z 9c i=1

(f) (2°w)' =2 (mod?2)
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so that v = z (mod 2). However the order of p/ modulo 7 is divisible by 27 so that it does

71'0—1

not divide and

(p! | 75) = (=1)".
The relation (14.8) is now easily verified.

We return to the original problem. Since A’ is a quadratic extension of ¢’ and )’ is not
contained in ¢ the degree of ¢ over ¢’ is odd. Since V and A\’ have the same number of elements
g=7pt If q—;l is odd the relation (14.4) follows immediately from the equality

qg—1

(=) g (k) iy (1) T 5 = (=) g (k) i (1) 5
and the preceding lemma.

The number of ;1 in T" with isotropy group of order 2 is u(1) and the number of ; with
trivial isotropy group is M For points of the second type [¢,, : ¢] = 2 and for points of
the first type [¢,, : ¢] = 1. Since, as we verified earlier,

vg(wi) =g <Hu 'YM)

and
Ve(Ng, 16 €1) = vo(—1)129 vy (7,)

the identity (14.7) reduces to
u(l)=1 (mod?2)

which is true because u(1) divides u = Lk_l which, when (14.7) is under consideration, is odd

by assumption.

The identity (14.5) may be formulated as

vo (IT, %) = (1" ve(~) %

and (14.6) as
vo (T1, ) val-1)Zel#ed] = (1) s (~1) 7"

For these two identities qT_l is even. Again

S (b dl =u(l) (mod2).
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But

and
2a = u(l) + u(2)

so u(1) is even. It will be enough to verify (14.5).

We may choose 71" so that if p is in 7" then its isotropy group is trivial or contains one of oy
or 1. If 0y lies in the isotropy group of 1 and v in the orbit of p corresponds to 6" in X’ then

a20mp —m

for some kth root of unity c. This is possible if and only if p* — 1 divides 2 (p/ — 1) or 2u

divides m(p/ — 1). This is the same as requiring that 2(113 divide ™'~ (D) 0% The number u is

even. We have already observed that if r is the number of elements in ¢ so that 27° = 2" for
in ¢ then

por =1 (modk)

and in particular
por =1 (mod4).

Since [¢ : <;S ] is odd and 1g = —1 (mod 4) the highest power of 2 dividing p/ — 1is 2. Thus
2(11‘) and 21 (1) are relatively prime so that 2(’1‘) divides ™ (fl;l) if and only if 2(’1‘) divides m.
There are ( % such m with 0 < m < p’ — 1. The corresponding characters v fall into (1)
orbits. Thus there are ( ) elements in T whose isotropy group contains oy and %

isotropy group contains 01 Let L be the fixed field of o and L; the fixed field of 0. Let @y,

whose
and wy, generate P, and P, respectively and let

Nroy/F@L, = Y0 @F
Ny, jr@L, = Nwr

Np/pwL = YW

We have to show that

w@)  w@) y(2)—u(1) q—1
ve (w (e )=<—1>%<—1)

First we prove a lemma, special cases of which we have already seen.
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Lemma 14.8

Suppose L/ F' is normal but non-abelianand [L : F| isapowerof2. Suppose H = &(L/F)
and the first ramification group Hy is {1} but[H : Hy| > 1 and [Hy : H1] > 1. Letw], generate
the prime ideal of Oy, let wr generate the prime ideal of O, and let

Npjpor = yeoh ol,

Then vy is a square in Ur.

The hypotheses imply that the residue field has odd characteristic. Let A be the fixed field
of Hy and L' be the fixed field of the commutator subgroup of H. Then A C L’ and if

wr = Npjpwr

then
NL’/FwL’ = ’YW?F]

Of course [A : F| = [H : Hyl]. Since H is nilpotent but not abelian L’ cannot be a cyclic
extension. If 7 is not a square in U then v~! generates Ur /Ur N Ny, ,rCr. Since

wE}L‘:F] ="' (modNp/,rCpr).

wp would then generate Cp /N, ,rCr which is impossible.

Returning to the problem at hand, we observe that the quotient of G/G; by the squares
in Gy/G1 is a group of order 4 in which every square is 1. The fixed field F" of this group is
the composite of all quadratic extensions of F. Fy = F' N Ly and Fy = F' N L; are the two
different ramified quadratic extensions of I'. Define

WEy, = NLO/FowLo

and

wFl = NLl/Fle1'
Then

Npy ) FoR, = YoWF
and

Np, )p@F, = N1WF.
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We need to show that

Y0
%Wwﬁ=%<%)=—1

If not, % is a square and thus in N, , rCF,. Then yowr belongs to
Ngy/pCry N Np, yrCr = Np1ypCrr.
This is impossible because F’ contains an unramified extension.
We observed before that since
o = A(og) = —1 (mod4)

the number v,(—1) is —1. The identity (14.5) reduces to

u() g—1
2

(—1)*% = (-1 (1)

Since
u(1) LY 2)
a=——"+—=
2 2
and ]
q J—
2) = ——
u) =1
this relation is clearly valid.
We continue to suppose that 1o = —1 (mod k) and that o = 1 but now we suppose that

V is not invariant under 7*(0g). Since 7*(c9)V NV and 7*(0y)V + V are both invariant under
G /G the first is 0 and the second is S(K/L) so that S(K/L) is the direct sum V & 7* (o) V.
Let V have p’ elements so that ¢ = p?‘. If X is again the field generated over the prime field
by the kth roots of unity A’ has p’ elements. If ¢’ = X' N ¢ has p/ elements then p’ = p?/ so
that p* = 1 (mod 8). Also k divides p* — 1 so that

%;=<ﬂ;w(ﬁ+D

is even.

If o € Gy/G; the non-zero fixed points of oyo are the elements of the form

v@® T (ogo)v



Chapter 14 209

with v # 0. There are (p° — 1)k of them altogether and they fall into p* — 1 orbits. The
remaining

P -1) - -k

elements fall into

o (07 =1~ ('~ k)
orbits. Thus S 1
‘T T
Since, for the same reasons as before, v4(—1) = —1 the identity (14.5) becomes

vo (I, ) = (-1)"% (14.10)

while (14.6) becomes

g

Ve (Hu %) vo(—1)70n ) = (—1)"

Since

Z[(ﬁﬂmﬁ] =p'—1=0 (mod2)
only (14.5) need be proved. (14.4) and (14.7) are not to be considered because qT_l is even.

We proceed as before. The points in 1" can be chosen so that their isotropy groups are

e— . . . . e— .
either trivial or contain o or o7;. % will have isotropy groups containing o and % will

have isotropy groups containing 0. The argument used above shows that the left side of
(14.10) is equal to

pefl

( —1 ) BV
as desired.

Now suppose k > 8 and
k
o = A(og) = 5 1 (modk).
We are of course still supposing that [G : G| = 2. If o belongs to G¢/G1 then

o000 T = 000 2

and
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Thus

#((200)?) = 2(08) + 5 (o).

Since z(03) is 0 or %, we can make the sum on the right 0. Replacing oy by oo if necessary,
we suppose that 02 = 1. Then (090)? = 1 if and only if

z(c) =0 (modk)

which is so if and only if oo is conjugate to o.

Take V in S(K /L) as before. If V is invariant under 7* (o) and )’ with p’ elements and
¢ with p/ elements have the same meaning as before then

k
pf:§—1+wk

for some integer w so that
2f k k 2
g—1=p —1:k-z—k+2wk 5—1 + (wk)

and
qg—1

k

is odd. Thus the identities (14.5) and (14.6) are not to be considered. The identities (14.4) and
(14.7) follow from Lemma 14.7 exactly as above.

g —1 (mod2)

Suppose then S(K /L) is the direct sum V @ 7* () V. If V has p’ elements then ¢ = p?*

and

g—1 p'—1
= (p*+1)

is even because k divides p’ — 1. The non-zero elements of S(K /L) which are fixed points of
some oo with o a square in Gy /G are the elements

v@® 7 (ogo)v

with v # 0. There are (p’ — 1) £ such elements and they fall into pg—_l orbits. The remaining

k

(p”—l)—(pg—l)g
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non-zero elements have trivial isotropy group and fall into

S AP =1 =" 1)

orbits. Thus

Since, as before, v4(—1) = —1 the identity (14.5) becomes

tq

vo (I, ) = (-1 (14.11)

while (14.6) becomes

1

o (1, ) (o (s

Again

‘
pt—1
E [ @) = 5 = 0 (mod2)
so that it is enough to prove (14.11). The identities (14.4) and (14.7) need not be considered.

If \ and ¢’ are defined as before and ¢’ has pf elements then X has p* = p?/ elements so
that
p'=1 (mod8)

and # is even. We may suppose that each . in 7' either has trivial isotropy group or is fixed
by 0p. Lemma 14.8 shows that those p with trivial isotropy group contribute nothing to the
left side of (14.11). If Ly is the fixed field of o¢ and

Np,/F@L, = Y0@F

the left side of K is

pf-1

ve(v0) 2

which is 1. The truth of the identity is now clear.

We return to the general case so that [G' : G| may be greater than 2 and po may be
congruent to 1 modulo 4. Of course [G : G| is still even. Let

Ao = A (o 1)
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so that .y
)\O:Ng[ ’ 0].

If [G : Go] > 2 then

A =1 (mod4).
If [G: Go] = 2 then \g = pp. Since the case that [G : Gy| = 2 and pp = —1 (mod4) is
completely settled we may suppose that A\ = 1 (mod 4). Set

iG:a
To = 05[ ol

Any element of G/G; which does not lie in Gy/G; and whose square is 1 is of the form

o(x)ro. If
75 % = o(yo)

then
(0(2)70)* = o ((Ao + 1)2)75 = 0 (yo + (Ao + 1)x).

Since G//G1 is not cyclic y is even. Since
M+1=2 (mod4)
there are exactly two solutions of the equation
Yo+ N+ 1)z=0 (modk).

Let 2o be one of them. Then z( + g is the other. We may suppose that k does not divide xg.
Set

po = o(x0)To-
We observed before that if o # 1 belongs to G/G; and 7*(0) has a non-zero fixed point then

some power of o is of order 2 and has a non-zero fixed point. Since o (g) has no non-zero
tixed point this power must be p( or 0'(%) po- Since a(%) lies in the center of G/G4, o must lie

in the centralizer of py.
] k k
ol = ol =
) 2 » PO 2 Po

is of order 4 and every element in it is of order 2 so it cannot be contained in the center of
G/G1. However it is a normal subgroup and its centralizer H* has index 2 in G/G;1. G/G,

The group
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may be identified with H. Every element o of H such that 7*(¢) has a non-zero fixed point
liesin H*. S(K/L) is the direct sum of V and W where

V={v |7 (po)v = v}
W =A{w | 7*(po)w = —w}.

If 0 in H does notbelong to H* then 7*(c)V = W and 7*(¢)WW = V. The number of non-zero
orbits of H in V U W is the same as the number @’ of non-zero orbits of H* in V. If V has p*
elements so that ¢ = p? the number of non-zero orbits of Hin V& W — (VUW) is

p_ -1 p-1 phoi

[(;2 (;1] N k [(; :(;0].

