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Index of notations and list of structure equations

General

P" = projective space

G(k.n) = Grassmann manifold of projective k-planes in P"
P™ = dual projective space of hyperplanes in P"

$1

p = point in P" with homogeneous coordinates [ z.....Z,];
{P1.-...ps) = linear span of p,,...,p,€ P";

S @ § = span in P" of linear subspaces S and §';

¢ = point in P™ defining a hyperplane Y &,z, = 0;
a=0
r(Q) = rank of a quadric Q in P";
rn = n(C) = genus of algebraic curve C;
h( ).~ V].Q' . [D], O(D), K, are standard notations from algebraic geo-
metry explained in § I;
#: C — P*" ! canonical mapping with image C, .

s

xe U an open set in R" or (7;

{ui(x) = constant! defines a d-web in U’;

P(T*) = projectivized cotangent space at x € U ;

@'(x) € P(T*) denotes the i web normal;

dw' = n' A @' (no summation) defines n';

rank of a d-web is r £ n(d,n) = Castelnuovo’s number;
Zx)e PP Hx) C P

{Z)(x).....Z4x)} = P*"""}(x)

$ I

D, C P(T¥)and E, C P*""!(x) are rational normal curves;
D, & E, projectivity carrying w'(x) to Z;(x);

¢',...,¢" = moving coframe for D, C P(T*);

d¢* = Z * A ¢} is a symmetric connection;
£
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Abel’s Theorem and Webs 15

P 3(x,0) = {Ze P*""" ' (x):dZ/do e P7"" 1 (x)}

(Note:Suppose F : U — G(k,n)is a smooth mapping given by x — P¥(x) C P".
For a point Z e P*(x) and tangent direction o € P(T;*) we choose a curve
x(t) with x(0) = x and with tangent x'(0) in the direction o and Z ()€ P (x(1))
with Z(0) = Z. For a lifting Z(t) of Z(t) to R"* ! we let

dZ/de = projection to P" of Z'(0),

and note that dZ/do is well-defined modulo P*(x). In particular the condition
dZ/de € P*(x)

is intrinsic. Geometrically, this means that as we move along the curve
x(t) the linear space P*(x(t)) C P*(x) contains Z up to 2nd order.)
dZ; + n'Z; = Z;»' (no summation);

w'(x) = ) }(x)¢*(x); and
dif = n't} + Z f Pl + Z fs=ﬁ¢B where t;,, = t;,
[ B

sV
A P") = manifold of frames F = {Z,,...,Z,}, Z,eR**";
{6°.¢3. 97} = projective connection matrices;
©* = d6* — 6% A ¢} = projective torsion;
2 =dg — dp A P2 —07 A O + 550" A 62
= 1/2{R3,,6" A 0%}, R}, + Rj;, = 0, denotes the projective curvature;
Op = dog — ¢; A ¢5;

©* = 0and R?;, = 0 define normal a projective connection.

Finallv. we shall use the following

Ranges of indices

15igd.
1<a,By=n,
1=90,01=2n,

Intreduction

In recent years there have been important developments in the study
of the global properties of foliations. A foliation is, briefly speaking, a
local slicing of a manifold M (supposed to be C*). If x!,...,x" are local
coordinates on M, a foliation of dimension n — k, or codimension k, has
leaves defined by equations of the form

1) F,(x) = const,..., F,(x) = const, x = (x',...,x"),
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16 S. S. CHERN and PHiLLIP GRIFFITHS

where F,,...,F, are smooth functions such that the Jacobian matrix
2 (@F /ox*), 1siZk 1sa=n,

is of rank k everywhere. The functions F,,...,F, are defined up to an
arbitrary C® transformation. A d-web consists of d foliations. Throughout
we make the additional assumption that the leaves are everywhere in
general position.

It was Blaschke who began in the thirties a systematic study of webs.
Web geometry has intimate contacts with the foundations of geometry,
differential geometry, and algebraic geometry. From 1927 to 1938 Blaschke
and his co-workers and students published 66 papers under the general
heading “Topologische Fragen der Differentialgeometrie”. These and
other results were given a unified account in the book “Geometrie der
Gewebe”, by W. Blaschke and G. Bol [1].

From a projective variety a web can be constructed as follows: Let V*
be an algebraic variety of dimension k and degree d in a projective space
P" of dimension n. Then V* meets a linear space P"~* of dimension n — k
in d points. Consider the Grassmann manifold G(n — k,n) of all P""¥s in
P"; its dimension is k(n — k + 1). The P"¥s through a point of P" form
a submanifold of dimension k(n — k). Thus the d points of intersection of
vk with a given P"~* associate to P"~*d submanifolds of G(n — k.n). of
dimension k(n — k) or codimension k, which contain P ¥ This shows
that V* defines in G(n — k,n), or at least in a neighborhood of it, a d-web
of codimension k. In particular, for k = 1, an algebraic curve of degree d
in P" defines in the dual space P™ (= G(n — 1,n)) a d-web of codimension 1.
We will call algebraic the web defined from V* by the above construction.
In this sense web geometry generalizes the geometry of projective varieties.

The relationship between web geometry and algebraic geometry goes
much deeper. In this paper we will restrict ourselves to the study of webs
of codimension one, and mostly to their local properties. The d foliations
defining the web will each be defined by an equation

) u(x',....x") =const, 1<i<d,

where we suppose u; to be a smooth function, with gradient 0. The func-
tion u; can be replaced by a function v,(x;) with tj = 0 without changing
the i*® foliation.

An equation of the form

@) Zfi(ui)dui =0

is called an abelian equation. An abelian equation remains an abelian
equation under the above change u; — v,(u;). The validity of an abelian
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Abel’s Theorem and Webs 17

equation isa strong property on the web. The number of linearly independent
abelian equations (over the constants) is called the rank of the web. We
have the following theorem °):

Let r be the rank of a d-web of codimension 1 in R",d = n + 1. Then

(&) r < n(d.n),
where

(6) n(d,n) = 1/2(n — 1){(d — 1)(d — n) + s(n — s — 1)} .
s being defined by

(7) s=(—d+ 1)mod(n—1), 0<s<n-2.

n(d,n) is an integer.

The integer n(d.n) plays a role in the theory of algebraic curves. In 1889
Castelnuovo proved that a non-degenerate algebraic curve of degree d in
a complex projective space P" of dimension n has a genus < n(d,n). (A curve
is non-degenerate if it does not lie in a lower dimensional projective space.)
Those for which the maximum genus is attained are called extremal curves.
They were investigated by Castelnuovo. In particular, they lie on special
ruled surfaces, the Castelnuovo surfaces.

The algebraic web constructed from a Castelnuovo extremal curve C
is of maximum rank n(d,n). For let ®;,1 = 2 = n = n(d,n), be the linearly
independent abelian differentials on C. By Abel’s theorem, we have

P

(®) Y | w; = const,

i Pp
where P, is a fixed point on C and P, are the points of intersection of C
by a hyperplane. In differentials this relation can be written

) S P)=0, 15isn,

which are the 7 abelian equations of the web. Needless to say, this argument
applies to the complex domain. A careful analysis gives a d-web of co-
dimension 1 in a neighborhood of R" with rank n(d,n). (CL. [3].)

A fundamental problem in web geometry is whether a d-web of co-
dimension 1 in R” of rank n(d,n) is necessarily algebraic and is obtained
from an extremal curve by the above construction. The problem can be
separated into two parts:

?) The result appears in the paper [3] by the first author. It is number T 60 in the series
“Topologische Fragen der Differentialgeometrie™ mentioned above, and constituted part of
the first author’s dissertation written in Hamburg under the supervision of Blaschke.

Jahresbericht d. Deutschen Mathem.- Vereinigung 80, 1. Abt.. Heft 1/2 2
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18 S. S. CHERN and PHiLLIP GRIFFITHS

a) Linearization problem. Can all the leaves of the web become hyper-
planes under a change of coordinates?

b) Algebraization problem. If all the leaves of a web are hyperplanes,
under what conditions will they belong to an algebraic variety?

In the plane (n = 2) the answer to the linearization problem is negative.
In fact, Bol gave an example of a plane 5-web of maximum rank 6 whose
leaves cannot be mapped into straight lines by a change of coordinates.
It is of interest to remark that one of the abelian equations in Bol's example
involves Euler's dilogarithm, which plays a role in several problems of
current interest: the volume of an odd-dimensional simplex in a non-
euclidean space, the combinatorial formula for the first Pontrjagin number
of a compact oriented 4-manifold, etc.

The book of Blaschke-Bol quoted above culminates with the following
theorem of Bol:

A d-web of codimension 1 in R®, d # 5, of maximum rank n(d,3) is equiv-
alent to a web with plane leaves. The leaves belong to an algebraic curve
of degree d in the dual projective space P*".

By “equivalence” is meant “local equivalence”, i.e., change of coordinates
in a sufficiently small neighborhood. The same is understood in the following
theorem, which is the main result of this paper:

Theorem. Consider u d-web of codimension 1 in R" of maximum rank n(d,n).
Suppose that n = 3, d Z 2n. Then the web is linearizable, i.e., equivalent to
a web whose leaves are hyperplanes.

The idea of the proof is to compare the geometry in a neighborhood
U C R" where the web is given with that of an auxiliary projective space.
In fact. let

(10) Y ffu)dy; =0, 1 £2=n=n(dn)

be the linearly independent abelian equations. By interpreting

(1) Z4x) = [ @ )], 1Sisd

as the homogeneous coordinates in an auxiliary projective space Py
we obtaina mapping U — G(d — n — 1,n — 1) withx — {Z(X),....24x)} =
P?~""1(x), to be called the Poincaré mapping. The d points Z;(x),xe U,
determine a normal curve E(x) in the linear space P*™""'(x) of Pt To
a curve in U corresponds co! normal curves E(x). Our main lemma is to
show that the curves in U whose corresponding normal curves pass through
n — 1 fixed points are the integral curves of a system of ordinary differential
equations of the second order. This defines intrinsically a family of paths.
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Abel’s Theorem and Webs 19

On the other hand, in the projectivized cotangent space P(T*) (of
dimension n — 1) at every point x € U the web of maximum rank defines
a normal curve C,, which contains the tangent hyperplanes of the leaves.
(The points of P(T*) and the hyperplanes of the tangent space T, can be
identified by the pairing of T, and T;*.) The curves C, and E(x) are in a
projective correspondence. When n = 3, the normal curves C, are conics
and the field of C, for x e U leads intrinsically toa Weyl geometry. The
general case is considerably more complicated. We believe we are justified
in saying that it is Elie Cartan’s method of moving frames that effectively
leads to the goal. The computations involve some mysterious and unexpected
simplifications, to be expected of a good geometrical problem.

The path geometry so introduced has co? totally geodesic hypersurfaces
which include the leaves of the web. The presence of these totally geodesic
hypersurfaces implies that the normal projective connection associated to
the path geometry is flat, and that the paths can be mapped into straight
lines by a local change of coordinates. This mapping carries the totally
geodesic hypersurfaces into hyperplanes.

Our proof contains also a simplification of Bol’s proof in the case n = 3,
by proving a sufficient condition for the flatness of a projective connection.
(Cf.§IV. B.) Bol had toresort to a theorem of Enriques in algebraic geometry
to complete his proof. Our proof of the main theorem is purely differential-
geometric.

Once the linearization problem is solved, the affirmative answer to the
algebraization problem is given by a converse of Abel’s theorem. For details
we refer the reader to a recent paper by the second author [4]. The relevant
theorem goes back to Sophus Lie and can be stated as follows:

Suppose A, is a hyperplane in P" and C,,...,C, are arcs each meeting A,
in a single point. Suppose there are abelian forms w; # 0 on C, such that

(12) Lof4-C)=0, 1<i<d,

is valid for hyperplanes A varying in a neighborhood of Aq. Then there is an
algebraic curve C in P" and an abelian form w on C such that C: CC olC=w,

By duality in the projective space P" this theorem can be translated to
the following theorem on webs:

Consider a d-web in a neighborhood of R" whose leaves are hyperplanes
such that an abelian equation (4) holds, with fi(u)) % 0. Then the leaves
belong to an algebraic curve of degree d in the dual projective space.

Observe that in this theorem it is sufficient to have one abelian equation.

Added in proof: A summary of the proof of our main result appears in the paper
“Linearization of Webs of Codimension One and Maximum Rank™, to appear in
Proc. of the Int. Symp. on Alg. Geom., Kyoto, Japan (1977).
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20 S. S. CHERN and PHILLIP GRIFFITHS

I. Extremal algebraic curves

A. Rational normal curves

1. Definition and basic properties. An algebraic curve is given by a holo-
morphic mapping
f:C—=p"

from a compact Riemann surface C into the complex projective space of
dimension n. The curve is non-degenerate in case the image does not lie in
a lower dimensional linear space, and it is normal in case the image is not
the projection of a curve in some P* for n’ > n. In this paper it will usually
be the case that f is a smooth embedding, and we shall identify C with
its image f(C) when there is no ambiguity.

In order to facilitate our discussion of algebraic curves it will be convenient
to use the language of line bundles and Chern classes — cf. Chapters 0 and
Iof [5].

Over a compact complex manifold M we consider a holomorphic line
bundle L — M. We denote its Chern class by c,(L)e H*(M,Z). The two
most important cases for us are when M is P" or a compact Riemann
surface; then H*(M,Z) = Z and the Chern class will be an integer called
the degree and denoted by deg (L). The space H°(M,D(L)) of global holo-
morphic sections is a finite dimensional vector space, frequently denoted
by HO(L). Two sections s,s' in H°(L) have the same zero divisors if and
only if s = As'(A€C) is a constant multiple of s'. A linear system is the
projective space P(V) of lines through the origin in a linear subspace
V € H%(L); thus P(V) may be identified with the divisors of sections se€ V.
We shall sometimes use the classical notation |V| instead of P(V). The
linear system is complete in case V = H°(L). A base point is a point pe M
where all sections s € V are zero. A linear system with no base points defines
a holomorphic mapping

f:M = P(V¥)
by
f(p) = {seP(V):s(p) = 0} .

In other words, pe M is mapped to the hyperplane in P(V) consisting of
all divisors in the linear system which pass through p.

The unique line bundle of degree +1 over P" will be denoted by H -P"
and called the hyperplane line bundle. Using homogeneous coordinates
z = [2,,...,2,] the space H°(P",O(H)) of global holomorphic sections is
naturally identified with the linear functions

o)=Y &z,
v=0
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Abel’s Theorem and Webs 21

on P*. The divisor ¢ of this section is the linear hyperplane &(z) = 0. and
consequently the complete linear system is the dual projective space P**
of hyperplanes in P". This linear system is base point free, and using projectire
duality

(P"*)* E Pﬂ

to identify the hyperplanes passing through p e P" with p itself makes the
corresponding map P" — P(H°(P", D(H))*) the identity.

Given any non-degenerate holomorphic mapping f : M — P", we may
set L=f*H and V= f*H°P"O(H)) to obtain a holomorphic line
bundle L -+ M and base point free linear system V ¢ H®(L) whose cor-
responding map is just f. The “dictionary”

non-degenerate holomorphic line bundles
holomorphic mappings $«+<{ L — M and base point free
f:M— P linear subspaces V ¢ HO(L)

will be used throughout.

In case M = C is a compact Riemann surface and fS:C— P a non-
degenerate algebraic curve — we always assume that [ is generically one
to one — then the degree deg (C) is defined to be deg (f* H). It is the number
of points in which the image meets a hyperplane. The algebraic curve is
normal if and only if the corresponding linear system is complete.

In order to illustrate the above dictionary, let us prove that a non-
degenerate curve in P" has degree =>n. Using the language of line bundles.
we set L= f*H and let O(L — p) C O(L) be the subsheaf of sections
vanishing at a point pe C. Then O(L — p) is the sheaf of the line bundle
L ® [ —p], and the exact sheaf sequence

OﬂD{va}—»D{L}—'LP—bo

is valid. From the exact cohomology sequence we obtain
RO(L) S K%L — p) + 1
where the notation

H(L) = dim H'(M.D(L))

will be used consistently. Applying this inequality recursively gives

h°(L) < deg(L) + 1

since deg(L ® [—p]) = degL — 1 and h%(L) = 0 in case degL < 0. In
particular, since h°(f*H) = n + 1 we obtain deg(C) = n.
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22 S. S. CHERN and PHILLIP GRIFFITHS

The corresponding geometric argument is the following: Linear projection
from the point pe f(C) gives

PH
y
C

N

Pu- 1

where f'(C) has degree at least one less than f(C). Since an algebraic curve
of degree one is a straight line it follows that deg (C) = n.

The line bundle corresponding to f" is L ® [ —p], and the associated
linear system is just H*(C,O(L — p)) ¢ H°(C,D(L)). So the two arguments
bounding the degree correspond under our dictionary.

The general result is this: A non-degenerate algebraic variety V C P"
of dimension k has degree at least n — k + 1. Thus a surface has degree
=n — 1, etc. Varieties of minimal degree are quite interesting, and will
play an important role for us. We begin with the case of curves.

Definition. A rational normal curve is a non-degenerate curve of degree n in P".

We shall prove that a rational normal curve is rational — i.e.. that C is
the Riemann sphere P! — and that f is a smooth embedding. The curve
is normal because it has degree n.

The second geometric argument used to bound the degree shows that
the projection of a rational normal curve in P" is a rational normal curve
in P"~'. Iterating this we obtain

where F(C) has degree two. It follows that F(C) is first of all a plane conic,
and secondly is smooth since otherwise it would consist of two straight
lines. By projecting once more (stereographic projection), we find that
F(C) is isomorphic to P'. This proves that C is rational and f is a smooth
embedding. The fact that rational normal curves project onto plane conics
will be important for us.

For a rational normal curve f : P' — P" the corresponding line bundle
L has degree n. It follows that L =~ H" where H — P! is the hyperplane
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bundle. The inequalities
n+1 <P OW) Sdeg(lL)+1=n+1

give
RO(P'.OH") =n+1.

This implies:
A rational normal curve is the mapping

f:Pl - P
given by choosing a basis sy,...,s, for H*(P',O(H") and setting
S () = [so(p),---,5,(P)] -

For example, using homogeneous coordinates z = [z,.z,] the sections

n _n=1 _ o
Zg:-0  Zis--afo

give such a basis. The image under this choice of basis will be called the
standard curve. Setting t = z,/z,, it is given parametrically by

LR B L] 8

We note that the two points [1,0,...,0] and [0,0,...,1] lie on the standard
rational normal curve, and that the projection of this curve in P"~! from
either of these points is again a standard rational normal curve. This
geometric property will underlie several inductive arguments later on in
the paper.

Since any two bases of H*(P*, D(H")are related by a linear transformation,
any two rational normal curves are projectively equivalent. This allows us
to deduce properties of a general rational normal curve from those of the
standard curve. Thus, e.g., distinct points ty,...,y map to points in general
position in P" by noting the Vandermonde identity

1 gyl

1 Iy f’; =HH"; - fj}

i#j

[ ot

to deduce that any k + 1 < n + 1 of these points are linearly independent.
Another property is that there is a 3-parameter subgroup of the projective
linear group PGL,,, = Aut(P") taking any rational normal curve into

itself. For the standard curve these oo automorphisms of P* induce the
linear fractional group ¢t — (at + b)/(ct + d) (ad — bc = 1) on P.
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24 S. S. CHerN and PHILLIP GRIFFITHS

Using these remarks we may count the number of rational normal curves
to be
(n+1)2*—-1 — 3 =(n—1)(n + 3)
———
Il I
dim(PGL,, ,) dim(PGL,).

This suggests that:

(1.1) There is a unique rational normal curve through any n + 3 points in
general position in P".

To prove this we let Pos---:Pn, 4, ¥ be our n + 3 points in general position,
and choose a homogeneous coordinate system having p, = [10.:..0]....
Pn = [0,...,0,1] as vertices of the fundamental simplex. The parametric
representation

zi=af(t = b)) a,b, +0

gives, by finding a least common denominator, the rational normal curve
t— [n(: = b)a,....[lt - bljaﬂ]
i=0 i+n
sending t = b, to p, = [0.....1,,...,0]. The points p and ¢ have all coor-

dinates non-zero, and consequently the inversion

maps p and q to distinct points p' and ¢’ having all z;-coordinates non-zero.
The above rational normal curve is mapped to the line

Zi=it = b))a; .

and we may uniquely choose the @; and b; so that this line passes through
g’ and r'. Since any rational normal curve containing the vertices of the
coordinate simplex has the parametric form given above, this proves that
there is a unique such curve passing through n + 3 pointsin general position.

1) Quadrics and rational normal curces. Although simple to describe
parametrically, the rational normal curves have a somewhat complicated
set of defining equations since they are not complete intersections. The
previously noted fact that rational normal curves project onto conics in
the plane suggests that we study the quadrics containing them, which we
now proceed to do.

