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1. Introduction. This report is another attempt on the part of its author to come to terms with
the circumstance that L­functions can be introduced not only in the context of automorphic

forms,withwhich he has had some experience, but also in the context of diophantine geometry.

That this circumstance can be the source of deep problems was, I believe, first perceived by E.

Artin. He was, to be sure, concerned with forms on GL(1) and with varieties of dimension 0.

This remains the only case in which results of any profundity have been obtained. These have

been hard won. Their mathematical germ is the theory of cyclotomic fields; itself easy only in

comparison to the general theory.

One assertion of the theory, a simple statement of existence, is that an L­functions for

GL
(
1,A(Q)

)
associated to a Grössencharakter χ trivial on the connected component of

GL(1,R), that is, a Dirichlet L­function, is an Artin L­function associated to a character

χ′ of the Galois group of a cyclotomic field. In order that such an assertion really have con­

crete reciprocity laws, such as the quadratic, as consequences, it must be supplemented by a

procedure for obtaining χ from χ′. This is usually given locally, not merely at almost every

place, but at every place.

There are similarities, as well as dissimilarities, between the role played by cyclotomic

equations in the study of GL(1)/Q and that played by elliptic modular varieties in the study

ofGL(2)/Q. According to the Eichler–Shimura theory, the non­trivial part of the zeta­function

of each of the varieties MK ⊗ Q studied in a previous lecture can be expressed as a product

of L­functions associated to automorphic forms on GL
(
2,A(Q)

)
. Both Eichler and Shimura,

as well as Igusa and Deligne, have contented themselves with results valid for, in one sense

or another, almost all primes. This may represent the most important step. Nonetheless, for

reasons explained at Nice and elsewhere, I want a result valid at all primes.

The zeta­functions and the automorphic forms canbebrought together because of the close

relation of both to certain cohomology groups. These groups are introduced, and evaluated

in terms of automorphic forms, in §2. In §3 they are interpreted as groups in the étale theory.

Combining the results of §2 and §3, we formulate in §4 the problem with which these lectures

are concerned.

To explain this problem, which is only partially solved in the later paragraphs, we for­

mulate it as the solution to an existence question. Suppose π′ = ⊗π′v is a representation of

GL
(
2,A(Q)

)
occurring in the space of automorphic forms. LetW (C/R) be the Weil group of

C over R. W (C/R) is an extension of the Galois group G(C/R) by C×. π′∞ is associated to

a two­dimensional complex representation σ∞ of W (C/R). Suppose σ∞ restricted to C× is

equivalent to

z →

(
zmz̄n 0

0 zm
′

z̄n
′

)
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with m, n, m′, and n′ in Z. I would then expect that π′ is associated to a diophantine object

of some sort (a “motive”—a word with as yet no satisfactory definition!) which is (again in

a sense not yet made precise) of rank two. In lieu of precise definitions, which would be

premature, we can look for the objects themselves.

Since we are working over Q, any such object should yield for each p and ℓ different from

p a two­dimensional representation σ′p ofG(Qp/Qp) over some finite extension of Qℓ. We can

twist both σ′p and π
′
p by a quasi­character of Q

×
p , at least if it takes values inQ×. The twistings

define L­functions and ε­factors. If the object is in any sense associated to π′ these must be the

same for σ′p as for π
′
p. The implications of this demand are discussed at greater length in §4.

In these lectures we takem′ = n, n′ = m, the most interesting case, and, an unfortunate

but natural restriction, m 6= n; and for each ℓ associate to π′ a two­dimensional ℓ­adic repre­

sentation of G(Q/Q). To obtain a first, and tentative, form of an existence theorem, we must

establish the local relations described above.

As was observed this problem cannot yet be completely solved. That it can be treated

when there is any ramification whatsoever is only possible because of the recent results of

Deligne on the behavior of the modular varieties at primes where they do not have good

reduction. Theorems 7.1 and 7.5 are the best we can do at present. To prove them, one has to

turn the basic problem, which concerns two very abstract objects, into an elementary assertion.

Since the ℓ­adic representations were introduced to study congruences, they contain a great

deal of elementary information. To reveal it, all one has to do is unravel the definitions. This

is done in §7. However it is a Grothendieck definition we have to unravel; and that is not so

easy for ordinary mathematicians.

The most powerful tool available for the study of the representations of GL
(
2,A(Q)

)
on

the space of automorhpic forms is the Selberg trace formula. We exploit it in §6. The elementary

manipulations needed to compare the results of §6 and §7 and to prove the theorems are carried

out in §5.

As I have just hinted, the analysis of the ℓ­adic cohomology required in §7 is far from

trivial. To carry it out properly requires a command of an elaborate theory, which, when I

began to prepare this report a year ago, was almost completely foreign tome, andwhich I have

certainly not yet mastered. This has no doubt resulted in many obscurities and lacunae, but, I

hope, no mistakes. I observe in particular that Proposition 7.12, which plays an important role

in the discussion, is an extension of the available forms of the Lefschetz theorem which should

have been, but was not, verified.

If this report is of any value, it will be because of all I have learned from friends in Bonn,

Bures, and NewHaven. Conversations and correspondence with Casselman, Deligne, Harder,

Lang, and Rapoport have been decisive in its genesis and execution.
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2. de Rham Cohomology. Let A be the adèle ring of Q and let Af be the subring of A formed

by the elements with coordinate 0 at∞. Let Zf be the ring of integral elements in Af . Finally

letK be an open compact subgroup ofG(Af ), where G = GL(2), and let

K∞ =

{(
a b
−b a

)
∈ G(R)

}
.

The map

g =

(
a b
c d

)
→

ai+ b

ci+ d

identifies G(R)/K∞ with the complex plane minus the real line.

Since

G(A)/K∞K = G(R)/K∞ ×G(Af )/K

and the second factor is discrete, G(A)/K∞K is also a complex manifold. G(Q) acts on it to

the left.

Lemma 2.1. If K is amall enough, G(Q) acts freely.

If γ ∈ G(Q) has a fixed point it is conjugate to an element ofK∞K . Thus its eigenvalues

λ, µ are complex conjugates and, together with their inverses, algebraic integers. Thus they

are roots of unity. If, for example,

K ⊆ {k ∈ G(Zf )
∣∣ k ≡ 1(mod5)}

then λ+ µ = 2 and γ = 1.

I always take K so small that G(Q) acts freely. Then G(Q) \ G(A)/K∞K is a complex

manifoldMo
K(C).

Suppose we are given a rational representation µ ofGwhich is defined overQ and which

acts on the vector spaceL and thus, in particular, a representation ofG(Q) onL(Q) or onL(C).

L(C)×G(Q) G(A)/K∞K

is a sheaf of complex vector spaces overMo
K(C), locally free of rank equal to the dimension of

L. This sheaf will be denoted FKµ (C) or, when this is at all compatible with clarity, Fµ(C).

The de Rham cohomology groups

Hi
(
Mo
K , Fµ(C)

)
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as well as the groups with compact support

Hi
c

(
Mo
K , Fµ(C)

)

have been studied by many people. We have to review the results of their efforts. We shall be

especially concerned with the image

Hi
p

(
MK , Fµ(C)

)

of

Hi
c

(
Mo
K , Fµ(C)

)
→ Hi

(
Mo
K , Fµ(C)

)
.

By its very definition the sheaf Fµ(C) lifts to the trivial sheaf

L(C)×G(A)/K

over the manifoldG(A)/K . Any q­form ω with values in Fµ(C) lifts to a form ω0 onG(A)/K

with values in L(C). if g ∈ G(A) let g∞ be its projection on G(R) and define η = η(ω) by

η(g) = µ−1(g∞)ω0(g).

The forms η obtained in this way are characterized by:

(i) If γ ∈ G(Q) and if Lγ denotes left translation of a form by γ,

Lγη = η.

(ii) If k ∈ K∞ and ifRk denotes right translation by k,

Rkη = µ(k−1)η.

(iii) IfX1, · · · , Xq belong to g, the Lie algebra ofG(R), and hence define left­invariant vector

fields onG(A)/K then

η(g) : (X1, · · · , Xq)→ 0

if one ofX1, · · · , Xq belongs to k, the Lie algebra ofK∞.

The boundary operator is easily expressed in terms of η. dω corresponds to dη where

dη(X0, · · · , Xq)
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is defined to be the sum of

q∑

i=0

(−1)i
(
Xi + µ(Xi)

)
η(X0, · · · , X̂i, · · · , Xq)

and ∑

i<j

(−1)i+jη([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xq).

Suppose now for simplicity that µ is irreducible, so that µ restricted to Z, the centre of

G, is of the form z → µ(z)I , where µ(z) is a scalar. Let V (µ,K) be the space of infinitely

differentiable functions ϕ on G(Q) \G(A)/K satisfying

ϕ(zg) = µ−1(z)ϕ(g)

for z in Zo(R), the connected component of Z(R). The universal enveloping algebra A of

g and the group K∞ both act on V (µ,K) by right translations. Call this action r. η may

be regarded as a function on the qth exterior power ∧q(g/k) with values in L(C) ⊗ V (µ,K).

Condition (ii) may be written

(1) η(kX1, · · · , kXq) = (µ⊗ r)(k)
(
η(X1, · · · , Xq)

)
.

Of course,X → kX is the adjoint of k. The boundary dη becomes the sum of

(2)

q∑

i=0

(
1⊗ r(Xi) + µ(Xi)⊗ 1

)
η(X0, · · · , X̂i, · · · , Xq)

and

(3)
∑

i<j

(−1)i+jη([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xq).

These definitions admit of immediate extensions to any space U on which A and K∞
act, in a consistent manner, according to a representation s. We introduce namely the space

Cq(U, µ) of functions on Λq(g/k) with values in L(C) ⊗ U which satisfy (1), with r replaced

by s. Since

s(kX) = s(k)s(X)s(k−1)

ifX ∈ g andk ∈ K∞, the boundarydη givenby (2) and (3), except that rmust again be replaced

by s, lies in Cq+1(U, µ). Thus we can introduce the cohomology groups Hq(U, µ) or, if we

want to stress the role of s rather than that of U , Hq(s, µ). These groups depend covariantly
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on U . We identifyHq
(
Mo
K , Fµ(C)

)
withHq

(
V (µ, k), µ

)
. If Vc(µ,K) is the space of functions

in V (µ,K)with compact support modulo Zo(R), we may also identifyHq
c

(
Mo
K , Fµ(C)

)
and

Hq
c

(
Vc(µ,K), µ

)
.

Let Vsp(µ,K) be the space of all functions ϕ in V (µ,K) for which

∫

N(Q)\N(A)

ϕ(ng) dn = 0

for all g inG(A) and for which

|µ(detg)|1/2Xϕ(g)

is square integrable on Zo(R)G(Q) \G(A) for allX in the universal enveloping algebra. N is

the group of matrices of the form (
1 x
0 1

)
.

Proposition 2.2. The map

H1
(
Vsp(µ,K), µ

)
→ H1

(
V (µ,K), µ

)

is an injection and its image is H1
p

(
MK , Fµ(C)

)
.

In order to prove this proposition we have to introduce a large, almost overwhelming,

number of auxiliary spaces. W (µ,K)will be the space of infinitely differentiable functions on

B(Q) \G(A)/K which satisfy

ϕ(zg) = µ−1(z)ϕ(g), z ∈ Zo(R),

taken modulo functions which vanish on some set of the form

S(M,Ω) =
{
nak

∣∣n ∈ N(A), a =

(
α 0
0 β

)
∈ A(A),

∣∣∣α
β

∣∣∣ ≥M, k ∈ Ω
}
.

B is the group of super­triangular matrices and Ω is a compact set such that ΩK∞K = Ω.

We demand moreover that G(A) = B(A)Ω. Given M there is an N > M and an infinitely

differentiable function εM such that

εM (hgk) ≡ εM (g)

if

h ∈ Zo(R)N(A)B(Q)
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and k ∈ K and such that εM is 1 on S(N,Ω) and 0 off S(M,Ω). ϕ and εMϕ represent the same

element of W (µ,K). In order to avoid clumsy expressions, we speak, taking all necessary

care, of the elements of W (µ,K) as though they were themselves functions. WS(µ,K) is

the subspace ofW (µ,K) formed by those functions ϕ for which |µ(detg)|1/2Xϕ(g) is square

integrable on Zo(R)B(Q) \ S(M,Ω) for all X in the unversal enveloping algebra. This

condition is satisfied for all pairs M,Ω if it is satisfied for one. Wp(µ,K) consists of those

functions ϕ inW (µ,K) for which

∫

N(Q)\N(A)

ϕ(ng) dn

vanishes, as a function of g, on at least one S(M,Ω).

Wsp(µ,K) = Ws(µ,K) ∩Wp(µ,K).

Finally we let Vs(µ,K) be the set of all ϕ in V (µ,K) for which |µ(detg)|1/2Xϕ(g) is square­

integrable on Zo(R)G(Q) \G(A) for allX in the unversal enveloping algebra.

Lemma 2.3. The two maps V (µ,K) → W (µ,K) and Vs(µ,K) → Ws(µ,K) are surjective

with kernels Vc(µ,K).

The two maps are of course obtained simply be regarding an element of the first space as

an element of the second. One knows, from the standard reduction theory, that there exist an

M and an Ω such that γ ∈ G(Q), γS(M,Ω) ∩ S(M,Ω) not empty imply γ ∈ B(Q). Given ϕ

inW (µ,K), set ψ = εMϕ and consider

ϕ1(g) =
∑

B(Q)\G(Q)

ψ(γg).

ϕ1 lies in V (µ,K) and determines the same element ofW (µ,K) as ϕ. Since the complement

of the image of S(M,Ω) in Zo(R)G(Q) \ G(A) is relatively compact, ϕ1 lies in Vs(µ,K) if it

lies inWs(µ,K). The last assertion of the lemma follows from reduction theory.

The universal enveloping algebra and the groupK∞ act in a consistent way on the space

W (µ,K) and its variants, so that the cohomologygroups such asHq
(
W (µ,K), µ

)
are defined.



Antwerp 1972 9

Lemma 2.4. The groups Hq
(
Wp(µ,K), µ

)
and Hq

(
Wsp(µ,K), µ

)
are 0.

G(A) is a finite disjoint union

∪iG(Q)giG
o(R)K.

Go(R) is the connected component ofG(R). Let

Γi = G(Q) ∩ giG
o(R)Kg−1

i .

The group G(Q) is a disjoint union

∪jΓihijB(Q).

Let h̄ij and ḡi be the projections of hij and gi on G(R) and let

So(M,Ω) = S(M,Ω) ∩Go(R).

It is a consequence of the reduction theory that, ifM is given andN is, for a givenΩ, sufficiently

large, the map

∪i ∪j ∆ij \ S
o(N,Ω)

into B(Q) \ S(M,Ω)/K given by

∆ijg ∈ ∆ij \ S
o(N,Ω)→ h−1

ij giḡ
−1
i h̄ijg

is injective with an image which differs from B(Q) \ S(M,Ω)/K by a relatively compact set,

modulo Zo(R)B(Q). Here∆ij is the projection of

h−1
ij Γihij ∩B(Q) ∩Go(R)G(Af )

on G(R). Since the operatorsX in the universal enveloping algebra are left­invariant we can,

when proving the lemma, pull back ϕ inW (µ,K) orWs(µ,K) to a function on∆ij \S
o(N,Ω)

and study it there. ThusW (µ,K) becomes a direct sum

⊕i,jW (i, j).

In the same wayWs(µ,K) is isomorphic to

⊕i,jWs(i, j).

We study these spaces individually. For simplicity we suppress the i and j from the

notations. In particular ∆ij is now ∆, a discrete subgroup of B(R) ∩ Go(R) such that ∆ ∩
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N(R) \ N(R) is compact and ∆ ∩ N(R) \∆ is finite. If A is the group of diagonal matrices

and Ao(R) is the connected component of A(R),

Go(R) = N(R)Ao(R)K∞.

W is the space of infinitely differentiable functions ϕ on∆ \Go(R) satisfying

ϕ(zg) = µ−1(z)ϕ(g), z ∈ Zo(R),

taken modulo those which vanish on some set of the form

S(M) =
{
nak

∣∣n ∈ N(R), a =

(
α 0
0 β

)
∈ Ao(R),

α

β
> M, k ∈ K∞

}
.

Ws is defined in a similar way.

Let∆ ∩N(R) be generated by (
1 N
0 1

)

and if ϕ belongs toW (µ) let

ϕ(n, a, k) = ϕ(nak) =
∑

z∈Z

exp
(2πizx

N

)
ϕz(a, k),

where

n =

(
1 x
0 1

)
.

ϕz(a, k) is an infinitely differentiable function of a and k. We need to know what conditions

to place on the ϕz in order that ϕ belong toWs.

The matrices

U =

(
0 1
0 0

)

H =

(
1 0
0 −1

)

span gmodulo k. AnyX in the universal enveloping algebra may be written as a finite sum

∑

m,ℓ

Adk−1(Um)Adk−1(Hℓ)Ym,ℓ(k)
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where each Ym,ℓ(k) is some finite linear combination of elements of the universal enveloping

of kwith coefficients which are infinitely differentable functions of kwith bounded derivatives.

Applying

Adk−1(Um)Adk−1(Hℓ)

to ϕ we obtain (α
β

)m∑

z

(2πiz

N

)m
exp

(2πizx

N

)
Hiϕz(a, k).

H belongs to the Lie algebra of A(R) and Hℓϕz is to be interpreted accordingly. Integrating

the square of the absolute value of this expression times |µ(detg)| over S(M) modulo
(
∆ ∩

N(R)
)
Zo(R)we obtain

∑

z

(2πz

N

)2m
∫

α
β
≥M

∫

Zo(R)\K∞

(α
β

)2m−1

|Hℓϕz(a, k)|
2 |µ(detak)| da dk.

To be more precise the first integral is taken over the subset of Zo(R) \ Ao(R) represented by

matrices (
α 0
0 β

)

satisfying the indicated condition. If ϕ lies inWs this expression must be finite for all ℓ andm.

If∆ contains a matrix (
−1 y
0 −1

)

then

(4) exp
(−2πiyz

N

)
ϕz(a,−k) = ϕz(a, k)

for all z.

If the collection {ψz(a, k)
∣∣ z 6= 0} satisfies (4) and if there is a ϕ inWs such that for each

ℓ ≥ 0 there is a finite set of integers ℓj ≥ 0 and constants Cℓ and rℓ such that

|Hℓψz(a, k)| ≤ Cℓ

∣∣∣α
β

∣∣∣
rℓ ∑

|Hℓjϕz(a, k)|

for all z 6= 0 and
∣∣α
β

∣∣ ≥ 1 then

∑

z 6=o

exp
(2πizx

N

)
ψz(a, k)
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is also inWs.

We can now begin the proof of Lemma 2.4. It is of course enough to prove that the groups

Hq(Wp, µ) andHq(Wsp, µ) are 0. Wp consists of thoseϕ inW for whichϕ0(a, k) is identically

0 andWsp is the intersection ofWs andWp.

We represent q/k and b/z where b is the Lie algebra of B(R) and z that of Z(R). It has a

basis formed by U andH . An element of Cq(W,µ) is represented by a function on S(M)× b

with values in L(C), which for convenience we provide with an inner product. Because of (1)

it is determined by its values onN(R)Ao(R) ∩ S(M). Expand the function in a Fourier series

η(na,X1, · · · , Xq) =
∑

z

exp
(2πizx

N

)
ηz(a,X1, · · · , Xq).

Then (
U + µ(U)

)
η(na,X1, · · · , Xq)

is equal to

(5)
∑(α

β

2πiz

N
+ µ(U)

)
exp

(2πizx

N

)
ηz(a,X1, · · · , Xq)

and (
H + µ(H)

)
η(na,X1, · · · , Xq)

is equal to

(6)
∑

exp
(2πizx

N

)(
H + µ(H)

)
ηz(a,X1, · · · , Xq).

The operator

Az =
α

β

2πiz

N
+ µ(U)

onL(C) is invertible if z 6= 0 because µ(U) is nilpotent. Moreover for any ℓ ≥ 0 and any ε > 0

there is a constant Cℓ such that

‖HℓA−1
z ‖ ≤

Cℓ
|z|

∣∣∣β
α

∣∣∣

for
∣∣α
β

∣∣ ≥ ε. If
∑

z

exp
(2πizx

N

)
ϕz(a, k)
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lies inWs the form determined by

ν(na,X1, · · · , Xq) =
{∑

z 6=0

exp
(2πizx

N

)
A−1
z ϕz(a, 1)

}
λ(X1, · · · , Xq),

where λ is a linear form on g/k, lies in Cq(Wsp, µ).

We show now that Hq(Wp, µ) and Hq(Wsp, µ) are 0. This will prove Lemma 2.4. It is

clear from (5) that any cycle in C0(Wp, µ), and a fortiori in C0(Wsp, µ), is 0. If η is a cycle in

C1(Wp, µ) set

ν(na) =
∑

z 6=0

exp
(2πizx

N

)
A−1
z ηz(a, U).

If η belongs toC1(Wsp, µ) then the element ofC0(Wp, µ) corresponding to ν lies inC0(Wsp, µ).

Replacing η by η − dν if necessary, we may suppose η(U) = 0. Since

[U,H] = −2U

we see, upon computing dη(U,H), that η(H) is also 0. Finally any form in C2(Wp, µ) or

C2(Wsp, µ) is clearly the boundary of a form ν which vanishes on U .

Corollary 2.5. The image of Hq
(
Vsp(µ,K), µ

)
in Hq

(
Vs(µ,K), µ

)
is contained in the image

of Hq
(
Vc(µ,K), µ

)
.

Given a cycle η in Cq
(
Vsp(µ,K), µ

)
choose, by the previous two lemmas, a form ν in

Cq−1
(
Vs(µ,K), µ

)
such that η − dν is 0 in Cq

(
Ws(µ,K), µ

)
. By Lemma 2.3, η − dν lies in

Cq
(
Vc(µ,K), µ

)
.

Proposition 2.2 itself will follow from the two lemmas below.

Lemma 2.6. The map

H1
(
Vsp(µ,K), µ

)
→ H1

(
Vs(µ,K), µ

)

is surjective.

Lemma 2.7. The maps

Hq
(
Vsp(µ,K), µ

)
→ Hq

(
V (µ,K), µ

)

are injective.

LetWe(µ,K) be the image inW (µ,K) of the infinitely differentiable functions on the set

N(A)B(Q) \G(A)/K . Set

W ′(µ,K) = We(µ,K) +Wsp(µ,K)
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and let V ′(µ,K) be the inverse image in V (µ,K) ofW ′(µ,K). Since

V ′(µ,K) \ V (µ,K) ≃Wsp(µ,K) \Wp(µ,K),

the maps

Hq
(
V ′(µ,K), µ

)
→ Hq

(
V (µ,K), µ

)

are isomorphisms. We shall prove Lemma 2.7 with V (µ,K) replaced by V ′(µ,K).

There are some standard facts in representation theory that need to be recalled. If s is a

representation ofG(R) on a Hilbert space and X belongs to the Lie algebra of G(R), a vector

u is said to belong to the domain of s(X) if

s(X)u = lim
t→0

s(exp tX)u− u

t

exists in U . In general u is said to be in the domain of s(Xn · · ·X1) if u is in the domain of

s(X1), s(X1)u is in the domain of s(X2), and so on. u is infinitely differentiable if it is in the

domain of every s(X1 · · ·Xn). The space of such vectors will be denoted U
∞. If s is unitary

and u and v belong to the domain of s(X), then

(
s(X)u, v

)
= −

(
u, s(X)v

)
.

If U ′ ⊆ U∞ is a dense G(R)­invariant subspace of U and if u ∈ U is such that

v ∈ U∞ → (X1 · · ·Xnv, u)

extends to a continuous function on U for allX1, · · · , Xn then u ∈ U
∞.

Let Ls(µ,K) be the space of all measurable functions ϕ onG(Q) \G(A)/K such that

ϕ(zg) = µ−1(z)ϕ(g), z ∈ Zo(R),

and such that

|µ(detg)|1/2ϕ(g)

is square integrable onZo(R)G(Q)\G(A). The representation r ofG(R) onLs(µ,K) by right

translation is not unitary but r1 is, where r1(h) takes ϕ to ϕ
′ with

ϕ′(g) = |µ(deth)|1/2ϕ(gh).

Since r and r1 have the same infinitely differentiable vectors, it follows from Sobolev’s lemma

that

L∞s (µ,K) = Vs(µ,K).
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If Lsp(µ,K) is the subspace of Ls(µ,K) consisting of those ϕ for which

∫

N(Q)\N(A)

ϕ(ng) dn = 0

for almost all g, then Lsp(µ,K) is closed and invariant and

L∞sp(µ,K) = Vsp(µ,K).

Let Lse(µ,K) be the orthogonal complement of Lsp(µ,K) in Ls(µ,K). Then

Vs(µ,K) = Vse(µ,K)⊕ Vsp(µ,K)

if

Vse(µ,K) = L∞se(µ,K).

If ϕ belongs to V ′(µ,K)write

ϕ = ϕ1 + ϕ2

where ϕ1 maps to Wsp(µ,K) and ϕ2 has support in some G(Q)S(M,Ω) and in S(M,Ω)

satisfies

ϕ2(ng) = ϕ2(g), n ∈ N(A).

Of course ϕ1 and ϕ2 are both to be functions on G(Q) \ G(A)/K . The possibility of such a

construction is assured by Lemma 2.3 If ψ belongs to Lsp(µ,K) then, as long as M is, for a

given Ω, sufficiently large

(ψ, ϕ1) =

∫

Zo(R)G(Q)\G(A)

|µ(detg)|ψ(g)ϕ1(g)dg

is determined by ϕ alone. There exists a unique ϕp in the space Lsp(µ,K) such that

(ψ, ϕ1) = (ψ, ϕp).

