Chapter IV

ASYMPTOTIC BEHAVIOR OF A VARIATION
OF HODGE STRUCTURE

Phillip Griffiths
Written by Loring Tu

§1. Nilpotent Orbit Theorem

Consider a variation of Hodge structure over a punctured disk,
é: & 5 {T¥I\D,

where T is the image under the monodromy representation of the generator

of nl(A*). By the monodromy theorem T is quasi-unipotent:

(TN-D™1 -0 forsome N, meZ.

Let s be the coordinate on A¥. Replacing s by sN

, We may assume
that T is unipotent. If the variation of Hodge structure arises from a

degenerating family, this amounts to pulling the family back to an N-fold
cover of A*. Because the upper half plane B is simply connected, the
local liftability of the period map ¢ implies its global liftability to B :

p———D

1,

A ———{Tk]\D .
Here

b ={o=u+iv|iv>0}
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and

s = m(w) = exp2riw) .
Note that
$lo+1) = T) .
In terms of the data O = {}(Z,.‘IP,V, S = A*} we think of T as an
action on the lattice HZ = (}(Z)SO, which of course induces an action on

He = 0oy,

. Analytic continuation around s = 0 gives

H = TH

ezms s

Because T is unipotent, its logarithm can be defined as a finite sum:
2 m
N =log T = (T-I) - &EIL et (1M (T_[? .

It is an elementary fact that every holomorphic vector bundle over the

punctured disk is trivial. Hence the cohomology bundle H - A* is trivial.

Of the many trivializations possible, we single out one, called the
privileged extension, defined as follows.

Using the lattice bundle }(Z inside X, it is possible to speak of the

horizontal displacement of an element e in the fiber }(s . By horizontal-
0

ly displacing e, we get a multi-valued flat global section e(s) of X

over A*; e(s) is multi-valued because e((exp 2mi)s) = Te(s). Define

0o(s) = exp (— log. N) e(s) .

2mi

Because

log s
2m

oo((exp 2mi)s) = exp (— N) -1 Te(s) = o.(s) ,

0.(s) is a single-valued holomorphic section of H over A*.

Each trivialization gives rise to an extension of a bundle over the disk A .

ASYMPTOTICS FOR HODGE STRUCTURES 65

DEFINITION 1. The privileged extensionof H > A* to H A is given

by taking {g.} to be a holomorphic frame, as e ranges over a basis of

the fiber }(s .
0

Return now to the period map ¢ :A* >D\I" of a degenerating family.

As before, we have the diagram

b ——>¢ D .
A* s D\I ‘
Set
Y(w) = exp(-wN)p(w) €D .
Then

Pw1) = iw)
so that t[; descends to a single-valued map ¢ : A* D given by

W(s) = Pw)
- ‘5(1335)

= exp (- £ N) (s) .

2mi

THEOREM 2. The map ¢ :A* - D extends across the origin to a map
UiA S D.

For a proof see Cornalba and Griffiths {1, p. 89] or Griffiths and Schmid
[2, p. 104]. The idea is as follows. We view ¢ as a map into a product
of Grassmannians, represented by a matrix whose entries are the periods.

Composing t with the Pliicker embedding P gives a map Poy into a
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projective space. By the theorem on regular singular points, the periods
have at most poles at the origin. Since Poy is given by the minors of
¥, it is meromorphic at the origin. By factoring out the common factors
of Poyr, it follows that Poy and hence ¥ can be extended across the

origin.

DEFINITION 3. The filtration ¥(0) ¢ D will be called the limiting filtra-
tion and will be denoted by {Fg}.

We remark that {Ff:} may well lie outside D. It arises in two contexts;

one is the nilpotent orbit theorem (to be discussed momentarily), and the
other is as the Hodge filtration in the limiting mixed Hodge structure (to

be discussed below).

DEFINITION 4. The nilpotent orbit of a degenerating family over A* is
the map O:h > D given by

Ow) = exp (wN) y(0)
The nilpotent orbit satisfies
Ow+1) = TOw) .