A quadric Q in P" is the hypersurface given by a quadratic equation

q(z) = qu'j:i:j =0 (Qi;‘ =q;).
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Abel’s Theorem and Webs 25

In a suitable coordinate system. we will have

Q)
q(z') = ) z2
i=0

where r(Q) is defined to be the rank of the quadric Q. Thus r(Q) = n if and
only if det (g:;) = 0. or equivalently Qis non-singular, At the other extreme,
ifr(Q) = Othen Qisahyperplane(z{; = 0) counted twice. and ifr(Q) = 1then

Q= Pn—l + Pvn—l

1s the union of distinct linear spaces. In general a quadric of rank r =2
1 the cone over a non-singular quadric in P*.

The quadratic polynomials g(z) are Just the sections of the line bundle
H? > P" and thus

WP O(H?) = (n + 1)n + 2)72.

A linear subspace V' ¢ HO{P".C{Hz)) defines a linear system P(V') of quadrics
corresponding to sections 4 € V. Given a rational normal curve . P! o pr
we set C = f(P') and denote by V(C) the quadratic polynomials which
vanish on C, Using the notation |[V(C)] for the linear system P(V(C)). we
may think of |V (C)| as the space of quadrics passing through C. We will
now derive the classical result-

(1.2) The linear system |V(C)| has dimension given by
dim V(C) = nn — 1)/2.

The curve C is the ideal-theoretic intersection of the quadrics Qe l|V(Q).
Finally, the linear system |V(C)| is spanned by quadrics of rank rwo.

Proof. Suppose that we choose coordinates such that C has a parametric
representation
l— [1,[,...,I"].

Under the substitution =1t each quadric g(z) goes into a polynomial
g(t)in t of degree < 2n, and every such g(t) appears in this way. Thus

dim V(C) = (n + 1)(n + 2)/2 - 2n+1) = nn — 112

By projecting C onto a plane conic C’ and taking the cone in P" over C'
we may find a rank two quadric containing C and not passing through a
preassigned point in P — C. Thus C is the set-theoretic intersection of the
rank two quadrics which contain it.

To check that the quadrics in ¥ (C) generate the ideal of C. it will suffice
to do this at one point p, and then use the fact there is a transitive group
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of projective transformations acting on the configuration C C P". We may
suppose that C is the standard curve, p, = [1,0,...,0], and take
x = [1,x,,...,x,] as affine coordinates around p,. The n — 1 quadrics

QGlx) =x0y — X%, =0 (k=1,...,n—1)
all vanish on C and satisfy the Jacobian condition

dg, A - A dg, ; #0
at p.

Finally, it is not difficult to write down a basis for V(C) consisting of rank
two quadrics. Q.E.D.

There is a lovely synthetic construction of rational normal curves and the
rank two quadrics which contain them which will prove useful in a little
while. Before going into it we recall that the hyperplanes in P" which contain
a fixed P"~2 form a pencil P"~'(t) — here  denotes a linear coordinate on
the P' of hyperplanes containing P"~2. To obtain this pencil we take a
P? meeting P""2 in a point p,. The lines in P? passing through p, form a
pencil P!(t) and the linear spanP'(t) @ P"~2 = P"~ (1) traces out the
pencil of hyperplanes with axis P"~ 2. Two such pencils are in correspondence,
written

P ) A P,
if we are given a projective isomorphism
t'=(at + b)/(ct + d)
between their parameter spaces. Such an isomorphism is uniquely specified
by giving three distinct values
t;=(at; + bylct; + d) (i =1,2,3).

Now let p and p' be two points in the plane and P!(t) and P(t) the
respective pencils of lines through them. A correspondence P'(1) A P!(t)
is uniquely determined by requiring that corresponding lines pass through
three non-colinear points r,r',r” (Fig. 1).

Fig. 1
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The variable point of intersection p(f) = P(t) n P!(¢'(t)) will then trace
out a conic passing through p.p’,r,r’,r". This is Steiner’s synthetic construc-
tion of a conic through five points in general position in the plane.
Before giving the generalizations of this, we need one remark concerning
quadrics. Given points p,,p,,...,py in P" we denote by V(p,,...,py) the
linear space of quadratic polynomials vanishing at the p;. Then we have:

(1.3) codim V(p,.....py) = N provided that N < 2n + 1 and the p; are in
general position.

Proof. By adding additional points it will suffice to do the case
N = 2n + 1. We must show for each i there is a quadric Q passing through
the p; for j = i but not containing p;. Relabelling we may assume that
i =2n + 1. By general position.

{p‘l"""pn} =P"_l and {.pn-fl!“"pln} =P’"_l'

We may take
Q= prt g parl Q.ED.

We shall refer to what we just proved by saying that N < 2n + 1 points
in general position impose independent conditions on the linear system of
quadrics containing them.

Steiner’s construction generalizes in two ways. The first gives a synthetic
method for finding rank two quadrics containing a rational normal curve
C CP". Let po,...,Pn-25 Pos--->Pa—2; I ¥, 1" be 2n + 1 distinct points on
our curve. Then these points are in general position, and since dim V(C) =
2n + 1 and, as just proved, these points impose independent conditions
on the quadrics containing them, we deduce that: any quadric passing
through 2n + 1 distinct points on C must contain C entirely. To find Q
passing through these points, we set P""2 = {p,,....p,_,} and P'" 2 =
{Pos---»Py—2}, and consider the pencils P"~!(t) and P"~ (') of hyperplanes
having P""? and P'""? as respective axes. A correspondence
P"~'(1) X P'""'(r) is set up by requiring that corresponding hyperplanes
should pass through each of r, ', r". Then the variable intersection

P Yty PP Y1)

traces out a quadric @, which is of rank two since it contains P"~*’s but
no P*"'’s, and which passes through the 2n + 1 given points on C and
hence contains the curve by our previous remark.

A second generalization of Steiner's construction gives a synthetic
method for tracing out a rational normal curve through n + 3 points
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Pi+---sPasT1. T, T3 10 general position in P". Let

P}'_z = {Pll,---aﬁi-;--wpn}

be the edges of the simplex determined by the p;’s and P""!(t,) the cor-
responding pencil of hyperplanes with axis P}~ 2. For a fixed pencil P"~(r)
of hyperplanes we establish a correspondence

PHaw P
by requiring that corresponding hyperplanes pass through r,,r,,r;. Thus
r;€ P"7(t(t)) (= 1,2,3) for each i. The variable point of intersection
p(t) = Pi7H(t,(0) 0 0 PR (24(1)

traces out a rational normal curve thorugh our given n + 3 points (Fig. 2).

p(t)

Pa
Fig. 2
We have been leading up to the following lemma, which appears implicitly
in the classical literature, and will play a crucial role for us:
(1.4) Let p,,...,py be points in general position in P" and assume that
N>2n+2
dim V(py,....px) = n(n — 1);2.
Then these points lie on a unique rational normal curve, and the second
inequality is an equality!).

Proof.LetC = () Q be the intersection of all the quadrics containing
Qe VN
ourset I' = p,,...,py. Then C is an algebraic variety and we will first prove

that .

dmC < 1.
If, on the contrary, this dimension is =2 then C will meet every P" 2ina
non-empty set Z. We will choose P""2 such that the quadrics in V(I')
remain linearly independent when restricted to this subspace.

') Briefly, we may say that a set of N > 2n + 2 points in general position lying on

n{n — 1)/2 quadrics must lie on a rational normal curve. Since (n + 1)(n + 2)/2 =2n + 1
+ n{n — 1)/2, the second inequality is equivalent to codim V(p,,...,py) < 2n + 1.
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For this we let P"~' = {p,,...,p,} and choose a P""2C P"! not
containing any point of I'. If some Qe|V(I')| contains P"2, then
Q|P""! = P""% 4 P'""? since this restriction has rank one. But Q|P""!
must pass through p,, ..., p, and hence these points lie on a P’ 2 contradict-
ing general position. This proves that the restriction

V() — H%(P"~2,O(H?)

is an injection. But h°(P"~%,D(H?) = n(n — 1)/2, and so all quadrics in
P"~2 must pass through Z, which is not the case. This contradiction shows
that dimC < 1.

We now use Steiner’s method to construct C. Label our points as

Prs-ssPan+1s Tiseesfyoaa-y (N=2n-122),

and set
Pi72 ={pyseciBiveeesPu)e P2 = {Ppygeenpan) -

Denote by P"~'(t;) and P"~*(r) the pencils of hyperplanes with axes P~ 2
and P"~2, and establish a correspondence

P o)A PPy

by requiring that corresponding hyperplanes pass through PisPn+1:Pan+1-
Then the quadric Q; traced out by the intersection P*~!(t) » P"~(1.(t)
passes through p,,...,p,,,, and hence must contain the points r, as well.
In particular, for suitable values t,, ,,t5,, ., (x =1,....N — 2n — 1) of
t we will have, for all i,

pn+l € P:',_ l“i{rn-i- 1})
Pan+1 € PP 11,4 ,)

ru € P'i'- . ([i{ta)) »

The rational normal curve traced out by the variable intersection
pt) = P71, (1) - PR, (0)

then passes through p,,..., Pn+Pr+1:P2n+1-T1+-..Tx - 20— - Put another way, the
unique rational normal curve C' through p,,....p,.,.r,,r, will then contain
P2n+1 and the remaining r,’s. It follows that C’ passes through I'. Now every
quadricin |V(I')| meets C’ in =2n + 3 points and hence contains C’ entirely.
Thus V(I') C ¥(C'), and since codim V(I') = 2n + 1 = codim V(C') we
must have V(I') = V(C')and C = C. Q.E.D.
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B. Extremal algebraic curves of positive genus

i. Castelnuovo’s bound. Let C be a compact Riemann surface of genus .
For a holomorphic line bundle L — C we denote by

h°(L) = dim H°(C, D(L))

the number of linearly independent holomorphic sections of the bundle.
Following general conventions I* will be the line bundle dual to L, and
K will denote the canonical line bundle whose associated sheafl O(K) = Q!
is the 1-forms. The basic fact in the study of curves is the Riemann-Roch
theorem

(1.5) h(L) =degL —mn+ hi®K® [*)+ 1.

Especially useful is the case when L = [D] is the line bundle associated
to an effective divisor D = p, + - + p, of degree d. Then DO([D]), or
frequently just O(D), is the sheaf of meromorphic functions having poles
no worse than D, and one traditionally sets

I(D) = h°([D]).

On the other hand, ©(K ® [D]*) is naturally identified with the sheaf
Q'(—D) of holomorphic differentials which vanish on D. and here one

traditionally sets
i(D) = h°(K ® [D]*)

and says that the divisor D is special in case the index of speciality i(D) > 0.
With these notations the Riemann-Roch becomes
(1.6) IDy=d—-n+iD)+ 1.

Finally, if we let |D| denote the complete linear system associated to

H°(C,D(D)). then | D| is the projective space of all divisors D' = p} + - + p)
linearly equivalent to D in the sense that

O'-D=(¢)

for some meromorphic function ¢ on C. With this notation (1.5) assumes
its most symmetric form

1.7) dim|D| = d — = + i(d).

Now suppose that f:C — P" is a non-degenerate algebraic curve of
degree d. We assume that f is generically one-to-one and set L = f*H.
We have proved that d = n, and that ifd = nthen n = 0 and C is a rational
normal curve. In 1889 Castelnuovo found a general bound on = in terms
of d and n, and was moreover able to determine the structure of the curves
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of maximum genus?). Because of the central role which these extremal
algebraic curves play in the theory of webs we shall sketch Castelnuovo’s
argument here — a complete discussion and details may be found in
Chapters II and IV of [5].

The bound is based on a lemma which will now be explained. We denote
by V, the image of the mapping

HO(P",O(H) - H%(C,O(LY).
Since H°(P",O(H")) is just the vector space of homogeneous polynomials

of degree k, the linear system |V,| consists of the divisors on f(C) cut out
by the hypersurfaces of degree k in P". We will prove the

=kn—1)+1
(1.8) Lemma. dim V, — dim ¥, _, = if k=d—-1)/n-1)
=d if k>(d-—1)in—-1)

Proof. For k = 1 the bound is
dimV, Zzn+1,

which is equivalent to the curve being non-degenerate. For k > 1 we shall
use the following (loc. cit)
General position principle: A generic hyperplane & € P™ cuts the curve C in
d points
¢-C=p+ -+ pa.

any n of which are linearly independent.

Now assume that k(n — 1) + 1 < d and break the points up into k
groups of n — 1 each plus a remainder as follows:

PisessPn—15 PrseosP2ta—1)5 +=+5 Phtn—2y+ 13215 Prin—1y> ----Pa-
& % J . ;

I ! !
D, D, D,

By the general position principle we may find hyperplanes &,,...,&, such
that each ¢; contains D, but not py,_;,+ ;- The hypersurfaceh = &, + - + &,
in P" has degree k and passes through p,...,py,- ) but not' py,_y,4;. On
the other hand, any hypersurface of the form k" = & + k" where h" has
degree k — 1 passes through all the p;,. There are clearly at least
k(n — 1) + 1 + dim V,_, linearly independent hypersurfaces of the form

h+h,

?) For n = 2 the bound was classical. For n = 3 it was found by Clifford and Max Noether.
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which proves the lemma in case k(n — 1) + 1 £ d. The other case is similar
and easier. Q.E.D.

Now we set m = [(d — 1)/(n — 1)] and successively apply the lemma for
k=01,...; m + m’ to obtain

dmV,, =02mm+1D)n—-10)+m+ 1+ m'd.
On the other hand. obviously
h°(L* = dim V,

for any k, while the index of speciality

i(LY) =0
for large k?). Applying (1.5) we obtain
dm+m)—n+1=hL"")Z(12mm+ 1)n— 1)+ (m + 1) + m'd
or n < n(d.n)

where
n(d,n) = m[d — 12(m + 1)(n — 1) — 1] and
m = [(d = 1)in—1)]

This is Castelnuovo’s bound on the genus.
We now make some brief remarks about the various cases.

Case i: For an extremal algebraic curve C of degree d withn < d < 2n — 1,

we have
n=d-—n

RO(L)=n+1, i(L)=0

The bound on n follows immediately from Castelnuovo. In the extremal
case when n = n(d,n) = d — n we use the form (1.5) of Riemann-Roch to
obtain
ho(L) =degL —m +i(L)+ 1 =n+1 + i(L)
(Ly=n+1.
which together imply the second statements. :
It can be shown that for any compact Riemann surface C of genus =
and integers d,n with
n=d-—n
n=d<2n-1,

*) Specifically, since i(L*) = h°(K ® L~*) we will have i(L*) =0 as soon as deg(K @ L*) =
2n -2 —kd < 0.
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there is a holomorphic embedding f: C — P" of C as a curve of degree d.
Consequently, there is nothing special about those Riemann surfaces
which appear as extremal curves when n £ d < 2n — 1.

Case ii: For an extremal algebraic curve of degree d = 2n, the line bundle
L is the canonical bundle and C is a canonical curve. By Castelnuovo’s bound

nSal2nn)=n+1.

Arguing as before, in case 1 = n + 1

RO(L) = n + KK ® I¥)
hO(L) = n + 1

which together imply that h°(L) = n + 1 and h°%(K ® I*) = 1. Now then
deg(K @ I*) =degK —degL =2n -2 - 2n =0,

and h°(K ® L*) # 0 implies that K = L since any section of K ® L* can
have no zeroes.

By definition, a canonical curve is f:C — P" where f is generically
one-to-one and f*H = K is the canonical line bundle (it then turns out
that f is a smooth embedding). We shall say more about these curves in
section I-B iii.

Case iii. These are the curves where d > 2n, and are the ones in which
we are most interested. They will be described in more detail in the next
sections.

We conclude this discussion with three observations. The first is that for
line bundles L — C whose associated complete linear system gives a
generically one-to-one mapping f:C — P* we have proved Cliffords
theorem:

i(L) # 0= h°(L) < degL/2 + 1
with equality = L = K .

Proof. Setting d = degL and h°(L) = n + 1, we assume
n+1>4d/2+1
ord<2n. Thenn £d — nand
n+1=h"L)=d—n+1+il)=n+1+ilL),

which implies that i(L) = 0. If n + 1 = d/2 + 1 then d = 2n and we have
proved that L = K. Q.E.D.
The second observation is that in case C is extremal, then all the ine-
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qualities in the proof of Castelnuovo’s bound must be equalities and so

RO(LY) = dimV, k=1,2,....%.
In particular
h°(L?)=3n incase d=2n—1.
Since h°(P".O(H?) =(n + 1)(n +2)/2 and (n+ 1)(n + 2)/2 — 3n =
(n — 1)(n — 2);2, this implies that:
(1.9) An extremal algebraic curve C of degreed = 2n — 1lieson pri—ieen2iid
quadrics in P".

Recently, Joe Harris took up the question of maximizing the genus n
of a curve C of degree d in P* which lies on a surface S of degree k but not
on one of degree k — 1. Asymptotically he found the bound

n(C) < d*/2(k + 1).
When k = 3 the precise bound is

@ —3d+2/6 for d=1,20)
e S {(aﬂ _3d+6)6 for d=00)

As a consequence.

If C C P? is a non-degenerate algebraic curve of degree d and genus m with
n>(d*—3d)/6 +1,

then C lies on a quadric surface.

In this case Castelnuovo’s bound is

o fd—224 d=0(2)
SYd-1D)d-3)2 d=1()

Asymptotically we have
7 < d?/4 for any non-degenerate curve
n > d*/6 = C lies on a quadric surface.

There are also resultsof a similar nature for non-degenerate curves in P".

ii. Extremal curves of degree d > 2n. We now consider an extremal algebraic
curve f: C — P" of degree d where d > 2n and n 2 3. It will turn out that
f is generically an embedding, and we shall identify C with its image.

%) This means that the hypersurfaces of degree k cut out complete linear systems on the curve
for all k: such curves are called arithmetically normal. That canonical curves are arithmetically
normal is a classical result of Max Noether.
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The basic fact is
(1.10) C lies on a surface S of degree n — 1%).

Proof. Denote by |V(C)| the linear system of co®~1"~2V2 guadrics which
contain C — cf. (1.9) above. Since C is non-degenerate, no quadric Q € | V(C)|
has rank one. Consequently the restriction

quadrics Qe |V(C)| - Q|P"!

is injective for any hyperplane P"~' C P". It follows that all the hyperplane
sections & - C consists of
d>2n—1)+2

n=2)-2

points lying on o™~ quadrics. For generic ¢ these points are in
general position, and we deduce from (1.4) that

¢ @=b,

QelViO)

is a rational normal curve. It follows that

s=1 o

Qe V10

is a surface of degree n — 1 containing the curve C. Q.E.D.

Now then the non-degenerate surfaces of degree n — 1 in P" were clas-
sified by del Pezzo and may be described as follows (cf. Chapter IV of [5]
for proofs):

First, a cone over a rational normal curve is clearly a surface of minimal
degree having a singularity at the vertex of the cone.

Secondly, the embedding P? — P* defined by the complete linear system
|H®(P?,D(H?))| of quadrics in P? defines a smooth surface, the Veronese
surface. Since any two conics meet in 4 points the degree of this surface is
the minimal number four. The Veronese surface is the unique non-degen-
erate surface in P> whose chordal variety has dimension four, rather than
five as one would generally expect.

In general a minimal surface®) turns out to be rational, and so
h'($,D) = h*(5,0) = 0. It follows that the group of line bundles

Pic(S) = H*(S.2).
the isomorphism being via the Chern class. The remaining minimal surfaces

S = S(k,0)

5) We recall that this is the minimal degrec ~f a non-degenerate surface in P".
%) Minimal here means having no exceptional curves of the 1st kind. This is the only time
we shall use this terminology.
3
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are described as follows: Over P! we consider the standard line bundle
H* — P! of degree k = 0. Adding a point at infinity to each fibre we obtain
a surface S(k) which is a P'-bundle over P!. The zero section of H* — P!
is a curve on S(k) having self-intersection number k. We denote by
e € Pic(S(k)) = H*(S(k),Z) the class of the curve at infinity, so that

ee= —k.

We may characterize S(k) as being the unique minimal rational surface
having a curve of self-intersection number —k. Let f e Pic(S(k)) be the
class of a fibre so that
{f f=0
fe=1.

The curves e and [ give an integral basis for Pic(S(k)). Therefore, any line
bundleisa linear combinationxe + ff(x f € Z). In particular, the canonical
bundle is of this form and using the adjunction formula

n(C) =1/2(C-C + C-K) + 1
for the genus of a smooth curve C applied to e and f we obtain
K=-2b+(-k=-2f.
We now consider the line bundle L(k,[) — § whose Chern class
ey(LkD) =e+ (k+ 1+ 1)f.
In [5] it is proved that
hO(S(k), O(L(k,D)) = k + 21 + 4

and that the complete linear system | H°(S(k), O(L(k,)))| gives an embedding
for I =z 0. We identify S(k) with its image S(k,]) to obtain a surface in P"
where n = k + 21 + 3. The degree of S(k,[) is

e+ (k+1+Df)(e+k+1+1D)f)=—-k+2k+2I+2=n-1.
We note that since
e+ k+1+1)f)f=ef=1

the fibres of S(k) — P! map into straight lines in P". Thus the S(k,/) are
rational ruled surfaces, sometimes referred to as scrolls. Together with the
cones over rational normal curves and Veronese surface, the surfaces S(k,I)
give all non-degenerate surfaces of degree n — 1 in P".

