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Introduction

Two of the best known of Hecke’s achievements are his theory of L-functions with
grössencharakter, which are Dirichlet series which can be represented by Euler products,
and his theory of the Euler products, associated to automorphic forms on GL(2). Since a
grössencharakter is an automorphic form on GL(1) one is tempted to ask if the Euler products
associated to automorphic forms on GL(2) play a role in the theory of numbers similar to
that played by the L-functions with grössencharakter. In particular do they bear the same
relation to the Artin L-functions associated to two-dimensional representations of a Galois
group as the Hecke L-functions bear to the Artin L-functions associated to one-dimensional
representations? Although we cannot answer the question definitively one of the principal
purposes of these notes is to provide some evidence that the answer is affirmative.

The evidence is presented in §12. It comes from reexamining, along lines suggested by a
recent paper of Weil, the original work of Hecke. Anything novel in our reexamination comes
from our point of view which is the theory of group representations. Unfortunately the facts
which we need from the representation theory of GL(2) do not seem to be in the literature
so we have to review, in Chapter I, the representation theory of GL(2, F ) when F is a local
field. §7 is an exceptional paragraph. It is not used in the Hecke theory but in the chapter
on automorphic forms and quaternion algebras.

Chapter I is long and tedious but there is nothing hard in it. None the less it is necessary
and anyone who really wants to understand L-functions should take at least the results
seriously for they are very suggestive.

§9 and §10 are preparatory to the Hecke theory which is finally taken up in §11. We would
like to stress, since it may not be apparent, that our method is that of Hecke. In particular
the principal tool is the Mellin transform. The success of this method for GL(2) is related to
the equality of the dimensions of a Cartan subgroup and the unipotent radical of a Borel
subgroup of PGL(2). The implication is that our methods do not generalize. The results,
with the exception of the converse theorem in the Hecke theory, may.

The right way to establish the functional equation for the Dirichlet series associated
to the automorphic forms is probably that of Tate. In §13 we verify, essentially, that this
method leads to the same local factors as that of Hecke and in §14 we use the method of
Tate to prove the functional equation for the L-functions associated to automorphic forms
on the multiplicative group of a quaternion algebra. The results of §13 suggest a relation
between the characters of representations of GL(2) and the characters of representations of
the multiplicative group of a quaternion algebra which is verified, using the results of §13, in
§15. This relation was well-known for archimedean fields but its significance had not been
stressed. Although our proof leaves something to be desired the result itself seems to us to
be one of the more striking facts brought out in these notes.

Both §15 and §16 are afterthoughts; we did not discover the results in them until the rest
of the notes were almost complete. The arguments of §16 are only sketched and we ourselves
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vi INTRODUCTION

have not verified all the details. However the theorem of §16 is important and its proof is
such a beautiful illustration of the power and ultimate simplicity of the Selberg trace formula
and the theory of harmonic analysis on semi-simple groups that we could not resist adding it.
Although we are very dissatisfied with the methods of the first fifteen paragraphs we see no
way to improve on those of §16. They are perhaps the methods with which to attack the
question left unsettled in §12.

We hope to publish a sequel to these notes which will include, among other things, a
detailed proof of the theorem of §16 as well as a discussion of its implications for number
theory. The theorem has, as these things go, a fairly long history. As far as we know the first
forms of it were assertions about the representability of automorphic forms by theta series
associated to quaternary quadratic forms.

As we said before nothing in these notes is really new. We have, in the list of references
at the end of each chapter, tried to indicate our indebtedness to other authors. We could not
however acknowledge completely our indebtedness to R. Godement since many of his ideas
were communicated orally to one of us as a student. We hope that he does not object to the
company they are forced to keep.

The notes1 were typed by the secretaries of Leet Oliver Hall. The bulk of the work was
done by Miss Mary Ellen Peters and to her we would like to extend our special thanks. Only
time can tell if the mathematics justifies her great efforts.

New York, N.Y. August, 1969
New Haven, Conn.

1that appeared in the SLM volume



CHAPTER I

Local Theory

§1. Weil representations

Before beginning the study of automorphic forms, we must review the representation
theory of the general linear group in two variables over a local field. In particular we have to
prove the existence of various series of representations. One of the quickest methods of doing
this is to make use of the representations constructed by Weil in [1]. We begin by reviewing
his construction adding, at appropriate places, some remarks which will be needed later.

In this paragraph F will be a local field and K will be an algebra over F of one of the
following types:

(i) The direct sum F ⊕ F .
(ii) A separable quadratic extension of F .
(iii) The unique quaternion algebra over F . K is then a division algebra with centre F .
(iv) The algebra M(2, F ) of 2× 2 matrices over F .

In all cases we identify F with the subfield of K consisting of scalar multiples of the identity.
In particular if K = F ⊕ F we identify F with the set of elements of the form (x, x). We can
introduce an involution ι of K, which will send x to xι, with the following properties:

(i) It satisfies the identities (x+ y)ι = xι + yι and (xy)ι = yιxι.
(ii) If x belongs to F then x = xι.
(iii) For any x in K both τ(x) = x+ xι and ν(x) = xxι = xιx belong to F .

If K = F ⊕ F and x = (a, b) we set xι = (b, a). If K is a separable quadratic extension
of F the involution ι is the unique non-trivial automorphism of K over F . In this case τ(x)
is the trace of x and ν(x) is the norm of x. If K is a quaternion algebra, a unique ι with
the required properties is known to exist. τ and ν are the reduced trace and reduced norm
respectively. If K is M(2, F ) we take ι to be the involution sending

x =

(
a b
c d

)
to

x =

(
d −b

−c a

)
Then τ(x) and ν(x) are the trace and determinant of x.

If ψ = ψF is a given non-trivial additive character of F then ψK = ψF ◦ τ is a non-trivial
additive character of K. By means of the pairing

⟨x, y⟩ = ψK(xy)

we can identify K with its Pontrjagin dual. The function ν is of course a quadratic form on
K which is a vector space over F and f = ψF ◦ ν is a character of second order in the sense
of [1]. Since

ν(x+ y)− ν(x)− ν(y) = τ(xyι)

1



2 I. LOCAL THEORY

and
f(x+ y)f−1(x)f−1(y) = ⟨x, yι⟩

the isomorphism of K with itself associated to f is just ι. In particular ν and f are
nondegenerate.

Let S(K) be the space of Schwartz-Bruhat functions on K. There is a unique Haar
measure dx on K such that if Φ belongs to S(K) and

Φ′(x) =

∫
K

Φ(y)ψK(xy) dy

then

Φ(0) =

∫
K

Φ′(x) dx.

The measure dx, which is the measure on K that we shall use, is said to be self-dual with
respect to ψK .

Since the involution ι is measure preserving the corollary to Weil’s Theorem 2 can in the
present case be formulated as follows.

Lemma 1.1. There is a constant γ which depends on the ψF and K, such that for every
function Φ in S(K) ∫

K

(Φ ∗ f)(y)ψK(yx) dy = γf−1(xι)Φ′(x)

Φ ∗ f is the convolution of Φ and f . The values of γ are listed in the next lemma.

Lemma 1.2.

(i) If K = F ⊕ F or M(2, F ) then γ = 1.
(ii) If K is the quaternion algebra over F then γ = −1.
(iii) If F = R, K = C, and

ψF (x) = e2πiax,

then
γ =

a

|a|
i

(iv) If F is non-archimedean and K is a separable quadratic extension of F let ω be the
quadratic character of F ∗ associated to K by local class-field theory. If UF is the
group of units of F ∗ let m = m(ω) be the smallest non-negative integer such that ω
is trivial on

Um
F =

{
a ∈ UF

∣∣ α ≡ 1 (mod pmF )
}

and let n = n(ψF ) be the largest integer such that ψF is trivial on the ideal p−nF . If a
is any generator on the ideal pm+n

F then

γ = ω(a)

∫
UF
ω−1(α)ψF (αa

−1) dα∣∣∣∫UF
ω−1(α)ψF (αa−1) dα

∣∣∣ .
The first two assertions are proved by Weil. To obtain the third apply the previous lemma

to the function
Φ(z) = e−2πzzι .
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We prove the last. It is shown by Weil that |γ| = 1 and that if ℓ is sufficiently large γ differs
from ∫

p−ℓ
K

ψF (xx
ι) dx

by a positive factor. This equals∫
p−ℓ
K

ψF (xx
ι)|x|K d×x =

∫
p−ℓ
K

ψF (xx
ι)|xxι|F d×x

if d×x is a suitable multiplicative Haar measure. Since the kernel of the homomorphism ν is
compact the integral on the right is a positive multiple of∫

ν(p−ℓ
K )

ψF (x)|x|F d×x.

Set k = 2ℓ ifK/F is unramified and set k = ℓ ifK/F is ramified. Then ν(p−ℓK ) = p−kF ∩ν(K).
Since 1 + ω is twice the characteristic function of ν(K×) the factor γ is a positive multiple of∫

p−k
F

ψF (x) dx+

∫
p−k
F

ψF (x)ω(x) dx.

For ℓ and therefore k sufficiently large the first integral is 0. If K/F is ramified well-known
properties of Gaussian sums allow us to infer that the second integral is equal to∫

UF

ψF

(
α

a

)
ω

(
α

a

)
dα.

Since ω = ω−1 we obtain the desired expression for γ by dividing this integral by its absolute
value. If K/F is unramified we write the second integral as

∞∑
j=0

(−1)j−k

{∫
p−k+j
F

ψF (x) dx−
∫
p−k+j+1
F

ψF (x) dx

}
In this case m = 0 and ∫

p−k+j
F

ψF (x) dx

is 0 if k− j > n but equals qk−j if k− j ⩽ n, where q is the number of elements in the residue
class field. Since ω(a) = (−1)n the sum equals

ω(a)

qm +
∞∑
j=0

(−1)jqm−j
(
1− 1

q

)
A little algebra shows that this equals 2ω(a)qm+1

q+1
so that γ = ω(a), which upon careful

inspection is seen to equal the expression given in the lemma.
In the notation of [19] the third and fourth assertions could be formulated as an equality

γ = λ(K/F, ψF ).

It is probably best at the moment to take this as the definition of λ(K/F, ψF ).
If K is not a separable quadratic extension of F we take ω to be the trivial character.

Proposition 1.3. There is a unique representation r of SL(2, F ) on S(K) such that
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(i) r

((
α 0
0 α−1

))
Φ(x) = ω(α)|α|1/2K Φ(αx)

(ii) r

((
1 z
0 1

))
Φ(x) = ψF

(
zν(x)

)
Φ(x)

(iii) r

((
0 1

−1 0

))
Φ(x) = γΦ′(xι).

If S(K) is given its usual topology, r is continuous. It can be extended to a unitary rep-
resentation of SL(2, F ) on L2(K), the space of square integrable functions on K. If F is
archimedean and Φ belongs to S(K) then the function r(g)Φ is an indefinitely differentiable
function on SL(2, F ) with values in S(K).

This may be deduced from the results of Weil. We sketch a proof. SL(2, F ) is the group
generated by the elements

(
α 0
0 α−1

)
, ( 1 z

0 1 ), and w =
(

0 1
−1 0

)
with α in F× and z in F subject

to the relations

w

(
α 0
0 α−1

)
=

(
α−1 0
0 α

)
w(a)

w2 =

(
−1 0
0 −1

)
(b)

w

(
1 a
0 1

)
w =

(
−a−1 0
0 −a

)(
1 −a
0 1

)
w

(
1 −a−1

0 1

)
(c)

together with the obvious relations among the elements of the form
(
α 0
0 α−1

)
and ( 1 z

0 1 ). Thus
the uniqueness of r is clear. To prove the existence one has to verify that the mapping
specified by (i), (ii), (iii) preserves all relations between the generators. For all relations
except (a), (b), and (c) this can be seen by inspection. (a) translates into an easily verifiable
property of the Fourier transform. (b) translates into the equality γ2 = ω(−1) which follows
readily from Lemma 1.2.

If a = 1 the relation (c) becomes

(1.3.1)

∫
K

Φ′(yι)ψF
(
ν(y)

)
⟨y, xι⟩ dy = γψF

(
−ν(x)

) ∫
K

Φ(y)ψF
(
−ν(y)

)
⟨y,−xι⟩ dy

which can be obtained from the formula of Lemma 1.1 by replacing Φ(y) by Φ′(−yι) and
taking the inverse Fourier transform of the right side. If a is not 1 the relation (c) can again
be reduced to (1.3.1) provided ψF is replaced by the character x→ ψF (ax) and γ and dx are
modifed accordingly. We refer to Weil’s paper for the proof that r is continuous and may be
extended to a unitary representation of SL(2, F ) in L2(K).

Now take F archimedean. It is enough to show that all of the functions r(g)Φ are
indefinitely differentiable in some neighbourhood of the identity. Let

NF =

{(
1 x
0 1

) ∣∣∣∣∣ x ∈ F

}
and let

AF =

{(
α 0
0 α−1

) ∣∣∣∣∣ α ∈ F×

}
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Then NFwAFNF is a neighbourhood of the identity which is diffeomorphic to NF ×AF ×NF .
It is enough to show that

ϕ(n, a, n1) = r(nwan1)Φ

is infinitely differentiable as a function of n, as a function of a, and as a function of n1 and
that the derivations are continuous on the product space. For this it is enough to show that
for all Φ all derivatives of r(n)Φ and r(a)Φ are continuous as functions of n and Φ or a and
Φ. This is easily done.

The representation r depends on the choice of ψF . If a belongs to F× and ψ′
F (x) = ψF (ax)

let r′ be the corresponding representation. The constant γ′ = ω(a)γ.

Lemma 1.4.

(i) The representation r′ is given by

r′(g) = r

((
a 0
0 1

)
g

(
a−1 0
0 1

))
(ii) If b belongs to K∗ let λ(b)Φ(x) = Φ(b−1x) and let ρ(b)Φ(x) = Φ(xb). If a = ν(b)

then
r′(g)λ(b−1) = λ(b−1)r(g)

and
r′(g)ρ(b) = ρ(b)r(g).

In particular if ν(b) = 1 both λ(b) and ρ(b) commute with r.

We leave the verification of this lemma to the reader. Take K to be a separable quadratic
extension of F or a quaternion algebra of centre F . In the first case ν(K×) is of index 2 in
F×. In the second case ν(K×) is F× if F is non-archimedean and ν(K×) has index 2 in F×

if F is R.
Let K ′ be the compact subgroup of K× consisting of all x with ν(x) = xxι = 1 and let G+

be the subgroup of GL(2, F ) consisting of all g with determinant in ν(K×). G+ has index 2
or 1 in GL(2, F ). Using the lemma we shall decompose r with respect to K ′ and extend r to
a representation of G+.

Let Ω be a finite-dimensional irreducible representation of K× in a vector space U over C.
Taking the tensor product of r with the trivial representation of SL(2, F ) on U we obtain a
representation on

S(K)⊗C U = S(K,U)
which we still call r and which will now be the centre of attention.

Proposition 1.5.

(i) If S(K,Ω) is the space of functions Φ in S(K,U) satisfying
Φ(xh) = Ω−1(h)Φ(x)

for all h in K ′ then S(K,Ω) is invariant under r(g) for all g in SL(2, F ).
(ii) The representation r of SL(2, F ) on S(K,Ω) can be extended to a representation rΩ

of G+ satisfying

rΩ

((
a 0
0 1

))
Φ(x) = |h|1/2K Ω(h)Φ(xh)

if a = ν(h) belongs to ν(K×).
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(iii) If η is the quasi-character of F× such that

Ω(a) = η(a)I

for a in F× then

rΩ

((
a 0
0 a

))
= ω(a)η(a)I

(iv) The representation rΩ is continuous and if F is archimedean all factors in S(K,Ω)
are infinitely differentiable.

(v) If U is a Hilbert space and Ω is unitary let L2(K,U) be the space of square integrable
functions from K to U with the norm

∥Φ∥2 =
∫
K

∥∥Φ(x)∥∥2 dx
If L2(K,Ω) is the closure of S(K,Ω) in L2(K,U) then rΩ can be extended to a
unitary representation of G+ in L2(K,Ω).

The first part of the proposition is a consequence of the previous lemma. Let H be the
group of matrices of the form (

a 0
0 1

)
with a in ν(K×). It is clear that the formula of part (ii) defines a continuous representation
of H on S(K,Ω). Moreover G+ is the semi-direct product of H and SL(2, F ) so that to prove
(ii) we have only to show that

rΩ

((
a 0
0 1

)
g

(
a−1 0
0 1

))
= rΩ

((
a 0
0 1

))
rΩ(g)rΩ

((
a−1 0
0 1

))
Let a = ν(h) and let r′ be the representation associated ψ′

F (x) = ψF (ax). By the first part
of the previous lemma this relation reduces to

r′Ω(g) = ρ(h)rΩ(g)ρ
−1(h),

which is a consequence of the last part of the previous lemma.
To prove (iii) observe that (

a 0
0 a

)
=

(
a2 0
0 1

)(
a−1 0
0 a

)
and that a2 = ν(a) belongs to ν(K×). The last two assertions are easily proved.

We now insert some remarks whose significance will not be clear until we begin to discuss
the local functional equations. We associate to every Φ in S(K,Ω) a function

(1.5.1) WΦ(g) = rΩ(g)Φ(1)

on G+ and a function

(1.5.2) φΦ(a) = WΦ

((
a 0
0 1

))
on ν(K×). The both take values in U .
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It is easily verified that

WΦ

((
1 x
0 1

)
g

)
= ψF (x)WΦ(g)

If g ∈ G+ and F is a function on G+ let ρ(g)F be the function h→ F (hg). Then

ρ(g)WΦ = WrΩ(g)Φ

Let B+ be the group of matrices of the form(
a x
0 1

)
with a in ν(K×). Let ξ be the representation of B+ on the space of functions on ν(K×) with
values in U defined by

ξ

((
a 0
0 1

))
φ(b) = φ(ba)

and

ξ

((
1 x
0 1

))
φ(b) = ψF (bx)φ(b).

Then for all b in B+

(1.5.3) ξ(b)φΦ = φrΩ(b)Φ.

The application Φ → φΦ, and therefore the application Φ → WΦ, is injective because

(1.5.4) φΦ

(
ν(h)

)
= |h|1/2K Ω(h)Φ(h).

Thus we may regard rΩ as acting on the space V of functions φΦ, Φ ∈ S(K,Ω). The effect of
a matrix in B+ is given by (1.5.3). The matrix ( a 0

0 a ) corresponds to the operator ω(a)η(a)I.
Since G+ is generated by B+, the set of scalar matrices, and w =

(
0 1

−1 0

)
the representation

rΩ on V is determined by the action of w. To specify this we introduce, formally at first, the
Mellin transform of φ = φΦ.

If µ is a quasi-character of F× let

(1.5.5) φ̂(µ) =

∫
ν(K×)

φ(α)µ(α) d×α.

Appealing to (1.5.4) we may write this as

(1.5.6) φ̂Φ(µ) = φ̂(µ) =

∫
K×

|h|1/2K µ
(
ν(h)

)
Ω(h)Φ(h) d×h.

If λ is a quasi-character of F× we sometimes write λ for the associated quasi-character λ ◦ ν
of K×. The tensor product λ⊗ Ω of λ and Ω is defined by

(λ⊗ Ω)(h) = λ(h)Ω(h).

If αK : h→ |h|K is the module of K then

α
1/2
K µ⊗ Ω(h) = |h|1/2K µ

(
ν(h)

)
Ω(h).

We also introduce, again in a purely formal manner, the integrals

Z(Ω,Φ) =

∫
K×

Ω(h)Φ(h) d×h
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and

Z(Ω−1,Φ) =

∫
K×

Ω−1(h)Φ(h) d×h

so that

(1.5.7) φ̂(µ) = Z(µα
1/2
K ⊗ Ω,Φ).

Now let φ′ = φrΩ(w)Φ and let Φ′ be the Fourier transform of Φ so that rΩ(w)Φ(x) = γΦ′(xι).
If µ0 = ωη

φ̂′(µ−1µ−1
0 ) = Z

(
µ−1µ−1

0 α
1/2
K ⊗ Ω, rΩ(w)Φ

)
which equals

γ

∫
K

µ−1µ−1
0

(
ν(h)

)
Ω(h)Φ′(hι) d×h.

Since µ0

(
ν(h)

)
= η
(
ν(h)

)
= Ω(hιh) = Ω(hι)Ω(h) this expression equals

γ

∫
K

µ−1
(
ν(h)

)
Ω−1(hι)Φ′(hι) d×h = γ

∫
K

µ−1
(
ν(h)

)
Ω−1(h)Φ′(h) d×h

so that

(1.5.8) φ̂′(µ−1µ−1
0 ) = γZ(µ−1α

1/2
K ⊗ Ω−1,Φ′).

Take µ = µ1α
s
F where µ1 is a fixed quasi-character and s is complex number. If K is a

separable quadratic extension of F the representation Ω is one-dimensional and therefore a
quasi-character. The integral defining the function

Z(µα
1/2
K ⊗ Ω,Φ)

is known to converge for Re s sufficiently large and the function itself is essentially a local
zeta-function in the sense of Tate. The integral defining

Z(µ−1α
1/2
K ⊗ Ω−1,Φ′)

converges for Re s sufficiently small, that is, large and negative. Both functions can be
analytically continued to the whole s-plane as meromorphic functions. There is a scalar C(µ)
which depends analytically on s such that

Z(µα
1/2
K ⊗ Ω,Φ) = C(µ)Z(µ−1α

1/2
K ⊗ Ω−1,Φ′).

All these assertions are also known to be valid for quaternion algebras. We shall return to
the verification later. The relation

φ̂(µ) = γ−1C(µ)φ̂′(µ−1µ−1
0 )

determines φ′ in terms of φ.
If λ is a quasi-character of F× and Ω1 = λ⊗ Ω then S(K,Ω1) = S(K,Ω) and

rΩ1(g) = λ(det g)rΩ(g)

so that we may write
rΩ1 = λ⊗ rΩ

However the space V1 of functions on ν(K×) associated to rΩ1 is not necessarily V . In fact

V1 =
{
λφ
∣∣ φ ∈ V

}
and rΩ1(g) applied to λφ is the product of λ(det g) with the function λ · rΩ(g)φ. Given Ω one
can always find a λ such that λ⊗ Ω is equivalent to a unitary representation.
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If Ω is unitary the map Φ → φΦ is an isometry because∫
ν(K×)

∥∥φΦ(a)
∥∥2 d×a =

∫
K×

∥∥Ω(h)Φ(h)∥∥2|h|K d×h =

∫
K

∥∥Φ(h)∥∥2 dh
if the measures are suitably normalized.

We want to extend some of these results to the case K = F ⊕ F . We regard the element
of K as defining a row vector so that K becomes a right module for M(2, F ). If Φ belongs to
S(K) and g belongs to GL(2, F ), we set

ρ(g)Φ(x) = Φ(xg).

Proposition 1.6.

(i) If K = F ⊕ F then r can be extended to a representation r of GL(2, F ) such that

r

((
a 0
0 1

))
Φ = ρ

((
a 0
0 1

))
Φ

for a in F×.

(ii) If Φ̃ is the partial Fourier transform

Φ̃(a, b) =

∫
F

Φ(a, y)ψF (by) dy

and the Haar measure dy is self-dual with respect to ψF then[
r(g)Φ

]∼
= ρ(g)Φ̃

for all Φ in S(K) and all g in GF .

It is easy to prove part (ii) for g in SL(2, F ). In fact one has just to check it for the
standard generators and for these it is a consequence of the definitions of Proposition 1.3.
The formula of part (ii) therefore defines an extension of r to GL(2, F ) which is easily seen
to satisfy the condition of part (i).

Let Ω be a quasi-character of K×. Since K× = F× × F× we may identify Ω with a pair
(ω1, ω2) of quasi-characters of F

×. Then rΩ will be the representation defined by

rΩ(g) = |det g|1/2F ω1(det g)r(g).

If x belongs to K× and ν(x) = 1 then x is of the form (t, t−1) with t in F×. If Φ belongs
to S(K) set

θ(Ω,Φ) =

∫
F×

Ω
(
(t, t−1)

)
Φ
(
(t, t−1)

)
d×t.

Since the integrand has compact support on F× the integral converges. We now associate to
Φ the function

(1.6.1) WΦ(g) = θ
(
Ω, rΩ(g)Φ

)
on GL(2, F ) and the function

(1.6.2) φΦ(a) = WΦ

((
a 0
0 1

))
on F×. We still have

ρ(g)WΦ = WrΩ(g)Φ.
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If

BF =

{(
a x
0 1

) ∣∣∣∣∣ a ∈ F×, x ∈ F

}
and if the representation ξ of BF on the space of functions on F× is defined in the same
manner as the representation ξ of B+ then

ξ(b)φΦ = φrΩ(b)Φ

for b in BF . The applications Φ → WΦ and Φ → φΦ are no longer injective.
If µ0 is the quasi-character defined by

µ0(a) = Ω
(
(a, a)

)
= ω1(a)ω2(a)

then

WΦ

((
a 0
0 a

)
g

)
= µ0(a)WΦ(g).

It is enough to verify this for g = e.

WΦ

((
a 0
0 a

))
= θ

Ω, rΩ

((
a 0
0 a

))
Φ


and (

a 0
0 a

)
=

(
a2 0
0 1

)(
a−1 0
0 a

)
so that

rΩ

((
a 0
0 a

))
Φ(x, y) = |a2|1/2F ω1(a

2)|a|−1/2
K Φ(ax, a−1y).

Consequently

WΦ

((
a 0
0 a

))
=

∫
F×

ω1(a
2)ω1(x)ω

−1
2 (x)Φ(ax, a−1x−1) d×x

= ω1(a)ω2(a)

∫
F×

ω1(x)ω
−1
2 (x)Φ(x, x−1) d×x

which is the required result.
Again we introduce in a purely formal manner the distribution

Z(Ω,Φ) = Z(ω1, ω2,Φ) =

∫
Φ(x1, x2)ω1(x2)ω2(x2) d

×x2 d
×x2.

If µ is a quasi-character of F× and φ = φΦ we set

φ̂(µ) =

∫
F×

φ(α)µ(α) d×α.
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The integral is∫
F×

µ(α)θ

Ω, rΩ

((
α 0
0 1

))
Φ

 d×α

=

∫
F×

µ(α)


∫
F×

rΩ

((
α 0
0 1

))
Φ(x, x−1)ω1(x)ω

−1
2 (x) d×x

 d×α

which in turn equals∫
F×

µ(α)ω1(α)|α|1/2F

{∫
F×

Φ(αx, x−1)ω1(x)ω
−1
2 (x) d×x

}
d×α.

Writing this as a double integral and then changing variables we obtain∫
F×

∫
F×

Φ(α, x)µω1(α)µω2(x)|αx|1/2F d×α d×x

so that

(1.6.3) φ̂(µ) = Z(µω1α
1/2
F , µω2α

1/2
F ,Φ).

Let φ′ = φrΩ(w)Φ. Then

φ̂′(µ−1µ−1
0 ) = Z

(
µ−1ω−1

2 α
1/2
F , µ−1ω−1

1 α
1/2
F , rΩ(w)Φ

)
which equals ∫ ∫

Φ′(y, x)µ−1ω−1
2 (x)µ−1ω−1

1 (y)|xy|1/2F d×x d×y

so that

(1.6.4) φ̂′(µ−1µ−1
0 ) = Z(µ−1ω−1

1 α
1/2
F , µ−1ω−1

2 α
1/2
F ,Φ′).

Suppose µ = µ1α
s
F where µ1 is a fixed quasi-character and s is a complex number. We shall

see that the integral defining the right side of (1.6.3) converges for Re s sufficiently large and
that the integral defining the right side of (1.6.4) converges for Re s sufficiently small. Both
can be analytically continued to the whole complex plane as meromorphic functions and
there is a meromorphic function C(µ) which is independent of Φ such that

Z(µω1α
1/2
F , µω2α

1/2
F ,Φ) = C(µ)Z(µ−1ω−1

1 α
1/2
F , µ−1ω−1

2 α
1/2
F ,Φ′).

Thus
φ̂(µ) = C(µ)φ̂′(µ−1µ−1

0 )

The analogy with the earlier results is quite clear.
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§2. Representations of GL(2, F ) in the non-archimedean case

In this and the next two paragraphs the ground field F is a non- archimedean local field.
We shall be interested in representations π of GF = GL(2, F ) on a vector space V over C
which satisfy the following condition.

(2.1). For every vector v in V the stabilizer of v in GF is an open subgroup of GF .

Those who are familiar with such things can verify that this is tantamount to demanding
that the map (g, v) → π(g)v of GF × V into V is continuous if V is given the trivial locally
convex topology in which every semi-norm is continuous. A representation of GF satisfying
(2.1) will be called admissible if it also satisfies the following condition.

(2.2). For every open subgroup G′ of GL(2, OF ) the space of vectors v in V stabilized by G′

is finite-dimensional. OF is the ring of integers of F .

Let HF be the space of functions on GF which are locally constant and compactly
supported. Let dg be that Haar measure on GF which assigns the measure 1 to GL(2, OF ).
Every f in HF may be identified with the measure f(g) dg. The convolution product

f1 ∗ f2(h) =
∫
GF

f1(g)f2(g
−1h) dg

turns HF into an algebra which we refer to as the Hecke algebra. Any locally constant
function on GL(2, OF ) may be extended to GF by being set equal to 0 outside of GL(2, OF )
and therefore may be regarded as an element of HF . In particular if πi, 1 ⩽ i ⩽ r, is a family
of inequivalent finite-dimensional irreducible representations of GL(2, OF ) and

ξi(g) = dim(πi) trπi(g
−1)

for g in GL(2, OF ) we regard ξi as an element of HF . The function

ξ =
r∑
i=1

ξi

is an idempotent of HF . Such an idempotent will be called elementary.
Let π be a representation satisfying (2.1). If f belongs to HF and v belongs to V then

f(g)π(g)v takes on only finitely many values and the integral∫
GF

f(g)π(g)v dg = π(f)v

may be defined as a finite sum. Alternatively we may give V the trivial locally convex
topology and use some abstract definition of the integral. The result will be the same and
f → π(f) is the representation of HF on V . If g belongs to GF then λ(g)f is the function
whose value at h is f(g−1h). It is clear that

π
(
λ(g)f

)
= π(g)π(f).

Moreover

(2.3). For every v in V there is an f in HF such that πf(v) = v.

In fact f can be taken to be a multiple of the characteristic function of some open and
closed neighbourhood of the identity. If π is admissible the associated representation of HF

satisfies
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(2.4). For every elementary idempotent ξ of HF the operator π(ξ) has a finite-dimensional
range.

We now verify that from a representation π of HF satisfying (2.3) we can construct a
representation π of GF satisfying (2.1) such that

π(f) =

∫
GF

f(g)π(g) dg.