Schmid’s nilpotent orbit theorem says that this nilpotent orbit is a very

good approximation of the original period map.

THEOREM 5 (Nilpotent orbit theorem). a) The nilpotent orbit is horizontal.
b) For Im w >> 0, the nilpotent orbit assumes values in D. c) The nil-
potent orbit osculates to the period map to very high order; more precisely,

there are constants A and B such that for Imw >A >0,

pp(Ow), $w)) < (Im w)Be=27ImW

For a proof see Cornalba and Griffiths [1, p. 90]. The original proof
is in [3]

* g
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§2. The SL,-orbit Theorem

The nilpotent orbit theorem is just the first step. For example, using
it we still do not see that N1 =0, where n is the weight of the Hodge
structure in question — this is the strong form of the monodromy theorem,
giving n+l as a bound on the Jordan blocks of the monodromy matrix.

Moreover, we do not see from it the answer to the main question:

QUESTION. Is the Hodge length [el of an invariant cohomology class

e ¢H bounded on A¥*?

The affirmative answer to this is what is needed to extend the theorem
on the fixed part and its consequences to a variation of Hodge structure
with an arbitrary algebraic base space. The point is that a bounded pluri-
subharmonic function on an algebraic variety (possibly noncomplete) is
constant.

These results are consequences of the SL,-orbit theorem of W. Schmid
[3]. Roughly speaking, given a nilpotent orbit O:9 D, the SL,-orbit

theorem enables us to construct a variation of Hodge structure
¢$:h »D
which lifts to a homomorphism of Lie groups
(/I:SL2(R) - GR
such that

pp@(w), $(w)) < C(Im w)~!

for some constant C. Thus the nilpotent and SL,-orbits are asymptotic
to each other. A stronger but more technical form of this asymptotic
behavior is possible (see Schmid [3]). Rather than stating it, we will now
discuss the consequences.

First, given a variation of Hodge structure of weight n over A¥, we

get

Nl’l+1 =0.




68 PHILLIP GRIFFITHS

Furthermore, there exists a unique ascending filtration {Wef of HQ ,

called the monodromy filtration,

OCWOC---CW2n =HQ,

satisfying

Nw1 - W1_2

k. ~
N® Wk Mok1 = n—k/wn—k—l :

One should think of the monodromy operator N as the analogue of the
operator ““cup product with the Kahler class’’ in the Hard Lefschetz

theorem.

The monodromy filtration is uniquely characterized by these properties.

For by taking k =n, we get

n . ~
N*: Wzn/W2n~1 . WO 4
from which it follows that

W

- n
on—1 = ker N

and
Wy = im N7,

The other terms of the monodromy filtration can now be defined by induc-

tion, as follows. Set
HQ = Wpn_1 /Wy -
Then N induces an operator N° on H/, satisfying (N)" = 0. The

Q

filtration on Hb is

0cC ,xlyg, C-C w;n_zl’ =Hy
W, /W, Won_1/Wo -

S e 3 b R e
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So Wyn_s

and W, are the inverse images of W’2n_3 and Wa respec-

tively under the projection Wono1 ™ Hb . This process continues and

0

REMARK. Ron Donagi points out the following picture of the monodromy

uniquely constructs the monodromy filtration on H

weight filtration: Set
NP9 = im NP N ker N4 |

These are the obvious spaces that can be constructed from the pair (H,N).

Note that NP-9 D NP+1:4 54 NP9 5 NP9+l | Then

Wq = span( 2 Nr,s) .

r+s<n—q

DEFINITION 6. A mixed Hodge structure {HQ,FP,WZ} of weight n con-

sists of an ascending weight filtration, defined over (,

0CWC o ClWpy = Hy

such that the Hodge filtration induces a pure Hodge structure of weight m
on the graded piece Grj =W, /W, , of the weight filtration for each

m=0,:-:,20. The induced Hodge filtration on Gr_ is
FP(Gr ) = (FPOW)/FPOW, ).