Moreover, the genus of a curve on S(k,/) may be easily computed by the
adjunction formula with the following conclusion:
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(1.11) For each n = 3 and d > 2n, curves C of maximum genus n(d,n) exist.
These curves are non-singular and lie either on a cone over a rational normal
curve or on a surface S(k,1). In all cases the surface S is the intersection of
the quadrics containing C. The hyperplane sections ¢ C(¢ e P™) are d points
on a rational normal curve D; = - S. Finally, extremal curves exist over P
as well as C.

Given an extremal algebraic curve C, the unique ruled surface S which
contains the curve will be referred to as Castelnuovo’s ruled surface. When
n =3, § is the standard doubly ruled quadric. An extremal algebraic curve
has either type (k,k — 1) or (k,k) depending on whether its degree is odd
or even. In the latter case C has degree 2k and is a complete intersection
of § with a hypersurface of degree k: in the former case C + (line) is a com-
plete intersection. This property of extremal algebraic curves to be as close
as possible to complete intersections persists in higher dimensions.

iii. The canonical curve and Poincaré mapping. We have now discussed
extremal algebraic curves of degree d in P* when n =d=2n-1 and
d > 2n, and have mentioned in passing that those of degree d = 2n are
canonical curves. These will now be described in more detail, and then
we shall relate those of degree d > 2 to the canonical curve.

Suppose that C is a compact Riemann surface of genus w = 2. The space
H°(C,D(K)) = H%(C,Q") of holomorphic 1-forms on C has dimension =
and the associated complete linear system is base point free — ie., for
every point pe C there is an we H%(C,Q') with w(p) # 0. Choosing a
basis w,,...,w, for the holomorphic differentials we obtain the canonical
mapping

%z C'= p=?
defined by
x(p) = [wy(p),.-..w.(p)] .

We note that
Pl PHYC.QY):

L.e., the hyperplane sections are just the divisors of holomorphic differentials.
In case C is non-hyperelliptic, which is the general case when the genus
n = 3, the canonical mapping is a one-to-one embedding. The image C,
is a canonical curve. It has degree

2n — 2 = 2(dimP*"?),

is intrinsically attached to the compact Riemann surface C and, as we
shall now discuss, the geometry of C, reflects many properties of the special
divisors on C.
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The basic observation is this: Suppose that C is non-hyperelliptic and
D= py -+ dpy

is a divisor of degree d. Denote by {D} = {p,,....p,} the linear subspace
of P*~! spanned by the points p; on the canonical curve. Then. since the
index of speciality is just the number of linearly independent hyperplanes
in P*~! which contain D, by elementary linear algebra

dim{D} = n - 1 — i(D).

Comparing this with the third form (1.7) of the Riemann-Roch gives

dim{D} = (d — 1) — dim|D].

Consequently, dim|D| exactly measures the extent to which the points p;
fail to be linearly independent on the canonical curve’).

Put geometrically, suppose we say that a linear subspace P*~""'(n > 0)
of P~ ' isa multisecant plane in case it is the span of 4 points on the canonical
curve. For example, when d = 3 and n = 1 we have a trisecant line, and
so forth. Then the study of special divisors is equivalent to the study of
multisecant planes on the canonical curve. This study is governed by the
remarkable fact that if there is one multisecant P*™"~' = {p,.....p,}(p; € C,).
then there are at least oo™ such multisecant planes, as follows from the Rie-
man-Roch. Although it does not seem to have been made rigorous, this
is perhaps the distinguishing characteristic of the canonical curve — at
least provided we assume there is a non-empty set of special divisors.

Now, suppose f:C — P" is a normal algebraic curve of degree d with
typical hyperplane section

Dy =& f(C) = ps(d) + - + puld)-

By the Riemann-Roch

n+mn=d+iD,).
Therefore, fixing n and d and maximizing the genus = is equivalent to
maximizing the index of speciality i(D,). By the preceding remark this is
the same as finding extremal multisecant planes, and what is suggested is
that we investigate how the multisecant plane {D,} varies with & P"".

) We are primarily interested in divisors of degree d < n — 1. For a generic D of this degree
i(D) = n — d. Consequently
dim|D| =0

for a generic such D, hence the source of the name special divisors.
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So, given any normal algebraic curve {: C — P" we define the Poincare
mapping ®)
F:P">Gd—-—n—-1r-1)
by
F(&) = {py(8),---,pal&)} -
This allows us to study our original algebraic curve by investigating a
mapping between two familiar spaces.

The understanding of F requires analyzing its infinitesimal structure. To
see what is involved, we denote by p;() a point on the tangent line to the
canonical curve at p;(£). Then the infinitesimal structure of the Poincaré
mapping is reflected in the linear space

[P (D). s DAEN; PLUED ... PAE)} = {D:E); Pi(E)}

spanned by the points p,(&) and p;(£). This clearly relates to the divisor
2D, and in fact
dim {p/(&); pi(&)} = 2d — = + i2D,).

Referring to the lemma (1.8) in § [ B 1,

3n — 1 £ dim|2D|
while
dim|2D, = 2d — = + i(2D;)

by the Riemann-Roch. These combine to yield
dim {p(&).pi(d)} < 2d — 3n,

with equality holding exactly when f(C) lies on 2™~ =22 quadrics. In
general, we may say that the infinitesimal structure of the Poincaré mapping
reflects the quadrics containing the curve f(C).

Suppose in particular that f: C — P" is an extremal algebraic curve of
degree d > 2n,n = 3. Let S be Castelnuoro’s ruled surface on which the
curve lies. We will prove that:

(1.12) The canonical mapping »:C — P"~' extends uniquely to a mapping

#:8 = P*~'. Consequently the canonical curve C lies on a rational surface
S, in P71,

Proof. From surface theory we recall the adjunction formula now in the
form K= K@ C):

®) In a somewhat different context this method was used by Poincaré in his paper Sur les
surfaces de translation et les fonctions Abeliennes, Bull. Soc. Math. France vol. 29 (1901) 61 — 86
on the Sophus Lie theorem. We introduce the Poincare mapping here because it will make
sense in a purely web-theoretic context, and in this form will play a crucial role in our discussions.
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where, as usual. Ky denotes the canonical bundle of a variety X. The
adjunction formula yields the exact sheaf sequence

0-Q%-QC)-» QL -0

where
Q3C) 2 DK R[C).

Since S is rational

h°(5.Q%) = 0 = h'(5,Q2).
and we obtain an isomorphism

H°(5,2*(C)) > HO(C,Q}).
If we think of the canonical curve x: C — P*~! as being given by the line
bundle K. — C together with its complete linear system. then we have
just shown that there is a unique line bundle J — S with J|C = K. and that
HO(S,(J)) > H°(C,D(K)) is an isomorphism.

The linear system | H°(S,D(J))] has no base points and gives a one-to-one
mapping § — P*~! along the curve C. By allowing C to vary on § we may
conclude that the above linear system is entirely base point free and gives
an embedding % :§ — P*~'. To carry this out it is only necessary to know
that C varies in a large linear system on S. and this is proved in Chapter IV
of [5]. Q.E.D.

We shall use this to study the Poincaré mapping associated to the extremal
algebraic curve. The notation

{Pi(é),...,f’d[f}} = Pd_"_i[é)

will be used in lieu of F() — this has the advantage of emphasizing not
only the linear space F(&), but also the set of d points p,(¢) generating this
multisecant P*~"~1(£). A first property is

(1.13) The points p;(¢) lie on a rational normal curve E, in P4~"~1(¢).

Proof. Of course we will take
E,=x(-5)

as the image under x:S — P*~! of a hyperplane section Z-S of Castel-
nuovo’s ruled surface. Clearly E, is rational, and we must prove that

degE; =d —n—1.
By the intersection properties derived in the previous section
deg(Ey) = [£-S](Ks ® [C])

=EK$+£'C
e ey = | Q.E.D.
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Now we shall prove that:

(1.14) Any two of the rational normal curves E; and E;. have (n — 1) points
in common. Consequently, as ¢ varies the co” rational normal curves E ¢ trace
out the surface S,, the image under the canonical mapping of Castelnuovo’s
ruled surface.

Proof. Two hyperplanes ¢ and & meet in a P'" 2 weleto = & &. Then
c-§=¢-¢-8

is just (n — 1) points, and under x these go into E;, E,. QE.D.
Note that as we move along the line?)

&=¢+1d
in P, the corresponding points
P 1(E @)
will contain the (n — 2)-fold secant P""%(0) spanned by the (n — 1) points

in E, - E,.

Summarizing, we are able to reconstruct Castelnuovo’s ruled surface in
the space P*~' of the canonical curve as being the locus of the rational
normal curves E, lying on the multisecant P=""Y(&)s containing a fixed
P""%(0) as o runs over the hyperplanes in &.

Actually, we have only proved that the intersection P4~ "~ L&) P 1)
contains the P"~*(c) spanned by the n — 1 points on E; ‘E,.. But the linear
space {p(¢),pi(£)} spanned by the points pi¢) of £-C and the tangent
lines to the canonical curve at these points is a P2¢- 37 containing P4~ "~ 1(¢)
and P"""Y(&). Since 2(d — n — 1) —(2d —3n) =n — 2 we have the
equality P1™""1(&)- P4="" (&) = Pr=2(g),

These special properties of the Poincaré map associated to an extremal
algebraic curve will be important when we prove our main result charac-
terizing the webs defined by such curves. These properties may all be
stated purely in terms of the web defined by an extremal curve. This will
be donne in §1I A ii., and in § III we shall reprove them in a purely web-
theoretic context.

[1. Webs and abelian equations

A. Basic definitions and examples

i. Definitions and the first non-trivial example. Our study will be local, and
we shall work in an open set U in R” or C* with coordinates denoted

®) This line is the pencil of hyperplanes with axis ¢ = £- &, We may identify the lines in
P** through ¢ with the dual space &* of all such P*~2s ¢ contained in £.
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X=X ) x,) in either case. The open set U may be thought of as a suf-
ficiently small neighborhood of some point x,, and it may be shrunk a
finite number of times during the discussion. We shall consider functions

u(x), differential forms w(x) = z f{x)dx,, etc. In the real case these will
=1

be real-valued and C*; in the complex case they will be holomorphic, i.e.,

convergent power series in the x,'s. Since no use will be made of the conjugate

variables X, or Cauchy-Riemann equations 0u/0%, = 0, it will not be

necessary to specify whether we are in the real or complex case.

Definition. 4 d-web is given by d codimension-one foliations in U. The leaves
of the foliations will be called the web hypersurfaces, and we shall always
assume that the tangent hyperplanes to the web hypersurfaces through a
point in U are in general position.

In general we may define a d-web of codimension k by requiring that
the leaves of the d foliations should be submanifolds of codimension k
whose tangent spaces are in general position. The study of such webs will
almost certainly be quite interesting, but in this paper we shall be concerned
exclusively with the codimension one case. Some remarks pertaining to
the higher codimension case are given in § 3 of the second author’s paper
On Abel's Differential Equations, to appear in Amer. J. Math. The Blaschke-
Bol book [1] contains an extensive discussion of the origins of the study
of webs and of the simplest special cases, such as a 3-web of curves in plane.
It will be our main reference.

In general we may say that the study of webs is concerned with the local
invariants of a set of d foliations in general position. Invariance here means
under the group of diffeomorphisms. As an example of an invariant, suppose
we are given a 4-web of curves in the plane. At each point p the tangent
lines to the four curves through p will define four points in the projectivized
tangent space P(T,) = P!, and the cross ratio of these is invariant under
diffeomorphisms.

One of the main interests in the theory is to find conditions under which
a web may be put in a standard local form. For example, suppose we make
the

Definition. A d-web is linear in case the web hypersurfaces are (pieces of )
lineur hyperplanes in R" or C". A web is linearizable in case it is equivalent
to a linear web under a change of coordinates.

The main result of this paper is to give sufficient conditions under which a
web is linearizable.
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We first remark that when d < n any d-web is linearizable. Indeed. a
general d-web may be given by the level sets
(2.1) u;(x) = constant (i = 1,...,d)
of functions u,(x). These defining functions are unique up to a change
2.2 Ui(x) = vi(u;(x))

where v,(u) is a function of a single variable with derivative tj(u) = 0. The
non-degeneracy condition

duj, A Aduy, #0 (k< n)

iy
implies that when d < n we may take u,.....u, as part of a coordinate
system in which the web is linear !°).

Consequently the first non-trivial case is when d = n + 1. Before
discussing this we remark that it is frequently convenient to give the i
foliation in our web by

(2.3) w'(x)=0
where @' is a 1-form satisfying the integrability condition
(2.4) do' A 0 =0.

Here the equation (2.3) means that the tangent hyperplane to the i'" web
hypersurface is defined by

(w'(x).&> =0. (€T,
The form ' is well-defined up to a change
@' =g
where ' is a non-zero function. Consequently the points
w'(x) e P(T})

in the projectivized cotangent spaces are well-defined: these will be
called the web normals. The non-degeneracy condition is just that
the web normals should be d points in general position in P(T*) = P" .

'%) This contrasts sharply with the higher codimension case. For example. suppose we have
a 2-web of codimension 2 in U C R*. Thru each point x there will pass two curves whose
normal spaces will have a line L, ¢ T* in common. Taking w(x) to be a 1-form generating
L,, the condition

dw A w=0

is independent of the choice of w and gives the obstruction to linearization.
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The relation between these two ways of defining a web is

(2.5) duy; = ¢'w'.
Now suppose that d = n + 1. There will be a linear relation
&+t 2" =0

among the web normals &'(x). The coefficients are al! non-zero, and this
is the unique such relation up to multiplication by non-zero homogeneity
factor. Setting ' = ;@' we thus have

(2.6) a)l + m”"‘l =0

where the @’ are unique up to
o'=p0f
with the same g.
The integrability condition (2.4) is equivalent to

do' =7 A @
where 7' is determined up to

o+ flof.
The form 7' corresponding to &' = g’ is

T =n' + dgo
Consequently the condition
There exist functions f' such that

(2.7 ' + flo' =n
is the same for all i

has intrinsic meaning. We will show that
(28) If n = 3 and if (2.7) is satisfied, then the web is linearizable.
Proof. We may assume that
do' =1 A &'
with the same = for all i. Taking exterior derivatives gives
0 =dn A o,

so that dr is a multiple of w' for all i. Since n > 3 it follows that dz = 0.
Locally we may find a function ¢ with dg = =, and then

o' =e o
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satisfies d@' = 0. If u; = jdf is a function with du; = &', then by (2.6)
uy(x) + - + u,, ;(x) = constant .

Taking u,,...,u, as a coordinate system, the web is equivalent to one
formed by n + 1 families of parallel hyperplanes. In particular, it is
linearizable. Q.E.D.

Definition. 4 web is octahedral'') in case it is equivalent to one formed by
(n + 1) families of parallel hyperplanes.

An octahedral web is linearizable, but not conversely. Since an octahedral
web is, in a suitable coordinate system, defined by

x, =constant o« =1,...,n
Xx; + - + x, = constant,

the converse of (2.8) is obvious. Thus:
(2.9) The condition (2.7) is equivalent to the (n + 1)-web being octahedral.

We now wish to reinterpret the conditions (2.6) and (2.7) for a web given
by {u(x) = constant}. If (2.7) is satisfied then we may multiply (2.6) by a
non-zero factor to have dw' = 0. It follows that

i (x) = fi(u(x))du;(x)
and (2.6) assumes the form

(2.11) Y. filui(x)duy(x) = 0.

Definition. For a general d-web an equation(2.11) is called an abelian equation.
The maximum number of linearly independent abelian equations is called
the rank r of the web.

In other words, an abelian equation is a relation among the web normals
du;(x) whose coefficients fi(u/(x)) are constant along the web h ypersurfaces.
The terminology abelian equation will be explained in the next section,
and in §II B we will prove that the rank satisfies

r =< n(d,n)

where n(d,n) is Castelnuovo’s bound on the genus of a non-degenerate
curve of degree d in P".

For the moment we note that the rank r = 0 in case d < n and that
r <1 ford =n + 1. Then (2.8) may be rephrased as:

"'} For n = 2 we say that the web is hexagonal. The terminology is explained in Blaschke-
Bol [1].
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(2.12) An (n + 1)-web of maximum rank r = 1 is linearizable'3).

The main theorem of this paper will be a generalization of this to d-webs
of maximal rank r = n(d.n) when d = 2n and n = 3. In fact, the result
will be similar to (2.9) in that a stronger assertion than just linearizability
will be proved. The problem of finding necessary and sufficient conditions
for just linearizability seems difficult — cf. Blaschke-Bol [1].

1. Webs defined by algebraic varieties; relation to Abel's theorem. We first
recall the
Principle of projective duality: The mapping

P (P

given by sending a point p € P" to the set P,” " of hyperplanes passing through
p is an isomorphism.

Now suppose that f:C — P" is a non-degenerate algebraic curve of
degree d. For simplicity of notation we identify C with its image f(C).
Since the curve is non-degenerate. a general hyperplane ¢ will meet C in d

points in general position in ¢ = P""!. We write
¢-C=p,(d) + - + pyll).

In a neighborhood U C P™ of such a general point we define a d-web by
letting the i'"™ web hypersurface passing through ¢ be P, (Fig. 3).

e

pi (%)

Fig. 3

Thus, a non-degenerate algebraic curve of degree d defines a linearizable
d-web in sufficiently small open sets U C P™ %),

For these webs defined by an algebraic curve the web normals have an
especially nice description. To give it we recall that: The projectivized

'3) Our discussion above pertained to the case n = 3. However, it is immediate that a 3-web
in the plane which satisfies one abelian equation (2.11) is linearizable.

1%) When d = n + 2, this web is not in general equivalent to one given by d families of
parallel hyperplanes. For example, suppose that n = 2 and d = 4. Then the four lines through
each point have a cross-ratio which is invariant under diffeomorphisms and which is a constant
in xe U for 4 families of parallel lines. It is. however, not constant for the web defined by a
quartic curve as may be seen by letting £ tend to a tangent line to the curve.
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cotangent space P(T;*) at a point £ e P™ is naturally identified with &

itself, 1.e.,
P(T}) =¢&.

Indeed, the projectivized tangent space is just the set of directions emanat-
ing from ¢, and this has a natural identification with the set of lines in
P™ passing through &. Such a line is a pencil |& + &'|,cp: of hyperplanes
containing £, and this pencil is uniquely determined by its axis € N & = P"" 2,
which is a hyperplane in £ = P"~'. Dualizing this natural identification

P(Ty) = ¢&*
gives (2.13).
Now a moment’s reflection shows that:

(2.14) Under the identification (2.13), the web normals w'(¢) e P(T) are just
the points p,(E) e & 13).

If it happens to be the case that the curve lies on a surface S in P”. then
the hyperplane section ¢ - S will be an algebraic curve D, C P(T;*) on which
the web normals w'(¢) will lie. This will be the case for Castelnuovo’s
extremal curves of degree d > 2n when n = 3.

We now wish to relate the classical Abel theorem to the abelian equations
(2.11) of a web defined by an algebraic curve. Although not strictly necessary
it will simplify our explanations if we assume that f: C — P" is a smooth
embedding — cf. [4] for a discussion of Abel’s theorem for possi bly singular
curves.

Suppose that C has genus = and let we H%(C,Q') be a holomorphic
differential. The indefinite integral

(2.15) u(p) =
Po

is defined modulo the periods of w and is called an abelian integral. A
special case of the classical form of Abel's theorem states that the abelian

sum ;
u(p(&)) + - + u(pyl&)) = const

associated to variable points of intersection of a hyperplane ¢ with the
curve C is constant. Differentiation of (2.15) gives the equivalent form

(2.16) @(p(&) +  + w(p(&) =0

of Abel’s theorem. Here w(p;(£)) denotes the pullback to U ¢ P™ of w under
the mapping & — p;(¢). Since the i'"® web hypersurface through ¢ defined by

1%) Referring to the preceding footnote, this identification makes it apparent that the cross-
ratio of the four points w'(¢) = p,(£) is not constant in £.
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the algebraic curve is obtained by holding p,(¢) fixed, we see that (2.16)
gives an abelian equation associated to the web. It is not difficult to verify
that any abelian equation arises in this manner, and consequently:

For the web defined by an algebraic curve C in P, the abelian equations are
given by the holomorphic differentials w via Abel's theorem in the form
(2.16). In particular, the rank of the web is equal to the genus of the curve.

In this case maximizing the rank of the d-web is the same as maximizing
the genus of the curve of fixed degree d, and this should help explain the
bound mentioned in the previous section.