By (2.3) every vector v in V is of the form

v =
r∑
i=1

π(fi)vi

with vi in V and fi in HF . If we can show that

(2.3.1)
r∑
i=1

π(fi)vi = 0

implies that

w =
r∑
i=1

π
(
λ(g)fi

)
vi

is 0 we can define π(g)v to be
r∑
i=1

π
(
λ(g)fi

)
vi

π will clearly be a representation of GF satisfying (2.1).
Suppose that (2.3.1) is satisfied and choose f in HF so that π(f)w = w. Then

w =
r∑
i=1

π
(
f ∗ λ(g)fi

)
vi.

If ρ(g)f(h) = f(hg) then
f ∗ λ(g)fi = ρ(g−1)f ∗ fi

so that

w =
r∑
i=1

π
(
ρ(g−1)f ∗ fi

)
vi = π

(
ρ(g−1)f

)
r∑
i=1

π(fi)vi

 = 0.

It is easy to see that the representation of GF satisfies (2.2) if the representation of HF

satisfies (2.4). A representation of HF satisfying (2.3) and (2.4) will be called admissible.
There is a complete correspondence between admissible representations of GF and of HF .
For example a subspace is invariant under GF if and only if it is invariant under HF and an
operator commutes with the action of GF if and only if it commutes with the action of HF .

From now on, unless the contrary is explicitly stated, an irreducible representation of
GF or HF is to be assumed admissible. If π is irreducible and acts on the space V then any
linear transformation A of V commuting with HF is a scalar. In fact if V is assumed, as it
always will be, to be different from 0 there is an elementary idempotent ξ such that π(ξ) ̸= 0.
Its range is a finite-dimensional space invariant under A. Thus A has at least one eigenvector
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and is consequently a scalar. In particular there is a homomorphism ω of F× into C× such
that

π

((
a 0
0 a

))
= ω(a)I

for all a in F×. By (2.1) the function ω is 1 near the identity and is therefore continuous.
We shall refer to a continuous homomorphism of a topological group into the multiplicative
group of complex numbers as a quasi-character.

If χ is a quasi-character of F× then g → χ(det g) is a quasi-character of GF . It determines
a one-dimensional representation of GF which is admissible. It will be convenient to use the
letter χ to denote this associated representation. If π is an admissible representation of GF

on V then χ⊗ π will be the representation of GF on V defined by

(χ⊗ π)(g) = χ(det g)π(g).

It is admissible and irreducible if π is.
Let π be an admissible representation of GF on V and let V ∗ be the space of all linear

forms on V . We define a representation π∗ of HF on V ∗ by the relation〈
v, π∗(f)v∗

〉
=
〈
π(f̌)v, v∗

〉
where f̌(g) = f(g−1). Since π∗ will not usually be admissible, we replace V ∗ by Ṽ = π∗(HF )V

∗.

The space Ṽ is invariant under HF . For each f in HF there is an elementary idempotent ξ

such that ξ ∗ f = f and therefore the restriction π̃ of π∗ to Ṽ satisfies (2.3). It is easily seen
that if ξ is an elementary idempotent so is ξ̌. To show that π̃ is admissible we have to verify
that

Ṽ (ξ) = π̃(ξ)Ṽ = π∗(ξ)V ∗

is finite-dimensional. Let V (ξ̌) = π(ξ̌)V and let Vc =
(
1− π(ξ̌)

)
V . V is clearly the direct

sum of V (ξ̌), which is finite-dimensional, and Vc. Moreover Ṽ (ξ) is orthogonal to Vc because〈
v − π(ξ̌)v, π̃(ξ)ṽ

〉
=
〈
π(ξ̌)v − π(ξ̌)v, ṽ

〉
= 0.

It follows immediately that Ṽ (ξ) is isomorphic to a subspace of the dual of V (ξ̌) and is
therefore finite-dimensional. It is in fact isomorphic to the dual of V (ξ̌) because if v∗

annihilates Vc then, for all v in V ,〈
v, π∗(ξ)v∗

〉
− ⟨v, v∗⟩ = −

〈
v − π(ξ̌)v, v∗

〉
= 0

so that π∗(ξ)v∗ = v∗.
π̃ will be called the representation contragredient to π. It is easily seen that the natural

map of V into Ṽ ∗ is an isomorphism and that the image of this map is π̃∗(HF )Ṽ
∗ so that π

may be identified with the contragredient of π̃.
If V1 is an invariant subspace of V and V2 = V1\V we may associate to π representations

π1 and π2 on V1 and V2. They are easily seen to be admissible. It is also clear that there is a

natural embedding of Ṽ2 in Ṽ . Moreover any element ṽ1 of Ṽ1 lies in Ṽ1(ξ) for some ξ and

therefore is determined by its effect on V1(ξ̌). It annihilates
(
I − π(ξ̌)

)
V1. There is certainly

a linear function ṽ on V which annihilates
(
I − π(ξ̌)

)
V and agrees with Ṽ1 on V1(ξ̌). ṽ is
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necessarily in Ṽ so that Ṽ1 may be identified with Ṽ2\Ṽ . Since every representation is the
contragredient of its contragredient we easily deduce the following lemma.

Lemma 2.5.

(a) Suppose V1 is an invariant subspace of V . If Ṽ2 is the annihilator of V1 in Ṽ then V1
is the annihilator of Ṽ2 in V .

(b) π is irreducible if and only if π̃ is.

Observe that for all g in GF 〈
π(g)v, ṽ

〉
=
〈
v, π̃(g−1)ṽ

〉
.

If π is the one-dimensional representation associated to the quasi-character χ then π̃ = χ−1.
Moreover if χ is a quasi-character and π any admissible representation then the contragredient
of χ⊗ π is χ−1 ⊗ π̃.

Let V be a separable complete locally convex space and π a continuous representation of
GF on V . The space V0 = π(HF )V is invariant under GF and the restriction π0 of π to V0
satisfies (2.1). Suppose that it also satisfies (2.2). Then if π is irreducible in the topological
sense π0 is algebraically irreducible. To see this take any two vectors v and w in V0 and choose
an elementary idempotent ξ so that π(ξ)v = v. v is in the closure of π(HF )w and therefore
in the closure of π(HF )w ∩ π(ξ)V . Since, by assumption, π(ξ)V is finite-dimensional, v must
actually lie in π(HF )w.

The equivalence class of π is not in general determined by that of π0. It is, however, when
π is unitary. To see this one has only to show that, up to a scalar factor, an irreducible
admissible representation admits at most one invariant hermitian form.

Lemma 2.6. Suppose π1 and π2 are irreducible admissible representations of GF on V1 and
V2 respectively. Suppose A(v1, v2) and B(v1, v2) are non-degenerate forms on V1 × V2 which
are linear in the first variable and either both linear or both conjugate linear in the second
variable. Suppose moreover that, for all g in GF

A
(
π1(g)v1, π2(g)v2

)
= A(v1, v2)

and
B
(
π1(g)v1, π2(g)v2

)
= B(v1, v2)

Then there is a complex scalar λ such that

B(v1, v2) = λA(v1, v2)

Define two mappings S and T of V2 into Ṽ1 by the relations

A(v1, v2) = ⟨v1, Sv2⟩
and

B(v1, v2) = ⟨v1, T v2⟩,
Since S and T are both linear or conjugate linear with kernel 0 they are both embeddings.

Both take V2 onto an invariant subspace of Ṽ1. Since Ṽ1 has no non-trivial invariant subspaces
they are both isomorphisms. Thus S−1T is a linear map of V2 which commutes with GF and
is therefore a scalar λI. The lemma follows.

An admissible representation will be called unitary if it admits an invariant positive
definite hermitian form.
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We now begin in earnest the study of irreducible admissible representations of GF . The
basic ideas are due to Kirillov.

Proposition 2.7. Let π be an irreducible admissible representation of GF on the vector
space V .

(a) If V is finite-dimensional then V is one-dimensional and there is a quasi-character
χ of F× such that

π(g) = χ(det g)

(b) If V is infinite-dimensional there is no nonzero vector invariant by all the matrices
( 1 0
x 1 ), x ∈ F .

If π is finite-dimensional its kernel H is an open subgroup. In particular there is a positive
number ϵ such that (

1 x
0 1

)
belongs to H if |x| < ϵ. If x is any element of F there is an a in F× such that |ax| < ϵ. Since(

a−1 0
0 1

)(
1 ax
0 1

)(
a 0
0 1

)
=

(
1 x
0 1

)
the matrix (

1 x
0 1

)
belongs to H for all x in F . For similar reasons the matrices(

1 0
y 1

)
do also. Since the matrices generate SL(2, F ) the group H contains SL(2, F ). Thus
π(g1)π(g2) = π(g2)π(g1) for all g1 and g2 in GF . Consequently each π(g) is a scalar matrix
and π(g) is one-dimensional. In fact

π(g) = χ(det g)I

where χ is a homomorphism of F× into C×. To see that χ is continuous we need only observe
that

π

((
a 0
0 1

))
= χ(a)I.

Suppose V contains a nonzero vector v fixed by all the operators

π

((
1 x
0 1

))
.

Let H be the stabilizer of the space Cv. To prove the second part of the proposition we need
only verify that H is of finite index in GF . Since it contains the scalar matrices and an open
subgroup of GF it will be enough to show that it contains SL(2, F ). In fact we shall show
that H0, the stabilizer of v, contains SL(2, F ). H0 is open and therefore contains a matrix(

a b
c d

)
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with c ̸= 0. It also contains(
1 −ac−1

0 1

)(
a b
c d

)(
1 −dc−1

0 1

)
=

(
0 b0
c 0

)
= w0.

If x = b0
c
y then (

1 0
y 1

)
= w0

(
1 x
0 1

)
w−1

0

also belongs to H0. As before we see that H0 contains SL(2, F ).
Because of this lemma we can confine our attention to infinite-dimensional representations.

Let ψ = ψF be a non-trivial additive character of F . Let BF be the group of matrices of the
form

b =

(
a x
0 1

)
with a in F× and x in F . If X is a complex vector space we define a representation ξψ of BF

on the space of all functions of F× with values in X by setting(
ξψ(b)φ

)
(α) = ψ(αx)φ(αa).

ξψ leaves invariant the space S(F×, X) of locally constant compactly supported functions.
The function ξψ is continuous with respect to the trivial topology on S(F×, X).

Proposition 2.8. Let π be an infinite-dimensional irreducible representation of GF on the
space V . Let p = pF be the maximal ideal in the ring of integers of F , and let V ′ be the set
of all vectors v in V such that∫

p−n

ψF (−x)π

((
1 x
0 1

))
v dx = 0

for some integer n. Then

(i) The set V ′ is a subspace of V .
(ii) Let X = V ′\V and let A be the natural map of V onto X. If v belongs to V let φv

be the function defined by

φv(a) = A

π((a 0
0 1

))
v

.
The map v → φv is an injection of V into the space of locally constant functions on
F× with values in X.

(iii) If b belongs to BF and v belongs to V then

φπ(b)v = ξψ(b)φv.

If m ⩾ n so that p−m contains p−n then∫
p−m

ψ(−x)π

((
1 x
0 1

))
v dx

is equal to ∑
y∈p−m/p−n

ψ(−y)π

((
1 y
0 1

))∫
p−n

ψ(−x)π

((
1 x
0 1

))
v dx.
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Thus if the integral of the lemma vanishes for some integer n it vanishes for all larger integers.
The first assertion of the proposition follows immediately.

To prove the second we shall use the following lemma.

Lemma 2.8.1. Let p−m be the largest ideal on which ψ is trivial and let f be a locally
constant function on p−ℓ with values in some finite-dimensional complex vector space. For
any integer n ⩽ ℓ the following two conditions are equivalent

(i) f is constant on the cosets of p−n in p−ℓ

(ii) The integral ∫
p−ℓ

ψ(−ax)f(x) dx

is zero for all a outside of p−m+n.

Assume (i) and let a be an element of F× which is not in p−m+n. Then x→ ψ(−ax) is a
non-trivial character of p−n and∫

p−ℓ

ψ(−ax)f(x) dx =
∑

y∈p−ℓ/p−n

ψ(−ay)

{∫
p−n

ψ(−ax) dx

}
f(y) = 0.

f may be regarded as a locally constant function on F with support in p−ℓ. Assuming (ii)
is tantamount to assuming that the Fourier transform f ′ of f has its support in p−m+n. By
the Fourier inversion formula

f(x) =

∫
p−m+n

ψ(−xy)f ′(y) dy.

If y belongs to p−m+n the function x → ψ(−xy) is constant on cosets of p−n. It follows
immediately that the second condition of the lemma implies the first.

To prove the second assertion of the proposition we show that if φv vanishes identically
then v is fixed by the operator π

(
( 1 0
x 1 )
)
for all x in F and then appeal to Proposition 2.7.

Take

f(x) = π

((
1 x
0 1

))
v.

The restriction of f to an ideal in F takes values in a finite-dimensional subspace of V . To
show that f is constant on the cosets of some ideal p−n it is enough to show that its restriction
to some ideal p−ℓ containing p−n has this property.

By assumption there exists an n0 such that f is constant on the cosets of p−n0 . We shall
now show that if f is constant on the cosets of p−n+1 it is also constant on the cosets of p−n.
Take any ideal p−ℓ containing p−n. By the previous lemma∫

p−ℓ

ψ(−ax)f(x) dx = 0

if a is not in p−m+n−1. We have to show that the integral on the left vanishes if a is a
generator of p−m+n−1.

If UF is the group of units of OF the ring of integers of F there is an open subgroup U1

of UF such that

π

((
b 0
0 1

))
v = v
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for b in U1. For such b

π

((
b 0
0 1

))∫
p−ℓ

ψ(−ax)f(x) dx =

∫
p−ℓ

ψ(−ax)π

((
b 0
0 1

))
π

((
1 x
0 1

))
v dx

is equal to ∫
p−ℓ

ψ(−ax)π

((
1 bx
0 1

))
π

((
b 0
0 1

))
v dx =

∫
p−ℓ

ψ

(
−a
b
x

)
f(x) dx.

Thus it will be enough to show that for some sufficiently large ℓ the integral vanishes when a
is taken to be one of a fixed set of representatives of the cosets of U1 in the set of generators
of p−m+n−1. Since there are only finitely many such cosets it is enough to show that for each
a there is at least one ℓ for which the integral vanishes.

By assumption there is an ideal a(a) such that∫
a(a)

ψ(−x)π

((
1 x
0 1

)(
a 0
0 1

))
v dx = 0

But this integral equals

|a|π

((
a 0
0 1

))∫
a−1a(a)

ψ(−ax)π

((
1 x
0 1

))
v dx

so that ℓ = ℓ(a) could be chosen to make

p−ℓ = a−1a(a).

To prove the third assertion we verify that

(2.8.2) A

π((1 y
0 1

))
v

 = ψ(y)A(v)

for all v in V and all y in F . The third assertion follows from this by inspection. We have to
show that

π

((
1 y
0 1

))
v − ψ(y)v

is in V ′ or that, for some n,∫
p−n

ψ(−x)π

((
1 x
0 1

))
π

((
1 y
0 1

))
v dx−

∫
p−n

ψ(−x)ψ(y)π

((
1 x
0 1

))
v dx

is zero. The expression equals∫
p−n

ψ(−x)π

((
1 x+ y
0 1

))
v dx−

∫
p−n

ψ(−x+ y)π

((
1 x
0 1

))
v dx.

If p−n contains y we may change the variables in the first integral to see that it equals the
second.
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It will be convenient now to identify v with φv so that V becomes a space of functions on
F× with values in X. The map A is replaced by the map φ→ φ(1). The representation π
now satisfies

π(b)φ = ξψ(b)φ

if b is in BF . There is a quasi-character ω0 of F× such that

π

((
a 0
0 a

))
= ω0(a)I.

If

w =

((
0 1

−1 0

))
the representation is determined by ω0 and π(w).

Proposition 2.9.

(i) The space V contains
V0 = S(F×, X)

(ii) The space V is spanned by V0 and π(w)V0.

For every φ in V there is a positive integer n such that

π

((
a x
0 1

))
φ = φ

if x and a− 1 belong to pn. In particular φ(αa) = φ(a) if α belongs to F× and a− 1 belongs
to pn. The relation

ψ(αx)φ(α) = φ(α)

for all x in pn implies that φ(α) = 0 if the restriction of ψ to αpn is not trivial. Let p−m

be the largest ideal on which ψ is trivial. Then φ(α) = 0 unless |α| ⩽ |ϖ|−m−n if ϖ is a
generator of p.

Let V0 be the space of all φ in V such that, for some integer ℓ depending on φ, φ(α) = 0
unless |α| > |ϖ|ℓ. To prove (i) we have to show that V0 = S(F×, X). It is at least clear that
S(F×, X) contains V0. Moreover for every φ in V and every x in F the difference

φ′ = φ− π

((
1 x
0 1

))
φ

is in V0. To see this observe that

φ′(α) =
(
1− ψ(αx)

)
φ(α)

is identically zero for x = 0 and otherwise vanishes at least on x−1p−m. Since there is no
function in V invariant under all the operators

π

((
1 x
0 1

))
the space V0 is not 0.

Before continuing with the proof of the proposition we verify a lemma we shall need.
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Lemma 2.9.1. The representation ξψ of BF in the space S(F×) of locally constant, compactly
supported, complex-valued functions on F× is irreducible.

For every character µ of UF let φµ be the function on F× which equals µ on UF and
vanishes off UF . Since these functions and their translates span S(F×) it will be enough
to show that any non-trivial invariant subspace contains all of them. Such a space must
certainly contain some non-zero function φ which satisfies, for some character ν of UF , the
relation

φ(aϵ) = ν(ϵ)φ(a)

for all a in F× and all ϵ in UF . Replacing φ by a translate if necessary we may assume that
φ(1) ̸= 0. We are going to show that the space contains φµ if µ is different from ν. Since UF
has at least two characters we can then replace φ by some φµ with µ different from ν, and
replace ν by µ and µ by ν to see it also contains φν .

Set

φ′ =

∫
UF

µ−1(ϵ)ξψ

((
ϵ 0
0 1

))
ξψ

((
1 x
0 1

))
φdϵ

where x is still to be determined. µ is to be different from ν. φ′ belongs to the invariant
subspace and

φ′(aϵ) = µ(ϵ)φ′(a)

for all a in F× and all ϵ in UF . We have

φ′(a) = φ(a)

∫
UF

µ−1(ϵ)ν(ϵ)ψ(axϵ) dϵ

The character µ−1ν has a conductor pn with n positive. Take x to be of order −n−m. The
integral, which can be rewritten as a Gaussian sum, is then, as is well-known, zero if a is
not in UF but different from zero if a is in UF . Since φ(1) is not zero φ

′ must be a nonzero
multiple of φµ.

To prove the first assertion of the proposition we need only verify that if u belongs to X
then V0 contains all functions of the form α → η(α)u with η in S(F×). There is a φ in V
such that φ(1) = u. Take x such that ψ(x) ̸= 1. Then

φ′ = φ− π

((
1 x
0 1

))
φ

is in V0 and φ′(1) =
(
1− ψ(x)

)
u. Consequently every u is of the form φ(1) for some φ in V0.

If µ is a character of UF let V0(µ) be the space of functions φ in V0 satisfying

φ(aϵ) = µ(ϵ)φ(a)

for all a in F× and all ϵ in UF . V0 is clearly the direct sum of the space V0(µ). In particular
every vector u in X can be written as a finite sum

u =
∑

φi(1)

where φi belongs to some V0(µi).
If we make use of the lemma we need only show that if u can be written as u = φ(1) where

φ is in V0(ν) for some ν then there is at least one function in V0 of the form α → η(α)u where
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η is a nonzero function in S(F×). Choose µ different from ν and let pn be the conductor of
µ−1ν. We again consider

φ′ =

∫
UF

µ−1(ϵ)ξψ

((
ϵ 0
0 1

)(
1 x
0 1

))
φdϵ

where x is of order −n−m. Then

φ′(a) = φ(a)

∫
UF

µ−1(ϵ)ν(ϵ)ψF (axϵ) dϵ

The properties of Gaussian sums used before show that φ′ is a function of the required kind.
The second part of the proposition is easier to verify. Let PF be the group of upper

triangular matrices in GF . Since V0 is invariant under PF and V is irreducible under GF the
space V is spanned by V0 and the vectors

φ′ = π

((
1 x
0 1

))
π(w)φ

with φ in V0. But
φ′ =

{
φ′ − π(w)φ

}
+ π(w)φ

and as we saw, φ′ − π(w)φ is in V0. The proposition is proved.
To study the effect of w we introduce a formal Mellin transform. Let ϖ be a generator of

p. If φ is a locally constant function on F× with values in X then for every integer n the
function ϵ→ φ(ϵϖn) on UF takes its values in a finite-dimensional subspace of X so that the
integral ∫

UF

φ(ϵϖn)ν(ϵ) = φ̂n(ν)

is defined. In this integral we take the total measure of UF to be 1. It is a vector in X. The
expression φ̂(ν, t) will be the Formal Laurent series∑

n

tnφ̂n(ν)

If φ is in V the series has only a finite number of terms with negative exponent. Moreover
the series φ̂(ν, t) is different from zero for only finitely many ν. If φ belongs to V0 these series
have only finitely many terms. It is clear that if φ is locally constant and all the formal series
φ̂(ν, t) vanish then φ = 0.

Suppose φ takes values in a finite-dimensional subspace of X, ω is a quasi-character of
F×, and the integral

(2.10.1)

∫
F×

ω(a)φ(a) d×a

is absolutely convergent. If ω′ is the restriction of ω to UF this integral equals∑
n

zn
∫
UF

φ(ϖnϵ)ω′(ϵ) dϵ =
∑
n

znφ̂n(ω
′)

if z = ω(ϖ). Consequently the formal series φ̂(ω′, t) converges absolutely for t = z and the
sum is equal to (2.10.1). We shall see that X is one-dimensional and that there is a constant
c0 = c0(φ) such that if

∣∣ω(ϖ)
∣∣ = |ϖ|c with c > c0 then the integral (2.10.1) is absolutely

convergent. Consequently all the series φ̂(ν, t) have positive radii of convergence.
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If ψ = ψF is a given non-trivial additive character of F , µ any character of UF , and x any
element of F we set

η(µ, x) =

∫
UF

µ(ϵ)ψ(ϵx) dϵ

The integral is taken with respect to the normalized Haar measure on UF . If g belongs to
GF , φ belongs to V , and φ′ = π(g)φ we shall set

π(g)φ̂(ν, t) = φ̂′(ν, t).

Proposition 2.10.

(i) If δ belongs to UF and ℓ belongs to Z then

π

(δϖℓ 0
0 1

)φ̂(ν, t) = t−ℓν−1(δ)φ̂(ν, t)

(ii) If x belongs to F then

π

((
1 x
0 1

))
φ̂(ν, t) =

∑
n

tn

∑
µ

η(µ−1ν,ϖnx)φ̂n(µ)


where the inner sum is taken over all characters of UF

(iii) Let ω0 be the quasi-character defined by

π

((
a 0
0 a

))
= ω0(a)I

for a in F×. Let ν0 be its restriction to UF and let z0 = ω0(ϖ). For each character ν
of UF there is a formal series C(ν, t) with coefficients in the space of linear operators
on X such that for every φ in V0

π

((
0 1

−1 0

))
φ̂(ν, t) = C(ν, t)φ̂(ν−1ν−1

0 , t−1z−1
0 ).

Set

φ′ = π

(δϖℓ 0
0 1

)φ.
Then

φ̂′(ν, t) =
∑
n

tn
∫
UF

ν(ϵ)φ(ϖn+ℓδϵ) dϵ.

Changing variables in the integration and in the summation we obtain the first formula of
the proposition.

Now set

φ′ = π

((
1 x
0 1

))
φ.

Then

φ̂′(ν, t) =
∑
n

tn
∫
UF

ψ(ϖnϵx)ν(ϵ)φ(ϖnϵ) dϵ.
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By Fourier inversion

φ(ϖnϵ) =
∑
µ

φ̂n(µ)µ
−1(ϵ).

The sum on the right is in reality finite. Substituting we obtain

φ̂′(ν, t) =
∑
n

tn

∑
µ

∫
UF

µ−1ν(ϵ)ψ(ϵϖnx) dϵφ̂n(µ)


as asserted.

Suppose ν is a character of UF and φ in V0 is such that φ̂(µ, t) = 0 unless µ = ν−1ν−1
0 .

This means that
φ(aϵ) ≡ νν0(ϵ)φ(a)

or that

π

((
ϵ 0
0 1

))
φ = νν0(ϵ)φ

for all ϵ in UF . If φ
′ = π(w)φ then

π

((
ϵ 0
0 1

))
φ′ = π

((
ϵ 0
0 1

))
π(w)φ = π(w)π

((
1 0
0 ϵ

))
φ.

Since ((
1 0
0 ϵ

))
=

((
ϵ 0
0 ϵ

))((
ϵ−1 0
0 1

))
the expression on the right is equal to

ν−1(ϵ)π(w)φ = ν−1(ϵ)φ′,

so that φ̂′(µ, t) = 0 unless µ = ν.
Now take a vector u in X and a character ν of UF and let φ be the function in V0 which

is zero outside of UF and on UF is given by

(2.10.2) φ(ϵ) = ν(ϵ)ν0(ϵ)u.

If φ′ = π(w)φ then φ̂′
n is a function of n, ν, and u which depends linearly on u and we may

write
φ̂′
n(ν) = Cn(ν)u

where Cn(ν) is a linear operator on X.
We introduce the formal series

C(ν, t) =
∑

tnCn(ν).

We have now to verify the third formula of the proposition. Since φ is in V0 the product
on the right is defined. Since both sides are linear in φ we need only verify it for a set of
generators of V0. This set can be taken to be the functions defined by (2.10.2) together
with their translates by powers of ϖ. For functions of the form (2.10.2) the formula is valid
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because of the way the various series C(ν, t) were defined. Thus all we have to do is show
that if the formula is valid for a given function φ it remains valid when φ is replaced by

π

(ϖℓ 0
0 1

)φ.
By part (i) the right side is replaced by

zℓ0t
ℓC(ν, t)φ̂(ν−1ν−1

0 , t−1z−1
0 ).

Since

π(w)π

(ϖℓ 0
0 1

)φ = π

(1 0

0 ϖℓ

)π(w)φ
and π(w)φ̂(ν, t) is known we can use part (i) and the relation(

1 0

0 ϖℓ

)
=

(
ϖℓ 0

0 ϖℓ

)(
ϖ−ℓ 0
0 1

)
to see that the left side is replaced by

zℓ0t
ℓπ(w)φ̂(ν, t) = zℓ0t

ℓC(ν, t)φ̂(ν−1ν−1
0 , t−1z−1

0 ).

For a given u in X and a given character ν of UF there must exist a φ in V such that

φ̂(ν, t) =
∑

tnCn(ν)u

Consequently there is an n0 such that Cn(ν)u = 0 for n < n0. Of course n0 may depend on u
and ν. This observation together with standard properties of Gaussian sums shows that the
infinite sums occurring in the following proposition are meaningful, for when each term is
multiplied on the right by a fixed vector in X all but finitely many disappear.

Proposition 2.11. Let p−ℓ be the largest ideal on which ψ is trivial.

(i) Let ν and ρ be two characters of UF such that νρν0 is not 1. Let pm be its conductor.
Then ∑

σ

η(σ−1ν,ϖn)η(σ−1ρ,ϖp)Cp+n(σ)

is equal to

η(ν−1ρ−1ν−1
0 , ϖ−m−ℓ)zm+ℓ

0 νρν0(−1)Cn−m−ℓ(ν)Cp−m−ℓ(ρ)

for all integers n and p.
(ii) Let ν be any character of UF and let ν̃ = ν−1ν−1

0 . Then∑
σ

η(σ−1ν,ϖn)η(σ−1ν̃, ϖp)Cp+n(σ)

is equal to

zp0ν0(−1)δn,p +
(
|ϖ| − 1

)−1
zℓ+1
0 Cn−1−ℓ(ν)Cp−1−ℓ(ν̃)−

−∞∑
−2−ℓ

z−rCn+r(ν)Cp+r(ν̃)

for all integers n and p.
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The left hand sums are taken over all characters σ of UF and δn,p is Kronecker’s delta.
The relation (

0 1
−1 0

)(
1 1
0 1

)(
0 1

−1 0

)
= −

(
1 −1
0 1

)(
0 1

−1 0

)(
1 −1
0 1

)
implies that

π(w)π

((
1 1
0 1

))
π(w)φ = ν0(−1)π

((
1 −1
0 1

))
π(w)π

((
1 −1
0 1

))
φ

for all φ in V0. Since π(w)φ is not necessarily in V0 we write this relation as

π(w)

π
((

1 1
0 1

))
π(w)φ− π(w)φ

+ π2(w)φ

= ν0(−1)π

((
1 −1
0 1

))
π(w)π

((
1 −1
0 1

))
φ.

The term π2(w)φ is equal to ν0(−1)φ.
We compute the Mellin transforms of both sides

π

((
1 −1
0 1

))
φ̂(ν, t) =

∑
n

tn

∑
ρ

η(ρ−1ν,−ϖn)φ̂n(ρ)


and

π(w)π

((
1 −1
0 1

))
φ̂(ν, t) =

∑
n

tn
∑
p,ρ

η(ρ−1ν−1ν−1
0 ,−ϖp)z−p0 Cp+n(ν)φ̂p(ρ)

so that the Mellin transform of the right side is

(2.11.1) ν0(−1)
∑
n

tn
∑
p,ρ,σ

η(σ−1ν,−ϖn)η(ρ−1σ−1ν−1
0 ,−ϖp)z−p0 Cp+n(σ)φ̂p(ρ).

On the other hand

π(w)φ̂(ν, t) =
∑
n

tn
∑
p

z−p0 Cp+n(ν)φ̂p(ν
−1ν−1

0 )

and

π

((
1 1
0 1

))
π(w)φ̂(ν, t) =

∑
n

tn
∑
p,ρ

z−p0 η(ρ−1ν,ϖn)Cp+n(ρ)φ̂p(ρ
−1ν−1

0 )

so that

π

((
1 1
0 1

))
π(w)φ̂(ν, t)− π(w)φ̂(ν, t)

is equal to ∑
n

tn
∑
p,ρ

z−p0

[
η(ρνν0, ϖ

n)− δ(ρνν0)
]
Cp+n(ρ

−1ν−1
0 )φ̂p(ρ).
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Here δ(ρνν0) is 1 if ρνν0 is the trivial character and 0 otherwise. The Mellin transform of
the left hand side is therefore
(2.11.2)∑

tn
∑
p,r,ρ

z−p−r0

[
η(ρν−1, ϖr)− δ(ρν−1)

]
Cn+r(ν)Cp+r(ρ

−1ν−1
0 )φ̂p(ρ) + ν0(−1)

∑
tnφ̂n(ν).