IfX1, · · · , Xn belongs to q and if

ϕ′ = r(X1) · · · r(Xn)ϕ

then ϕ′p is equal to r(X1) · · · r(Xn)ϕp in the sense of distributions; so ϕp lies in Vsp(µ,K). If

Ve(µ,K) = {ϕ ∈ V ′(µ,K)
∣∣ϕp = 0},
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then

V ′(µ,K) = Ve(µ,K)⊕ Vsp(µ,K).

Lemma 2.7 follows immediately.

To prove Lemma 2.6 we show that

H1
(
Vse(µ,K), µ

)
= 0.

This requires a little more preparation. If s is a representations of G on a Hilbert space U , we

set

Hq(s, µ) = Hq(U, µ) = Hq(U∞, µ).

Lemma 2.8. (a) Suppose the representation

g → |µ(detg)|1/2s(g)

is unitary and let ω be the Casimir operator of g. If

s(ω)− µ(ω)

has a bounded inverse, then

Hq(s, µ) = 0

for all q.

(b) Let λq be the representation of K∞ on the qth exterior power of g/k and let µ̃ be the

contragredient of µ. If

HomK∞(λq ⊗ µ̃, s) = 0

then

Hq(s, µ) = 0.

The second part of the lemma is an immediately consequence of the definition, because

Cq(U∞, µ) = HomK∞

(
Λqg/k, L(C⊗ U∞)

)

and the right­hand side is isomorphic to

HomK∞(Λqg/k⊗ HomC

(
L(C),C), U∞

)
.

To prove the first part, we recall a formula of Kuga, or at least the simple case of it we

need. As usual,

g = k⊕m
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where k and m are orthogonal with respect to a non­degenerate G(R)­invariant form whose

restriction to the derived algebra g′ is the Killing form. Introduce an inner product on L(C)

with respect to which µ(X),X ∈ m, is hermitian while µ(X),X ∈ k∩ g′ is skew­hermitian. If

X ∈ g′ the operator s(X) is skew­hermitian. The inner products on L(C) and U yield one on

L(C)⊗ U∞. Define one on Cq(U∞, µ) by

(η, ν) =
∑

i

(
η(Yi), ν(Yi)

)

where (Yi) is an orthonormal basis, with respect to the Killing form, of Λ
qg/k ≃ Λqm. There

is an operator δ of degree −1 on the complex Cq(U∞, µ) such that

(dη, ν) = (η, δν).

Set

∆ = dδ + δd.

If ω is the Casimir operator then

−∆ = s(ω)⊗ 1− 1⊗ µ(ω) = s(ω)− µ(ω).

Since µ is assumed irreducible, µ(ω) is a scalar.

There is perhaps no harm in verifying this formula for the group under consideration.

Let Y1 and Y2 be an orthonormal basis ofm. Then Y1 ∧ Y2 is an orthonormal basis of Λ
2m and

[Y1, Y2] lies in k. If η is a 0­form

(
(dη), ν

)
=

(
{s(Y1) + µ(Y1)}η, ν(Y1)

)
+

(
{s(Y2) + µ(Y2)}η, ν(Y2)

)
.

So

δν = −
{(
s(Y1)− µ(Y1)

)
ν(Y1) +

(
s(Y2)− µ(Y2)

)
ν(Y2)

}
.

Here s(Yi)− µ(Yi) is an abbreviation for

s(Y1)⊗ 1− 1⊗ µ(Yi).

If η is a 1­form,

(dη, ν) =
(
{s(Y1) + µ(Y1)}η(Y2)− {s(Y2) + µ(Y2)}η(Y1), ν(Y1, Y2)

)

so that δν takes
Y1 → {s(Y2)− µ(Y2)}ν(Y1, Y2)

Y2 → −{s(Y1)− µ(Y1)}ν(Y1, Y2).
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Let Z be an element of k ∩ g′ on which the Killing form takes the value −1. Then

ω = Y 2
1 + Y 2

2 − Z
2.

If η is a 0­form then

s(Z)η + µ(Z)η = 0

and

{s(ω)− µ(ω)}η =
2∑

i=1

{s(Y 2
i )− µ(Y 2

1 )}η.

The formulas above show that the right­hand side is

−δdη = −(dδ + δd)η.

Since the value of the Killing form on

(
x y
z −x

)

is 4(x2 + yz) we may take

Y1 =




1
2 0

0 −1
2


 , Y2 =




0 1
2

1
2 0


 , Z =




0 1
2

−1
2 0


 ,

so that

[Y1, Y2] = Z [Z, Y1] = −Y2 [Z, Y2] = Y1.

If η is a 1­form, condition (1) implies that

{s(Z) + µ(Z)}η(Y1) = −η(Y2)

{s(Z) + µ(Z)}η(Y2) = η(Y1).

Now δdη takes Y1 to

{s(Y2)− µ(Y2)}
(
{s(Y1) + µ(Y1)}η(Y2)− {s(Y2) + µ(Y2)}η(Y1)

)

and dδη takes Y1 to

−{s(Y1) + µ(Y1)}
(
{s(Y1)− µ(Y1)}η(Y1) + {s(Y2)− µ(Y2)}η(Y2)

)
.
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Adding, we obtain

−

2∑

i=1

{s(Y 2
i )− µ(Y 2

i )}η(Y1)

plus

{s([Y2, Y1])− µ([Y2, Y1])}η(Y2) = {s(Z)− µ(Z)}{s(Z) + µ(Z)}η(Y1)

which is simply

−s(ω)η(Y1) + µ(ω)η(Y1).

The complete verification of the formula proceeds along the same lines.

Returning to the lemma, we observe that
(
s(ω)−µ(ω)

)−1
commuteswith s(g), g ∈ G(R),

so that it takes U∞ to U∞. If η belongs to Cq(U∞, µ) and dη = 0, set

ν =
(
s(ω)− µ(ω)

)−1
η.

Since d∆ = d∆, we have

dδdν = ∆dν = 0.

Thus

(δdν, δdν) = (dδ dν, dν) = 0

and both δdν and dν are 0. Consequently η = dδν bounds.

In order to apply Lemma 2.8 wemust recall the structure of the spaceLse(µ,K). Suppose

χ is a quasi­character of A(Q) \A(A) such that

χ(z) = µ−1(z), z ∈ Zo(R).

Suppose in fact that

a =

(
α 0
0 β

)
→ |αβ|1/2χ(a)

is a character. Consider the spaceB(χ,K) of allmeasurable functionsϕ onG(A)/K , satisfying

ϕ(nag) =
∣∣∣α
β

∣∣∣
1/2

χ(a)ϕ(g)

for n inN(A) and a in A(A), for which

∫

B(A)\G(A)

|µ(detg)| |ϕ(g)|2ρ−1(g) dḡ.
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Here ρ is a positive function onG(A) such that

ρ(nagu) =
∣∣∣α
β

∣∣∣ρ(g)

if n ∈ N(A, a ∈ A(A), and u ∈ K∞K . Moreover dḡ is the measure associated to ρ as in

Theorem 1.1 of [2.2]. The representation π(χ) of G(R) on B(χ,K) by right translations is

unitary. If

χ :

(
α 0
0 α−1

)
→ αis

for α > 0 in R then

π(ω, χ) = −
s2 + 1

4
.

Of course µ(ω) is positive or 0; so π(ω, χ)− µ(ω) is a real number less than or equal to −1
4 .

Ifϕ is an infinitely differentiable function onN(A)B(A)\G(A)/K with compact support

moduloN(A)B(Q)Zo(R) satisfying ϕ(zg) = µ−1(z)ϕ(g) for z ∈ Z(R), then

ϕ(g, χ) =

∫

A(Q)Zo(R)\A(A)

∣∣∣α
β

∣∣∣
− 1

2

χ−1(a)ϕ(ag) da

is a function on B(χ,K). If A is the set of quasi­characters of the form indicated, A carries a

measure, the translation of the Haar measure, and
∫

A

‖ϕ(g, χ)‖2 dχ <∞.

There is thus a unique direct integral

(7)

∫

A

B(χ,K) dχ

containing these functions. If

s(g) =

∫

A

π(g, χ) dχ

then s(ω)− µ(ω) is clearly invertible.

From the theory of Eisenstein series one knows that Lse(µ,K) is a direct sum of G(R)­

invariant subspaces

Lse(µ,K) = L0
se(µ;K)⊕ L1

se(µ,K)

the second of which is G(R)­isomorphic to a subspace of (7). The first is a direct sum, over

the quasi­characters of the idèle­class group such that ν(a) = µ−1(a) if a > 0 lies in R

and ν(detk) = 1 if k ∈ K , of one­dimensional spaces on which G(R) acts according to

g → ν(detg). H1
(
L1
se(µ,K), µ

)
= 0 because of Lemma 2.8(a) and H1

(
L0
se(µ,K), µ

)
= 0

because of Lemma 2.8(b). Lemma 2.6 now follows.
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Lemma 2.9. If the representation s of G(R) on U is such that

g → |µ(detg)|1/2s(g)

is unitary and if

s(ω)− µ(ω) = 0

then

Hq(U, µ) ≃ HomK∞(∧qg/k⊗HomC

(
L(C),C

)
, U∞).

The right side is isomorphic to Cq(U∞, µ). If η belongs to Cq(U∞, µ) then

0 = (∆η, η) = (dη, dη) + (δη, δη).

In particular dη = 0, so the boundary operator is trivial.

For a given µ there are exactly three irreducible admissible representations of G(R),

satisfying π(z) = µ−1(z) for z ∈ Zo(R), for which π(ω) = µ(ω). There are (i) µ̃, the

contragredient of µ, (ii) g → sgn(detg)µ̃(g), (iii) an infinite­dimensional representation π =

π(µ) such that g → |µ(detg)|1/2π(g) is unitary. If

traceµ

(
α 0
0 β

)
=
αnβm − αmβn

α− β
, n > m,

then g → |detg|−1/2π(g) is, in the notation of Chapter 12 of Jacquet–Langlands, the represen­

tation π(σ), if σ is the two­dimensional representation of the Weil groupWC/R induced from

the representation z → z−nz̄−m of C∗. It follows from the previous lemma and the known

structure of π(µ) thatH1
(
π(µ), µ

)
is two dimensional.

We defineLs(µ) andLsp(µ) in the sameway as we defineLs(µ,K) andLsp(µ,K) except

that we drop the condition of K­invariance. G(A) acts on Lsp(µ) by right translations. This

representation r is a direct sum of irreducible representations

(8) ⊕πV
π.

Each π is a tensor product

π = π∞ ⊗ πf = π∞ ⊗ (⊗pπp).

We write accordingly

V π = V π∞ ⊗ V
π
f .

If V πf (K) is the space ofK­invariant vectors in V πf , then V
π
f (K) is finite dimensional and

Lsp(µ,K) = ⊕πV
π
∞ ⊗ V

π
f (K).
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Each π∞ is infinite dimensional and the set {π∞(ω)
∣∣π ∈ A, V πf (K) 6= 0} is discrete. A

is the set of π occurring in the sum (8). IfA′ = {π ∈ A
∣∣π∞ 6= π(µ)} andA′′ = {π ∈ A

∣∣π∞ =

π(µ)}, set
U1 = ⊕π∈A′V

π
∞ ⊗ V

π
f (K)

U2 = ⊕π∈A′′V
π
∞ ⊗ V

π
f (K).

Then

Hq
(
Vsp(µ,K)

)
≃ Hq(U1, µ)⊕H1(U2, µ).

By Lemma 2.8 the first of these groups is 0. Because the set of π inA′′ for which V πf (K) 6= 0 is

finite the second is

⊕π∞ ≃π(µ) H
q(π∞, µ)⊗ V πf (K).

Theorem 2.10. The group H1
p

(
MK , Fµ(C)

)
is isomorphic to the direct sum over those π

occurring in the representation of G(A) on Lsp(µ) for which π∞ = π(µ) of

H1(π∞, µ)⊗ V πf (K).

Moreover for these π, the group H1(π∞, µ) is two dimensional.

Suppose g ∈ G(Af ) K
′ is another open compact subgroup of G(Af ), and g

−1K ′g ⊆ K .

The map h→ hg ofG(A) to itself factors to a map

R(g) : Mo
K′(C)→Mo

K(C).

We map the inverse image R∗(g)FKµ (C) isomorphically to FK
′

µ (C) by sending a point h ×

(v×hg) in a fibre of the first to v×h in a fibre of the second. Thus g defines maps, all denoted

by R(g),
Hq

(
Mo
K , Fµ(C)

)
→ Hq

(
Mo
K′ , Fµ(C)

)

Hq
c

(
Mo
K , Fµ(C)

)
→ Hq

c

(
Mo
K′ , Fµ(C)

)

and, most importantly for us,

Hq
p

(
MK , Fµ(C)

)
→ Hq

p

(
MK′ , Fµ(C)

)
.

The corresponding maps

Hq
(
V (µ,K), µ

)
→ Hq

(
V (µ,K ′), µ

)

Hq
(
Vc(µ,K), µ

)
→ Hq

(
Vc(µ,K

′), µ
)

H1
(
Vsp(µ,K), µ

)
→ H1

(
Vsp(µ,K

′), µ
)



Antwerp 1972 23

are simply those yielded by right translation by g, which takes, for example, V (µ,K) to

V (µ,K ′).

The map R(g) : MK′(C)→MK(C) is a local homeomorphism and the inverse image of

every point is finite. In fact the inverse image of a point represented by h is represented by

A(h) = {h′
∣∣h′g = hk, k ∈ B} if B is a set of coset representatives for K/g−1K ′g. The fibre

of the direct imageR∗(g)F
K′

µ (C) at the point corresponding to h is

⊕h′∈A(h)L(C)× h′.

We map it to the fibre of FKµ (C) at h by sending

⊕v(h′)× h′ →
(∑

v(h′)
)
× h.

This yields a map

(9) R∗(g)F
K′

µ (C)→ FKµ (C)

and hence mappings R(g) on the cohomology groups. In particular it yields

R(g) : H1
p

(
MK′ , Fµ(C)

)
→ H1

p

(
MK , Fµ(C)

)
.

This corresponds to the map

H1
(
Vsp(µ,K

′), µ
)
→ H1

(
Vsp(µ,K), µ

)

determined by the linear transformation Vsp(µ,K
′)→ Vsp(µ,K)which sends ϕ′ to ϕ with

ϕ(h) =
∑

K/g−1K′g

ϕ(hkg−1).

I remark that starting from the isomorphism FK
′

µ (C) → R∗(g)FKµ (C) we obtain by

functoriality

(10) R∗(g)F
K′

µ (C)→ R∗(g)R
∗(g)FKµ (C).

The fibre of R∗(g)R
∗(g)FKµ (C) at x inMK(C) is the direct sum

⊗x′→xF
K
µ (C)x,



Antwerp 1972 24

if FKµ (C)x is the fibre of F
K
µ (C) at x. The map ⊕v(x′)→

∑
v(x′) on fibres yields a map, the

trace,

(11) R∗(g)R
∗(g)FKµ (C)→ FKµ (C).

The composition of (10) and (11) gives us (9).

Given g we takeK ′ = K ∩ gKg−1 and let

T (g) : H1
p

(
MK , Fµ(C)

)
→ H1

p

(
MK , Fµ(C)

)

be R(1)R(g). In terms of H1
(
Vsp(µ,K), K

)
it is determined by the linear transformation

T (g) : ϕ→ ϕ′ with

ϕ′(h) =
∑

K/K′

ϕ(hkg)

of Vsp(µ,K).

If fg is the characteristic function of KgK divided by meas(K) then T (g) is simply the

restriction to Vsp(µ,K) of

r(f) =

∫

G(Af )

fg(h)r(h) dh

which acts on Lsp(µ). Thus the algebra generated over C by the operators T (g) consists of the

restrictions to Vsp(µ,K) of the operators r(f), where f ∈ HC(K), the algebra of compactly

supported functions on G(Af ) biinvariant underK . The corresponding action ofHC(K) on

H1
(
Vsp(µ,K), µ

)
≃ ⊕H1(π∞, µ)⊗ V πf (K)

is given by the actions πf (f) of f ∈ HC(K) on the V πf (K).

The representation of HC(K) on V πf (K) is irreducible and in fact {πf (f)
∣∣ f ∈ HC(K)}

is the set of all linear transformations of V πf (K). By Proposition 11.1.1 of Jacquet–Langlands

the representations π of G(A) occurring in the decomposition of r are mutually inequivalent.

The set of such π we called A. Therefore the various representations πf of HC(K) are also

equivalent. We deduce immediately:
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Proposition 2.11. The algebra of linear transformations of H1
p

(
MK , Fµ(C)

)
commuting with

the T (g), g ∈ G(Af ) is a direct sum over those π in A for which π∞ ≃ π(µ) and V πf (K) 6= 0

of 2× 2 matrix algebras.

3. ℓ-adic Cohomology. The next step is to define new sheaves, whose cohomology is closely

related to that ofFµ(C) but whichwill have a meaning in the étale topology. Wemay of course

introduce

FKµ (Q) = Fµ(Q) = L(A)×G(A) G(A)/K∞K.

For convenience we introduce

L(Af ) = L(Q)⊗Q Af

onwhichG(Af ) acts via the representation µ. We choose an open compact subgroup ofL(Af )

stable under K and denote it by L(Zf ). If L(Z) = L(Q) ∩ L(Zf ) then L(Zf ) = L(Z) ⊗Z Zf .

If g = g∞gf lies inG(A), set gL(Zf ) = µ(g)L(Zf ) = µ(gf )L(Zf ) and set

gL(Z) = L(Q) ∩ gL(Zf ).

G(Q) acts on

∪g∈G(A) gL(Z)× g = ∪g∈G(Af )/K gL(Z)×G(R)gK

to the left andK∞K acts on it to the right. Dividing out byK∞K we obtain

∪g∈G(Af )/K gL(Z)×G(R)gK/K∞K.

G(Q) acts freely on this space and if we divide by the action ofG(Q) we obtain a sheaf Fµ(Z)

of Z­modules over Mo
K(C). This sheaf is locally free. If we tensor Fµ(Z) with Q we obtain

Fµ(Q). If ℓ is a prime and n ≥ 0we may tensor with Z/ℓnZ to obtain the sheaf F (Z/ℓnZ).

The groupsHq
(
Mo
K , Fµ(Z)

)
andHq

c

(
Mo
K , Fµ(Z)

)
are finitely generated. We have canon­

ical isomorphisms

Hq
(
Mo
K , Fµ(Q)

)
≃ Hq

(
Mo
K , Fµ(Z)

)
⊗Z Q

and

Hq
(
Mo
K , Fµ(C)

)
≃ Hq

(
Mo
K , Fµ(Q)

)
⊗Q C,

as well as exact sequences

0→ Hq
(
Mo
K , Fµ(Z)

)
⊗ Z/ℓnZ→ Hq

(
Mo
K , Fµ(Z/ℓ

nZ)
)
→ Hq+1

(
Mo
K , Fµ(Z)

)
∗Z/ℓnZ→ 0.
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If A is an abelian group A ∗ Z/ℓnZ is the set of elements of order dividing ℓn in A. The map

a→ ℓn−ma sends A ∗ Z/ℓnZ to A ∗ Z/ℓmZ if n ≥ m and the diagram

0−→Hq
(
Mo
K , Fµ(Z)

)
⊗ Z/ℓnZ−→Hq

(
Mo
K , Fµ(Z/ℓ

nZ)
)
−→Hq+1

(
Mo
K , Fµ(Z)

)
∗ Z/ℓnZ−→0y

y
y

0−→Hq
(
Mo
K , FµZ)

)
⊗ Z/ℓmZ −→Hq

(
Mo
K , Fµ(Z/ℓ

mZ)
)
−→Hq+1(Mo

K , Fµ(Z)
)
∗ Z/ℓmZ−→0

in which the first two vertical arrows are yielded by the projection

Z/ℓnZ −→ Z/ℓmZ

is commutative. Thus

lim
←−

n

Hq
(
Mo
K , Fµ(Z/ℓ

nZ)
)
≃ Hq

(
Mo
K , Fµ(Z)

)
⊗Z Zℓ

if Zℓ is the ring of ℓ­adic integers. A fortiori

lim
←−

n

Hq
(
Mo
K , Fµ(Z/ℓ

nZ)
)
⊗Zℓ

Qℓ ≃ H
q
(
Mo
K , Fµ(Q)

)
⊗Q Qℓ.

Thegroupson the rightmaybe identifiedwithHq
(
Mo
K , Fµ(Zℓ)

)
andwithHq

(
Mo
K , Fµ(Qℓ)

)

respectively.

Let A be any of the rings C, Q, Z, Zℓ, Qℓ, or Z/ℓ
nZ. If g ∈ G(Af ) and we let gFµ(A) be

defined in the same way as Fµ(A) except that L(Z) is replaced by gL(Z), then the analogues

of all the above assertions remain true. Of course

gFµ(A) = Fµ(A)

if A is C, Q, or Qℓ. If g
−1K ′g ⊆ K , we have, just as in the previous paragraphs, maps

R(g) : Hq
(
Mo
K , Fµ(A)

)
−→ Hq

(
MK′ , gFµ(A)

)

R(g) : Hq
(
Mo
K′ , gFµ(A)

)
−→ Hq

(
Mo
K , Fµ(A)

)
.

In particular if we takeK ′ = gKg−1 ∩K and choose the scalar matrix a(g) so that a(g)g

stablizes L(Zf ), we may define

(1) T (g) : Hq
(
Mo
K , Fµ(A)

)
−→ Hq

(
Mo
K , a

−1(g)Fµ(A)
)
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as the composition

Hq
(
Mo
K , Fµ(A)

) R(g)
−−−→Hq

(
Mo
K′ , gFµ(A)

)
−−−→Hq

(
Mp
K′ , a

−1(g)Fµ(A)
) R(g)
−−−→Hq

(
Mo
K , a

−1(g)Fµ(a)
)

in which the middle arrow is obtained from the embedding gFµ(A) → a−1(g)Fµ(A). These

maps are all compatible with the indentifications made above. Exactly analogous assertions

are valid for cohomology with compact support. Observe also that in the limit (1) yields

Hq
(
Mo
K , Fµ(Qℓ)

)
−→ Hq

(
Mo
K , a

−1(g)Fµ(Qℓ)
)
≃ Hq

(
Mo
K , Fµ(Qℓ)

)
.

In the followingwe shall be interested inH1
(
Mo
K , Fµ(Qℓ)

)
andH1

c

(
Mo
K , Fµ(Qℓ)

)
which

we regard as the tensor product over Zℓ of Qℓ with

lim
←
H1

(
Mo
K , Fµ(Z/ℓ

nZ)
)

and

lim
←
H1
c

(
Mo
K , Fµ(Z/ℓ

nZ)
)

respectively. These last two groups we shall later identify with groups given by the étale

cohomology. We first remark a consequence of Propositions 2.11. Note that the image

H1
p

(
Mo
K , Fµ(Qℓ)

)
ofH1

c

(
Mo
K , Fµ(Qℓ)

)
inH1

(
Mo
K , Fµ(Qℓ)

)
may be identified with

H1
p

(
MK , Fµ(Q)

)
⊗ Qℓ.

Let H
Q
(K) be the subalgebra of HC(K) formed by the linear combinations of the functions

fg with coefficients from Q. For this we must have an imbedding of Q in C. We fix once and

for all such an imbedding as well as an imbedding of Q in Qℓ. Set

H
Qℓ

(K) = H
Q
(K)⊗

Q
Qℓ.

The first algebra acts onH1
p

(
MK , Fµ(Q)

)
; the second acts onH1

p

(
MK , Fµ(Qℓ)

)
. Tensoring the

first action with C, we obtain the action of HC(K) on H1
p

(
MK , Fµ(C)

)
. Let ρπC be the repre­

sentation ofHC(K) on V πf (K). Proposition 2.11 yields the following assertion immediately.
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Proposition 3.1. For each π in A for which V πf (K) 6= 0 there is a representation ρπ
Q

of

H
Q
(K) which extended to HC(K) yields ρπC. The space H1

p

(
MK , Fµ(Q)

)
is a direct sum

over {π ∈ A
∣∣π∞ ≃ π(µ) and V πf (K) 6= 0} of tensor products Uπ

Q
⊗ V π

Q
(K). Uπ

Q
is two-

dimensional. Moreover each of these subspaces is invariant under the action of H
Q
(K)

and this algebra acts on Uπ
Q
⊗V π

Q
(K) according to 1⊗ρπ

Q
. The same assertions are valid for

ρπ
Qℓ

, the linear extension of ρπ
Q

to H
Q
(K), if Uπ

Qℓ

= Uπ
Q
⊗ Qℓ and V π

Qℓ

(K) = V π
Q

(K)⊗ Qℓ.

ThemanifoldMo
K(C) is the set of complexpoints on a nonsingular algebraic curve defined

overQwhich I denoteMo
K⊗Q. The next step is to interpret the sheaves Fµ(Z/ℓ

nZ) as sheaves

in the étale topology ofMo
K ⊗ Q.

ChooseK0 normal inK so thatK0 acts trivially on

L(Zf )/ℓ
nL(Zf ) ≃ L(Z/ℓnZ).

I map Fµ(Z/ℓ
nZ) to

L(Z/ℓnZ)×K/K0
MK0

(C)

by means of hv × h → v × v if v lies in L(Z/ℓnZ) and h in G(A) projects to x in MK(C).