There is also a relationship between the linearization of a web and the
classical converse to Abel’s theorem on a compact Riemann surface C.
Let M = C'¥ be the d-fold symmetric product of C. M is a smooth compact,
complex manifold of dimension d which we may think of as the set of
effective divisors

D=p, ++p; (pieC)

of degree d on C. The holomorphic differentials we H°(C,Q') induce
holomorphic differentials w e H°(M, Q") by

o(D) = o(p;) + - + w(p,),

and the mapping w — o is an isomorphism.
An integral variety U C M is a local complex-analytic subvariety of
M such that all
olU=0.
If x denotes a coordinate on U and D(x) = p,(x) + - + pa(x) the cor-
responding point in U, then we may define a d-web in U by requiring that
the i web hypersurface passing through x, is given by

pi(x) = pilx,) .

The web is non-degenerate in case each p,(x) varies in an open set on C,
and since
o(x) = o(p,(x)) + = + wlpy(x)) = 0

forany w e H°(C,Q") it has rank r = n(C). Linearizing this web is analogous
to proving that D(x) varies in a linear equivalence class on C, which is a
consequence of the classical converse to Abel’s theorem.

B. Bound on the rank of a web

i. Proof of the bound. We consider a d-web {u;(x) = constant} and recall
that the rank is the maximum number of linearly independent abelian
equations
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(2.11) Zﬁ{ui{x})dui(x} =0.

We set
m = [(d - 1)/(n — 1)]

and recall Castelnuovo’s number
a{d,n) = m[d — 1/2(m + 1)(n — 1) — 1]
giving the maximum genus of a non-degenerate curve of degree d in P".

The following bound was proved for n = 2,3 by Blaschke-Bol [1] and for
general n by Chern [3]:

(2.17) Propesition. The rank r of a d-web in n-space satisfies
r < n(d,n).

Webs of maximum rank r = n(d,n) exist by taking the web associated to an
extremal algebraic curve.

The method of proof, which will play a central role in this paper,
originated with Poincare. Briefly stated, the idea is to mimic for general
webs the construction of the canonical curve associated to an algebraic
curve in P". We shall now explain this. Suppose that C is a smooth non-
degenerate algebraic curve of degree d in P" and having genus 7. Consider
the canonical mapping

#:C— p1
defined by
#(p) = [@(p),....w(p)]

where ,,...,w, are a basis for the holomorphic differentials on the curve.
For a variable hyperplane £ € P* we write

€ C=pil)+ - + py&)
and set

Z(&) = x(p(2)

[@,(PiQ)), .., w0, (p())] -

The Z({) give d points in P*~ !, and Abel’s theorem in differential form
opy() + - + w(p ) =0, weH’(C,QY),

says that the Z,(¢) span at most a P~ "~ !(£) in P*~! ') A basic observation

I

'®) We also encountered this statement in the discussion of the Riemann-Roch theorem in
§1 Bi. This suggests a link between Abel's theorem and the Riemann-Roch theorem. We shall
attempt to clarily this point at the end of this section.

Jahresbericht d. Deutschen Mathem.-Vereinigung 80, 1. Abt., Heft 1/2 4
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is that since Z,() depends only on the i'* web hypersurface passing through
&, the Poincaré mapping

S G (<

can be expressed purely in terms of the web defined by the given algebraic
curve.
In general, suppose that we have r independent abelian equations

(2.18) Zf,-‘i(uf(x))dui(x) =0 (2=1,....n).

We may assume that the coefficient matrix has no column ‘(f,....f)
identically zero since otherwise we would be reduced to a (d — 1)-web.
If we set

(2.19) Ziix) = [fi' (). [ (X))

Then the points Z,(x) are intrinsically defined by the web and lie ina P*™"*
in P’~'. Indeed, under a change
u; = rilux)

of defining function for the i** hypersurface
Ji () = rilu(0) 7 £ (wi(x)

so that the homogeneous coordinate vector (2.19) has intrinsic meaning.
Setting u;, = Cu,/0x, we may rewrite the abelian equations (2.18) as

(2.20) Y Zi(x)u,(x) = 0

where the coefficient matrix (u,) = 0(u,,...,u,)/0(x,,...,x,) has rank n.
Consequently the points span at mosta P4~ "1,

Now we set out to bound the rank of a general web. The abelian equations
(2.18) impose at least n independent conditions on the points Z/(x) in
P™~'. We shall assume that these are all the conditions, and at the end of
the proof it will be apparent that if there were more conditions then the
estimate on the rank would be improved !7).

We note that as x varies the points Z.(x) = Z,(u;(x)) will trace out a
piece of an arc C; in P~ '. Moreover, these arcs span P*~ ! since otherwise
the abelian equations (2.18) would not be independent. Each x determines
d points, one Z,(x) on each arc C; — we may say that thereis a correspondence
x = Z,(x),....Z,(x) — where the linear span

{Z,(x),.... 2,0} = P77 1(x).

'7) This is the web-theoretic analogue of the observation that the curves of maximal genus
of fixed degree d in P" are necessarily normal: ic.. the linear system of hyperplane sections is
complete.
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The mapping x = {Z,(x),...,Z,(x)} is the Poincaré mapping for the abelian
equations (2.18) associated to a general web. Here is an attempt at the
picture for n = 2, d = 4, r = 3 (Fig. 4).

ZIMPZ,(X] {22 (x) /ZJ (x] /Zg(x]
\ Vo \

c? CZ CJ C 4

Fig. 4

We denote by Zi(x) a point on the tangent line to C;at Z(x), by Z!(x) a
point such that {Z;(x), Zi(x), Z{(x)} is the osculating 2-plane to C; at Z,(x),
and so forth. In general we let

PYO(x) = {Z,(x),....Z4(x); Z(x); ..., Z(x); -.-; ZP(x), .., ZP(x)}
= {Z/x): ZY)si; ZOGD)). = Lagd
denote the span in P~ ! of the k™ osculating spaces to the arcs C, at cor-
responding points Z;(x). As before, the rank will turn out to be maximized
when the dimensions N (k) are maximal subject to the conditions obtained

by successively differentiating (2.20), and so we assume this to be the case.
There are obvious inclusions

PYOGHC PYRRIC I P2

Lemma: [f N(I) = N(I + 1) for some [, then N(l) = r — 1.
Proof. We may assume that 0u;/0x, # 0. With the notations
fEO(w) = d*fHy/du*,

we have

0Z{9(x)/0x, = [Ofi" P (ui(x))/0%,s, ..., Of P (uy(x))/0x,]
= [V * Du(x), .. 7% D(wi(x))]
= Zk+ (x).
If N(l) = N(I + 1) then Z{'* V(x) lies in P¥"(x), and consequently for any
Z(x) e P*"(x) the derivative
0Z(x)/ox, € PV(x).

This says that the subspace P¥"(x) is a constant independent of x. Since
this fixed subspace contains all arcs C; we conclude that N(I) = r — 1.
Q.ED.

4
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Now to the proof of the bound (2.17). We break the integers 1,...,d — 1
up into m = [(d — 1)/(n — 1)] disjoint subsets of n — 1 elements each
plus a remainder labelled as follows:

——  —t—
1,..n=1;n..2n=2;...;(m— 1)(n—1)+1,...,m{n—1);m{n—1)+1,..‘,d—1
Im:l
T 2 -

{

We will inductively estimate the dimensions N(k) using the following
device: For any k < m the functions

Uyin—1)+ 10Ukt 1yin— 1) Ha
form a coordinate system in which
(2.21) Oty n-1)+1/0Ug = = Btd 4 1yn - 1/0uy; =0.

We will successively differentiate the abelian equation (2.20) using (2.21).
For the first step we take (u,,...,u,_,U,) as coordinate system, and then
by (2.21) for a = d the equation (2.20) becomes

(2.22) Z,0u,/0uy + = + ZyOug_y/Ouy + Z; = 0.
Thus Z, is a linear combination of Z,,...,Z,_,, and using the evident
symmetry of the indices

P = {Z(x):iely} .

Next, choose (u,,...,us,_2,4,) as coordinate system and apply 0/0u, to
(2.22) to obtain

Caai Lo i E g‘,_l"z;,_l + Z, = 0 modulo P¥(x) .

Again, by symmetry of the inclir:esl,fJI
PYV(x) = {Z(x):ie ]} @ P?(x)

where “@®” denotes the linear span of the two subspaces of P"~ . Iterating
the argument gives

(2.23) P¥O(x) = {Z¥(x):ie I} @ P~ Y(x)
where k < m — 1 and

R24) N(k)= Nk = 1) +(d — 1 — (k + 1)(n— 1)), N(=1)= —1.
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The first two dimensions are

N)=d—n-1
(23} {N(2) =2d — 3n.

At the last step
PY"™(x) = {Z{" " V(x)ie ], } @ PMmD(x),
so that in particular
Ze7) = T 0,2 Vx) modulo P 3(x).
Jj€lm-

Choose (y;:i€1,,_,,u,) as part of a coordinate system and apply 0/0u, to
this relation to obtain

Z{(x) = 0 modulo P¥™~ Y)(x)
ie.,
N(m) = N(m — 1).
By the lemma

r—l=N[m—1}=m(d—1)—ik{n—1}—1
k=1

or
r=md-—1)-12mm + )(n — 1) = md — 12(m + 1)(n — 1) — 1]

as desired. Q.E.D.

We note the similarity between the argument just given and the algebro-
geometric proof bounding the genus of a non-degenerate curve of degree
din P". Both relied on a combinatorial argument decomposing the integers
1,....d into m = [(d — 1)/(n — 1)] disjoint subsets. and in both instances
the k'™ step had to do with the k™ osculating curves. On the other hand.
whereas Castelnuovo’s argument was based on the Riemann-Roch the
web-theoretic proof relied on Abel's theorem. To explain the connection
we shall prove:

For an effective divisor D on a compact Riemann surface C. Abel's theorem
(2.16) implies the inequality

dim|D| = degD — n + i(D)
in the Riemann-Roch theorem'8).
We shall assume that C is non-hyperelliptic and that the complete linear

system |D| gives a projective embedding C — P" (n = dim|D|). This case

'®) This inequality is all that is needed to establish Castelnuovo’s bound. The converse of
Abel's theorem yields the opposite inequality, and hence the full Riemann-Roch.
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will cover the comparison we are trying to draw between the two proofs
of Castelnuovo’s bound and the argument we are about to give may be
modified to cover the general situation. For a hyperplane & € P™ we write

¢-C=p,(Q)+ + psl)e|D]|
and set

Z,(&) = =(pi&)

as above. Then by Abel’s theorem (2.16) the Z,(£) span at most a P4~ "' (&)
in the space P"”! of the canonical curve. On the other hand
dim{Z,(¢),...,Z,¢)} = = — 1 — i(D). Combining we obtain

d—n—-1Zn-1-iD)
which implies (2.26).

Finally, if we go back to the proof of (2.17) we see that the first two steps
(2.25) remain valid under the assumption

r > u(d.n)

for some u(d, n) strictly less than Castelnuovo’s number n(d, n). For example,
when n = 3 one finds (2.25) under the assumption

r> (d* —3d)6 + 1

in agreement with the bound obtained by Joe Harris for curves in P* which
we mentioned at the end of § I Bi. We have not determined the best exact
value for u(d,n), but the asymptotic estimates are

r < d?/2(n — 1) for any d-web in n-space

r > d*/3(n — 1) = the bound (2.25)

ii. Statement and discussion of the main theorem
Definition. A web has maximum rank in case equality holds in (2.17).

As mentioned before webs of maximum rank may be found in either
the real or complex case, by taking the web in U C P™ associated to an
extremal algebraic curve C C P". By construction these webs are linear.
The principal result of this paper is a converse

(2.27) Linearization theorem. A d-web in n-space of maximal rank r = n(d.n)
is linearizable provided that

d=n+12n forany n'®
d>2n fornz=3

') The index restrictions will turn out to be sharp. Cf. the discussion following Corollary
(2.28).

396 SELECTED WORKS WITH COMMENTARY



Abel’s Theorem and Webs 55

Combining this with the main theorem proved in [4]2°) we deduce the

(2.28) Corollary. Under the conditions in the main theorem, the given web
is equivalent to one defined by an extremal algebraic curve C.

We emphasize that there are two steps in constructing the algebraic
curve C. The deeper local step consists of linearizing the web; the glob-
alization of a linear web is of a different and more analytic character.

Regarding the index restrictions in the main theorem, recall that

ndn)=d—n for n<d=<2n-1.

The case d = n + 1 where n(d,n) = 1 has been taken up in § 11 Ai and
the main theorem proved there — cf (2.12). If. on the other hand
n+ 2 =d = 2n — 1, we may construct non-linearizable d-webs of maximal
rank as follows: Define the web by level sets {u;(x) = constant} with

U = Xx,

by
U =Up (X)) + -+ U, ..(x,)

(2.29)

;,:M, =U, 1(x)) + -+ U, (x)

where the U, .(x,) (1 Ss<r=d — n, 1 £ 2 < n) are functions of a single
variable. A typical n-fold Jacobian is

dugyy A Aduy A duy,y A A du,,,
Ui Ui

=+ : du; A A du
Uka = Uk

involving the Wronskians of the functions U, ,. For generic choice of such
functions the web defined by the functions (2.29) will therefore be non-
degenerate. Again, because Wronskians appear as coefficient matrices the
abelian equations

du,,i — Y U, (u)du, =0 (s=1,....r)

will generically be linearly independent so that the web has maximal rank
r =d — n. If this web were linearizable, then by the Sophus Lie theorem
(cf. footnote 20) there would be an algebraic curve C in P” of degree n + r
defining an equivalent web. This curve depends on only a finite number

%) The result referred to implies that a linear d-web of rank r = 1 is defined by an algebraic
curve C of degree d. We shall call this the generalized Sophus Lie theorem,
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of constants (Chow variety), and moreover since any local diffeomorphigpl/""
preserving a linear d-web for d > n + 1 is a projective transformatiofi we
see again that a general web (2.29) is not linearizable.

A further remark is that the proof of the linearization theorem will
primarily depend on showing that under the assumptions

r = n(d,n)
d > 2n

the web normals lie on a rational normal curve in the projectivized cotangent
spaces. This follows from (2.25) and will be proved in §III Ai; an outline
of how this fits into the overall proof is discussed in § III A ii. On the other
hand, as remarked at the end of the preceding section, the step (2.25) neces-
sary to prove that the web normals lie on a rational normal curve will
still be true provided d > 2n and the rank

r > pld,n).

The upshot is that, by an posteriori analysis of the proof, our linearization
theorem may be extended to d-webs (d > 2n) whose rank

r > u(d,n),
where
u(d,3) = (d* — 3d)j6 + 1,
and in general
uld,n) ~ d*/3(n — 1)
is strictly less than Castelnuovo’s number n(d,n) ~ d*/2(n — 1).
Now we shall prove the linearization theorem in the case

d=2nn{dn)=n+1
corresponding to the canonical curve. The Poincaré map is
X > {Z(x),.... Zyu(x)} = P"7H(x) C P,
which is consequently an equidimensional map
F:U-P”.

It 1s easy to check that as a consequence of the non-degeneracy F has non-
zero Jacobian, and since the i'® web hypersurface is defined by

Z,(x) = constant,
this hypersurface corresponds under F to the hyperplane

P;‘I“] e(P")* 21).

1) The notation is explained in the beginning of § I1 A ii where projective duality is formally
stated.
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Consequently, the Poincaré mapping F serves to linearize the web, and
the theorem is proved in this case.
When d > 2n,n 2 3 the Poincaré mapping

x = {Z(x),...,Z,x)} = PimmYx)c prt
associated to our web of maximal rank r = n(d,n) will induce
F:U-Gd—-n—-1,r-1).

The Poincaré space P'~! carries a natural linear structure, but F is no
longer equidimensional and so is of a more complicated nature.

In fact, suppose for each point Ze P*"! we let G,(d —n — 1,r — 1) be
the Schubert cycle in G(d — n — 1.r — 1) of all P4~ 1*g passing through Z.
Then

dimG(d —n — 1,r — N=d—-n)(r—d+n
dimG,d-n—-1r—-1)=d-n—-1)r—d+ n)

and consequently
codimGyd —n—1.r—1)=r —d +n.

Now the i'® web hypersurface passing through xe U is. as in the equi-
dimensional case,
F Y Gzmd —n — 1.r — 1)).

If F(U) and Gy, (d—n — 1.r — 1) are in general position then they
should meet in a variety of dimension d — r. Since for large d.
r = n(d,n) ~ d*/2(n — 1) this number will eventually be negative. In fact
the right number

d—r=n-1

occurs exactly when d = 2n so that r = n + 1 and we are in the case of
the canonical curve. As a result we see that when d > 2n the Poincaré
mapping F is highly non-generic, and we are in a situation somewhat analogous
to an overdetermined system of equations for which the abelian relations
(2.20) serve as compatibility conditions.

iii. Properties of webs defined by extremal algebraic curres. From now on
we will assume thatd > 2nand n 2 3. Let C C P" be an extremal algebraic
curve of degree d and genus © = n(d.n). We denote by C, C P*"! the
canonical curve, and recall that the original curve C defined a d-web of
maximal rank = in suitable open sets U C P™ according to the prescription:
If. for a hyperplane & we write

E-C=pi(E) + - + ps&),
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then the i'" web hypersurface passing through ¢ is the P, 3 of hyperplanes
¢" with pi(&) = pilE). We restate what is perhaps the basic underlying
principle in our study of maximal rank webs: Any property of the curve C
in P" or of its canonical image C, in P*~! which is expressible purely in
terms of the web defined by C may be expected to hold for a general d-web
of maximal rank. For example, the Poincaré mapping given by

= 1{Z,(@)..... 20} = P "1 Cc P

makes sense for a general web of maximal rank. Moreover, the Poincare
space P*~' and projectivized cotangent spaces P(T;*) have intrinsic linear
structures, even though this will not be true of the manifold U in which a
general web is given.

We shall now list some properties of webs defined by extremal algebraic
curves, and then the proof of our main theorem will proceed by showing
that these same properties hold for general webs of maximal rank and may
be used to interrelate the intrinsic linear structures in the Poincare spaces
and projeciivized cotangent spaces in a sufficiently tight manner as to
eventually yield the linearization theorem. These properties were either
proved or are consequences of the discussion in §1d i

The first property of the web defined by C is (cf. (2.14))

(2.30) The web-normals w'(¢) € P(T*) lie on a rational normal curve D;.

We shall be able to prove that, in general, a maximal rank web defines a
field of rational normal curves D, in the projectivized cotangent spaces
P(T*(U)), and that the web normals w'(x) give completely integrable
cross-sections of this structure.

The second property is (cf. (1.13))

(2.31) The points Z,(&) lie on a rational normal curve E, in PIREE), The
curves D, and E, are in projective correspondence in such a way that w'(&)
corresponds to Z ().

Again this property will be proved to remain valid for a general web of
maximal rank.

The third property (cf. (1.14) and the end of §1diii) refines the link
established by the projectivity D; A E; in (2.31). In fact it tells us how to
define the straight lines in the linear structure on U C P™ purely in terms
of the web associated to our given curve C.

(2.32) A tangent direction o € P(T,) gives a hyperplane P"~%(c) in P(T).
This hyperplane meets D, inn — 1 points, and the corresponding n — 1 points
on E, span a secant plane P"~*(¢,0) to C,. In fact P*~*(Z,0) is defined by the
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condition (cf. the explanation given in the list of notations)
(2.33) dZ/dae P! ""Y &)L Ze P "Y().

The straight line through £ € U in the direction o is given by all & such that
P*~"" (&) contains P"~%(¢,0).

For a general web of maximal rank we will be able to show that the
correspondence D, A E, takes the hyperplanes P*~%(g) in P(T}*) bijectively
onto the (n — 2)-fold secants P"~%(x,0) to the rational normal curve E, in
P*~""'(x), and moreover this P"~?(x.6) will be defined by the equation

dZ/doe P " (x)
analogous to (2.33). The condition
P ""'(x') contains P" %(x,0)

will then be proved to define a path x(t) in U passing through x and with
tangent direction ¢ there. In this way the maximal rank web will induce
a path geometry in U such that the linearization theorem will be true if,
and only if, there is a change of coordinates in U transforming the paths
into straight lines.

Finally to show that there is such a change of coordinates, we will use the
property for general webs of maximal rank analogous to the following
property of webs defined on extremal algebraic curve C in P":

(2.34) Consider Custelnuoro’s ruled surface S in P" on which the curve C lies.
For a hyperplane ¢ the intersection ¢ - S is the curve D, under the identification
¢ = P(TF). Consequently. for each point pei-S there is a hypersurface
P;~ ' in U passing through & and whose normal corresponds to p under the
above identification. In other words, the original web can be embedded in a
larger family of x* hypersurfuces defined by the condition that their normals
should lie on the field of rational normal curves D, C P(T*). Going over to
the Poincaré space, if we D, corresponds 10 Z € E,, then the hypersurface
passing through ¢ and with normal o is given by &' satisfying

(2.35) ZePi ),

Again we shall prove the analogous property for general webs of maximal
rank. The oc? hypersurfaces will turn out to be totally geodesic for the
path geometry defined by (2.33), and the existence of this large number of
totally geodesic hypersurfaces will imply projective flatness.