The coefficient of tnφ̂p(ρ) in (2.11.1) is

(2.11.3) ν0(−1)
∑
σ

η(σ−1ν,−ϖn)η(ρ−1σ−1ν−1
0 ,−ϖp)z−1

0 Cp+n(σ)

and in (2.11.2) it is

(2.11.4)
∑
r

[
η(ρν−1, ϖr)− δ(ρν−1)

]
z−p−r0 Cn+r(ν)Cp+r(ρ

−1ν−1
0 ) + ν0(−1)δn,ρδ(ρν

−1)I

These two expressions are equal for all choice of n, p, ρ, and ν.
If ρ ̸= ν and the conductor of νρ−1 is pm the gaussian sum η(ρν−1, ϖr) is zero unless

r = −m− ℓ. Thus (2.11.4) reduces to

η(ρν−1, ϖ−m−ℓ)z−p−m−ℓ
0 Cn−m−ℓ(ν)Cp−m−ℓ(ρ

−1ν−1
0 ).

Since
η(µ,−x) = µ(−1)η(µ, x)

the expression (2.11.3) is equal to

ρ−1ν(−1)
∑
σ

η(σ−1ν,ϖn)η(ρ−1σ−1ν−1
0 ϖp)z−p0 Cp+n(σ).

Replacing ρ by ρ−1ν−1
0 we obtain the first part of the proposition.

If ρ = ν then δ(ρν−1) = 1. Moreover, as is well-known and easily verified, η(ρν−1, ϖr) = 1
if r ⩾ −ℓ,

η(ρν−1, ϖ−ℓ−1) = |ϖ|
(
|ϖ| − 1

)−1

and η(ρν−1, ϖr) = 0 if r ⩽ −ℓ− 2. Thus (2.11.4) is equal to

ν0(−1)δn,pI +
(
|ϖ| − 1

)−1
z−p+ℓ+1
0 Cn−ℓ−1(ν)Cn−ℓ−1(ν

−1ν−1
0 )

−
−∞∑

r=−ℓ−2

z−p−r0 Cn+r(ν)Cn+r(ν
−1ν−1

0 ).

The second part of the proposition follows.

Proposition 2.12.

(i) For every n, p, ν and ρ

Cn(ν)Cp(ρ) = Cp(ρ)Cn(ν)

(ii) There is no non-trivial subspace of X invariant under all the operators Cn(ν).
(iii) The space X is one-dimensional.

Suppose ρνν0 ≠ 1. The left side of the first identity in the previous proposition is
symmetric in the two pairs (n, ν) and (p, ρ). Since η(ν−1ρ−1ν−1

0 , ϖ−m−ℓ) is not zero we
conclude that

Cn−m−ℓ(ν)Cp−m−ℓ(ρ) = Cp−m−ℓ(ρ)Cn−m−ℓ(ν)
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for all choices of n and p. The first part of the proposition is therefore valid in ρ ̸= ν̃.
Now suppose ρ = ν̃. We are going to prove that if (p, n) is a given pair of integers and u

belongs to X then
Cn+r(ν)Cp+r(ν̃)u = Cp+r(ν̃)Cn+r(ν)u

for all r in Z. If r ≪ 0 both sides are 0 and the relation is valid so the proof can proceed
by induction on r. For the induction one uses the second relation of Proposition 2.11 in the
same way as the first was used above.

Suppose X1 is a non-trivial subspace of X invariant under all the operators Cn(ν). Let
V1 be the space of all functions in V0 which take values in X1 and let V ′

1 be the invariant
subspace generated by V1. We shall show that all functions in V ′

1 take values in X1 so that
V ′
1 is a non-trivial invariant subspace of V . This will be a contradiction. If φ in V takes

value in X1 and g belongs to PF then π(g)φ also takes values in X1. Therefore all we need to
do is show that if φ is in V1 then π(w)φ takes values in X1. This follows immediately from
the assumption and Proposition 2.10.

To prove (iii) we show that the operators Cn(ν) are all scalar multiples of the identity.
Because of (i) we need only show that every linear transformation of X which commutes
with all the operators Cn(ν) is a scalar. Suppose T is such an operator. If φ belongs to V let
Tφ be the function from F× to X defined by

Tφ(a) = T
(
φ(a)

)
.

Observe that Tφ is still in V . This is clear if φ belongs to V0 and if φ = π(w)φ0 we see on
examining the Mellin transforms of both sides that

Tφ = π(w)Tφ0 .

Since V = V0 + π(w)V0 the observation follows. T therefore defines a linear transformation of
V which clearly commutes with the action of any g in PF . If we can show that it commutes
with the action of w it will follow that it and, therefore, the original operator on X are scalars.
We have to verify that

π(w)Tφ = Tπ(w)φ

at least for φ on V0 and for φ = π(w)φ0 with φ0 in V0. We have already seen that the identity
holds for φ in V0. Thus if φ = π(w)φ0 the left side is

π(w)Tπ(w)φ0 = π2(w)Tφ0 = ν0(−1)Tφ0

and the right side is
Tπ2(w)φ0 = ν0(−1)Tφ0 .

Because of this proposition we can identify X with C and regard the operators Cn(ν)
as complex numbers. For each r the formal Laurent series C(ν, t) has only finitely many
negative terms. We now want to show that the realization of π on a space of functions on
F× is, when certain simple conditions are imposed, unique so that the series C(ν, t) are
determined by the class of π and that conversely the series C(ν, t) determine the class of π.

Theorem 2.13. Suppose an equivalence class of infinite-dimensional irreducible admissible
representations of GF is given. Then there exists exactly one space V of complex-valued
functions on F× and exactly one representation π of GF on V which is in this class and
which is such that

π(b)φ = ξψ(b)φ

if b is in BF and φ is in V .
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We have proved the existence of one such V and π. Suppose V ′ is another such space
of functions and π′ a representation of GF on V ′ which is equivalent to π. We suppose of
course that

π′(b)φ = ξψ(b)φ

if b is in BF and φ is in V ′. Let A be an isomorphism of V with V ′ such that Aπ(g) = π′(g)A
for all g. Let L be the linear functional

L(φ) = Aφ(1)

on V . Then

L

π((a 0
0 1

))
φ

 = Aφ(a)

so that A is determined by L. If we could prove the existence of a scalar λ such that
L(φ) = λφ(1) it would follow that

Aφ(a) = λφ(a)

for all a such that Aφ = λφ. This equality of course implies the theorem.
Observe that

(2.13.1) L

π((1 x
0 1

))
φ

 = π′

((
1 x
0 1

))
Aφ(1) = ψ(x)L(φ).

Thus we need the following lemma.

Lemma 2.13.2. If L is a linear functional on V satisfying (2.13.1) there is a scalar λ such
that

L(φ) = λφ(1).

This is a consequence of a slightly different lemma.

Lemma 2.13.3. Suppose L is a linear functional on the space S(F×) of locally constant
compactly supported functions on F× such that

L

ξψ((1 x
0 1

))
φ

 = ψ(x)L(φ)

for all φ in S(F×) and all x in F . Then there is a scalar λ such that L(φ) = λφ(1).

Suppose for a moment that the second lemma is true. Then given a linear functional L
on V satisfying (2.13.1) there is a λ such that L(φ) = λφ(1) for all φ in V0 = S(F×). Take x
in F such that ψ(x) ̸= 1 and φ in V . Then

L(φ) = L

φ− π

((
1 x
0 1

))
φ

+ L

π((1 x
0 1

))
φ

.
Since

φ− π

((
1 x
0 1

))
φ



30 I. LOCAL THEORY

is in V0 the right side is equal to

λφ(1)− λψ(x)φ(1) + ψ(x)L(φ)

so that (
1− ψ(x)

)
L(φ) = λ

(
1− ψ(x)

)
φ(1)

which implies that L(φ) = λφ(1).
To prove the second lemma we have only to show that φ(1) = 0 implies L(φ) = 0. If we

set φ(0) = 0 then φ becomes a locally constant function with compact support in F . Let φ′

be its Fourier transform so that

φ(a) =

∫
F

ψ(ba)φ′(−b) db.

Let Ω be an open compact subset of F× containing 1 and the support of φ. There is an ideal
a in F so that for all a in Ω the function φ′(−b)ψ(ba) is constant on the cosets of a in F .
Choose an ideal b containing a and the support of φ′. If S is a set of representatives of b/a
and if c is the measure of a then

φ(a) = c
∑
b∈S

ψ(ba)φ′(−b).

If φ0 is the characteristic function of Ω this relation may be written

φ =
∑
b∈S

λbξψ

((
1 b
0 1

))
φ0

with λb = cφ′(−b). If φ(1) = 0 then ∑
b∈S

λbψ(b) = 0

so that

φ =
∑

λb

ξψ
((

1 b
0 1

))
φ0 − ψ(b)φ0


It is clear that L(φ) = 0.

The representation of the theorem will be called the Kirillov model. There is another
model which will be used extensively. It is called the Whittaker model. Its properties are
described in the next theorem.

Theorem 2.14.

(i) For any φ in V set
Wφ(g) =

(
π(g)φ

)
(1)

so that Wφ is a function in GF . Let W (π, ψ) be the space of such functions. The
map φ→ Wφ is an isomorphism of V with W (π, ψ). Moreover

Wπ(g)φ = ρ(g)Wφ

(ii) Let W (ψ) be the space of all functions W on GF such that

W

((
1 x
0 1

))
g = ψ(x)W (g)
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for all x in F and g in G. Then W (π, ψ) is contained in W (ψ) and is the only
invariant subspace which transforms according to π under right translations.

Since

Wφ

((
a 0
0 1

))
=

π((a 0
0 1

))
φ

(1) = φ(a)

the function Wφ is 0 only if φ is. Since

ρ(g)W (h) = W (hg)

the relation
Wπ(g)φ = ρ(g)Wφ

is clear. Then W (π, ψ) is invariant under right translation and transforms according to π.
Since

Wφ

((
1 x
0 1

)
g

)
=

π((1 x
0 1

))
π(g)φ

(1) = ψ(x)
{
π(g)φ(1)

}
the space W (π, ψ) is contained in W (ψ). Suppose W is an invariant subspace of W (ψ) which
transforms according to π. There is an isomorphism A of V with W such that

A
(
π(g)φ

)
= ρ(g)(Aφ).

Let
L(φ) = Aφ(1).

Since
L
(
π(g)φ

)
= Aπ(g)φ(1) = ρ(g)Aφ(1) = Aφ(g)

the map A is determined by L. Also

L

π((1 x
0 1

))
φ

 = Aφ

((
1 x
0 1

))
= ψ(x)Aφ(1) = ψ(x)L(φ)

so that by Lemma 2.13.2 there is a scalar λ such that

L(φ) = λφ(1).

Consequently Aφ = λWφ and W = W (π, ψ).
The realization of π on W (π, ψ) will be called the Whittaker model. Observe that the

representation of GF on W (ψ) contains no irreducible finite-dimensional representations. In
fact any such representation is of the form

π(g) = χ(det g).

If π were contained in the representation on W (ψ) there would be a nonzero function W on
GF such that

W

((
1 x
0 1

)
g

)
= ψ(x)χ(det g)W (e)

In particular taking g = e we find that

W

((
1 x
0 1

))
= ψ(x)W (e)
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However it is also clear that

W

((
1 x
0 1

))
= χ

(
det

(
1 x
0 1

))
W (e) = W (e)

so that ψ(x) = 1 for all x. This is a contradiction. We shall see however that π is a constituent
of the representation on W (ψ). That is, there are two invariant subspaces W1 and W2 of
W (ψ) such that W1 contains W2 and the representation of the quotient space W1/W2 is
equivalent to π.

Proposition 2.15. Let π and π′ be two infinite-dimensional irreducible representations of
GF realized in the Kirillov form on spaces V and V ′. Assume that the two quasi-characters
defined by

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω′(a)I

are the same. Let
{
C(ν, t)

}
and

{
C ′(ν, t)

}
be the families of formal series associated to the

two representations. If
C(ν, t) = C ′(ν, t)

for all ν then π = π′.

If φ belongs to S(F×) then, by hypothesis,

π(w)φ̂(ν, t) = π′(w)φ̂(ν, t)

so that π(w)φ = π′(w)φ. Since V is spanned by S(F×) and π(w)S(F×) and V ′ is spanned
by S(F×) and π′(w)S(F×) the spaces V and V ′ are the same. We have to show that

π(g)φ = π′(g)φ

for all φ in V and all g in GF . This is clear if g is in PF so it is enough to verify it
for g = w. We have already observed that π(w)φ0 = π′(w)φ0 if φ0 is in S(F×) so we
need only show that π(w)φ = π′(w)φ if φ is of the form π(w)φ0 with φ0 in S(F×). But
π(w)φ = π2(w)φ0 = ω(−1)φ0 and, since π(w)φ0 = π′(w)φ0, π

′(w)φ = ω′(−1)φ0.
Let NF be the group of matrices of the form(

1 x
0 1

)
with x in F and let B be the space of functions on GF invariant under left translations by
elements of NF . B is invariant under right translations and the question of whether or not a
given irreducible representation π is contained in B arises. The answer is obviously positive
when π = χ is one-dimensional for then the function g → χ(det g) is itself contained in B.

Assume that the representation π which is given in the Kirillov form acts on B. Then
there is a map A of V into B such that

Aπ(g)φ = ρ(g)Aφ

If L(φ) = Aφ(1) then

(2.15.1) L

ξψ((1 x
0 1

))
φ

 = L(φ)
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for all φ in V and all x in F . Conversely given such a linear form the map φ→ Aφ defined
by

Aφ(g) = L
(
π(g)φ

)
satisfies the relation Aπ(g) = ρ(g)A and takes V into B. Thus π is contained in B if and only
if there is a non-trivial linear form L on V which satisfies (2.15.1).

Lemma 2.15.2. If L is a linear form on S(F×) which satisfies (2.15.1) for all x in F and
for all φ in S(F×) then L is zero.

We are assuming that L annihilates all functions of the form

ξψ

((
1 x
0 1

))
φ− φ

so it will be enough to show that they span S(F×). If φ belongs to S(F×) we may set
φ(0) = 0 and regard φ as an element of S(F ). Let φ′ be its Fourier transform so that

φ(x) =

∫
F

φ′(−b)ψ(bx) db.

Let Ω be an open compact subset of F× containing the support of φ and let p−n be an ideal
containing Ω. There is an ideal a of F such that φ′(−b)ψ(bx) is, as a function of b, constant
on cosets of a for all x in p−n. Let b be an ideal containing both a and the support of φ′. If
S is a set of representatives for the cosets of a in b, if c is the measure of a, and if φ0 is the
characteristic function of Ω then

φ(x) =
∑
b∈S

λbψ(bx)φ0(x)

if λb = cφ′(−b). Thus

φ =
∑
b

λbξψ

((
1 b
0 1

))
φ0.

Since φ(0) = 0 we have ∑
b

λb = 0

so that

φ =
∑
b

λb

ξψ
((

1 b
0 1

))
φ0 − φ0


as required.

Thus any linear form on V verifying (2.15.1) annihilates S(F×). Conversely any linear
form on V annihilating S(F×) satisfies (2.15.1) because

ξψ

((
1 x
0 1

))
φ− φ

is in S(F×) if φ is in V . We have therefore proved

Proposition 2.16. For any infinite-dimensional irreducible representation π the following
two properties are equivalent:

(i) π is not contained in B.
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(ii) The Kirillov model of π is realized in the space S(F×).

A representation satisfying these two conditions will be called absolutely cuspidal.

Lemma 2.16.1. Let π be an infinite-dimensional irreducible representation realized in the
Kirillov form on the space V . Then V0 = S(F×) is of finite codimension in V .

We recall that V = V0 + π(w)V0. Let V1 be the space of all φ in V0 with support in UF .
An element of π(w)V0 may always be written as a linear combination of functions of the form

π

((
ϖp 0
0 1

))
π(w)φ

with φ in V1 and p in Z. For each character µ of UF let φµ be the function in V1 such that
φµ(ϵ) = µ(ϵ)ν0(ϵ) for ϵ in UF . Then

φ̂µ(ν, t) = δ(νµν0)

and
π(w)φ̂µ(ν, t) = δ(νµ−1)C(ν, t).

Let ηµ = π(w)φµ. The space V is spanned by V0 and the functions

π

((
ϖp 0
0 1

))
ηµ

For the moment we take the following two lemmas for granted.

Lemma 2.16.2. For any character µ of ÛF there is an integer n0 and a family of constants
λi, 1 ⩽ i ⩽ p, such that

Cn(µ) =

p∑
i=1

λiCn−i(µ)

for n ⩾ n0.

Lemma 2.16.3. There is a finite set S of characters of UF such that for ν not in S the
numbers Cn(ν) are 0 for all but finitely many n.

If µ is not in S the function ηµ is in V0. Choose µ in S and let Vµ be the space spanned
by the functions

π

((
ϖp 0
0 1

))
ηµ

and the functions φ in V0 satisfying φ(aϵ) = φ(a)µ−1(ϵ) for all a in F× and all ϵ in UF . It
will be enough to show that Vµ/(Vµ ∩ V0) is finite-dimensional.

If φ is in Vµ then φ̂(ν, t) = 0 unless ν = µ and we may identify φ with the sequence{
φ̂n(µ)

}
. The elements of Vµ ∩ V0 are the elements corresponding to sequences with only

finitely many nonzero terms. Referring to Proposition 2.10 we see that all of the sequences
satisfy the recursion relation

φ̂n(µ) =

p∑
i=1

λiφ̂n−i(µ)

for n ⩾ n1. The integer n1 depends on φ.
Lemma 2.16.1 is therefore a consequence of the following elementary lemma whose proof

we postpone to Paragraph 8.
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Lemma 2.16.4. Let λi, 1 ⩽ i ⩽ p, be p complex numbers. Let A be the space of all sequences
{an}, n ∈ Z for which there exist two integers n1 and n2 such that

an =
∑
1⩽i⩽p

λian−i

for n ⩾ n1 and such that an = 0 for n ⩽ n2. Let A0 be the space of all sequences with only a
finite number of nonzero terms. Then A/A0 is finite-dimensional.

We now prove Lemma 2.16.2. According to Proposition 2.11∑
σ

η(σ−1ν,ϖn)η(σ−1ν̃, ϖp)Cp+n(σ)

is equal to

zp0ν0(−1)δn,p +
(
|ϖ| − 1

)−1
zℓ+1
0 Cn−1−ℓ(ν)Cp−1−ℓ(ν̃)−

−∞∑
−2−ℓ

z−r0 Cn+r(ν)Cp+r(ν̃).

Remember that p−ℓ is the largest ideal on which ψ is trivial. Suppose first that ν̃ = ν.
Take p = −ℓ and n > −ℓ. Then δ(n− p) = 0 and

η(σ−1ν,ϖn)η(σ−1ν,ϖp) = 0

unless σ = ν. Hence

Cn−ℓ(ν) =
(
|ϖ| − 1

)−1
zℓ+1
0 Cn−1−ℓ(ν)C−2ℓ−1(ν)−

−∞∑
−2−ℓ

z−r0 Cn+r(ν)C−ℓ+r(ν)

which, since almost all of the coefficients C−ℓ+r(ν) in the sum are zero, is the relation required.
If ν ̸= ν̃ take p ⩾ −ℓ and n > p. Then η(σ−1ν,ϖn) = 0 unless σ = ν and η(σ−1ν,ϖp) = 0

unless σ = ν̃. Thus

(2.16.5)
(
|ϖ| − 1

)−1
zℓ+1
0 Cn−1−ℓ(ν)Cp−1−ℓ(ν̃)−

−∞∑
−2−ℓ

z−r0 Cn+r(ν)Cp+r(ν̃) = 0.

There is certainly at least one i for which Ci(ν̃) ̸= 0. Take p− 1− ℓ ⩾ i. Then from (2.16.5)
we deduce a relation of the form

Cn+r(ν) =

q∑
i=1

λiCn+r−i(ν)

where r is a fixed integer and n is any integer greater than p.
Lemma 2.16.3 is a consequence of the following more precise lemma. If pm is the conductor

of a character ρ we refer to m as the order of ρ.

Lemma 2.16.6. Let m0 be of the order ν0 and let m1 be an integer greater than m0. Write
ν0 in any manner in the form ν0 = ν−1

1 ν−1
2 where the orders of ν1 and ν2 are strictly less

than m1. If the order m of ρ is large enough

C−2m−2ℓ(ρ) = ν−1
2 ρ(−1)z−m−ℓ

0

η(ν−1
1 ρ,ϖ−m−ℓ)

η(ν2ρ−1, ϖ−m−ℓ)

and Cp(ρ) = 0 if p ̸= −2m− 2ℓ.
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Suppose the order of ρ is at least m1. Then ρν1ν0 = ρν−1
2 is still of order m. Applying

Proposition 2.11 we see that∑
σ

η(σ−1ν1, ϖ
n+m+ℓ)η(σ−1ρ,ϖp+m+ℓ)Cp+n+2m+2ℓ(σ)

is equal to
η(ν−1

1 ρ−1ν−1
0 , ϖ−m−ℓ)zm+ℓ

0 ν1ρν0(−1)Cn−m−ℓ(ν)Cp−m−ℓ(ρ)

for all integers n and p. Choose n such that Cn(ν1) ̸= 0. Assume also that m+ n+ ℓ ⩾ −ℓ
or that m ⩾ −2ℓ− n. Then η(σ−1ν1, ϖ

n+m+ℓ) = 0 unless σ = ν1 so that

η(ν−1
1 ρ,ϖp+m+ℓ)Cp+n+2m+2ℓ(ν1) = η(ν2ρ

−1, ϖ−m−ℓ)zm+ℓ
0 ν1ρν0(−1)Cn(ν1)Cp(ρ).

Since ν−1
1 ρ is still of order m the left side is zero unless p = −2m− 2ℓ. The only term on the

right side that can vanish is Cp(ρ). On the other hand if p = −2m− 2ℓ we can cancel the
terms Cn(ν1) from both sides to obtain the relation of the lemma.

Apart from Lemma 2.16.4 the proof of Lemma 2.16.1 is complete. We have now to discuss
its consequences. If ω1 and ω2 are two quasi-characters of F× let B(ω1, ω2) be the space of
all functions φ on GF which satisfy

(i) For all g in GF , a1, a2 in F×, and x in F

φ

((
a1 x
0 a2

)
g

)
= ω1(a1)ω2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2φ(g).

(ii) There is an open subgroup U of GL(2, OF ) such that φ(gu) ≡ φ(g) for all u in U .

Since
GF = NFAFGL(2, OF )

where AF is the group of diagonal matrices the elements of B(ω1, ω2) are determined by their
restrictions to GL(2, OF ) and the second condition is tantamount to the condition that φ be
locally constant. B(ω1, ω2) is invariant under right translations by elements of GF so that we
have a representation ρ(ω1, ω2) of GF on B(ω1, ω2). It is admissible.

Proposition 2.17. If π is an infinite-dimensional irreducible representation of GF which is
not absolutely cuspidal then for some choice of µ1 and µ2 it is contained in ρ(µ1, µ2).

We take π in the Kirillov form. Since V0 is invariant under the group PF the representation
π defines a representation σ of PF on the finite-dimensional space V/V0. It is clear that σ is
trivial on NF and that the kernel of σ is open. The contragredient representation has the
same properties. Since PF/NF is abelian there is a nonzero linear form L on V/V0 such that

σ̃

((
a1 x
0 a2

))
L = µ−1

1 (a1)µ
−1
1 (a2)L

for all a1, a2, and x. µ1 and µ2 are homomorphisms of F× into C× which are necessarily
continuous. L may be regarded as a linear form on V . Then

L

π((a1 x
0 a2

))
φ

 = µ1(a1)µ2(a2)L(φ).

If φ is in V let Aφ be the function

Aφ(g) = L
(
π(g)φ

)
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on GF . A is clearly an injection of V into B(µ1, µ2) which commutes with the action of GF .
Before passing to the next theorem we make a few simple remarks. Suppose π is an

infinite-dimensional irreducible representation of GF and ω is a quasi-character of F×. It is
clear that W (ω ⊗ π, ψ) consists of the functions

g → W (g)ω(det g)

with W in W (π, ψ). If V is the space of the Kirillov model of π the space of the Kirillov
model of ω⊗ π consists of the functions a→ φ(a)ω(a) with φ in V . To see this take π in the
Kirillov form and observe first of all that the map A : φ→ φω is an isomorphism of V with
another space V ′ on which GF acts by means of the representation π′ = A(ω ⊗ π)A−1. If

b

(
α x
0 1

)
belongs to BF and φ′ = φω then

π′(b)φ′(a) = ω(a)
{
ω(α)ψ(ax)φ(αa)

}
= ψ(ax)φ′(αa)

so that π′(b)φ′ = ξψ(b)φ
′. By definition then π′ is the Kirillov model of ω ⊗ π. Let ω1 be the

restriction of ω to UF and let z1 = ω(ϖ). If φ′ = φω then

φ̂′(ν, t) = φ̂(νω1, z1t).

Thus
π′(w)φ′(ν, t) = π(w)φ̂(νω1, z1t) = C(νω1, z1t)φ̂(ν

−1ω−1
1 ν−1

0 , z−1
0 z−1

1 t−1).

The right side is equal to

C(νω1, z1t)φ̂
′(ν−1ν−1

0 ω−2
1 , z−1

0 z−2
1 t−1)

so that when we replace π by ω ⊗ π we replace C(ν, t) by C(νω1, z1t).
Suppose ψ′(x) = ψ(bx) with b in F× is another non-trivial additive character. Then

W (π, ψ′) consists of the functions

W ′(g) = W

((
b 0
0 1

)
g

)
with W in W (π, ψ).

The last identity of the following theorem is referred to as the local functional equation.
It is the starting point of our approach to the Hecke theory.

Theorem 2.18. Let π be an irreducible infinite-dimensional admissible representation of GF .

(i) If ω is the quasi-character of GF defined by

π

((
a 0
0 a

))
= ω(a)I

then the contragredient representation π̃ is equivalent to ω−1 ⊗ π.
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(ii) There is a real number s0 such that for all g in GF and all W in W (π, ψ) the integrals∫
F×

W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a = Ψ(g, s,W )

∫
F×

W

((
a 0
0 1

)
g

)
|a|s−1/2ω−1(a) d×a = Ψ̃(g, s,W )

converge absolutely for Re s > s0.
(iii) There is a unique Euler factor L(s, π) with the following property: if

Ψ(g, s,W ) = L(s, π)Φ(g, s,W )

then Φ(g, s,W ) is a holomorphic function of s for all g and all W and there is at
least one W in W (π, ψ) such that

Φ(e, s,W ) = as

where a is a positive constant.
(iv) If

Ψ̃(g, s,W ) = L(s, π̃)Φ̃(g, s,W )

there is a unique factor ϵ(s, π, ψ) which, as a function of s, is an exponential such
that

Φ̃

((
0 1

−1 0

)
g, 1− s,W

)
= ϵ(s, π, ψ)Φ(g, s,W )

for all g in GF and all W in W (π, ψ).

To say that L(s, π) is an Euler factor is to say that L(s, π) = P−1(q−s) where P is a
polynomial with constant term 1 and q = |ϖ|−1 is the number of elements in the residue field.
If L(s, π) and L′(s, π) were two Euler factors satisfying the conditions of the lemma their
quotient would be an entire function with no zero. This clearly implies uniqueness.

If ψ is replaced by ψ′ where ψ′(x) = ψ(bx) the functions W are replaced by the functions
W ′ with

W ′(g) = W

((
b 0
0 1

)
g

)
and

Ψ(g, s,W ′) = |b|1/2−sΨ(g, s,W )

while
Ψ̃(g, s,W ′) = |b|1/2−sω(b)Ψ̃(g, s,W ).

Thus L(s, π) will not depend on ψ. However

ϵ(s, π, ψ′) = ω(b)|b|2s−1ϵ(s, π, ψ).

According to the first part of the theorem if W belongs to W (π, ψ) the function

W̃ (g) = W (g)ω−1(det g)

is in W (π̃, ψ). It is clear that

Ψ̃(g, s,W ) = ω(det g)Ψ(g, s, W̃ )
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so that if the third part of the theorem is valid when π is replaced by π̃ the function Φ̃(g, s,W )
is a holomorphic function of s. Combining the functional equation for π and for π̃ one sees
that

ϵ(s, π, ψ)ϵ(1− s, π̃, ψ) = ω(−1).

Let V be the space on which the Kirillov model of π acts. For every W in W (π, ψ) there
is a unique φ in V such that

W

((
a 0
0 1

))
= φ(a).

If π is itself the canonical model

π(w)φ(a) = W

((
a 0
0 1

)
w

)
where

w =

(
0 1

−1 0

)
.

If χ is any quasi-character of F× we set

φ̂(χ) =

∫
F×

φ(a)χ(a) d×a

if the integral converges. If χ0 is the restriction of χ to UF then

φ̂(χ) = φ̂
(
χ0, χ(ϖ)

)
.

Thus if αF is the quasi-character αF (x) = |x| and the appropriate integrals converge

Ψ(e, s,W ) = φ̂(α
s−1/2
F ) = φ̂(1, q1/2−s)

Ψ̃(e, s,W ) = φ̂(α
s−1/2
F ω−1) = φ̂(ν−1

0 , z−1
0 q1/2−s)

if ν0 is the restriction of ω to UF and z0 = ω(ϖ). Thus if the theorem is valid the series φ̂(1, t)
and φ̂(ν−1

0 , t) have positive radii of convergence and define functions which are meromorphic
in the whole t-plane.

It is also clear that

Ψ̃(w, 1− s,W ) = π(w)φ̂(ν−1
0 , z−1

0 qs−1/2).

If φ belongs to V0 then

π(w)φ̂(ν−1
0 , z−1

0 q−1/2t) = C(ν−1
0 , z

−1/2
0 q−1/2t)φ̂(1, q1/2t−1).

Choosing φ in V0 such that φ̂(1, t) ≡ 1 we see that C(ν−1
0 , t) is convergent in some disc and

has an analytic continuation to a function meromorphic in the whole plane.
Comparing the relation

π(w)φ̂(ν−1
0 z−1

0 q−1/2qs) = C(ν−1
0 , z

−1/2
0 q−1/2qs)φ̂(1, q1/2q−s)

with the functional equation we see that

(2.18.1) C(ν−1
0 , z−1

0 q−1/2qs) =
L(1− s, π̃)ϵ(s, π, ψ)

L(s, π)
.
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Replacing π by χ⊗ π we obtain the formula

C(ν−1
0 χ−1

0 , z−1
0 z−1

1 q−1/2qs) =
L(1− s, χ−1 ⊗ π̃)ϵ(s, χ⊗ π, ψ)

L(s, χ⊗ π)
.