The action of H* on V' must be irreducible although it is not faithful. However the action of
H* N Hy = Hj is faithful.

Let F’ be the fixed field of H* in L or, what is the same, of H*C in K. Let C* C C be
the orthogonal complement of V and let H! be the subgroup of H which acts trivially on V.
H!'C! is a normal subgroup of H*C and its fixed field K’ is normal over F'. If H' = H* /H*
and C' = C/C"' then G’ = &(K'/F') = H'C’. Moreover H' N C' = {1} and H' # {1}
because o (£) does not lie in H'. Since the action of H' on C’ is faithful and irreducible C’
is contained in every non-trivial normal subgroup of G'. To complete the proof of the four
identities (14.4), (14.5), (14.6), and (14.7) we use induction on [K : F.

Let k' be the order of Hjy and let ¢’ = Op: /Bp-. If K/F isreplaced by K'/F’ the identity
(14.4) becomes

/ o —
(=) py (B g (—1) 37 T3 = 1. (14.4")

T is to be replaced by 17, a set of representatives for the non-zero orbits of H' or H* in V,
which may be identified with the character group of C’. We may suppose that 7" is a subset
of T. Because H, # {1} the identity (14.5) for the field K'/F' may be written as

4

V! (HMET’ ,y,il) = (_1)0/ V¢/(_1)p2—k_/1' (145”)

Of course
t[Fy:F']

t _ / U
Ng, /F (WF#) = VW

Recall that ¢ is odd. By Proposition IV.3 of Serre’s book, ¢ has the same significance for K'/F’
as it had for K /F'. The identity (14.6) may be written as

pefl

(1) v (T] ) v (CDPeer 8y ()52 =1 (1467)
m
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and (14.7) as

pf-1

(= 1)+ g (k) vy (—1) 557~ % 1y (— 1) Zmer [2036] = 1 (14.7")

Assuming (14.4"), (14.5"), (14.6”), and (14.7") we are going to prove (14.4), (14.5), (14.6), and
(14.7).

Since Hy, is isomorphic to H either k' = k or k' = %. Suppose first that <" is odd. Then

k' = E for if not
q-—1 p-1 ¢
_— = 1
k < k ) (" +1)

-2
would be even. Thus Hy = G/G1 is not contained in H* and F’/F is ramified so that ¢/ = ¢.

Since
qg—1 <p€—1) (p* +1)

o\ w 2

p'—1
k/

the number is odd. To prove (14.4) we have to show that

12

(=1 1y(2) vp(-1)° =1

if

5_p2€_1 pe_l_pf_]_ p€+1_1
2% ko k 2 '

Since Gy /G is not contained in H*, 7y does not commute with Gy /G and the map A of G/Gy
into the units of Z /k Z is faithful. Thus

XA Z1 (modk).

But
A =1 (mod4)

so that k£ > 8. In general if k& > 4, the group of units of Z /k Z is the product of {1, —1} and
{a|a=1 (mod4)}.

If
a=1+2

with 2 odd and 4 < 2° < k then
a?=1+ 2b+1y
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with y odd. One shows easily by induction that the order of a is 27k so that

{a]a=1 (mod4)}

is cyclic of order %. This implies in the particular case under consideration that [G : G|
divides g. Write
- (pe_l) ( pe_l )
k' 2[G . Go]
a” is odd if and only if
Q[G . Go] = k?/.

We consider various cases separately. As before g = A\(0¢). If ¢ has p/ elements then

pop’ =1 (mod8)
(i)
o =1 (mod8).
Then
vy(2) = vp(—1) =1
and the order of y in the units of Z /k Z which is equal to [G : Go) divides £. Thus a” is
even. The identity (14.4) follows.
(i)
o =3 (mod8).
Then
vp(2) = vp(=1) = 1.

Since 1o = 3 (mod 8) the numbers 1 and A are different. Thus )\ is a square and hence
congruent to 1 modulo 8. Then k£ > 8 and

p'=1 (mod8).
Then .
1 1
551%—55 (mod 2).

Since g # Ao the index [G : Gg] is not 2. Thus the order of 1 is at least 4 and is therefore
the order of —p. Since —pp = 5 (mod 8) its order is £ and

[GGQ]:Z
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Consequently a” is odd. Again (14.4) is satisfied.

(iii)
o =5 (mod8).

Then v4(2) = —1 while v4(—1) = 1. The order of s which equals [G : Gy] is again £ so
that a” is odd and (14.4) is satisfied.

(iv)
o =7 (mod8).

Then v4(2) = 1 while v4(—1) = —1. Again k > 8 and
=0 (mod?2).

The order of 11 is again at least 4 and therefore equal to the order of —ip and that divides
K. Thus [G : Go] divides £ and a” is even. (14.4) follows once more.

Since ¢’ = ¢ all we need to prove (14.7) once (14.4) and (14.7") are granted is show that

ZMET_T, 00l =0 (mod2).
This is clear because, for these i, Fj, = L and ¢, = Or, /B, is of even degree over ¢.
Finally we have to assume that q—;l is even and prove (14.5) and (14.6). First a lemma.
Lemma 14.9
If q—;l is even,
A (O‘O% [G:G°]> =1 (mod4),
and G/G acts faithfully on Gy /G, then

q—1

(1) vs(~1)F = 1.

Since the action is faithful Gy/G; is not contained in H* and k' = % As before \g =
1 (mod4) and Ay # 1 (mod k) together imply that & > 8 and k' > 4. Since k' divides p* — 1,

p*=1 (mod4)

qg—1 pt—1 pi+1
ko O\ K 2

Y4
and % is odd. Since
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p'—1

7 is even.

the number

If o belongs to H* and ¢ acts trivially on Hj then
k
AMo)=1 (mod 5)

Ao?) = 1(mod k)

so that

and o2 belongs to Hy. Thus o belongs to poHy U Hy. Since py belongs to H ! the image of o in
H' lies in H}. Thus G’/G}, acts faithfully on G},/G’. If o belongs to H' then ¢ acts trivially
on H{ because the representation of H on V is faithful. Thus H' is contained in pg Ho U Hy

and is therefore just {po, 1}. Thus

GGy =[H':H))=[H": HH'] = % (G : Gy).

Suppose that

(~1)" vy (1) 5 = 1.

pzl

Since ¢’ = ¢ and, because k' > 4 divides p¢ — 1,

g—1 (p"=1\ [(p'+1\_ [(p' -1
2 () (45 () e

all we need do to establish the lemma is to show that

a’"=0 (mod?2).

As before [G : G| divides £. If

k
Z :TL[GG()]
then )
//_l (pé_l)Q_n pe_l
“T% GGy K

is certainly even because 2k’ divides p* — 1.

IN[eite
)\/O—)\<0'04[ O]> .

(14.12)
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If
Ap=1 (mod4)

we may suppose that (14.12) is true by induction. If [G : Gy] = 4 and
Ay =3 (mod4)
orif [G : Go] = 2 we must establish it directly.
Suppose first that [G : G| = 2. If ¢ has p/ elements then
Xo=po=p' =1 (modd)
so that v4(—1) = 1. Itis clear that in this case

/_pz_l
a = k/ .

a’ is thus even and (14.12) is valid.

Now suppose [G : Gy] = 4 so that [G' : Gj] = 2. If ¢, generates G’ modulo G|, then
Ap is the image of o) in the group of units of Z /k’ Z. We have already studied the case that
Ap =3 (mod4) intensively. Let
x:0 — (o)

be the map of G,/G} onto Z /k’ Z. 1f A, = —1 (mod k') and z((c})?) = %/ we showed,
incidentally, that (14.12) is valid. If \) = —1 (mod k), x((c})?) = 0, and the action of H{, on
S(K'/L’) is reducible we saw that p’ is a square p** and that the left side of (L) is

’
pz —1

(=D =
But the field with p* elements must contains the k’th roots of unity and &’ = 0 (mod 4). Thus
p’ ' —1=0 (mod4)
and (14.12) is again valid. If & > 8,
A= —=—1 (modk')
and the action of H)) on S(K'/L’) is reducible, the left side of (14.12) is

’
pt —1

(-1)"
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This time
p’ —1=0 (mod8).

To complete the proof of the lemma we show that in the case under consideration the
action of H, and S(K’/L’) or, what is the same, the action of H} on V is reducible. If not the
field generated over the prime field by the k’th roots of unity has p’ elements. Thus

p'=1 (mod4).
However as we have observed repeatedly, the number of elements in ¢ is congruent to 3

modulo 4. Thus / is even. Let / = 2/'. Either pe/ —1lor pe/ + 11is congruent to 2 modulo 4. If
p! +1 =2 (mod4) then &’ divides p* — 1 because

V4 A
pt—1 p —1 /
K/ :< k' >(p£+1>

. . . . /
is even. Since k' cannot divide p* — 1 we have

p"' =3 (mod4)

and ¢ is odd. Indeed it is 1 but that does not matter. Since k divides p’ — 1, the kth roots of
unity are contained in the field with p’ elements. Adjoining them to ¢ = O /B we obtain a
quadratic extension because 4 does not divide ¢. Therefore if o belongs to Gy /G4

-2

90(0‘) = 90(0‘)00 = 00(0->>‘(U(2))

so that
Mo2)=1 (modk).

This contradicts the assumption that G/G acts faithfully on Gy /G1.

Returning to the proof of (14.5), we suppose first that H is not contained in /* so that the
action of G/G( on Gy /@G is faithful. Because of Lemma 14.9 the identity (14.5) is equivalent

to
Ve (HueT Nr,/r ’y") =1

If 1 belongs to T but not to 7" then F, n = L and, by Lemma 14.8,

Ve(NF,/FYu) = 1.
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If 1 belongs to 1" then G, is contained in H*C' so that F), contains /. Moreover we do not
change F), if we replace K/F by K'/F'. Let wr- generate ‘Br: and take wp = Np//pwop:. If
E' is the fixed-field of H* we may suppose that

WEr — NE’/F’wE’
and that
WE = NE’/EwE’-

Then
wr = Ng/FrwEg
as required. Let

. , t[Fy:F']
—_ ’
NFH/F,wFu =y,w k

Then
T = NF’/F '7,/;

Since F’/F is ramified v, is a square in Up and (14.5) is proved. To prove (14.6) we have to

show that

V¢(_1)EHET[¢H:¢] - y¢/(—1)2u€T’[¢H:¢/] -1

But % is even and this follows from the simultaneous validity of (14.5”) and (14.6").