The action of K/K0 is, by the way, given by v × x → k−1v × xk. The map just introduced

is well­defined because γhv × γhk with γ in G(Q) and k in Kis sent to k−1v × xk. It is a

local homeomorphism and a bijection. In fact if hv × h and h1v1 × h1 have the same image

h1 = γhk with γ inG(Q) and k inK , then v1 × xk is equivalent to v× xmodulo the action of

K/K0; so v1 = k−1v and

h1v1 × h1 = γhv × γhk

defines the same element of Fµ(Z/ℓ
nZ) as hv × h.

The product

L(Z/ℓnZ)×K/K0
(Mo

K0
⊗ Q)

is defined as a group object in the category of schemes étale over Mo
K ⊗ Q. Tensoring with

Q we obtain a sheaf for the étale topology ofMo
K ⊗ Q. Because we have an imbedding of Q

in C, the étale cohomology groups of this sheaf, with or without compact support, may be

identified with those of Fµ(Z/ℓ
nZ). We may, and shall, also regard H1

p

(
MK , Fµ(Qℓ)

)
as the

tensor product of Qℓ with the image of

lim
←
H1
c

(
Mo
K , Fµ(Z/ℓ

nZ)
)
−→ lim

←
H1

(
Mo
K , Fµ(Z/ℓ

nZ)
)
,

where of course the two groups are to be taken in the étale cohomology.
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Both maps R(g), and hence T (g), may be defined in the étale cohomology, once we have

established that R∗(g)FKµ (Z/ℓmZ) and gFK
′

µ (Z/ℓmZ) are isomorphic. Recall that there is a

mapR(g) : Mo
K′ ⊗Q→Mo

K ⊗Q, which when applied to the C­valued points yields the map

R(g) already introduced. Tensoring with Q, we obtain R(g) : Mo
K′ ⊗Q→Mo

K ⊗Q.

R∗(g) applied to FKµ (Z/ℓnZ), regarded now as a sheaf in the étale topology and, in fact,

at first as a sheaf overMo
K ⊗ Q, gives

(2) (MK′ ⊗Q) ×
MK⊗Q

(
L(Z/ℓnZ) ×

K/K0

(Mo
K0
⊗ Q)

)
.

The sheaf gFK
′

µ (Z/ℓnZ) is

(3) gL(Z/ℓnZ) ×
K′/K′

0

(Mo
K′

0
⊗Q).

We may suppose g−1K ′0g ⊆ K0. We may map

(4) gL(Z/ℓnZ)× (Mo
K′

0
⊗ Q)

to (2) by taking a cartesian product of maps to the two factors. Themap toMo
K′⊗Q is obtained

by composing R(e) : Mp
K′

0

⊗ Q → Mo
K′ ⊗ Q with projection on the second factor of (4). The

map g−1×R(g) from (4) toL(Z/ℓnZ)× (Mo
K0
⊗Q) followed by the projection from this space

to its quotient byK/K0 is the map to the second factor of (2). The map from (4) to (2) is easily

seen to factor through (3). The simplest way to see that the resultant map from (3) to (2) is an

isomorphism is to look at its effect on the C­valued points and then to invoke the comparison

theorem. In terms of our representation of the C­valued points as coset spaces of G(A), the

map in question is: gv × h→ h× v × hg. It is easily seen to be an isomorphism and, indeed,

when the redefinition of the sheaves Fµ(Z/ℓ
nZ) is taken into account, to be the isomorphism

used, explicitly or implicitly, in the original discussion. The isomorphism over Q is obtained

by base change.

We have abbreviated an expression like

(Mo
K ⊗ Q) ×

SpecQ
Spec Q

toMo
K⊗Q. From the proper form one sees thatG(Q/Q) acts onMK ⊗Q through its action on

the second factor. To be specific s ∈ G(Q/Q) acts on Spec Q to the left and the corresponding

action on Q is x→ s−1(x). We shall denote the action of s onMo
K ⊗ Q, for anyK , by L(s).
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It is clear that the maps L(s) and R(g) commute. Hence we may also let L(s) act on

Fµ(Z/ℓ
nZ)—now pulled back to the schemeMK ⊗ Q. Since

Fµ(Z/ℓ
nZ)

L(s)
−−−−−→ Fµ(Z/ℓ

nZ)y
y

MK ⊗ Q
L(s)
−−−−−→ MK ⊗Q

is commutative and L(s) is invertible the upper right corner may be regarded, by means of

the diagonal map to the lower left corner, as L∗(s)Fµ(Z/ℓ
nZ) and the inverse of the upper

horizontal arrow is a map

L∗(s)Fµ(Z/ℓ
nZ) −→ Fµ(Z/ℓ

nZ).

Thesemapsyield a representations → ρ(s)ofG(Q/Q)on thegroupsHq
(
Mo
K , Fµ(Z/ℓ

nZ)
)

and, if one takes into account the completionofMo
K⊗Q introduced in [3.1], onHq

c

(
Mo
K , Fµ(Z/ℓ

nZ)
)
.

Hence, because of the obvious consistency, the group G(Q/Q) also acts onHq
(
Mo
K , Fµ(Qℓ)

)
,

Hq
c

(
Mo
K , Fµ(Qℓ)

)
, and onHq

p

(
MK , Fµ(Qℓ)

)
. ρ(s) acts to the right while T (g) acts to the left.

The two actions, because of their construction, commute.

We takeH1
p

(
MK , Fµ(Qℓ)

)
, tensor withQℓ to obtainH

1
p

(
MK , Fµ(Qℓ)

)
, and apply Propo­

sition 3.1 to see that ρ, a representation over Qℓ, is a direct sum

⊗πσ(π)⊗ 1

where σ(π) is a two­dimensional representation on Uπ
Q

ℓ

and 1 acts on V π
Q

ℓ

(K).

4. The basic problem. We may, and it is in fact convenient to do so, form the direct limit

lim
−→

K

H1
p

(
MK , Fµ(Qℓ)

)
.

Proposition 3.1 and standard facts about tensor products show that it is a direct sum

(1) ⊕
{π∈A

∣∣π∞≃π(µ)}
Uπ

Qℓ

⊗ V π
Qℓ

where

V π
Qℓ

= lim
−→

K

V π
Qℓ

(K).

The operatorsR(g) yield a representation ofG(A) on V π
Qℓ

and V π
Qℓ

(K)may be regarded as the

space ofK­invariant vectors in V π
Qℓ

. The space ofK­invariant vectors in (1) may be identified
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withH1
p

(
MK , Fµ(Qℓ)

)
. This justifies our failure, in Proposition 3.1, to include the dependence

of Uπ
Qℓ

on K in the notation. This shows also that the representation σ(π) depends only on

π and not on K and, since K may be chosen arbitrarily small, that it is defined for all π for

which π∞ ≃ π(µ) for some µ.

Given such a π let

π′(g) = |detg|−1/2π(g), g ∈ G(Q).

As we observed in the second paragraph, π′ is any representation of G(A) occurring in the

space of cusp forms such that π′∞ is a π(σ) where σ is a two­dimensional representation of

WC/R whose restriction to C
× is of the form

z →

(
z−nz̄−m 0

0 z−mz̄−n

)

withm 6= n.

By restriction σ = σ(π) yields for every prime p and in particular for every p 6= ℓ, a

condition we shall always impose, a representation σp = σp(π) of the decomposition group

G(Qp/Qp). Of course only the class of σp is uniquely determined.

Let W(Qp/Qp) be the subgroup of G(Qp/Qp) formed by those s which project to an

integral power of the Frobenius in G(F̄p/Fp) if Fp = GF (p). Recall also that we have fixed

an imbedding of Q in Qℓ. Suppose σp is a continuous two­dimensional representation of

G(Qp/Qp) over some finite extension of Qℓ such that

traceσp(s) ∈ Q

for all s inW(Qp/Qp).

I want to describe how to associate, in so far as it is possible at present, to such a σp
an irreducible admissible representation π(σp) of GL(2,Qp). There are two cases to consider

separately. Either there exists a finite Galois extension F of Qp such that σp factors through

the Galois group, G(Fun/Qp), of the maximal unramified extension of F over Qp or it does

not. In the second case I say, for lack of a better terminology, that σp is special.

Suppose first of all that σp is not special. G(Fun/F ) is a normal subgroup ofG(Fun/Qp)

and is injected into the abelian quotient group G(F̄p/Fp). It is therefore central. If s ∈

G(Fun/Qp) let σp(s) = σ1σ2 where σ1 is semi­simple and σ2 is unipotent, the two matri­

ces being supposed to commute. Some power sn of s is central. Since σp(s
n) = σn1 σ

n
2 , σ

n
2

commutes with all σp(t). So does σ2. Then s → σ1 is a representation σ
′
p of G(Fun/Qp)
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by semi­simple matrices. σ′p restricted to the finitely generated group W(Fun/Qp) is a rep­

resentation by matrices with entries from a finitely generated subfield k of Qp. Imbedding

k in C we obtain a complex representation of W(Fun/Qp) which when combined with the

standard homomorphism of the Weil groupWF/Qp
ontoW(Fun/Qp) yields a representation

σ′′p of WF/Qp
by complex semi­simple matrices. The irreducible admissible representation

π(σ′′p ) of GL(2,Qp), in so far as it is known to exist, has been described in Chapter 12 of

Jacquet–Langlands. We set π(σp) = π(σ′′p ). It should of course be observed that the class of

σ′′p does not depend on the imbedding of k in C, because it has been assumed that traceσ(s)

lies in Q for s inW(Fun/Qp).

For convenience I recall how π(σp) is defined for the representations of most interest to

us. Suppose σ′′p is the direct sum of two one­dimensional representations λ and ν, which may

be regarded as quasi­characters of Q×p . Let ρ(λ, ν) be the representations of G(Qp) by right

translations in the space of locally constant functions ϕ on G(Qp) satisfying

ϕ

((
α x
0 β

)
g

)
= λ(α)ν(β)

∣∣∣α
β

∣∣∣
1/2

ϕ(g).

If λν−1 is not of the form α→ |α|±1 then ρ(λ, ν) is irreducible and is in fact π(σ′′p ). Otherwise

it has a composition series with two terms, one of which π(σ′′p ) is finite dimensional. The other

σ(λ, ν) is a so­called special representation.

To see the significance of this terminology, suppose now that σp itself is special. Let

Qt
p be the union of all finite tamely ramified extensions of Qp. G(Qp/Q

t
p) is a pro p­group.

Thus any ℓ­adic representation is trivial on a subgroup of finite index. There is a finite Galois

extensionF ofQp such that σp is trivial onG(Qp/F
t). σp is thus a representation ofG(F t/Qp).

Moreover,G(F t/Fun) is a normal subgroup isomorphic to
∏
q 6=p Zq . EnlargingF is necessary,

we suppose that the restriction of σp to G(F t/Fun) factors through the projection on Zℓ. The

action of G(Fun/F ) onG(F t/Fun) is such that the nth power of the Frobenius, relative to F ,

sends s to sq
n

if q is the number of elements in the finite field corresponding to F . Thus if λ is

an eigenvalue of σp(s) so is λ
qn

. Since σp(s) has only a finite number of eigenvalues they are

all roots of unity. Enlarging F is necessary wemay suppose that σp(s) is unipotent if s projects

to 1 in Zℓ and hence for all s. Because σp is special, σp(s) cannot be 1 for that s projecting to 1.

Let it have the form (
1 x
0 1

)
.

This may of course be effected by an appropriate choice of basis. Since G(F t/Fun) is normal

inG(F t/Qp), σp is a representation of the form

s→

(
µ(s) ∗

0 ν(s)

)
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where µ and ν are quasi­characters. Restricted toW(F t/Qp) they yield as before two quasi­

characters, which we again call µ and ν, of Q×p . Because of our assumption on the traces these

take values inQ. Taking the action ofG(F t/Qp) onG(F t/Fun) into account we see that µν−1

takes α to |α|−1. We take π(σp) to be the special representation σ(µ, ν).

We consider again a π occurring in the space of cusp forms for which π∞ ≃ π(µ) and

let π′(g) = |detg|−1/2π(g). π′ may be written as a tensor product over the valuations of Q,

π′ = ⊗vπ
′
v .

Conjecture: If σp = σp(π) then traceσp(s) ∈ Q for all s in W(Qp/Qp) and π′p is π(σp).

In order to lend some credibility to this conjecture, I shall prove in these lectures that it is

valid if π′p = π(τp) where τp is the direct sum of two one­dimensional representations of the

Weil group or if π′p = σ(λ, ν) is a special representation.

5. Some auxiliary considerations. p is now fixed. Let Ap
f be the subring of Af formed by

those elements whose component at p is 0. G(Af ) is a direct product G(Ap
f )G(Qp). There is

thus a decomposition V πf = V πp̂ ⊗V
π
p . G(Ap

f ) acts on the first andG(Qp) on the second factor.

SetKp = K ∩G(Ap
f ) andKp = K ∩G(Qp). We consider only thoseK for whichK = KpKp.

They form a cofinal family. V πf (K) is then a tensor product

V πp̂ (Kp)⊗ V πp (Kp).

The dimension of the second factor ism(πp, Kp), the multiplicity with which the trivial repre­

sentation ofKp occurs in πp.

If g ∈ G(Ap
f ), we may consider T (g) to be acting on V πp̂ (Kp). The action extends to a

representation of HC(Kp), the algebra of compactly supported Kp­biinvariant functions on

G(Ap
f ), which we denote πp̂.

Let A1(µ) be the set of all π in A such that π∞ ≃ π(µ) and π′p ≃ π(τp), where τp, a

representation of the Weil group of Qp by semi­simple matrices, is a direct sum of two one­

dimensional representations. I recall that π′p : gp → |detgp|
− 1

2 πp(gp). We consider τ
1, a

double representation ofHC(Kp) and the Weil group of Qp, which is defined as

⊕π∈A1(µ)m(πp, Kp){πp̂ ⊗ τp}.

Observe that the sum is effectively finite and that τp is uniquely determined by πp.

This is not the only double representation we want to consider. Let A2(µ) be the set of π

in A for which π∞ ≃ π(µ) while π′p is a special representation σ(λp, νp). The second double

representation to be considered is

τ2 = ⊕π∈A2(µ)m(πp, Kp){πp̂ ⊗ (λp ⊕ νp)}.
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In this paragraph we find formulae for trace
(
τ1(fg, s)

)
and trace

(
τ2(fg, s)

)
if s is an element

of theWeil groupmapping to a non­unit inQ×p . Actually the representations of theWeil group

considered in this paragraph factor through Q×p . However to treat them as representations of

Q×p would be slightly misleading.

The formulae we obtain are quite pretty. To describe them exactly requires some prepara­

tion and, in particular, the introduction of some sets on which G(Ap
f ) acts. They may appear

strange at first. I hope their significance becomes clear in the course of this and the following

paragraph.

Let F be an imaginary quadratic extension of Q which splits at p. Choosing a basis of F ,

a vector space overQ, we may regardG as the group of invertible linear transformations of F .

The centralizer of F , which acts on itself by multiplication, is an algebraic subgroup Hf of G.

There is a v inG(Qp) such that, if A is the group of diagonal matrices,

vA(Qp)v
−1 = H(Qp).

We fix such a v = v(F ) and set

V (Qp) = vN(Qp)v
−1.

We also introduce the set

M(p, F ) = HF (Q)V (Qp) \G(Af )/Kp

on which G(Ap
f ) acts to the right. Dividing byK

p we obtain

MK(p, F ) = HF (Q)V (Qp) \G(Af )/K

which we turn into a toplogical space by providing it with the discrete topology. Kp acts on

L(Qℓ) by means of the projection into G(Qℓ) composed with the action of G(Qℓ) on L(Qℓ)

defined by µ. We let it act on

L(Qℓ)×M(p, F )

by k : (u, y)→ (k−1u, yk). Then

L(Qℓ)×Kp M(p, F )

is a sheaf overMK(p, F ). I denote it by Fµ(Qℓ), a notation already used in another context.

But as it was then used for a sheaf over another space there should be no confusion. The

overlapping notation is of course deliberate.
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If g ∈ G(Ap
f ) and g

−1K ′g ⊆ K , withK ′p = Kp, we may introduce

R(g) : MK′(p, F )→MK(p, F )

as well as the maps

R∗(g)Fµ(Qℓ)→ Fµ(Qℓ)

between two sheaves overMK′(p, F ) and

R∗(g)Fµ(Qℓ)→ Fµ(Qℓ)

between two sheaves overMK(p, F ). To be explicit, the first sends the point represented by

(u× hg)× h to the point represented by gu× h. The second sends

⊕
k∈g−1K′g\K

u× h′

where h′ is defined by h′gk = h, to

(∑
k−1g−1u

)
× h.

If s belongs to the Weil group of Qp and smaps to b in Q×p , then left translation ofG(Af )

by

v

(
1 0
0 b

)
v−1

factors to yield maps L(s) fromMK(p, F ) to itself or from M(p, F ) to itself. There is also a

map

L∗(s)Fµ(Qℓ)→ Fµ(Qℓ).

Both ends of the arrow are sheaves onMK(p, F ). The map is obtained by factoring

(
u× v

(
1 0
0 b

)
v−1h

)
× h→ u× h.

Now supposeK ′ = K ∩ gKg−1. We form the map

ϕ(g, s) = R(e)×R(g)L(s) = R(e)× L(s)R(g) : MK′(p, F )→MK(p, F )×MK(p, F ).

A point x′ which is the inverse image of (x, x) on the diagonal will be called a fixed point

of ϕ(g, s). The maps of sheaves introduced earlier yield in the present circumstances a lin­

ear transformation first from the fibre Fµ(Qℓ)x of Fµ(Qℓ) at x, which is also the fibre of
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R∗(g)L∗(s)Fµ(Qℓ) at x
′, to the fibre Fµ(Qℓ)x′ and then from this space, a subspace of the fibre

of R∗(e)Fµ(Qℓ) at x, to Fµ(Qℓ)x. This composition we denote

ϕx′(g, s) : Fµ(Qℓ)x → Fµ(Qℓ)x.

Lemma 5.1. If s maps to a non-unit b in Q×p then the set of fixed points of ϕ(g, s) is finite.

It is in fact empty for all but a finite number of isomorphism classes of imaginary quadratic

extensions which split at p.

We have chosen a basis of F . We may therefore identify Af (F ) = F ⊗ Af , the ring of

finite adèles of F , withAf ⊕Af . For our purposes a module is just an open compact subgroup

M(Zf ) of Af (F ). It must be of the form

∏

p

M(Zp)

withM(Zp) ⊆ F ⊗Qp. A module is an order if it is a subring of Af (F ) containing 1. G(AF )

acts transitively on the modules. Two modules will be said to lie in the same genus if one

can be transformed to the other by an element of H(Af ) and to the same class if one can be

transformed to the other by an element of H(Q). As on p. 251 of Jacquet–Langlands every

genus contains a unique order. Since the stablizer of a module is open and H(Q) \H(Af ) is

compact every genus contains only a fininte number of classes.

Let n be a positive integer. It follows readily from Lemma 7.3.1 of Jacquet–Langlands

that if γ ∈ H(Q) = F× and γ is not a scalar matrix, that is not in Q×, then the set of orders

containing nγ is finite. Thus the number of genera Γ such that nγ : M(Zf ) → M(Zf ) for

M(Zf ) in Γ is finite.

Returning to the lemma we represent a fixed point x′ by h inG(Af ). Set

g(s) = v

(
1 0
0 b

)
v−1 ∈ G(Qp).

There is a k inK , a u in V (Qp), and a γ inH(Q) such that

(1) g(s)hgk = uγh.

Let

h = hp̂hp

with hp̂ inG(Ap
f ) and hp inG(Qp). Decompose k in the same manner. The equation (1) yields

g(s)hpkp = uγhp
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or

(2) kp = h−1
p g−1(s)uγhp

and

hp̂gkp̂ = γhp̂

or

(3) gkp̂ = h−1
p̂ γhp̂.

Considering eigenvalues, we infer from (2) and (3) that γmust lie in a compact subset ofH(Af )

and hence in a finite subset ofH(Q).

Choose a moduleM(Zf ) fixed by K . The map h → hM(Zf ) maps H(Q) \ G(Af )/K

to the set of classes of modules. The inverse image of each class is finite. We choose a

set of representtives for the fixed points. We have to show that this set is finite. Since

H(Qp)V (Qp) \ G(Qp)/Kp is finite we may assume hp lies in a fixed finite set. Choose n in

Z such that ng takes M(Zf ) into itself. Suppose also that for all γ which can enter into the

equation (1), and for the fixed finite set of hp, nγ takes hpM(Zp) into itself. From (3) we deduce

that nγ takes hM(Zf ) into itself. Since there are only a finite number of γ under consideration

and, because of (2) and our assumption on s, none of them lie inQ×, the set of classes in which

hM(Zf ) can lie is finite. It follows that the set of representatives is itself finite.

The second assertion of the lemma follows from the observation that (2) and (3) force the

trace and determinant of γ to lie in a compact subset of Af and thus in a finite subset of Q.

Set

A(F ) =
∑

traceϕx′(g, s).

The sum is taken over the fixed points of ϕ(g, s). It will be important to us but we should

write it in a more useful form.

It was agreed at the beginning to take K so small that no element of G(Q) is conjugate

to an element of K∞K . IfKp is given we can chooseK
p so small that for no element γ of an

imaginary quadratic field can γ be integral at p and such that the equations

trace kq = trace γ

detkq = Nmγ

are solvable for all q 6= pwith k = (kq) inK
p. This we assume henceforth. SinceK plays only

an auxiliary role, we can afford to make such an assumption.
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Given h inG(Af )which represents a fixed point, suppose that in addition to equation (1)

an equation

g(s)hgk̄ = ūγ̄h

of the same type also holds. Then

k̄−1
p̂ kp̂ = h−1

p̂ γ̄−1γhp̂

and

k̄−1
p kp = h−1

p γ̄−1ū−1uγhp.

The eigenvalues of γ̄−1ū−1uV are those of γ̄−1γ. Our assumption implies therefore that γ = γ̄.

Thus γ is uniquely determined by h, and kp̂ is in its turn uniquely determined by γ and h.

B is the group of supertriangular matrices. LetG(Qp) be the disjoint union

∪iB(Qp)giKp.

If hi = vgi, with v = v(F ), then G(Qp) is also the disjoint union

∪iV (Qp)H(Qp)hiKp.

Let Ui be the projection of

giKpg
−1
i ∩B(Qp)

onA(Qp). If hp ∈ V (Qp)H(Qp)hiKp the equation (2) can be satisfied with some u if and only

if g−1(s)γ lies in vUiv
−1.

We observe next that at a fixed point representated by h the trace of ϕx′(g, s) is

traceµ(γ)

if γ satisfies (1). To see this observe that the corresponding map of Fµ(Qℓ)x to Fµ(Qℓ)x′ is the

composition ((
u× g(s)hg

)
× hg

)
× h→ (u× hg)× h→ gu× h.

Now passing from Fµ(Qℓ)x′ tp Fµ(Qℓ)x we send

(gu× h)→ kgu× hk−1

because of equation (1). Thus

traceϕx′(g, s) = traceµ(kℓgℓ) = traceµ(gℓkℓ) = traceµ(γ)

because of equation (3). kℓ and gℓ are the components of k and g at ℓ.
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Lemma 5.2. Let fg be the characteristic function KpgKp, a subset of G(Ap
f ), divided by the

measure of Kp and let χi be the characteristic function of Ui. Then A(F ) is the measure

of H(Q) \H(Af ) times the sum over γ in H(Q) of

traceµ(γ)

{
∑

i

χi
(
v−1g−1(s)γv

)

meas(vUiv−1)

} ∫

H(Ap

f
)\G(Ap

f
)

fg(h
−1γh) dh.

Our discussion to this point shows that A(F ) is equal to

(4)
∑

γ

∑

i

∑

h

χi
(
v−1g−1(s)γv

)
traceµ(γ).

The outer sum is over γ in H(Q). The inner sum is over a set of coset representatives for

H(Q)V (Qp) \G(Af )/K
′ for which

hp ∈ vB(Qp)giKp

and

h−1
p̂ γhp̂ ∈ gK

p.

Let {kα} be a set of coset representatives forK/K
′, each of which is taken to lie inKp. I

claim that it is possible to replace the sumover coset representatives ofH(Q)V (Qp)\G(Af )/K
′

by a sum over hkα, α varying and h varying over a collection of coset representatives of

H(Q)V (Qp) \G(Af )/K . Suppose in fact that

(5) hkα = γuhkβk
′

with γ in H(Q), u in V (Qp), and k
′ in K ′. Then γu lies in hKh−1. Since γ and γu have

the same eigenvalues at each place, our basic assumption implies that γ = 1. Examining

equation (5) away from p and recalling that kα and kβ lie in K
p, we conclude that α = β, as

claimed.

The setKpgKp is the disjoint union

∪kαgK
p.

Thus

h−1
p̂ γhp̂ ∈ K

pgKp

if and only if

k−1
α h−1

p̂ γhp̂kα ∈ gK
p
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for some α, and this α is then unique. A(F ) is thus equal to

∑

γ

∑

i

∑

h

traceµ(γ)χi
(
v−1g−1(s)γv

)
fg(h

−1
p̂ γhp̂) measKp.

The inner sum is taken over a set of representatives for the double cosets

H(Q)V (Qp)vUiv
−1 \G(Ap

f )V (Qp)H(Qp)/K
p = H(Q)vUiv

−1 \G(Ap
f )H(Qp)/K

p.

A(F )may be written then as

∑

γ

∑

i

traceµ(γ)
χi

(
v−1g−1(s)γv

)

meas(vUiv−1)

∫

H(Q)\G(Ap

f )H(Q
p
)

fg(h
−1
p̂ γhp̂) dh.

The step from here to the assertion of the lemma is short.