Appealing to Proposition 2.15 we obtain the following corollary.

Corollary 2.19. Let π and π′ be two irreducible infinite-dimensional representations of GF .
Assume that the quasi-characters ω and ω′ defined by

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω′(a)I

are equal. Then π and π′ are equivalent if and only if

L(1− s, χ−1 ⊗ π̃)ϵ(s, χ⊗ π, ψ)

L(s, χ⊗ π)
=
L(1− s, χ−1 ⊗ π̃′)ϵ(s, χ⊗ π′, ψ)

L(s, χ⊗ π′)

for all quasi-characters.

We begin the proof of the first part of the theorem. If φ1 and φ2 are numerical functions
on F× we set

⟨φ1, φ2⟩ =
∫
φ1(a)φ2(−a) d×a.

The Haar measure is the one which assigns the measure 1 to UF . If one of the functions is in
S(F×) and the other is locally constant the integral is certainly defined. By the Plancherel
theorem for UF

⟨φ, φ′⟩ =
∑
n

∑
ν

ν(−1)φ̂n(ν)φ̂
′
n(ν

−1).

The sum is in reality finite. It is easy to see that if b belongs to B〈
ξψ(b)φ, ξψ(b)φ

′〉 = ⟨φ, φ′⟩.
Suppose π is given in the Kirillov form and acts on V . Let π′, the Kirillov model of

ω−1 ⊗ π, act on V ′. To prove part (i) we have only to construct an invariant non-degenerate
bilinear form β on V × V ′. If φ belongs to V0 and φ′ belongs to V ′ or if φ belongs to V and
φ′ belongs to V ′

0 we set
β(φ, φ′) = ⟨φ, φ′⟩.

If φ and φ′ are arbitrary vectors in V and V ′ we may write φ = φ1 + π(w)φ2 and φ′ =
φ1 + π′(w)φ′

2 with φ, φ2 in V0 and φ′
1, φ

′
2 in V ′

0 . We want to set

β(φ, φ′) = ⟨φ1, φ
′
1⟩+

〈
φ1, π

′(w)φ′
2

〉
+
〈
π(w)φ2, φ

′
1

〉
+ ⟨φ2, φ

′
2⟩.

The second part of the next lemma shows that β is well-defined.

Lemma 2.19.1. Let φ and φ′ belong to V0 and V ′
0 respectively. Then

(i) 〈
π(w)φ, φ′〉 = ν0(−1)

〈
φ, π′(w)φ′〉

(ii) If either π(w)φ belongs to V0 or π′(w)φ′ belongs to V ′
0 then〈

π(w)φ, π′(w)φ′〉 = ⟨φ, φ′⟩.
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The relation
π(w)φ̂(ν, t) =

∑
n

tn
∑
p

Cn+p(ν)φ̂p(ν
−1ν−1

0 )z−p0

implies that

(2.19.2)
〈
π(w)φ, φ′〉 = ∑

n,p,ν

ν(−1)Cn+p(ν)φ̂p(ν
−1ν−1

0 )z−p0 φ̂′
n(ν

−1).

Replacing π by π′ replaces ω by ω−1, ν0 by ν−1
0 , z0 by z−1

0 , and C(ν, t) by C(νν−1
0 , z−1

0 t).
Thus

(2.19.3)
〈
φ, π′(w)φ′〉 = ∑

n,p,ν

ν(−1)Cn+p(νν
−1
0 )z−n0 φ̂′

p(ν
−1ν0)φ̂n(ν

−1).

Replacing ν by νν0 in (2.19.3) and comparing with (2.19.2) we obtain the first part of the
lemma.

Because of the symmetry it will be enough to consider the second part when π(w)φ
belongs to V0. By the first part〈

π(w)φ, π′(w)φ′〉 = ν0(−1)
〈
π2(w)φ, φ′〉 = ⟨φ, φ′⟩.

It follows immediately from the lemma that

β
(
π(w)φ, π′(w)φ′) = β(φ, φ′)

so that to establish the invariance of β we need only show that

β
(
π(p)φ, π′(p)φ′) = β(φ, φ′)

for all triangular matrices p. If φ is in V0 or φ′ is in V ′
0 this is clear. We need only verify it

for φ in π(w)V0 and φ′ in π′(w)V ′
0 .

If φ is in V0, φ
′ is in V ′

0 and p is diagonal then

β
(
π(p)π(w)φ, π′(p)π′(w)φ′) = β

(
π(w)π(p1)φ, π

′(w)π′(p1)φ
′)

where p1 = w−1pw is also diagonal. The right side is equal to

β
(
π(p1)φ, π

′(p1)φ
′) = β(φ, φ′) = β

(
π(w)φ, π′(w)p′

)
.

Finally we have to show that1

(2.19.2) β

π((1 x
0 1

))
φ, π′

((
1 x
0 1

))
φ′

 = β(φ, φ′)

for all x in F and all φ and φ′. Let φi, 1 < i < r, generate V modulo V0 and let φ′
j , 1 ⩽ j ⩽ r′,

generate V ′ modulo V ′
0 . There certainly is an ideal a of F such that

π

((
1 x
0 1

))
φi = φi

and

π′

((
1 x
0 1

))
φ′
j = φ′

j

1The tags on Equations 2.19.2 and 2.19.3 have inadvertently been repeated.
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for all i and j if x belongs to a. Then

β

π((1 x
0 1

))
φi, π

′

((
1 x
0 1

))
φ′
j

 = β(φi, φj).

Since (2.19.2) is valid φ is in V0 or φ′ is in V ′
0 it is valid for all φ and φ′ provided that x is in

a. Any y in F may be written as ax with a in F× and x in a. Then(
1 y
0 1

)
=

(
a 0
0 1

)(
1 x
0 1

)(
a−1 0
0 1

)
and it follows readily that

β

π((1 y
0 1

))
φ, π′

((
1 y
0 1

))
φ′

 = β(φ, φ′).

Since β is invariant and not identically zero it is non-degenerate. The rest of the theorem
will now be proved for absolutely cuspidal representations. The remaining representations
will be considered in the next chapter. We observe that since W (π, ψ) is invariant under
right translations the assertions need only be established when g is the identity matrix e.

If π is absolutely cuspidal then V = V0 = S(F×) and W
(
( a 0
0 1 )
)
= φ(a) is locally

constant with compact support. Therefore the integrals defining Ψ(e, s,W ) and Ψ̃(e, s,W )
are absolutely convergent for all values of s and the two functions are entire. We may take
L(s, π) = 1. If φ is taken to be the characteristic function of UF then Φ(e, s,W ) = 1.

Referring to the discussion preceding Corollary 2.19 we see that if we take

ϵ(s, π, ψ) = C(ν−1
0 , z−1

0 q−1/2qs)

the local functional equation of part (iv) will be satisfied. It remains to show that ϵ(s, π, ψ)
is an exponential function or, what is at least as strong, to show that, for all ν, C(ν, t) is a
multiple of a power of t. It is a finite linear combination of powers of t and if it is not of the
form indicated it has a zero at some point different from 0. C(νν−1

0 , z−1
0 t−1) is also a linear

combination of powers of t and so cannot have a pole except at zero. To show that C(ν, t)
has the required form we have only to show that

(2.19.3) C(ν, t)C(ν−1ν−1
0 , z−1

0 t−1) = ν0(−1).

Choose φ in V0 and set φ′ = π(w)φ. We may suppose that φ′(ν, t) ̸= 0. The identity is
obtained by combining the two relations

φ̂′(ν, t) = C(ν, t)φ̂(ν−1ν−1
0 , z−1

0 t−1)

and
ν0(−1)φ̂(ν−1ν−1

0 , t) = C(ν−1ν−1
0 , t)φ̂′(ν, z−1

0 t−1).

We close this paragraph with a number of facts about absolutely cuspidal representations
which will be useful later.

Proposition 2.20. Let π be an absolutely cuspidal representation of GF . If the quasi-
character ω defined by

π

((
a 0
0 a

))
= ω(a)I

is actually a character then π is unitary.
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As usual we take π and π̃ in the Kirillov form. We have to establish the existence of a
positive-definite invariant hermitian form on V . We show first that if φ belongs to V and φ̃

belongs to Ṽ then there is a compact set Ω in GF such that if

ZF =

{(
a 0
0 a

) ∣∣∣∣∣ a ∈ F

}
the support of

〈
π(g)φ, φ̃

〉
, a function of g, is contained in ZFΩ. If AF is the group of diagonal

matrices GF = GL(2, OF )AFGL(2, OF ). Since φ and φ̃ are both invariant under subgroups
of finite index in GL(2, OF ) it is enough to show that the function

〈
π(b)φ, φ̃

〉
on AF has

support in a set ZFΩ with Ω compact. Since〈
π

((
a 0
0 a

)
b

)
φ, φ̃

〉
= ω(a)

〈
π(b)φ, φ̃

〉
it is enough to show that the function〈

π

((
a 0
0 1

))
φ, φ̃

〉
has compact support in F×. This matrix element is equal to∫

F×
φ(ax)φ̃(−x) d×x.

Since φ and φ̃ are functions with compact support the result is clear.

Choose φ̃0 ̸= 0 in Ṽ and set

(φ1, φ2) =

∫
ZF \GF

〈
π(g)φ1, φ̃0

〉〈
π(g)φ2, φ̃0

〉
dg.

This is a positive invariant hermitian form on V .
We have incidentally shown that π is square-integrable. Observe that even if the absolutely

cuspidal representation π is not unitary one can choose a quasi-character χ such that χ⊗ π
is unitary.

If π is unitary there is a conjugate linear map A : V → Ṽ defined by

(φ1, φ2) = ⟨φ1, Aφ2⟩.
Clearly Aξψ(b) = ξψ(b)A for all b in BF . The map A0 defined by

A0φ(a) = φ(−a)
has the same properties. We claim that

A = λA0

with λ in C×. To see this we have only to apply the following lemma to A−1
0 A.

Lemma 2.21.1. Let T be a linear operator on S(F×) which commutes with ξψ(b) for all b
in BF . Then T is a scalar.
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Since ξψ is irreducible it will be enough to show that T has an eigenvector. Let p−ℓ be
the largest ideal on which ψ is trivial. Let µ be a non-trivial character of UF and let pn be
its conductor. T commutes with the operator

S =

∫
UF

µ−1(ϵ)ξψ

(ϵ 0
0 1

)(
1 ϖ−ℓ−n

0 1

) dϵ

and it leaves the range of the restriction of S to the functions invariant under UF invariant.
If φ is such a function

Sφ(a) = φ(a)

∫
UF

µ−1(ϵ)ψ(aϵϖ−ℓ−n) dϵ.

The Gaussian sum is 0 unless a lies in UF . Therefore Sφ is equal to φ(1) times the function
which is zero outside of UF and equals µ on UF . Since T leaves a one-dimensional space
invariant it has an eigenvector.

Since A = λA0 the hermitian form (φ1, φ2) is equal to

λ

∫
F×

φ1(a)φ2(a) d
×a.

Proposition 2.21.2. Let π be an absolutely cuspidal representation of GF for which the
quasi-character ω defined by

π

((
a 0
0 a

))
= ω(a)I

is a character.

(i) If π is in the Kirillov form the hermitian form∫
F×

φ1(a)φ2(a) d
×a

is invariant.
(ii) If |z| = 1 then

∣∣C(ν, z)∣∣ = 1 and if Re s = 1/2∣∣ϵ(s, π, ψ)∣∣ = 1.

Since |z0| = 1 the second relation of part (ii) follows from the first and the relation

ϵ(s, π, ψ) = C(ν−1
0 , qs−1/2z−1

0 ).

If n is in Z and ν is a character of UF let

φ(ϵϖm) = δn,mν(ϵ)ν0(ϵ)

for m in Z and ϵ in UF . Then ∫
F×

∣∣φ(a)∣∣2 da = 1.

If φ′ = π(w)φ and C(ν, t) = Cℓ(ν)t
ℓ then

φ′(ϵϖm) = δℓ−n,mCℓ(ν)z
−n
0 ν−1(ϵ).

Since |z0| = 1 ∫
F×

∣∣φ′(a)
∣∣2 da =

∣∣Cℓ(ν)∣∣2.
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Applying the first part of the lemma we see that, if |z| = 1, both
∣∣Cℓ(ν)∣∣2 and

∣∣C(ν, z)∣∣2 =∣∣Cℓ(ν)∣∣2|z|2ℓ are 1.

Proposition 2.22. Let π be an irreducible representation of GF . It is absolutely cuspidal if
and only if for every vector v there is an ideal a in F such that∫

a

π

((
1 x
0 1

))
v dx = 0.

It is clear that the condition cannot be satisfied by a finite-dimensional representation.
Suppose that π is infinite-dimensional and in the Kirillov form. If φ is in V then∫

a

π

((
1 x
0 1

))
φdx = 0

if and only if

φ(a)

∫
a

ψ(ax) dx = 0

for all a. If this is so the character x→ ψ(ax) must be non-trivial on a for all a in the support
of φ. This happens if and only if φ is in S(F×). The proposition follows.

Proposition 2.23. Let π be an absolutely cuspidal representation and assume the largest
ideal on which ψ is trivial is OF . Then, for all characters ν, Cn(ν) = 0 if n ⩾ −1.

Take a character ν and choose n1 such that Cn1(ν) ̸= 0. Then Cn(ν) = 0 for n ≠ n1. If
ν̃ = ν−1ν−1

0 then, as we have seen,

C(ν, t)C(ν̃, t−1z−1
0 ) = ν0(−1)

so that
Cn(ν̃) = 0

for n ̸= n1 and
Cn1(ν)Cn1(ν̃) = ν0(−1)zn1

0 .

In the second part of Proposition 2.11 take n = p = n1 + 1 to obtain∑
σ

η(σ−1ν,ϖn1+1)η(σ−1ν̃, ϖn1+1)C2n1+2(σ) = zn1+1
0 ν0(−1) +

(
|ϖ| − 1

)−1
z0Cn1(ν)Cn1(ν̃).

The right side is equal to

zn1+1
0 ν0(−1) · |ϖ|

|ϖ| − 1
.

Assume n1 ⩾ −1. Then η(σ−1ν,ϖn1+1) is 0 unless σ = ν and η(σ−1ν̃, ϖn1+1) is 0 unless
σ = ν̃. Thus the left side is 0 unless ν = ν̃. However if ν = ν̃ the left side equals C2n1+2(ν).
Since this cannot be zero 2n1 + 2 must equal n1 so that n1 = −2. This is a contradiction.
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§3. The principal series for non-archimedean fields

In order to complete the discussion of the previous paragraph we have to consider
representations which are not absolutely cuspidal. This we shall now do. We recall that if
µ1, µ2 is a pair of quasi-characters of F× the space B(µ1, µ2) consists of all locally constant
functions f on GF which satisfy

(3.1) f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2f(g)

for all g in GF , a1, a2, in F
×, and x in F . ρ(µ1, µ2) is the representation of GF on B(µ1, µ2).

Because of the Iwasawa decomposition GF = PFGL(2, OF ) the functions in B(µ1, µ2) are
determined by their restrictions to GL(2, OF ). The restriction can be any locally constant
function on GL(2, OF ) satisfying

f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)f(g)

for all g in GL(2, OF ), a1, a2 in UF , and x in OF . If U is an open subgroup of GL(2, OF ) the
restriction of any function invariant under U is a function on GL(2, OF )/U which is a finite
set. Thus the space of all such functions is finite-dimensional and as observed before ρ(µ1, µ2)
is admissible.

Let F be the space of continuous functions f on GF which satisfy

f

((
a1 x
0 a2

)
g

)
=

∣∣∣∣a1a2
∣∣∣∣f(g)

for all g in GF , a1, a2 in F×, and x in F . We observe that F contains B(α1/2
F , α

−1/2
F ). GF

acts on F . The Haar measure on GF if suitably normalized satisfies∫
GF

f(g) dg =

∫
NF

∫
AF

∫
GL(2,OF )

∣∣∣∣a1a2
∣∣∣∣−1

f(nak) dn da dk

if

a =

(
a1 0
0 a2

)
.

It follows easily from this that ∫
GL(2,OF )

f(k) dk

is a GF -invariant linear form on F . There is also a positive constant c such that∫
GF

f(g) dg = c

∫
NF

∫
AF

∫
NF

∣∣∣∣a1a2
∣∣∣∣−1

f

(
na

(
0 1

−1 0

)
n1

)
dn da dn1.

Consequently ∫
GL(2,OF )

f(k) dk = c

∫
F

f

((
0 1

−1 0

)(
1 x
0 1

))
dx.
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If φ1 belongs to B(µ1, µ2) and φ2 belongs to B(µ−1
1 , µ−1

2 ) then φ1φ2 belongs to F and we set

⟨φ1, φ2⟩ =

∫
GL(2,OF )

φ1(k)φ2(k) dk.

Clearly 〈
ρ(g)φ1, ρ(g)φ2

〉
= ⟨φ1, φ2⟩

so that this bilinear form is invariant. Since both φ1 and φ2 are determined by their restrictions
to GL(2, OF ) it is also non-degenerate. Thus ρ(µ−1

1 , µ−1
2 ) is equivalent to the contragredient

of ρ(µ1, µ2).
In Proposition 1.6 we introduced a representation r of GF and then we introduced a

representation rΩ = rµ1,µ2 . Both representations acted on S(F 2). If

Φ̃(a, b) =

∫
F

Φ(a, y)ψ(by) dy

is the partial Fourier transform

(3.1.1)
[
r(g)Φ

]∼
= ρ(g)Φ̃

and

(3.1.2) rµ1,µ2(g) = µ1(det g)|det g|1/2r(g).
We also introduced the integral

θ(µ1, µ2; Φ) =

∫
F×

µ1(t)µ
−1
2 (t)Φ(t, t−1) d×t

and we set

(3.1.3) WΦ(g) = θ
(
µ1, µ2; rµ1,µ2(g)Φ

)
.

The space of functions WΦ is denoted W (µ1, µ2;ψ).
If ω is a quasi-character of F× and if

∣∣ω(ϖ)
∣∣ = |ϖ|s with s > 0 the integral

z(ω,Φ) =

∫
F×

Φ(0, t)ω(t) d×t

is defined for all Φ in S(F 2). In particular if
∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = |ϖ|s with s > −1 we can

consider the function

fΦ(g) = µ1(det g)|det g|1/2z
(
αFµ1µ

−1
2 , ρ(g)Φ

)
on GF . Recall that αF (a) = |a|. Clearly
(3.1.4) ρ(h)fΦ = fΨ

if
Ψ = µ1(deth)|deth|1/2ρ(h)Φ.

We claim that fΦ belongs to B(µ1, µ2). Since the stabilizer of every Φ under the repre-
sentation g → µ1(det g)|det g|1/2ρ(g) is an open subgroup of GF the functions fΦ are locally
constant. Since the space of functions fΦ is invariant under right translations we need verify
(3.1) only for g = e.

fΦ

((
a1 x
0 a2

))
= z

µ1µ
−1
2 αF , ρ

((
a1 x
0 a2

))
Φµ1(a1a2)|a1a2|1/2

.
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By definition the right side is equal to

µ1(a1a2)|a1a2|1/2
∫
µ1(t)µ

−1
2 (t)|t|Φ(0, a2t) d×t.

Changing variables we obtain

µ1(a1)µ2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2 ∫ µ1(t)µ

−1
2 (t)|t|Φ(0, t) d×t.

The integral is equal to fΦ(e). Hence our assertion.

Proposition 3.2. Assume
∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = |ϖ|s with s > −1.

(i) There is a linear transformation A of W (µ1, µ2;ψ) into B(µ1, µ2) which, for all Φ in
S(F 2), sends WΦ to fΦ̃.

(ii) A is bijective and commutes with right translations.

To establish the first part of the proposition we have to show that fΦ̃ is 0 if WΦ is. Since
NFAF

(
0 1

−1 0

)
NF is a dense subset of GF this will be a consequence of the following lemma.

Lemma 3.2.1. If the assumptions of the proposition are satisfied then, for all Φ in S(F 2),
the function

a −→ µ−1
2 (a)|a|−1/2WΦ

((
a 0
0 1

))
is integrable with respect to the additive Haar measure on F and∫

WΦ

((
a 0
0 1

))
µ−1
2 (a)|a|−1/2ψ(ax) da = fΦ̃

((
0 −1
1 0

)(
1 x
0 1

))
.

By definition

fΦ̃

((
0 −1
1 0

)(
1 x
0 1

))
=

∫
Φ̃(t, tx)µ1(t)µ

−1
2 (t)|t| d×t

while

(3.2.2) WΦ

((
a 0
0 1

))
µ−1
2 (a)|a|−1/2 = µ1(a)µ

−1
2 (a)

∫
Φ(at, t−1)µ1(t)µ

−1
2 (t) d×t.

After a change of variable the right side becomes∫
Φ(t, at−1)µ1(t)µ

−1
2 (t) d×t.

Computing formally we see that∫
WΦ

((
a 0
0 1

))
µ−1
2 (a)|a|−1/2ψ(ax) da

is equal to∫
F

ψ(ax)

{∫
F×

Φ(t, at−1)µ1(t)µ
−1
2 (t) d×t

}
da

=

∫
F×

µ1(t)µ
−1
2 (t)

{∫
F

Φ(t, at−1)ψ(ax) da

}
d×t
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which in turn equals∫
F×

µ1(t)µ
−1
2 (t)|t|

{∫
F

Φ(t, a)ψ(axt) da

}
d×t =

∫
F×

Φ̃(t, xt)µ1(t)µ
−1
2 (t)|t| d×t.

Our computation will be justified and the lemma proved if we show that the integral∫
F×

∫
F

∣∣Φ(t, at−1)µ1(t)µ
−1
2 (t)

∣∣ d×t da
is convergent. It equals ∫

F×

∫
F

∣∣Φ(t, a)∣∣|t|s+1 d×t da

which is finite because s is greater than −1.
To show that A is surjective we show that every function f in B(µ1, µ2) is of the form

fΦ for some Φ in S(F 2). Given f let Φ(x, y) be 0 if (x, y) is not of the form (0, 1)g for some
g in GL(2, OF ) but if (x, y) is of this form let Φ(x, y) = µ−1

1 (det g)f(g). It is easy to see
that Φ is well-defined and belongs to S(F 2). To show that f = fΦ we need only show that
f(g) = fΦ(g) for all g in GL(2, OF ). If g belongs to GL(2, OF ) then Φ

(
(0, t)g

)
= 0 unless t

belongs to UF so that

fΦ(g) = µ1(det g)

∫
UF

Φ
(
(0, t)g

)
µ1(t)µ

−1
2 (t) dt.

Since

Φ
(
(0, t)g

)
= µ−1

1 (t)µ−1
1 (det g)f

((
1 0
0 t

)
g

)
= µ−1

1 (t)µ2(t)µ
−1
1 (det g)f(g)

the required equality follows.
Formulae (3.1.2) to (3.1.4) show that A commutes with right translations. Thus to show

that A is injective we have to show that WΦ(e) = 0 if fΦ̃ is 0. It follows from the previous
lemma that

WΦ

((
a 0
0 1

))

is zero for almost all a if fΦ̃ is 0. Since WΦ

((
a 0
0 1

))
is a locally constant function on F× it

must vanish everywhere.
We have incidentally proved the following lemma.

Lemma 3.2.3. Suppose
∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = |ϖ|s with s > −1 and W belongs to W (µ1, µ2;ψ).

If

W

((
a 0
0 1

))
= 0

for all a in F× then W is 0.

Theorem 3.3. Let µ1 and µ2 be two quasi-characters of F×.

(i) If neither µ1µ
−1
2 nor µ−1

1 µ2 is αF the representations ρ(µ1, µ2) and ρ(µ2, µ1) are
equivalent and irreducible.
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(ii) If µ1µ
−1
2 = αF write µ1 = χα

1/2
F , µ2 = χα

−1/2
F . Then B(µ1, µ2) contains a unique

proper invariant subspace Bs(µ1, µ2) which is irreducible. B(µ2, µ1) also contains a
unique proper invariant subspace Bf (µ2, µ1). It is one-dimensional and contains the
function χ(det g). Moreover the GF -modules Bs(µ1, µ2) and B(µ2, µ1)/Bf (µ2, µ1) are
equivalent as are the modules B(µ1, µ2)/Bs(µ1, µ2) and Bf (µ2, µ1).

We start with a simple lemma.

Lemma 3.3.1. Suppose there is a non-zero function f in B(µ1, µ2) invariant under right

translations by elements of NF . Then there is a quasi-character χ such that µ1 = χα
1/2
F and

µ2 = χα
−1/2
F and f is a multiple of χ.

Since NFAF
(

0 1
−1 0

)
NF is an open subset of GF the function f is determined by its value

at
(

0 1
−1 0

)
. Thus if µ1 and µ2 have the indicated form it must be a multiple of χ.

If c belongs to F× then(
1 0
c 1

)
=

(
c−1 1
0 c

)(
0 −1
1 0

)(
1 c−1

0 1

)
.

Thus if f exists and ω = µ2µ
−1
1 α−1

F

f

((
1 0
c 1

))
= ω(c)f

((
0 −1
1 0

))
.

Since f is locally constant there is an ideal a in F such that ω is constant on a − {0}. It
follows immediately that ω is identically 1 and that µ1 and µ2 have the desired form.

The next lemma is the key to the theorem.

Lemma 3.3.2. If
∣∣µ1µ2(ϖ)

∣∣ = |ϖ|s with s > −1 there is a minimal non-zero invariant
subspace X of B(µ1, µ2). For all f in B(µ1, µ2) and all n in NF the difference f − ρ(n)f
belongs to X.

By Proposition 3.2 it is enough to prove the lemma when B(µ1, µ2) is replaced by
W (µ1, µ2;ψ). Associate to each function W in W (µ1, µ2;ψ) a function

φ(a) = W

((
a 0
0 1

))
on F×. If φ is 0 so is W . We may regard π = ρ(µ1, µ2) as acting on the space V of such
functions. If b is in BF

π(b)φ = ξψ(b)φ.

Appealing to (3.2.2) we see that every function φ in V has its support in a set of the form{
a ∈ F× ∣∣ |a| ⩽ c

}
where c = c(φ) is a constant. As in the second paragraph the difference φ−π(n)φ = φ−ξψ(n)φ
is in S(F×) for all n in NF . Thus V ∩ S(F×) is not 0. Since the representation ξψ of BF

on S(F×) is irreducible, V and every non-trivial invariant subspace of V contains S(F×).
Taking the intersection of all such spaces we obtain the subspace of the lemma.

We first prove the theorem assuming that
∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = |ϖ|s with s > −1. We

have defined a non-degenerate pairing between B(µ1, µ2) and B(µ−1
1 , µ−1

2 ). All elements
of the orthogonal complement of X are invariant under NF . Thus if µ1µ

−1
2 is not αF the
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orthogonal complement is 0 and X is B(µ1, µ2) so that the representation is irreducible. The
contragredient representation ρ(µ−1

1 , µ−1
2 ) is also irreducible.

If µ1µ
−1
2 = αF we write µ1 = χα

1/2
F , µ2 = χα

−1/2
F . In this case X is the space of the

functions orthogonal to the function χ−1 in B(µ−1
1 , µ−1

2 ). We set Bs(µ1, µ2) = X and we let
Bf (µ−1

1 , µ−1
2 ) be the space of scalar multiples of χ−1. The representation of GF on Bs(µ1, µ2)

is irreducible. Since Bs(µ1, µ2) is of codimension one it is the only proper invariant subspace
of B(µ1, µ2). Therefore Bf (µ−1

1 , µ−1
2 ) is the only proper invariant subspace of B(µ−1

1 , µ−1
2 ).

If
∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = |ϖ|s then

∣∣µ−1
1 (ϖ)µ2(ϖ)

∣∣ = |ϖ|−s and either s > −1 or −s > −1.

Thus if µ−1
1 µ2 is neither αF nor α−1

F the representation π = ρ(µ1, µ2) is irreducible. If
ω = µ1µ2 then

π

((
a 0
0 a

))
= ω(a)I

so that π is equivalent to ω ⊗ π̃ or to ω ⊗ ρ(µ−1
1 , µ−1

2 ). It is easily seen that ω ⊗ ρ(µ−1
1 , µ−1

2 )
is equivalent to ρ(ωµ−1

1 , ωµ−1
1 ) = ρ(µ2, µ1).

If µ1µ
−1
2 = αF and π is the restriction of ρ to Bs(µ1, µ2) then π̃ is the representation on

B(µ−1
1 , µ−1

2 )/Bf (µ−1
1 , µ−1

2 ) defined by ρ(µ−1
1 , µ−1

2 ). Thus π is equivalent to the tensor product
of ω = µ1µ2 and this representation. The tensor product is of course equivalent to the

representation on B(µ2, µ1)/Bf (µ2, µ1). If µ1 = χα
1/2
F and µ2 = χα

−1/2
F the representations on

B(µ1, µ2)/Bs(µ1, µ2) and Bf (µ2, µ1) are both equivalent to the representation g → χ(det g).
The space W (µ1, µ2;ψ) has been defined for all pairs µ1, µ2.

Proposition 3.4.

(i) For all pairs µ1, µ2

W (µ1, µ2;ψ) = W (µ2, µ1;ψ)

(ii) In particular if µ1µ
−1
2 ̸= α−1

F the representation of GF on W (µ1, µ2;ψ) is equivalent
to ρ(µ1, µ2).

If Φ is a function on F 2 define Φι by

Φι(x, y) = Φ(y, x).

To prove the proposition we show that, if Φ is in S(F 2),

µ1(det g)|det g|1/2θ
(
µ1, µ2; r(g)Φ

ι
)
= µ2(det g)|det g|1/2θ

(
µ2, µ1; r(g)Φ

)
.

If g is the identity this relation follows upon inspection of the definition of θ(µ1, µ2; Φ
ι). It is

also easily seen that
r(g)Φι =

[
r(g)Φ

]ι
if g is in SL(2, F ) so that it is enough to prove the identity for

g =

(
a 0
0 1

)
.

It reduces to

µ1(a)

∫
Φι(at, t−1)µ1(t)µ

−1
2 (t) d×t = µ2(a)

∫
Φ(at, t−1)µ2(t)µ

−1
2 (t) d×t.

The left side equals

µ1(a)

∫
Φ(t−1, at)µ1(t)µ

−1
2 (t) d×t
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which, after changing the variable of integration, one sees is equal to the right side.
If µ1µ

−1
2 is not αF or α−1

F so that ρ(µ1, µ2) is irreducible we let π(µ1, µ2) be any rep-
resentation in the class of ρ(µ1, µ2). If ρ(µ1, µ2) is reducible it has two constituents one
finite-dimensional and one infinite-dimensional. A representation in the class of the first will
be called π(µ1, µ2). A representation in the class of the second will be called σ(µ1, µ2). Any
irreducible representation which is not absolutely cuspidal is either a π(µ1, µ2) or a σ(µ1, µ2).
The representations σ(µ1, µ2) which are defined only for certain values of µ1 and µ2 are called
special representations.