For r ¢ Z, a morphism of type (r,r) of mixed Hodge structures is a

-» H’, such that
Q 0

fWp) C Wi, g

rationally defined map f:H

and
f(FPy C (FHPHT,

The main consequence of the proof of the SL,-orbit theorem is that

given a variation of Hodge structure over A*, the limiting filtration {Fg}

& masmsas

-
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together with the monodromy weight filtration {ng gives a mixed Hodge
structure on the vector space HQ . This is called the limiting mixed
Hodge structure. Relative to the limiting mixed Hodge structure N is a
morphism of ty-pe (-1,-1).

We also get a characterization of the monodromy filtration in terms of

the growth of the Hodge length, namely,

W, = {e cH: el = 0<(log I—:_l)%g»

COROLLARY 7. Every local invariant cohomology class has bounded
Hodge length.

Proof. Since

N = (T-I) - (T_Elﬁ foee g (~1)BH Q“FQS

and

SN+ NN
T-I =N+ F L o —n—'— ,
T-1 and N have the same kernel. So the invariant cohomology classes

are precisely ker N. Since ker N C W, , the characterization of W,

above proves the corollary. © g.e.d.

REMARK. There is an interesting, and also confusing, point concerning
the limiting mixed Hodge structure. At the risk of making matters worse,
we shall attempt to clarify it.

Given a variation of Hodge structure over the punctured disk, we lift
to the upper-half-plane and consider the VHS as a holomorphically varying

filtration
F‘ECH p=0,-,n and Imw>0

P

- TP
LA TFW

on the fixed vector space H. Set hp = dim FVI: and h=h%=dimH.

T s m
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LEMMA 8. There exists a holomorphic basis f,(w) € F‘E satisfying

(i) fi(w+l) = TE(w)

k
(ii) £,(w) = 2 f;,(WW®, where
a=0

(iii) fia(w+1) = fia(w) and fia(w) =0(1) .

Here, f.(w) and f; a(w) are vectors in the fixed vector space H.

Proof. Set s =e277iw and

P P
Fg = exp(-wN)FW .

Then {ﬁ‘sp }seA* gives a holomorphically varying and single-valued filtra-

tion on the vector space. By our discussion above, the holomorphic map-
ping A* l G(hp,H) extends across s =0; we let Ei(s) ef“sp be a

holomorphically varying basis. Then
f;(w) = exp(wN)f;(e?™¥) ¢ FP c H

satisfies the requirements of the lemma. q.e.d.
We now consider the non-zero vector
Ap(w) = f,(W) A A fhp(w) € Ath
Clearly we have

Ap(w+1) = (APT).- Ap(w)

h - —
Ap(w) =w pAp(w) + O(Whp 1)

log .S) is a holomorphic and
2ni

where Ap(w+1) = Ap(w), and where Ap(

non-vanishing function for |s| <e. Then
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o ~h
Ap(w) w pAp(w)

/.\p(W) +0(w™1)

gives the Pliicker coordinate of F‘S . In particular, Kp(ioo) = lim Kp(w)
W-=>100

. - - h
exists as a point in G(hp,H) C PA PH; in this way we determine a filtra-
tion {ﬁ‘z} on H. Clearly,

@ lim FY<=FPeDCD

w-rico w
B
(ii) TF, = W

The second statement implies that {l?“s} €edD=D-D incase T ¥ I, and

so we have a picture like

(ol

s
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In the naive sense {f‘f:,} is the limiting Hodge filtration, so we call it
the naive limiting Hodge filtration.

The points we wish to make are

a) The naive limiting Hodge filtration is not the same as the limiting

filtration {Fg} discussed above; and

b) The limiting filtration {Fi} is the ““ correct’’ object.