There are still more spaces likeMK(p, F ) to be constructed. LetD be the quaternion alge­

bra overQ split everywhere but at p and∞ and letG′ be the multiplicative group ofD. G′ and

G are isomorphic as algebraic groups over Qq if q 6= p. This observation yields isomorphisms

G′(Qq) → G(Qq) as well as G
′(Ap

f ) → G(Ap
f ). We choose one such isomorphism. Any two

would differ by an inner automorphism, so it does not really matter which one we take. Let

Vi = {detk
∣∣ k ∈ Ui}

and

Wi = {g ∈ G′(Qp)
∣∣Nmg ∈ Vi}.

ThenM i
K(p,D) is the space

G′(Q) \G′(Af )/K
pWi.

I have taken the liberty of using the isomorphism introduced, to imbedKp inG(Ap
f ). We may

also introduce

M i(p,D) = G′(Q) \G′(Af )/Wi

as well as the sheaf Fµ(Qℓ) onM
i
K(p,D) defined by

L(Qℓ)×Kp M i(p,D).

G(Ap
f ) acts onM

i(p,D) to the right by means of the isomorphism between G(Ap
f ) and

G′(Ap
f ), which we might as well use to identify the two groups. We may also define the maps
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R(g). If s belongs to theWeil group andmaps to b inQ×p let g(s) now be any element ofG
′(Qp)

such that

Nmg(s) = b.

Let L(s) be the map of M i
K(p,D) to itself obtained by factoring the map h → g(s)h on

G′(Af )/Wi.

We can again introduce the necessary maps from one sheaf to another, as well as the cor­

respondence ϕ(g, s) and, if x′ is a fixed point of the correspondence, the linear transformation

ϕx′(g, s). The introduction of

A(D) =
∑

i

∑
traceϕx′(g, s)

where the inner sum is over the fixed points of ϕ(g, s) onM i
K′(p,D) is more than justified by

the next lemma.

Lemma 5.3. The set M i
K(p,D) is finite.

Wemay regard Z, the centre ofG, also as the centre ofG′. G′(Q) is discrete inG(Af ) and

G′(Q)Zo(R) \G′(A) ≃ Zo(R) \G′(R)×G′(Q) \G′(Af ).

The left side is known to be compact. SinceKpWi is open inG(Af ) the lemma follows.

Lemma 5.4. Let δi be the characteristic function of Wi. If γ ∈ G′(Q) let G′(γ) be its

centralizer in G′ and let {γ} be the conjugacy class of γ in G′(Q). A(D) is equal to the

sum over all {γ} of

traceµ(γ) meas
(
G′(γ,Q) \G′(γ,Af )

)
meas

(
G′(γ,Qp) \G

′(Qp)
)

times {
∑

i

δi
(
g−1(s)γ

)

measWi

} ∫

G(γ,Ap

f )\G(Ap

f )

fg(h
−1γh) dh.

Suppose h inG′(Af ) represents a fixed point onM
′
K(p,D). There is then an equation

g(s)hgkkp = γh

with γ inG′(Q), k inKp, and kp inWi. This equation, for a given h and γ, can be solved for k

and kp if and only if g
−1(s)γ ∈ Wi and

h−1
p̂ γhp̂ ∈ gK

p.
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If h represents the fixed point x′ and

x = L(s)R(g)x′ = R(e)x′

the map from the fibre of L∗(s)R∗(g)Fµ(Qℓ) at x
′, which is also Fµ(Qℓ)x′ to Fµ(Qℓ)x′ is given

by composition

((
u× g(s)hg

)
× hg

)
× h→ (u× hg)× h→ gu× h.

Passing from Fµ(Qℓ)x′ , which is contained in the fibre of R∗(e)Fµ(Qℓ) at x, to Fµ(Qℓ)x we

send

gu× h→ kkpgu× hk
−1
p k−1 = kgu× hk−1

p k−1.

Thus

traceϕx′(g, s) = traceµ(kℓgℓ) = traceµ(γ).

Let me observe also that an equation

g(s)hgk̄k̄p = γ̄h

implies that

h−1γ̄−1γh = k̄−1
p k̄−1kkp

and hence, by our assumption, that γ = γ̄. A(D) is thus equal to

∑

γ

∑

i

∑

h

traceµ(γ).

γ runs over G(Q). h runs over those elements of a set of representatives for the double coset

spaceM i
K′(p,D) which satisfy g−1(s)γ ∈ Wi and h

−1
p̂ γhp̂ ∈ gK

p. As before we replace the

set of representatives forM i
K′(p,D) by hkα, α varying as before and h varying over a set of

representatives forG′(Q) \G′(Af )/K
pWi. The sum is then

∑

γ

∑

i

∑

h

traceµ(γ)δi
(
g−1(s)γ

)
fg(h

−1
p̂ γhp̂) measKp

which is equal to

∑

γ

∑

i

traceµ(γ)
δi

(
g−1(s)γ

)

measWi

∫

G′(Q)\G′(Af )

fg(h
−1
p̂ γhp̂) dh.
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This expression is readily transformed into that of the lemma.

A(F ) and A(D) will occur in our formula for trace τ1(fg, s). However to express this

trace completely, still more supplementary terms must be introduced. N is the group of

matrices of the form (
1 x
0 1

)

and A+(Q) is the group of diagonal matrices

(
α 0
0 β

)

with α and β in Q and αβ > 0. We form the space

C(p) = N(Af )A
+(Q) \G(Af )/Kp

as well as

CK = CK(p) = N(Af )A
+(Q) \G(Af )/K.

If g ∈ G(Ap
f ), R(g) is as usual the transformation of C yielded by right translation of G(Af )

by g. If g−1K ′g ⊆ K andK ′p = Kp, in particular ifK
′ = K ∩gKg−1, thenR(g) : CK′ → CK .

If s is in the Weil group and maps to b in Q×p , we again take

g(s) =

(
1 0
0 b

)

and let L(s) : CK → CK be left translation by g(s).

We introduce once again

ϕ(g, s) = R(e)× L(s)R(g) : CK′ → CK × CK .

x′ is a fixed point of ϕ(g, s) if it lies in the inverse image of some point (x, x) on the diagonal.

h in G(Af ) is the representative of a fixed point if there is a γ in A
+(Q), a k inK , and an n in

N(Af ) such that

(6) g(s)hgk = nγh.

If a similar equation

g(s)hgk̄ = n̄γ̄h

also obtains, then

k−1k̄ = h−1(γ−1n−1n̄γ̄)h.
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Since γ−1n−1n̄γ̄ and γ−1γ̄ have the same eigenvalues, our basic assumption implies that

γ = γ̄. Let

γ =

(
a 0
0 d

)
.

It is determined for a given g and s solely by x′. Since

hkh−1 = g−1(s)nγ

we have |a|p = 1 and |d|p = |b|p. In particular if, as we assume, b is a non­unit, then |a| 6= |d|.

Let a′ and d′ be a and d cleared of any common divisor or sign and let

traceµ

(
a 0
0 d

)
=

∑

1+j=m
i≥ℓ

j≥ℓ

aidj .

If |a| > |d|, set

ψ(γ) = (d′ − a′) traceµ(γ) + a′am−ℓdℓ

and if |a| < |d| set

ψ(γ) = a′am−ℓdℓ.

Take B to be the sum over all fixed points in CK′ of ψ(γ).

Lemma 5.5. Assume that the image b of s in Q×p is not a unit. Then B is equal to the

measure of A+(Q) \A(Af ) times the sum over γ in A+(Q) of the eigenvalue µ(γ) smallest

in absolute value multiplied by

|b|
− 1

2
p

{
∑

i

χi
(
g−1(s)γ

)

measUi

}
min

{∣∣∣a
d

∣∣∣
1
2

,
∣∣∣d
a

∣∣∣
1
2
}

times 



∏

q 6=p

∣∣∣ (a− d)
2

ad

∣∣∣
1
2

q

∫

A(Ap

f
)\G(Ap

f
)

fg(h
−1γh) dh



 .

If hp lies in B(Qp)giKp then (6) has a solution for a given h and γ if and only if g
−1(s)γ

lies in Ui and np̂ inN(Ap
f ) exists such that

(7) h−1
p̂ np̂γhp̂ ∈ gK

p.
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If

V = V pVp = γh
(
K ∩ h−1γ−1N(Af )γh

)
h−1γ−1

then np̂ is uniquely determined modulo V
p and kp̂ is determined by np̂.

The sum B is thus equal to

∑

γ

∑

i

∑

h,np̂

χi
(
g−1(s)γ

)
ψ(γ).

The inner sum is taken over the coset representatives of N(Af )A
+(Q) \ G(Af )/K

′ and

N(Ap
f )/V

p which satisfy hp ∈ B(Qp)giKp and relation (7). The eigenvalue λ(γ) of µ

(
a 0
0 d

)

of smallest absolute value is am−ℓdℓ if |a| < |d| and dm−ℓaℓ if |d| < |a|. Thus

ψ(γ) = λ(γ) min{a′, d′}.

We cannot immediately indulge in the usual device of replacing the coset representatives

of CK′ by hkα, where h runs over a set of coset representatives of CK and kα over a set of

representatives of K/K ′. To see what modification is necessary, we suppose hkα and hkβ
determine the same coset in CK′ , so that

hkα = nγhkβ k̄

with n in N(Af ), γ in G(Q), and k̄ in K ′. The equation implies that nγ is conjugate to an

element ofK and it follows then, from our assumption, that γ = 1. Hence

k−1
β kαk̄ = k−1

β h−1nhkβ ∈ k
−1
β h−1N(Af )hkβ ∩K.

For a given β the number of α satisfying this condition is the index

[k−1
β h−1N(Af )hkβ ∩K : k−1

β h−1N(Af )hkβ ∩K
′].

Since Kp = K ′p, K = KpKp, and K
′ =

(
K ′ ∩ G(Ap

f )
)
Kp, we may replace h by hp̂, Af

by A
p
f ,K byK

p, andK ′ byK ′ ∩G(Ap
f ). There is also no harm in supposing that kβ = 1. Set

W = N(Ap
f ) ∩ hp̂K

ph−1
p̂ .

We want to compute

[W : W ∩ hp̂
(
K ′ ∩G(Ap

f )
)
h−1
p̂ ].
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The smaller group is

(8) W ∩ hp̂gK
pg−1h−1

p̂

becauseK ′ is gKg−1 ∩K . We are also supposing the relation (7) is satisfied. When that is so

hp̂gK
pg−1h−1

p̂ = np̂γhp̂K
ph−1
p̂ γ−1n−1

p̂

and the intersection (8) is

W ∩ np̂γWγ−1n−1
p̂ = W ∩ γWγ−1.

The index [W : W ∩ γWγ−1] is clearly
∏
q 6=p |a

′|−1
q .

We may therefore replace the sum over coset representatives of CK′ by a sum over

hkα provided we replace λ(γ) min{a′, d′} by λ(γ) min{1, da} that is, provided we divide by∏
q 6=p |a

′|−1
q . As usual we drop the sum over α and replace condition (7) by

h−1
p̂ np̂γhp̂ ∈ K

pgKp.

It must of course be observed that the group V or V p, which at first sight depends on h and

kα, depends in fact only on h.

Taking the above discussion into account, I rewrite the sum B as

∑

γ

∑

i

∑

h

∑

np̂

χi
(
g−1(s)γ

)
min{1,

d

a
}λ(γ).

Here h = hp̂hp runs over those elements in a set of coset representatives for CK for which hp
lies in B(Qp)giKp and np̂ runs over a set of coset representatives ofN(Ap

f )/V
p for which

h−1
p̂ np̂γhp̂ ∈ K

pgKp.

The sum over np̂ may be written as

(9)
measKp

measV p

∫

N(Ap

f
)

fg(h
−1
p̂ np̂γhp̂) dnp̂

multiplied by

(10) χi
(
g−1(s)γ) min

{
1,
d

a

}
λ(γ)|b|−1

p .
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Observe that

γ−1V pγ = hKph−1 ∩N(Ap
f ) = Up

depends only on h and not on γ. Changing variables one sees that (9) is equal to

(11)
measKp

measUp

∫

N(Ap

f
)

fg(h
−1
p̂ γnp̂hp̂) dnp̂.

We may take our coset representatives for CK to be of the form hgi, where h = hp̂hp and

hp lies in A(Qp). For each i, h then varies over a set of coset representatives for

(12) N(Ap
f )A

+(Q) \G(Ap
f )A(Qp)/K

pUi.

The expression (10) depends on hgi only through gi. Hence to computeBwe sum (9), or rather

(11), over coset representatives for (12). Choose a productmeasure onG(Ap
f )A(Qp). The given

measure on N(Ap
f ), combined with the measure on A

+(Q) which assigns the measure 1 to

each point, yields a measure on N(Ap
f )A

+(Q). Taking quotients we obtain a measure on

N(Ap
f )A

+(Q) \G(Ap
f )A(Qp). The measure of the double coset in (12) represented by h is

measKp ·measUi
measUp

.

The sum of (11) over coset representatives for (12) is therefore

(13)
1

measUi

∫

N(Ap

f
)A+(Q)\G(Ap

f
)A(Qp)

{∫

N(Ap

f
)

fg(h
−1
p̂ γnhp̂) dn

}
dh.

The map

n→ n′ = γ−1n−1γn

is a homeomorphism ofN(Ap
f )with itself and

dn′ =
{ ∏

q 6=p

∣∣∣1− d

a

∣∣∣
1

}
dn.

Since ∣∣∣1− d

a

∣∣∣
q

=
∣∣∣d
a

∣∣∣
1/2

q

∣∣∣ (a− d)
2

ad

∣∣∣
1/2

q

and ∣∣∣d
a

∣∣∣
p

{ ∏

q 6=p

∣∣∣d
a

∣∣∣
q

}
=

∣∣∣a
d

∣∣∣
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while ∣∣∣a
d

∣∣∣
p

= |b|−1
p

a change of variables in (13) yields the product of

|b|−1/2
p

∣∣∣a
d

∣∣∣
1/2 ∏

q 6=p

∣∣∣ (a− d)
2

ad

∣∣∣
1/2

q

and
1

measUi

∫

N(Ap

f
)A+(Q)\G(Ap

f
)A(Qp)

{∫

N(Ap

f
)

fg(h
−1
p̂ n−1γnhp̂) dn

}
dh.

The double integral is ∫

A+(Q)\G(Ap

f
)A(Qp)

fg(h
−1
p γhp̂) dh

or

meas
(
A+(Q) \A(Af )

) ∫

A(Ap

f
)\G(Ap

f
)

fg(h
−1γh) dh.

We obtain the lemma simply by reassembling the above data.

There are further spaces, simpler than the previous ones, to be introduced. Let Ḡ = GL(1)

and let

K̄ = K̄pK̄p = {detk
∣∣ k ∈ K}.

We introduce the space

M̄K = Ḡ+(Q) \G(Af )/K̄

where Ḡ+(Q) is the set of positive elements in Ḡ(Q). If as before Vi is the set of detk, k ∈ Ui,

we set

M̄ i
K = Ḡ+(Q) \G(Af )/K̄

pVi.

Each of these spaces is finite.

ḡ is detg and ḡ(s) is just b, the image of s in Q×p = ḡ(Qp). The maps R(g) : M̄ i
K → M̄ i

K

are defined by right multiplication by ḡ and L(s) : M̄ i
K → M̄ i

K by left multiplication by ḡ(s).

We do not introduce any sheaves unless µ is one­dimensional. Assume for now that this is so.

µ is then of the form g → ν(detg). If M̄ i = Ḡ+(Q) \ Ḡ(Af )/Vi we set

Fν(Qℓ) = L(Qℓ)×K̄p M̄ i

where k : v × y → ν(k−1
ℓ )v × yk. Once this is done we can introduce

ϕ(g, s) : ∪M̄ i
K → ∪M̄

i
K × M̄

i
K

as well as the various maps between sheaves. We let Ā be the product of

[K : K ′]
∣∣ (|b|−1

p + 1)

with the sum over the fixed points x′ of ϕ(g, s) on ∪M̄ i
K of traceϕx′(g, s).
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Lemma 5.6. If µ is one-dimensional, Ā is equal to

(|b|−1
p + 1)

∑

i

{∑
χ(b)

∫

G(Ap

f
)

fg(h)χ(deth) dh
}
.

The inner sum is over all quasi-characters χ of Ḡ(Q) \ Ḡ(A) which are trivial on K̄pVi
and such that χ(z)ν(z) = 1 of z ∈ Ḡ(R) is positive.

If h in Ḡ(Af ) represents a fixed point x
′

bhḡk̄ = δh

with k̄ in K̄pVi and δ in Ḡ
+(Q). In general the map from the fibre at bhḡ to that at h may be

represented by

v × bhḡ → ḡv × h = ν(ḡℓ)v × h.

When bhḡk̄ = δh the point represented by the expression on the right is also represented by

ν(k̄ℓḡℓ)v × bhḡ.

Thus

trace yx′(g, s) = trace ν̄(k̄ℓḡℓ) = trace ν(δ).

δ is uniquely determined by b and ḡ. Thus

Ā =
∑

i

Āi

where Āi is 0 if there are no fixed points on M̄
i
K , that is, if bḡ does not lie in Ḡ

+(Q)K̄pVi, but

where Āi is otherwise [K : K ′](|b|−1
p + 1) times

[Ḡ(Af ) : Ḡ+(Q)K̄pVi]ν(δ).

Let εi be the characteristic function of Ḡ
+(Q)K̄pVi. Then

∑
χ(b)

∫

G(Ap

f
)

fg(h)χ(deth) dh

is equal to

[Ḡ(Af ) : Ḡ+(Q)K̄pVi]

∫

G(Ap

f
)

|ν(b deth)|−1fg(h)εi(b deth) dh.
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Recall that fg is the characteristic function of K
pgKp divided by the measure of Kp. If

h = k1gk2 then

εi(b deth) = εi(bḡ).

Thus the integrand vanishes identically if Āi = 0. Otherwise the integral is equal to

meas(KpgKp)

measKp
= [K : K ′]

multiplied by

|ν(b deth)|−1 = |ν(δ)|.

This equality is a consequence of the product formula applied to ν(δ). The lemma is an

immediate consequence of these calculations.

The following proposition will be proved in the next paragraph.

Proposition 5.7. If Kp is given and Kp is then chosen sufficiently small and if s in the Weil

group maps to an element of absolute value less that 1 in Q×p , then the trace of τ1(fg, s)

is equal to

−
{ ∑

F

A(F )
}
− A(D)−B + Ā

where Ā is taken to be 0 if µ is not one-dimensional. The sum is over a set of represen-

tatives for the isomorphism classes of imaginary quadratic fields.

We shall also find a formula for trace τ2(fg, s). Define Ā0 just as Ā was defined except

that the union of M̄ i
K is replaced by M̄K . Let

W = {g′ ∈ G′(Qp)
∣∣Nmg′ ∈ K̄p}

and set

MK(p,D) = G′(Q) \G′(Af )/K
pW.

DefineAo(D) in the sameway asA(D) except thatMK(p,D) replaces the union ofM i
K(p,D).
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Proposition 5.8 With the assumptions of the previous proposition the trace of τ2(fg, s) is

equal to

(|b|−1
p + 1)

(
A(D)− Ao(D)

)
− (Ā− Āo).

6. The trace formula. This formula, which will be used to prove Propositions 5.7 and 5.8 has
been described, in a form pretty close to that needed, in [4.1] and [6.3]. The preprint [6.1] is

also a very good reference. I write it out again here, or at least the part of it we require, with

the appropriate changes and comments.

It will save a lot of trouble if we fix some conventions formeasures. LetF be a global field,

which to avoid irrelevant explanations I take of characteristic zero, and let ψ be a non­trivial

character of A(F ), trivial on F . For every place v, ψv defines a non­trivial character ψv for

Fv . Let dxv be the measure on Fv self­dual with respect to ψv . If Ω is an n­dimensional

analytic manifold over Fv and ω = ϕ(x1, · · · , xn) dx1 ∧ · · · ∧ dxn is an n­form we set |ω|v =

|ϕ(x1, · · · , xn)| dx1
v · · ·dx

n
v . In particular, if G is a connected algebraic group over F and ω

is a right­invariant form of highest degree also defined over F , then |ω|v is a Haar measure

on G(Fv). If λ is the representation of G(F̄ /F ) on the lattice of rational characters of G and

L(s, λv) is defined as, for example, in [6.4], then

dgv = L(1, λv)|ω|v

is called the Tamagawa measure on G(Fv) determined by ω. It will be convenient to write

L(s,G/Fv) for L(s, λv). The product measure
∏
v dgv will be called the unnormalized Tama­

gawameasure onG(A). If r is the multiplicity of the trivial representation in λ, the quotient of

the unnormalized Tamagawa measure by lim
s→1

(s−1)rL(s, λ) is called the Tamagawa measure.

L(s, λ) is defined by a product over all places. We shall use Tamagawa measures locally and

unnormalized Tamagawa measures globally. On discrete groups we take the measure which

assigns the value 1 to each point. On quotient spaces we take, unless otherwise stated, quotient

measures, at least when this is possible, and on the Pontrjagin dualD(M) of a locally compact

groupM we take the measure dual to that inM .

If Φ is a function onG(A)which satisfies

Φ(zg) = µ(z)Φ(g)

for z in Zo(R), has compact support modulo Zo(R), is bi­invariant with respect to some open

subgroup ofG(Af ), and infinitely differentiable as a function of its coordinate at infinity, then

r(Φ) =

∫

Zo(R)\G(A)

Φ(h)r(h) dh
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operates on Lsp(µ) and is of trace class. The trace formula gives its trace.

The reader will notice that in [4.1] and [6.3] Z(A) played the role here assumed by Zo(R).

This has an effect on the formula. Moreover the trace formula as described in [4.1] gives the

trace not of the representation r on Lp(µ) but of the representation on the sum of Lp(µ) and

Lose(µ). Thus we have to add to it the negative of the trace on Lose(µ). This is

(1) −
∑

χ

∫

Zo(R)\G(A)

χ(deth)Φ(h) dh.

The sum is over all quasi­charaacters of Ḡ(Q)\ Ḡ(A) such that χ(detz)µ(z) is 1 for z inZo(R).

We now rewrite, in so far as we need them, the terms (i) to (viii) of the trace formula given

on p. 516–517 of Jacquet–Langlands. The term (i) is

(2) meas
(
Zo(R)G(Q) \G(A)

) ∑

γ∈Z(Q)

Φ(γ).

The term (ii) becomes

(2′)
∑

{γ}

meas
(
Zo(R)G(γ,Q) \G(γ,A)

) ∫

G(γ,A)\G(A)

Φ(h−1γh) dh.

The sum is over conjugacy classes in G(Q) whose eigenvalues do not lie in Q. The term (iii)

does not occur for a field of characteristic 0. The terms (vi) and (vii), as well as the first part

of (v), will vanish for the Φ to which we shall apply the trace formula, so there is no need to

write them out explicitly.

Each termmentioned so far, including the ones not written out explicitly, has been invari­

ant, in the sense that it does not change if Φ is replaced by Φ′ with Φ′(h) = Φ(x−1hx). This is

not true of (iv), the last part of (v), and (viii). Their sum can however be written as a sum of

invariant terms. Let me describe the form taken by these terms when Φ is of the form

Φ(h) =
∏

v

Φv(hv).

If a ∈ A(Qv) is a diagonal matrix set

FA(a,Φv) = ∆(a)

∫

A(Qv)\G(Qv)

Φv(h
−1ah) dh
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with

∆(a) =

∣∣∣∣
(α− β)2

αβ

∣∣∣∣
1
2

v

if α and β are the eigenvalues of a. I observe that if the representation ρ(λv, ηv), where λv and

ηv are two quasi­characters of Q
×
v , is defined as the previous paragraph, then

trace ρ(Φv;λv, ηv) =

∫

A(Qv)

FA(a,Φv)λv(α)ηv(β) da

if v is finite. If Qv is R, the right side must be replaced by an integral over Z
o(R) \A(R) and

the formula is only valid when λvηv equals µ
−1 on Zo(R).

The distribution Φv → FA(a,Φv) is invariant. There is for each v and each γ in A(Q)

another invariant distributionΦv → D(γ,Φv), rather complicated to write out explicitly, such

that the remaining parts of the trace formula may be combined into

(3) meas
(
Zo(R)Z(Q) \ Z(A)

) ∑

γ∈A(Q)

∑

v

{
D(γ,Φv)

∏

w 6=v

FA(γ,Φw)
}
.

All but finitely many of the terms in this double sum are 0.

Given g inG(Ap
f ) and an s in the Weil group which maps to an element of absolute value

less than 1 in Q×p , we shall choose Φ1 and Φ2 so that

(4) trace r(Φ1) = − trace τ1(fg, s)

and

(5) trace r(Φ2) = − trace τ2(fg, s).

Write h in G(A) as h∞hph
p
f with h∞ in G(R), hp in G(Qp), and h

p
f in G(Ap

f ). The functions

Φ1 and Φ2 will have the form

(6) Φ1(h) = Φ∞(h∞)Φ1
p(hp, s)fg(h

p
f )

and

(7) Φ2(h) = Φ∞(h∞)Φ2
p(hp, s)fg(h

p
f ).

The functionΦ∞ is of course to be infinitely differentiable, with compact support modulo

Zo(R), and to satisfy

Φ∞(zg) = µ(z)Φ∞(g)
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for z in Zo(R). If π∞ is an irreducible admissible representation of G(R) which agrees with

µ−1 in Zo(R) then π∞(Φ∞) is defined. We demand that the trace of π∞(Φ∞) be zero unless

π∞ ≃ π(µ), when it is to be −1, unless π∞ ≃ µ̃ or sgn(detg)µ̃, when it is to be 1. µ̃ is as

before the representation contragredient to µ. The existence of Φ∞, at least for µ trivial on

Z, is proved by Duflo–Labesse as an application of a Paley–Wiener theorem for the projective

group. The existence in general is proved in a similar manner.