We have yet to treat the case that 4" is even and Hj is contained in H*. Then F'/F is

unramified and k' = k. Suppose first of all that pr—1 is also even. Then

g—1 (p'—=1\ (p'+1
2k \ k 2
is even. Hj is contained in H* and H is generated by oy and H,. Consequently oy is not
contained in H* and

Since pg = o(xg)70o

if Mmoo = )\(0’0). If
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and m is the greatest common divisor of yy and k then by the definition of xy the greatest
common divisor of zg and £ is 5. Therefore % is the greatest common divisor of pp — 1 and
k. In particular m < k. The order of oy in H is

k

m

[G : Go]

Therefore [G : Go] divides 5% [G : Gy] and H* contains a cyclic subgroup of order

k
5 (G : Gl

If o is the element of order 2 in this subgroup, then o belongs to Hy and 7* (o) does not have
1 as an eigenvalue. Thus no non-zero element of V' is fixed by any element of this cyclic
subgroup and

k
p'—1=0 (mod— [G:GO]).
2m
In particular [G : G| divides p* — 1 and

o= (5) ()

is even. As before v4(7,) = 1if t belongs to T'and F,, = L. If F}, # L then u belongs to 1"
and G, lies in H*C so that F), contains F”. In the present situation F’/F is unramified and

we may take wp = wp. If
t[Fy:F']

t 2
NFM/F/WFH = ’waF

then

. t[Fy: F)
_ / k
NFH/FWFM = (NF'/F %) Wg

The identity (14.5) reduces to

Ve (HHGT, Npi /g 7,2) - (_1)a/

v (HueT’ 72‘) = (D"

Since ¢’ is a quadratic extension of ¢ the number vy (—1) is 1 and this relation is equivalent to
(14.5"). To prove (14.6) we have to show that

or

V¢(_1)EHET[¢H:¢] -1
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This is clear because 2 divides each of the degrees [¢,, : ¢].

Finally we have to suppose that pr—1 is odd. Since [¢' : ¢] = 2 the relation (14.4")

amounts to
(-1t =1.

Again

Ve (HHGT W) Ve (HHGT, 7,2) : (14.13)

If p belongs to 7" and o # 1 belongs to G, then some power of o will equal py. Since

y4 /
pr—1 [FH:F]
k _ZMGT’ k

[F, : F']
k

is a power of 2 there is at least one p in 7" for which [F), : F’] = k. Then G, must contain an
element of the form o (zg)o?. Then

1 M% [G:GO] _ 1 0 o
po = 0 (z0)70 = (0(20)03) F16C0) = 5 ((ﬁ) ) |
0

is odd and

Thus ' (GGl
2 0 1
Fo 5 20 =x9 (modk).
o — 1

Let 1

— : — 20,

1 (G : Go]
Since

pa =1 (mod4)

and, as before, the greatest common divisor of g and k is 7 if the greatest common divisor of
1o and k is m, we infer that

3 [G:Go] 9i+

1

Mo 1 b po  — 1 b 29

- = - —_— = + 1
g —1 1L, pe' —1 IL

is multiplicatively congruent to
[G . G()]
4
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modulo 2 and that the greatest common divisor of zp and k is

2m

[G : Go] ’

[G:Go]

In particular —=;

divides m. zg is odd if and only if
_1 (G : Gy
m = 5 cGol.

If o = 1 (mod 4) the order of 14 in the group of units of Z /k 7Z is m because as we observed

£
when treating the case that p—k_l is even, the greatest common divisor of ;1o — 1 and k is %
However
1 [GGQ]

2 = A1) =1 (modk)

and in this case m divides 3 [G : Go]. Thus

if o = 1 (mod 4).

We shall define a sequence of fields FO LO KO 1 <i<n nisan integer to be
specified. We will have FO c O c KO and K(i)/F(i) and L(i)/F(i) will be Galois. Let
GO = (KO /F®) and O = & (LO) /F®). There will be a subgroup H® of G such
that H® £ {1}, HO N C® = {1}, and G = HOC®. C® will be a non-trivial abelian
normal subgroup of G*) which is contained in every other non-trivial normal subgroup. H (™
will be abelian but H(®) will be non-abelian if i < n. Moreover k() = [H{" : 1] will be at least
4 for all i and k) will equal 2k+1) if i < n. If x is an isomorphism of Héi) with Z /k@) 7 and
o belongs to H®) let

z(oro™t) = XD () (7).

Then A\ (o) will be congruent to 1 modulo 8 if i < n. If ¢*) is the number of elements in C'*)

then )
¢ —1
L (2)
will be odd.

F’ and K’ have already been defined. L’ is just the fixed field of C".
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is odd. If o’ in H' is the image of o in H*C then
N(c") = Xo) (modk).

Since o is a square modulo Hy
N(o')=1 (modk).

IfF® L), and K havebeen defined and H (" is not abelian we can define F(*+1) | L,(+1),

K(+1) by the process we used to pass from F, L, K to F’, L', K’'. We have seen that if

¢ —1
k(@)

is odd then ‘
gttt —1

Je(i+1)
is also odd and that
kD) = 2p(+1)
We have also seen that k() > 8 if H() is not abelian. If H(¥ is abelian we take n = 1.

When we pass from the ith stage to the (i + 1)th we break up 7', the analogue of T', into
T+ and a complementary set U(?). We may think of () as lying in 7. If O'(()i) generates
H® modulo H" then

N =1 (mod8).

We saw that this implies that U(?) has an even number of elements. If 1 belongs to U(?) then
F, is equal to L"), Thus we may suppose that

Moreover L) /F() is non-abelian and therefore L(")/F(*) is not totally ramified. Thus y is
notin UW if [F, : F'] = k.

Since L™ /F(™ is abelian the isotropy group in H(™ of any u in 7™ is trivial so that
F, = L™ for such p. Since

[F,: F"] (L) F']
ZMET, = ZMET(") — (mod 2).
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There are an odd number of elements in 7(™) and
L™ F'] = .
Choose 2 so that o(z)o? lies in &(L/L™). It then fixes each y in T,
Since L™ / F" must be totally ramified there is a 6 in U such that
NL<n>/F W n) = &E%.

The right side of (14.13) is equal to v, (6). L™ is contained in L. Choose wg in Wy, /5 so that
71,/r(wo) = wr. We may suppose that ¢ has been chosen to be o(wp). Let Lo be the fixed
field of Hy. Choose ug in Wy, 1, so that o(ug) = 0(20) and so that 77, /1, (uo) is a unit. Clearly
2p is even if and only if 77, /1, (uo) or

Nro/r (To/1o(w0)) = 71/ (u0)
is a square. Since o(zg)o lies in &(L/LM),
U()wg

lies in Wp, /(). We may take

Wr,(n) = TL/L(n) (Uowg)

Then

Ny p (@pm) = Tr/r (uowg) = T/ r@h

and 6 = 7, (uo) is a square if and only if 2 is even.

Since (—1)**! = 1 the relation (14.5) amounts to

"= (pék_ 1) ([ZE:_GE]) - [g:_at1 (mod2)

q—1 pt—1 pt+1 _pe-l-l
o7 :( 7 )( 5 = (mod 2).

and that
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If
o =1 (mod4)

then v4(—1) = 1 and, as we observed earlier, zy is odd. We have to show that a” is even.
We showed before that H* has to contain a cyclic subgroup of order % |G : G| and that
% [G : Go] has to divide p* — 1. But % is the greatest common divisor of ;1o — 1 and k. Since
4 divides y19 — 1 and k it divides £ and 2[G : G| divides p® — 1. Thus a” is even.

It
o =3 (mod4)

then v4(—1) = —1. Moreover k > 2 so that p* = 1 (mod 4) and

g—1 pl+1
= =1 (mod?2).
2% 2 (mod2)

We have to show that a” is odd if )
m= g (G : Gy

and even otherwise. But yp = 3 (mod4) so that £ = 2 and m = £. Thus [G : Go] = 2m if
and only if [G : Go] = k. If [G : G| = k then

n_p—1
-k

(mod 2)

is odd. Otherwise 2[G : Gy] divides k and a” is even.

Lemma 14.3 is now completely proved, so we turn to Lemma 14.4. In the proof of both
Lemma 14.4 and 14.5, we will combine the induction assumption with Lemma 15.1 which is
stated and proved in paragraph 15, the following paragraph. Suppose F' C F' C Land F'/F
is cyclic of prime degree /. Let & (K /F’) be H'C where H' C H and let E' be the fixed field of
H'. Then E'/E is cyclic of prime order £. If S(F'/F') is the set of characters of Cr /Np: /pCr
then

S(E'/E) ={vg/r | vr € S(F'/F)}.

From Lemma 15.1 we see that for any quasi-character x ,
Id(Wg /g, Wik/Es XE' /E) = OuvpesF'/F) VEJF XE/F-
Therefore

IndWgk/r, Wik/E, XE'/E) = @0 Ild(Wk )/ p, Wk /B, VE/F XE/F)
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which is equivalent to

Do {(@per IndWi/p, W5, 11 VE, )7 XF, /F)) ® VEXF}-

If T" is a set of representatives for the non-trivial orbits of H' in S(K /L) then

Ind(Wk,pr, W/ XEr/F) = 0

is equivalent to
(@perInd(Wie/pr, Wi /o, ' XF1 /7)) © XEr /-
Moreover

Ind(Wk,p, Wi/pr,0) =~ Ind(Wk/p, Wi 5/, XE'/E)-

Applying the induction assumption to L/F' we see that

{HVF A(VF’XF’¢F>} {H,,F HMET A(p'vp, p XF, 7 VF, ) 7)MNF/F, ¢F)}

is equal to

{AxF ) r Yp ) NEF'[F,pp)} {H A(p'xEy s YE  p)MEL/Fopr). (14.14)

HeT’

The application is legitimate because the fields F”, F},, and F), all lie between F' and L. By
Lemma 4.5

LB, 58) = MEL/F' ) M F, ) PP
Also
AF'/F,¢p) {HueT’ MF'/F, ¢F)[F;:F’]} = \(F'/F, @DF)[E’:F']‘

Since the fields /" and F), lie between F’ and K we can apply the induction assumption to
K /F’ to see that (14.14) is equal to the product of

)\(F//F, wF)[E/:F/]

and
A(XE’/FawE’/F) )\(E//F/7¢F'/F)-

Applying the induction assumption to K/ E we see that

A(XE/r YE ) F)
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is equal to
-1
{HVFes(F,/F) A(vg/F XE/F> ¢E/F)} MNE'JE, Ygp)”.
We conclude that the quotient
H {A(VF X, ¥F) [er AWW've, r XF#/F7¢FH/F} (14.15)
vr A(vg)r XE/FYE/F) '
is independent of x r. Taking x r to be trivial we see that it equals
H {A(VF,¢F) [er AW vE,/r ¥F,/F) } (14.16)
VF

A(VE/F,wE/F)

It is easily seen that the complex conjugate of A(vp, ¥F) is
vr(—1) A(vy', vr).

Thus
A(vp, ¥r) A(vg' ¥r) = vp(-1).

If / is odd the right side is 1. Since

and vp # 1/;1 if ¢ is odd, the product

HVFGS(L/F) A(vp,yr) = 1.
For the same reasons
HVFGS(L/F) A(VE/I*“WE/F) =1.

However, if ¢ is 2

A(VF7¢F) = A(V;17¢F)

has square +1 and is therefore a fourth root of unity. Thus

HVES(L/F) Alvr, ¥r) ~ Hyes(L/F) A(g/r, Yr/F) ~2 1.