At this juncture it is likely that the complexity of the structure of webs
arising from extremal algebraic curves is confusing, and perhaps the follow-
ing correspondence table will help clarify the situation.
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(1) given space U +— Poincaré space P*~!

2) point Ee U +«— subspace P""" () in P'!

) {web normals]  fpoints Z;(¢) with }
w'(§) e P(T) {Z1(0).....Zao(0)} = P77 1(8)

)

rational normal rational normal curve
—
curve D, C P(T¥) E,c PP "9

Under the projectivity D, & E, the web normals w'(£) correspond to the
Z(&)

) tangent direction secant plane
—
o€ P(T) P""2(&,0) to E,

Here, o defines a hyperplane in P(T) which meets D, in n — 1 points,
and the secant plane P"~%(¢, g) is spanned by the corresponding points on E,

(6) line in U through set of &' such that
—3
¢ and with tangent ¢ P*~3E gy c PR

We may think of this condition as defining a path geometry in U

set of £’ satisfying

ZeP Q)
where Z € E, corresponds
to w under D, X E,

totally geodesic
(7) hypersurface through ¢
and with normal w € D,

Provided we replace the word “line” with “path” in (6), all the statements
in this dictionary make sense for general webs of maximal rank, and begin-
ning in the next section we shall prove them in this context. Once this has
been done the main theorem will follow from some rather general results
about projective differential geometry.

IIL. Path geometry associated to maximal rank webs

A. Abelian equations and rational normal curves

1. Properties of the Poincaré map for maximal rank webs. Let {u;(x) = con-
stant} define a d-web of maximal rank rin an open set U in n-space. Suppose
that

(3 2 ) du) =0 (4 =1,....0)

give a basis for the abelian equations associated to the web, and define

Zy(x) = [f (), ... [ (u(x)] e P~ .
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As x varies the points Z;(x) trace out an arc C; in P'~'. Each x& U has
associated to it points Z;(x) € C; — one may think of the assignment

X = Z(x),...,Z,(x)

as a correspondence. We denote by Zi(x) a point on the tangent line to
C; at Z,(x). From (2.25) we have:

If d 2 n + 1 then the Z,(x) span a P*"""(x) in P""'; If d = 2n then the
Z(x) and Z{(x) together span a P**~*"(x) in P*~ !,

We shall abbreviate these statements by writing
(3.2) {Z,(x),..;Z4(x)} = P4~ 1(x)
(3.3) {Zi(x),....Z(x); Z'\(x),...,Z4(x)} = P2~3n(x)

The mapping (3.2)
F:U-Gd-n—-1r-1)

is the Poincaré mapping. We will see that (3.3) gives the infinitesimal structure
of F.

The purpose of the present section is to prove analogues for general
d-webs of maximal rank of the properties (2.30)—(2.34) of the webs defined
by extremal algebraic curves. We shall begin with the two statements:

(3.4) Under the assumption d > 2n,n = 3 the web normals w'(x) lie on a
unique rational curve D, in the projectivized cotangent space P(T*) = P"~ 1.

(3.5) With the same assumptions as in (3.4), the points Z,(x) lie on a rational
normal curve E, in P°"""'(x). There is a projectivity

D RE

X X

taking w'(x) to Z(x).
Proof of (3.4): Using the notations
Uy = O0u;/0X,, u;p = 0%u,/0x,0x,
the abelian equations (3.1) may be written
(3.6) ZZ({x)uid(x) =0 a=1,..,n.

Moreover, any linear relation among the Z (x) is a combination of the equations
(3.6). Applying 8/0x, to (3.6) gives

3.7 Z Zi(x) u;(x)uip(x) + Z Zi(xX)uzp(x) = 0.
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Taken together, (3.6) and (3.7) yield
n+ n(n + 1);2 = n(n + 3)/2

relations among the Z,(x) and Z)(x). According to (3.3) only 3n — 1 of
these can be independent, and so there must be

nin+3)2—-3Bn—-1)=(n—-1)n—-2),2
relations among the relations. This implies that there will be equations

(3.8) Y kP u(x)uy(x) = 0
2p

(3.9) ¥ kP ugg(x) = 3 m7ug(x)
2, 7

where k** = kB* varies over an (n — 1)(n — 2).2-dimensional linear space
of quadrics.
The first equation (3.8) says that the web normals

@' (x) = [u;(x),....u(x)] € P(T)

lie on o~ D=2/2 independent quadrics in P(T*) = P"~'. Since the
w'(x) are in general position, if

d>2(n—-1)+2=2n

then (1.4) implies that there is a unique rational normal curve D, passing
through the @'(x). Q.E.D. for (3.4).
We note that the restrictions d > 2n,n = 3 appear naturally in this proof.
Also, (3.9) may be interpreted as stating that the defining functions u;(x)
for the web satisfy inhomogenous Laplace equations relative to the quadrics
containing the web normals. This will be of crucial importance in our later
work.

Proofof (3.5): Choose u,,...,u, as coordinate system. Then D, is a rational
normal curve passing through the vertices [1,0,...,0],...,[0,...,0,1] of the
coordinate simplex in P"~!'. Using & = [£,,....¢,] as homogeneous co-
ordinates, according to the proof of (1.1) D, is given parametrically by

(3.10) of,=afit—b) 2=1,...n

where g is 2 homogeneity factor and a,,b, are functions of x. The n points
= b, correspond to the vertices w°.
Since the web normals lie on D,

oiuy, = afit; — b)) x2=1...n
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fori=1,....d We set w,, = g,u;, and write the abelian equations (3.6) in
the form

d
(3.11) Z,+ Y Zw,=0 a=1,..n.
s=n+1

This shows that Z, . ,(x),...,Z,(x) give a basis for P*~""!(x). In terms of
the homogeneous coordinates corresponding to this basis, (3.10) and (3.11)
imply that

Z¢=[1/(tn+1 _bu):"'sl/(ld'_bﬂ)] ox = 1,‘..,ﬂ.

Consequently, the points Z,(x) all lie on the rational normal curve E.in
P?~""(x) given parametrically by

b—[1/tys, — b),....,1/(t; — b)].

The rational normal curves D, and E, have respective linear parameters
t and b. Setting b = t gives a projectivity D, A E_ under which the cor-
responding points are

t=b, o w

b=b,«2Z2, 1Za=<n
t=1t, «ow

b=t,«+Z n+1=s=<d.

Hence the projectivity takes o' to Z;. Q.E.D. for (3.5).

When n = 2 the Z(x) are d points on a P4~ 3(x), and these will always
lie on a unique rational curve. Consequently this part of (3.5) remains
valid for webs in the plane but imposes no restriction on the Z,.

Next we shall prove an analogue of part of (2.32):

(3.12) For a tangent direction o € P(T)), the set of Ze P*™""1(x) satisfying
(3.13) dZ/doce P " (x)

constitutes a P"~%(x,0) ?2). This P"~?*(x,0) is obtained by first considering
o as a hyperplane in P(T}) meeting D, in n — 1 points and then taking the
(n — 2)-fold secant plane spanned by the corresponding points on E,.

Proof. We may assume that
Zo1(x),...,Z4(x) span P! " (x).
) Geometrically, P"~?(x,q) is the intersection of P "~ '(x) with the infinitely nearly

linear space P " !(x + £o). The notation (3.13) is explained in index of notations in the

introduction.
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On account of (3.3) there will be (n — 1) independent relations among
the points Z;(x)(n + 1 < 5 < d). We write these as

(3.14) Y A,.Z, = 0 modulo P4—"~1 p=1,...,n-1).
A general point Z in P*~""! s written
Z=%p.2Z,.
and H
(3.15) dZ/de =} p.du /de Z. modulo P4~ "-1

where we are thinking of ¢ as a non-zero tangent vector and have set
du,/do = {du,,q). Comparing (3.14) and (3.15), the condition (3.13) is
equivalent to
(3.16) pdu,do = Z €A

r=1
This shows that the solutions to (3.13) constitute a P"~2(x,0) which is the
image of a standard P*~? with homogeneous coordinates {01506 5]

under a linear ma
p P"_Z-*Pﬂ_"_lfx}

as prescribed in (3.16)23).

We now want to prove that this P""?(x,0) is given by the (n — 2)-fold
secant plane description. If w lies on the rational normal curve D, in P(T}*),
then the tangent directions ¢ satisfying

{w,6) =0

constitute a P"~*(w)in P(T,) = P"~*. Let Gi>---,0,_ be a basis for P"~2(q),
and consider the intersection !

(3.17) P 3(x.0,)nn PP 3 x4

in P“"""!(x). The crucial observation is that if (3.12) is to be true, then this
intersection must be the point Z e E, which corresponds to w under the pro-
Jectivity D, X E_. We shall prove — somewhat indirectly — that this is the
case.

Now suppose that w is any point in P(T*). If o,, ..., »—1 are a basis for
P"~%(w), we shall call a point Z lying on the intersection (3.17) a knotpoint.
For example in case w = w' is a web normal, then for any vector ¢ which
is tangent to the i web hypersurface

dZ;/deo = Zdu,/de = 0,

#3) If du,’do = 0 then we should take p, = 1 in (3.16); the Justification for this will emerge
below. The clearest picture of the infinitely near P*~%(x,q) is obtained by using moving
frames — cf. the discussion at the end of §111 Bi, especially equations (3.57) and (3.58).
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and consequently Z; is a knotpoint. In general, suppose we can prove that:

(3.18) The set of all knotpoints — i.e., points lying on (n — 1)-fold inter-
sections (3.17) — is a rational normal curve in P4~"~(x).

Then we may complete the proof of (3.12) as follows: Since it contains the
Z(x), by uniqueness the rational normal curve of all knotpoints must be
E,. Moreover, since we have just proved the knotpoint corresponding
to the web normal ' is Z,, it follows that the projectivity

D % E,
takes the normal curve D, bijectively onto the set of knotpoints. A general
tangent direction ¢ € P(T,) defines a hyperplane in P(T¥) meeting D_ in
(n — 1) points w,(0)....,w,-(0), and what we have just said proves that
P""?(x,0) is the (n — 2)-fold secant plane spanned by the knotpoints
Z(w(9), ..., Z(w, - ().

So all that remains is to prove (3.18). We set

du,/de = Y u,0"
Oy = I/P,
and rewrite (3.16) in the form

(3.19) Yu,o'+ Y c*rA,0=0 s=n+1,..4d.
a H

We consider (3.19) as a set of (d — n) homogeneous linear equations in the

2n — 1 unknowns (a',..., ¢";c',...,c" '), The condition that

Z=)p2Z,

be a knotpoint is that (3.19) should have (n — 1) linearly independent
solutions. If we consider the coefficient matrix

O —— e =
(“u+ G o At Qi * Ap 410041 )

Ugy Uy, Ay 204 rAn 1404

as a linear map from R*"~! to R*"", the condition is that the image have
dimension <n + 1. Since the first n columns in this matrix are linearly
independent, this in turn is equivalent to saying that the last n — 1 columns
— 1e., those with the bracket over them — be linear combinations of the
first n columns. Equivalently, any (n + 1) x (n + 1) minor

Hi':.: My Au.i: @;,
(3.20) : =0.
uin‘l,: a uinol.u A.ﬂ-l'rmlgl'nu
Jahresbericht d. D hen Mathem.-Vereini g 80, 1. Abt., Heft 1/2 5
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The equations (3.20) are linear in the p., and so may be given parametrically
by o, = g,(t) where t = (t,....,t,) are linear parameters. It is easy to see
thatsinceany n x nminor from the Jacobian matrix 0(u, , 4,...,45)/C(x;,...,X,)
is non-zero, the number of linear parameters is at most one. On the other
hand, it must be at least one since we have already found the d knotpoints
Z;. It follows that

o = _(as'[ + ﬁs)v
and consequently
Z(t) = 12t + B)Z,

gives a parametric representation of the knotpoints. It is now clear that
these constitute a rational normal curve. Q.E.D. for (3.12).

The proof of (3.18) is similar to the argument in pages 266—272 in
Blaschke-Bol [1], from which the word knotpoint was taken. We observe
that the projectivity

D.=® E,
is characterized by: A point @ € D, C P(T*) correspondsto Ze E, C P*™""}(x)
if and only if
dZ;dee P " (x)

for all ¢ satisfying {w.c> = 0.
i1. Strategy of the proof.
Definition. A path geometry is the system of curves defined by 2™ order
differential equations
(3.21) dxp/de(d®x,’de? + ) I'i#(dx,(1)/dt)(dx,/dt))
' = dx,/dt(d®xy/dt* + Y T'i*(dx,(1)/de)(dx,(t)/dr)).

Through each point x, and in each tangent direction o € P(T,,) there is a
unique solution curve x(t) of the system (3.21) having the initial data
x(0) = x, and x'(0) = o in P(T,)) — these are the paths. It is important
to note that there is no distinguished parameter, such as arc length, for
the paths. In fact, the form of the equations (3.21) is invariant under arbitrary
changes of coordinates

{322) y: = ya(xl'!""xn)

and changes of parameter

(3.23) s = s(1).
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This is not true of the corresponding system of homogeneous equations.

Definition. The path geometry is flat in case there is a change of coordinates
(3.22) and change of parameter (3.23) transforming (3.21) into the differential

equations
d?y,/ds* =0

characteristic of straight lines in Euclidean space.

In section IV we shall discuss how a path geometry leads to an intrinsically
defined projective connection whose associated projective curvature tensor
is zero if and only if the path geometry is flat. The situation is somewhat
analogous to the manner in which a Riemannian metric leads to an intrinsic
Riemannian connection whose curvature is zero exactly when the original
structure is equivalent to the standard Euclidean one. The difference is
that the flat model space is P" with the projective group operating in the
first case and R" with the Euclidean group in the second.

Now if our linearization theorem is true then, according to (2.33) and
the analogous property (3.12) for general webs of maximal rank, the straight
line through x, and in the direction ¢ is characterized as

(3.24) P P

Equivalently, as we move along x(t) the secant plane P"~?(x(t), x'(1)) should
be the fixed P"~%(x,,0) where x(0) = x,.x'(0) = g, ie., x(t) is a solution
curve of the differential equation

(3.25) d/de(P"~2(x(1),x'(1))) C P"~2(x(1),x'(1)).

Now (3.25) may be written out as a system of 2™ order equations which,
for the same reasons as those discussed at the end of § I Bii, is over-
determined. The main step in our proof of the linearization theorem will
be to show that the compatibility conditions in (3.25) are automatically
satisfied, i.e., that:

(3.26) The equations (3.25) define a path geometry (3.21).

Once (3.26) has been established, the proof of the main theorem is reduced
to showing that the associated projective connection is flat. To explain
how this is done, we need the

Definition. A totally geodesic submanifold S for a path geometry given by
(3.21) is characterized by the property that a path x(t) lies entirely in S in
" case, for some ty, x(to)€ S and x'(t,) is tangent to S.

5
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It is a classical theorem that if n > 3, and if for every point x and normal
we P(T?}) there is a totally geodesic hypersurface passing through x with
normal o, then the path geometry is flat. We are able to refine this to

(3.27) Given a path geometry (3.21) and field D, C P(T}) of rational normal
curves, if for every x and we P(T}¥) there is a totally geodesic hyper-
surface passing through x and with normal w, then the path geometry is flat.

Assuming (3.27) the proof of the main theorem is completed as follows:
According to (3.5) and (3.12) a point w € D, corresponds to Z e P4~""!(x)
characterized by (c.f. the end of § ITI A (i)).

(3.28) dZ/dce P! " Y(x) = {w,6) = 0.

The equations {w,o) = 0 define a P"~*(w) in P(T;), and the paths emanating
from x and with tangent direction o€ P" %(w) fill out a hypersurface
passing through x and with normal w. Points x’ in this hypersurface satisfy
(cf. (2.39))

(3.29) Zeprrix).

On the other hand, the conditions (3.29) can define at most a hypersurface
in U since not all P*~"~!(x)’s pass through any one point of P"~!. Con-
sequently, (3.29) defines a totally geodesic hypersurface for our path geo-
metry, and in this way we have embedded our original web in a larger
family of co® hypersurfaces whose normals fill out the rational normal
curves D, C P(T}*). Our result then follows from (3.27).

One way of summarizing the proof is this: The maximal rank web defines
a field of rational normal curves D, in the projectivized cotangent spaces
P(TY). We want to construct Castelnuovo’s ruled surface S, and the D, con-
stitute the disjoint union of the hyperplane sections of S. So, in order to find
the identifications necessary to obtain S we go to the Poincaré space P* !
and field of rational normal curves E, C P*~""(x) in projective correspond-
ence with D,. Our theorem is true exactly when the E_ lie on a 2-dimensional
surface S in P"™ !, and since there are co” curves E this will be the case when
two infinitely nearby curves E, and E_,,, meet in (n — 1) points. Thinking
of o as a hyperplane in P(T}*), these (n — 1)-points are the images of the
hyperplane section 6 N D, of D, under the projectivity D & E,. In fact,
the lines in the P" in which Castelnuovo’s surface S is to lie are characterized
by letting xe U vary subject to the condition that the P*~""!(x) have a
fixed P""*(x,,0) as axis. These lines are described by an — a priori over-
determined — system of O.D.E.’s; the necessary compatibility conditions are
a reflection of E, and E_, ,, meeting in (n — 1)-points.
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We conclude this section by discussing informally what is involved in
the proof of the central result (3.26). A first remark is that the group G of
projective transformations leaving fixed a rational normal curve D ¢ P"~1!
induces the full transitive group of projectivities on the curve D =~ P!.
Since any two rational normal curves are projectively equivalent, the
structure of a field D, C P(T*) of rational curves given by (34) is a
G-structure. When n = 3, which was the case considered by Blaschke-Bol
[1]. D, is a conic in the plane P(T;*) = P? and the G-structure is a conformal
Riemannian structure. In particular, there exist torsion-free G-connections
in the tangent bundle (Weyl connections) to which one may apply existing
formalism in differential geometry. It was in this setting that Bol gave his
proof of the n = 3 case of the theorem.

Now, and this was the principal technical difficulty we encountered,
when n 2> 4 the group G is relatively small and there need not exist torsion-
free connections leaving fixed a general field of rational normal curves 24).
However, we have two additional pieces of information:

(3.30) the field of rational normal curves has a large number d of completely
integrable cross-sections w'(x); and

(3.31) the defining functions for the foliations given by wi(x) = 0 have the
harmonic property (3.9).

So our G-structure has rather special properties which will have to come
into play if we are to be able to prove (3.26). In fact, one might hope that the
properties (3.30) and (3.31) might imply the existence of a torsion-free
connection in the tangent bundle which leaves invariant the curves
D, C P(T}), and for a while we thought this would be the case. However,
this hope turned out to be naive, and in § III B iv we have given the structure
of the “best” connection possible for the problem; it is a torsion-free con-
nection leaving invariant the D, only when n = 3.

So in this paper we show by direct computation that the desired path
geometry can be introduced. This is done in § ITI B ii, and constitutes the
essential step in the proof. Then a continuation of this computation leads
to the best connection in the following section.

B. Introduction of the path geometry
1. Structure equations for maximal rank webs. We begin by con31der1ng a
general d-web in n-space given by a Pfaffian system

oix)=0 i=1,...d

%) This reflects the overdetermined character of the equations (3.25).
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satisfying the complete integrability condition
(3.33) do' =7n' A &

(no summation of the index i). The form ' is non-vanishing and is determined
up to multiplication by a non-zero function. In particular we will have

o' = e%dy;

where u,(x) is a function whose level sets define the i*" foliation in the web.
Now suppose the web has maximal rank r with basis
Y fAux)du(x) =0 A=1,..,r
for its abelian equations. The point in the Poincaré space P"~ ! corresponding
to xe U 1s given by

Zy(x) = [ @), - S (i (x))] -

In this section we shall slightly abuse notation and denote by

Z(x) = e (i (i), -, f7 (ui(x)))

the designated vector lying over the point in P""'. When this is done
the condition that Z,(x) e P! should depend only on the i'* web hyper-
surface through x is expressed by

d(Z,0) =0
(no summation again). This inplies
dZ; + T'Z) A & =0,

and so we may define the point Z; on the tangent line to the arc C; traced
out at Z; by

(3.34) dZ; + n'Z;, = Zof.

Now we suppose that d > 2n and n = 3. Then the web normals o'(x)
lie on a rational normal curve D, in the projectivized cotangent space
P(T?*). This in turn defines a G-structure, to which one may seek to apply
standard techniques in differential geometry — in particular the method
of moving frames — to find the invariants. Carrying this out to arrive at
the path geometry will be the backbone of the proof of our main theorem.