Point a) is clear since N§£ C ﬁz while this is certainly false for
FOE Concerning point b), a preliminary remark is that this same property
(Nﬁol: C ﬁz) makes it unlikely that the limiting Hodge filtration should
give a mixed Hodge structure. Before giving a deeper reason for b), we
remark that the relation between the two filtrations is obviously

lim exp(wN) - F{E = AE) .
woioo

Concerning b), let us first agree that the privileged extension HsA
is the “correct’’ extension for the cohomology bundle H » A*. (This
claim will be justified algebro-geometrically in Chapter VII below.) Then,
since ?5 gives the Hodge filtration on J for s #0 and lim ‘fsp =: f_fg

s-0
exists (by our discussion above), the ‘‘correct’’ limiting Hodge filtration
must be given by ﬁg} on }—(0 ( = the.fibre of H>A over s=0).

Now let e; e H be any basis, and denote by e;(w) ¢ Hy s = e 27iW)
the multi-valued horizontal section of H > A determined by e;. Setting
f.(s) = exp(-wN)e;(w) ¢ Hs (s = e27Wy e obtain a single-valued holo-
morphic framing of }{ -» A*. The definition of the privileged extension
H-A is thata holomorphic section g(s) = Egi(s) fi(s) € }(s extends
across s =0 if, and only if, the holomorphic functions gi(s) extend

across s =0. In other words, via the frame field {fi(s)l we have an

isomorphism _

o= oo,
Intrinsically this is
®) Ho=om
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where O(H) > A is the trivial bundle with fibre H. Under this isomor-
phism the subspaces 3:§C }(s must go to subspaces of H that are holo-

morphic and single-valued functions of s ¢ A*. The only such possibility

: P -y T :
is that ?s maps to Fg, and therefore Tg maps to F£ More formally 1

we may state this as: &

¥
PROPOSITION 10. Under the isomorphism (9) the subspace FPc K
N ) _ S s |
maps to FSP CH. In particular, at s =0 the subspace ffg maps to Fp. 33

The proof consists in unwinding the definitions, and is perhaps there-

fore best left as a private matter.

Because of the proposition we see that {F£§ is the correct limiting )

Hodge filtration granted that H > A is the correct extension of H » A*.
To make this completely convincing we need to see that {F:; gives the
right answer in the geometric case, and that the limiting mixed Hodge
structure has to do with the mixed Hodge structure on the central fibre.

This will be done in Chapters VI and VII.
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Chapter V

MIXED HODGE STRUCTURES, COMPACTIFICATIONS
AND MONODROMY WEIGHT FILTRATION

Eduardo H. Cattani

§0. Introduction _

In his survey paper [10], Griffiths conjectured the existence of partial
compactifications for the arithmetic quotients of classifying spaces for
polarized Hodge structures, that would generalize the Satake-Baily-Borel
compactification for arithmetic quotients of Hermitian symmetric spaces.
The richness of the problem becomes clear in the fundamental work of
Schmid [16], on the asymptotic behavior of the period mapping (see
Chapter IV); in particular, and as a consequence of his Nilpotent and
SLz-orbit theorems, Schmid was able to show—as conjectured by Deligne—
the existence of a limiting mixed Hodge structure associated to a one-
parameter variation of polarized Hodge structures. (This was also done
independently by Steenbrink {18] for the geometric case. His approach
will be discussed in Chapter VIL)

Schmid’s work is at the core of the topological partial compactification
constructed in [5] for the case of Hodge structures of weight two. However,
this compactification as well as Satake’s in the Hermitian symmetric case
contain only part of the ‘‘information’” in the limiting mixed Hodge struc-
ture; namely the Hodge structures on the graded pieces of the weight filtra-
tion. On the other hand, Carlson’s work 3] has shown that the.extension
data of the limiting mixed Hodge structure contains significant geometric
information. It is then natural to attempt the construction of partial com-
pactifications which incorporate in the boundary the full limiting mixed

Hodge structure. When this is done in the Hermitian symmetric case, one
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