The conditions imposed onΦ∞ entail several properties that will be important to us. First

of all

FA(γ,Φ∞) = 0

if γ ∈ A(R). This equation is what forces the terms of the trace formula that we have not

written out explicitly to vanish. It means moreover that (3) is equal to

(8) meas
(
Zo(R)Z(Q) \ Z(A)

) ∑

γ∈A(Q)

D(γ,Φ∞)
∏

w 6=∞

FA(γ,Φw).

Let G′(R) be the multiplicative group of a quaternion algebra over R. As in §15 of Jacquet–

Langlands, the measure on G(R) determines one on G′(R). The centre of G′(R), which to

simplify the notation we identify with Z(R), is also provided with a measure. If z ∈ Z(R)

Φ∞(z) =
−1

meas
(
Zo(R) \G′(R)

) traceµ(z).

If γ inG(R) has two distinct real eigenvalues

∫

G(γ,R)\G(R)

Φ∞(h−1γh) dh = 0

but if γ has complex eigenvalues

∫

G(γ,R)\G(R)

Φ∞(g−1γg) dg =
1

meas
(
Zo(R) \G(γ,R)

) traceµ(γ).

All these facts are consequences of the general theory of harmonic analysis on reductive

Lie groups. We also need to evaluate D(γ,Φ∞). For µ trivial on Z this has been done in

Duflo–Labesse [6.3]; otherwise one has either to carry out their proof for general µ or to

appeal to a forthcoming paper (tentatively entitled “The Fourier transform of some tempered

distributions”) by J. Arthur, who discusses the problem for all groups of real rank 1. In any

case,D(γ,Φ∞) is zero if γ has eigenvalues α and β of opposite sign. Otherwise let

ε
∣∣∣β
α

∣∣∣d
(∣∣∣α
β

∣∣∣
)
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where ε is some constant, be the measure on Z(R) \A(R). ThenD(γ,Φ∞) is

1

4ε
min

{∣∣∣α
β

∣∣∣
1
2

,
∣∣∣β
α

∣∣∣
}

times the eigenvalue of µ(γ) of the smallest absolute value.

Φ1
p(h, s) and Φ2

p(h, s)will be locally constant functions on G(Qp) with compact support.

They will be chosen to satisfy the following conditions, in which πp denotes an irreducible

admissible representation ofG(Qp) and b is the image of s in Q×p .

(i) If πp is infinite dimensional and π = π(τp), where τp, a complex representation of the Weil

group, is the direct sum of two one­dimensional representations, then

traceπp
(
Φ1
p(s)

)
= |b|

− 1
2

p m(πp, Kp) trace τp(s)

traceπp
(
Φ2
p(s)

)
= 0.

(ii) If πp = σ(λp, ηp) is a special representation then

traceπp
(
Φ1
p(s)

)
= 0

traceπp
(
Φ2
p(s)

)
= |b|

− 1
2

p m(πp, Kp)
(
λp(b) + ηp(b)

)
.

(iii) If πp = πp(τp) where τp is the direct sum of λp and ηp, two quasi­characters of Q
×
p with

λ−1
p ηp(x) = |x|p, so that πp is one­dimensional and if π

′
p = σ(λp, ηp), then

traceπp
(
Φ1
p(s)

)
= |b|

− 1
2

p {m(πp, Kp) +m(π′p, Kp)} trace τp(s)

traceπp
(
Φ2
p(s)

)
= −|b|

− 1
2

p m(π′p, Kp)
(
λp(b) + ηp(b)

)
.

(iv) If πp is absolutely cuspidal

traceπp
(
Φ1
p(s)

)
= traceπp

(
Φ2
p(s)

)
= 0.

Φ1
p(s) and Φ2

p(s) are by no means unique. To establish their existence, as well as some

of their additional properties, requires some preparation. I recall that if γ in G(Qp) has

eigenvalues γ1, γ2, which need not lie in Qp, then

∆(γ) =

∣∣∣∣
(γ1 − γ2)

2

γ1γ2

∣∣∣∣
1
2

p

.
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If T is a Cartan subgroup of G, over Qp, and f a locally constant function on G(Qp) with

compact support, we set as usual

FT (γ, f) = ∆(γ)

∫

T (Qp)\G(Qp)

f(g−1γg) dg

for γ regular in T (Qp).

The collection of functions γ → FT (γ, f) on the regular elements in the Cartan subgroups

is not arbitrary. To characterize them we apply a result of Shalika; but first an observation. A

regular element in G is an element whose centralizer is of dimension 2. Thus h is regular if

and only if it is not a scalar matrix. We introduce the map ϕ from the variety of Ĝ of regular

elements inG to the affine planeX given by

ϕ : h→ (traceh, deth).

It is possible to introduce the notion of a regular two­form on Ĝ relative to X . First of all a

two­form on a Zaariski­open subset Y of Ĝwill be called relatively trivial if Y can be covered

by Zariski­open sets Yα, mappingXα inX , such that on Yα the form is a sum of β dλ dηwhere

β and λ are regular on Yα and η is the pullback to Yα of a regular function on Xα. To give

a two­form on Ĝ regular relative to X , one gives a Zariski­open covering {Yα} of Ĝ, and on

each Yα a regular two­form ωα, defined only modulo relatively trivial two­forms, such that

ωα − ωβ is trivial on Yα ∩ Yβ .

The fibres of ϕ are smooth and two­dimensional. The restriction of a regular relative

two­form ω to a fibre yields a well­defined two­form on the fibre. If γ is regular, the map

h→ h−1γh

defines an isomorphism ofG(γ) \Gwith the fibre over (trace γ, detγ). G(γ) is the centralizer

of γ. Let ωγ be the pullback toG(γ) \G of the restriction of ω to this fibre.

Suppose on the other hand that λ is a non­zero invariant form on degree 4 on G and η

a non­zero invariant form of degree 2 on G(γ). It is possible to find a regular two­form ν on

G(γ) \ G, with pullback ν′ to G, and a two­form η′ on G regular relative to G(γ) \ G and

right­invariant under G such that the restriction to η′ to G(γ) is η and such that λ = η′ν′. ν is

uniquely determined by λ and η and we denote it λη .
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Lemma 6.1. Suppose non-zero invariant forms λ and η, of degrees 4 and 2 respectively, are

given on G and A. There is then a unique two-form ω on Ĝ regular relative to X which is

invariant under the adjoint action of G and satisfies

(xo − yo)
λ

η
= ωγ

if

γ =

(
xo 0
0 yo

)

is a regular element of A. The restriction of ω to any fibre is non-zero.

It is enough to verify this for

η =
dX

X

dY

Y

and

λ =
dα dβ dγ dδ

(αδ − βγ)2

when

h =

(
α β
γ δ

)
.

I define ω as follows. If β 6= 0

ω = −
dα dβ

β
.

If γ 6= 0

ω =
dα dγ

γ

and if α− δ 6= 0

ω =
1

α− δ
dγ dβ.

Since one of β, γ and α− δ is non­zero at any point ofG, ω is defined. The compatability is a

consequence of the relative triviality of

dα+ dδ

and

αdδ + δ dα− β dγ − γ dβ.

The entire lemma can now be verified by direct, although somewhat lengthy, calculations. I

omit them.
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Suppose λ and η, and hence ω, have been chosen. If γ is the regular let ηγ be the two­form

onG(γ) defined by
λ

ηγ
ωγ .

If the centralizer of γ is a Cartan subgroup and x and y are the rational characters given by

some diagonalization, and if η and λ are chosen as in the proof of the lemma, then

ηγ =
1

x(γ)− y(γ)

dx

x

dy

y
.

If

γ =

(
zo xo
0 zo

)

then

ηγ =
1

xo

dz dx

z2
.

Suppose then λ and η have been fixed, as above or in some other way. If for each Cartan

subgroup T defined over Qp we have introduced on T a non­zero invariant two­form ηT ,

also defined over Qp, then for any locally constant function f with compact support we may

consider the functions FT (γ, f). Let c(γ) in Qp be the constant defined by

c(γ)ηγ = ηT

and let

ET (γ, f) =
|c(γ)|p

∆(γ)|detγ|
1
2
p

L(1, T/Qp)

L(1, G/Qp)
FT (γ, f).

As before λ determines a measure not only on G(Qp) but also on G
′(Qp), if G

′ is the multi­

plicative group of a quaternion algebra which is not split at p.

We shall call a family {aT }, where aT is a locally constant function on T̂ (Qp) = Ĝ(Qp) ∩

T (Qp) a Shalika family if the following conditions are satisfied.

(i) If T ′ = h−1Thwith h inG(Qp) and γ ∈ T (Qp), then

aT
′

(h−1γh) = AT (γ).

(ii) The support of aT is relatively compact on T (Qp).

(iii) There is a locally constant function ξ on Z(Qp) with compact support such that if z ∈

Z(Qp)

aA(γ) = ξ(z)
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for γ in the intersection of some neighborhood of z in A(Qp) with Â(Qp).

(iv) There is another locally constant function ζ on Z(Qp) with compact support such that if

T is a Cartan subgroup associated to a quadratic extension ofQp then for each z in Z(Qp)

aT (γ) = ξ(z) =
|c(γ)|p

|detγ|
1
2
p

L(1, T/Qp)

L(1, G/Qp)
meas

(
T (Qp) \G

′(Qp)
)
ζ(z)

on the intersection of some neighborhood of z in T (Qp)with T̂ (Qp). As in §15 of Jacquet–

Langlands, we have felt free to regard T also as a Cartan subgroup ofG′.

Lemma 6.2. There exists a locally constant function f on G(Qp) with compact support such

that

aT ≡ ET (f)

for all T if and only if {aT} is a Shalika family. ξ(z) is then the integral of f over the

orbits of

(
z 1
0 z

)
with respect to the measure defined by ω and

ζ(z) = f(z).

I observe that
|c(γ)|p

∆(γ)|detγ|
1
2
p

is a constant which depends only on T and not on γ. Moreover ET (γ, f) depends on ω but

not on ηT .

Consider a family {ET (f)}. The necessity of (i) is clear. Condition (iii), as well as

condition (ii) together with the local constancy for T = A, is a consequence of the familiar

relation

(9) ∆(γ)

∫

N(Qp)

∫

G(Zp)

f(k−1n−1γnk) dk dn =
∣∣∣α
β

∣∣∣
1
2

∫

N(Qp)

∫

G(Zp)

f(k−1γnk) dn dk

for

γ =

(
α 0
0 β

)

and for dn = dxwhen

n =

(
1 x
0 1

)



Antwerp 1972 60

because the right­hand side is equal to

(10)

∫∫
f

(
k−1

(
α−1 0
0 1

) (
z 1
0 z

) (
α 0
0 1

)
k

)
dα

|α|2
dk

when γ is close to z. We should of course recall that

(11) dh =
∣∣∣β
α

∣∣∣ dx dα
|α|

dβ

|β|
dk

is, for

h =

(
1 x
0 1

) (
α 0
0 β

)
k

a Haar measure on G(Qp). To be more precise, the double integral on the left side of (9) is

really an integral over A(Qp) \ G(Qp) with respect to the quotient of the measure of (11) by
dα
|α|

dβ
|β| . The integral in (10) is however an integral over G(γo,Qp) \G(Qp), where

γo =

(
z 1
0 z

)
,

with respect to the quotient of the measure in (11) by the measure

du dv

|u|2

on

G(γo) =

{(
u v
0 u

)}
.

Recalling the definition of the local Tamagawa measures as well as the explicit form for ηγo
,

we obtain (ii).

The condition (ii) and the local constancy of ET (f) for a Cartan subgroup corresponding

to a quadratic extension of Qp follows readily from, for example, the proof of Lemma 7.3.2 of

Jacquet–Langlands. Their Lemma 7.3.1, together with a little calculation, implies (iv) when f is

the characteristic function ofG(Zp). Its validity in general is then a consequence of a theorem

of Shalika [6.6].

When {aT} = {FT (f)} we write ξ(z, f) and ζ(z, f) to stress the dependence of ξ and ζ

on f . It is clear that ζ(z, f) can be specified arbitrarily. Consider the family of functions on

Z(Qp) formed by the ξ(z, f) corresponding to those f for which ζ(z, f) vanishes identically.

This family is linear and translation invariant. It contains moreover a positive function with
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support in an arbitrarily small neighborhood of 1. To see this, take f to be a function which is

positive at

(
1 1
0 1

)
and vanishes at

h =

(
a b
c d

)

if |a + d− 2| ≥ ε, or |ad− bc − 1| ≥ ε or |b| + |c| ≤ ε where ε is a small positive number. It

follows easily that the family contains every locally constant function with compact support.

To complete the proof of the lemma, it has only to be verified that f exists when {aT } is

a Shalika family for which both ξ and ζ vanish. This is easy because there are only a finite

number of conjugacy classes of Cartan subgroups and the map

T̂ (Qp)× T (Qp) \G(Qp)→ G(Qp)

which sends t × h to h−1th is a local homeomorphism and in fact either a double or simple

covering of an open subset ofG(Qp).

We now take Φ1
p(s), when smaps to a non­unit b, to be any locally constant function with

compact support for which

FA
(
γ,Φ1

p(s)
)

= |b|
− 1

2
p

∑

i

χi
(
g−1(s)γ

)
+ χi

(
g−1(s)γ̃

)

measUi

if

g(s) =

(
1 0
0 b

)

and

γ̃ =

(
β 0
0 α

)

for

γ =

(
α 0
0 β

)

and for which

FT
(
γ,Φ1

p(s)
)

= ∆(γ)
{∑

i

χ
Vi

(b−1detγ)

measWi

}
meas

(
T (Qp) \G

′(Qp)
)
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if T is a Cartan subgroup associated to a quadratic extension ofQp. ThatΦ
1
p(s) exists is assured

by the previous lemma. ξ
(
z,Φ1

p(s)
)
is zero and

Φ1
p(z, s) = −

∑

i

χ
Vi

(b−1detz)

measWi
.

This relation will be needed for the trace formula.

Φ2
p(s) is specified by demanding that

FA
(
γ,Φ2

p(s)
)

= 0

while FT
(
γ,Φ2

p(s)
)
equals

∆(γ)(|b|−1
p + 1)

{
−

∑

i

χVi
(b−1detγ)

measWi
+
χV (b−1detγ)

measW

}
meas

(
T (Qp) \G

′(Qp)
)

if T is not split. For symmetry we denote the group introduced as K̄p by V . We remark

explicitly that

Φ2
p(z, s) = −(|b|−1 + 1)

{
−

∑

i

χVi
(b−1detz)

measWi
+
χV (b−1detz)

measW

}
.

In order to verify that these functions satisfy the required conditions we recall that if π is

an irreducible admissible representation of G(Qp) then its character is a function χπ and for

every locally constant function f onG(Qp)with compact support the trace of π(f) is given by

1

2

∑ ∫

T (Qp)

FT (γ, f)χπ(γ)∆(γ) dγ.

The sum is taken over a set of representatives for the conjugacy classes of Cartan subgroups of

G(Qp). This fact is also valid if π admits a finite composition series whose terms are irreducible

and admissible.

In particular for one of the representations ρ = ρ(λ, ν) introduced in §4 we have as a

consequence of Proposition 7.6 of Jacquet–Langlands

trace ρ(f) =
1

2

∫

A(Qp)

FA(γ, f){λ(α)ν(β) + ν(α)λ(β)} dγ

if α and β are the eigenvalues of γ. It follows immediately that trace ρ
(
Φ2
p(s)

)
= 0 and that

trace ρ
(
Φ1
p(s)

)
is |b|

− 1
2

p

(
λ(b) + ν(b)

)
times the number of i for which γ → λ(α)ν(β) is trivial

on Ui. This latter number is also equal to the number of i for which ν(α)λ(β) is trivial on

Ui. The conditions on traceπ
(
Φ1
p(s)

)
and traceπ

(
Φ2
p(s)

)
for π infinite­dimensional and of the

form π(τp), τp = λ⊕ ν, follow from:
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Lemma 6.3. The multiplicity with which the trivial representation of Kp occurs in ρ(λ, ν)

is equal to the number of i for which the quasi-character η : γ → λ(α)ν(β) of A(Qp) is

trivial on Ui.

Extend η to B(Qp) by making it trivial onN(Qp). Recall that

G(Qp) = ∪B(Qp)giKp.

Thus ρ(λ, ν) restricted to Kp is the direct sum of the representations of Kp induced from the

representations ηi : k → η(gikg
−1
i ) of Kp ∩ g

−1
i B(Qp)gi. The relevant multiplicity is just the

number of i for which ηi is trivial and ηi is trivial if and only if η is trivial on Ui.

If α is the quasi­character x→ |x|p then, for any quasi­character χ of Q
×
p , ρ(α

1
2χ, α−

1
2χ)

has a composition series of length 2 in which the special representation σ(α
1
2χ, α−

1
2χ) and the

one­dimensional representation π(α
1
2χ, α−

1
2χ) : h→ χ(deth) appear.

If π = π(α
1
2χ, α−

1
2χ) then

1

2

∫

A(Qp)

FA
(
γ,Φ1

p(s)
)
χπ(s)∆(γ) dγ

is, since∆(γ) is equal to |b|
− 1

2
p on the support of FA

(
γ,Φ1

p(s)
)
, equal to

|b|−1
p

{∑

i

δi(χ)
}
χ(b).

Here δi(χ) is 1 or 0 according as χ is or is not trivial on Vi. The previous lemma, applied to

the pair λ = α
1
2χ, ν = α−

1
2χ, shows that

∑
i δi(χ) is the multiplicity with which the trivial

representation ofKp occurs in ρ(α
1
2χ, α−

1
2χ).

The character of σ(α
1
2χ, α−

1
2χ) is the difference of the characters of ρ(α

1
2χ, α−

1
2χ) and

π(α
1
2χ, α−

1
2χ). Thus

(12)
1

2

∫

A(Qp)

FA
(
γ,Φ1

p(s)
)
χπ(s)∆(γ) dγ

is equal to
∑
i δi(χ)χ(b) if π is this special representation. The following lemma implies that

(12) vanishes when π is absolutely cuspidal.
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Lemma 6.4. If π is an absolutely cuspidal representation the support of its character does

not contain any matrix whose eigenvalues lie in Qp and have different absolute values.

For p 6= 2, this has been known for some time (cf. [6.5] and [6.7]). In general it is a simple

consequence of a recent theorem of Casselman [6.2]. I omit the proof.

If Φ1
p(s) is replaced by Φ2

p(s) then (12) vanishes for every π. The condition (iii) is a

consequence of condition (ii), which we shall now verify together with condition (iv). We

have to show that

(13)
1

2

∑

T

′

∫

T (Qp)

FT (γ, f)χπ(γ)∆(γ) dγ

is equal to −
∑

i δi(χ)χ(b) if π = σ(α
1
2χ, α−

1
2χ) and f = Φ1

p(s) and that it is equal to 0 if f is

Φ1
p(s) or Φ

2
p(s) and π is absolutely cuspidal. If δ(χ) is 1 or 0 acording as χ is or is not trivial

on V , then the multiplicity of the trivial representation ofKp in σ(α
1
2χ, α−

1
2χ) is clearly

(14)
∑

i

δi(χ)− δ(χ).

We have to show that when π is this special representation and f is Φ2
p(s) the expression (13)

is equal to (|b|−1
p + 1)χ(b) times (14). I observe that the prime indicates that we omit the split

Cartan subgroup from the summation.

If π is special or absolutely cuspidal and if π′ is, as in Theorem 15.1 of Jacquet–Langlands,

the corresponding representation ofG′(Qp), then the expression (13) is equal to

(15) −
1

2

∑

T

′

∫

T (Qp)

FT (γ, f)χπ′(γ)∆(γ) dγ.

We may regard this as a sum over conjugacy classes of Cartan subgroups of G′(Qp). If f
′ is a

function on G′(Qp) it is possible to define F
T (γ, f ′) in the same way as we defined FT (γ, f).

If Ψ1
p(s) is the sum over i of the characteristic functions of the sets {h ∈ G

′(Qp)
∣∣Nmh ∈ bVi}

divided by their measures, then

FT
(
γ,Φ1

p(s)
)

= FT
(
γ,Ψ1

p(s)
)
.

Take Ψ2
p(s) to be (|b|−1

p + 1) times the difference of the characteristic function of the set

{h ∈ G′(Qp)
∣∣Nmh ∈ bV } divided by its measure and the function Ψ1

p(s). Then (15), for

f = Φkp(s), is equal to

−

∫

G′(Qp)

Ψk
p(h, s)χπ′(h) dh.
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The required relations follow immediately.

It is clear that the functions Φ1 and Φ2 defined by (6) and (7) satisfy (4) and (5). To prove

Propositions 5.7 and 5.8 we apply the trace formula to calculate the left sides of (4) and (5).

Let χ be a quasi­character appearing in the sum (1).

∫

Zo(R)\G(R)

χ∞(deth)Φ∞(h) dh = traceπ(Φ∞)

if π : h→ χ∞(deth). Our conditions on Φ∞ are such that this is 0 if µ is not one­dimensional

and 1 if it is. For similar reasons

∫

G(Qp)

χp(deth)Φ1
p(h, s) dh = (|b|−1

p + 1)
{∑

i

δi(χp)
}
χp(b)

and ∫

G(Qp)

χp(deth)Φ2
p(h, s) dh

is equal to

(|b|−1
p + 1)

{
δ(χp)−

∑

i

δi(χp)
}
χp(b).

Since ∫

Zo(R)\G(A)

χ(deth)Φk(h) dh

is equal to

∫

Zo(R)\G(R)

χ∞(deth)Φ∞(h) dh

∫

G(Qp)

χp(deth)Φkp(s, h) dh

∫

G(Ap

f
)

χ(deth)fg(h) dh,

it follows easily from Lemma 5.6 that the contribution of (1) to the trace formula for Φ1 is−Ā.

Its contribution to the trace formula for Φ2is Ā− Āo.

If the eigenvalues of γ do not lie in Q

∫

G(γ,A)\G(A)

Φk(h−1γh) dh

is

∫

G(γ,R)\G(R)

Φ∞(h−1γh) dh

∫

G(γ,Qp)\G(Qp)

Φkp(s, h
−1γh) dh

∫

G(γ,Ap

f
)\G(Ap

f
)

fg(h
−1γh) dh.
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The first integral is 0 if γ has real eigenvalues, otherwise it is

traceµ(γ)

meas
(
Zo(R) \G(γ,R)

) .

Consider the second for those matrices γ with eigenvalues on Qp. It is 0 for k = 2. If k = 1

we choose a set of representations for the conjugacy classes of γ which split in Qp but not

in R as follows. For each of the imaginary quadratic fields occurring in Proposition 5.7, we

consider the corresponding group H . For each F we choose from each pair {γ, γ̃} in H(Q)

corresponding to an element of F not in Q and its conjugate we choose one element γ. This

yields the required set of representatives. For such a γ the centralizerG(γ) isH and the second

integral equals ∑
i χi

(
v−1g−1(s)γv

)
+ χi

(
v−1g−1(s)γ̃v

)

meas vUiv−1

if v = v(F ) is defined as before. Observe that

χi
(
v−1g−1(s)γv

)
= 0

if γ is a scalar matrix—we are assuming b is not a unit.

Since

meas
(
Zo(R)H(Q) \H(A)

)
= meas

(
H(Q) \H(Af )

)
meas

(
Zo(R) \H(R)

)

the contribution of the terms in (2′) corresponding to a γ split in Qp but not in R to the trace

formula for Φ1 is
∑
F A(F ). They contribute nothing to the trace formula for Φ2.

If γ is not split in Qp the second integral equals

{∑
i χVi

(b−1detγ)

measWi

}
meas

(
G′(γ,Qp) \G

′(Qp)
)

if k = 1 and

(|b|−1
p + 1)

{
χv(b

−1detγ)

measW
−

∑

i

χVi
(b−1detγ)

measWi

}
meas

(
G′(γ,Qp) \G

′(Qp)
)

if k = 2. The contributions of the terms in (2′) corresponding to a γ split neither in Qp nor

in R to the trace formula for Φ1 is, since these conjugacy classes may be identified with the

conjugacy classes of non­scalars inG′(Q), just that part of the sum in Lemma 5.4 corresponding

to such classes.
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Consider the contribution of (2) to the trace formula for Φ1. If γ belongs to Z(Q)

Φ1(γ)

{
− traceµ(γ)

meas
(
Zo(R) \G′(R)

)
} {
−

∑
i χVi

(b−1detγ)

measWi

}
fg(γ).

If we also regard γ as an element ofG′(Q) then G′(γ) = G′. Since

meas
(
Zo(R)G(Q) \G(A)

)
= meas

(
Zo(R)G′(Q) \G′(A)

)

and

meas
(
Zo(R)G′(Q) \G′(A)

)
= meas

(
G′(Q) \G′(Af )

)
meas

(
Zo(R) \G′(R)

)
,

the contribution of (2) to the trace formula is just the remaining part of the sum in Lemma 5.4.

Using similar formulaeandanobviousvariant of Lemma5.4weshowthat the contribution

of (2) and that part of (2′) corresponding to γ which split neither in R nor in Qp to the trace of

Φ2 is

(|b|−1
p + 1)

(
A(D)− Ao(D)

)
.