On the other hand, m(y') =t + 1 > 2 while m(vp, /r) < 1. Thus Lemma 9.5 shows that

A(H/VFH/F7¢FH/F> ~g A(Hl7¢Fu/F>-
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Thus the expression (14.16) and therefore the expression (14.15) is equal to

77 {HHGT A(ﬂ/7¢Fu/F>}e

where n ~ 1.

If m(xr)is 0 or 1, Lemma 14.4 is a consequence of Lemma 14.2. We suppose therefore
that m(xr) > 2. In this case Lemma 9.5 implies that

[1, Awrxevr) ~e Alcr )

and that
HVF A(g/r XE/FVE/F) ~0 AXE/PVE/P)"

We also saw in the beginning of the paragraph that, in all cases, m(y"xr, /r) > 2. Thus

A(W'vE, jpXE, 5> YE, 7)) ~0 AW XE, )7 VF, F)-

Putting these facts together we see that if

£
U{A(XFVwF) HMET A(M/XFH/F7¢FH/F)}

is equal to
¢
{A(XE/Fa YE/F) HueT Ay, ¢FH/F>}

then o ~y 1. Since o = p’ we conclude that

P~y 1.

Finally we have to prove Lemma 14.5. Let F’ be the fixed field of H;C and let L’ be the
fixed field of H5C. Let E’ be the fixed field of H; and let K’ be the fixed field of Hs. Let P be
a set of representatives for the orbits under &(L/F’) of the characters in S(L/L’). If v is one
of these representatives, let H, HoC with H, and H; be its isotropy group and let F,, be the
fixed field of H, HoC. Applying the induction assumption and Lemma 15.1 to the extension
L/F we see that

A(xr p,pp) p (F'/F,0F)



Chapter 14 230

is equal to
11, A0'xr /5 05, 0) ME/F0p). (14.17)

Let
R={veP|F, =F}

and let S be the complement of R in P. R consists of the elements of S(L/L’) fixed by each
element of &(L/F). It is a subgroup of S(L/L’) and its order r must therefore be a power of
¢. The expression (14.17) may be written as

{HVGR A(V'xr, ¢F)} {HVGS A(W'XE, /FVF, /7) NEF,/F, ¢F)}.

If I is replaced by E and F’ by E’ then P is replaced by
{VK’/L’ | V=V € P}

Also F), is replaced by E,, the fixed field of H, Hs, and 1" is replaced by v, . . Applying the
induction assumption to K/ E we see that

A(XE’/F7 wE'/F) )\(E//E7 wE/F)
is equal to the product of
{HyeR A(V/E/F XE/F,lDE/F}

and

{HVES A(V/E,,/FVXEV/FV Ve, /7)) MEL/E, ¢E/F}-
This equality will be referred to as relation (14.18).

To derive this equality we have used not only the induction assumption but also Lemma
15.1 which implies that

Ind(Wg, 5, Wk g/, XE/F)
is equivalent to
{©rImd(Wk/p, Wi/B, Ve p XE/F)} © {©sId(Wik/p, Wi/E,: VE, /5, XE, /F)}-

Thus
Ind(Wg,r, Wi/ 5/, XE/F)
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will be equivalent to the direct sum of

OrId(Wik/r, Wk/E, Vi XE/F)
and
©s md(Wk/r Wk /B, Vi, )5, XE, /F)-

If v is in R we can apply Lemma 15.1 to see that

Ind (Wi r, Wk/E,VE/F XE/F)
is equivalent to
{®uer Md(Wg/p, Wi/F,, M/V%#/FXFH/F)} D VIXF

We can obtain
Ind (W r, Wik/F,» Vg, ), XE,/F)

by first inducing from Wy, g, to Wi, p, and then from Wi/, to Wi /p.

If T}, is a set of representatives for the orbits of S(K /L) under the action of &(K/F, ) and
F, ,, is the fixed field of the isotropy group of 1 in T}, then, by Lemma 15.1 again,

Ind (Wk/r,, Wk/E,+VE, /5, XE, /F)

is equivalent to
@Ty Ind (WK/Fyy WK/F,,HLU “/V/FV,H/FV XFV’IJ‘/F>'

Since [K : F,] < [K : F]if v belongs to S, we can apply the induction assumption to see that

AW, 15, XE, /7 ¥E, ) 7) MEV/Fy, Yr, /F)

is equal to
HMET A(p've, 5, XFy /By VE, F) MEyu/Fo, VE,  F)-

This equality will be referred to as relation (14.19).

It also follows that
Ind(WK/F7 WK/E,,7 ’/EV/FV XE,,/F)

is equivalent to
Ouer, mMd(Wg/p, Wk /F, #/V%V,H/FVXFV,#/F)-
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The fields F}, and F, , all lie between I’ and L. Thus we have expressed

d(Wg/p, Wi /B XE'/F) (14.20)

as a direct sum of terms of the form

where M lies between F' and L. Moreover such a representation is in fact a representation of
W obtained by inflating a representation of W7, , namely, by inflating

Ind(Wg, e, Wra, Xar)-

Thus any other expression of (14.20) as a sum of representations of the form (14.21) will lead,
by an application of the induction assumption to L/F, to an identity between the numbers

To obtain another such expression, we observe that the representation (14.20) can be
obtained by first inducing from Wi g to Wi, p and then from Wy pr to Wi p. If T’ is
a set of representatives for the orbits of non-trivial characters in S(K/L) under the action of
G (K/F') and F}, is the fixed field of the isotropy group in &(K/F") of 1 in T’ then

Ind(Wgp, Wk /5, XE//F)

is equivalent to
{Ouer Ind(Wi/r, Wi, M/XF;L/F} b XF//F-

Thus (14.20) is equivalent to the direct sum of

Ind(Wg/r, Wk /p's X7/ /F)

and
Cpuer Ind(Wk/p, WK/F,Q p XF;/F)'

We shall describe the resultant identity in a moment. We first apply the induction assumption
to the extension K /F" to see that

A(xg p Ve p) ME'JF', Yp ) p)

is equal to

A(XF /> YFF) H A(p'xEy psYEn p) ME,F Yp p).

HET
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This equality will be relation (14.22).

The two expressions for the representation (14.20) lead to the conclusion that the product

of
!
11, A0/ vr) (14.23)
and
I1,.. I1 . A6k jexm, e vr, ) MEW/F. tr) (14.24)
and
HVES HMGTV A(M/V/FV#/FVXFVVH/F’ wFu,H/F) )\<FI/,;L/F7 wF) (1425)

is equal to the product of
A(xpr/p, 0 p) N(F'JF,YF)

and
HHGT, A(M/XF;/F, wF;/F) A(FIQ/F, VE).

Applying relation (14.22) and Lemma 4.5 we see that the second of these two products is equal
to

A(xpr e p) ME'[F' ppryp) NF' P pp) E

According to the relation (14.18) this expression is the product of

{HVGR A<VJ/E/FXE/F7¢E/F)} {HVES A(V’E/FXE/F,wE/F)}

and
1,  ME/E buyr)
and

NE' ) B, bg/p) Y NEJF' bpip) NF' [ F,pp) 3, (14.26)

Equating this final product to the product of (14.23), (14.24), and (14.25) and then making
certain cancellations by means of (14.19), we see that the product of (14.23) and (14.24) and

| I | O R TR PY A

is equal to the product of
HVGR A(V,E/F XE/FVE/F)
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and
I A B/ Etbr, ) MBS B )

and the expression (14.26).

In particular, the expression

H {A(V/XF,¢F) HHGT A(N’V}H/F XFH/FA/JF#/F)}
vER A(Vg p XE/F>VE/F)

is independent of x . Taking x r to be trivial we see that

1T { AW'xr, ¥F) Hjer AWVE, /5 XF. P YF, F) }
veR A(V'E/FXE/F,%/JE/F) HHGT A(M,V}:#/Fa@bF#/F)

is equal to

ANCZ T
HVGR A(

V/E/pwwE/F)

The set
R ={/|veR}

is a group of characters of C'r or of H. Regarded as characters of H the elements of R’ are just
those characters which are trivial on H;. As a group R’ is cyclic and its order is a power of /.
The argument used in the proof of Lemma 14.4 shows that

HVEB AV pr) ~ 1

and
/
HyeR A(Wg p:VE/F) ~e 1.

If m(xr)is 0 or 1, Lemma 14.5 is a consequence of Lemma 14.2. We may as well suppose
therefore that m(xr) > 1. If v belongs to R then v/ is 1 on N ;zCr. Therefore m(v'), as
well as m(yg,# /r) and m(vy /r) is at most 1. We saw in the beginning of this paragraph that
m(Xg,r) would also be at least 2. We also saw that m(u'x, /) would be either ¢ + 1 or
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Yr,/p(m — 1) + 1. In any case it is at least 2. Also m(u') = t + 1 is at least 2. Lemma 9.5

therefore implies the following relations:

AV xr,YF) ~0 A(XF,YF)
A(Wgp XE/FVE/F ~0 AXE/FVE/F)
A(p'vg, i p XFF R, F ~e A
(

A(W've,  p Ve F) ~e A

1% XF#/F7¢FH/F>
LV, E)-

We conclude finally that

{A(XF,¢F) HMGTA(M'XFH/FA/JF#/F)}T 1
Alxe/r Ye/r) 1Ler AW, ¥F,/F) ‘

if r is the number of elements in K. The lemma follows.
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Chapter Fifteen.

Another Lemma

Suppose K/F is normal and G = &(K/F). Suppose H is a subgroup of G and C'is an
abelian normal subgroup of GG. Let E be the fixed field of H and L that of C'. If 1 is a character
of C and h belongs to H, define 11" by

u"(c) = p(heh™).

The set of characters of C' may be identified with S(K/L). If a belongs to C,

The set of elements in S(K /L) which are trivial on H N C'is invariant under H. Let T be a set
of representatives for the orbits of H in this set. If ;1 € T"let H,, be the isotropy group of 1, let
G, = H,C and let F, be the fixed field of G,,. Define a character ' of G,, by

1’ (he) = p(c)
if h € H, and c € C. i/ may be regarded as a character of CF, .
Lemma 15.1
If x F is a quasi-character of C'r then
p=IndWgk/r,Wk,g,XE/F)

is equivalent to
Ouer IndWi/p, Wik/p, 1 XF, /)

Let G’ = HC and let F” be the fixed field of G’. F" is contained in E and in the fields F),.
Because of the transitivity of the induction process it is enough to show that

Ind(Wg/p, Wk /B, XE/F)

is equivalent to
OuerId(Wr ) pr, Wik, 11X F, /)
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If

XFr = XF//F
then

XE/F = X/E/F’
and

XF,/F = X/FH/F"

Consequently we may suppose, with no loss of generality, that " is F.

If K is the fixed field of H N C and v € S(K'/L) let ¢, be the function on W, defined
by
pv(he) = xr(Tr/r(he)) v(Tk/L(c))

for hin Wi g, cin Wy, 1. p acts on the space of all functions ¢ on Wi, r satisfying
¢(hg) = XF(TK/F(h)) ©(g)
forall hin Wk, and all g in W, . The set
{ov|veS(K'/L)}
is a basis for this space. Clearly
p(c)p, = XF(TK/F(C)) V(TK/L(C))%

if ¢ belongs to W/, and
p(h)py = xF(TK/F(h))Pu,

with v/ =" if h belongs to W /. Thus if R is an orbit of H in S(K'/L)
@VERC% =V

is an invariant subspace.