Before proceeding to the proof of Theorem 2.18 for representations which are not absolutely
cuspidal we introduce some notation. If ω is an unramified quasi-character of F× the associated
L-function is

L(s, ω) =
1

1− ω(ϖ)|ϖ|s
.

It is independent of the choice of the generator ϖ of p. If ω is ramified L(s, ω) = 1. If φ
belongs to S(F ) the integral

Z(ωαsF , φ) =

∫
F×

φ(α)ω(α)|α|s d×α

is absolutely convergent in some half-plane Re s > s0 and the quotient

Z(ωαsF , φ)

L(s, ω)

can be analytically continued to a function holomorphic in the whole complex plane. Moreover
for a suitable choice of φ the quotient is 1. If ω is unramified and∫

UF

d×α = 1

one could take the characteristic function of OF . There is a factor ϵ(s, ω, ψ) which, for a
given ω and ψ, is of the form abs so that if φ̂ is the Fourier transform of φ

Z(ω−1α1−s
F , φ̂)

L(1− s, ω−1)
= ϵ(s, ω, ψ)

Z(ωαsF , φ)

L(s, ω)
.

If ω is unramified and OF is the largest ideal on which ψ is trivial ϵ(s, ω, ψ) = 1.

Proposition 3.5. Suppose µ1 and µ2 are two quasi-characters of F× such that neither µ−1
1 µ2

nor µ1µ
−1
2 is αF and π is π(µ1, µ2). Then

W (π, ψ) = W (µ1, µ2;ψ)

and if

L(s, π) = L(s, µ1)L(s, µ2)

L(s, π̃) = L(s, µ−1
1 )L(s, µ−1

2 )

ϵ(s, π, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ)

all assertions of Theorem 2.18 are valid. In particular if
∣∣µ1(ϖ)

∣∣ = |ϖ|−s1 and
∣∣µ2(ϖ)

∣∣ =
|ϖ|−s2 the integrals defining Ψ(g, s,W ) are absolutely convergent if Re s > max{s1, s2}. If µ1

and µ2 are unramified and OF is the largest ideal of F on which ψ is trivial there is a unique
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function W0 in W (π, ψ) which is invariant under GL(2, OF ) and assumes the value 1 at the
identity. If ∫

UF

d×α = 1

then Φ(e, s,W0) = 1.

That W (π, ψ) = W (µ1, µ2;ψ) is of course a consequence of the previous proposition. As
we observed the various assertions need be established only for g = e. Take Φ in S(F 2) and
let W = WΦ be the corresponding element of W (π, ψ). Then

φ(a) = W

((
a 0
0 1

))
belongs to the space of the Kirillov model of π. As we saw in the closing pages of the first
paragraph

Ψ(e, s,W ) =

∫
F×

W

((
a 0
0 1

))
|a|s−1/2 d×a = φ̂(α

s−1/2
F )

is equal to
Z(µ1α

s
F , µ2α

s
F ,Φ)

if the last and therefore all of the integrals are defined.
Also

Ψ̃(e, s,W ) = Z(µ−1
2 αsF , µ

−1
1 αsF ,Φ).

Any function in S(F 2) is a linear combination of functions of the form

Φ(x, y) = φ1(x)φ2(y).

Since the assertions to be proved are all linear we need only consider the functions Φ which
are given as products. Then

Z(µ1α
s
F , µ2α

s
F ,Φ) = Z(µ1α

s
F , φ1)Z(µ2α

s
F , φ2)

so that the integral does converge in the indicated region. Moreover

Z(µ−1
2 αsF , µ

−1
1 αsF ,Φ) = Z(µ−1

2 αsF , φ1)Z(µ
−1
1 αsF , φ2)

also converges for Re s sufficiently large. Φ(e, s,W ) is equal to

Z(µ1α
s
F , φ1)

L(s, µ1)

Z(µ2α
s
F , φ2)

L(s, µ2)

and is holomorphic in the whole complex plane. We can choose φ1 and φ2 so that both
factors are 1.

It follows from the Iwasawa decomposition GF = PFGL(2, OF ) that if both µ1 and µ2 are
unramified there is a non-zero function on B(µ1, µ2) which is invariant under GL(2, OF ) and
that it is unique up to a scalar factor. If the largest ideal on which ψ is trivial is OF , if Φ0 is

the characteristic function of O2
F , and if Φ̃0 is the partial Fourier transform introduced in

Proposition 1.6 then Φ̃0 = Φ0. Consequently

rµ1,µ2(g)Φ0 = Φ0
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for all g in GL(2, OF ). If W0 = WΦ0 then, since Φ0 is the product of the characteristic
function of OF with itself, Φ(e, s,W0) = 1 if∫

UF

d×α = 1.

The only thing left to prove is the local functional equation. Observe that

Φ̃(w, s,W ) = Φ̃
(
e, s, ρ(w)W

)
,

that if W = WΦ then ρ(w)W = Wr(w)Φ, and that r(w)Φ(x, y) = Φ′(y, x) if Φ′ is the Fourier
transform of Φ. Thus if Φ(x, y) is a product φ1(x)φ2(y)

Φ̃(w, s,W ) =
Z(µ−1

1 αsF , φ
′
1)

L(s, µ−1
1 )

Z(µ−1
2 αsF , φ

′
2)

L(s, µ−1
2 )

.

The functional equation follows immediately.
If µ1µ

−1
2 is αF or α−1

F and π = π(µ1, µ2) we still set

L(s, π) = L(s, µ1)L(s, µ2)

and
ϵ(s, π, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ).

Since π̃ is equivalent to π(µ−1
1 , µ−1

2 )

L(s, π̃) = L(s, µ−1
1 )L(s, µ−1

2 ).

Theorem 2.18 is not applicable in this case. It has however yet to be proved for the special

representations. Any special representation σ is of the form σ(µ1, µ2) with µ1 = χα
1/2
F and

µ2 = χα
−1/2
F . The contragredient representation of σ̃ is σ(µ−1

2 , µ−1
1 ). This choice of µ1 and µ2

is implicit in the following proposition.

Proposition 3.6. W (σ, ψ) is the space of functions W = WΦ in W (µ1, µ2;ψ) for which∫
F

Φ(x, 0) dx = 0.

Theorem 2.18 will be valid if we set L(s, σ) = L(s, σ̃) = 1 and ϵ(s, σ, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ)
when χ is ramified and we set L(s, σ) = L(s, µ1), L(s, σ̃) = L(s, µ−1

2 ), and

ϵ(s, σ, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ)
L(1− s, µ−1

1 )

L(s, µ2)

when χ is unramified.

W (σ, ψ) is of course the subspace of W (µ1, µ2;ψ) corresponding to the space Bs(µ1, µ2)
under the transformation A of Proposition 3.2. If W = WΦ then A takes W to the function
f = fΦ̃ defined by

f(g) = z
(
µ1µ

−1
2 αF , ρ(g)Φ̃

)
µ1(det g)|det g|1/2.

f belongs to Bs(µ1, µ2) if and only if∫
GL(2,OF )

χ−1(g)f(g) dg = 0.
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As we observed this integral is equal to a constant times∫
F

χ−1

(
w

(
1 x
0 1

))
f

(
w

(
1 x
0 1

))
dx =

∫
F

f

(
w

(
1 x
0 1

))
dx

which equals∫
z

α2
F , ρ(w)ρ

((
1 x
0 1

))
Φ̃

 dx =

∫ {∫
Φ̃(−t,−tx)|t|2 d×t

}
dx.

The double integral does converge and equals, apart from a constant factor,∫∫
Φ̃(t, tx)|t| dt dx =

∫∫
Φ̃(t, x) dt dx

which in turn equals ∫
Φ(t, 0) dt.

We now verify not only the remainder of the theorem but also the following corollary.

Corollary 3.7.

(i) If π = π(µ1, µ2) then

ϵ(s, σ, ψ)
L(1− s, σ̃)

L(s, σ)
= ϵ(s, π, ψ)

L(1− s, π̃)

L(s, π)

(ii) The quotient
L(s, π)

L(s, σ)
is holomorphic

(iii) For all Φ such that ∫
Φ(x, 0) dx = 0

the quotient
Z(µ1α

s
F , µ2α

s
F ,Φ)

L(s, σ)
is holomorphic and there exists such a Φ for which the quotient is one.

The first and second assertions of the corollary are little more than matters of definition.
Although W (µ1, µ2ψ) is not irreducible we may still, for all W in this space, define the
integrals

Ψ(g, s,W ) =

∫
W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a

Ψ̃(g, s,W ) =

∫
W

((
a 0
0 1

)
g

)
|a|s−1/2ω−1(a) d×a.
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They may be treated in the same way as the integrals appearing in the proof of Proposition 3.5.
In particular they converge to the right of some vertical line and if W = WΦ

Ψ(e, s,W ) = Z(µ1α
s
F , µ2α

s
F ,Φ)

Ψ̃(e, s,W ) = Z(µ−1
2 αsF , µ

−1
1 αsF ,Φ).

Moreover
Ψ(g, s,W )

L(s, π)
is a holomorphic function of s and

Ψ̃(g, 1− s,W )

L(1− s, π̃)
= ϵ(s, π, ψ)

Ψ(g, s,W )

L(s, π)
.

Therefore

Φ(g, s,W ) =
Ψ(g, s,W )

L(s, σ)
and

Φ̃(g, s,W ) =
Ψ̃(g, s,W )

L(s, σ̃)
are meromorphic functions of s and satisfy the local functional equation

Φ̃(wg, 1− s,W ) = ϵ(s, σ, ψ)Φ(g, s,W ).

To compete the proof of the theorem we have to show that ϵ(s, σ, ψ) is an exponential
function of s and we have to verify the third part of the corollary. The first point is taken
care of by the observation that µ−1

1 (ϖ)|ϖ| = µ−1
2 (ϖ) so that

L(1− s, µ−1
1 )

L(s, µ2)
=

1− µ2(ϖ)|ϖ|s

1− µ−1
1 (ϖ)|ϖ|1−s

= −µ1(ϖ)|ϖ|s−1.

If χ is ramified so that L(s, σ) = L(s, π) the quotient of part (iii) of the corollary is
holomorphic. Moreover a Φ in S(F 2) for which

Z(µ1α
s
F , µ2α

s
F ,Φ) = L(s, σ) = 1

can be so chosen that
Φ(ϵx, ηy) = χ(ϵη)Φ(x, y)

for ϵ and η in UF . Then ∫
F

Φ(x, 0) dx = 0.

Now take χ unramified so that χ(a) = |a|r for some complex number r. We have to show
that if ∫

F

Φ(x, 0) dx = 0

then
Z(µ1α

s
F , µ2α

s
F ,Φ)

L(s, µ1)

is a holomorphic function of s. Replacing s by s− r + 1/2 we see that it is enough to show
that (

1− |ϖ|s+1
) ∫∫

Φ(x, y)|x|s+1|y|s d×x d×y
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is a holomorphic function of s. Without any hypothesis on Φ the integral converges for
Re s > 0 and the product has an analytic continuation whose only poles are at the roots of
|ϖ|s = 1. To see that these poles do not occur we have only to check that there is no pole at
s = 0. For a given Φ in S(F 2) there is an ideal a such that

Φ(x, y) = Φ(x, 0)

for y in a. If a′ is the complement of a∫∫
Φ(x, y)|x|s+1|y|s d×x d×y

is equal to the sum of ∫
F

∫
a′
Φ(x, y)|x|s+1|y|s d×x d×y

which has no pole at s = 0 and a constant times{∫
F

Φ(x, 0)|x|s dx
}{∫

a

|y|s d×y
}

If a = pn the second integral is equal to

|ϖ|ns
(
1− |ϖ|s

)−1

If ∫
F

Φ(x, 0) dx = 0

the first term, which defines a holomorphic function of s, vanishes at s = 0 and the product
has no pole there.

If φ0 is the characteristic function of OF set

Φ(x, y) =
{
φ0(x)− |ϖ|−1φ0(ϖ

−1x)
}
φ0(y).

Then ∫
F

Φ(x, 0) dx = 0

and
Z(µ1α

s
F , µ2α

s
F ,Φ)

is equal to {∫ (
φ0(x)− |ϖ|−1φ0(ϖ

−1x)
)
µ1(x)|x|s d×x

}{∫
φ0(y)µ2(y)|y|s d×y

}
The second integral equals L(s, µ2) and the first equals(

1− µ1(ϖ)|ϖ|s−1
)
L(s, µ1)

so their product is L(s, µ1) = L(s, σ).
Theorem 2.18 is now completely proved. The properties of the local L-functions L(s, π)

and the factors ϵ(s, π, ψ) described in the next proposition will not be used until the paragraph
on extraordinary representations.

Proposition 3.8.

(i) If π is an irreducible representation there is an integer m such that if the order of χ
is greater than m both L(s, χ⊗ π) and L(s, χ⊗ π̃) are 1.
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(ii) Suppose π1 and π2 are two irreducible representations of GF and that there is a
quasi-character ω such that

π1

((
a 0
0 a

))
= ω(a)I π2

((
a 0
0 a

))
= ω(a)I

Then there is an integer m such that if the order of χ is greater than m

ϵ(s, χ⊗ π1, ψ) = ϵ(s, χ⊗ π2, ψ)

(iii) Let π be an irreducible representation and let ω be the quasi-character defined by

π

((
a 0
0 a

))
= ω(a)I

Write ω in any manner as ω = µ1µ2. Then if the order of χ is sufficiently large in
comparison to the orders of µ1 and µ2

ϵ(s, χ⊗ π, ψ) = ϵ(s, χµ1, ψ)ϵ(s, χµ2, ψ).

It is enough to treat infinite-dimensional representations because if σ = σ(µ1, µ2) and
π = π(µ1, µ2) are both defined L(s, χ ⊗ σ) = L(s, χ ⊗ π), L(s, χ ⊗ σ̃) = L(s, χ ⊗ π̃), and
ϵ(s, χ⊗ σ, ψ) = ϵ(s, χ⊗ π, ψ) if the order of χ is sufficiently large.

If π is not absolutely cuspidal the first part of the proposition is a matter of definition. If
π is absolutely cuspidal we have shown that L(s, χ⊗ π) = L(s, χ⊗ π̃) = 1 for all π.

According to the relation (2.18.1)

ϵ(s, χ⊗ π, ψ) = C(ν−1
0 ν−1

1 , z−1
0 z−1

1 q−1/2z−1)

if the order of χ is so large that L(s, χ⊗ π) = L(s, χ−1 ⊗ π̃) = 1. Thus to prove the second
part we have only to show that if

{
C1(ν, t)

}
and

{
C2(ν, t)

}
are the series associated to π1

and π2 then
C1(ν, t) = C2(ν, t)

if the order of ν is sufficiently large. This was proved in Lemma 2.16.6. The third part is also
a consequence of that lemma but we can obtain it by applying the second part to π1 = π and
to π2 = π(µ1, µ2).

We finish up this paragraph with some results which will be used in the Hecke theory to
be developed in the second chapter.

Lemma 3.9. The restriction of the irreducible representation π to GL(2, OF ) contains the
trivial representation if and only if there are two unramified characters µ1 and µ2 such that
π = π(µ1, µ2).

This is clear if π is one-dimensional so we may as well suppose that π is infinite-dimensional.
If π = π(µ1, µ2) we may let π = ρ(µ1, µ2). It is clear that there is a non-zero vector in
B(µ1, µ2) invariant under GL(2, OF ) if and only if µ1 and µ2 are unramified and that if there
is such a vector it is determined up to a scalar factor. If π = σ(µ1, µ2) and µ1µ

−1
2 = αF we can

suppose that π is the restriction of ρ(µ1, µ2) to Bs(µ1, µ2). The vectors in B(µ1, µ2) invariant
under GL(2, OF ) clearly do not lie in Bs(µ1, µ2) so that the restriction of π to GL(2, OF )
does not contain the trivial representation. All that we have left to do is to show that the
restriction of an absolutely cuspidal representation to GL(2, OF ) does not contain the trivial
representation.
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Suppose the infinite-dimensional irreducible representation π is given in the Kirillov form
with respect to an additive character ψ such that OF is the largest ideal on which ψ is trivial.
Suppose the non-zero vector φ is invariant under GL(2, OF ). It is clear that if

π

((
a 0
0 a

))
= ω(a)I

then ω is unramified, that φ(ν, t) = 0 unless ν = 1 is the trivial character, and that φ(ν, t)
has no pole at t = 0. Suppose π is absolutely cuspidal so that φ belongs to S(F×). Since
π(w)φ = φ and the restriction of ω to UF is trivial

φ̂(1, t) = C(1, t)φ̂(1, z−1
0 t−1)

if z0 = ω(ϖ). Since C(1, t) is a constant times a negative power of t the series on the left
involves no negative powers of t and that on the right involves only negative powers. This is
a contradiction.

Let H0 be the subalgebra of the Hecke algebra formed by the functions which are
invariant under left and right translations by elements of GL(2, OF ). Suppose the irreducible
representation π acts on the space X and there is a non-zero vector x in X invariant under
GL(2, OF ). If f is in H0 the vector π(f)x has the same property and is therefore a multiple
λ(f)x of x. The map f → λ(f) is a non-trivial homomorphism of H0 into the complex
numbers.

Lemma 3.10. Suppose π = π(µ1, µ2) where µ1 and µ2 are unramified and λ is the associated
homomorphism of H0 into C. There is a constant c such that

(3.10.1)
∣∣λ(f)∣∣ ⩽ c

∫
GF

∣∣f(g)∣∣ dg
for all f in H0 if and only if µ1µ2 is a character and

∣∣µ1(ϖ)µ−1
2 (ϖ)

∣∣ = |ϖ|s with −1 ⩽ s ⩽ 1.

Let π̃ act on X̃ and let x̃ in X̃ be such that ⟨x, x̃⟩ ≠ 0. Replacing x̃ by∫
GL(2,OF )

π̃(g)x̃ dg

if necessary we may suppose that x̃ is invariant under GL(2, OF ). We may also assume that
⟨x, x̃⟩ = 1. If η(g) =

〈
π(g)x, x̃

〉
then

λ(f)η(g) =

∫
GF

η(gh)f(h) dh

for all f in H0. In particular

λ(f) =

∫
GF

η(h)f(h) dh.

If
∣∣η(h)∣∣ ⩽ c for all h the inequality (3.10.1) is certainly valid. Conversely, since η is invariant

under left and right translations by GL(2, OF ) we can, if the inequality holds, apply it to the
characteristic functions of double cosets of this group to see that

∣∣η(h)∣∣ ⩽ c for all h. Since

η

((
a 0
0 a

)
h

)
= µ1(a)µ2(a)η(h)
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the function η is bounded only if µ1µ2 is a character as we now assume it to be. The
finite-dimensional representations take care of themselves so we now assume π is infinite-
dimensional.

Since π and π̃ are irreducible the function
〈
π(g)x, x̃

〉
is bounded for a given pair of

non-zero vectors if and only if it is bounded for all pairs. Since GF = GL(2, OF )AFGL(2, OF )
and µ1µ2 is a character these functions are bounded if and only if the functions〈

π

((
a 0
0 1

))
x, x̃

〉
are bounded on F×. Take π and π̃ in the Kirillov form. If φ is in V and φ̃ is in V then〈

π

((
a 0
0 1

))
φ, π̃(w)φ̃

〉
is equal to〈

π−1(w)π

((
a 0
0 1

))
φ, φ̃

〉
= µ1(a)µ2(a)

〈
π

((
a−1 0
0 1

))
π−1(w)φ, φ̃

〉
Thus η(g) is bounded if and only if the functions〈

π

((
a 0
0 1

))
φ, φ̃

〉
are bounded for all φ in V and all φ̃ in S(F×).

It is not necessary to consider all φ̃ in S(F×) but only a set which together with its
translates by the diagonal matrices spans S(F×). If µ is a character of UF let φµ be the
function on F× which is 0 outside of UF and equals µ on UF . It will be sufficient to consider
the functions φ̃ = φµ and all we need show is that

(3.10.2)

〈
π

((
ϖn 0
0 1

))
φ, φµ

〉
is a bounded function of n for all µ and all φ. The expression (3.10.2) is equal to φ̂n(µ). If φ
belongs to S(F×) the sequence

{
φ̂n(µ)

}
has only finitely many non-zero terms and there is

no problem. If φ = π(w)φ0 then ∑
n

φ̂n(µ)t
n = C(µ, t)η(t)

where η(t) depends on φ0 and is an arbitrary finite Laurent series. We conclude that (3.10.1)
is valid if and only if µ1µ2 is a character and the coefficients of the Laurent series C(µ, t) are
bounded for every choice of µ.

It follows from Proposition 3.5 and formula (2.18.1) that, in the present case, the series
has only one term if µ is ramified but that if µ is trivial

C
(
µ, |ϖ|1/2µ−1

1 (ϖ)µ−1
2 (ϖ)t

)
=

(
1− µ1(ϖ)t−1

)(
1− µ2(ϖ)t−1

)(
1− µ−1

1 (ϖ)|ϖ|t
)(
1− µ−1

2 (ϖ)|ϖ|t
) .

The function on the right has zeros at t = µ1(ϖ) and t = µ2(ϖ) and poles at t = 0,
t = |ϖ|−1µ1(ϖ), and t = |ϖ|−1µ2(ϖ). A zero can cancel a pole only if µ2(ϖ) = |ϖ|−1µ1(ϖ)
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or µ1(ϖ) = |ϖ|−1µ2(ϖ). Since µ1 and µ2 are unramified this would mean that µ−1
1 µ2 equals

αF or α−1
F which is impossible when π = π(µ1, µ2) is infinite-dimensional.

If C(µ, t) has bounded coefficients and µ1µ2 is a character the function on the right has
no poles for |t| < |ϖ|−1/2 and therefore

∣∣µ1(ϖ)
∣∣ ⩾ |ϖ|1/2 and

∣∣µ2(ϖ)
∣∣ ⩾ |ϖ|1/2. Since∣∣µ1(ϖ)µ−1

2 (ϖ)
∣∣ = ∣∣µ1(ϖ)

∣∣2 = ∣∣µ−1
2 (ϖ)

∣∣2
where µ1µ2 is a character these two inequalities are equivalent to that of the lemma. Conversely
if these two inequalities are satisfied the rational function on the right has no pole except
that at 0 inside the circle |t| = |ϖ|−1/2 and at most simple poles on the circle itself. Applying,
for example, partial fractions to find its Laurent series expansion about 0 one finds that the
coefficients of C(µ, t) are bounded.

Lemma 3.11. Suppose µ1 and µ2 are unramified, µ1µ2 is a character, and π = π(µ1, µ2) is
infinite-dimensional. Let

∣∣µ1(ϖ)
∣∣ = |ϖ|r where r is real so that

∣∣µ2(ϖ)
∣∣ = |ϖ|−r. Assume

OF is the largest ideal on which ψ is trivial and let W0 be that element of W (π, ψ) which is
invariant under GL(2, OF ) and takes the value 1 at the identity. If s > |r| then∫

F×

∣∣∣∣∣∣W0

((
a 0
0 1

))∣∣∣∣∣∣|a|s−1/2 d×a ⩽
1(

1− |ϖ|s+r
)(
1− |ϖ|s−r

)
if the Haar measure is so normalized that the measure of UF is one.

If Φ is the characteristic function of O2
F then

W0

((
a 0
0 1

))
= µ1(a)|a|1/2

∫
F×

Φ(at, t−1)µ1(t)µ
−1
2 d×t

and ∫
F×

∣∣∣∣∣∣W0

((
a 0
0 1

))∣∣∣∣∣∣|a|s−1/2 d×a ⩽
∫∫

Φ(at, t−1)|a|s+r|t|2r d×a d×t.

Changing variables in the left-hand side we obtain∫
OF

∫
OF

|a|s+r|b|s−r d×a d×b = 1(
1− |ϖ|s+r

)(
1− |ϖ|s−r

) .
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§4. Examples of absolutely cuspidal representations

In this paragraph we will use the results of the first paragraph to construct some examples
of absolutely cuspidal representations.

First of all let K be a quaternion algebra over F . K is of course unique up to isomorphism.
As in the first paragraph Ω will denote a continuous finite-dimensional representation of K×

the multiplicative group of K. If χ is a quasi-character of F× and ν is the reduced norm on
K we denote the one-dimensional representation g → χ

(
ν(g)

)
of K× by χ also. If Ω is any

representation χ ⊗ Ω is the representation g → χ(g)Ω(g). If Ω is irreducible all operators
commuting with the action of K× are scalars. In particular there is a quasi-character ω of
F× such that

Ω(a) = ω(a)I

for all a in F× which is of course a subgroup of K×. If Ω is replaced by χ ⊗ Ω then ω is

replaced by χ2ω. Ω̃ will denote the representation contragredient to Ω.
Suppose Ω is irreducible, acts on V , and the quasi-character ω is a character. Since

K×/F× is compact there is a positive definite hermitian form on V invariant under K×.
When this is so we call Ω unitary.

It is a consequence of the following lemma that any one-dimensional representation of
K× is the representation associated to a quasi-character of F×.

Lemma 4.1. Let K1 be the subgroup of K× consisting of those x for which ν(x) = 1. Then
K1 is the commutator subgroup, in the sense of group theory, of K×.

K1 certainly contains the commutator subgroup. Suppose x belongs to K1. If x = xι then
x2 = xxι = 1 so that x = ±1. Otherwise x determines a separable quadratic extension of F .
Thus, in all cases, if xxι = 1 there is a subfield L of K which contains x and is quadratic and
separable over L. By Hilbert’s Theorem 90 there is a y in L such that x = yy−ι. Moreover
there is an element σ in K such that σzσ−1 = zι for all z in L. Thus x = yσy−1σ−1 is in the
commutator subgroup.

In the first paragraph we associated to Ω a representation rΩ of a group G+ on the space
S(K,Ω). Since F is now non-archimedean the group G+ is now GF = GL(2, F ).

Theorem 4.2.

(i) The representation rΩ is admissible.
(ii) Let d = degreeΩ. Then rΩ is equivalent to the direct sum of d copies of an irreducible

representation π(Ω).
(iii) If Ω is the representation associated to a quasi-character χ of F× then

π(Ω) = σ(χα
1/2
F , χα

−1/2
F ).

(iv) If d > 1 the representation π(Ω) is absolutely cuspidal.

If n is a natural number we set

Gn =
{
g ∈ GL(2, OF )

∣∣ g = I (mod pn)
}

We have first to show that if Φ is in S(K,Ω) there is an n such that rΩ(g)Φ = Φ if g is in
Gn and that for a given n the space of Φ in S(K,Ω) for which rΩ(g)Φ = Φ for all g in Gn is
finite-dimensional.
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Any

g =

(
a b
c d

)
in Gn may be written as

g =

(
1 0

ca−1 1

)(
a b′

0 d′

)
and both the matrices on the right are in Gn. Thus Gn is generated by the matrices of the
forms (

a 0
0 1

) (
1 x
0 1

)
w

(
a 0
0 1

)
w−1 w

(
1 x
0 1

)
w−1

with a ≡ 1 (mod pn) and x ≡ 0 (mod pn). It will therefore be enough to verify the following
three assertions.

(4.2.1) Given Φ there is an n > 0 such that

rΩ

((
a 0
0 1

))
Φ = Φ

if a ≡ 1 (mod pn)
(4.2.2) Given Φ there is an n > 0 such that

rΩ

((
1 x
0 1

))
Φ = Φ

if x ≡ 0 (mod pn).
(4.2.3) Given n > 0 the space of Φ in S(K,Ω) such that

rΩ

((
1 x
0 1

))
Φ = Φ

and

rΩ(w
−1)rΩ

((
1 x
0 1

))
rΩ(w)Φ = Φ

for all x in pn is finite-dimensional.

If a = ν(h) then

rΩ

((
a 0
0 1

))
Φ = |h|1/2K Ω(h)Φ(xh).

Since Φ has compact support in K and is locally constant there is a neighbourhood U of 1 in
K× such that

Ω(h)Φ(xh)|h|1/2K = Φ(x)

for all h in U and all x in K. The assertion (4.2.1) now follows from the observation that ν
is an open mapping of K× onto F×.

We recall that

rΩ

((
1 x
0 1

))
Φ(z) = ψ

(
xν(z)

)
Φ(z)
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Let p−ℓ be the largest ideal on which ψ is trivial and let pK be the prime ideal of K. Since
ν(pmK) = pmF

rΩ

((
1 x
0 1

))
Φ = Φ

for all x in pn if and only if the support of Φ is contained in p−n−ℓK . With this (4.2.2) is
established.

Φ satisfies the two conditions of (4.2.3) if and only if both Φ and r(w)Φ have support in
p−n−ℓK or, since r(w)Φ = −Φ′, if and only if Φ and Φ′, its Fourier transform, have support
in this set. There is certainly a natural number k such that ψ

(
τ(y)

)
= 1 for all y in pkK .

Assertion (4.2.3) is therefore a consequence of the following simple lemma.

Lemma 4.2.4. If the support of Φ is contained in p−nK and ψ
(
τ(y)

)
= 1 for all y in pkK the

Fourier transform of Φ is constant on cosets of pk+nK .

Since

Φ′(x) =

∫
p−n
K

Φ(y)ψ
(
τ(x, y)

)
dy

the lemma is clear.
We prove the second part of the theorem for one-dimensional Ω first. Let Ω be the

representation associated to χ. S(K,Ω) is the space of Φ in S(K) such that Φ(xh) = Φ(x)
for all h in K1. Thus to every Φ in S(K,Ω) we may associate the function φΦ on F× defined
by

φΦ(a) = |h|1/2K Ω(h)Φ(h)

if a = ν(h). The map Φ → φΦ is clearly injective. If φ belongs to S(F×) the function Φ
defined by

Φ(h) = |h|−1/2
K Ω−1(h)φ

(
ν(h)

)
if h ̸= 0 and by

Φ(0) = 0

belongs to S(K,Ω) and φ = φΦ. Let S0(K,Ω) be the space of functions obtained in this way.
It is the space of functions in S(K,Ω) which vanish at 0 and therefore is of codimension one.
If Φ belongs to S0(K,Ω), is non-negative, does not vanish identically and Φ′ is its Fourier
transform then

Φ′(0) =

∫
Φ(x) dx ̸= 0.

Thus rΩ(w)Φ does not belong to S0(K,Ω) and S0(K,Ω) is not invariant. Since it is of
codimension one there is no proper invariant subspace containing it.