To complete the proofs of Propositions 5.7 and 5.8 all we have to do is show that (8)

contributes nothing to the trace formula for Φ2 and that its contribution for Φ1 is B. Since we

are no longer dealing with a function given by a product we must replace

∏

w 6=∞

FA(γ,Φw)

by

FA
(
γ,Φkp(s)

){ ∏

q 6=p

∣∣∣ (a− d)
2

ad

∣∣∣
1
2

q

}∫

A(Ap

f
)\G(Ap

f
)

fg(h
−1γh) dh.

The eigenvalues of γ are a and d. The first term of this product vanishes if k = 2. If k = 1 it is

equal to

|b|
− 1

2
p

∑

i

χi
(
g−1(s)γ

)
+ χi

(
g−1(s)γ̃

)

measUi
.

After we sum over γ we may replace

χi
(
g−1(s)γ

)
+ χi

(
g−1(s)γ̃

)

by

χi
(
g−1(s)γ

)
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and multiply by 2. SinceD(γ, φ∞) is

1

4ε
min

{∣∣∣α
β

∣∣∣
1
2

,
∣∣∣β
α

∣∣∣
1
2
}

times the eigenvalue of µ(γ) of smallest absolute value, we may apply Lemma 5.5 to conclude

that the required contribution is B, provided we show that

(16)
2 meas

(
Zo(R)Z(Q) \ Z(A)

)

4ε
= meas

(
A+(Q) \A(Af )

)
.

This assertion is independent of the choice of forms on Z and A giving the Tamagawa

measures. To avoid fuss, I cheat a little and take them to be dzz and
da
a
db
b . Then ε = 1,

meas
(
Zo(R)Z(Q) \ Z(A)

)
= 1

and

meas
(
A+(Q) \A(Af )

)
=

1

2
.

We had as a matter of fact already cheated, because the unnormalized Tamagawa measure of

the set of

(
a 0
0 b

)
in (Z \ A)(A) for which |ab | = 1 taken modulo (Z \ A)(Q) should have

stood in front of (3) and (8). We have in effect made a tautologous use of the fact that this

measure is 1. It would have been better not to do so.

7. The Lefschetz formula. We begin by recalling those cases of the conjecture that we are

trying to prove. Suppose π is an irreducible representation of G(A) occurring in Lsp(µ) for

which π∞ ≃ π(µ). We define π′ as in §4.

Theorem 7.1. If π′p ≃ π(τp), where τp is the direct sum of two one-dimensional complex

representations of the Weil group, then trace σp(s) ∈ Q for all s in W(Qp/Qp) and π′p ≃

π(σp).

In order to reduce the theorem to an assertion we are in a position to prove we digress.
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Lemma 7.2. Suppose λ is a continuous finite-dimensional representation of the Galois group

G(Qp/Qp) over a finite extension of Qℓ. If traceλ(s) ∈ Q whenever s ∈ W(Qp/Qp) and

the image of s in Q×p has an absolute value which is sufficiently small then it lies in Q for

all s in W(Qp/Qp).

If the absolute value of the image of s in Q×p is small, so are the absolute values of the

images of sn, n ≥ 1. Thus trace λ(sn) ∈ Q for n ≥ 1. It follows that all eigenvalues of λ(s)

lie in Q. In proving the lemma we may therefore suppose that λ is absolutely irreducible. If

the absolute value of the image of s is different from 1, then the absolute value of the image of

some power sn of s, with n positive or negative, is very small so that the eigenvalues of λ(sn)

and hence those of λ(s) lie in Q.

Supposing λ absolutely irreducible, we may apply the argument of §4 to show that λ

factors, through G(Fun/Qp) where F is a finite Galois extension of Qp. If s ∈ W(Fun/F )

then λ(s) is a scalar. Moreover if s 6= 1 the image of s has absolute value different from 1. In

any case the eigenvalues of λ(s) lie in Q. Since some power of any element ofW(Fun/Qp)

lies inW(Fun/F ) this is true in general.

Lemma 7.3. Suppose λ is a continuous finite-dimensional representation of G(Qp/Qp) over

a finite extension of Qℓ such that traceλ(s) ∈ Q for all s ∈ W(Qp/Qp). Suppose ν is a

continuous finite- dimensional complex representation of W(Qp/Qp) and suppose that

traceλ(s) = trace ν(s)

for those s in W(Qp/Qp) whose images in Q×p have an absolute value which is sufficiently

small. Then the equality is valid for all s in W(Qp/Qp).

Since we are only dealing with traces we may suppose that both λ and ν are direct

sums of absolutely irreducible representations. Choosing the finite Galois extension F of Qp

sufficiently large, we may suppose that both the restriction of λ to W(Qp/Qp) and ν factor

throughW(Fun/Qp) and that

traceλ(s) = trace ν(s)

if s ∈W(Fun/F )maps to an element ofQ×p of absolute value less than 1. Choose an so of this

type which generatesW(Fun/F ).

If p is a polynomial with coefficients in Q and s maps to an element of sufficiently small

absolute value, then

trace p
(
λ(so)

)
λ(s) = trace p

(
ν(so)

)
ν(s).
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Let λj , 1 ≤ j ≤ r, be the restrictions of λ to the various eigenspaces of λ(so) and let the

polynomials pj be such that pj
(
λ(so)

)
are the corresponding projections. We suppose, as we

may, that they have constant term 0. Then

traceλj(s) = trace pj
(
λ(so)

)
λ(s)

for those swhich map to an element in Q×p of small absolute value. Moreover

trace pmj
(
λ(so)

)
λn(so) = trace pmj

(
ν(so)

)
νn(so), m, n ≥ 0.

Thus pj
(
ν(so)

)
is also a projection and corresponds to the same eigenvalue as pj

(
λ(so)

)
. Since

trace νj(s) = trace pj
(
ν(so)

)
ν(s)

if s maps to an element of small absolute value we may consider the λj separately. In other

words we may suppose that λ(so) and ν(so) are the same scalar ε.

Given s inW(Fun/Qp) choose n sufficiently large that

traceλ(ssno ) = trace ν(ssno ).

Then

εn traceλ(s) = εn trace ν(s).

The lemma follows.

SupposeK = KpKp is given. BothH
Q
(Kp), the algebra of Q­linear combinations of the

functions fg , g ∈ G(Ap
f ), and G(Qp/Qp)

H1
p

(
MK , Fµ(Qℓ)

)
= H1

p

(
MK , Fµ(Qℓ)

)
⊗
Qℓ

Qℓ.

This double representation we call ρ.

Lemma 7.4. Suppose there are two subspaces X ⊆ Y of H1
p

(
MK , Fµ(Qℓ)

)
invariant under

ρ such that if ρ′ is the double representation on the quotient

(1) trace ρ′(fg, s) = trace τ1(fg, s)

whenever s maps to an element in Q×p of absolute value less than 1. Suppose moreover

that ρ′ factors through some G(Fun/Qp), where F is a finite Galois extension of Qp. Then

Theorem 6.1 is valid if πf contains the trivial representation of K.

Proposition 5.7 implies that the right side of (1) is rational. Thus the left side is also.

Choose a π satisfying the conditions of Theorem 7.1. By a theorem of Casselman [7.1] and
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Miyake [7.3], π is uniquely determined by {πq
∣∣ q 6= p}. Thus we can find α1, · · · , αr in Q and

g1, · · · , gr inG(Ap
f ) such that ∑

i

αiρ(fgi
)

is, in the notation of Proposition 3.1, the projection on Uπ
Q
⊗ V π

Q
(K). Then

∑

i

αi trace ρ(fgi
, s) = trace

(∑

i

αiρ(fgi
, s)

)
= dimV π

Q
(K) traceσp(s)

if σ = σ(π). If σ′p is the representation of G(Qp/Qp) or ofW(Qp/Qp) on

Uπ
Q
⊗ V π

Q
(K) ∩X \ Uπ

Q
⊗ V π

Q
(K) ∩ Y

then ∑

i

αi trace ρ′(fgi
, s) = traceσ′p(s).

Moreover if

deg σ′p = dimV π
Q

(K) · deg σp = 2 dimV π
Q

(K)

then σ′p is equivalent to dimV π
Q

(K) · σp.

Suppose π1 lies in A(µ) and π1
p̂ is defined as at the beginning of §5. If V

π1

f (K) 6= 0 then

∑
αiπ

1
p̂(fgi

)

is 0 if π1 6= π and is the identity if π1 = π. By the very definition of the double representation

τ1 ∑

i

αi trace τ1(fgi
, s) = dimV π

Q
(K) trace τp(s).

Lemmas 7.2 and 7.3 imply that traceσ′p(s) lies in Q for all s inW(Qp/Qp) and is equal

to dimV π
Q

(K) trace τp(s). In particular the degrees of σ
′
p and dimV π

Q
(K) · τp are the same.

Since τp is of degree 2 we conclude that σ
′
p = dimV π

Q
(K)σp and that traceσp(s) = trace τp(s)

for s ∈ W(Qp/Q). However we have assumed that no subrepresentation of σ′p is special. In

particular σp is not special. Referring to the definitions, we conclude that π
′ = π(σp).

There is only one other case in which we can do anything about the conjecture at present.
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Theorem 7.5. If π′p is a special representation σ(λp, νp) then traceσp(s) ∈ Q for s ∈

W(Qp/Qp) and π′p = π(σp).

To verify this theorem we shall use the following lemma.

Lemma 7.6. Suppose X ⊆ Y are two subspaces of H1
p

(
Mk, Fµ(Qℓ)

)
invariant under the

double representation ρ and let ρ′ be the double representation on the quotient. Suppose

trace ρ′(fg, s) = trace τ2(fg, s)

whenever s in W(Qp/Qp) maps to b in Q×p with |b|p < 1. Suppose moreover that ρ′ as

a representation of G(Qp/Qp) is a direct sum of two-dimensional special representations.

Then π′p = π(σp) for every π in A2(µ) for which V πf (K) 6= 0.

If π′p = σ(λp, νp) the conclusion of the lemma amounts to the assertion that σp is special,

and that traceσp(s) ∈ Q and is equal to λp(b) + νp(b) if s ∈W(Qp/Qp).

The structure of two­dimensional special representations is such that for some sufficiently

large finite Galois extension F ofQp the space of vectors invariant under the restriction of ρ
′ to

G(Qp/F
un) has dimension 1

2 deg ρ′. For no F is the dimension of this space larger. It follows

that if ρ′ is in any way the direct sum of two­dimensional representations then each of them is

special.

Choose α1, · · · , αr inQ and g1, · · · , gr inG(Ap
f ) so that if π

1 lies inA(µ) and V π
1

f (K) 6= 0

then ∑
αiπ

1
p̂(fgi

)

is 0 if π1 6= π and is the identity if π1 = π. The proof of Lemma 6.4 may be imitated to show

that

traceσp(s) = λp(b) + νp(b)

for s ∈ W(Qp/Qp). It is of course implicit in this equality that both sides lie in Q. The proof

also shows that the direct sum over those π in A2(µ) for which V πf (K) 6= 0 of dimV π
Q

(K)σp

is a subrepresentation of ρ′ regarded as a representation of G(Qp/Qp) alone. However it

follows from Lemma 7.3 that deg ρ′ = deg τ2. Consequently this direct sum is not merely a

subrepresentation but in fact all of ρ′. In particular each σp is special.

Since we are only interested in the action of G(Qp/Qp) we may replace M
o
K ⊗ Q by

Mo
K ⊗Qp = (Mo

K ⊗Q)⊗Q Qp andM
o
K ⊗Q byMo

K ⊗Qp = (Mo
K ⊗Qp)⊗Qp

Qp. Moreover

for our purposes it is sufficient to takeK of the formKpKp where

Kp ⊆ {h ∈ G(Zfp)
∣∣h ≡ 1 (modM)}

Kp = {h ∈ G(Zp)
∣∣h ≡ 1 (mod pm)}.
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However we must be able to takeM , which is prime to p, and m arbitrarily large. It will be

useful to assume thatKp is so small that ifK1 = KpG(Zp) then each component ofMK1
⊗Q

has genus greater than zero.

We choose then m arbitrarily and fix it in the discussion to follow. Let R be the ring of

integers in Qp(ζ)where ζ is a p
mth root of unity. G(Qp/Qp) acts on R and hence on SpecR. I

recall that the action of s on SpecR is dual to that of s−1 onR. Thus the group acts on the left.

In [3.1] it was seen that there is a schemeMo
K⊗R over SpecR and an action of G(Qp/Qp) on

this scheme as well as an isomorphism

(Mo
K⊗R)⊗R Qp ≃M

o
K ⊗ Qp

compatible with the actions of the Galois group on both sides. The action of the Galois group

on the left is given by its action on the two factors. Another schemeMK⊗R proper and flat

over SpecR was also introduced. The Galois group acted onMK ⊗R and there was an open

immersion Mo
K⊗R → MK⊗R compatible with the actions. Moreover the complement of

Mo
K⊗R inMK⊗R with its induced subscheme structure is also flat over SpecR. Finally the

mapMK⊗R→ SpecR is smooth except at a finite number of points in the special fibre, all of

which lie inMo
K⊗R.

There is a family of sheaves Fµ(Z/ℓ
mZ) onMo

K⊗R whose pullbacks toM
o
K ⊗ Qp yield

the family {Fµ(Z/ℓ
nZ)}, defined by pulling back the corresponding family onMo

K ⊗ Q. Let

Fµ!(Z/ℓ
nZ) be the extension ofFµ(Z/ℓ

nZ) by zero toMK⊗R orMK⊗Qp. Wewere interested

in the

ℓ­adic cohomologyof the family{Fµ(Z/ℓ
nZ)}onMo

K⊗Q andwedenoted it byHi
(
Mo
K , Fµ(Qℓ)

)
.

For reasons which will soon become apparent, we denote it now byHi
(
Mo
K⊗Q, Fµ(Qℓ)

)
; but

replace it immediately by the isomorphic groupHi(Mo
K⊗Qp, Fµ(Qℓ)

)
. Thegroup formerly de­

notedHi
c

(
Mo
K , Fµ(Qℓ)

)
isHi

c

(
Mo
K⊗Q, Fµ(Q)

)
, which is isomorphic toHi

c

(
Mo
K⊗Qp, Fµ(Qℓ)

)
.

I recall that this is by definitionHi
(
MK ⊗Qp, Fµ!(Qℓ)

)
.

Letϕ be the immersion ofMo
K⊗R inMK⊗R or ofM

o
K⊗Qp inMK⊗Qp. The isomorphism

ϕ∗Fµ!(Z/ℓ
nZ) ≃ Fµ(Z/ℓ

nZ)

yields by adjunction

Fµ!(Z/ℓ
nZ)→ ϕ∗Fµ(Z/ℓ

nZ).

More generally, we have in the derived category

(4) Fµ!(Z/ℓ
nZ)→ Rϕ∗Fµ(Z/ℓ

nZ).
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This yields a map from

Hi
c

(
Mo
K ⊗Qp, Fµ(Z/ℓ

nZ)
)
≃ Hi

(
MK ⊗ Qp, Fµ!(Z/ℓ

nZ)
)

to

Hi
(
MK ⊗ Qp, Rϕ∗Fµ(Z/ℓ

nZ)
)
≃ Hi(Mo

K ⊗Qp, Fµ(Z/ℓ
nZ)

)
.

These are of course the maps used implicitly throughout the report; so in the limit the image of

the left side in the right is the group formerly denoted Hi
p

(
MK , Fµ(Qℓ)

)
, but which will now

be denotedHi
p

(
MK ⊗ Qp, Fµ(Qℓ)

)
.

Let G(Z/ℓmZ) be the mapping cone of (4). This is a complex

· · · 0→ Fµ!(Z/ℓ
nZ)→ G0(Z/ℓnZ)→ G1(Z/ℓnZ)→ · · ·

in which Fµ!(Z/ℓ
mZ) is the term of degree −1. We have a long exact sequence

· · · → Hi
(
MK⊗Qp, Fµ!(Z/ℓ

nZ)
)
→ Hi

(
Mo
K⊗Qp, Fµ(Z/ℓ

nZ)
)
→ Hi

(
MK⊗Qp, G(Z/ℓnZ)

)
→ · · · .

The complexG(Z/ℓnZ) is exact onMo
K ⊗Qp. IfM

∞
K ⊗Qp is the complement ofM

o
K ⊗Qp in

MK⊗Qpwith its reduced subscheme structure, let i be the imbeddingM
∞
K ⊗Qp →MK⊗Qp.

In the derived category the complexG(Z/ℓnZ) is isomorphic to

· · · → 0→ i∗i
∗Go(Z/ℓnZ)→ · · · .

We need to know the cohomology of this complex. This is the same as that of the complex

(5) 0→ i∗Go(Z/ℓnZ)→ · · · .

Suppose M̃K ⊗ Qp is the sum of the strict henselisations of MK ⊗ Qp at the points of

M∞K ⊗ Qp. We know [3.1] that M̃K ⊗Qp is a direct sum over

CK = N(Af )A
+(Q) \G(Af )/K

of schemesMK ⊗Qp|h each of which is the spectrum of a strict henselian ring which is also a

discrete valuation ring, with residue field Qp. h is to be thought of as a representative of the

given double coset in G(Af ) or as the double coset itself, according to the context. x(K, h)

will denote a uniformizing parameter for this ring. M̃o
K ⊗ Qp, with summandsM

o
K ⊗ Qp|h,

will be the fibre product of M̃K ⊗Qp withM
o
K ⊗Qp. It is the spectrum of a fieldA(K, h,Qp).
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SupposeKo = Kp
oKp withK

p
o ⊆ K

p. The fibre overMK ⊗ Qp|h in M̃
o
Ko
⊗ Qp is

∐

ho∈CKo
ho→h

Mo
K ⊗ Qp|ho.

Let r = r(h) be the order of the cyclic group

(6) h−1
o N(Af )ho ∩K/h

−1
o N(Af )ho ∩Ko.

ThemapMKo
⊗Qp|ho →Mo

K⊗Qp|h takes x(K, h) to a unit times x(Ko, ho)
r. IfKo is normal

inK thenK/Ko acts in a simple way. An element k ofK takesMKo
⊗Qp|ho toM

o
Ko
⊗Qp|h

′
o

if hok and h
′
o represent the same element of CKo

. With this action the group (6) becomes the

Galois group of A(Ko, ho,Qp) over A(K, h,Qp).

To compute the cohomology groups of (5) we make use of the fact (SGA 4. VIII.5.2) that

they are the cohomology groups of the pullback of Fµ(Z/ℓ
nZ) to M̃o

K ⊗Qp viz., the direct sum

over CK of the cohomology groups of the pullbacks toM
o
K ⊗ Qp|h. These may be computed

as Galois cohomology and, indeed, since the order of the Galois module defined by Fµ(Z/ℓ
nZ)

is prime to p as cohomology groups for

Gp(K, h,Qp) = G
(
Ap(K, h,Qp)/A(K, h,Qp)

)

if Ap(K, h,Qp) is the direct limit of all finite Galois extensions of A(K, h,Qp) of degree prime

to p. We may identify Spec
(
Ap(K, h,Qp)

)
with

lim
←
Ko

Mp
Ko
⊗ Qp|h

and henceGp(K, h,Qp)with h
−1N(Ap

f )h∩K . There is of course aKo such that the pullback

of Fµ(Z/ℓ
nZ) is

L(Z/ℓnZ) ×
K/Ko

Mo
Ko
⊗ Qp|h.

Every map of the inverse limit to this scheme factors through a map of Mo
Ko
⊗ Qp|h of the

form v × identity with v ∈ L(Z/ℓnZ). The Galois module associated to Fµ(Z/ℓ
nZ) is thus

L(Z/ℓnZ)with h−1N(Ap
f )h ∩K acting in the usual way.

Since Gp(K, h,Qp) is isomorphic to Z
p
f , the cohomology groups are easily calculated.

In degree 0 we obtain the invariants Loh(Z/ℓ
nZ) of L(Z/ℓnZ) with respect to the actions of

h−1N(Ap
f )h∩K . In degree 1we obtainL

h
o (Z/ℓ

nZ), the quotient ofL(Z/ℓnZ) by the subgroup

generated by elements of the form (k − 1)v, k ∈ h−1N(Ap
f )h ∩ K . In higher degrees the

groups vanish.

If we apply the properties of the mapping cone, then take a limit and tensor with Qℓ, we

obtain the following lemma.
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Lemma 7.7. There is an exact sequence

0→ Ho
(
MK ⊗Qp, Fµ!(Qℓ)

)
→ Ho

(
Mo
K ⊗ Qp, Fµ(Qℓ)

)
→

→ ⊕CK
Loh(Qℓ)→ H1

(
MK ⊗Qp, Fµ!(Qℓ)

)
→ H1

(
Mo
K ⊗Qp, Fµ(Qℓ)

)
→

→ ⊕CK
Lho (Qℓ)→ H2

(
MK ⊗Qp, Fµ!(Qℓ)

)
→ H2

(
Mo
K ⊗Qp, Fµ(Qℓ)

)
→ 0

in which Loh(Qℓ) is the set of invariants of h−1
(
N(Qℓ)

)
h in L(Qℓ) and Lho (Qℓ) is the

quotient of L(Qℓ) by the sum of the ranges of k − 1, k ∈ h−1N(Qℓ)h.

The terms of higher degree have been left out of this exact sequence because they vanish

anyway. The complex G
•
(Z/ℓnZ)may also be taken as a complex of sheaves overMK⊗R as

may, if i now denotes the imbeddingM∞K ⊗R→MK⊗R, i∗i
∗G
•
(Z/ℓnZ). We can also regard

it, by taking an inverse image, as a sheaf on the special fibre (MK⊗R)⊗ Fp, which we denote

MK⊗Fp or on (MK⊗R)⊗Run = MK⊗R
un. Run is the maximal unramified extension ofR.

The diagram

(7) MK⊗Fp →MK⊗R
un ←MK ⊗ Qp

yields
Hi

(
MK⊗Fp, i∗i

∗G
•
(Z/ℓnZ)

)
x

Hi
(
MK⊗R

un, i∗i
∗G
•
(Z/ℓnZ)

)
y

Hi
(
MK ⊗ Qp, i∗i

∗G
•
(Z/ℓnZ)

)
.

One establishes, using standard techniques, that both arrows are isomorphisms. The groups

on the left may be calculated in the same way as those on the right. We employ, mutatis

mutandis, the same notations for the objects required in the course of calculations.

We can now seriously begin to set the stage for the application of Lemma 7.4. The arrow

on the left of (7) determines, for all sheaves we are considering, isomorphisms of cohomology

groups—before or after limits are taken. We have therefore a commutative diagram

(8)

⊕CK
Loh(Q) −→ H1

(
MK⊗Fp, Fµ!(Qℓ)

)
−→ H1

p

(
MK⊗Fp, Fµ(Qℓ)

)
−→ 0

y y y

⊕CK
Loh(Qℓ) −→ H1

(
MK ⊗Qp, Fµ!(Qℓ)

)
−→ H1

p

(
MK ⊗ Qp, Fµ(Qℓ)

)
−→ 0

in which the rows are exact and the left hand arrow is the identity. To show that the arrow

on the right is injective, we have just to establish this for the middle arrow. We employ the

results [7.2] and the works therein cited.
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There is a finite extension of the quotient field of Run such that MK ⊗ Qp has a stable

model over its ring of integers S. Set (MK⊗R
un) ⊗

Run
S = MK⊗S. MK⊗S → SpecS is

smooth except perhaps at those points in the special fibre lying over a point of M̄K⊗R at

which M̄K⊗R → SpecR is not smooth. In particular the arithmetical surface MK⊗S is

regular except at a finite number of points in the special fibre. LetM ′K⊗S be a regular scheme

obtained by a desingularization ofMK⊗S over this finite set. Because of our assumption on

Kp, no irreducible component ofMK⊗Fp is rational. We may therefore suppose thatM
′
K⊗S

is a minimal model. Fixing a commutative diagram

S
ւ ց

Fp Qp

տ ր
R

we obtain another

(9)

M ′K⊗Fp
x

−−−→ M ′K⊗S
y

←−−− M ′K⊗Qp

yf
yg

yh

MK⊗Fp
u

−−−→ MK⊗R
un v
←−−− MK⊗Qp

in which the right hand arrow is an isomorphism.

There is a spectral sequence

Hi
(
MK⊗Fp, u

∗Rjv∗Fµ!(Z/ℓ
nZ)

)
=⇒ Hi+j

(
MK ⊗ Qp, Fµ!(Z/ℓ

nZ)
)
.

As a consequence there is an exact sequence

(10)
0→ H1

(
MK⊗Fp, u

∗Rov∗Fµ!(Z/ℓ
nZ)

)
→ H1

(
MK ⊗ Qp, Fµ!(Z/ℓ

nZ)
)
→

→ Ho
(
MK⊗Fp, u

∗R1v∗Fµ!(Z/ℓ
nZ)

)
→ H2

(
MK⊗Fp, u

∗Rov∗Fµ!(Z/ℓ
nZ)

)
.

To establish the asserted injectivity in the diagram (8) we need only show that

u∗v∗Fµ!(Z/ℓ
nZ) ≃ Fµ!(Z/ℓ

nZ).

Let F ′µ!(Z/ℓ
nZ) be the pullback of Fµ!(Z/ℓ

nZ) by means of any of the vertical arrows

in (9). Since h is an isomorphism

u∗v∗Fµ!(Z/ℓ
nZ) ≃ u∗v∗h∗Fµ!(Z/ℓ

nZ) ≃ u∗g∗y∗F
′
µ!(Z/ℓ

nZ).
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Since g is proper, the base change theorem for proper morphisms shows that the group on the

right is isomorphic to

f∗x
∗y∗F

′
µ!(Z/ℓ

nZ).