We recall that for any closed subgroup G ¢ GL, a G-structure on a
manifold M is given relative to an open covering U,V,... of M by bases
wy,@f,... for the 1-forms in the respective open sets such that in inter-

sections Un V
oy = Y oY (gu);
B

412 SELECTED WORKS WITH COMMENTARY



Abel’s Theorem and Webs 71

where gyy = {(gyv)3} is a G-valued matrix. In our case we may use the
fact that any two rational normal curves in P"~! are projectively equivalent
and that such a curve has a transitive group of automorphisms induced
by projective transformations of the ambient space to deduce the existence
of a G-structure where G is the group leaving fixed the standard rational

normal curve
I [ R o i 8

Definition. A moving frame is given by a caoframe {¢*}, or basis for the co-
tangent bundle, such that the rational normal curve C_ is given parametrically by

n

(3.35) e P(x,1) = > 1*¢%(x).

z=1

In other words a moving frame gives a homogeneous coordinate system
for P(T*) = P"~! in which C_ is the standard rational normal curve. To
determine the group G, it is more convenient to set t = ,/t, and use the
homogeneous coordinate representation

(3.36) etd =) 1511 g"
=1
for the standard rational normal curve. If we make a change of homogeneous
variables
Lo
ty

and substitute in (3.36), then
e P = z fa‘:_ 1 :’fl(‘u¢*l

* %
Agolp + apy 13

* *
ayols + ay 1y

I

where

=T o'

and g(x) = (g5(x)) describes a general element in the subgroup G C GL,.
We note that G has 4 parameters rather than the usual 3 when GL, is
considered as acting on P"~!. This is because we are in effect considering
the cone in T* lying over the rational normal curve C, in P(T}).

Now the equations of G are somewhat messy, but those for the Lie
algebra of g C gl(n) are controllable. To derive them we set

to=(1 + Ego)t§ + Eg 17
t; = E oty + (1 + E{ )t}

25) We shall use this parametric representation rather than the usual r — [1.t.....1""'] so
as to allow all indices to run from 1 to n.
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Then, modulo higher order terms in the E,, .

5 T =14 (x — 1)Egp + (n — 2)E 3 e
+ ElO{ﬂ — 2){31!-?-»'1—1 i EDI(a _ l):gz—):-{;n-—-1+!_

It follows that g is generated by the transformations

** = (x — 1)¢*
¢:* g (ﬂ _ J)‘p:
¢z*=(n_1+ 1}¢J"I
¢:* e 1¢’+I
corresponding to the matrices
n—1 0 /0 0
hi1 =] i 1 hIZ = 1 -
0 0 0 n—1
(3.37)
Pn—lo 0 0
. 1
h12: '] . hllz
0 0 0 n—1 0

The indices are meant to suggest that G is the image of GL, under the
standard representation ¢:GL, — GL, corresponding to the (n — 1)*
symmetric power.

The property which is special about our G-structure in the presence of
the large number of completely integrable cross-sections w'(x). If {¢*} is
a moving frame, then after multiplying w'(x) by a scalar factor if necessary,
we will have an equation :

(3.38) w'(x) = Y i (x)$*(x).

In order to conveniently express the complete integrability condition (3.33)
we need to have a formula for d¢*; i.e.. a connection in the tangent bundle.
Moreover, since equality of mixed partials will be involved it is desirable
that this connection be symmetric?®). Therefore, we recall that such a
symmetric connection is given by a matrix {¢;} of 1-forms satisfying

(3.39) dg® = Y ¢* A ¢5.
B

*#) We are using symmetric rather than the more common torsion free. since the G-structure
in question has its own well-defined torsion.
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Once we have chosen a symmetric connection, any other one is given by
(3.40) G5% =5 + L hupy @7, hapy = hyyp.
¥

Under a change of coframe

ot =Y 845
B
the connection matrix transforms according to the usual equation

(3.41) ¢* =g '¢g—g 'dg.

Definition. The G-structure is torsion-free is there exists a symmetric con-
nection {¢j} with values in the Lie algebra g C gl(n).

Note that this definition makes sense for any G-structure, and that by
(3.41) the condition {§}} € g is independent of the choice of moving frame.

For example, suppose that we have a Riemannian structure corresponding
to G = 0(n). A moving coframe is characterized by

ds? = Y (2.

Proving that this G-structure has no torsion is equivalent to first choosing
an arbitrary symmetric connection {¢3} and then modifying it according
to (3.40) so that

(3.42) P+ ¢ =0 (x<p).

The number of functions h,, is 1/2(n*(n + 1)), and the number of equations
(3.42) is 1/2(n*(n — 1)). Since {¢5} has n® entries and

n® — 1/2(n*(n + 1)) = 12(n*(n — 1)),

what is suggested is that a Riemannian structure is uniguely torsion free.
This is well known to be the case (Levi-Civita connection).

We shall now derive the equations analogous to (3.42) that {¢§} have
values in g C gl(n) for the G-structure defined by a field of rational normal
curves. Referring to (3.37) a g-valued 1-form may be written as

(3.43) hy @y + hyy03; + hyp0; + hyy @y,
where the h,, are as in (3.37) and the w,, are 1-forms. The conditions that
{¢3} have the form (3.43) are

$p=0 Ja—pl22

i1 = — oy,
io1 = (@ — oy,
¢z = — o, + (@ — Nw,,.

(3.44)
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If we eliminate the w,,’s we obtain

$3=0 la—fl=2
n—a— 1)@, =n—a)pii}
(x+ 1)¢3" = ad3l3

Piii + $11 =241

(3.45)

The number of these equations is
2n—-NDn—=2)2)+2n—2)+(n—2)=n*—4,

which is correct since the codimension of g in gl(n) is n* — 4. Now {¢3}
has n* entries and may be modified by the 1/2n*(n + 1) functions h,,.
To be in the Lie algebra g imposes n* — 4n conditions, so that in general
our G-structure will be torsion-free only when

n® —12n%*n + 1) 2 n® — 4n.

This is turn occurs only when n = 3. In this case the G-structure is equivalent
to a conformal pseudo-Riemannian structure, and one has the Weyl geometry.
Bol's proof of the theorem when n = 3 was based on this fortunate occur-
rence.

When n = 4 the G-structure given by a field of rational normal curves
will in general not be torsion-free. This caused us considerable difficulty,
and meant that if our theorem were true then the restrictions on the
G-structure imposed by the completely integrable cross-sections '(x)
would have to play a crucial role — cf. (3.30) and (3.31). This turns out
to be so, and also the “harmonic” property (3.9) of the defining equations
of the web comes essentially into the picture. Before taking up these matters,
we want to give in a convenient manner the analogue of the equations (3.42)
for our G-structure.

Recall that the algebro-geometric study of rational normal curves in
P*" could, by successively projecting from points on the curve, be reduced
to the study of conics in the plane. For somewhat similar reasons there
will turn out to be an asymmetry involving the indices 1 and 2 in the structure
equations of a field of rational normal curves. This will now appear when
we write the connection matrix ¢ = {¢}} in the form

b=n+y
where #n has values in the Lie algebra g, and where the equation
Yy =0

expresses the condition that ¢ have values in g. To do this we observe that,
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if this latter is the case, then the whole matrix ¢ is uniquely determined by
the four entries ¢!, ¢2, ¢}, ¢%. Indeed, according to (3.44)

o1 = —-No,, ¢ =(n— o,

¢i=0—2w +w,y; ¢ =0,y
uniquely determines the w,, in terms of the ¢%. We then write
(3.46) ¢p =g + ¥
where

g =05 (n— )/in — 1)p3 + 67 x — 1)@}
+ 85[(@ — )93 — (= — 2)¢i]
has values in g. The forms y/; defined by (3.46) and (3.47) have the properties:
Lyl =y =91=y3=0;
ii. the n* — 4 equations ¥ = 0 express the condition that ¢ have values

in g; and
iii. the forms Y/ are horizontal for any choice of symmetric connection ¢j.

(347)

Here, horizontal means that if we consider the (n + 4)-dimensional
principal bundle Bg of all coframes for the G-structure. then the ¢* are

intrinsically defined on B and
% = 0 modulo{¢’,...,¢"} .
The special role played by the indices 1 and 2 will be particularly apparent
in the next section.

We now come to expressing the complete integrability property (3.33)
for the web normal w'(x) given by (3.38). By (3.39)

do' =Y dit A ¢* + Y 179" A .
a EN

Comparison with (3.33) yields

YA —a'ef = Y il ) A ¢* =0.
a B

By the Cartan lemma
(348) dit —wet — Y 0l = 1,,0" where t5=t;,.
B g
The symmetry t,, = 5, exactly expresses the complete integrability con-

dition (3.33).
In the notation of moving frames the abelian equation (3.1) becomes

(3.49) YZiti=0 (x=1,..n).
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Taking the exterior derivative we obtain
0=> [z + Z,dt}) = E(Z Zigtl + Zir,-,a) ¢*
i B\
by (3.34), (3.48), and (3.49). This implies that

(3.50) YZit*? + Zify =0, 152650

This beautiful relation is the intrinsic analogue of (3.7). One advantage
of using moving frames, as we shall now see, is that this method renders
most visible the quadrics containing the rational normal curves D, C P(T}).

The condition that a general quadric ) k*#{*(? =0 in P"~' should

a,f
pass through the standard rational normal curve {* = * is clearly
(3.51) Y =D 4i=2,....2n.

at+f=a

This gives 2n — 1 independent equations, and so, as previously noted,
there are
12nn + 1)) = 2Zn—-1)=(n — 1)(n — 2)/2

independent quadrics containing a rational normal curve. If we multiply
(3.50) by k*# satisfying (3.51) and sum over « and 8 we obtain

5 (gkm,.,,,)zi =0.

i
Since the equations (3.49) are a basis, we will obtain the intrinsic analogue
of (3.9)

(3.52) Ykl =Y m,]
Ly ¥
whenever k*f satisfies (3.51). As mentioned before, these are sort of in-

homogeneous Laplace equations, and the simplest situation would be if
the right hand side of (3.52) were zero.

Definition. We shall call the symmetric connection {¢}} harmonic in case

Y kP, =0  whenever
a,f

633) Y k*=0.

a+f=4a

Lemma. The connection is harmonic if. and only if,

(3.54) Liapg = lizeq ey =
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depends only on the sum o + B. Harmonic connections exist, and once ¢}
gives a harmonic connection then any other is of the form (3.40) where

(3.55) h:ﬂy = hu.,a+ 1Ly—1
depends only on the sum  + y and on a.
Before proving the lemma we remark that we may now define
liap = liasp

for any o,f with 2 £ « + f < 2n. When this is done, equations (3.49) and
(3.50) assume the particularly symmetric form

Zzif? =0 o = 1,‘...,?1

3.5
(326} XZH+Zt,,=0 @=2,..2n.

We note that there are here just the correct numbern + (2n — 1) = 3n — 1
of these equations.

Proof of lemma (3.54): We let
93* = 83+ Lhup, 87
T

where

h,,,=h

28y ayf "

Referring to (3.48)
I;p = tfﬂﬂ - Zh'y!ﬂ!? .
¥

For each quadric k** satisfying
Y =0, 2521520,

a+f=i

we have for all i
Y kPt =Y m(k)]
. f ¥
where m,(k) depends on the quadric. It is required to determine h,, ;4 so that

(N

This is equivalent to
Y K2k, = m (k).
B
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Fix 42 with 4 £ 2 £ 2n — 2. We suppose first that A = 2y 1s even, and
let u + n = min(% — 1,n). We consider quadrics k*¥ whose only non-zero
entries are when x + f = 4 and which satisfy ) k*# = 0. We represent
such a quadric by the quadratic form

z LJBE:':'B ulp
x,f

A basis for these is
g".l-!"’ 1 &ﬂ-l _ tg"u,z — 0
é;ﬁ-léy-—z o §u+l§u-l =0
él"'"!él‘"l _ ér-lﬂ—lén—w*l =10.

We label the corresponding quadrics as k,,....k,. The equations we must
solve are

By gy =W + mtk)

hi’-ﬂ*Z.H—‘Z = h'.—'-u"' L.p=1 + m*!{kz)

Rywemn=n = Moen-1u-ne1 + mylky).

Setting h. , , = 0 for instance, the recursive solution

h,

youtvop=v

= m,(ky) + - + m(k,)

established the lemma for 2 even. The case A odd is similar. Q.E.D.

As another illustration of the use of moving frames, and also as preparation
for the computation in the next section, let us re-examine the proof of
(3.12) — especially the equation (3.13). A point Ze P*™""!(x) is written

zZ=YpZ,.

For a non-zero tangent vector ¢ we set 6 = {¢% ), and use the notation
“=" to mean “congruent modulo P "~ !(x)”. By definition

P~ %(x,0) = {Z:dZ/do = 0}.
Using (3.34) and (3.38)
dZ/de = } p'dZ;/do
PN ECHIVA

ZpiI?U’Z}.

iz

I

1]
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According to (3.50),
in n
(3.57) ZeP i (x,0)ep = (Z k“r?)/(): r:-‘o").
e=2 a=1

The number of parameters k¢ is 2n — 1. However, if p' is given by (3.57)
then p' is only determined modulo the abelian equations (3.49). In other
words the k@ of the form
(3.58) k2= Y Fot
a+f=¢

give trivial solutions to the left hand side of (3.57). and so the number of
essential parameters k¢ is

2n—1-n=n-1,
which by homogeneity gives a P"~ % The equations (3.58) illustrate quite
clearly how P" %(x,o) varies with o, and one may use them to give an
alternate proof of (3.12).

ii. The main computation. We want to prove (3.26). Changing the notation
for the path parameter from ¢ to s, this amounts to showing that the con-
dition

(3.59) d/ds(P"~2(x(s),x'(s))) C P"~ *(x(s),x'(s))
is expressed by an equation of the type (3.21). Along the path x(s) we set
¢* = y*ds

dy* + yP @5 = z°ds
x = x(s)~ and y = x'(s).

Here, as throughout this section, repeated Greek indices are summed and
we shall use the index ranges

1ZapB7.05n
2Z9,0,7T=2n.

With these notations (3.21) is a system of second order O.D.E.’s

660 P+ Dy = V&2 + T )

for all « and f and where I'}; = I75,.
Now, according to (3.57), points in P"~?(x, y) are given parametrically by

(3.61) Z =} (ktty* 1)) Z;.

For such a Z (3.59) is equivalent to
(3.62) dZ/ds = Y (K°t¢y* ) Z;.
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The left hand side of (3.62) will involve y* and z*, but it is not clear that the
compatibilities conditions necessary for it to have the form (3.60) will be
satisfied. The computation we are about to give will show that these
compatibilities are a consequence of the integrability conditions (3.48)
and harmonic property in the form (3.54). It will show, moreover, that
along the path we may choose k?(x(s)) with given initial value and with
K¢ = 01in (3.62).

The first step is to compute dZ. For this we use the notations

4 =yt

(363) {Dk‘x? = dket? + kPP g% + 11 ¢h).
Recall that repeated Greek indices are summed. In the second equation
D ke is defined to be the coefficient of ¢ on the right hand side. With these
conventions, the formula is

(3.64) dZ/ds = Y (—k°t; , + 1/4((D k®/ds)tf)
+ 1/A{k* 8t 1,y + titig, )
— 1/4%ke8 ("t + I,-,‘,}"_\"B}}}Z,-.
Proof. By (3.34)
dZ, = —n'Z, + Z;t}y'ds
and so
Y (ket¢/y*t)dZ, = =Y (ktg/ ' Z; + ) (ke Zids

==Y (kD' Z; — Z(k*‘:,._,)z,.ds

by (3.56). Next, by the definition of z*

dort) = dy*f + ('t} + £ df + 1,507 ds)
=21 + Yt + 1,500 ds.

Finally, setting ¢ = « + f§ and using (3.48)

d(ket?) = dket? + k**P(dr;ef + t;def)
= Dker® + 2keeen + k**P(f 1,7 + tit;p,)7)ds.

Putting everything together
dz/ds = ¥ (kt)/4)dZ; — Y. (ke11)/47)dA Z;
-l}- > (d(ket)/A)Z; l
= (3.6:1) x ds

since the four terms containing =* cancel. Q.E.D.

422 SELECTED WORKS WITH COMMENTARY



Abel’s Theorem and Webs 81

Now the term containing Dk? has the desired form (3.62). In fact, along
the paths x(s) whose equation we shall derive we may determine k°(x(s))
with given initial value and satisfying Dk%x(s)) = 0. So we may as well
set Dke = 0, and then (3.64) becomes

(3.65) dZ/ds = 3 (—kot; , + 1/A{k**P(eP e, " + t51,5,1")}

—1/8* (k1221 + 15 VON Z;.

There are four terms involving the 2" derivatives t,,, = t; ,, , (harmonic
property of the connection). Of these, two have plus and two have minus
signs. It turns out that if our connection matrix {¢}} had values in the Lie
algebra g, then these four terms cancel out and the paths are given by

g § (8

1.e., they are the geodesics for this connection. Since we don't know this
good property of the connection we must set about simplifying the terms
containing the t;,,, essentially by expressing them in powers of ;.

As a preliminary we will prove the

(3.66) Lemma. Suppose that, for some a;,I,m,
Liap =02 + = DE™P ™" + T,
then dZ/ds is given by the same formula (3.65) with T,,, replacing lizp-
Proof. Moving minus signs across we must prove that
k¥p — Ntg~"4* + ktif(a + f = Dyt P==yryf
= A{k*" (@ + y = DETEIITmYE 4 (B +y — DY)
The left hand side is
(3.67) Ke(g + x + = 20igt =P myeyp
The right hand side is
Ak P((x + B+ 2y — 2Dz By omyn)
= A{ko((o + x = 2D1E* YR + BrerETm )
= k%o + a + f — 2Dtgreriomynyt

= (3.67).
Q.ED.
We now turn to the problem of simplifying the ¢;, 5. Recall the horizontal
forms ¥} defined by (3.46). We first will establish the formula:

of — (x = 47244 + (2 = DF*4 71 g
=y — (= DEPTHYE 4 (@ = 2T

Jahresbericht d. Deutschen Mathem.-Vercinigung 80. 1. Abt., Heft 1:2 6

(3.68)
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Proof. Using (3.47) we must show that the #j terms drop out of the left
hand side of (3.66). This is equivalent to the vanishing of the coefficients of
o!, ¢}, ¢2, ¢2 under the substitution (3.47). The coefficient of ¢] is

—(e =2t + (2 — )] =0.
The coefficient of ¢, is
((n — o)f(n — ™! = (@ — D((n — n — Mef*! + (@ — D" = 0.

Similarly the coefficients of ¢ and ¢3 are zero. Q.E.D.

The meaning of this relation is that for any choice of symmetric connection
{¢5} the combinations on theleft hand side of (3.68)are horizontal. Moreover,
they are zero in case {¢5} has values in the Lie algebra g 27). The symmetry
arising from the complete integrability of w' = £ $* is not present in (3.63),
but does appear in the following alternate expression for the left hand side
of (3.68):

B4 — (@~ D298 + (@ — 915471
= _tim?d)? + (G’. s 1)‘?_2[i2y¢? = {a - z)t?_ltiqu‘,y *

Proof. Write down the equations (3.48) for 1, 2, and « to obtaip

(3.69)

(1 dt, — nit, — 08 = 1,1, 8"
@ 2t,dt, — n't? — ¢4 = t;,,¢"
(3) :xt}"ldl,- - Jtit? e :f(;bf = tiu‘f’?-

Then the linear combination
—((x — 2)27H(1) + (@ — D)D) - (3)

eliminates the coefficients of dt; and =', and gives our desired formula.
Q.ED.

The left hand side of (3.69) is a polynomial in ¢; of degree <a + n — 1.
We set it equal to x

(3.70) Y tfau,d" = A, 9

1SASatn—1
and note that
(3.71) Ai, = Ay, =0.
The symmetry

(3.72) tiay = Liva

27y The converse is also true, but we won't need this here.
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and harmonic property

(3.73) Liay = lig—1,y41 = ™

are by no means apparent from the left hand side of (3.69), and by (3.68)
this imposes conditions on the yj’s. We proceed to exploit this, first by
showing that

(3.79) tigy = b (—a — Y+ ET72 4t +y =283+ T,
where
Ty = —(@— 1)y — D774 45, — 4,
—(a = D245y, + (@ — 22571 4, 29).
Proof. By (3.69) and (3.70)
(3.76) tigy — (@ — D)8 2855, + (@ — 265 'y, + Ay, = 0

(3.75)

(3.77) e — (3 — D 2t + (v — D87 M5y, + Aiya=0.

We put o = 1, 2 in the second equation and use (3.72) to obtain

Ly — = I)f.?_zlm +(y - z)tl?_ltill + 4;,,=0
(3.78) -2 b B
Ly — (=D i + (y = Dt] 7 1, + A, = 0.
By (3.73) and (3.69)
tizg = tixs = —t} iy, + 20y, — Ajay .

If we substitute this in the second equation in (3.78), then we will have
expressed f;,, and t;,, in terms of ¢;,,, t;;,, A;,1, 4,5, and 4;,,. Plugging
these into the first equation in (3.76) gives (3.74) and (3.75). Q.E.D.