Let i be the element common to 7" and R and consider

o= Ind(WK/F, WK/FH;/J//XFH/F)'

If Wi r is the disjoint union
Ui: , Wk/r, i
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and if p;(w) = 0 unless
w € WK/Fuhi

while
pi(wh;) = W xr, ) r(Tk/F, (W))

for win Wi, then
{opill<i<r}

is a basis for the space U on which o acts. If v; = " and if \ is the map from U to V which
sends ¢; to X7 (Tk /7 (hi))p., then, as one verifies easily,

for all w in Wi . The lemma follows.
The lemma has a corollary.
Lemma 15.2

If Theorem 2.1 is valid for K/ F' then

A(XE/FVE/F) H Al vr, /7)

peT

is equal to
/
HueT A(p XF,/Fs wFH/F)~

If Theorem 2.1 is valid
AXE/rVE/F) ME/F,YF)

is equal to
HHGT A(p'xp, /psr, p) NEu/F,Yr).

Taking xr = 1, we see that

)‘(E/FﬂpF):H A(M,vwFH/F) )‘<FH/F7wF)

peT

Substituting this into the first equality and cancelling the non-zero factor

I1,., M/ Fve)

we obtain the lemma.
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To define the A-function we shall need the following lemma.
Lemma 15.3

Suppose Theorem 2.1 is valid for all Galois extensions K1 /Fy with ' C [} C K; C K
and [K; : 1| < [K : F]. Then

A(XE/FVE/F) H A, r, /7)

peT
is equal to
HueT A(NIXFH/F7 VE,/F)-
The conclusion of this lemma is the same as that of the previous one. There is however a

critical difference in the assumptions.

Let F' be the fixed field of HC'. If

Y = Y F

then for all separable extensions E’ of I’

W o =

If [K : F'] < [K : F] the relation of the lemma is a consequence of the induction assumption
and the previous lemma. We thus suppose that F' = F’ and G = HC.

Suppose in addition that there is a subgroup C; of C, which is neither C' nor {1}, whose
normalizer contains H. C is then a normal subgroup of G. Let F} be the fixed field of HC
and L; the fixed field of C;. Lemma 15.1 applies to the extension K /F;. Thus there are fields
A1, ..., A, lying between F; and L; and quasi-characters x 4,, ..., x4, such that

Ind(Wgk/r,, Wk /B, XE/F)

is equivalent to
@1{:1 Ind<WK/F1 ) WK/AN XAz)

The induction assumption then implies that

A(xe/r, Ye/r) ME/F1,¢p F) (15.1)
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is equal to
i A(Xay,Va,r) MAi/FL YR F). (15.2)

Inducing the first of these two representations from Wi/ p, to Wi, we obtain

Ind(WK/F, Wk B, ¢E/F)-

Thus
Ouer IndWg/p, Wk/p, ' XF, /) (15.3)

is equivalent to
©i—1 Ind(Wk)r, Wi /a,, x4,)- (15.4)

We recall that there exist surjective homomorphisms

TK/F,L,/F * WK/F - WLl/F
TK/A, LA WA, — Wroa,

TK/F;L:LI/FM : WK/F# _)WLl/F#

whose kernels are all equal to the commutator subgroup W, /Ly of W/, Moreover the

diagrams
! |
WK/F - WL1 /F
and

VI/T[{/‘FH B— WLl/FH
! |
Wg/rp — Wi, /r

may be supposed commutative. Since W /L lies in the kernel of x4, and u'xf,/r the
equivalence of (15.3) and (15.4) amounts to the equivalence of

OuerId(Wi, /p, Wi, /5, W XF,/F)

and
@i Ind(Wr, /p, Wi, /a4, XA,)-
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The induction assumption applied to the extension L; /F implies that

[T, Al bae) A/ F, br)

is equal to
HueT A(' X, /7y E, /p) MFL/F,¢F).
It also implies that
NAi/F,bp) = NAi/Fi, g, ) MELF,pp)Ae 0,
Since

Y [Ai: R =[E: F]

7

we infer from the equality of (15.1) and (15.2) that
A(XE/rVE/p) ME/F1, 0 p) MFL/F, Yp) B
is equal to
H#GT AW X, 7y E,  p) MFL/F,¢F).
Taking xr = 1 to find the value of
ME/F1, ¢, ) N(FL/F, ) 0

and then substituting the result into the equation and cancelling the common factors we obtain
the assertion of the lemma.

Now suppose that H contains a normal subgroup H; # {1} which lies in the centralizer
of C. H; is a normal subgroup of G if, as we are assuming, G = HC'. K, the fixed field of
H;, contains E and all the fields F,. Lemma 15.1 together with the argument just applied to
L1 shows that

Ind(Wgk, /r, Wk, /E, XE)
is equivalent to
OuerId(Wi, /5, Wi, /5, W XF, ) F)-

In this case the assertion of the lemma follows from the induction assumption applied to K / F.

We have finally to suppose that G = HC, C contains no proper subgroup invariant
under H, and H contains no normal subgroup lying in the centralizer of C'. In particular
HNC = {1}. If Z is the centralizer of C' then Z = (ZN H)C and Z N H is a normal subgroup
of H. Consequently Z = C. If D is a normal subgroup of G and D does not contain C then

DnNnC ={1}.
This implies that D is contained in Z. Thus D is contained in C'and D = {1}. If H # {1} the

assertion of the lemma is that of the third and fourth main lemmas. If H = {1} then G = C
and C' is cyclic of prime order so that the assertion is that of the first main lemma.
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Chapter Sixteen.

Definition of the A\ Functions

In this and the next three paragraphs, we take a fixed Galois extension K/F, assume
that Theorem 2.1 is valid for all Galois extensions K'/F’ with FF C F/ C K’ C K and
[K' : F'] < [K : F], and prove that it is valid for K/F itself. The first step is to define and
establish some simple properties of the function which will serve as the A-function.

Lemma 16.1

Suppose
E/F/ — )\(E/F/, wF’)

is a weak \-function on Py(K'/F'). If o0 € &(K'/F’) let
E° ={o"Ya) | ac E}.

Then
NE/F pp) = NE/F' 4p).

If 1 is a character of & (K /E) let ;17 be the character of &(K/E?) defined by

e (p) = plopo™t).

According to Lemma 13.2
A(“U7¢E"/F’) = A(N7¢E/F’)

The representation
Ind(&(K'/F"), 6(K'/E), )

acts on the space U of functions ¢ on &(K'/F’) satisfying
p(pr) = plp) #(7)

forall 7in &(K'/F') and all pin &(K'/FE). The map ¢ — 1) with
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isa &(K'/F’) isomorphism of U with the space on which
Ind(&(K'/F"), 8(K'/E?), u?)
acts. Thus the two representations are equivalent.

If
@i Ind(S(K'/F'), &(K'/E;), i)

is equivalent to
®jInd(S(K'/F'), &(K'/F}), vj)

then
Oi—1Ind(6(K'/F'), 8(K'/E7), pf)

is equivalent to
@§:11nd(®(K//F/)7 ®(K//F]g)7 V?)

and, with the conventions of the fourth paragraph,

H:Zl (Xzg, YE7 /7)) ME] [ F pr)

is equal to
[T _, Al v ) MEY [F' ).
Since
A(xrg:Yre/r) = AXry, VF/F7)
and

A(xEy, ¥YEe/r) = AXE:, VB, /F)-
We conclude that ,
Hi:l A(XE; Ve ) ME] [ F Yr)
is equal to
[1_, A, e, ) MES [F ).
In other words
E/F'— NE7/F', ¢p)

isaweak A-function on Py (K’/F”). Lemma 16.1 follows from the uniqueness of such functions.

We return to the problem of defining a A-function on Py(K/F). Choose a non-trivial
abelian normal subgroup C of G = &(K/F') and let L be the fixed field of C. If F is any
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field lying between F' and K let H be the corresponding subgroup of G. Choose the set T
of characters and the fields F}, as in the previous paragraph. Since F,, C L the numbers
A(F,,/F, 1) are defined.

Lemma 16.2

Suppose ' C E C K; ;K with K1 /F normal so that A\(E / F, ) is defined. Then

MNE/F ) =[] _ AW, ¢r, r) MF,/F,br).

pneT

Let K be the fixed field of Hy. If H; N C # {1} we may enlarge K; and replace H; by
H;NC. Thus we may suppose that either H; is contained in C or H; NC' = {1}. In either case
H, is contained in the centralizer of C. We saw in the previous paragraph that under these
circumstance

Ind(Wg, /p, Wk, /55 1) = Ouerind(Wi, /5, Wi, /5, 1)

Consequently

ME/F,dp) =] AW, 5, ) MFu/F tr).

peT

In general, we define

pneT

if E/Fisin Py(K/F) T is, of course, not always uniquely determined. We may replace any
pin T by pu? with o in H. Then H,, and G, are replaced by 0 ="' H,,0 and 0!G, while F, is
replaced by F}7 and 4/’ is replaced by (u')?. Since

A p, p) AEL/F pr) = A((W)7 ¥rg p) ME] /F,2)F)

the number A(E/F,1¢r) does not depend on T. A priori, it may depend on C but that is
unimportant since C is fixed and, the uniqueness having been proved, we are interested only
in the existence of a A-function.

We shall need only one property of the function just defined.

Lemma 16.3
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IfF CECE'CK then

ANE'JF,p) = NE'/E, g p) NE/F,p)E"E,

If £ = F then
ME'/E, Ygp) = MNE'/F,r)

andif £ # F
MNE'/E,dp/r)

is the value of the A-function of P(K/E), which is defined by assumption, at £’/ E. Since
ANE/F ) =1
the assertion is clear if £ = F. Itis also clear if E = E’.

Let E be the fixed field of H as before and let F’ be the fixed field of HC. We suppose
that H # G. Lemma 4.5 and the induction assumption imply that

MNEy/F¥p) = NEFu/F' ,¥p p) NF'/F, ) FniF]

The relation
[E:F')=) [F,:F
implies that

There is a similar formula for A\(E’/F, ¢ ). If F’ # F the induction assumption implies that
MNE'/E, g /F) A(E/F’A/JF//F)[E/:E] = NE'/F' ,¢p p).