Let V be the image of S(K,ω) under the map Φ → φΦ. We may regard rΩ as acting in
V . From the original definitions we see that

rΩ(b)φ = ξψ(b)φ

if b is in BF . If V1 is a non-trivial invariant subspace of V the difference

φ− rΩ

((
1 x
0 1

))
φ
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is in V0 ∩ V1 for all φ in V1 and all x in F . If φ is not zero we can certainly find an x for
which the difference is not zero. Consequently V0 ∩ V1 is not 0 so that V1 contains V0 and
hence all of V .

The representation rΩ is therefore irreducible and when considered as acting on V it is in
the Kirillov form. Since V0 is not V it is not absolutely cuspidal. It is thus a π(µ1, µ2) or
a σ(µ1, µ2). To see which we have to find a linear form on V which is trivial on V0. The
obvious choice is

L(φ) = Φ(0)

if φ = φΦ. Then

L

rΩ((a1 0
0 a2

)
φ

) = χ(a1a2)

∣∣∣∣a1a2
∣∣∣∣L(φ).

To see this we have only to recall that

rΩ

((
a 0
0 a

))
= Ω(a)I = χ2(a)I

and that

rΩ

((
a 0
0 1

))
Φ(0) = |h|1/2K Ω(h)Φ(0)

where a = ν(h) so that |h|1/2K = |a|F and Ω(h) = χ(a)I. Thus if

Aφ(g) = L
(
rΩ(g)φ

)
A is an injection of V into an irreducible invariant subspace of B(χα1/2

F , χα
−1/2
F ). The only

such subspace is Bs(χα1/2
F , χα

−1/2
F ) and rΩ is therefore σ(χα

1/2
F , χα

−1/2
F ).

Suppose now that Ω is not one-dimensional. Let Ω act on U . Since K1 is normal and
K/K1 is abelian there is no non-zero vector in U fixed by every element of K1. If Φ is in
S(K,Ω) then

Φ(xh) = Ω−1(h)Φ(x)

for all h in K1. In particular Φ(0) is fixed by every element in K1 and is therefore 0. Thus all
functions in S(K,Ω) have compact supports in K× and if we associate to every Φ in S(K,Ω)
the function

φΦ(a) = |h|1/2K Ω(h)Φ(h)

where a = ν(h) we obtain a bijection from S(K,Ω) to S(F×, U). It is again clear that

φΦ1 = ξψ(b)φΦ

if b is in BF and Φ1 = rΩ(b)Φ.

Lemma 4.2.5. Let Ω be an irreducible representation of K× in the complex vector space U .
Assume that U has dimension greater than one.

(i) For any Φ in S(K,U) the integrals

Z(αsF ⊗ Ω,Φ) =

∫
K×

|a|s/2K Ω(a)Φ(a) d×a

Z(αsF ⊗ Ω−1,Φ) =

∫
K×

|a|s/2K Ω−1(a)Φ(a) d×a
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are absolutely convergent in some half-plane Re s > s0.
(ii) The functions Z(αsF ⊗ Ω,Φ) and Z(αsF ⊗ Ω−1,Φ) can be analytically continued to

functions meromorphic in the whole complex plane.
(iii) Given u in U there is a Φ in S(K,U) such that

Z(αsF ⊗ Ω,Φ) ≡ u.

(iv) There is a scalar function ϵ(s,Ω, ψ) such that for all Φ in S(K,U)

Z(α
3/2−s
F ⊗ Ω−1,Φ′) = −ϵ(s,Ω, ψ)Z(αs+1/2

F ⊗ Ω,Φ)

if Φ′ is the Fourier transform of Φ. Moreover, as a function of s, ϵ(s,Ω, ψ) is a
constant times an exponential.

There is no need to verify the first part of the lemma. Observe that αF
(
ν(x)

)
=
∣∣ν(x)∣∣

F
=

|x|1/2K so that

(αsF ⊗ Ω)(x) = |x|s/2K Ω(x).

If Φ belongs to S(K,U) set

Φ1(x) =

∫
K1

Ω(h)Φ(xh).

The integration is taken with respect to the normalized Haar measure on the compact group
K1. Φ1 clearly belongs to S(K,U) and
(4.2.6) Z(αsF ⊗ Ω,Φ) = Z(αsF ⊗ Ω,Φ1)

and the Fourier transform Φ′
1 of Φ1 is given by

Φ′
1(x) =

∫
K1

Ω(h−1)Φ′(hx)

The function Φ′
1(x

ι) belongs to S(K,Ω) and
(4.2.7) Z(αsF ⊗ Ω−1,Φ′) = Z(αsF ⊗ Ω−1,Φ′

1).

Since Φ1 and Φ′
1 both have compact support in K× the second assertion is clear.

If u is in U and we let Φu be the function which is O outside of UK , the group of units of
OK , and on UK is given by Φu(x) = Ω−1(x)u then

Z(αsF ⊗ Ω,Φu) = cu

if

c =

∫
UK

d×a.

If φ belongs to S(K×) let A(φ) and B(φ) be the linear transformations of U defined by

A(φ)U = Z(α
s+1/2
F ⊗ Ω, φu)

B(φ)u = Z(α
−s+3/2
F ⊗ Ω−1, φ′u)

where φ′ is the Fourier transform of φ. If λ(h)φ(x) = φ(h−1x) and ρ(h)φ(x) = φ(xh) then

A
(
λ(h)φ

)
= |h|s/2+1/4

K Ω(h)A(φ)

and
A
(
ρ(h)φ

)
= |h|−s/2−1/4

K A(φ)Ω−1(h).
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Since the Fourier transform of λ(h)φ is |h|Kρ(h)φ′ and the Fourier transform of ρ(h)φ is
|h|−1

K λ(h)φ′, the map φ→ B(φ) has the same two properties. Since the kernel of Ω is open
it is easily seen that A(φ) and B(φ) are obtained by integrating φ against locally constant
functions α and β. They will of course take values in the space of linear transformations of
U . We will have

α(ha) = |h|s/2+1/4
K Ω(h)α(a)

and
α(ah−1) = |h|−s/2−1/4

K α(a)Ω−1(h)

β will satisfy similar identities. Thus

α(h) = |h|s/2+1/4
K Ω(h)α(1),

β(h) = |h|s/2+1/4
K Ω(h)β(1),

where α(1) is of course the identity. However β(1) must commute with Ω(h) for all h in K×

and therefore it is a scalar multiple of the identity. Take this scalar to be −ϵ(s,Ω, ψ).
The identity of part (iv) is therefore valid for Φ in S(K×, U) and in particular for Φ in

S(K,Ω). The general case follows from (4.2.6) and (4.2.7). Since

ϵ(s,Ω, ψ) = −1

c
Z(α

3/2−s
F ⊗ Ω−1,Φ′

u)

the function ϵ(s,Ω, ψ) is a finite linear combination of powers |ϖ|s if ϖ is a generator of pF .
Exchanging the roles of Φu and Φ′

u we see that ϵ−1(s,Ω, ψ) has the same property. The factor
ϵ(s,Ω, ψ) is therefore a multiple of some power of |ϖ|s.

We have yet to complete the proof of the theorem. Suppose φ = φΦ belongs to S(F×, U)
and φ′ = φrΩ(w)Φ. We saw in the first paragraph that if χ is a quasi-character of F× then

(4.2.8) φ̂(χ) = Z(αFχ⊗ Ω,Φ)

and, if Ω(a) = ω(a)I for a in F×,

(4.2.9) φ̂′(χ−1ω−1) = −Z(αFχ−1 ⊗ Ω−1,Φ′).

Suppose U0 is a subspace of U and φ takes its values in U0. Then, by the previous lemma,
φ̂(χ) and φ̂′(χ−1ω−1) also lie in U0 for all choices of χ. Since φ′ lies in S(F×, U) we may
apply Fourier inversion to the multiplicative group to see that φ′ takes values in U0.

We may regard rΩ as acting on S(F×, U). Then S(F×, U0) is invariant under rΩ(w).
Since rΩ(b)φ = ξψ(b)φ for b in BF it is also invariant under the action of BF . Finally
rΩ
(
( a 0
0 a )
)
φ = ω(a)φ so that S(F×, U0) is invariant under the action of GF itself. If we take

U0 to have dimension one then S(F×, U0) may be identified with S(F×) and the representation
rΩ restricted to S(F×, U0) is irreducible. From (4.2.8) and (4.2.9) we obtain

φ̂(α
s−1/2
F χ) = Z(α

s+1/2
F χ⊗ Ω,Φ)

φ̂′(α
−s+1/2
F χ−1ω−1) = −Z(α−s+3/2

F χ−1 ⊗ Ω−1,Φ′)

so that
φ̂′(α

−s+1/2
F χ−1ω−1) = ϵ(s, χ⊗ Ω, ψ)φ̂(α

s−1/2
F χ).

Thus if π0 is the restriction of rΩ to S(F×, U0)

ϵ(s, χ⊗ π0, ψ) = ϵ(s, χ⊗ Ω, ψ)

so that π0 = π(Ω) is, apart from equivalence, independent of U0. The theorem follows.
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Let Ω be any irreducible finite-dimensional representation of K× and let Ω act on U . The

contragredient representation Ω̃ acts on the dual space Ũ of U . If u belongs to U and ũ

belongs to Ũ 〈
u, Ω̃(h)ũ

〉
=
〈
Ω−1(h)u, ũ

〉
.

If Φ belongs to S(K) set

Z(αsF ⊗ Ω,Φ;u, ũ) =

∫
K×

∣∣ν(h)∣∣sΦ(h)〈Ω(h)u, ũ〉 d×h
and set

Z(αsF ⊗ Ω̃,Φ;u, ũ) =

∫
K×

∣∣ν(h)∣∣sΦ(h)〈u, Ω̃(h)ũ〉 d×h.
Theorem 4.3. Let Ω be an irreducible representation of K× in the space U .

(i) For any quasi-character χ of F×

π(χ⊗ Ω) = χ⊗ π(Ω).

(ii) There is a real number s0 such that for all u, ũ and Φ and all s with Re s > s0 the
integral defining Z(αsF ⊗ Ω,Φ;u, ũ) is absolutely convergent.

(iii) There is a unique Euler factor L(s,Ω) such that the quotient

Z(α
s+1/2
F ⊗ Ω,Φ, u, ũ)

L(s,Ω)

is holomorphic for all u, ũ, Φ and for some choice of these variables is a non-zero
constant.

(iv) There is a functional equation

Z(α
3/2−s
F ⊗ Ω̃,Φ′, u, ũ)

L(1− s, Ω̃)
= −ϵ(s,Ω, ψ)Z(α

s+1/2
F ⊗ Ω,Φ, u, ũ)

L(s,Ω)

where ϵ(s,Ω, ψ) is, as a function of s, an exponential.
(v) If Ω(a) = ω(a)I for a in F× and if π = π(Ω) then

π

((
a 0
0 a

))
= ω(a)I.

Moreover L(s, π) = L(s,Ω), L(s, π̃) = L(s, Ω̃) and ϵ(s, π, ψ) = ϵ(s,Ω, ψ).

The first assertion is a consequence of the definitions. We have just proved all the others
when Ω has a degree greater than one. Suppose then that Ω(h) = χ

(
ν(h)

)
where χ is a

quasi-character of F×. Then π(Ω) = π(χα
1/2
F , χα

−1/2
F ) and if the last part of the theorem is

to hold L(s,Ω), which is of course uniquely determined by the conditions of part (iii), must

equal L(s, π) = L(s, χα
1/2
F ). Also L(s, Ω̃) must equal L(s, π̃) = L(s, χ−1α

1/2
F ).

In the case under consideration U = C and we need only consider

Z(αsF ⊗ Ω,Φ; 1, 1) = Z(αsF ⊗ Ω,Φ).

As before the second part is trivial and

Z(αsF ⊗ Ω,Φ) = Z(αsF ⊗ Ω,Φ1)
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if

Φ1(x) =

∫
K1

Φ(xh).

The Fourier transform of Φ1 is

Φ′
1(x) =

∫
K1

Φ′(hx) =

∫
K1

Φ′(xh)

and
Z(αsF ⊗ Ω̃,Φ′) = Z(αsF ⊗ Ω̃,Φ′

1).

It is therefore enough to consider the functions in S(K,Ω).
If φ = φΦ is defined as before then φ lies in the space on which the Kirillov model of π

acts and
φ̂(α

s−1/2
F ) = Z(α

s+1/2
F ⊗ Ω,Φ).

The third assertion follows from the properties of L(s, π). The fourth follows from the relation

φ̂′(α
1/2−s
F ω−1) = −Z(α3/2−s

F ⊗ Ω−1,Φ′),

which was proved in the first paragraph, and the relation

φ̂′(α
1/2−s
F ω−1)

L(1− s, π̃)
= ϵ(s, π, ψ)

φ̂(α
s−1/2
F )

L(s, π)
,

which was proved in the second, if we observe that Ω̃(h) = Ω−1(h). Here φ′ is of course
π(w)φ.

Corollary 4.4. If π = π(Ω) then π̃ = π(Ω̃).

This is clear if Ω if of degree one so suppose it is of degree greater than one. Combining

the identity of part (iv) with that obtained upon interchanging the roles of Ω and Ω̃ and of Φ
and Φ′ we find that

ϵ(s,Ω, ψ)ϵ(1− s, Ω̃, ψ) = ω(−1).

The same considerations show that

ϵ(s, π, ψ) ϵ(1− s, π̃, ψ) = ω(−1).

Consequently

ϵ(s, π̃, ψ) = ϵ(s, Ω̃, ψ).

Replacing Ω by χ⊗ Ω we see that

ϵ(s, χ−1 ⊗ π̃, ψ) = ϵ(s, χ−1 ⊗ Ω̃, ψ) = ϵ
(
s, χ−1 ⊗ π(Ω̃), ψ

)
for all quasi-characters χ. Since π̃ and π(Ω̃) are both absolutely cuspidal they are equivalent.

There is a consequence of the theorem whose significance we do not completely understand.

Proposition 4.5. Let Ω be an irreducible representation of K× on the space U and suppose

that the dimension of U is greater than one. Let Ũ be the dual space of U . Let π be the
Kirillov model of π(Ω), let φ lie in S(F×), and let φ′ = π(w)φ. If u belongs to U and ũ

belong to Ũ the function Φ on K which vanishes at 0 and on K× is defined by

Φ(x) = φ
(
ν(x)

)∣∣ν(x)∣∣−1
〈
u, Ω̃(x)ũ

〉
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is in S(K) and its Fourier transform Φ′ vanishes at 0 and on K× is given by

Φ′(x) = −φ′(ν(x))∣∣ν(x)∣∣−1
ω−1

(
ν(x)

)〈
Ω(x)u, ũ

〉
if Ω(a) = ω(a)I for a in F×.

It is clear that Φ belongs not merely to S(K) but in fact to S(K×). So does the function
Φ1 which we are claiming is equal to Φ′. The Schur orthogonality relations for the group K1

show that Φ′(0) = 0 so that Φ′ also belongs to S(K×).
We are going to show that for every irreducible representation of Ω′ of K×

∫ Φ1(x),
〈
u′, Ω̃′(x)ũ′

〉∣∣ν(x)∣∣3/2−s d×x
L(1− s, Ω̃′)

= −
∫
ϵ(s,Ω′, ψ)Φ(x)

〈
Ω′(x)u′, ũ′

〉∣∣ν(x)∣∣s+1/2
d×x

L(s,Ω′)

for all choices of u′ and ũ′. Applying the theorem we see that∫ {
Φ1(x)− Φ′(x)

}〈
u′, Ω̃′(x)ũ′

〉∣∣ν(x)∣∣3/2−s d×x = 0

for all choices of Ω′, u′, ũ′, and all s. An obvious and easy generalization of the Peter-Weyl
theorem, which we do not even bother to state, shows that Φ1 = Φ′.

If

Ψ(x) =

∫
K1

〈
u, Ω̃(hx)ũ

〉〈
Ω′(hx)u′, ũ′

〉
dh

then ∫
K×

Φ(x)
〈
Ω′(x)u′, ũ′

〉∣∣ν(x)∣∣s+1/2
d×x =

∫
K×/K1

φ
(
ν(x)

)∣∣ν(x)∣∣s−1/2
Ψ(x) d×x

while∫
K×

Φ1(x)
〈
u′Ω̃′(x), ũ′

〉∣∣ν(x)∣∣3/2−s d×x
= −

∫
K×/K1

φ′(ν(x))ω−1
(
ν(x)

)∣∣ν(x)∣∣1/2−sΨ(x−1) d×x

If Ψ is 0 for all choice of u′ and ũ′ the required identity is certainly true. Suppose then Ψ is
different from 0 for some choice u′ and ũ′.

Let U be the intersection of the kernels of Ω′ and Ω. It is an open normal subgroup of K×

and H = UK1F
× is open, normal, and of finite index in K×. Suppose that Ω′(a) = ω′(a)I

for a in F×. If h belongs to H
Ψ(xh) = χ0(h)Ψ(x)

where χ0 is a quasi-character of H trivial on U and K1 and equal to ω′ω−1 on F×. Moreover
χ0 extends to a quasi-character χ of K× so that∫

K×/H

Ψ(x)χ−1(x) =

∫
K×/F×

ψ(x)χ−1(x) ̸= 0

χ may of course be identified with a quasi-character of F×.

Lemma 4.5.1. If ∫
K×/F×

Ψ(x)χ−1(x) ̸= 0

then Ω′ is equivalent to χ⊗ Ω.
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The representation Ω′ and χ⊗ Ω agree on F× and∫
K×/F×

〈
u, χ̃⊗ Ω(x)ũ

〉〈
Ω′(x)u′, ũ′

〉
̸= 0.

The lemma follows from the Schur orthogonality relations.
We have therefore only to prove the identity for Ω′ = χ⊗ Ω. Set

F (x) =

∫
K1

〈
u, Ω̃(hx)ũ

〉〈
Ω(hx)u′, ũ′

〉
dh.

The vectors u′ and ũ′ now belong to the spaces U and Ũ . There is a function f on F× such
that

F (x) = f
(
ν(x)

)
The identity we are trying to prove may be written as
(4.5.2)∫

F× φ
′(a)χ−1(a)ω−1(a)f(a−1)|a|1/2−s d×a

L(1− s, χ−1 ⊗ π̃)
= ϵ(s, χ⊗ π, ψ)

∫
F× φ(a)χ(a)f(a)|a|s−1/2 d×a

L(s, χ⊗ π)
.

Let H be the group constructed as before with U taken as the kernel of Ω. The image F ′ of
H under ν is a subgroup of finite index in F× and f , which is a function on F×/F ′, may be
written as a sum

f(a) =

p∑
i=1

λiχi(a)

where {χ1, . . . , χp} are the characters of F×/F ′ which are not orthogonal to f . By the lemma
Ω is equivalent to χi ⊗ Ω for 1 ⩽ i ⩽ p and therefore π is equivalent to χi ⊗ π. Consequently

ϵ(s, χ⊗ π, ψ) = ϵ(s, χχi ⊗ π, ψ)

and∫
F× φ

′(a)χ−1(a)χ−1
1 (a)ω−1(a)|a|1/2−s d×a

L(1− s, χ−1 ⊗ π̃)
= ϵ(s, χ⊗ π, ψ)

∫
F× φ(a)χ(a)χi(a)|a|s−1/2 d×a

L(s, χ⊗ π)
.

The identity (4.5.2) follows.
Now let K be a separable quadratic extension of F . We are going to associate to each

quasi-character ω of K× an irreducible representation π(ω) of GF . If G+ is the set of all g in
GF whose determinants belong to ν(K×) we have already, in the first paragraph, associated
to ω a representation rω of G+. To emphasize the possible dependence of rω on ψ we now
denote it by π(ω, ψ). The group G+ is of index 2 in GF . Let π(ω) be the representation of
GF induced from π(ω, ψ).

Theorem 4.6.

(i) The representation π(ω, ψ) is irreducible.
(ii) The representation π(ω) is admissible and irreducible and its class does not depend

on the choice of ψ.
(iii) If there is no quasi-character χ of F× such that ω = χ0ν the representation π(ω) is

absolutely cuspidal.
(iv) If ω = χ0ν and η is the character of F× associated to K by local class field theory

then π(ω) is π(χ, χη).
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It is clear what the notion of admissibility for a representation of G+ should be. The
proof that π(ω, ψ) is admissible proceeds like the proof of the first part of Theorem 4.2 and
there is little point in presenting it.

To every Φ in S(K,ω) we associate the function φΦ on F+ = ν(K×) defined by

φΦ(a) = ω(h)|h|1/2K Φ(h)

if a = ν(h). Clearly φΦ = 0 if and only if Φ = 0. Let V+ be the space of functions on
F+ obtained in this manner. Then V+ clearly contains the space S(F+) of locally constant
compactly supported functions on F+. In fact if φ belongs to S(F+) and

Φ(h) = ω−1(h)|h|−1/2
K φ

(
ν(h)

)
then φ = φΦ. If the restriction of ω to the group K1 of elements of norm 1 in K× is not
trivial so that every element of S(K,ω) vanishes at 0 then V+ = S(F+). Otherwise S(F+) is
of codimension one in V+.

Let B+ be the group of matrices of the form(
a x
0 1

)
with a in F+ and x in F . In the first paragraph we introduced a representation ξ = ξψ of B+

on the space of functions on F+. It was defined by

ξ

((
a 0
0 1

))
φ(b) = φ(ba)

and

ξ

((
1 x
0 1

))
φ(b) = ψ(bx)φ(b).

We may regard π(ω, ψ) as acting on V+ and if we do the restriction of π(ω, ψ) to B+ is ξψ.

Lemma 4.6.1. The representation of BF induced from the representation ξψ of B+ on S(F+)
is the representation ξψ of BF . In particular the representation ξψ of B+ is irreducible.

The induced representation is of course obtained by letting BF act by right translations
on the space of all functions φ̃ on BF with values in S(F+) which satisfy

φ̃(b1b) = ξψ(b1)φ̃(b)

for all b1 in B+. Let L be the linear functional in S(F+) which associates to a function its
value at 1. Associate to φ̃ the function

φ(a) = L

φ̃((a 0
0 1

)) = L

ρ((a 0
0 1

))
φ̃(e)
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The value of φ̃
(
( a 0
x 1 )
)
at α in F+ is

L

φ̃((αa αx
0 1

)) = L

ξψ((1 αx
0 1

))
φ̃

((
αa 0
0 1

))
= ψ(ax)L

φ̃((αa 0
0 1

)) = ψ(αx)φ(αa).

Since F×/F+ is finite it follows immediately that φ is in S(F×) and that φ̃ is 0 if φ is. It
also shows that φ can be any function in S(F×) and that if φ̃′ = ρ(b)φ̃ then φ′ = ξψ(b)φ for
all b in BF . Since a representation obtained by induction cannot be irreducible unless the
original representation is, the second assertion follows from Lemma 2.9.1.

If the restriction of ω to K1 is not trivial the first assertion of the theorem follows
immediately. If it is then, by an argument used a number of times previously, any non-zero
invariant subspace of V+ contains S(F+) so that to prove the assertion we have only to show
that S(F+) is not invariant.

As before we observe that if Φ in S(K,ω) = S(K) is taken to vanish at 0 but to be
non-negative and not identically 0 then

rω(w)Φ(0) = γ

∫
K

Φ(x) dx ̸= 0

so that φΦ is in S(F+) but φrω(w)Φ is not.
The representation π(ω) is the representation obtained by letting G+ act to the right on

the space of functions φ̃ on G+ with values in V+ which satisfy

φ̃(hg) = π(ω, ψ)(h)φ̃(g)

for h in G+. Replacing the functions φ̃ by the functions

φ̃′(g) = φ̃

((
a 0
0 1

)
g

)
we obtain an equivalent representation, that induced from the representation

g → π(ω, ψ)

((
a 0
0 1

)
g

(
a−1 0
0 1

))
of G+. It follows from Lemma 1.4 that this representation is equivalent to π(ω, ψ′) if
ψ′(x) = ψ(ax). Thus π(ω) is, apart from equivalence, independent of ψ.

Since

GF =

{
g

(
a 0
0 1

) ∣∣∣∣∣ g ∈ G+, a ∈ F×

}
φ̃ is determined by its restrictions to BF . This restriction, which we again call φ̃, is any one
of the functions considered in Lemma 4.6.1. Thus, by the construction used in the proof of
that lemma, we can associate to any φ̃ a function φ on F×. Let V be the space of functions
so obtained. We can regard π = π(ω) as acting on V . It is clear that, for all φ in V ,

π(b)φ = ξψ(b)φ
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if b is in BF . Every function on F+ can, by setting it equal to 0 outside of F+, be regarded
as a function F×. Since

φ̃

((
a 0
0 1

))
(α) = φ(αa)

V is the space generated by the translates of the functions in V+. Thus if V+ = S(F+) then
V = S(F×) and if S(F+) is of codimension one in V+ then S(F×) is of codimension two in V .

It follows immediately that π(ω) is irreducible and absolutely cuspidal if the restriction
of ω to K1 is not trivial.

The function φ in V+ corresponds to the function φ̃ which is 0 outside of G+ and on G+

is given by
φ̃(g) = π(ω, ψ)(g)φ.

It is clear that
π(ω)(g)φ = π(ω, ψ)(g)φ

if g is in G+. Any non-trivial invariant subspace of V will have to contain S(F×) and therefore
S(F+). Since π(ω, ψ) is irreducible it will have to contain V+ and therefore will be V itself.
Thus π(ω) is irreducible for all ω.

If the restriction of ω to K1 is trivial there is a quasi-character χ of F× such that ω = χ◦ν.
To establish the last assertion of the lemma all we have to do is construct a non-zero linear
form L on V which annihilates S(F×) and satisfies

L

π((a1 0
0 a2

))
φ

 = χ(a1a2)η(a2)

∣∣∣∣a1a2
∣∣∣∣1/2L(φ)

if π = π(ω). We saw in Proposition 1.5 that

π

((
a 0
0 a

))
φ = χ2(a)η(a)φ

so will only have to verify that

L

π((a 0
0 1

))
φ

 = χ(a)|a|1/2L(φ)

If φ = φΦ is in V+ we set
L(φ) = Φ(0)

so that if a is in F+

L

π((a 0
0 1

))
φ

 = rω

((
a 0
0 1

))
Φ(0) = χ(a)|a|1/2L(φ).

If ϵ is in F× but not in F+ any function φ in V can be written uniquely as

φ = φ1 + π

((
ϵ 0
0 1

))
φ2

with φ1 and φ2 in V+. We set

L(φ) = L(φ1) + χ(ϵ)L(φ2).
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Theorem 4.7.

(i) If π = π(ω) then π = π(ωι) if ωι(a) = ω(aι), π̃ = π(ω−1) and χ⊗ π = π(ωχ′) if χ is
a quasi-character of F× and χ′ = χ ◦ ν.

(ii) If a is in F× then

π

((
a 0
0 a

))
= ω(a)η(a)I.

(iii) L(s, π) = L(s, ω) and L(s, π̃) = L(s, ω−1). Moreover if ψK(x) = ψF
(
ξ(x)

)
for x in

K and if λ(K/F, ψF ) is the factor introduced in the first paragraph then

ϵ(s, π, ψF ) = ϵ(s, ω, ψK)λ(K/F, ψF )

It is clear that χ⊗π is the representation of GF induced from the representation χ⊗π(ω, ψ)
of G+. However by its very construction χ⊗ π(ω, ψ) = π(ωχ′, ψ). The relation

π

((
a 0
0 a

))
= ω(a)η(a)I

is a consequence of part (iii) of Proposition 1.5 and has been used before. Since η′ = η ◦ ν is
trivial and ω

(
ν(a)

)
= ω(a)ωι(a)

π̃ = ω−1η−1 ⊗ π = π(ω−ι)

To complete the proof of the first part of the theorem we have to show that π(ω) = π(ωι).
It is enough to verify that π(ω, ψ) = π(ωι, ψ). If Φ belongs to S(K) let Φι(x) = Φ(xι).
The mapping Φ → Φι is a bijection of S(K,ω) with S(K,ωι) which changes π(ω, ψ) into
π(ωι, ψ). Observe that here as elsewhere we have written an equality when we really mean
an equivalence.

We saw in the first paragraph that if φ = φΦ is in V+ then

φ̂(α
1/2−s
F ) = Z(αsKω,Φ)

and that if φ′ = π(w)φ and Φ′ is the Fourier transform of Φ then, if ω0(a) = ω(a)η(a) for a
in F×,

φ̂′(ω−1
0 α

s−1/2
F ) = γZ(α1−s

K ω−1,Φ′)

if γ = λ(K/F, ψF ). Thus for all φ in V+ the quotient

φ̂(α
s−1/2
F )

L(s, ω)

has an analytic continuation as a holomorphic function of s and for some φ it is a non-zero
constant. Also

φ̂′(w−1
0 α

1/2−s
F )

L(1− s, ω−1)
= λ(K/F, ψF )ϵ(s, ω, ψK)

φ̂(α
s−1/2
F )

L(s, ω)
.

To prove the theorem we have merely to check that these assertions remain valid when φ
is allowed to vary in V . In fact we need only consider functions of the form

φ = π

((
ϵ 0
0 1

))
φ0

where φ0 is in V+ and ϵ is not in F+. Since

φ̂(α
s−1/2
F ) = |ϵ|1/2−sφ̂0(α

s−1/2
F )
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the quotient

φ̂(α
s−1/2
F )

L(s, ω)
is certainly holomorphic in the whole plane. Since

φ̂′(ω−1
0 α

1/2−s
F ) = ω0(ϵ)ω

−1
0 (ϵ)|ϵ|1/2−sφ̂′

0(ω
−1
0 α

1/2−s
F ) = |ϵ|1/2−sφ̂′

0(ω
−1
0 α

1/2−s
F )

the functional equation is also satisfied.
Observe that if ω = χ ◦ ν then π(ω) = π(χ, χη) so that

L(s, ω) = L(s, χ)L(s, χη)

and
ϵ(s, ω, ψK)λ(K/F, ψF ) = ϵ(s, χ, ψF )ϵ(s, χη, ψF )

These are special cases of the identities of [19].
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§5. Representations of GL(2,R)

We must also prove a local functional equation for the real and complex fields. In this
paragraph we consider the field R of real numbers. The standard maximal compact subgroup
of GL(2,R) is the orthogonal group O(2,R). Neither GL(2,R) nor O(2,R) is connected.

Let H1 be the space of infinitely differentiable compactly supported functions on GL(2,R)
which are O(2,R) finite on both sides. Once a Haar measure on GR = GL(2,R) has been
chosen we may regard the elements of H1 as measures and it is then an algebra under
convolution.

f1 × f2(g) =

∫
GR

f1(gh
−1)f2(h) dh.