According to lemma (3.66), dZ/ds is given by (3.65) with T, in (3.75)
replacing t;,,. We note that by (3.72), (3.73), and (3.74)

Ty =T,

iy iya
Ti =1;¢—1.?+1=".=Ti§! Q=“+?"

xy

and shall now use these relations to express T;,, entirely in terms of 4,; 's.
For o + y £ n + 1 the desired formula is

(3.79) L. = —z (e—0)tf " 1 A3, 4<pg=n+1.

3gesp-1

2%) Here we can make an interesting observation. If ¢ is a symmetric connection with values
on the Lie algebra g, then by (3.46). (3.68), and the definition (3.70) A, = 0. Consequently.
T,,, = Oand 1, isalinear combination of terms g,(x + y — m)t2* ™! According to lemma (3.66)

dZ/ds = — ¥ ((ketf)(i; 2°)/4%) Z,;,

and so the paths are defined by * = 0.
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Proof. By (3.71)

Fory=4
T;].‘_v = ‘Aiﬂ
(3.80) Tay-1= = =20 3 A3, — Apy_yz
Tisy-2= =20y = ) *A;3, — Aizy-2

—24;A4;,_ 4, + 1} Aiy—2.1-

These expressions are all equal. Thus equating the second and third
—(y = 211 A5y — A1
e\ o 3}@'_3!‘1.‘31 — Ajg.9-2— 2t1'A|'-_.-—2.2
+iH{ly — D5 Ay + Aiyosa)s
where the term in curly brackets came from equating the first two equations

for y — 2. The terms involving A4,,, cancel and we obtain

—Aizyon t Aoy = 244, 5, + 1A 2=0.

iy=3

We multiply by (x — y + 1)t777 and sum

z (0 —y+ 1}r?_?A|'3_7-2 = Z =7y + l)r?_?Al‘r-l.l

4<5ysaz 4sy=z
- Z 2(0‘. o ? + l)t?_?+1AiY”2.2
4zysa
+ (@ —y+ g7 24, _5,.
4Ly=za

Telescoping occurs with the result that
Al'a—l.Z = Z {I — P -+ IJ!?_?AJ'J,}-‘—I'
4zyZe
Similarly

Aigr = z (@—y+ D TA;, s

3=yse

By the first of these and middle equation in (3.80), for4d < po<n+1

Le=Ta 2= —(o— 3t A3,
= E (@~ U)t?w-l’{ia,c—z
4Ze<e—-1
= (3.79)
Q.ED.
By using
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this formula holdsfor p =n+ 2, n+ 3. Fora = 4

T;an = —(d - 1]{?1 - l)r?+n_4Ai31 = Aicm
—(x - 1)r‘.—‘"( Y (-o+ 2)r:-‘“““Ai3_,_z)
4Z0=n+1
+( - 2)r:“( Y (n—o+ a)r:‘“A,-a,c_z)
3fosn
= - Z (H +.0 - 6)‘?1'“-“_1}153‘&-2 = Aiﬂ’!'

3=o=n+1
We may then introduce A;; ,,1,...,4;3 2.-3 S0 that (3.79) holds for all
Q;le,

B8) T,=— Y (-0 " 'Ay, ,, 4<o<2n.

ig
3gasp—-1

Now we may complete the proof. By (3.65) and (3.66)
(3.82) dZ/ds = Y (—k°T; , + 1/4{k**P(¢? TayV' + i Ty, ")
~1/42k1(2 1 + Ty y* Y Z;.

Since we have now expressed T,,; = T, ,.; as a polynomial in ¢, the last
term may be simplified. Specifically, we have the

Lemma. Define
P=— Y (2a- g)[‘,-’“‘_lAilp_z.
3sSp=sa+n
a—p-120
Then
(3‘83) T:'ﬁﬂyuyﬂ = (Paya)d =+ t?Q}ta,&y‘yﬂ'

Proof. This is equivalent to the congruence
Tiupd¥ = (P,y)(tfy*) modulot,, 12, ....11.

The coefficient of t7*7y*y? on the left is obtained by setting ¢ = « +
ando=a+ f—n—7y—1in (3.81) to obtain

—2(” + 7 - 1)A13.a+ﬂ—n—7—3 .
The coefficient of £7*7)*y* on the right is the coefficient of t**” in
P+ Pyt
which by the definition of the P,’s is equal to
_“n + ¥ + 1 + 18 - a) + (n + Y- 1+a- ﬁ)}AiB.rx+,ﬂ—n—)‘—3'

Similarly the constant terms are equal. Q.E.D.
Having made the division (3.83), we shift attention to the middle term in
(3.82) and have the
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Lemma. For P, as in the previous lemma
(3.84) —(P,y*)(k%tf) — Ak°T, ) + k**P(tf T, y" + 17 T;5,y") = 0.

Proof. This may be verified by straightforward substitution, as in the
preceding lemma.

Taken together these lemmas imply the somewhat miraculous divisibility
properties: '

First, T,z )"y is divisible by t*y* modulo terms containing t;,...,t7. When
this is done and the quotient P, y* moved to the middle term in (3.82), we again
obtain an expression which is divisible by A = t¥y* modulot,,...,t". In this
case the quotient exactly cancels k°T; i

Combining (3.82), (3.83), and (3.84) we obtain our final formula
(3.85) dZ/ds = =Y (ker2/A?{t2(z* + Qup, VYN Z;.

The equation of the paths is therefore
Zu + Q:,‘!;ryﬂyr = 0

This completes the proof of (3.26), and shows that in case d > 2n and
n = 3 a d-web of maximal rank has associated to it a path geometry in
the sense of the definition (3.21) where the paths are themselves charac-
terized by the geometric property (3.24). This path geometry has co?-totally
geodesic hypersurfaces, one passing through each point x and with given
normal we D, C P(T?), and the final step in our proof will be to show
(3.27) that such a path geometry is flat.

iii. The best harmonic connection. We retain the notations from the preceed-
ing section. As was mentioned on several occasions such as in footnote 28),
if there were a symmetric torsion-free connection for the G-structure in
our problem then the main computation could be considerably simplified.
Moreover, these is such a connection in Bol’s case n = 3 — in fact there
is a unique one with the harmonic property (3.53). So it is of interest to
generally determine the optimal connection for our problem.

If {¢*} is any moving frame for the G-structure in our problem, then a
symmetric connection is given by a matrix of 1-forms {¢3} satisfying

do® = gfﬁ’ A %

We assume the connection to be harmonic, and then the most general one
such is given by

. (3.86) G5* = ¢ + 2 hap, ¢’ where
’ ¥
h ., =h

afy a.ft+y
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depends only on « and the sum f + y (cf. (3.55)). There are n(2n — 1) such
functions, and we want to choose them so as to annihilate as much as
possible of the torsion form {y3} in (3.46); here we remember that
Y3 = 0 <> ¢} has values in the Lie algebra g of the group in our G-structure.
We also recall from (3.68) and (3.69) that this is equivalent to annihilating
as much as possible of the tensor 4,,, introduced in (3.70). The result is the

(3.87) Propeosition. (Best Harmonic Connection): There is a unique sym-
metric, harmonic connection such that

(3.88) A, =0 for x+y=n+3,

and where A;,, = A;,,, depends only on i and the sum a + y = A (say)

and is a linear combination of 7% .. 1272

bl ! |

(3.89) Corollary. When n = 3 there is a unique symmetric, torsion-free, and
harmonic connection. However, when n = 4 this “best connection™ given by
(3.88) is in general not torsion free.

So this makes even more intriguing the divisibility which occurred in the
proof of (3.26). Even for webs arising from extremal algebraic curves we
have no explanation for the distinction between n = 3 and n = 4, other
than the obvious one that a rational normal curve in P"~' is given by
(n — 1)(n — 2)/2 quadratic equations, and this number is 1 when n = 3.

The remainder of this section will be devoted to the proof of (3.87).

Lemma. We have

Ajgy = Z (A=)t} " 1Ay -0, A=2+47y
yt2Z2a=i-1
(3.90) = Y (A= " Pay,, ;.
y+2=05i-1
1<D<n+2

Proof. Combining equation (3.75) with (3.79), we obtain

Aigy = —(a — Iy — l)t?+?_4Ai31 + Z (x+7—0)Ai3,-2
JEosa+y—-1

—m—nﬁﬂ( ) w—a+2w“”Aupg

45asy+1

ﬂm_aﬁ*( % w—a+1mwAarg-

3Sesy+1

Here we have substituted for A;,, and 4, the expressions appearing
just at the end of the proof of (3.79). The coefficient of A4,,, is

7 —@=Dy-D+@+7-3)+ (-2 -2)=0.
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For ¢ = 4 the coeflicient of A;; ,_, is
ey e+ y—0)—(@—1)y—0+2)+(@—20(y -0+ 1) =0.

This is valid for 0 < y + 1 and gives the first equation in (3.90). The second
follows from the definition (3.70). Q.E.D.
By setting A = « + y and
v=Ai-0c—-1+DeD=cg+v—-4i+1
so that
y+220cfi-1esv—a+3ED=v

we rewrite (3.90) as

B391) A, = 3 s:( b3 {i—ala,-m”.;.,-z)-
7

1SvSa+tn—1 +2505i-1
The following is a direct consequence of the definition (3.69) and (3.70).
Lemma. Under a change of connection (3.86)

Aty = Aizy + Phyy — (@ — D 2hgn + (2 — 217787 Vhy,,

Z [:‘( Z “1 - g}av—i+1+a.3‘a—2) + Ighﬁnr
¥

lsvEa+n-—1 +2sg£i-1

==Y A e e P Ty

(3.92)

The second equation here follows from (3.91).
Now according to (3.91) the basic quantities are 4,; _: this is also clear
from (3.79). So we consider the equations

[3-93] ?’3? = 0 -

(3.94) Lemma. These equations have a solution which uniquely determines
the functions
hg, Jor 2£25n+3.

In case n = 3 this gives the unique torsion-free harmonic connection.

Proof. By (3.92) the equations (3.93) have the following expansion in
powers of t;:
tihy 34, + ay3,)

+ 7 (hy 3y — 2hy 44 + a33)

+ (3 30y — 2Ry 400 + hyyuy + a33)

4

+ iy 3ey — 2B g a2 + homg iy +aa3;)

+ I?+l(_2hn‘;+2 + hn—l.;-+l + an-‘-l‘?ﬂ‘)

+ £?+2[}Iu.y+l + an+2.3?}'
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Equating to zero the powers of t; gives n(n + 2) equations which clearly
determine uniquely the h, ; for 1 < f < n, 2 £ 1 £ n + 3. Explicitly, we
obtain

(3.95a) —hga = Z {ﬁ“a)aa+1,3.a—p—z+o, B+3=A=n+3
0fosp-1

(3.95b) —hgi= )Y (M+1—=—B—0)a,,, .3 en-1-p-a
Ogosn-p LB +1

(3.95¢) —hppez=—Bhys+ Y B+1-0)a,;,_,

25058

(395d) (n+1)h, 3 =Y — B+ Dag,,,- Q.ED.

g

According to the expansion of 4;,, in terms of 4;5,, the equations (3.93)
will imply relations on Af,. Moreover, the n(n — 3) functions hg ;,
n+ 4 < 1 < 2n are still at our disposal. To see what happens we set

(3'96) Biay L Al'.:-p == {G( o I)I?+ﬁ_2hﬂ,2+y + (“ B 2)1?+p_lhﬂ,l +y

g v
o Z p:?\‘[l'
1svEn+a-—-1

where the second equation defines the p,,,. The reason for considering
this B;,, is that the h, ; appearing on the right are already determined by
(3.95). Moreover,forAi=a+py=n+ 4

(39?) A;’;? = Iiﬂhﬂ,l '+‘ Bia?.

Now the p,,, may according to (3.92) and (3.95) be expressed in terms of
the a,;,. To do this we separate into cases.

Casei) v= /) — 1 where L = o + 7. Then

Payv = — E (=n+v+p— l)an+2—p.3.n—v—1+;,—e
O=psn—-v+a—1
+ Z (A—0)a,_3:1403,0-2-
y+2Zesi-1
Whenn+2—-9=v— A1+ 1+ ¢ we have

-n+v+e=-1=4i-0
n—v—144i—-p=0-2
and 0 p,,, =0 for v=n+2 since 1-126<v+9g-n—-220.
When v = n + 1 we also find p,,, = 0. If v = n, say v = f3, then

Payp = g+2,3,a-1 + 285433, + - +(n+1—=P)ay,335-1+1-n-

By (3.97) and (3.95b)
A¥*

fay

= Ifﬁﬂ& + Biuy
=,
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We conclude that:

A¥ is a linear combination of t}~2,t}73,....1;, which we may describe as
saying that the equations (3.93) eliminate the high powers of t; from A,
in (3.92). The remaining choices for h,, will eliminate low powers, as will
now be seen

Case ii) v = A — 2. Then by (3.91) and (3.95)
Paye = —(A = 2)hys + (@ — 1) ( Y p+1- g)a?':,'e_l)
2Ze=y
—(@ - 2)( Y - o}a.,.a,.?-,) + Y (A—0)ay30-2

2=p¢s57y-1 y+22e5a-1

= —(4— 2”’13 + z (A—o0— 1)“9,3,0—1 -

22542
Case iii) v < 1 — 3. Then, as before

pa'p\l:(a_ 1) z {V— E+2-— Q)a@+i,3,2—v—2+g)

DEp=Ev—a+1

"'(E—Z) z (U_ o+ 1 __Q)aa+],3.2—\t—2+a

Os¢sv-a

ot Z (A—0)a,_i+1+03,0-2

y+2S0si-1

L SR

Z (v— Q}ae+1.3.1—\-~1+@+ Z (A—0)a,_i+140,3,0-2

Ogposv—z2+1 y+2=Za5i-1

Z (v = 0)8,41,3,3-v-2+¢"
O0zesv-1

Now if v = £ n we set

A% = t?hy; + B;,, = 0 modulo ;'

izy i

by choosing
(3.95¢) —hg; = Z (B—0a,41.3.2-8-24¢> B+3<A=<2n

0sesp-1
as prescribed by cases ii) and iii). We note that (3.95¢) are the same equations
as (3.952) only extended now to the full index range. Continuing this with
case i) we deduce that A%, depends only on i, « +y =4, and is a linear
combination of t}~2%,...,t7* 1. In particular,

A*

izy

=0 for a+y=<n+2.

Moreover, at this point the connection ¢3* is uniquely determined, and
it remains only to examine the case A = n + 3. By (3.98) A% (x + y =n + 3)

iy

is a2 multiple of £f**. By case ii) when v = n + 1 the coefficient is
—(n+1Dh3+ Y (M+2-0)a,3,1=0

25gsEn+1

by (3.95d).
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IV. Projective differential geometry and completéon of the proof
A. Projective connections and path geometry

i. Basic definitions. We first give the structure equations for P", as this
provides the model space for projective differential geometry. The index

ranges
0
1

will be used. and repeated indices are summed. We shall work with real
projective space — the discussion carries over with the same notation to
the complex case.

a, b, c
2, B,y

A 1IA
1A A

Definition. A frame for P” is given by
F=1{Z4,2,....2Z,}
where the Z, form a basis for R"*.

The manifold of all frames will be denoted by #(R"). It may be identified
with GL,, ,. Occasionally, we shall speak of normalized frames defined by

Zof\zlf\"'f\z":l

the set of which may be identified with SL,,,. There is a projection
n: % (P") — P" given by
R[F} e zﬂ 29)5

and the fibre 7~ *(Z,) consists of all frames F* = {Z},ZF,...,Z}} where

1) o+ ALZ, ¥+ M Z,

ZF =A’Z, + AlZ, + -+ A*Z,.
This equation may be abbreviated by writing F as a column vector and
(Ap) as a matrix A whereby (4.1) becomes
(4.2) F*=A-F.

Each frame F gives a coordinate simplex (Fig.5) in P,, and up to the
homogeneity factor A3, ™ *(Z,) consists of all coordinate simplices whose
first point is Z,. The linear structure on P" is given by identifying each

#%) We shall frequently abuse notation and denote by Z, the point in P* defined by the
non-zero vector Z, in R"7 .
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line 20_2' with a tangent vector to P" at Z,, and this should be kept in mind
in the following discussion.

Fig. 5
The frame entries Z, may be considered as vector-valued functions
Z,F(PY)—- R

Expanding the exterior derivative dZ, at Fe % (P") in terms of the basis
determined by the frame F we obtain

4.3) dz, =6'z,.

The matrix 6 = (8%) gives the coefficients of infinitesimal displacement of
the moving frame F. It is the Maurer-Cartan matrix on GL,, ,. Equation
(4.3) may be abbreviated as

(4.4) dF =8-F.

Under a change of frame (4.2)

(4.5) 6* =dA- A" + ABA"".
The integrability relation, or Maurer Cartan equation,
(4.6) dd=06n0

follows by taking the exterior derivative of (4.4).
It will be useful to write (4.5) out making use of the special block from
(4.1) of the matrix A. For this we introduce the notations

6 =6

¢ = 0 — 6360,
which will be motivated in a little while. Then (4.5) becomes
[ 6% = A36%(4~");
*o = dA}AT): — SpdlogAQ + AyPMA ']
(4.7) ¢ + AJOA(A
6*) = dAQ(A™")8 +dAf(A™ )] + AZ65(A 1))

+ ALONATY)] + A20°(A7Y)S.
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The integrability conditions (4.6) are
do” = 6% A ¢}
(4.8) dos = dp A @5 + 05 A 6 — 536" A 6°
deg = ¢35 A 62.
From the first equations in (4.7) and (4.8) it follows that on & (P")
=0

defines a completely integrable Pfaffian system, one whose integral manifolds
are the fibres of #(P") & P™.

To interpret the second and third equations, we denote by H* — P"
the universal bundle whose fibre over Z, e P" is the line - Z, in R"*'.
Letting

Q = P" x R /H*
be the quotient of the trivial bundle by H*, the identification of lines with
tangent vectors gives an isomorphism

T=Hom(H*Q)=H®Q.

More precisely, sections of H ® R"*' may be interpreted as vector fields
of the form

0= Y Bz, /20y 2ulZ0) 2 BfOE".
a,b
The inclusion H* —» P" x R"*! induces an inclusion of the trivial bundle

in H ® R"*! with the generator 1 going into ¥ z°0/0z°. By Euler’s theorem
n(f) = 0 in Ty, if and only if

0 =AY 2°0/8z") (Zy = [1.2,/20,...,2./25)) -

Summarizing, the exact sequence

4.9) 0O->H*>P" xR*!' 500
and isomorphism

(4.10) TH®Q

embody the linear structure on P". #(P") is the manifold of frames for the
trivial bundle in the middle of (4.9), and ¢5 = 65 — 5563 looks something
like a connection in T = Q ® H. This is not quite correct, since the flat
connection on P" x R"*! does not leave H* invariant, or equivalently
since the extension in (4.9) is non-trivial relative to the connection in
P* xR+,
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In general, a projective connection on a manifold will be given by a
vector bundle sequence

with isomorphism
TM)=2=L®Q

and with a connection in E. Rather than try to formalize this, we shall adopt
a “working definition”. So, given a covering {U,V....,...} of M we assume
givenineach openset U an(n + 1) x (n + 1) matrix of 1-forms 8, satisfying

GU = dAUl’AEI} + AUVBV AEvl

in U n V where A, has the block form

«0 -0
£ ok ok
AUV=
% *

We assume that the entries

(Gﬂjé’ i ?(BU)‘E}
are linearly independent, and shall admit over U all connection matrices
@=dA- A" + A6 A"

where A has the block form given above. This will be our definition of a
projective connection.

For example, suppose that M, C P*** is a submanifold and consider the
Darboux frames F = {Zg;Zy,....2,;Zp41+- -3 Zn+i} €F (P Where Zoe M
and Z,,Z,,...,Z, span the projective tangent space to M at Z,. The con-
nection matrix for P"** has the block form

% m] 00
* ‘ n+1
* * | = *

on the Darboux frames, and the upper left hand block defines a projective
connection on M.
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At this point, since our discussion is local it will simplify matters if we
assume that our projective connection is special in the sense that the trace

(4.11) 20wy =0.

It follows that det (A4y,) = constant, and we shall assume this constant
is +1. Although somewhat unnatural, the use of special projective connec-
tions will alleviate the necessity of saying when two projective connections are
equivalent, 2 notion which takes into account the fact that GL,,, does
not act effectively on P”. There is a natural special projective connection
on the manifold of normalized frames on P". There are (n + 1)> — 1 =
n(n + 2) forms in the connection matrix of a special projective connection,
and 69 is then determined by the ¢2 according to

(4.12) —(n+ 1)03 = ¢} + - + ¢".

Given a special projective connection with connection matrix 6 = (62)
(we omit reference to the open set U), set

0* = 05
Ha 62050
The projective torsion ©@* and projective curvature @} are defined by
(4.14) O = d6* — 6 A ¢}
(4.15) 5=d¢; — ) A @5 — 03 A O + 530" A 69

By the same computations as led to (4.7) and (4.8) it follows that @* and
@; are tensors. In particular, they are horizontal and we set

®; = 1/2(R5,,6” A 6%, Rj,:+ Rj;, =0.