Since
[E':F'|=[E :E||E:F

the assertion of the lemma is proved simply by multiplying both sides of this equation by

A(F' | F b)),

Now suppose that G = HC and H N C = {1}. Let E’ be the fixed field of H' and let
F’ be the fixed field of H'C' = G’. Each character of H' may be identified with a character of
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CE' [Nk g Ck and each character of G’ may be identified with a character of Cr' /Ny ) p:Ck.
Any character y g of H' may be extended to a character x p+ of G’ by setting

Xr (o) = XE/(p)
ifpe H and o € C. Then
XE' = XE'/F’-

It follows from Lemma 15.1 that there are fields of F;(E’), 1 < i < m(E’), lying between F’
and L and characters yp, g/ such that

Ind(Wgr, Wik £, XE)

is equivalent to
O AW, Wi/ i)+ 1 () X (8 7).
If £ # E' so that F' # F' the induction assumption implies that

A(xe,Yep) NE'/F' Yp )

is equal to

m(E")
H A(NFZ-(E’)XFZ-(E’)/FH sz-(E')/F) )\(Fi(E)/F/a T?F'/F)'

=1

We have seen that the lemma is valid for any pair E’, E for which HC' # G. In particular,
it is valid for the pair E’, F’ and the pairs F;(E’), F’'. Multiplying the equality just obtained
by

)\(F//F, wF)[E/:F/]

we see that
A(xp, Y r) ME' | F,)r) (16.1)
is equal to

m(E")
H A(NE—(E’)XR(E’)/FH wFi(E/)/F) )\(Fi(El)/R VF). (16.2)

i=1

If F/ = F the equality of (16.1) and (16.2), for a suitable choice of the fields F;(E’), results from
Lemma 15.1, Lemma 15.3, and the definition of

AE'[F ).

In any case the equality is valid for all fields lying between £’ and K.
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Suppose E1, ..., E,, Ei,..., E,aresuchfields, x g, is a character of Cr, /Nk /g, Ck, X
is a character of C' E! [Nk E! Ck,and

@::1Ind<WK/E7 WK/EN XEz)

is equivalent to
51 Ind(Wkp, Wi /E:, XE?)-

> BB = Z;[Eé ] (16.3)

and, by the transitivity of the induction process,

Then

T m(E;
Di=1 @k:(1 ) Id(Wg ) ps Wi /By (B> BB (Es) XE(E;)/Fr)
is equivalent to

m(E!)
i1 By Id(Wi)p, Wiy ()5 Eu(B5) XFu (B FL)-

If E; is the fixed field of H; and E; the fixed field of H J’ then F; and FJ’ are the fixed fields of
H;C and H;C'. This equivalence and the induction assumption for L/F' imply that
m(E; )
Hl L H A(UF (B XFe(B) /o VR F) MER(E3) [ )F)
is equal to

H‘7 . H Apr (B XFo(B) 7 VR P) MEUES) [ Fp).

This equality, the equality of (16.1) and (16.2), and the relation (16.3) imply that

H;lA(XEm@bEi/F)/\(Ei/F,@DF) AN(E/F, )~ [FiF]

is equal to

[T, AGty ey ) NI, ) A(E/Fp) 7575,

Consequently
E' — XE'/F,op) \(E/F, o) "]

is a weak A-function on Py (K /E). The lemma of uniqueness implies that

NE'/F,pp) NE/F,p) " = ME'/E, Yg/p).
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This is, of course, the assertion of the lemma.

At this point, we have proved the lemma when various supplementary conditions are
satisfied. Before proving it, in general, we make an observation. Suppose

FCECE CE'CK
and the assertion of the lemma is valid for E”/E’ and E’/E. Then
NE"[F,pr) = NE" /B yp) ME'[F, )

and
AE'/F, ) = ME'JE, g/ p) AE/F, ) E P,

Moreover, by induction,
)\(EH/E, wE/F) — )\(EH/E/, wE’/F) )\(E//E, wE/F)[EH:E/].

The assertion for E”'/ E is obtained by substituting the second relation in the first and simpli-
tying according to the third.

If the lemma is false in general, chose amongst all the extensions in P (K /F) for which it
is false one E'/E for which [E’ : E] is a minimum. Let £ be the fixed field of H and E’ that
of H'. According to the previous discussion G = HC, H N C # {1}, and there are no fields
lying between E and E’. If H' N C = H N C, which is a normal subgroup of G, the fields
F, E, and E’ are contained in the fixed field of H N C and the assertion is a consequence of

the induction assumption. Thus H’ is a proper subgroup of H'(H N C'). Because there are no
intermediate fields H = H'(H N C).

As we have seen there are fields Fy, ..., E, lying between E and the fixed field K; of
H N C and characters pg, , .. ., pg, such that

Ind(WK/E7 Wk e, 1)

is equivalent to
@::1Ind(WK/E7 WK/EN :uEz)

Then ,
ME' /B dpyre) =[] Aus, ¥p,5) NEi/ B vprp).

By the induction assumption, applied to K3 /F,

NE;/E, g r) NE/F,yp)FF = X\(E;/F,F).
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Thus
NE' /B, ) ME/F, yp) E"5)
is equal to

H;l A(ps,, Ve, E) ME/F ). (16.4)

Moreover, by the transitivity of the induction process,

Ind(WK/F,WK/E/, 1) (165)
is equivalent to
EB?:lInd<WK/F7WK/Em:uEi)' (166)
On the other hand, there are fields F1, ..., Fs contained in L and characters vp, , ..., vr, such
that (16.5) is equivalent to
@§:1Ind(WK/F, Wk/F;, VF;) (16.7)
and such that, by definition,
ANE'/F,¢F) = szl A(vE,, ¥F, 7)) M(Fj/F,¥p). (16.8)

Since the representations (16.6) and (16.7) are equivalent the induction assumption, applied to
K, /F, shows that (16.4) is equal to the right side of (16.8). This is a contradiction.
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Chapter Seventeen.

A Simplification.

We shall use the symbol {2 to denote an orbit in the set of quasi-characters of C'x under
the action of &(K/F’) or, what is the same, under the action of Wi /r on Cx by means of
inner automorphisms. If xx is a quasi-character of Ck its orbit will be denoted Q(xx). If
p is a representation of W the restriction of p to C'k is the direct sum of one-dimensional
representations. Let S(p) be the collection of quasi-characters to which these one-dimensional
representations correspond.

Suppose
p= Ind(WK/Fa Wk /E, XE)-

Let Wi, be the disjoint union
Ui:l Wik JEW;.

Define the function ¢; by

pi(ww;) =0 we Wg/g, j#i
i(ww;) = Xe(Tk/pw) w e Wk/g.

{¢1,...,vm} is a basis for the space of functions of which p acts. If a € Cx then
ww;a = w(wjawj_l)wj
and w; awj_l belongs to C'x which, of course, lies in W JE- Thus
p(a)ei = xE(Tr/p(wiaw; ) = X% p(a)pi

if o; is the image of w; in &(K/F'). Thus

S(p) = Q(XK/E)-

Suppose E1, ..., E,, Ef,..., E!liebetween F and K, x g, is a quasi-character of F;, and
XE; isa quasi-character of E”. Let

pi = Ind(Wg/p, Wi/, XE;)
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and let
Py =Ind(Wg,p, Wk e XE!)-

Suppose p; acts on V; and p; acts on V. The direct sum of the representations p; acts on
V=,V
and the direct sum of the representations p’; acts on
V=i, V.
Let

Va = Oy, merVi
Vo = @{i|xK/E3€Q}‘/j/.
Any isomorphism of V' with V'’ which commutes with the action of W, takes Vi to V5.

If xk/E, € QxK) thereisa o in (K /F) such that xx = X%/ p,- Then
pi =~ Ind(Wgk/r, Wk /B7, XE,)
and
A(XE; VY r) MEi/FYF) = AXE,, YEr /F) MET [ F,¢F).
We conclude that Theorem 2.1 is a consequence of the following lemma.
Lemmal/.l

Suppose X i is a quasi-character of Cc. Suppose E1, ..., E,, Ei,..., E. lie between F
and K, x g, is a quasi-character of Cg,, x B is a quasi-character of C B, and

is equivalent to
p' =5 Ind(Wk/p, WK/EJ’.,XE;)-

IfXr/E; = Xx/B, = XKk foralliand j then

1 AGe.. ve,r) ME/F.ior)
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is equal to

Let F'(x k) be the fixed field of the isotropy group of x . Let p act on V and let p’ act on
V’. Let
Vixg) ={veV |pla)v=xk(a)v forall a in Ck}.

Define V'(xk) in a similar fashion. It is clear that any isomorphism of V' with V/ which
commutes with the action of W takes V (xx ) to V'(x k). The group W/ p(y,) leaves both
V(xk) and V'(x ) invariant and its representations on these two spaces are equivalent.

Let
Ind(WK/F, WK/EW XE'L)

acts on V; and define V;(y k) in the obvious manner. Then
Vxk) = ®i1Vilxx)-
Defining V; and V] (xx ) in a similar manner, we have
V(xk) = ®j=1 V] (xxK)-
It is clear that the representation of W/ p(y ) on Vi(x k) is equivalent to
Id(Wgkr(xw) WK/ E:» XE;)-

Thus

is equivalent to
51 Ind(Wkp(xi)s Wk /B XES)-

If F(xk) # F the assertion of the lemma follows from the induction assumption and Lemma
16.3.
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Chapter Eighteen.

Nilpotent Groups.

In this paragraph we prove Lemma 17.1 assuming that I’ = F'(xx ) and thatG = &(K/F)
is nilpotent.

Lemma 18.1

Suppose D is a normal subgroup of G of prime order ¢ which is contained in the center
of G. Let M be the fixed field of D. Suppose ' C ¥ C K and X is a quasi-character of Cp.
Suppose also that F(xk/g) = F.

(a) There are fields F1, ..., F, contained in M and quasi-characters xp,, ..., X, such that
Xk/F, = Xk/E and such that

Ind(WK/F7 Wk B XE)

is equivalent to

@glend<WK/F7 WK/FZ-? XFz)

(b) If Theorem 2.1is valid for all Galois extensions K' /F' inP(K/F) with[K' : F'] < [K : F]
then

A(xE, YE/r) NE/F,¢F)
is equal to

We prove the lemma by induction on [K : F|. Let H be the subgroup of G corresponding
to £; let G’ = HD and let F' be the fixed field of G'. If F’ # F the induction assumption
implies that there are fields I, . . ., F}. contained in M and quasi-characters xr, , . .., X, such
that xx/r, = Xk, E for each i and such that

Ind(WK/Fa Wk B XE)

is equivalent to
@zzllnd(WK/F’7 WK/FN XFz)



The first part of the lemma follows from the transitivity of the induction process. The second
part follows from Lemma 16.3 and the assumed validity of Theorem 2.1 for the extension

K/F'.

We suppose now that G = HD. Suppose that H contains a normal subgroup H; of G
which is different from {1} and suppose that, if K is the fixed field of H1, F(xk,/g) = F.
If M is the fixed field of H;D then, according to the induction assumption, there are fields
Fy, ..., F, contained in M, and quasi-characters xr,, ..., X, such that

XK. /F; = XK. /E
and such that
Ind(Wgk, /r, Wk, /E, XE)

is equivalent to
@Z‘ZlInd(WKl/Fa WKl/FZ7 XFz)

It follows immediately that

XK/F; = XK/E

and that
Ind(Wg/r, Wk/E, XE)

is equivalent to
@i IndWk,p, Wik /F,, XF,)-

The equality of (b) is a consequence of the assumed validity of Theorem 2.1 for K/ F.