On O(2,R) we choose the normalized Haar measure. Then every function ξ on O(2,R)
which is a finite sum of matrix elements of irreducible representations of O(2,R) may be
identified with a measure on O(2,R) and therefore on GL(2,R). Under convolution these
measures form an algebra H2. Let HR be the sum of H1 and H2. It is also an algebra under
convolution of measures. In particular if ξ belongs to H2 and f belongs to H1

ξ ∗ f(g) =
∫
O(2,R)

ξ(u)f(u−1g) du

and

f ∗ ξ(g) =
∫
O(2,R)

f(gu−1)ξ(u) du.

If σi, 1 ⩽ i ⩽ p, is a family of inequivalent irreducible representations of O(2,R) and

ξi(u) = dim σi traceσi(u
−1)

then

ξ =

p∑
i=1

ξi

is an idempotent of HR. Such an idempotent is called elementary.
It is a consequence of the definitions that for any f inH1 there is an elementary idempotent

ξ such that
ξ ∗ f = f ∗ ξ = f.

Moreover for any elementary idempotent ξ

ξ ∗ H1 ∗ ξ = ξ ∗ C∞
c (GR) ∗ ξ

is a closed subspace of C∞
c (GR), in the Schwartz topology. We give it the induced topology.

A representation π of the algebra HR on the complex vector space V is said to be
admissible if the following conditions are satisfied.

(5.1) Every vector v in V is of the form

v =
r∑
i=1

π(fi)vi

with fi in H1 and vi in V .
(5.2) For every elementary idempotent ξ the range of π(ξ) is finite-dimensional.
(5.3) For every elementary idempotent ξ and every vector v in π(ξ)V the map f → π(f)v

of ξH1ξ into the finite-dimensional space π(ξ)V is continuous.
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If v =
∑r

i=1 π(fi)vi we can choose an elementary idempotent ξ so that ξfi = fiξ = fi for
1 ⩽ i ⩽ r. Then π(ξ)v = v. Let {φn} be a sequence in C∞

c (GR) which converges, in the
space of distributions, towards the Dirac distribution at the origin. Set φ′

n = ξ ∗ φn ∗ ξ. For
each i the sequence {φ′

n ∗ fi} converges to fi in the space ξH1ξ. Thus by (5.3) the sequence{
π(φ′

n)v
}
converges to v in the finite-dimensional space π(ξ)v. Thus v is in the closure of

the subspace π(ξH1ξ)v and therefore belongs to it.
As in the second paragraph the conditions (5.1) and (5.2) enable us to define the

representation π̃ contragredient to π. Up to equivalence it is characterized by demanding

that it satisfy (5.1) and (5.2) and that there be a non-degenerate bilinear form on V × Ṽ
satisfying 〈

π(f)v, ṽ
〉
=
〈
v, π(f̌)ṽ

〉
for all f in HR. Here Ṽ is the space on which π̃ acts and f̌ is the image of the measure f
under the map g → g−1. Notice that we allow ourselves to use the symbol f for all elements

of HR. The condition (5.3) means that for every v in V and every ṽ in Ṽ the linear form

f →
〈
π(f)v, ṽ

〉
is continuous on each of the spaces ξH1ξ. Therefore π̃ is also admissible.

Choose ξ so that π(ξ)v = v and π̃(ξ̌)ṽ = ṽ. Then for any f in H1〈
π(f)v, ṽ

〉
=
〈
π(ξfξ)v, ṽ

〉
.

There is therefore a unique distribution µ on GR such that

µ(f) =
〈
π(f)v, ṽ

〉
for f in H1. Choose φ in ξH1ξ so that π(φ)v = v. Then

µ(fφ) = µ(ξfφξ) = µ(ξfξφ) =
〈
π(ξfξφ)v, ṽ

〉
=
〈
π(ξfξ)v, ṽ

〉
so that µ(fφ) = µ(f). Consequently the distribution µ is actually a function and it is not
unreasonable to write it as g →

〈
π(g)v, ṽ

〉
even though π is not a representation of GR. For

a fixed g,
〈
π(g)v, ṽ

〉
depends linearly on v and ṽ. If the roles of π and π̃ are reversed we

obtain a function
〈
v, π̃(g)ṽ

〉
. It is clear from the definition that〈

π(g)v, ṽ
〉
=
〈
v, π̃(g−1)ṽ

〉
.

Let g be the Lie algebra of GR and let gC = g⊗R C. Let A be the universal enveloping
algebra of gC. If we regard the elements of A as distributions on GR with support at the
identity we can take their convolution product with the elements of C∞

c (GR). More precisely
if X belongs to g

X ∗ f(g) = d

dt
f
(
exp(−tX)

)∣∣∣∣
t=0

and

f ∗X(g) =
d

dt
f
(
g exp(−tX)

)∣∣∣∣
t=0

If f belongs to H1 so do f ∗X and X ∗ f .
We want to associate to the representation π of HR on V a representation π of A on V

such that
π(X)π(f) = π(X ∗ f)
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and
π(f)π(X) = π(f ∗X)

for all X in A and all f in H1. If v =
∑
π(fi)vi we will set

π(X)v =
∑
i

π(X ∗ fi)vi

and the first condition will be satisfied. However we must first verify that if∑
i

π(fi)vi = 0

then
w =

∑
i

π(X ∗ fi)vi

is also 0. Choose f so that w = π(f)w. Then

w =
∑
i

π(f)π(X ∗ fi)vi =
∑
i

π(f ∗X ∗ fi)vi = π(f ∗X)
{∑

π(fi)vi

}
= 0.

From the same calculation we extract the relation

π(f)

∑
i

π(X ∗ fi)vi

 = π(f ∗X)
{∑

π(fi)vi

}
for all f so that π(f)π(X) = π(f ∗X).

If g is in GR then λ(g)f = δg ∗ f if δg is the Dirac function at g. If g is in O(2,R) or
in ZR, the groups of scalar matrices, δg ∗ f is in H1 if f is, so that the same considerations
allow us to associate to π a representation π of O(2,R) and a representation π of ZR. It is
easy to see that if h is in either of these groups then

π(AdhX) = π(h)π(X)π(h−1).

To dispel any doubts about possible ambiguities of notation there is a remark we should
make. For any f in H1 〈

π(f)v, ṽ
〉
=

∫
GR

f(g)
〈
π(g)v, ṽ

〉
dg.

Thus if h is in O(2,R) or ZR〈
π(f ∗ δh)v, ṽ

〉
=

∫
GR

f(g)
〈
π(gh)v, ṽ

〉
dg

and 〈
π(f)π(h)v, ṽ

〉
=

∫
GR

f(g)
〈
π(g)π(h)v, ṽ

〉
dg

so that 〈
π(gh)v, ṽ

〉
=
〈
π(g)π(h)v, ṽ

〉
.

A similar argument shows that〈
π(hg)v, ṽ

〉
=
〈
π(g)v, π̃(h−1)ṽ

〉
.

It is easily seen that the function
〈
π(g)v, ṽ

〉
takes the value ⟨v, ṽ⟩ at g = e. Thus if h belongs

to O(2,R) or ZR the two possible interpretations of
〈
π(h)v, ṽ

〉
give the same result.



80 I. LOCAL THEORY

It is not possible to construct a representation of GR on V and the representation of A is
supposed to be a substitute. Since GR is not connected, it is not adequate and we introduce
instead the notion of a representation π1 of the system {A, ϵ} where

ϵ =

(
−1 0
0 1

)
.

It is a representation π1 of A and an operator π1(ϵ) which satisfy the relations

π2
1(ϵ) = I

and
π1(Ad ϵX) = π1(ϵ)π1(X)π1(ϵ

−1).

Combining the representation π with A with the operator π(ϵ) we obtain a representation of
the system {A, ϵ}.

There is also a representation π̃ of A associated to π̃ and it is not difficult to see that〈
π(X)v, ṽ

〉
=
〈
v, π̃(X̌)ṽ

〉
if X → X̌ is the automorphism of A which sends X in g to −X.

Let
φ(g) =

〈
π(g)v, ṽ

〉
.

The function φ is certainly infinitely differentiable. Integrating by parts we see that∫
GR

f(g)φ ∗X(g) dg =

∫
GR

f ∗ X̌(g)φ(g) dg

The right side is 〈
π(f)π(X̌)v, ṽ

〉
=

∫
GR

f(g)
〈
π(g)π(X̌)v, ṽ

〉
so that

φ ∗ X̌(g) =
〈
π(g)π(X̌)v, ṽ

〉
.

Assume now that the operators π(X) are scalar if X is in the centre Z of A. Then the
standard proof, which uses the theory of elliptic operators, shows that the functions φ are
analytic on GR. Since

φ ∗ X̌(e) =
〈
π(X̌)v, ṽ

〉
φ ∗ X̌(ϵ) =

〈
π(ϵ)π(X̌)v, ṽ

〉
and GR has only two components, one containing e and the other containing ϵ. The function φ

vanishes identically if
〈
π(X̌)v, ṽ

〉
and

〈
π(ϵ)π(X̌)v, ṽ

〉
are 0 for all X in A. Any subspace V1

of V invariant under A and ϵ is certainly invariant under O(2,R) and therefore is determined

by its annihilator in Ṽ . If v is in V1 and ṽ annihilates V1 the function
〈
π(g)v, ṽ

〉
is 0 so that〈

π(f)v, ṽ
〉
= 0

for all f in H1. Thus π(f)v is also in V1. Since H2 clearly leaves V1 invariant this space is
left invariant by all of HR.

By the very construction any subspace of V invariant under HR is invariant under A and
ϵ so that we have almost proved the following lemma.
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Lemma 5.4. The representation π of HR is irreducible if and only if the associated repre-
sentation π of {A, ϵ} is.

To prove it completely we have to show that if the representation of {A, ϵ} is irreducible
the operator π(X) is a scalar for all X in Z. As π(X) has to have a non-zero eigenfunction
we have only to check that π(X) commutes with π(Y ) for Y in A with π(ϵ). It certainly
commutes with π(Y ). X is invariant under the adjoint action not only of the connected
component of GR but also of the connected component of GL(2,C). Since GL(2,C) is
connected and contains ϵ

π(ϵ)π(X)π−1(ϵ) = π
(
Ad ϵ(X)

)
= π(X).

Slight modifications, which we do not describe, of the proof of Lemma 5.4 lead to the
following lemma.

Lemma 5.5. Suppose π and π′ are two irreducible admissible representations of HR. Then
π and π′ are equivalent if and only if the associated representations of {A, ϵ} are.

We comment briefly on the relation between representations of GR and representations
of HR. Let V be a complete separable locally convex topological space and π a continuous
representation of GR on V . Thus the map (g, v) → π(g)v of GR × V to V is continuous and
for f in C∞

c (GR) the operator

π(f) =

∫
GR

f(x)π(x) dx

is defined. So is π(f) for f in H2. Thus we have a representation of HR on V . Let V0 be
the space of O(2,R)-finite vectors in V . It is the union of the space π(ξ)V as ξ ranges over
the elementary idempotents and is invariant under HR. Assume, as is often the case, that
the representation π0 of HR on V0 is admissible. Then π0 is irreducible if and only if π is
irreducible in the topological sense.

Suppose π′ is another continuous representation of GR in a space V ′ and there is a
continuous non-degenerate bilinear form on V × V ′ such that〈

π(g)v, v′
〉
=
〈
v, π′(g−1)v′

〉
.

Then the restriction of this form to V0 × V ′
0 is non-degenerate and〈

π(f)v, v′
〉
=
〈
v, π′(f̌)v′

〉
for all f in HR, v in V0, and v

′ in V ′
0 . Thus π

′
0 is the contragredient of π0. Since〈

π0(f)v, v
′〉 = ∫

GR

f(g)
〈
π(g)v, v′

〉
we have 〈

π0(g)v, v
′〉 = 〈π(g)v, v′〉.

The special orthogonal group SO(2,R) is abelian and so is its Lie algebra. The one-
dimensional representation (

cos θ sin θ
− sin θ cos θ

)
→ einθ

of SO(2,R) and the associated representation of its Lie algebra will be both denoted by
κn. A representation π of A or of {A, ϵ} will be called admissible if its restrictions to
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the Lie algebra of SO(2,R) decomposes into a direct sum of the representations κn each
occurring with finite multiplicity. If π is an admissible representation of HR the corresponding
representation of {A, ϵ} is also admissible. We begin the classification of the irreducible
admissible representations of HR and of {A, ϵ} with the introduction of some particular
representations.

Let µ1 and µ2 be two quasi-characters of F×. Let B(µ1, µ2) be the space of functions f
on GR which satisfy the following two conditions.

(i)

f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2f(g)

for all g in GR, a1, a2 in R×, and x in R.
(ii) f is SO(2,R) finite on the right.

Because of the Iwasawa decomposition

GR = NRARSO(2,R)

these functions are complete determined by their restrictions to SO(2,R) and in particular
are infinitely differentiable. Write

µi(t) = |t|si
(
t

|t|

)mi

where si is a complex number and mi is 0 or 1. Set s = s1 − s2 and m = |m1 − m2| so
that µ1µ

−1
2 (t) = |t|s

(
t
|t|

)m
. If n has the same parity as m let φn be the function in B(µ1, µ2)

defined by

φn

((
1 x
0 1

)(
a1 0
0 a2

)(
cos θ sin θ

− sin θ cos θ

))
= µ1(a1)µ2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2einθ.

The collection {φn} is a basis of B(µ1, µ2).
For any infinitely differentiable function f onGR and any compactly supported distribution

µ we defined λ(µ)f by
λ(µ)f(g) = µ̌

(
ρ(g)f

)
and ρ(µ)f by

ρ(µ)f(g) = µ
(
λ(g−1)f

)
.

If, for example, µ is a measure

λ(µ)f(g) =

∫
GR

f(h−1g) dµ(h)

and

ρ(µ)f(g) =

∫
GR

f(gh) dµ(h).

In all cases λ(µ)f and ρ(µ)f are again infinitely differentiable. For all f in HR the space
B(µ1, µ2) is invariant under ρ(f) so that we have a representation ρ(µ1, µ2) of HR on B(µ1, µ2).
It is clearly admissible and the associated representation ρ(µ1, µ2) of {A, ϵ} is also defined by
right convolution.
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We introduce the following elements of g which is identified with the Lie algebra of 2× 2
matrices.

U =

(
0 1

−1 0

)
, J =

(
1 0
0 1

)
, V+ =

(
1 i
i −1

)
, V− =

(
1 −i
−i −1

)
,

X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
, Z =

(
1 0
0 −1

)
,

as well as

D = X+X− +X−X+ +
Z2

2
,

which belongs to A.

Lemma 5.6. The following relations are valid

(i) ρ(U)φn = inφn (ii) ρ(ϵ)φn = (−1)m1φ−n
(iii) ρ(V+)φn = (s+ 1 + n)φn+2 (iv) ρ(V−)φn = (s+ 1− n)φn−2

(v) ρ(D)φn = s2−1
2
φn (vi) ρ(J)φn = (s1 + s2)φn

The relations (i), (ii), and (vi) are easily proved. It is also clear that for all φ in B(µ1, µ2)

ρ(Z)φ(e) = (s+ 1)φ(e)

and
ρ(X+)φ(e) = 0.

The relations

Ad

((
cos θ sin θ

− sin θ cos θ

))
V+ = e2iθV+

and

Ad

((
cos θ sin θ

− sin θ cos θ

))
V− = e−2iθV−

show that ρ(V+)φn is a multiple of φn+2 and that ρ(V−)φn is a multiple of φn−2. Since

V+ = Z − iU + 2iX+

and
V− = Z + iU − 2iX+

the value of ρ(V+)φn at the identity e is s+1+n and that of ρ(V−)φn = s+1−n. Relations
(iii) and (iv) follow.

It is not difficult to see that D belongs to Z the centre of A. Therefore ρ(D)φ = λ(Ď)φ =
λ(D)φ since D = Ď. If we write D as

2X−X+ + Z +
Z2

2
and observe that λ(X+)φ = 0 and λ(Z)φ = −(s+ 1)φ if φ is in B(µ1, µ2) we see that

ρ(D)φn =

{
−(s+ 1) +

(s+ 1)2

2

}
φn =

s2 − 1

2
φn.

Lemma 5.7.

(i) If s−m is not an odd integer B(µ1, µ2) is irreducible under the action of g.
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(ii) If s−m is an odd integer and s ⩾ 0 the only proper subspaces of B(µ1, µ2) invariant
under g are

B1(µ1, µ2) =
∑
n⩾s+1

n≡s+1 (mod 2)

Cφn

B2(µ1, µ2) =
∑

n⩽−s−1
n≡s+1 (mod 2)

Cφn

and, when it is different from B(µ1, µ2),

Bs(µ1, µ2) = B1(µ1, µ2) + B2(µ1, µ2).

(iii) If s−m is an odd integer and s < 0 the only proper subspaces of B(µ1, µ2) invariant
under g are

B1(µ1, µ2) =
∑
n⩾s+1

n≡s+1 (mod 2)

Cφn

B2(µ1, µ2) =
∑

n⩽−s−1
n≡s+1 (mod 2)

Cφn

and
Bf (µ1, µ2) = B1(µ1, µ2) ∩ B2(µ1, µ2).

Since a subspace of B(µ1, µ2) invariant under g is spanned by those of the vectors φn that
it contains, this lemma is an easy consequence of the relations of Lemma 5.6. Before stating
the corresponding results for {A, ϵ} we state some simple lemmas.

Lemma 5.8. If π is an irreducible admissible representation of {A, ϵ} there are two possibil-
ities:

(i) The restriction of π to A is irreducible and the representations X → π(X) and
X → π

(
Ad ϵ(X)

)
are equivalent.

(ii) The space V on which π acts decomposes into a direct sum V1 ⊕ V2 where V1 and V2
are both invariant and irreducible under A. The representations π1 and π2 of A on V1
and V2 are not equivalent but π2 is equivalent to the representation X → π

(
Ad ϵ(X)

)
.

If the restriction of π to A is irreducible the representations X → π(X) and X →
π
(
Ad ϵ(X)

)
are certainly equivalent. If it is not irreducible let V1 be a proper subspace

invariant under A. If V2 = π(ϵ)V1 then V1 ∩ V2 and V1 + V2 are all invariant under {A, ϵ}.
Thus V1 ∩ V2 = {0} and V = V1 ⊕ V2. If V1 had a proper subspace V ′

1 invariant under A the
same considerations would show that V = V ′

1 ⊕ V ′
2 with V ′

2 = π(ϵ)V ′
1 . Since this is impossible

V1 and V2 are irreducible under A.
If v1 is in V1

π2(X)π(ϵ)v1 = π(ϵ)π1
(
ad ϵ(X)

)
v1

so that the representations X → π2(X) and X → π1
(
Ad ϵ(X)

)
are equivalent. If π1 and π2

were equivalent there would be an invertible linear transformation A from V1 to V2 so that
Aπ1(X) = π2(X)A. If v1 is in V1

A−1π(ϵ)π1(X)v1 = A−1π2
(
ad ϵ(X)

)
π(ϵ)v1 = π1

(
Ad ϵ(X)

)
A−1π(ϵ)v1
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Consequently
{
A−1π(ϵ)

}2
regarded as a linear transformation of V1 commutes with A and

is therefore a scalar. There is no harm in supposing that it is the identity. The linear
transformation

v1 + v2 → A−1v2 + Av1
then commutes with the action of {A, ϵ}. This is a contradiction.

Let χ be a quasi-character of R× and let χ(t) = tc for t positive. For any admissible
representation π of A and therefore of g we define a representation χ⊗ π of g and therefore
A by setting

χ⊗ π(X) =
c

2
traceX + π(X)

if X is in g. If π is a representation of {A, ϵ} we extend χ⊗ π to {A, ϵ} by setting

χ⊗ π(ϵ) = χ(−1)π(ϵ)

If π is associated to a representation π of HR then χ⊗ π is associated to the representation
of HR defined by

χ⊗ π(f) = π(χf)

if χf is the product of the functions χ and f .

Lemma 5.9. Let π0 be an irreducible admissible representation of A. Assume that π0 is
equivalent to the representation X → π0

(
Ad ϵ(X)

)
. Then there is an irreducible representation

π of {A, ϵ} whose restriction to A is π0. If η is the non-trivial quadratic character of R×

the representations π and η ⊗ π are not equivalent but any representation of {A, ϵ} whose
restriction to A is equivalent to π0 is equivalent to one of them.

Let π0 act on V . There is an invertible linear transformation A of V such that Aπ0(X) =
π0
(
Ad ϵ(X)

)
A for all X in A. Then A2 commutes with all π0(X) and is therefore a scalar.

We may suppose that A2 = I. If we set π(ϵ) = A and π(X) = π0(X) for X in A we obtain
the required representation. If we replace A by −A we obtain the representation η⊗π. π and
η⊗ π are not equivalent because any operator giving the equivalence would have to commute
with all of the π(X) and would therefore be a scalar. Any representation π′ of {A, ϵ} whose
restriction to A is equivalent to π0 can be realized on V0 in such a way that π′(X) = π0(X)
for all X. Then π′(ϵ) = ±A.

Lemma 5.10. Let π1 be an irreducible admissible representation of A. Assume that π1 and
π2, with π2(X) = π1

(
Ad ϵ(X)

)
, are not equivalent. Then there is an irreducible representation

π of {A, ϵ} whose restriction to A is the direct sum of π1 and π2. Every irreducible admissible
representation of {A, ϵ} whose restriction to A contains π1 is equivalent to π. In particular
η ⊗ π is equivalent to π.

Let π1 act on V1. To construct π we set V = V1 ⊕ V2 and we set

π(X)(v1 ⊕ v2) = π1(X)v1 ⊕ π2(X)v2

and
π(ϵ)(v1 ⊕ v2) = v2 ⊕ v1.

The last assertion of the lemma is little more than a restatement of the second half of
Lemma 5.8.

Theorem 5.11. Let µ1 and µ2 be two quasi-characters of F×.
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(i) If µ1µ
−1
2 is not of the form t→ tp sgn t with p a non-zero integer the space B(µ1, µ2)

is irreducible under the action of {A, ϵ} or HR. π(µ1, µ2) is any representation
equivalent to ρ(µ1, µ2).

(ii) If µ1µ
−1
2 (t) = tp sgn t, where p is a positive integer, the space B(µ1, µ2) contains ex-

actly one proper subspace Bs(µ1, µ2) invariant under {A, ϵ}. It is infinite-dimensional
and any representation of {A, ϵ} equivalent to the restriction of ρ(µ1, µ2) to Bs(µ1, µ2)
will be denoted by σ(µ1, µ2). The quotient space

Bf (µ1, µ2) = B(µ1, µ2)/Bs(µ1, µ2)

is finite-dimensional and π(µ1, µ2) will be any representation equivalent to the repre-
sentation of {A, ϵ} on this quotient space.

(iii) If µ1µ
−1
2 (t) = tp sgn t, where p is a negative integer, the space B(µ1, µ2) contains

exactly one proper subspace Bf (µ1, µ2) invariant under {A, ϵ}. It is finite-dimensional
and π(µ1, µ2) will be any representation equivalent to the restriction of ρ(µ1, µ2) to
Bf (µ1, µ2). Moreover σ(µ1, µ2) will be any representation equivalent to the represen-
tation on the quotient space

Bs(µ1, µ2) = B(µ1, µ2)/Bf (µ1, µ2).

(iv) A representation π(µ1, µ2) is never equivalent to a representation σ(µ′
1, µ

′
2).

(v) The representations π(µ1, µ2) and π(µ′
1, µ

′
2) are equivalent if and only if either

(µ1, µ2) = (µ′
1, µ

′
2) or (µ1, µ2) = (µ′

2, µ
′
1).

(vi) The representations σ(µ1, µ2) and σ(µ
′
1, µ

′
2) are equivalent if and only if (µ1, µ2) is

one of the four pairs (µ′
1, µ

′
2), (µ

′
2, µ

′
1), (µ

′
1η, µ

′
2η), or (µ′

2η, µ
′
1η).

(vii) Every irreducible admissible representation of {A, ϵ} is either a π(µ1, µ2) or a
σ(µ1, µ2).

Let µ1µ
−1
2 (t) = |t|s

(
t
|t|

)m
. s −m is an odd integer if and only if s is an integer p and

µ1µ
−1
2 (t) = tp sgn t. Thus the first three parts of the lemma are consequences of Lemma 5.6

and 5.7. The fourth follows from the observation that π(µ1, µ2) and σ(µ
′
1, µ

′
2) cannot contain

the same representations of the Lie algebra of SO(2,R).
We suppose first that s−m is not an odd integer and construct an invertible transformation

T from B(µ1, µ2) to B(µ2, µ1) which commutes with the action of {A, ϵ}. We have introduced a
basis {φn} of B(µ1, µ2). Let {φ′

n} be the analogous basis of B(µ2, µ1). The transformation T
will have to take φn to a multiple anφ

′
n of φ′

n. Appealing to Lemma 5.6 we see that it
commutes with the action of {A, ϵ} if and only if

(s+ 1 + n)an+2 = (−s+ 1 + n)an

(s+ 1− n)an−2 = (−s+ 1− n)an

and
an = (−1)ma−n.

These relations will be satisfied if we set

an = an(s) =
Γ
(−s+1+n

2

)
Γ
(
s+1+n

2

)
Since n ≡ m (mod 2) and s−m− 1 is not an even integer all these numbers are defined and
different from 0.
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If s ⩽ 0 and s−m is an odd integer we let

an(s) = lim
z→s

an(z)

The numbers an(s) are still defined although some of them may be 0. The associated operator
T maps B(µ1, µ2) into B(µ2, µ1) and commutes with the action of {A, ϵ}. If s = 0 the
operator T is non-singular. If s < 0 its kernel is Bf(µ1, µ2) and it defines an invertible
linear transformation from Bs(µ1, µ2) to Bs(µ2, µ1). If s > 0 and s−m is an odd integer the
functions an(z) have at most simple poles at s. Let

bn(s) = lim
z→s

(z − s)an(z)

The operator T associated to the family
{
bn(s)

}
maps B(µ1, µ2) into B(µ2, µ1) and commutes

with the action of {A, ϵ}. It kernel is Bs(µ1, µ2) so that it defines an invertible linear
transformation from Bf (µ1, µ2) to Bf (µ2, µ1). These considerations together with Lemma 5.10
give us the equivalences of parts (v) and (vi).

Now we assume that π = π(µ1, µ2) and π
′ = π(µ′

1, µ
′
2) or π = σ(µ1, µ2) and π

′ = σ(µ′
1, µ

′
2)

are equivalent. Let µi(T ) = |t|si
(
t
|t|

)mi

and let µ′
i(t) = |t|s′i

(
t
|t|

)m′
i

. Let s = s1 − s2,

m = |m1 −m2|, s′ = s′1 − s′2, m
′ = |m′

1 −m′
2|. Since the two representations must contain

the same representations of the Lie algebra of SO(2,R) the numbers m and m′ are equal.
Since π(D) and π′(D) must be the same scalar Lemma 5.6 shows that s′ = ±s. π(J) and
π′(J) must also be the same scalar so s′1 + s′2 = s1 + s2. Thus if η(t) = sgn t the pair (µ1, µ2)
must be one of the four pairs (µ′

1, µ
′
2), (µ

′
2, µ

′
1), (ηµ

′
1, ηµ

′
2), (ηµ

′
2, ηµ

′
1). Lemma 5.9 shows

that π(µ′
1µ

′
2) and π(ηµ

′
1, ηµ

′
2) are not equivalent. Parts (v) and (vi) of the theorem follow

immediately.
Lemmas 5.8, 5.9, and 5.10 show that to prove the last part of the theorem we need only

show that any irreducible admissible representation π of A is, for a suitable choice of µ1 and
µ2, a constituent of ρ(µ1, µ2). That is there should be two subspaces B1 and B2 of B(µ1, µ2)
invariant under A so that B1 contains B2 and π is equivalent to the representation of A on
the quotient B1/B2. If χ is a quasi-character of F× then π is a constituent of ρ(µ1, µ2) if and
only if χ⊗ π is a constituent of ρ(χµ1, χµ2). Thus we may suppose that π(J) is 0 so that
π is actually a representation of A0, the universal enveloping algebra of the Lie algebra of
ZR\GR. Since this group is semi-simple the desired result is a consequence of the general
theorem of Harish-Chandra [6].

It is an immediate consequence of the last part of the theorem that every irreducible ad-
missible representations of {A, ϵ} is the representation associated to an irreducible admissible
representation of HR. Thus we have classified the irreducible admissible representations of
{A, ϵ} and of HR. We can write such a representation of HR as π(µ1, µ2) or σ(µ1, µ2).

In the first paragraph we associated to every quasi-character ω of C× a representation of
rω of G+ the group of matrices with positive determinant. The representation rω acts on the
space of functions Φ in S(C) which satisfy

Φ(xh) = ω−1(h)Φ(x)

for all h such that hh = 1. All elements of S(C, ω) are infinitely differentiable vectors for rω
so that rω also determines a representation, again called rω, of A. rω depended on the choice
of a character of R. If that character is

ψ(x) = e2πuxi
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then
rω(X+)Φ(z) = (2πuzzi)Φ(z).

Lemma 5.12. Let S0(C, ω) be the space of functions Φ in S(C, ω) of the form

Φ(z) = e−2π|u|zzP (z, z)

where P (z, z) is a polynomial in z and z. Then S0(C, ω) is invariant under A and the
restriction of rω to S0(C, ω) is admissible and irreducible.

It is well known and easily verified that the function e−2π|u|zz is its own Fourier transform
provided of course that the transform is taken with respect to the character

ψC(z) = ψ(z + z)

and the self-dual measure for that character. From the elementary properties of the Fourier
transform one deduces that the Fourier transform of a function

Φ(z) = e−2π|u|zzP (z, z)

where P is a polynomial in z and z is of the same form. Thus rω(w) leaves S0(C, ω) invariant.
Recall that

w =

(
0 1

−1 0

)
.

S0(C, ω) is clearly invariant under rω(X+). Since X− = Adw(X+) it is also invariant under
X−. But X+X− − X−X+ = Z, so that it is also invariant under Z. We saw in the first
paragraph that if ω0 is the restriction of ω to R× then

rω

((
a 0
0 a

))
= (sgn a)ω0(a)I

thus rω(J) = cI if ω0(a) = ac for a positive a. In conclusion S0(C, ω) is invariant under g
and therefore under A.

If

ω(z) = (zz)r
zmzn

(zz)
m+n

2

where r is a complex number and m and n are two integers, one 0 and the other non-negative,
the functions

Φp(z) = e−2π|u|zzzn+pzm+p,

with p a non-negative integer, form a basis of S0(C, ω). Suppose as usual that
∂
∂z

= 1
2
∂
∂x

+ 1
2i

∂
∂y

and that ∂
∂z

= 1
2
∂
∂x

− 1
2i

∂
∂y
. Then the Fourier transform Φ′

p of Φp is given by

Φ′
p(z) =

1

(2πiu)m+n+2p

∂n+p

∂zn+p
∂m+p

∂zm+p e
−2π|u|zz

which is a function of the form

(i sgnu)m+n+2pe−2π|u|zzzn+pzm+p +

p−1∑
q=0

aqe
−2π|u|zzzn+qzm+q.