The proof of Lemma 1.12 of [7.2] shows that onM ′K⊗S the special fibreM
′
K⊗Fp is a divisor

with normal crossings. Just as in SGA 7.1.3 one sees that

x∗y∗F
′
µ!(Z/ℓ

nZ) ≃ F ′µ!(Z/ℓ
nZ).

It remains to be shown that

f∗F
′
µ!(Z/ℓ

nZ) ≃ Fµ!(Z/ℓ
nZ).

The left side is f∗f
∗Fµ!(Z/ℓ

nZ). Since MK⊗R
un is normal and g is birational, this final

isomorphism is a consequence of Zariski’s main theorem.

Let M̂K be the desingularization MK⊗Fp. It can be obtained by tensoring Fp with a

desingularization of M̂K⊗Fp ofMK⊗Fp. Let

q : M̂K⊗Fp →MK⊗Fp

be the map giving the desingularization and let F̂µ!(Z/ℓ
nZ) be q∗Fµ!(Z/ℓ

nZ). From the Leray

spectral sequence we obtain

0→ H1
(
MK⊗Fp, R

oq∗F̂µ!(Z/ℓ
nZ)

)
→ H1

(
M̂K⊗Fp, F̂µ!(Z/ℓ

nZ)
)
→ Ho

(
MK⊗Fp, R

1q∗F̂µ!(Z/ℓ
nZ)

)
.

SinceR1q∗ = 0we have

H1
(
M̂K⊗Fp, F̂µ!(Z/ℓ

nZ)
)
≃ H1

(
MK⊗Fp, q∗F̂µ!(Z/ℓ

nZ)
)
.

But we have an exact sequence

0→ Fµ!(Z/ℓ
nZ)→ q∗F̂µ!(Z/ℓ

nZ)→ E(Z/ℓnZ)→ 0

in which E(Z/ℓnZ) has support at the set of singular points. Thus we have an exact sequence

H0
(
MK⊗Fp, E(Z/ℓnZ)

)
→ H1

(
MK⊗Fp, Fµ!(Z/ℓ

nZ)→ H1
(
MK⊗Fp, q∗F̂µ!(Z/ℓ

nZ)
)
→ 0

and hence a surjection

(11) H1
(
MK⊗Fp, Fµ!(Z/ℓ

nZ)
)
→ H1

(
M̂K⊗Fp, F̂µ!(Z/ℓ

nZ)
)
.
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This yields a surjection

H1
p

(
MK⊗Fp, Fµ(Qℓ)

)
→ H1

p

(
M̂K⊗Fp, F̂µ(Qℓ)

)
.

The notation on the right is to be interpreted in the obvious way.

L(s) and R(g) continue to act on M̂o
K⊗Fp, the inverse image of M

o
K⊗Fp in M̂K⊗Fp.

They also act onMK⊗Fp and M̂K⊗Fp. Moreover one defines a map

gF̂K
′

µ (Z/ℓnZ)→ R∗(g)F̂Kµ (Z/ℓnZ)

as in the thirdparagraphandverifies, by examining its effect onfibres, that it is an isomorphism.

Thus T (g) acts onH1
p(M̂K⊗Fp, F̂µ(Qℓ)

)
. So doesL(s). Since all the necessary compatabilities

are satisfied, Theorem 7.1 will be a consequence of the next lemma.

Lemma 7.8. Let ρ′ be the double representation of HQ(Kp) and G(Qp/Qp) on H1
p

(
M̂K⊗Fp,

F̂µ(Qℓ)
)
. If g ∈ G(Ap

f ) and s in W(Q/Qp) maps to b in Q×p with |b|p < 1 then the trace of

ρ′(fg, s) is

−
{ ∑

F

A(F )
}
− A(D)−B + Ā.

We begin with an observation about the operator L(s) on cohomology. We have set

(MK⊗R)⊗R Fp = MK⊗Fp

and we may write

MK⊗Fp = (MK⊗R)⊗R Fp = (MK⊗Fp)⊗Fp
Fp.

If we use the representation in the middle the action L(s) of s in G(Qp/Qp) on MK⊗Fp is

defined by its action on the factorsMK⊗R and Fp. Howover the action onMK⊗R, together

with the trivial action on Spec Fp, yields an action on MK⊗Fp. This can be combined with

the trivial action on Fp to yield, in terms of the representation on the right an action L1(s)

on MK⊗Fp. The trivial action on MK⊗Fp combined with the action on Spec Fp yields an

actionL′2(s) onMK⊗Fp. L(s) is the product of L1(s) and L
′
s(s). Similar remarks apply to the

actionon M̂o
K⊗Fp or on M̂K⊗Fp on which we now concentrate our attention.
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To make L1(s) act on the cohomology we observe that the broken arrow in the diagram

below yields a sheaf over M̂o
K⊗Fp whichmay be taken as L

∗
1(s)Fµ(Z/ℓ

nZ). The inverse of the

upper horizontal arrow yields

Fµ(Z/ℓ
nZ)

L1(s)
−−−−−→ Fµ(Z/ℓ

nZ)
y

y

M̂o
K ⊗ Fp −−−−−→ M̂o

K⊗Fp

an isomorphism between L∗1(s)Fµ(Z/ℓ
nZ) and Fµ(Z/ℓ

nZ).

Suppose s → b ∈ Q×p and |b|p < 1 so that s maps to a positive power, the mth, of

the Frobenius. Because of our definitions L′2(s
−1), the inverse of L′2(s), acts as as the mth

power of the Frobenius endomorphism of the second factor Spec Fp. Therefore, in so far as

its effect on the cohomology is concerned, L′2(s)may be replaced by L2(s), themth power of

the Frobenius endomorphism of the first factor M̂o
K⊗Fp, the geometric Frobenius (SGA 5 XV).

The same remarks apply to M̂K⊗Fp and the sheaves F̂µ!(Z/ℓ
nZ).

The actions on cohomology groups are defined by the correspondence: ϕ1×ϕ2 = R(e)×

R(g)L1(s)L2(s)which may be regarded as mapping M̂
o
K′⊗Fp to M̂

o
K⊗Fp× M̂

o
K⊗Fp or as a

mapping M̂K′⊗Fp to M̂K⊗Fp × M̂K⊗Fp. In addition one needs the map

ϕ∗2F̂
K
µ (Z/ℓnZ)→ ϕ∗1a

−1(g)F̂Kµ (Z/ℓnZ)

which is obtained as a composition

R∗(g)L∗1(s)L
∗
2(s)F̂

K
µ (Z/ℓnZ)→ R∗(g)F̂Kµ (Z/ℓnZ)→ gF̂K

′

µ (Z/ℓnZ)→

→ a−1(g)F̂Kµ (Z/ℓn/Z)→ R∗(e)a−1(g)F̂Lµ (Z/ℓnZ)

as well as the trace map (SGA 4 XVII)

R∗(e)R
∗(e)

(
a−1(g)F̂Kµ (Z/ℓnZ)

)
→ a−1(g)F̂Kµ (Z/ℓnZ).

If we apply the analogue of Lemma 7.7 for the space M̂K ⊗ Fp we see that the trace of

ρ′(fg, s) is

trace ρ1(fg, s)− trace ρ2(fg, s) + trace ρ3(fg, s)− trace ρ4(fg, s).
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Here ρ1 and ρ4 are the representations onH
i
(
M̂K⊗Fp, F̂µ!(Qℓ)

)
with i = 1 and 0 respectively.

The representation on Ho
(
M̂o
K⊗Fp, F̂µ(Qℓ)

)
is ρ3 and ρ2 is the representation on the tensor

product of Qℓ with

lim
←−

Ho
(
MK⊗Fp, i∗i

∗G
•

(Z/ℓnZ)
)

which is a group we have explicitly calculated. Notice also that we are exploiting the circum­

stance that M̂K⊗Fp is isomorphic toMK⊗Fp in a neighborhood ofM
∞
K ⊗Fp. Let ρ5 be the

representation onH2
(
M̂K⊗Fp, F̂µ!(Qℓ)

)
. The trace of ρ′(fg, s) is the sum of

trace ρ1(fg, s)− trace ρ4(fg, s)− trace ρ5(fg, s)

and

trace ρ3(fg, s) + trace ρ5(fg, s)

and

− trace ρ2(fg, s).

Lemma 7.9. Under the assumptions of Lemma 7.8, the sum of trace ρ3(fg, s) and trace ρ5(fg, s)

is equal to Ā.

LetT (Z/ℓnZ) be the sheaf of ℓnth roots of unity. As usualwe introduce the dual complexes

DF̂Kµ! (Z/ℓ
nZ) = R

=
Hom

(
F̂Kµ! (Z/ℓ

nZ), T (Z/ℓnZ)
)
.

If ϕ denotes, for anyK , the imbedding M̂o
K⊗Fp → M̂K⊗Fp and µ̃ the representation contra­

gredient to µ, then

DF̂Kµ! (Z/ℓ
nZ) ≃ R

=
ϕ∗

(
F̂Kµ̃ (Z/ℓnZ)⊗ T (Z/ℓnZ)

)
.

The map

(12) ϕ∗2F̂
K
µ! (Z/ℓ

nZ)→ ϕ∗1a
−1(g)F̂Kµ! (Z/ℓ

nZ)

yields

D
(
ϕ∗1gF̂

K
µ! (Z/ℓ

nZ)
)
→ D

(
ϕ∗2F̂

K
µ! (Z/ℓ

nZ)
)

or

(13) R
=
ϕ∗ϕ

∗
1gF̂

K
µ̃ (Z/ℓnZ)→ R

=
ϕ∗ϕ

∗
2F̂

K
µ̃ (Z/ℓnZ)
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or (SGA 5.I.1.12)

(14) ϕ∗1Da
−1(g)F̂Kµ! (Z/ℓ

nZ)→ R
=

!ϕ2DF̂
K
µ! (Z/ℓ

nZ).

There is a map of sheaves over M̂o
K⊗Fp

(15) ϕ∗1
(
a−1(g)F̂Kµ̃ (Z/ℓnZ)⊗ T (Z/ℓnZ)

)
→ ϕ∗2

(
F̂Kµ̃ (Z/ℓnZ)⊗ (Z/ℓnZ)

)
.

which can be constructed in the followingmanner. We start with the isomorphism (SGA 5.XV)

F̂Kµ̃ (Z/ℓnZ)→ L∗2(s)F̂
K
µ̃ (Z/ℓnZ).

Then we lift by means of L∗1(s) and compose with the map F̃
K
µ̃ (Z/ℓnZ) → L∗1(s)F̂

K
µ̃ (Z/ℓnZ)

defined by the upper horizontal arrow in the following diagram

F̂Kµ̃ (Z/ℓnZ)
L1(s)
−−−−−→ F̂Kµ̃ (Z/ℓnZ)

y ւ
y

M̂o
K⊗Fp

L1(s)
−−−−−→ M̂o

K⊗Fp .

Finally we lift by R∗(g) and compose with the resultant of

R∗(e)a−1(g)F̂Kµ̃ (Z/ℓnZ)
∼
−→a−1(g)F̂K

′

µ̃ (Z/ℓnZ)→ gF̂K
′

µ̃ (Z/ℓnZ)
∼
−→R∗(g)F̂Kµ̃ (Z/ℓnZ)

to obtain

ϕ∗1
(
gF̂Kµ̃ (Z/ℓnZ)

)
→ ϕ∗2

(
F̄Kµ̃ (Z/ℓnZ)

)
.

To complete the construction of (15) we observe that the processes of taking an inverse image

and tensoring with T (Z/ℓnZ) commute. Themap (13) is obtained from (15) by applying R
=
ϕ∗.

There is a lack of symmetry between the formulae (12) and (14) that should be commented

upon and corrected. The map R(g) : M̂K′⊗Fp → M̂K⊗Fp is unramified over M̂
o
K⊗Fp so

that as long as we were working with sheaves over the latter space or their extensions by

zero, we did not need to distinguish beteen R
=

!R(g) and R∗(g). In (14) we do. To restore the

symmetry we write (12) as

(16) ϕ∗2F̂
K
µ! (Z/ℓ

nZ)→ R
=

!ϕ1a
−1(g)F̂Kµ! (Z/ℓ

nZ).
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The preceding discussionwill be of use again later, but its immediate purpose is the proof

of Lemma 7.9. The map (16) defines (SGA 5.III)

Φi : Hi
(
M̂K⊗Fp, F̂

K
µ! (Z/ℓ

nZ)
)
→ Hi

(
M̂K⊗Fp, a

−1(g)F̂µ!(Z/ℓ
nZ)

)

and (14) defines

Ψi : Hi
(
M̂K⊗Fp, Da

−1(g)F̂Kµ! (Z/ℓ
nZ)

)
→ Hi

(
M̂o
K⊗Fp, DF̂

K
µ (Z/ℓnZ)

)

which may also be written as

Ψi : Hi
(
M̂o
K⊗Fp, a

−1(g)F̂Kµ̃ (Z/ℓnZ)
)
→ Hi

(
M̂o
K⊗Fp, F̂

K
µ̃ (Z/ℓnZ)

)
.

When we take the limit and tensor withQℓ,Φ2 becomes ρ5(fg, s). By the duality theorem

Ho
(
M̂K⊗Fp, Da

−1(g)F̂Kµ! (Z/ℓ
nZ)

)
≃ Hom

(
H2

(
M̂K⊗Fp, a

−1(g)F̂Kµ! (Z/ℓ
nZ)

)
,Z/ℓnZ

)

and Φ2 and Ψ0 are adjoint. It will be enough to see what happens to Ψ0 upon passage to the

limit.

The group

Ho
(
M̂o
K⊗Fp, a

−1(g)F̂Kµ̃ (Z/ℓnZ)
)

is the group of sections

M̂o
K⊗Fp → a−1L(Z/ℓnZ) ×

K/Ko

(M̂o
Ko
⊗Fp).

When restricted to a connected component Y of M̂o
K⊗Fp, such a section must be of the form

Y
∼
−−−→ a−1(g)v ×

K1/K0

X

where X is a connected component of M̂o
Ko
⊗Fp whose stabilizerK1/Ko and where a

−1(g)v

is fixed by every element ofK1/Ko.

It is shown in [3.1] that the set of connected components ofMo
Ko
⊗Fp is the union over

the double cosets of B(Qp) \G(Qp)/Kp, which as usual we index by i, of

M̄ i
Ko

= Ḡ+(Q) \ Ḡ(Af )/K̄
p
oVi

where each Vi is {α ∈ Q×p
∣∣α ≡ 1 (mod pm)}. The action of k ∈ K/Ko ≃ Kp/Kp

o is left

multiplication by detk. In particular the stablizer of any connected component contains all
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cosets represented by k with detk = 1. If deg µ > 1 there can thus be cohomology in degree

0 at a finite stage but none in the limit so the trace of ρ5(fg, s) is zero. If k ∈ K stabilizes any

component then detk ∈ Ḡ+(Q)detKo and hence lies in detKo. Consequently if deg µ = 1

the action of k on a−1(g)L(Z/ℓnZ) is equal to that of some ko and is therefore trivial. Thus if

deg µ = 1

Ho
(
M̂o
K⊗Fp, F̂µ̃(Z/ℓ

nZ)
)

is isomorphic to the direct sum over ∪iM̄
i
K = M̄K of the fibres of the sheaf

(17) a−1(g)FKν̃ (Z/ℓnZ) = ∪ia
−1(g)L̃(Z/ℓnZ)×

K̄p

M̄ i

defined in the same was as Fν(Qℓ), in the prelude to Lemma 5.6, except that Z/ℓ
nZ replaces

Qℓ and that ν̃, which is defined by ν̃(detg) = µ̃(g), replaces ν. In other words it is the group

of sections of this sheaf over M̄
∧
K .

The operator Ψo is determined by (15). Its effect on a section of a
−1(g)F̂Lµ̃ (Z/ℓnZ) has

to be determined in steps. The first step is to pull back a section to R∗(e)a−1(g)F̂Kµ̃ (Z/ℓnZ)

and then to use the isomorphism of this sheaf with a−1(g)F̂K
′

µ̃ (Z/ℓnZ). This corresponds to

pulling back a section of a−1(g)FKν̃ (Z/ℓnZ) to R∗(e)a−1(g)FKν̃ (Z/ℓnZ) and then using the

followingCartesian diagram, whereR(h) : M̄
∧
K′ → M̄

∧
K is multiplication by deth, with h = e,

(18)

ha−1(g)FK
′

ν̃ (Z/ℓnZ) −−−−−→ a−1(g)FKν̃ (Z/ℓnZ)

y y

M̄
∧
K′

R(h)
−−−−−→ M̄

∧
K

where the upper arrow is defined by the action of R(h) on the second factors and h−1 on the

first in

ha−1(g)FK
′

ν̃ (Z/ℓnZ) = ∪iha
−1(g)L̃(Z/ℓnZ)×

K′
M̄ i

to obtain a section of a−1(g)FK
′

ν̃ (Z/ℓnZ) over M̄1
K′ .

The next step is an application of the embedding a−1(g)F̂K
′

µ̃ (Z/ℓnZ) → gF̂K
′

µ̃ (Z/ℓnZ)

which in terms of sections over M̄
∧
K′ is an application of the imbedding a

−1(g)FK
′

ν̃ (Z/ℓnZ)→

gFK
′

ν̃ (Z/ℓnZ). In case it has been puzzling the reader, I observe that Fµ̃(Z/ℓ
nZ) is defined by

means of the lattice dual to L(Zf ). Since a(g)g fixes L(Zf ),
(
a(g)g

)−1
fixes the dual lattice

and the imbedding is defined. The next step is to use the isomorphism

gF̂K
′

µ̃ (Z/ℓnZ)
∼
−−−→R∗(g)F̂Kµ̃ (Z/ℓnZ)
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to obtain a section of the sheaf on the right. This corresponds in terms of sections over M̄
∧
K′ to

using the isomorphism

gFK
′

ν̃ (Z/ℓnZ)
∼
−−−→R∗(g)FKν̃ (Z/ℓnZ)

given by (18).

The map defined by L1(s) is no problem. If b = pmx with x a unit, let L1(s) be the map

on M̄
∧
K and on the sheaves F

K
ν̃ (Z/ℓnZ) defined by left multiplication by x. The broken arrow

in the diagram

(19)

FKν̃ (Z/ℓnZ)
L1(s)
−−−−−→ FKν̃ (Z/ℓnZ)

y ւ
y

M̄
∧
K

L1(s)
−−−−−→ M̄

∧
K

turns the upper right corner into L∗1(s)F
K
ν̃ (Z/ℓnZ). The map defined by L1(s) is the upper

horizontal arrow.

The action of L2(s) on F̂
K
µ̃ (Z/ℓnZ) is given (SGA 4.XV.1) by the broken arrow in the

commutative diagram.

(20)

ւ
L2(s)︷ ︷

F̂Kµ̃ (Z/ℓnZ) ←−−−−− L∗2(s)F̂
K
µ̃ (Z/ℓnZ) ←−− F̂Kµ̃ (Z/ℓnZ)

y y ւ

M̂o
K⊗Fp

L2(s)
←−−−−− M̂o

K⊗Fp

We must pull back the action of L2(s) by L
∗
1(s), compose with the action of L1(s), pull

back the result by R∗(g), and then take the trace with respect to R(g)L1(s)L2(s). Taking the

trace with respect to R(g) erases the pullback by R∗(g) and replaces it by multiplication by

[K : K ′]

[K̄ : K̄ ′]

where, for example, K̄ = {detk
∣∣ k ∈ K}. This number is the degree of R(g) on a connected

component. Of course we must then apply the trace at the level of sheaves over M̄
∧
K′ , and

M̄
∧
K . The trace with respect to L1(s) of the pullback of the action of L2(s) by L

∗
1(s) gives this
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action back again. The trace with respect to L1(s) applied to the action of L1(s) replaces a

section of the sheaf defined by the left vertical arrow in (19) by the section of the sheaf defined

by the right vertical arrow obtained by applying L1(s).

Taking the trace with respect to L2(s) of the actions of L2(s) has the effect of replacing a

section of the sheaf defined by the skew arrow on the right in (20) by the unique section of the

sheaf defined by the arrow on the left which makes

F̂Kµ̃ (Z/ℓnZ)
L2(s)
←−−−−− F̂Kµ̃ (Z/ℓnZ)

x ր

M̂o
K⊗Fp

L2(s)
←−−−−− M̂o

K⊗Fp

commutative.

If we let L2(s) acting on M̄
∧
K be multiplication by p

m ∈ Ḡ(Qp) then, when we represent

a section of F̂Kµ̃ (Z/ℓnZ) by a section of FKν̃ (Z/ℓnZ), the effect of L2(s) is to take the section

defined by the arrow on the right in the diagram below and replace it by the one defined by

the arrow on the left which makes the diagram commutative

FKν̃ (Z/ℓnZ)
L2(s)
←−−−−− FKν̃ (Z/ℓnZ)

y y

M̄
∧
K

L2(s)
←−−−−− M̄

∧
K

If we observe that under the map M̄
∧
K′ → M̄

∧
K the inverse image of every point contains

[K̄ : K̄ ′] points, we may summarize the preceding discussion as follows. We have shown that

Ho
(
M̂o
K⊗Fp, a

−1(g)F̂Kµ̃ (Z/ℓnZ)
)
≃ Ho

(
M̂
∧
K , Fν̃(Z/ℓ

nZ)
)

and that the map

Ho
(
M̂o
K⊗Fp, a

−1(g)F̂Kµ̃ (Z/ℓnZ)
)
→ Ho

(
M̂o
K⊗Fp, F̂

K
µ̃ (Z/ℓnZ)

)

defined by the map

(21) ϕ∗1
(
a−1(g)F̂Kµ̃ (Z/ℓnZ)

)
→ ϕ∗2

(
F̂Kµ̃ (Z/ℓnZ)

)
,
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itself defined as (15) was, except that T (Z/ℓnZ) need not be taken into account, corresponds

to [K : K ′] times the map

Ho
(
M̄
∧
K , a

−1(g)FKν̃ (Z/ℓnZ)
)
→ Ho

(
M̄
∧
K , F

K
ν̃ (Z/ℓnZ)

)

which assigns to the section defined by the arrow in the right of the diagrambelow that defined

by the arrow on the left

Fν̃(Z/ℓ
nZ) ←−−−−− a−1(g)Fν̃(Z/ℓ

nZ)

x x

M̄
∧
K ←−−−−− M̄

∧
K

The horizontal arrows are defined by the maps on M̄
∧
K and M̄

∧
given by multiplication by

b detg.

The elements of

Ho
(
M̂o
K⊗Fp, F̂

K
µ̃ (Z/ℓnZ)⊗ T (Z/ℓnZ)

)

are obtained from those of

Ho
(
M̂o
K⊗Fp, F̂

K
µ̃ (Z/ℓnZ)

)

by tensoring with a fixed non­zero section of T (Z/ℓnZ). The two groups are in particular

isomorphic. The action defined by (15) differs from that defined by (21) only in its effect on this

section: There is none until the last stage, when we apply L2(s). This introduces an additional

factor pm = |b|−1
p . Taking the limit and tensoring with Qℓ, we see readily that

trace ρf (fg, s) =
|b|−1
p

1 + |b|−1
p

Ā.

A similar but easier discussion, since there is no need to introduce duality, shows that

trace ρ3(fg, s) =
1

1 + |b|−1
p

Ā

and proves Lemma 7.9.

The numberB discussed in Lemma 5.5 was defined as a sum of certain expressions ψ(γ).

With the same notations as there, set

ψ1(γ) = (d′ − a′) traceµ(γ)

if |a| > |d| and let it be 0 otherwise. Set

ψ2(γ) = a′am−ℓdℓ.

Then ψ(γ) = ψ1(γ) + ψ2(γ) and B is B1 +B2.
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Lemma 7.10. Under the assumptions of Lemma 7.8, the trace of ρ2(fg, s) is B2.

ρ2(fg, s) may be taken to be the double representation on the tensor product with Qℓ of

the projective limit of the groups

Ho
(
M̃o
K⊗Fp, Fµ(Z/ℓ

nZ)
)

which are equal to

⊕CK
Ho

(
Gp(K, h,Fp), L(Z/ℓnZ)

)
.

To be more precise, the sum is over a set of representatives in G(Af ) of the double cosets in

CK .

IfK1 = Kp
1Kp and g

−1K1g ⊆ K thenR(g) : M̃o
K1
⊗Fp → M̃o

K⊗Fp. It takesM
o
K1
⊗Fp|h

toMo
K⊗Fp|hg. Our conventions are such that it yields a well­defined map from

Gp(K1, h,Fp) ≃ h
−1N(Ap

f )h ∩K1

to

Gp(K, hg,Fp) ≃ g
−1h−1N(Ap

f )hg ∩K.

Namely, it sends the element of theGalois group represented by thematrixn to that represented

by g−1ng.

The action of ρ2(fg, s) is defined by

(22) ϕ∗2F
K
µ (Z/ℓnZ)→ ϕ∗1a

−1(g)FKµ (Z/ℓnZ)

which has been defined as the composite of a sequence of operations. Without repeating their

definition, we shall describe their effect on the Galois cohomology in degree 0. Of course the

operations over M̃o
K′⊗Fp have to be preceded by a lifting by the inverse image functor and

followed by the trace map.

IfKo = Kp
oKp is normal inK andK

′
o = Ko ∩ gKog

−1 and h1 = g(s)hg we have

Mo
K′o
⊗Fp

∣∣hR(g)L1(s)L2(s)
−−−−−−−−−→Mo

Ko
⊗Fp

∣∣h1.