We assume now that G = HD and that if /; is a normal subgroup of H different from
{1} with fixed field K the field F'(xk, /) isnot F. If w belongs to W, and w; belongs to
Wi /ar then
wlwgwl_lwz_l € (k.

Let Xk = Xk/E- Since F'(xx) = F
XK(wlwgwl_lwgl) = XK(wgwl_lwglwl) = XK<U)1_1U)2_1U)1U)2) = XK(wglwlwgwl_l).
Denote the common value of the expressions by w(ws, w2). Then w(vywy, ws) is equal to
xx (V1w wow oy wy ) = xi (wy fwywew] Moy ws fuywy).

The right side is
w(vy, wy) w(wy, ws).
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In the same way w(wy, vawsz) is
—1, —1, -1y _ -1, -1 -1, -1
Xk (W1vawew; "wy vy ) = Xk (W] Uy wW1V2waw Wy wW1)

which equals
w(wy,vg) w(wy, ws).

If either w; or ws belong to C'x, we have
w(wl, U)Q) =1.
Thus, for each ws,
wp — w(wy, ws)

is a homomorphism of H = W, /Ck into C* and, for each wy,
we — w(wy, ws)
is a homomorphism of D = Wy /5 /Ck into C*. If w belongs to Wi/ then
w(wwiw™, wwaw ™) = w(wy, ws).
Thus there is a normal extension K; containing £ such that
Wik, = {w | w(wy,wp) =1 forall wy € Wi ar}.
But F(xk, /r) will be F' so that K; must be K.

It follows immediately that H is isomorphic to a subgroup of the dual group of D. Thus
H = {1} or H is cyclic of order /. In either case H must lie in the centralizer of D so that
E/F isnormal and &(E/F) is isomorphic to D. If H = {1} then x g may be extended from
Cg = Ck to a quasi-character of Wg /. In other words, there is a quasi-character x r of Cr
such that xp = xg/r. Then

Ind(WK/Fa Wk B XE)

is equivalent to
Ourese/r) MdWk/p, Wk p, LFXF)-

Suppose H # {1}. Since Wi /y;/Ck is cyclic there is a quasi-character x s of Cps such
that xx = xx/m- If wy belongs to Wi, g let x., be the character of Wi /5 or, what is the
same, of C; defined by

Xuw, (W2) = w(wr, ws)
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and if ws belongs to Wi,/ let

Xws (W1) = w(wy, wa).

Clearly
Xwy [ w1 € Wi/} = S(K/M)

and
{sz | Wy € WK/M} = S(K/E)

If oy is the image of w; in H and o3 the image of wy in D then
X5 (w1) = x(wawrwy 'wi  wy) = X, (wi) xe(wr)

and

Xk (W) = xar(wiwawy ' wy ' wa) = X, (wa) Xar(wa).

Let Wi, be the disjoint union

¢
Ui:l Wk pvi
with v; in Wi /y,. Define the function ¢; on Wy, by
pi(wv;) =0

if w € Wk, g and j # i and by
ei(wv;) = xp(w)

if w € Wk, g. Then
{oi |[1<i <1}

is a basis for the space U on which
Ind(Wgp, Wk /B, XE)

acts. Let ¢;, 1 <1 < £ be the function Wy, defined by

i(wawn) = xar (wa) x5 (wy)

if w; belongs to Wk, and wo belongs to Wi /5. Here o(v;) is the image of v; in &(K/F). It
is necessary, but easy, to verify that 1); is well-defined. The collection

{vil1<i</t}
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is a basis for the space V on which

Ind(WK/F7 W, X)

acts. It is easily verified that the isomorphism of U with V' which sends x as(v;)¢; to 1; is an
isomorphism. Thus

Ind(Wk,r, Wi/ g, xE) =~ Ind(Wk/p, Wi ars X))
This takes care of the first part of the lemma.

Whether H = {1} or not,
IndWgk/r, Wk/E, 1)

is equivalent to
®uresr/r) IndWik/p, Wi/ r, 1r).

If H # 1 we may apply Theorem 2.1 to E/F’ to see that

ME/Fyp)=]] Alprp, r).

nr€S(E/F)

If H = {1} this equality is just the definition of the left side. In this case the second part of the
lemma asserts that

Alxs, ver) [] Alpp, ¥r) (18.1)

ur€S(E/F)
is equal to

1L, oo Dexes )

where xg = xg/r. This is a consequence of the first main lemma. If H # {1}, Theorem 2.1
applied to M/ F, shows that

AM/F,yr) =] Alprp,vp)

ur€S(M/F)

and the second part of the lemma asserts that (18.1) is equal to

Al vuyr) T Alpr, ¥r).

nr€S(M/F)
This is a consequence of the second main lemma.

A non-trivial nilpotent group always contains a subgroup D satisfying the conditions of
the previous lemma. Lemma 17.1 is clear if K = F. If K # F and & (K /F) is nilpotent itis a
consequence of the following lemma.
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Lemma 18.2
Suppose K /F' is normal and Theorem 2.1 is valid for all normal extensions K'/F' in
P(K/F) with [K' : F'] < [K : F]. Suppose F C M%K and M/F is normal. Suppose

E17 KR E?"?
Ei, ..., El lie between F and M, x g, is a quasi-character of Cg,, X B isa quasi-character of
C Bl and

@i Ind(Wk/p, Wk /B, XE,)

is equivalent to
;=1 Ind(Wie/r, Wi /B2 X B2 )

Then ,
Hi:1 A(XE;, YE, r) MEi/F,¢YF)

is equal to

The representation
Ind(WK/Fa WK/Eia XE;)

can be obtained by inflating the representation

Ind(WM/F, WM/Ez ) XEi)

from Wy, r to Wi, p. A similar remark applies to the representations induced from the x B
Thus

@gzllnd(WM/FH WM/Ez ) XEZ)

is equivalent to
S IndWarp, Wiy s, XE?)-

Applying Theorem 2.1 to the extension M /F we obtain the lemma.
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Chapter Nineteen.

Proof of the Main Theorem.

We shall first prove Lemma 17.1 when there is a quasi-character xr of C'r such that
XK = Xk/r- Implicit in the statement of the following lemma as in that of Lemma 17.1, is the
assumption that Theorem 2.1 is valid for all pairs K'/F’ in P(K/F’) for which [K' : F'] <
[K : F)]. Recall that we have fixed a non-trivial abelian normal subgroup C of G = &(K/F)
and that L is its fixed field.

Lemma 19.1

Suppose F' C E C K, xF is a quasi-character of Cr, X is a quasi-character if C'g, and
XK/E = Xk/F- Therearefields Fi, ..., F,. contained in L and quasi-characters xr,, 1 <i <,

such that Xi/F, = XK/F,
IndWgk/r, Wk/B, XE)

is equivalent to
Qi Ind(Wk/r, Wk /7,5 XF,)
and
A(xe,Ye/r) ME/F,YF)

is equal to

1, Alxr e, p) MESFbr).

We prove the lemma by induction on [K : F|. Let E be the fixed field of H and let "’ be
the fixed field of HC. If F’ # F then, by induction, there are fields F1, . .., F; lying between
F'"and L and quasi-characters xr,, ..., X, such that x x5, = Xk /r and

Ind(Wg/p, Wk /B, XE)
is equivalent to
@zzllnd(WK/F’7 WK/FN XFz)

In this case the lemma follows from the transitivity of the induction process, the assumed
validity of Theorem 2.1 for K/F’ and Lemma 16.3.
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We suppose henceforth that G = HC. There is a character §g in S(K/E) such that
XE = 0pXg/r. 0p may be regarded as a character of H. If H N C' = {1} we may define a

character O of G by setting

if hisin H and cisin C. f may be regarded as a character of Cr and 0 = 0, r. Replacing
XF by 0r xr we suppose that xg = xg,r. Then in the notation of Lemma 15.1, we may take

(Fi,....F,y={F, | peT}

and if I = F),,
XF; = M,XF#/F-

The assertions of the lemma are consequences of Lemmas 15.1 and 15.3.

We suppose now not only that G = HC but also that H N C' # {1}. Let S be the set
of characters in S(K /L) whose restriction to H N C' agrees with the restriction of fg. S is
invariant under the action of H on S(K/L). If v belongs to S let ¢, be the function on W,
defined by

ou(wv) = xp(w) XL/F(U) v(v)

if wisin Wi, g and v is in Wk ,r. v is a character of C' and may therefore be regarded as a
character of Wi, or of Cp. It is easy to verify that ¢, is well-defined. If

p=IndWgk/p, Wk /g, XE)

then
{ov | v e S}

is a basis for the space of functions on which p acts. If w belongs to Wy, g
pw)py = XB(W)py
with v/ = 17 is o is the image of w in & (K /F'). If v belongs to W/,
p(v)py = xr/r(v) V(V)Py.
Thus if R is an orbit in S under the action of H, the space

VR - ZVGR C(PV

is invariant under Wi, r and p is the direct sum of its restrictions to the spaces V.
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If ;o belongs to R let H,, be the isotropy group of y, let G,, = H,,C, and let F), be the fixed
field of G),. Extend p to a character ' of G, by setting

p (he) = 0p(h) p(c)

if hisin H, and cis in C. y/, which is easily seen to be well-defined, may be regarded as a
character of Wk /f, of CF,. Let Wk, r be the disjoint union

U;l Wk F,wi

with w; in W, g and let 0; be the image of w; in (K /F). Let ¢; be the function of W /p
defined by

ei(ww;) =0 w € Wiyp,, j#i
pi(ww;) = p'(w)xp,/p(w)  weWg/p,.

The collection
{pi | 1<i<s}

is a basis for the space V), on which the representation
o =IndWg/p, Wk/p,, ' X, /)

acts. Let
Vi = xe(w;)p;.

If w belongs to Wi 1,
ou(w)i = p7 (w) xp/r(w);.
If w belongs to Wi /g and wjw = vw; with vin Wi, then

ou(w)h; = xE(w)Y;.

Thus the isomorphism of V,, with Vz which takes 9; to ¢,-; commutes with the action of
W, r. It T'is a set of representatives for the orbits in .S

If K is the fixed field of H N C then K /F is normal and p is the inflation to W /F of

Ind(WKl/Fale/E7XE) (191)
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and o, is the inflation of
Ind(Wg, 5, Wk, /s 1 XE, /)

Thus the representation (19.1) is equivalent to

Ouerd(Wk, /5, Wi, /5, W XF, ) F)-

Applying Theorem 2.1 to K /F we see that

A(XE, Ve r) ME/F,r)

is equal to
HMGT(N/XFH/Fa Vr, r) ANFL/Fr).

If there is a quasi-character x r such that xx = Xk /r, Lemma 17.1 follows from Lemma
18.2 and the lemma just proved. To complete the proof of Theorem 2.1 we have to prove
Lemma 17.1 when F' = F(xk), G is not nilpotent, and there is no quasi-character x r of Cr
such that x = X x/r. In this case none of the fields F1, ..., E,., Ei,..., E,isequal to F' and
Theorem 2.1 may be applied to K/F; and K/ E;.