Definition. The special projective connection is normal in case

(4.16) {g Rf 0_ 8
Bya — V¥

For a torsion-free projective connection there is the Bianchi identity
(4.17) RSia + Ry + REyy =0,
Proof. By (4.14)

0=4d%6"=do" A ¢% — ¢f A do5

—6% A (dg5 — ¢} A 6))
—6° A (P5 + 05 A 0° — 036" A 69)
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by (4.15)
= —@% A D%,

which implies (4.17). Q.E.D.
We note that (4.17) is vacuous unless n = 3. Somewhat deeper is the
following: Define (cf. the 3" equation in (4.8))

(4.18) @) =do} — ¢; A ¢).
Then. in case n = 3,
(4.19) 6 =0 and ¢5=0=>63=0.
Proof. Applying exterior differentiation to (4.15) gives
= —-d¢;A¢;+¢§Ad¢;—d6§x\6’+9§z\d0’
+ 83d6” A 69 — 536" A d6Y
= —(ph AP+ 03 A0 —5,6% A0 NG
+¢§A(¢ja¢§+9$,«9’—5:8"f\92)
— (O + ¢ A O A G+ 05 AO A S
+ 8560% A @) A 09 — 8307 A (O + @) A 8))
= —0) A0 - 3530 A ay.
Suppose that n = 3 and take f = 1 and x = 2.3 to obtain
A2 =0=09n 6.

This implies that
O = 0,0° A8,
Similarly
0% = —0,0' A 0. OF = 00" A 6.
Taking x = f§ = 1 gives
(=20, — 0, — 8)0' AO* A 0*=0,

and consequently

-20, =0+ 0
‘292= 9; + 0,
_293= e, + @,

which implies
—2(0, + 0, + 03) = 2(e, + ¢ + @5)
or g, + 0, + 0; = 0. But then ¢, = ¢, = 0, = 0.

The case n = 4 is even easier. Q.E.D.
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Definition. The connection is projectively flat in case €° = & = ©F = 0.
Assuming projective flatness, the projective connection matrix 6 = (6)

satisfies 40 =0 A O
ZB: =0.

According to a standard application of the Frobenius theorem there are
locally maps f:M — SL,,, inducing 6 from the Maurer-Cartan matrix
onSL,, ;. Inthis sense connections which are projectively flat are equivalent
to the standard projective connection on P". We shall say more about
this in the next section.

In concluding this section, we assume that the projective torsion % = 0
so that the Bianchi identity (4.17) holds. Then normality implies

(4.20) YR, =0.

1. Fundamental theorem in local projective differential geometry; the Beltrami
theorem. We shall discuss the relationship between projective connections
and path geometry as defined in § III A ii, beginning with the case of the
straight lines in the model space P". Following the notations in the pre-
ceding section, let {Z(t), Z,(t),...,Z,(t)} be a curve in the frame manifold
lying over the curve Z,(t) in P". We denote t-derivatives by a dot, and for
a 1-form y the notation  will be used for /dt along the curve. Thus, by (4.3)

20 = 9325

Zo = (05 + 6569 Z,
and

ZoNZonZy=Y {6°0° + 6" 9% + 26909
a<p
_ ) — 00" + 07% + 2008} Zy A Z, A Z,.

Since the equation

ZoAZonZy=0

characterizes the straight lines, it follows that these lines are given in terms
of the standard projective connection on P" by the O.D.E. system

(4.21) (O + 07 ¢5)/6° = (& + 67 2)/0=.

We recognize (4.21) as being of the form (3.21), and the resulting path
geometry is the geometry of lines in P".

Now suppose that we are given a special projective connection on a
manifold M. If 6 is the connection matrix in the open set U, then we are
permitted to use any other connection matrix

0=dA-A"" + A- 0,47

Jahresbericht d. D hen Mathem.-Vereini B0, 1. Abt, Heft 1,2 T
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where A has the block form given by (4.1) and det A = +1. In particular,
since(f,)5 A A (6y)5 # 0 we may choose a coordinate system x = (x*,...,x")
and A such that for the new connection matrix

4.22) 6% = dx* 39,

If we think of the various choices of 4 as giving the possible frames for the
projective connection, then we may refer to a frame which satisfies (4.22)
as a coordinate frame. We write

¢5 = Ipadx’
82 = Iy dx*;
and determine 63 by (4.12) so that 6% = ¢% + 8569. By the definition (4.14),
the torsion
0% = —1/2{2(1“;;,1 — I5p)dx? A dx‘},
8.4
so that for a coordinate frame the torsion being zero is equivalent to the

symmetry

(4.23) =%

Henceforth, although not strictly necessary, we shall suppose that the
torsion is zero. Equations (4.21) are of the form

424)  (%F + P2, = (B + [3, 27550, If, =T,

and define a path geometry in the sense of § III Aii. A basic remark is that
the form of the equations (4.24) is invariant under an arbitrary change of
coordinates x* = x*(y',...,y") and change of parameter t = t(s).

For example, suppose we change parameter and denote by a prime the
s-derivatives. Then

x¥(t(s)) = x"t’

x*(t(s)) = ¥°12 + X"
and so

(8 + ML) = () — (/%)
+ (5 x7 x¥ [U2) [(x*/t')
= 1/0((x*" + [3x" x¥)/x*) — 1/t'2,

which implies the invariance of (4.24) under a change of parameter. The
behaviour of (4.24) under a change of coordinates is done by a similar

3%) Recall that under the above transformation 8* = A3(8,/(47")5.
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calculation, and taken together these show that the path geometry defined
by (4.24) is intrinsically attached to the projective connection.

The fundamental theorem of local projective differential geometry is
the converse:

(4.25) Proposition. A path geometry (4.24) intrinsically defines a unique
special, normal projective connection.

Proof. We write (4.24) in the form
(426)  (d*x7 + I},dx"dx?)/dx? = (d*x* + I3,dx"dx")/dx*,

and set
0%*(dx) = I‘i:,;‘c!x’dx‘1

considered as a quadratic polynomial in the dx”s. The most general
change preserving (4.26) is

0%(dx) = Q%(dx) + dx*P(dx)
where P is linear. We will uniquely determine P so that

(4.27) Y. 00°(¢)/o¢* = 0.

This is equivalent to
0 = ) 8/8*(Q*(&) + & P()
= ), 80%(9)/0¢* + 2P(§)

so that P = — 1;‘2{2 0Q*/a&") gives the unique solution. Changing notation,
we assume (4.27) for the Q%(£), or equivalently that
z .r:;{ = 0 .
This equation is the same as
(4.28) Y ¢:=0.
Now to prove (4.25) we must show how to uniquely determine the con-
nection matrix (f3) subject to certain properties. We set

{%:W:dx‘
8;=¢;=F;Adx‘, F;z= ip-

Then by (4.12) and (4.28) we must have 8 = 0, and it remains to determine

92 = rgﬂdx’
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by the normality condition (cf. (4.16))
(4.29) Y R;,,=0.

These are n? equations in the n? unknowns 'Y, and it must be proved
that they are linear equations whose coefficient matrix is non-singular.

We define S3,; = —Sj,, by
—-1/2 {Zs;,idx* A dx"} = d¢; — ¢} A ¢,

These are known functions in terms of the I';;’s and their 1 derivatives.
By the definition (4.15) of the projective curvature tensor

1/2{R3,:dx” A dx*} + 1/2{S5,,dx” A dx*}
= 63 A 6% + 5307 A 6
(6219, + 857%)dx A dx*.

¥

Consequently
ri * Sy = (GT5 — 8375 + 8% — I3,).

Setting « = A and summing gives, by (4.29),
z‘:si?a = 8, = '_nrgr + F?ﬂ'

When n > 1 the coefficient matrix of this linear system of n* equations in
n? unknowns has a non-zero determinant. Q.E.D.

We recall from section III A ii that the path geometry defined by (4.24)
is flat in case there is locally a diffeomorphism taking the paths onto
straight lines in P". Combining (4.25) with (4.19) we obtain the

(4.30) Corollary. When n = 3 the path geometry (4.24) is flat if, and only

if, the associated projective connection has projective curvature
-
5 =0.
While we are discussing flatness we want to prove the beautiful

Beltrami theorem. The path geometry defined by the geodesics of a Riemannian
metric is flat if, and only if, the metric has constant sectional curvatures.

Proof. We choose an orthonormal coframe w* for the metric — thus
ds? = Y (@%?.
x
The structure equations for the Riemannian connection matrix wj and
curvature matrix Q = 1/2{Tf,, 0’ A w*} are

do* =0f A wj, 0f+wf=0
2 = doj — v} A of.

(4.31) {
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Taking exterior derivatives gives the two Bianchi identities

4.32) {Tﬁ‘,;wﬂ A o' A @ =0

T5u@ A 0* A 0* =0.

The geodesics of the Riemannian metric are the solution curves to the
O.D.E. system

(4.33) @* + @il = 0.

According to the proof of (4.25), the projective connection matrix
{6%,¢5,02} associated to the path geometry given by the geodesics (4.33)
is uniquely determined by the equations

6* = »*
d=wp
o .
eﬁ = rhwf
where
(4.33) Z T;Bzw = Tﬂy = ”rg? - ‘rgﬂ'

Consider first the case n = 2. The only non-zero component of the
Riemannian curvature tensor is

K = Tzluz 32)-
Taking f = y = 1 in (4.33) gives
—K=T:I"12=Tll=2r[l)l_r(1)1=r?l!
and similarly I'}, = —K. Taking = 1, y = 2 and then interchanging g
and y gives

0=T;2:2rt1}2‘rgl
0=T, =2I3 ‘F?h
which implies that
F?z = rgl =0,
rg, = -8K.
It follows that the projective curvature tensor

Bya = Ty — K(8584 — 6555).

*!) Note that trivially ¥ ¢2 = 0, so that 63 = 0.

*?) Up to the symmetries Ty, = — T2, = - T3,

PHILLIF A. GRIFFITHS 443



102 S. S. CHERN and PHILLIP GRIFFITHS

Since Rj,; = 0 if « = B, the only possible non-zero components of this

tensor are
Rl,=K—-K=0

So, when n = 2 the projective torsion and curvature are always zero, and
the obstruction to projective flatness is entirely measured by

6% = d6g — 65 A 62
= —dK A of
since 0 = —Ko’.

It follows that
O =0<«dK =0,

which proves the result in this case.
Now suppose that n > 3. According to (4.30) the geodesic path geometry
is flat if, and only if, Rj,; = 0. By the symmetries of Ty, ;,

T}-‘?=’1;ﬂ

in (4.33). We may choose the coframe w* to diagonalize Ty, at a point x,.
Call the eigenvalues (n — 1) T,. Then, by (4.33)

A3, — % = (= DT,
nlYy — gy =(n— 18T,

which gives
rgr = F?ﬂ = 6$T}3 :

Suppose that Rj,, = 0. Then, by (4.15), at x,

0= Tj, + (6268 — 8589 T,
0=TE; + (8785 - 45 T..

Adding these equations and using Tj,; + T/, = 0 gives
(T, - T)8:8% = (T, — T8
Taking « = 4, p = y but o #+ B we find
TL-T,=0.
It follows that, at x,, all T, are the same. Since x, was any point,
o alx) = (8365 — 8565 K(x).
By the second Bianchi identity in (4.32),

K, n 0 A o*=0.
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Thus K, = O for y # a,B. Since n = 3 this implies that all K, = 0, and so
ds? has constant sectional curvature.

If, conversely, the sectional curvatures are constant, then we may reverse
the calculation to conclude that Rj,; = 0.

When the sectional curvatures are a constant K > 0, we may argue
geometrically as follows: Represent the manifold as a portion of the sphere
S"in R"*'. The geodesics are the intersections of planes through the origin
with S". Intersecting these planes with the P" at infinity in R"* ' maps the
geodesics to lines.

B. Totally geodesic hypersurfaces and completion of the proof

We consider a path geometry given by an O.D.E. system (4.24). Recall
that a submanifold is totally geodesic if any path which is tangent to the
submanifold lies entirely in it. We will be mainly concerned with totally
geodesic hypersurfaces, and will prove:

(4.34) Suppose that n =z 3 and we are given a field of rational normal curves
D, C P(TF) such that each w € D, is the normal to a totally geodesic hyper-
surface through x. Then the path geometry is flat.

The proof requires some preliminary discussions, and we begin by
deriving the equations for a totally geodesic hypersurface. We write (4.24)
in the form

(4.35) XX + ThpXtxl) = (%7 + Tigi*xF).

The condition that the family of hypersurfaces {x" = constant} all be
totally geodesic may be expressed as follows: Suppose that

x(t) = Xo + X1t + X582 + -

is a curve such that (4.35) is satisfied when ¢ is set equal to zero. Equivalently,
x(t) is a path up to 3™ order around t = 0. Then the totally geodesic
condition is

x"0) = 0= x"(0)=0.
This is the same as
n—1
(4.36) Z I",{,.C‘g""=0.
Ap=1

The single hypersurface {x" = 0} is totally geodesic in case (4.36) is satisfied
at points (x,...,x"1,0).

In terms of the connection matrix {67, ¢;,8§} for the canonical connection
(4.25) associated to the path geometry we may restate (4.36) in the form:
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The conditions that the differential system
6"=0

define a family of totally geodesic hypersurfaces Jor the path geometry
(4.35) are

@37) {dB = 0 modulo 8

¢, =0modulo 6", 1<usn-1

Here is a sketch of an alternate method for arriving at (4.37). Suppose
that 6" = 0 defines a codimension one foliation, and denote by ¢ the
restriction of a differential form y to the leaves of this foliation. Since the
projective connection is torsion free

n—1
0 — dgn = z 5'“ A ::s
p=1
which by the Cartan lemma implies that
n—1
én=%h,0, h,=h,.
v=1
The quadratic differential form

=Y h, 0@

ay=1
is the second fundamental form of the hypersurfaces 8" = 0, and just as in
the Riemannian case one may show that the condition for being totally
geodesic is

i1 =0.
This is the same as

¢, = 0< ¢} = 0modulo 6",
which is (4.37).
We shall find the implication of (4.37) on the projective curvature tensor.
By 4.15),for1 s u<n-1
0=0"n d¢}
=0"APLAP+ A0 =300 A B + D)
=60"A @)
Removing the distinguished role of the index n we obtain the conclusion:

If the hyperplane
Yu, =0

a
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is tangent to a totally geodesic hypersurface, then

Y vPu,R3..0" A 6% =0 modulo > u 6

4.38 e
(+38) whenever Y tPuy = 0.
[

Indeed, the condition (4.38) is equivalent to

(gu,ﬂ’) A (,Zg v’ujRE?;LB” A Bi) =0

whenever ) v*u, = 0.

As a preliminary to the proof of (4.34) we shall show that

105

(4.39) If n = 3 and if every plane Z u, 8 = 0 is tangent 10 a totally geodesic

hypersurface, then the path geometry is flar,

Proof. Setting
D5 = 1:2{R},;0" A 6%},

we are assuming that

(4.40) P u, 3 = 0(u, 6%

for all u,,v? subject to

(4.41) u, = 0.

The most obvious way (4.40) can hold is if

(4.42) B =Y +mp A0

for a 2-form ¥ and 1-form ng- We first show that

(4.43) Lemma. If @} has the form (4.42), then
@ =0.

Proof. The curvature tensor satisfies

;yl = _RE;‘?
Beaw R3s, + R};p = 0 (Bianchi)
R:.=0 (normality)

As noted in (4.20) these imply

i =0.
Set
ﬂﬂ = s‘g;\g" s
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Since &% = 0,
n¥ + Sﬂjga A 63 =0.

Substituting in (4.42)
1/2{R5,0" A 6*} = —1/n(83S;,0" A 6%) + Sp;0* A 6°
= —1/n(855:,0" A %) — 8555.0" A 6*
= Rjya = —1/n(0§(Sz, — S,2)) — 85Sp2 + 035,

Now by normality
;«l =0
=0 = —1/n(S;5 — Sp1) — nSp; + Spa
=>(—n*+n+1)S;, =S,
=({1/=n* 4+ n + 1))8;,.
When n = 2, this gives

—'SBA = —Sﬂz,
but for n = 3 we obtain
Sﬂ; == 0
:"R;'yl = 0

Q.E.D.

(4.44) Lemma. If (4.40) holds for all (u,), (vf) subject to (4.41), then ®} has
the form (4.42).

Proof. Fix § and let s
v =(0,...,1,...,0)

u= (uls'-"uﬂ—llo}uﬂ+l|---$uu)'

Then (4.41) is automatically satisfied and we claim that:

Y u, P = 0( Zu,ﬂ’)

a¥f a
(4.45) : 7
= Ty =y n (L0
a¥ f a2+ f 4

where ny is independent of (u,).

Assuming f + 1, u, + 0, we take a new basis

Then (Z u, d>;) A §' = 0 gives

8
E“a‘p; =0' A (Q:g(u)m + 4 0u)0).
a¥f
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The coeflicients g, 4(u) are homogeneous of degree 0 in u,. So (4.45) follows

by taking W
nf == Zzgvﬁ(o)av’

independent of u,.

Thus we have
Dz =np A O (x+ )

which gives (4.42) for « # f. In general the left hand side of (4.40) is

Y Pu, @5 =Y Pu,® + ) "ud;
EN. | f#a
=Y Pung A O + ) Fu (D7 — 1. A 6).
B.a @

Assuming (4.41) and setting u, = —1
Z Fu, (P — n, A 6F)
a=1
n—1
=Y tru(Pk —m A 0 — D+ 1, A 0
k=1

= 0(u, 0%).
This is true for all »*,...,0" . Consequently
u (P — M A 0 — B + 1, A 67) = 0(u,67)
for each k and all u,,...,u,-,. This is possible only if
G—m A= —n A=V
for each k, in which case
5 =03 +np A 6°

as desired. Q.E.D.
As an application, if we combine what we just proved with the Beltrami

theorem we obtain the

n—1

Corollary. If a Riemannian manifold M, of dimension n Z 3 has o
totally geodesic hypersurfaces passing through each point, then it has constant
sectional curvature.

We shall now establish (4.34) by using lemma (4.43) and by proving
(4.46) Lemma. Suppose that
v @ = 0(°6°)
for all (%)t satisfying
(4.47) Pt =0.
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Then the representation (4.42) is valid**).

Proof. The argument is by induction on n, treating (®3) as an (n x n)
matrix of 2-forms. We shall denote by § the restriction of a form y to the
hyperplane 8" = 0, and shall use the additional index range 1 < i,j,k<n—1.
Letting r — co we have

(4.48) v'P! = 0.
What this means is the following: By hypothesis
i dp =0
in the tangent hyperplane
=0
whenever
" =0.

The tangent hyperplane is the same as that defined by

O+ P+ 0 e+ 0" =0,
which tends to 68" = 0 as t — oo. Similarly the linear condition on the
(v*) tends to v" = 0 as t — oc. Dividing the relations through by 1" gives

v’%/r"_‘ =0 m 8" =0
whenever

e = 0.

Letting t — x the (¢v*) tend to any preassigned vector (), so that in the limit

v'PT=0 in 6"=0
for all (v) **). Thus
(4.49) & =0.
Keeping v" = 0, we deduce from (4.49) that

VPl = 0 )
whenever
' =0.

By induction hypothesis

B =6 +rin

3) Here, 1 is the variable 1 raised to the x*® power.

34) Geometrically, v*1* = 0 means that (#*)e P*"~! is in the hyperplane t* orthogonal to
{t!)e P~ '. Ast — =0 this hyperplane tends to ¢ = 0, so that in the limit (v') € P*"~ % is arbitrary.
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which implies

(4.50) {¢i=61¢’+rﬁ AG 46 A DL

Pl=n AG"

We now return to the full n-dimensional space. Assuming (4.47) and
using (4.50),

PrrdG = PGP + i A O+ 0 A B
+ "D, + P A O+ D
= (P, — W) + ek — ) A 07)
+ 6" A idf + "D
=0("87).
Setting v" = 0 we obtain
"Wy — m)) A 8" + £ A B = 0(°07)
whenever t'v' = 0. This implies that
(4.51) "ty — m) + vk i = 0(°6',67)
whenever t'v' = 0. Letting t — oo we conclude as before that
Mk = M-
We may choose n; = n; in (4.50). Then by (4.51)
gL =0(r'F)
whenever t'u; = 0. This is a situation similar to our induction hypothesis,
only simpler in that ¢; is a matrix of 1-forms. We may assume then that
i = 6k A + b, @
where

Y=¥4+6 a4
M =N + b 8"
Summarizing, we have obtained

O =P +m A6
(4.52) {q:mhm

Now then, assuming (4.47) and using (4.52)

e =" (Y + A 0 + 0P
= 0(1*6Y).
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This gives
(4.53) — """ — O A O+ DS = O 6)

which implies
—t"¥ + 1*@% = 0(1°67).
Letting t — oo gives
P=9,
so
=¥ —n,n8.
By (4.53)
—17t", A 0" + "Dk = 0(*6) .
This implies that
=g, A 0,

completing the induction step.  Q.E.D.
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