These maps define an imbedding

Gp(K ′, h,Fp)→ G(K, h1,Fp)

which in terms of matrices takes n in h−1N(Ap
f )h ∩ K

′ to g−1ng in h−1
1 N(Ap

f )h1 ∩K . The

lifting by R∗(g)L∗1(s)L
∗
2(s) is, in terms of Galois cohomology, the restriction map defined
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by this imbedding. The effect of (22) is to map L(Z/ℓnZ) to a−1(g)L(Z/ℓnZ), on which

h−1N(Ap
f )h ∩K

′ acts in the usual way, by v → gv. The last step is the trace with respect to

R(e) and it is just corestriction with respect to the imbeddingGp(K ′, h,Fp)→ Gp(K, h,Fp).

Suppose h1 and h represent the same element of CK , that is, h represents a fixed point

of ϕ(g, s) in CK′ , so that g(s)hgk = nγh with k ∈ K , n ∈ N(Af ), γ ∈ A+(Q). To pass from

cohomologywith respect toGp(K, h,Fp) to that with respect toGp(K, h1,Fp), we have to use

the map from L(Z/ℓnZ) → L(Z/ℓnZ) given by k. Recall that it was shown during the proof

of Lemma 5.5 that when h represents a fixed point the index

(23) [h−1N(Ap
f )h ∩K : h−1N(Ap

f )h ∩K
′]

is equal to a′.

To compute the trace of ρ2(fg, s)we have to take the sum over a set of representatives of

the fixed points of ϕ(g, s) on CK′ of the trace on

(24) lim
←
Ho

(
Gp(K, h,Fp), L(Z/ℓnZ)

)
⊗ Qℓ = Lph(Qℓ).

Under the present circumstances, corestriction in degree zero becomes in the limit simply

multiplication by the index (23). Thus the trace of ρ2(g, s) on (24) is a
′ times the trace gk on

Loh(Qℓ), the invariants inL(Qℓ) ofh
−1N(Qℓ)h. This is a

′ times the trace ofnγ on the invariants

ofN(Qℓ), which is in turn a
′am−ℓdℓ = ψ2(γ).

To complete the proof of Lemma 6.8 we have only to establish one more fact.

Lemma 7.11. Under the conditions of Lemma 7.8, the alternating sum of the traces of the

operators on Hi
(
M̂K⊗Fp, F̂µ!(Qℓ)

)
defined by g and s is

∑

F

A(F ) + A(D) +B1.

As explained in the introductionwe use a variant of the Lefschetz fixed point formula [7.4]

to prove this. Suppose X and Y are complete, non­singular, but not necessarily connected,

curves over an algebraically closed field and ϕ = ϕ1 × ϕ2 is a morphism Y → X ×X . Let

F (Qℓ) = {F (Z/ℓnZ)} be a constructible étale sheaf of Qℓ vector spaces over X . If a is a

non­zero ℓ­adic integer aF (Qℓ) is by definition the sheaf defined by {aF (Z/ℓnZ)}. The map

aF (Qℓ) → F (Qℓ) given by aF (Z/ℓnZ) →֒ F (Z/ℓnZ) yields an isomorphism of cohomology

groups. If b is another non­zero ℓ­adic integer define 1
bF (Qℓ) by {

1
bF (Z/ℓnZ)} where by

definition
1

b
F (Z/ℓnZ) = F (Z/ℓnZ).
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Map F (Qℓ) to
1
bF (Qℓ) by b : F (Z/ℓnZ) → F (Z/ℓnZ). This map also yields an isomorphism

of cohomology groups. In general if α = a
b
is a non­zero ℓ­adic number we may combine the

two operations to obtain αF (Qℓ) and well­defined isomorphisms between the cohomology

groups of this sheaf and those of F (Qℓ). We also have isomorphisms between the fibres

F (Qℓ)x ≃ αF (Qℓ)x where, for example,

F (Qℓ)x = lim
←
F (Z/ℓnZ)x ⊗Qℓ.

Fix α ∈ Q∗ℓ . Suppose we have a consistent collection of maps

Φ : ϕ∗2F (Z/ℓnZ)→ R!ϕ1αF (Z/ℓnZ).

As was observed earlier this yields maps

Φi : Hi
(
X,F (Qℓ)

)
→ Hi

(
X,αF (Qℓ)

)
≃ Hi

(
X,F (Qℓ)

)
.

A fixed point of ϕ is a closed point y which maps to a point (x, x) in the diagonal. LetXx

and Yy be the strict localizations ofX and Y at x and y respectively. We have a commutative

diagram
Yy −→ Xx ×Xx

yψ
yψ

Y −→ X ×X

ψ∗(Φ)defines amapΦy fromH
o
(
Xx, ψ

∗F (Qℓ)
)
to itself and, by definition,Ho

(
Xx, ψ

∗F (Qℓ)
)

is F (Qℓ)x.

Φ also defines

DΦ : ϕ∗1
1

α
DF (Z/ℓnZ)→ R!

ϕ2
DF (Z/ℓnZ)

and homomorphisms

DΦy :
1

α
DF (Z/ℓnZ)x → DF (Z/ℓnZ)x.

This is a homomorphism not from one Z/ℓnZ module to another but from one complex of

modules to another. We may still take a direct limit to obtainDF (Qℓ)x ≃
1
αDF (Qℓ)x as well

as

DΦy : DF (Qℓ)x −→ DF (Qℓ)x.

The trace ofDΦy is the alternating sum of the traces on the cohomology groups.

We do not prove the following proposition.
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Proposition 7.12. Suppose that at every fixed point, y → (x, x), ϕ = ϕ1 × ϕ2 has the form

ϕ∗1(tx) = utay, ϕ
∗
2(tx) = vtdy, with a 6= d, where tx and ty are uniformizing parameters at x

and y and u and v are units in the local ring of Y at y. Then the alternating sum of the

traces of the Φi is equal to the sum over those fixed points y with d > a of trace Φy plus

the sum over the fixed points with a > d of traceDΦy.

The correspondence which figures in Lemma 7.11 certainly satisifes the conditions of this

proposition. At a fixed point in M̂o
K⊗Fp, a is 1 and d is p

m with, by assumption,m ≥ 1. Since

M̂K⊗Fp andMK⊗Fp are isomorphic away from the singular points ofMK⊗Fp, all of which

lie inMo
K⊗Fp, it follows from [3.1] that at a fixed point in M̂

∞
K ⊗Fp the integer a is prime to

p and d is divisible by pm. To prove Lemma 7.11, we examine the contributions of the fixed

points inMK′(p, F ), ∪iM
i
K′(p,D), and CK′ separately.

We start with a point x inMK(p, F ) represented by h in G(Af ). Let M̂K⊗Fp|h be the

strict localization of M̂K⊗Fp, or, what is the same, ofMK⊗Fp at this point. If Ko = Kp
oKp

withKp
o ⊆ K

p the map M̂o
Ko
⊗Fp → M̂o

K⊗F is étale. Consequently if ho and h represent the

same point inMK(p, F ) the map

M̂Ko
⊗Fp|ho →MK⊗Fp|h

is an isomorphism. IfKo is normal inK and sufficiently small

F (Z/ℓnZ)x =
(
L(Z/ℓnZ) ×

K/Ko

M̂o
Ko
⊗Fp

)
×

Mo
K
⊗Fp

M̂o
K⊗Fp|h

is canonically isomorphic to

L(Z/ℓnZ)× M̂o
Ko
⊗Fp|h ≃ L(Z/ℓnZ)× M̂o

K⊗Fp|h.

The isomorphism here is also canonical and we may identify F (Z/ℓnZ)x with L(Z/ℓnZ) and

F (Qℓ)x with L(Qℓ). Since this identification depends upon hwe write F (Zℓ)x as L(Qℓ)× h.

It is shown in [3.1] that the correspondenceR(e)×R(g)L1(s)L2(s) acts onMK(p, F ) as the

correspondence ϕ(g, s)used in §5 to defineA(F ). Moreover if (h1, h2)withnγh2 = g(s)h1gk,

represents a point in the image, themapL(Qℓ)×h2 → L(Qℓ)×h1 onfibres is v×h2 → gkv×h1

and this is the map used there. It follows that the contribution of the fixed points inMK(p, F )

to the alternating sum of the traces of the Φi is A(F ).

One sees in the same way that the contribution of the fixed points in ∪iM
i
K(p,D) =

M̂K(p,D) to the alternating sum of the traces is A(D).
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It is also shown in [3.1] that R(e) × R(g)L1(s)L2(s) acts on the points of CK as the

correspondence ϕ(g, s) used to define the number B. If h represents a fixed point, there is an

equation g(s)hgk = nγhwith

γ =

(
a 0
0 d

)

a and d have the same sign. Let a′ and d′ be relatively prime positive integers with a′ : d′ =

a : d. If h represents x′ and x′ → (x, x) let tx and tx′ be uniformizing parameters at x and x
′.

Then ϕ∗1(tx′) = uta
′

x , ϕ
∗
2(tx′) = vtd

′

x where u and v are units in the local ring at x
′. If a′ < d′

there is no contribution to the alternating sum of the traces because the fibre of F (Qℓ) is 0 at a

point of CK .

To compute the trace of the map

DF̂Kµ! (Qℓ)x → DF̂Kµ! (Qℓ)x

defined by (14), we use the description of (14) in terms of (15). If MK⊗Fp|h is the strict

localization ofMK⊗Fp at the point represented by h and

Mo
K⊗Fp|h = Mo

K⊗Fp ×
MK⊗Fp

MK⊗Fp|h,

it is a question of determining the effect of (15) on the cohomology groups

Hi
(
Mo
K⊗Fp|h, a

−1(g)Fµ̃(Z/ℓ
nZ)

)

at a fixed point. This involves considerations in the Galois cohomology discussed already in

the proof of Lemma 7.10; so we can be brief. Only degrees 0 and 1 need be considered.

In degree 0 the difference between the present situation and that of Lemma 7.10 is that

µ is replaced by µ̃ and (22) by (15). The steps involved are restriction by Gp(K ′, h,Fp) →

Gp(K, h,Fp), which is defined in terms of matrices by the imbedding

h−1N(Ap
f )h ∩K

′ →֒ h−1N(Ap
f )h ∩K.

This is followed by

a−1(g)L̃(Z/ℓnZ)⊗ T (Z/ℓnZ) →֒ gL̃(Z/ℓnZ)⊗ T (Z/ℓnZ)

and then by

k−1g−1 : gL̃(Z/ℓnZ)⊗ T (Z/ℓnZ)→ L̃(Z/ℓnZ)× T (Z/ℓnZ).
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At this stage an element ofGp(K ′, h,Fp) represented by n acts on the right as k
−1g−1ngk. The

last step is corestriction with respect to the imbeddingGp(K ′, h,Fp)→ Gp(K ′h,Fp) defined

by n→ k−1g−1ngk tensored with multiplication by pm on T (Z/ℓnZ).

An easy calculation shows that the index

[
h−1N(Af )h ∩K : k−1g−1

(
h−1N(Af )h ∩K

′)gk
]

is equal to
∏
q 6=p |d

′|−1
q . The trace in degree 0 is thus d′ times the trace of µ̃(γ−1) on the

invariants ofN(Qℓ) and this product is, in the notation of Lemma5.5, d
′aℓdm−ℓ. The restriction

in degree 1 amounts to multiplication by

[h−1N(Ap
f )h ∩K : h−1N(Ap

f )h ∩K
′] = a′.

Corestriction, when we interpret the limit of the first cohomology groups as Lho (Qℓ), has no

effect. Thus the trace in degree 1 is a′am−ℓdℓ. Since

ψ1(γ) = d′dm−ℓaℓa− a′am−ℓdℓ

we are done with Lemma 7.11.

Theorem 7.5 remains to be proven. We have an injection

0→ H1
p

(
MK⊗Fp, Fµ(Qℓ)

)
→ H1

p

(
MK ⊗Qp, Fµ(Qℓ)

)

and a surjection

H1
p

(
MK⊗Fp, Fµ(Qℓ)

)
→ H1

p

(
M̂K⊗Fp, F̂µ(Qℓ)

)
→ 0.

On all spaces involved we have a double representation ofHQ(Kp) andG(Qp/Qp). Let ρ
o be

the double representation on the kernel of the arrow in the second diagram.

Lemma 7.13. If s→ b in Q×p and |b|p < 1 the trace of ρo(fg, s) is equal to

(
A(D)− Ao(D)

)
− (|b|−1

p + 1)−1(Ā− Āo).

There is an exact sequence

0→ Ho
(
Mo
K⊗Fp, Fµ(Qℓ)

)
→ Ho

(
M̂o
K⊗Fp, F̂µ(Qℓ)

)
→

→ Ho
(
Mo
K⊗Fp, E(Qℓ)

)
→ H1

(
Mo
K⊗Fp, Fµ(Qℓ)

)
→ H1

(
M̂o
K⊗Fp, F̂µ(Qℓ)

)
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ρo is also the representation on the kernel of the arrow in the second line. The trace in which

we are interested is therefore the alternating sum of the traces on the groups in the first row.

The representation on the group in the middle is ρ3; and we have already seen, during the

proof of Lemma 7.9, that its trace is (|b|−1
p + 1)−1Ā. One proves in the same way that the

trace on the first group is (|b|−1
p + 1)−1Āo. It is only necessary to take into consideration the

different structure of the set of connected components ofMKo
⊗Fp, forKo = Kp

oKp ⊆ K .

The sheaves E(Z/ℓnZ) are supported on the finite set MK(p,D) of closed points in

MK⊗Fp [3.1]. We also useMK(p,D) to denote this set with its reduced subscheme structure

and let i denote the corresponding immersion. We do the same for M̂K(p,D) in M̂K⊗Fp.

M̂K(p,D) is the fibre ofMK(p,D) in M̂K⊗Fp. Let q be the map: M̂K(p,D) → MK(p,D).

There is an exact sequence

0→ i∗i
∗Fµ(Z/ℓ

nZ)→ i∗q∗i
∗F̂µ(Z/ℓ

nZ)→ E(Z/ℓnZ)→ 0

from which it is easily seen that the trace onHo
(
Mo
K⊗Fp, E(Q)

)
is A(D)− Ao(D).

The representation ρo acts in effect on an invariant subspace of H1
p

(
MK ⊗ Qp, Fµ(Qℓ)

)
.

Call this subspace Xo. Suppose that, over a finite extension Eℓ of Qℓ, we can find another

subspace Y invariant at least under the restriction of ρ to G(Qp/F
un), where F is a finite

extension ofQp, so that onY this restriction is a direct sumof two­dimensional indecomposable

representations. Let X be the sum of the one­dimensional subspaces of Y invariant under

G(Qp/F ). Then 2 dimX = dimY . Suppose also thatXo ⊆ X .

By assumption we can find a decomposition Y = ⊕Yj of Y as a direct sum of two­

dimensional subspaces, on each of which the representation ofG(Qp/F
un) is indecomposable.

IfXj = X ∩ Yj thenX = ⊕jXj . We may also suppose that

Xo ⊗ F = ⊕Xj⊆Xo⊗FXj .

On the other hand, by an obvious refinement of Proposition 3.1, if Eℓ is suffficiently large

H1
p

(
MK ⊗ Qp, Fµ(Eℓ)

)
= ⊕π ⊕k U

π
Eℓ
⊗ vπk

where {vπk } is a basis of V
π
Eℓ

(K). SinceXo ⊗ F is invariant under the double representation,

it is the direct sum of its intersections with the spaces UπEℓ
⊗ V πEℓ

(K). Moreover if, for a given

π, it intersects UπEℓ
⊗ V πEℓ

(K) in a non­zero subspace, then its intersection with each UπEℓ
⊗ vπk

is non­zero.

If the projection of Y j to UπEℓ
⊗ vπk is non­zero onX

j it must be surjective. It follows that

whenever

(25) (Xo ⊗ F ) ∩
(
UπEℓ
⊗ V πEℓ

(K)
)
6= 0
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the representation σp(π) is special. Moreover the dimension of this intersection is one­half

the dimension of UπEℓ
⊗ V πEℓ

(K). Let Y o be the sum over those π satisfying (25) of UπEℓ
⊗

V πEℓ
(K). Since ρ acts to the right, it follows easily from Lemma 7.13 and the structure of special

representations that the trace of the restriction of ρ(fg, s) to Y
o is

(|b|−1
p + 1)

(
A(D)− Ao(D)− (Ā− Āo)

)
.

Theorem 7.5 therefore follows from Proposition 5.8 and Lemma 7.9 once we have proved the

existence of such a subspace Y .

Let S be the finite extension ofRun figuring in the diagram (9). By [7.2], we may suppose

that

M ′K⊗S = (M ′K⊗So)⊗So
S

where So ⊆ S is a finite extension ofR andM
′
K⊗So is a desingularization ofMK⊗R. The field

F is to contain So. Let M̂
′
K⊗Fp be the desingularization ofM

′
K⊗Fp. We have a commutative

diagram
M̂ ′K⊗Fp −→ M ′K⊗Fp

y y

M̂K⊗Fp −→ MK⊗Fp

Let, for example, F̂ ′µ!(Z/ℓ
nZ) be the inverse image on M̂ ′K⊗Fp of the sheaf Fµ!(Z/ℓ

nZ).

There is a commutative diagram

(26)

H1
p

(
M̂ ′K⊗Fp, F̂

′
µ(Qℓ)

)
←− H1

p

(
M ′K⊗Fp, F

′
µ(Qℓ)

)

x x

H1
p

(
M̂K⊗Fp, F̂µ(Qℓ)

)
←− H1

p

(
MK⊗Fp, Fµ(Qℓ)

)

in which the horizontal arrows are surjections and the right vertical arrow is an injection. Let

Xo be the kernel of the lower horizontal arrow andX that of the upper.

There is another commutative diagram which may be attached to the diagram (26)

(27)

H1
p

(
M ′K⊗Fp, F

′
µ(Qℓ)

)
−→ H1

p

(
M ′K ⊗Qp, F

′
µ(Qℓ)

)

x x

H1
p

(
MK⊗Fp, Fµ(Qℓ)

)
−→ H1

p

(
MK ⊗Qp, Fµ(Qℓ)

)

The horizontal arrows are injective and the vertical arrow on the right is an isomorphism. We

may therefore regard Xo andX , withXo ⊆ X , as subspaces ofH
1
p

(
M ′K ⊗Qp, F

′
µ(Qℓ)

)
.

The group G(Qp/F ) acts, in a compatible way, on all the spaces appearing in (26) and

(27). With the following lemma the proof of Theorem 7.5 is complete.
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Lemma 7.14. There is a subspace Y of H1
p

(
M ′K ⊗ Qp, F

′
µ(Qℓ)

)
with X ⊆ Y and with

2 dimX = dimY such that over some finite extension of Qℓ the representation of G(Qp/F
un)

on Y is the direct sum of two-dimensional indecomposable representations. Moreover X is

the sum of all one-dimensional subspaces of Y invariant under G(Qp/F ).

The proof that follows is simply a bowdlerization of a conversation with Deligne. It relies

of course on the Picard–Lefschetz theory of SGA 7. If

q′ : M̂o′

K⊗Fp →Mo′

K⊗Fp

let E′(Qℓ) be defined by

0→ F ′µ(Qℓ)→ q′∗F̂
′
µ(Qℓ)→ E′(Qℓ)→ 0.

There is an exact sequence

(28)
0→ Ho

(
Mo′

K⊗Fp, F
′
µ(Qℓ)

)
→ Ho

(
M̂o′

K⊗Fp, F̂
′
µ(Qℓ)

)
→

→ Ho
(
Mo′

K⊗Fp, E
′(Qℓ)

)
→ X → 0.

Moreover

Ho
(
Mo′

K⊗Fp, E
′(Qℓ)

)
= ⊕xE

′(Qℓ)x

and

(29) E′(Qℓ)x ≃ F
′(Qℓ)x = F ′(Qℓ)x ⊗Zℓ

Zℓ.

The sum is over all double points ofM ′K⊗Fp and the isomorphism (29) is determined up to a

sign which depends upon the choice of an order for the pair of branches passing through x.

Let q′ also be the map M̂ ′K⊗Fp →M ′K⊗Fp and letX! be the kernel of

H1
(
M ′K⊗Fp, F

′
µ!(Qℓ)

)
→ H1

(
M̂ ′K⊗Fp, F̂

′
µ!(Qℓ)

)
.

After extending by zero, we may regard E′(Qℓ) as a sheaf onM
′
K⊗Fp. There is an analogue

of (28). Moreover

Ho
(
M ′K⊗Fp, E

′(Qℓ)
)

= Ho
(
Mo′

K⊗Fp, E
′(Qℓ)

)
,

so that we have a commutative diagram

(30)

⊕F ′(Qℓ)x ⊗
Zℓ

Zℓ −→ X!

ց
y

X
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in which all arrows are surjective.

A spectral sequence similar to the one which led to (10) yields

H1
(
M ′K ⊗Qp, F

′
µ!(Qℓ)

)
→ H0

(
M ′K⊗Fp, u

∗R1v∗F
′
µ!(Qℓ)

)
→

→ H2
(
M ′K⊗Fp, F

′
µ!(Qℓ)

)
→ H2

(
M ′K ⊗Qp, F

′
µ!(Q)

)
→ 0.

The meaning of the maps u and v is more or less the same as in (10). The sheaf u∗R1v∗F
′
µ!(Qℓ)

has support in the set of double points and, since F ′µ(Qℓ) is locally constant inM
o′

K⊗S, its fibre

at x is, once an order has been chosen for the branches at this point, isomorphic to

F ′µ(Qℓ)x ⊗Zℓ
T−1
ℓ

Tℓ is lim
←
T (Z/ℓnZ) and T (Z/ℓnZ) is the group of the ℓnth roots of unity. G(Qp/F ), and in fact

G(Fun/F ), act on Tℓ to the right. The action is the direct limit of ζ → τ−1(ζ), ζ ∈ T (Z/ℓnZ).

T−1
ℓ is the contragredient module.

If F ′ is the limit of the finite Galois extensions of Fun whose order is a power of ℓ the

action of G(Qp/F
un) on H1

(
M ′K ⊗ Qp, F

′
µ!(Qℓ)

)
can be factored through G(F ′/Fun). With

respect to the action ofG(Fun/F ) to the right given by σ → τ−1στ ,G(F ′/Fun) is canonically

isomorphic to Tℓ. There is therefore a pairing

G(F ′/Fun)× T−1
ℓ → Zℓ,

and hence for each σ ∈ G(F ′/Fun) a linear map

ε(σ) : T−1
ℓ → Zℓ.

σ − 1 annihilatesH1
(
M ′K⊗Fp, F

′
µ!(Qℓ)

)
and the diagram

⊕F ′µ(Qℓ)x ⊗ T
−1
ℓ

⊕1⊗ε(σ)
−−−−−−→ F ′µ(Qℓ)x ⊗ Zℓ → X

x y

H1
(
M ′K ⊗ Qp, F

′
µ!(Qℓ)

) σ−1
−−−−−−→ H1

(
M ′K ⊗Qp, F

′
µ!(Qℓ)

)

is commutative. All we need do to verify the lemma is to show that if σ 6= 1 so that ε(σ) 6= 0

then the composite of the top arrows is surjective on the kernel of

(31) ⊕xFµ(Qℓ)x ⊗ T
−1
ℓ → H2

(
M ′K⊗Fp, F

′
µ!(Q)

)
.
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For this purpose the action ofG(Fun/F ) is irrelevant so we may as well identify T−1
ℓ with Zℓ

and ε(σ)with a constant, which by an appropriate choice of σ we may take to be 1.

The remainder of the discussion will be easier to follow if we make use of a graph of Z

whose edges are formed by the set U of double points of M ′K⊗Fp and whose vertices are

formed by the set V of irreducible components ofM ′K⊗Fp or, what is the same, of M̂
′
K⊗Fp.

A vertex lies on an edge if the corresponding double point lies in the component represented

by the vertex.

If µ is one­dimensional letW be empty, otherwise let it be the set of vertices, or irreducible

components, which do not contract to a point in MK⊗Fp. All the vertices and edges lying

in the same connected component of Z −W must map to the same irreducible component

of MK⊗Fp and if µ is not one­dimensional to a single point. We saw during the proof of

Lemma 7.9 that if µ is one­dimensional then Fµ(Qℓ) is constant on each connected component

ofMK⊗Fp.

These observations allow us to identify

⊕xF (Qℓ)x ⊗ Zℓ

with

(32) L(Qℓ)⊗ (⊕xQ) = ⊕xL(Qℓ).

The identification is unique up to a composition with ⊕xAx where Ax is an isomorphism of

L(Qℓ) and x→ Ax is constant on the edges lying in the same connected component of Z−W .

It follows from the proof of Lemma 7.9 that if deg µ > 1 then

Ho
(
N,F ′µ(Qℓ)

)
= 0

for each componentN of M̂o′⊗Fp lying inW . Thus

Ho
(
M̂o′⊗Fp, F

′
µ(Qℓ)

)
≃ ⊕N∈V−WL(Qℓ).

The map of this space into (32) is given by

⊕vN → ⊕x(vN1(x) − vN2(x))

where N1(x) and N2(x) are the components containing the two branches passing through x.

Recall that these branches were ordered. It can happen thatN1(x) andN2(x) are the same. In

any case the image is of the form L(Qℓ)⊗ P with P ⊆ ⊕xQ.
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The group

H2
(
M ′K⊗Fp, F

′
µ!(Qℓ)

)

is isomorphic to

⊕N∈V−WL(Qℓ)⊗ T
−1
ℓ .

According to our argument, we may ignore the T−1
ℓ . The map (31), after identification of its

source with (32), is

⊕xvx → ⊕N

( ∑

N=Ni(x)

(−1)ivx

)
.

Thus the kernel is of the form L(Qℓ)⊗ Q, where Q ⊆ ⊕xQ is the orthogonal complement of

P with respect to the standard inner product on⊕xQ.

With this the lemma is proved and the report is concluded.
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