Lemma 19.2

Suppose A and B lie between I’ and K. Suppose x 4 and x p are quasi-characters of C'4
and C'p respectively. There are fields A1, . . ., Ay, lying between A and K, fields B, . . ., By, ly-
ingbetween B and K, elementsoy, . . ., 0., inG, and quasi-characters X 4, , - - -, XA,,s XBi»>-- -3 XBm
such that B, = A", xp, = XX' and such that the tensor product

Ind(Wg,r, Wik/a,x4) @ Ind(Wg,r, Wk/B, XB)

is equivalent to
@ﬁlInd(WK/Fv WK/AN XAZ‘)

and to
S Ind(Wk/r, Wk /B,» XB,)-

Let

p=Ind(Wk,r, Wk/a,Xx4)
o =Ind(Wgk,r, Wk/B,XB)-
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Let a be the restriction of o to W4 and (3 the restriction of p to Wy, 5. By Lemma 2.3
p®@o=IndWgk/p, Wk/a, x4 ® a)

and
p®o=IndWgk/p, Wi/, xB ® ).

Let Wi, be the disjoint union

UZ.:1 Wk/awiWgp.

If U; is the space of functions in U, the space on which p acts, which are zero outside of the
double coset Wi/ qw; Wi p then Uj is invariant under (3. Define the field B; by demanding
that

WK/BZ- = WK/B N wi_IWK/Awi.

If o; is the image of w; in &(K/F) let X'z, be the restriction of X%’ to Wi p,. If U] is the space
of functions on which
Ind(WK/B7 Wk B, X%i)

acts, the map of U; to U; which sends ¢ to the function ¢’ defined by
¢’ (w) = p(wiw)
if wis in Wi, g is an isomorphism which commutes with the action of Wy, 5. Thus
B~ @ Ind Wk, Wk/B,»XB,)
and, if X, = XB,/B XB,,
X5 @ B~ @ Ind(Wk/5, Wk/B,, XB:)-

Similar considerations apply if the roles of A and B are interchanged. The double coset
decomposition becomes

Ui:l Wi pw; "W )a

and
WK/Ai = WK/A ﬂwiWK/Bwi_l = win/Biwi_l.

Thus B; = A7". Itis also clear that x5, = X%’ -
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To complete the proof of Lemma 17.1 we use Brauer’s theorem in the following form.
There are fields Fi, .. ., F), lying between F' and K such that & (K /F}) is nilpotent for each k,
characters x g, of Cr, /N /r,CK, and integers my, . . ., my, such that

1~ @p_qmy Ind(WK/Fa WK/Fk7 XFk)'

Since we are assuming that G is not nilpotent none of the Fj, are equal to F' and we may apply
Theorem 2.1 to each of the extensions K/ F},.

We shall apply the previous lemma with A = E;, B = Fj, and with A = £, B = F,. m
will be denoted by m(ik) or m/(j¢). A, willbe denoted by Eiy or £}, , and By will be denoted
by Fjxe or FJ{M. Observe that

A(XEipe» VB ) MBike/ Fyr) (19.2)
is equal to

A(XFires VFie/7) M EFike/ Fbr) (19.3)
and that

A(XEr,,, Ve, 7) M Ejre/ F¥p) (19.4)
is equal to

A(xr Lor VE )N E o/ FybR). (19.5)

XE; may be regarded as a one-dimensional representation of Wi, g, and as such is
equivalent to

Br—1 @T(ik) mr Ind(Wi g, Wik /B, 00 XEire)-
Therefore mi k)
1= Zk ) Z Eige : ]
and
A(xE;, YE,/F)
is equal to

m(zk) m
Hk 1H A(XEirer VEie/F) M Eike/ Eiy g, r)}"
Multiplying both of these expressions by A(E;/F, ¢{r), we see that

A(XE;, Ve, r) MEi/F,YF) (19.6)
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is equal to
m(zk) -
Hk 1 H XEik@’¢Eike/F) )‘(EikZ/F7 @DF)} . (19.7)
The same argument establishes that
A(XEr Yer) MBS/ F,dp) (19.8)
is equal to
m'(jk ) m

We are trying to show that the product over ¢ of the expressions (19.6) is equal to the
product over j of the expressions (19.8). It will be enough to show that the product of the
expressions (19.7) is equal to the product of the expressions (19.9).

The representations
T m(ik
Di=1 69E:(l ) Ind(WK/Fk’ WK/Fikw XFikl)
and
IO nd(Wie) i, W
i1 Do nd(Wkyp, Wkyp, ,» XF

are equivalent. Therefore

Zz 12 Fie : Fk]_zflz (]k) [Fjre : Fil.

Denote the common value of these expressions by N (k). Moreover

m(zk)
Hz ) H AXFie> e/ F) N Fike/ Fies Yy 7)

gkzZ)

m(zk)

is equal to

s m’(jk)
Hj:l He:1 A(XFg{ké’ ¢F5ke/F> )\(FJ{M/F7 ¢Fk/F)-
Multiplying both of these expressions by

A(Fy/F, )N )

we see that
m(zk)

Hz L H A(XFios VEe/ ) MEike/ FyYF) (19.10)

is equal to

(Jk)
H] 1H XFg{ke’q’[JFj{kg/F) )‘(F]/ké/F7¢F) (1911)

Because of the equality of (19.2) and (19.3) the product over 7 of the expressions (19.7) is equal
to the product over k of of the myth powers of the expressions (19.10). The product over j
of the expressions (19.9) is equal to the product over k of the myth powers of the expressions
(19.11). Lemma 17.1, and with it Theorem 2.1, is now completely proved.
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Chapter Twenty.

Artin L-functions.

Suppose w is an equivalence class of representations of the Weil group of the non-
archimedean local field F'. Let K be a Galois extension of I’ and let o be a representation
of Wk in the class w. Suppose o acts on V. Let V0 be the subspace of V fixed by every
element of W /F- Since Wy, s is anormal subgroup of Wi, - the space VY is invariant under
Wi r and on V° we get a representation 0. Since W} JF = TI;-/I (u%) the class of 0” depends
only on w. ¢ breaks up into the direct sum of 1-dimensional representations corresponding
to unramified generalized characters ji1, .. ., pt, of C'r. We set

r 1
L = '
o =11, T T

This we take as the local function. It is clear that when w is one-dimensional the present

definition agrees with that of the introduction and that of w = w; @ wa. Then

L(s,w) = L(s,w1) ® L(s,ws).

Suppose ' C £ C K, pis arepresentation of W, g, and
o =Ind(Wg,r, Wi/, p)-
We have to show that if 6 is the class of p then
L(s,w) = L(s,0).
Let p act on W. Then V is the space of functions f on Wi, r with values in W which satisfy
fluww) = p(u) f(v)
for uin Wy g and vin Wi p. If f liesin Vj and u lies in Wf(/E then
p(u)f(v) = f(uv) = flov™ uv) = f(v)

because v~ lies in W}, /- Thus f takes values in WY, In other words, we may as well assume
that W = W0. Indeed we may as well go further and assume that W = W9 has dimension
one.
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Let Ng/pmp = esﬂ; where ¢ is a unit and choose wg in Wg,r so that 7, pwo = 7F.

Then w! = wugvy with ug in WIO(/F and vg in Wk, such that 7 gvg = 7g. Clearly, Vo
consists of the functions f with values in W which satisfy f(uw) = f(w) for u in W}, s and
fluw) = p(tx/pu) f(w) if p is associated to the generalized character y of C'p. Take as basis
of V0 the functions ¢y, . .., ¢s_1 defined by

@i(uvwg) = M(TK/EU)(;fiC

where z is a non-zero vector in W, u belongs to WIO( JEr Y belongs to Wi /5, 0<7 < f,and 55
is Kronecker’s delta. The matrix of o(wg) with respect to this basis is

0 - w(Tr/EVO)
1 0 .
A= 1
0 1 0
and
1 1

L(s,w) L(s,0)

T det(I — Alxp|?)  1—plrg) |mplfs
since |7p|/ = |7g|.

For archimedean fields we proceed in a different manner. If we write w, as we may, as a
sum of irreducible representations the components are unique up to order. If w = >, Gw;,

we will have to have .

L(s,w) = Hizl L(s,w;).

Thus it is a matter of defining L(s,w) for irreducible w. If w is one-dimensional this was done
in the introduction. If w is not one-dimensional then F' must be R. Let o be a representation
of Wg,r in the class w. W/ g is an extension of the group of order 2 by C*. Let W¢/r =
C* UwoC*. If o acts on V there is a non-zero vector = in V' and a generalized character p
of C* such that o(a)x = p(a)x for all a in C*. Then the space spanned by {z, o(wp)z} is
invariant and therefore all of V. Since V' is not one-dimensional o (wp)x is not a multiple of .
Notice that o (a)o(wo)z = o(we)o(wy Lawe)z = p(@)o(we)x. If

Mz

wz) = 2" —m
|2
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withm +n > 0, mn = 0 we set

L(s,w) = 2(2m)~(str+25%) p (s pra ; ”) .

The initial choice of p is of course not uniquely determined. However if 11 is one choice the
only other choice is the character a — pio(@). Thus the resulting local L-function is independent
of the choice.

The only point to be checked is that the local L-function behaves properly under induction.
We have to verify that if p is a representation of C* = W in the class § and

o =Ind(W¢/r, We/c; p)

is in the class w then L(s,w) = L(s,0). We may as well assume that p is irreducible and
therefore one-dimensional. Let it correspond to the generalized character v. If o is irreducible
we could choose the generalized character p above to be v and the equality of the two L-
functions becomes a matter of definition. If o is irreducible it breaks up into the sum of two
one-dimensional representatives. It follows easily that v(a) = v(@) for all a. Thus v is of the
form v(a) = |a|” and

L(s,0) = 2(2m) =) T(s +r).

If ur = 1 is the generalized character x — |z|" of R* then v = pc/gr and, as we saw in chapter
10, the representation o is equivalent to the direct sum of the one-dimensional representations
corresponding to p and to p/ where 1/ () = sgnau(x). Thus

L(s,w) = {W‘%(S”) r (S;r) }{71-—%(8—1—7“-1—1) r (#) }

The required result is thus a consequence of the familiar duplication formula

2271 D(2)T(2 4+ 1/2) = 71/2T(22).

If F'is a global field and w is an equivalence class of representations of the Weil group of
F, we define as in the introduction, the global L-function to be

L(s,w) = Hp L(s,wp).

I repreat that the product is taken over all primes, including those at infinity. It is not difficult
to see that the product converges in a half-plane Re s > c. One need only verify it for w
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irreducible. Choose a Galois extension K of I’ so that there is a representation o of W/
in the class w. The restriction of o to Ck is equivalent to the direct sum of 1-dimensional

representations corresponding to generalized characters ("), ... u(") of Ck. For each i and
j there is a 0 in &(K/F) such that 17 (a) = p*(o(a)). Then |u; ij(a)| = |pi(a= o(a))] = 1
because a1 (a) belongs to the compact group of i idéle classes of norm 1. Let |p/(a)| = |a|".

Let vp