Only the coefficient ap−1 interests us. It equals

(i sgnu)m+n+2p−1

2πiu

{
p(n+m+ 1 + p− 1)

}
.
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Since
rω(w)Φ(z) = (i sgnu)Φ′(z)

and
rω(X−) = (−1)m+nrω(w)rω(X+)r(w)

while
rω(X+)Φp = (2πui)Φp+1

we see that

rω(X−)Φp = (2πui)Φp+1 − (i sgnu)(n+m+ 2p+ 1)Φp +

p−1∑
q=0

bqΦq.

Since U = X+ −X− we have

rω(U)Φp = (i sgnu)(n+m+ 2p+ 1)Φp −
p−1∑
q=0

bqΦq

and we can find the functions Ψp, p = 0, 1, . . . , such that

Ψp = Φp +

p−1∑
q=0

apqΦq

while
rω(U)Ψp = (i sgnu)(n+m+ 2p+ 1)Ψp.

These functions form a basis of S0(C, ω). Consequently rω is admissible.
If it were not irreducible there would be a proper invariant subspace which may or not

contain Φ0. In any case if S1 is the intersection of all invariant subspaces containing Φ0 and S2

is the sum of all invariant subspaces which do not contain Φ0 both S1 and S2 are invariant and
the representation π1 of A on S1/S2∩S1 is irreducible. If the restriction of π1 to the Lie algebra
of SO(2,R) contains κp it does not contain κ−p. Thus π1 is not equivalent to the representation
X → π1

(
Ad ϵ(X)

)
. Consequently the irreducible representation π of {A, ϵ} whose restriction

to A is π1 must be one of the special representations σ(µ1, µ2) or a representation π(µ1, µ2η).
Examining these we see that since π contains κq with q = sgnu(n+m+ 1) it contains all
the representations κq with q = sgnu(n+m+ 2p+ 1), p = 0, 1, 2, . . . . Thus S1 contains all
the functions Ψp and S2 contains none of them. Since this contradicts the assumption that
S0(C, ω) contains a proper invariant subspace the representation rω is irreducible.

For the reasons just given the representation π of {A, ϵ} whose restriction to A contains
rω is either a σ(µ1, µ2) or a π(µ1, µ1η). It is a π(µ1, µ1η) if and only if n+m = 0. Since

π

((
a 0
0 a

))
= ω(a) sgn aI = ω(a)η(a)I,

we must have µ1µ2 = ω0η in the first case and µ2
1 = ω0 in the second. ω0 is the restriction of

ω to R×. Since the two solutions µ2
1 = ω0 differ by η they lead to the same representation. If

n+m = 0 then µ2
1 = ω0 if and only if ω(z) = µ1

(
ν(z)

)
for all z in C×. Of course ν(z) = zz.

Suppose n + m > 0 so that π is a σ(µ1, µ2). Let µi(t) = |t|si
(
t
|t|

)mi

. Because of

Theorem 5.11 we can suppose that m1 = 0. Let s = s1 − s2. We can also suppose that s is
non-negative. If m = |m1 −m2| then s−m is an odd integer so m and m2 are determined
by s. We know what representations of the Lie algebra of SO(2,R) are contained in π.
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Appealing to Lemma 5.7 we see that s = n +m. Since µ1µ2 = ηω0 we have s1 + s2 = 2r.
Thus s1 = r + m+n

2
and s2 = r − n+m

2
. In all cases the representation π is determined by

ω alone and does not depend on ψ. We refer to it as π(ω). Every special representation
σ(µ1, µ2) is a π(ω) and π(ω) is equivalent to π(ω

′) if and only if ω = ω′ or ω′(z) = ω(z).
We can now take the first step in the proof of the local functional equation.

Theorem 5.13. Let π be an infinite-dimensional irreducible admissible representation of
HR. If ψ is a non-trivial additive character of R there exists exactly one space W (π, ψ) of
functions W on GR with the following properties

(i) If W is in W (π, ψ) then

W

((
1 x
0 1

)
g

)
= ψ(x)W (g)

for all x in F .
(ii) The functions W are continuous and W (π, ψ) is invariant under ρ(f) for all f in

HR. Moreover the representation of HR on W (π, ψ) is equivalent to π.
(iii) If W is in W (π, ψ) there is a positive number N such that

W

((
t 0
0 1

))
= O

(
|t|N

)
as |t| → ∞.

We prove first the existence of such a space. Suppose π = π(ω) is the representation
associated to some quasi-character ω of C×. An additive character ψ being given the
restriction of π to A contains the representation rω determined by ω and ψ. For any Φ in
S(C, ω) define a function WΦ on G+ by

WΦ(g) = rω(g)Φ(1)

Since ρ(g)WΦ = Wrω(g)Φ the space of such functions is invariant under right translations.
Moreover

WΦ

((
1 x
0 1

)
g

)
= ψ(x)WΦ(g)

Every vector in S(C, ω) is infinitely differentiable for the representation rω. Therefore the
functions WΦ are all infinitely differentiable and, if X is in A,

ρ(X)WΦ = Wrω(X)Φ.

In particular the space W1(π, ψ) of those WΦ for which Φ is in S0(C, ω) is invariant under A.
We set WΦ equal to 0 outside of G+ and regard it as a function on GR.

We want to take W (π, ψ) to be the sum of W1(π, ψ) and its right translate by ϵ. If
we do it will be invariant under {A, ϵ} and transform according to the representation π
of {A, ϵ}. To verify the second condition we have to show that it is invariant under HR.
For this it is enough to show that S0(C, ω) is invariant under the elements of HR with
support in G+. The elements certainly leave the space of functions in S(C, ω) spanned by the
functions transforming according to a one-dimensional representation of SO(2,R) invariant.
Any function in S(C, ω) can be approximated uniformly on compact sets by a function in
S0(C, ω). If in addition it transforms according to the representation κn of SO(2,R) it can
be approximated by functions in S0(C, ω) transforming according to the same representation.
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In other words it can be approximated by multiples of a single function in S0(C, ω) and
therefore is already in S0(C, ω).

The growth condition need only be checked for the functions WΦ in W1(π, ψ). If a is
negative

WΦ

((
a 0
0 1

))
= 0

but if a is positive and
Φ(z) = e−2π|u|zzP (z, z)

it is equal to
e−2π|u|aP (a1/2, a1/2)ω(a)|a|1/2,

and certainly satisfies the required condition.
We have still to prove the existence of W (π, ψ) when π = π(µ1, µ2) and is infinite-

dimensional. As in the first paragraph we set

θ(µ1, µ2,Φ) =

∫
R×

µ1(t)µ
−1
2 (t)Φ(t, t−1) d×t

for Φ in S(Rs) and we set

WΦ(g) = µ1(det g)|det g|1/2θ
(
µ1, µ2, r(g)Φ

)
= θ
(
µ1, µ2, rµ1,µ2(g)Φ

)
.

rµ1,µ2 is the representation associated to the quasi-character (a, b) → µ1(a)µ2(b) of R
× ×R×.

If X is in A
ρ(X)WΦ(g) = Wrµ1,µ2 (X)Φ(g)

Let W (µ1, µ2;ψ) be the space of those WΦ which are associated to O(2,R)-finite functions Φ.
W (µ1, µ2;ψ) is invariant under {A, ϵ} and under HR.

Lemma 5.13.1. Assume µ1(x)µ
−1
2 (x) = |x|s

(
x
|x|

)m
with Re s > −1 and m equal to 0 or

1. Then there exists a bijection A of W (µ1, µ2;ψ) with B(µ1, µ2) which commutes with the
action of {A, ϵ}.

We have already proved a lemma like this in the non-archimedean case. If Φ is in S(R2)
and ω is a quasi-character of R× set

z(ω,Φ) =

∫
Φ(0, t)ω(t) d×(t)

The integral converges if ω(t) = |t|r(sgn t)n with r > 0. In particular under the circumstances
of the lemma

fΦ(g) = µ1(det g)|det g|1/2z
(
µ1µ

−1
2 αR, ρ(g)Φ

)
is defined. As usual αR(x) = |x|. A simple calculation shows that

fΦ

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣∣a1a2
∣∣∣∣1/2fΦ(g).

If Φ̃ is the partial Fourier transform of Φ introduced in the first paragraph then

ρ(g)fΦ̃ = fΦ̃1
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if Φ1 = rµ1,µ2(f)Φ. A similar relation will be valid for a function f in HR, that is

ρ(f)fΦ̃ = fΦ̃1

if Φ1 = rµ1,µ2(f)Φ. In particular if fΦ̃ is O(2,R)-finite there is an elementary idempotent

ξ such that ρ(ξ)fΦ̃ = fΦ̃. Thus, if Φ1 = rµ1,µ2(ξ)Φ, fΦ̃ = fΦ̃1
and Φ̃1 is O(2,R) finite. Of

course fΦ̃ is O(2,R)-finite if and only if it belongs to B(µ1, µ2).
We next show that given any f in B(µ1, µ2) there is an O(2,R)-finite function Φ in S(R2)

such that f = fΦ̃. According to the preceding observation together with the self-duality of
S(R2) under Fourier transforms it will be enough to show that for some Φ in S(R2), f = fΦ.
In fact, by linearity, it is sufficient to consider the functions φn in B(µ1, µ2) defined earlier by
demanding that

φn

((
cos θ sin θ

− sin θ cos θ

))
= einθ

n must be of the same parity as m. If δ = sgnn set

Φ(x, y) = e−π(x
2+y2)(x+ iδy)|n|

Then

ρ

((
cos θ sin θ

− sin θ cos θ

))
Φ = einθΦ

Since ρ(g)fΦ = fρ(g)Φ when det g = 1 the function fΦ is a multiple of φn. Since

fΦ(e) = (i)|n|
∫ ∞

−∞
e−πt

2

t|n|+s+1 d×t

= (i)n
π

−(|n|+s+1)
2

2
Γ

(
|n|+ s+ 1

2

)
which is not 0, the function fΦ is not 0.

The map A will transform the function WΦ to fΦ̃. It will certainly commute with the
action of {A, ϵ}. That A exists and is injective follows from a lemma which, together with its
proof, is almost identical to the statement and proof of Lemma 3.2.1.

The same proof as that used in the non-archimedean case also shows that W (µ1, µ2;ψ) =
W (µ2, µ1;ψ) for all ψ. To prove the existence of W (π, ψ) when π = π(µ1, µ2) and is infinite-
dimensional we need only show that when µ1 and µ2 satisfy the condition the previous lemma
the functions W in W (µ1, µ2;ψ) satisfy the growth condition of the theorem. We have seen
that we can take W = WΦ with

Φ̃(x, y) = e−π(x
2+y2)P (x, y)

where P (x, y) is a polynomial in x and y. Then

Φ(x, y) = e−π(x
2+u2y2)Q(x, y)

where Q(x, y) is another polynomial. Recall that ψ(x) = e2πiux. Then

WΦ

((
a 0
0 1

))
= µ1(a)|a|1/2

∫ ∞

−∞
e−π(a

2t2+u2t−2)Q(at, ut−1)|t|s(sgn t)m d×t
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The factor in front certainly causes no harm. If δ > 0 the integrals from −∞ to −δ and from
δ to ∞ decrease rapidly as |a| → ∞ and we need only consider integrals of the form∫ δ

0

e−π(a
2t2+u2t−2)tr dt

where r is any real number and u is fixed and positive. If v = u
2
then u2 = v2 + 3u2

4
and

e−
3
4
πu2t−2

tr is bounded in the interval [0, δ] so we can replace u by v and suppose r is 0. We
may also suppose that a and v are positive and write the integral as

e−2πav

∫ δ

0

e−π(at+vt
−1)2 dt.

The integrand is bounded by 1 so that the integral is O(1). In any case the growth condition
is more than satisfied.

We have still to prove uniqueness. Suppose W1(π, ψ) is a space of functions satisfying the
first two conditions of the lemma. Let κn be a representation of the Lie algebra of SO(2,R)
occurring in π and let W1 be a function in W1(π, ψ) satisfying

W1

(
g

(
cos θ sin θ

− sin θ cos θ

))
= einθW1(g).

If

φ1(t) = W1


 t

|t|1/2 0

0 1
|t|1/2




the function W1 is completely determined by φ1. It is easily seen that

ρ(U)W1


 t

|t|1/2 0

0 1
|t|1/2


 = inφ1(t)

ρ(Z)W1


 t

|t|1/2 0

0 1
|t|1/2


 = 2t

dφ1

dt

ρ(X+)W1


 t

|t|1/2 0

0 1
|t|1/2


 = iutφ1(t).

Thus if φ+
1 and φ−

1 correspond to ρ(V+)W1 and ρ(V−)W1

φ+
1 (t) = 2t

dφ1

dt
− (2ut− n)φ1(t)

and

φ−
1 (t) = 2t

dφ1

dt
+ (2ut− n)φ1(t).

Since

D =
1

2
V−V+ − iU − U2

2
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ρ(D)W1 corresponds to

2t
d

dt

(
t
dφ1

dt
− 2t

dφ2

dt

)
+ (2nut− 2u2t2)φ1.

Finally ρ(ϵ)W1 corresponds to φ1(−t).
Suppose that π is either π(µ1, µ2) or σ(µ1, µ2). Let µ1µ

−1
2 (t) = |t|s(sgn t)m. If s −m is

an odd integer we can take n = |s|+ 1. From Lemma 5.6 we have ρ(V−)W1 = 0 so that φ1

satisfies the equation

2t
dφ1

dt
+ (2ut− n)φ1 = 0.

If the growth condition is to be satisfied φ1 must be 0 for ut < 0 and a multiple of |t|n/2e−ut
for ut > 0. Thus W1 is determined up to a scalar factor and the space W (π, ψ) is unique.

Suppose s−m is not an odd integer. Since ρ(D)W1 =
s2−1
2
W1 the function φ1 satisfies

the equation

d2φ1

dt2
+

{
−u2 + nu

t
+

(1− s2)

4t2

}
φ1 = 0

We have already constructed a candidate for the space W (π, ψ). Let’s call this candidate
W2(π, ψ). There will be a non-zero function φ2 in it satisfying the same equation as φ1. Now
φ1 and all of its derivatives go to infinity no faster than some power of |t| as t→ ∞ while as
we saw φ2 and its derivations go to 0 at least exponentially as |t| → ∞. Thus the Wronskian

φ1
dφ2

dt
− φ2

dφ1

dt
goes to 0 as |t| → ∞. By the form of the equation the Wronskian is constant. Therefore it is
identically 0 and φ1(t) = αφ2(t) for t > 0 and φ1(t) = βφ2(t) for t < 0 where α and β are
two constants. The uniqueness will follow if we can show that for suitable choice of n we
have α = β. If m = 0 we can take n = 0. If µ1(t) = |t|s1(sgn t)m1 then π(ϵ)W1 = (−1)m2W1

so that φ1(−t) = (−1)m1φ1(t) and φ2(−t) = (−1)m2φ2(t). Thus α = β. If m = 1 we can
take n = 1. From Lemma 5.6

π(V−1)W1 = (−1)m1sπ(ϵ)W1

so that

2t
dφ1

dt
+ (2ut− 1)φ1(t) = (−1)m1sφ1(−t).

Since φ2 satisfies the same equation α = β.
If µ is a quasi-character of R× and ω is the character of C× defined by ω(z) = µ(zz)

then π(ω) = π(µ, µη). We have defined W
(
π(ω), ψ

)
in terms of ω and also as W (µ1, µ2;ψ).

Because of the uniqueness the two resulting spaces must be equal.

Corollary 5.14. Let m and n be two integers, one positive and the other 0. Let ω be a
quasi-character of C× of the form

ω(z) = (zz)r−
m+n

2 zmzn

and let µ1 and µ2 be two quasi-characters of R× satisfying µ1µ2(x) = |x|2r(sgnx)m+n+1 and
µ1µ

−1
2 (x) = xm+n sgnx so that π(ω) = σ(µ1, µ2). Then the subspace Bs(µ1, µ2) of B(µ1, µ2)

is defined and there is an isomorphism of B(µ1, µ2) with W (µ1, µ2;ψ) which commutes with
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the action of {A, ϵ}. The image Ws(µ1, µ2;ψ) of Bs(µ1, µ2) is W
(
π(ω), ψ

)
. If Φ belongs to

S(R2) and WΦ belongs to W (µ1, µ2;ψ) then WΦ belongs to Ws(µ1, µ2;ψ) if and only if∫ ∞

∞
xi
∂j

∂yj
Φ(x, 0) dx = 0

for any two non-negative integers i and j with i+ j = m+ n− 1.

Only the last assertion is not a restatement of previously verified facts. To prove it we
have to show that fΦ̃ belongs to Bs(µ1, µ2) if and only if Φ satisfies the given relations. Let
f = fΦ̃. It is in Bs(µ1, µ2) if and only if it is orthogonal to the functions in Bf (µ−1

1 , µ−1
2 ). Since

Bf(µ−1
1 , µ−1

2 ) is finite-dimensional there is a non-zero vector f0 in it such that ρ(X+)f0 = 0.
Then

f0

(
w

(
1 y
0 1

))
= f0(w)

and f is orthogonal to f0 if and only if

(5.14.1)

∫
R

f

(
w

(
1 y
0 1

))
dy = 0.

The dimension of Bf (µ−1
1 , µ−2

2 ) is m+ n. It follows easily from Lemmas 5.6 and 5.7 that the
vectors ρ(Xp

+)ρ(w)f0, 0 ⩽ p ⩽ m+ n− 1 span it. Thus f is in Bs(µ1, µ2) if and only if each
of the functions ρ(Xp

+)ρ(w)f satisfy (5.14.1). For f itself the left side of (5.14.1) is equal to∫ 
∫

Φ̃

(
(0, t)w

(
1 x
0 1

))
µ1(t)µ

−1
2 (t)|t| d×t

 dx.

Apart from a positive constant which relates the additive and multiplicative Haar measure
this equals ∫∫

Φ̃(−t,−tx)tm+n sgn t dt dx

which is

(−1)m+n−1

∫∫
Φ̃(t, x)tm+n−1 dt dx

or, in terms of Φ,

(5.14.2) (−1)m+n−1

∫
Φ(t, 0)tm+n−1 dt.

By definition
rµ1,µ2(w)Φ(x, y) = Φ′(y, x)

and an easy calculation based on the definition shows that

rµ1,µ2(X
p
+)Φ(x, y) = (2iπuxy)pΦ(x, y).

Thus rµ1,µ2(X
p
+)rµ1,µ2(w)Φ is a non-zero scalar times

∂2p

∂xp∂yp
Φ′(y, x)



96 I. LOCAL THEORY

For this function (5.14.2) is the product of a non-zero scalar and∫∫
∂2p

∂xp∂yp
Φ′(0, x)xm+n−1 dx.

Integrating by parts we obtain ∫
∂p

∂yp
Φ′(0, x)xm+n−p−1 dx

except perhaps for sign. If we again ignore a non-zero scalar this can be expressed in terms
of Φ as ∫

∂m+n−p−1

∂ym+n−p−1
Φ(x, 0)xp dx.

The proof of the corollary is now complete.
Before stating the local functional equation we recall a few facts from the theory of local

zeta-functions. If F is R or C and if Φ belongs to S(F ) we set

Z(ωαsF ,Φ) =

∫
Φ(a)ω(a)|a|sF d×a.

ω is a quasi-character. The integral converges in a right half-plane. One defines functions
L(s, ω) and ϵ(s, ω, ψF ) with the following properties:

(i) For every Φ the quotient
Z(ωαsF ,Φ)

L(s, ω)
has an analytic continuation to the whole complex plane as a holomorphic function.
Moreover for a suitable choice of Φ it is an exponential function and in fact a
constant.

(ii) If Φ′ is the Fourier transform of Φ with respect to the character ψF then

Z(ω−1α1−s
F ,Φ′)

L(1− s, ω−1)
= ϵ(s, ω, ψF )

Z(ωαsF ,Φ)

L(s, ω)
.

If F = R and ω(x) = |x|rR(sgnx)m with m equal to 0 or 1 then

L(s, ω) = π− 1
2
(s+r+m)Γ

(
s+ r +m

2

)
and if ψF (x) = e2πiux

ϵ(s, ω, ψF ) = (i sgnu)m|u|s+r−
1
2

R .

If F = C and
ω(x) = |x|rCxmxn

where m and n are non-negative integers, one of which is 0, then

L(s, ω) = 2(2π)−(s+r+m+n)Γ(s+ r +m+ n).

Recall that |x|C = xx. If ψF (x) = e4πiRe(wz)

ϵ(s, ω, ψF ) = im+nω(w)|w|s−1/2
C .

These facts recalled, let π be an irreducible admissible representation of HR. If π =
π(µ1, µ2) we set

L(s, π) = L(s, µ1)L(s, µ2)
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and
ϵ(s, π, ψR) = ϵ(s, µ1, ψR)ϵ(s, µ2, ψR)

and if π = π(ω) where ω is a character of C∗ we set

L(s, π) = L(s, ω)

and
ϵ(s, π, ψR) = λ(C/R, ψR)ϵ(s, ω, ψC/R)

if ψC/R(z) = ψR(z + z). The factor λ(C/R, ψR) was defined in the first paragraph. It is of
course necessary to check that the two definitions coincide if π(ω) = π(µ1, µ2). This is an
immediate consequence of the duplication formula.

Theorem 5.15. Let π be an infinite-dimensional irreducible admissible representation of
HR. Let ω be the quasi-character of R× defined by

π

((
a 0
0 a

))
= ω(a)I

If W is in W (π, ψ) set

Ψ(g, s,W ) =

∫
R×

W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a

Ψ̃(g, s,W ) =

∫
R×

W

((
a 0
0 1

)
g

)
ω−1(a)|a|s−1/2 d×a

and let

Ψ(g, s,W ) = L(s, π)Φ(g, s,W )

Ψ̃(g, s,W ) = L(s, π̃)Φ̃(g, s,W ).

(i) The integrals defined Ψ(g, s,W ) and Ψ̃(g, s,W ) are absolutely convergent in some
right half- plane.

(ii) The functions Φ(g, s,W ) and Φ̃(g, s,W ) can be analytically continued to the whole
complex plane as meromorphic functions. Moreover there exists a W for which
Φ(e, s,W ) is an exponential function of s.

(iii) The functional equation

Φ̃(wg, 1− s,W ) = ϵ(s, π, ψ)Φ(g, s,W )

is satisfied.
(iv) If W is fixed Ψ(g, s,W ) remains bounded as g varies in a compact set and s varies in

the region obtained by removing discs centred at the poles of L(s, π) from a vertical
strip of finite width.

We suppose first that π = π(µ1, µ2). Then W (π, ψ) = W (µ1, µ2;ψ). Each W in
W (µ1, µ2;ψ) is of the form W = WΦ where

Φ(x, y) = e−π(x
2+u2y2)P (x, y)

with P (x, y) a polynomial. However we shall verify the assertions of the theorem not merely
forW inW (π, ψ) but for any functionW = WΦ with Φ in S(R2). Since this class of functions
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is invariant under right translations most of the assertions need then be verified only for
g = e.

A computation already performed in the non-archimedean case shows that

Ψ(e, s,W ) = Z(µ1α
s
R, µ2α

s
R,Φ)

the integrals defining these functions both being absolutely convergent in a right half-plane.
Also for s in some left half-plane

Ψ̃(w, 1− s,W ) = Z(µ−1
1 α1−s

R , µ−1
2 α1−s

R ,Φ′)

if Φ′ is the Fourier transform of Φ.
Since Φ can always be taken to be a function of the form Φ(x, y) = Φ1(x)Φ2(y) the

last assertion of part (ii) is clear. All other assertions of the theorem except the last are
consequence of the following lemma.

Lemma 5.15.1. For every Φ in S(R2) the quotient

Z(µ1α
s1
R , µ2α

s2
R ,Φ)

L(s, µ1)L(s, µ2)

is a holomorphic function of (s1, s2) and

Z(µ−1
1 α1−s1

R , µ−1
2 α1−s2

R ,Φ′)

L(1− s1, µ
−1
1 )L(1− s2, µ

−1
2 )

is equal to

ϵ(s1, µ1, ψ)ϵ(s2, µ2, ψ)
Z(µ1α

s1
R , µ2α

s2
R ,Φ)

L(s1, µ1)L(s2, µ2)
.

We may as well assume that µ1 and µ2 are characters so that the integrals converge for
Re s1 > 0 and Re s2 > 0. We shall show that when 0 < Re s1 < 1 and 0 < Re s2 < 1

Z(µ1α
s1
R , µ2α

s2
R ,Φ)Z(µ

−1
1 α1−s1

R , µ−1
2 α1−s2

R Ψ′)

is equal to
Z(µ−1

1 α1−s1
R , µ−1

2 α1−s2
R ,Φ′)Z(µ1α

s1
R , µ2α

s2
R ,Ψ)

if Φ and Ψ belong to S(R2).
The first of these expressions is equal to∫

Φ(x, y)Ψ′(u, v)µ1

(
x

u

)
µ2

(
y

v

)∣∣∣∣xu
∣∣∣∣s1∣∣∣∣yv

∣∣∣∣s2 d×x d×y du dv
if we assume, as we may, that d×x = |x|−1 dx. Changing variables we obtain∫

µ1(x)µ2(y)|x|s1|y|s2
{∫

Φ(xu, yv)Ψ′(u, v) du dv

}
d×x d×y

The second expression is equal to∫
µ−1
1 (x)µ−1

2 (y)|x|1−s1|y|1−s1
{∫

Φ′(xu, yv)Ψ(u, v) du dv

}
d×x d×y

which equals∫
µ1(x)µ2(y)|x|s1|y|s2

{∫
|xy|−1Φ′(x−1u, y−1v)Ψ(u, v) du dv

}
d×x d×y.
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Since the Fourier transform of the function (u, v) → Φ(xu, yv) is the function

|xy|−1Φ′(x−1u, y−1v),

the Plancherel theorem implies that∫
Φ(xu, yv)Ψ′(u, v) du dv =

∫
|xy|−1Φ′(x−1u, y−1v)Ψ(u, v) du dv.

The desired equality follows.
Choose Φ1 and Φ2 in S(R) such that

L(s, µi) = Z(µiα
s
R,Φi)

and take Ψ(x, y) = Φ1(x)Φ2(y). The functional equation of the lemma follows immediately if
0 < s1 < 1 and 0 < s2 < 1. The expression on one side of the equation is holomorphic for
0 < Re s1 and 0 < Re s2. The expression on the other side is holomorphic for Re s1 < 1 and
Re s2 < 1. Standard and easily proved theorems in the theory of functions of several complex
variables show that the function they define is actually an entire function of s1 and s2. The
lemma is completely proved.

For π = π(µ1, µ2) the final assertion of the theorem is a consequence of the following
lemma.

Lemma 5.15.2. Let Ω be a compact subset of S(R2) and C a domain in C2 obtained by
removing balls about the poles of L(s1, µ1)L(s2, µ2) from a tube a1 ⩽ Re s1 ⩽ b1, a2 ⩽ Re s2 ⩽
b2. Then

Z(µ1α
s1
R , µ2α

s2
R ,Φ)

remains bounded as Φ varies in Ω and (s1, s2) varies in C.

The theorems in the theory of functions alluded to earlier show that it is enough to prove
this when either both a1 and a2 are greater than 0 or both b1 and b2 are less than 1. On
a region of the first type the function Z(µ1α

s
R, µ2α

s
R,Φ) is defined by a definite integral.

Integrating by parts as in the theory of Fourier transforms one finds that

Z(µ1α
σ1+iτ1
R , µ2α

σ2+iτ2
R ,Φ) = O(τ 21 + τ 22 )

−n

as τ 21 +τ
2
2 → ∞ uniformly for Φ in Ω and a1 ⩽ σ1 ⩽ b1, a2 ⩽ σ2 ⩽ b2 which is a much stronger

estimate than required. For a region of the second type one combines the estimates just
obtained with the functional equation and the known asymptotic behaviour of the Γ-function.

Now let ω be a quasi-character of C× which is not of the form ω(z) = χ(zz) with χ
a quasi-character of R× and let π = π(ω). W (π, ψ) is the sum of W1(π, ψ) and its right
translate by ϵ. It is easily seen that

Φ
(
g, s, ρ(ϵ)W

)
= ω(−1)Φ(ϵ−1gϵ, s,W )

and that
Φ̃
(
wg, s, ρ(ϵ)W

)
= ω(−1)Φ̃(wϵ−1gϵ, s,W )

Thus it will be enough to prove the theorem for W in W1(π, ψ). Since

Φ(ϵg, s,W ) = Φ(g, s,W )

and
Φ̃(wϵg, s,W ) = Φ̃(wg, s,W )
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we can also take g in G+. W1(π, ψ) consists of the functions WΦ with Φ in S0(C, ω). We
prove the assertions for functions WΦ with Φ in S(C, ω). Since this class of functions is
invariant under right translations by elements of G+ we may take g = e.

As we observed in the first paragraph we will have

Ψ(e, s,W ) = Z(ωαsC,Φ)

Ψ̃(w, 1− s,W ) = λ(C/R, ψ)Z(ω−1α1−s
C ,Φ′)

in some right half plane and the proof proceeds as before. If ω(z) = (zz)rzmzn and p− q =
n−m the function

Φ(z) = e−2π|u|zzzpzq

belongs to S0(C, ω) and

Z(ωαsC,Φ) = 2π

∫ ∞

0

e−2π|u|t2t2(s+r+p+m) dt

= π
(
2π|u|

)−(s+r+p+m)
Γ(s+ r + p+m)

Taking p = n we obtain an exponential times L(s, ω). The last part of the theorem follows
from an analogue of Lemma 5.15.2.

The local functional equation which we have just proved is central to the Hecke theory.
We complete the paragraph with some results which will be used in the paragraph on
extraordinary representations and the chapter on quaternion algebras.

Lemma 5.16. Suppose µ1 and µ2 are two quasi-characters for which both π = π(µ1, µ2) and
σ = σ(µ1, µ2) are defined. Then

L(1− s, σ̃)ϵ(s, σ, ψ)

L(s, σ)
=
L(1− s, π̃)ϵ(s, π, ψ)

L(s, π)

and the quotient
L(s, σ)

L(s, π)
is an exponential times a polynomial.

Interchanging µ1 and µ2 if necessary we may suppose that µ1µ
−1
2 (x) = |x|s(sgnx)m with

s > 0. According to Corollary 5.14, W (σ, ψ) is a subspace of W (µ1, µ2, ψ). Although

W (µ1, µ2, ψ) is not irreducible it is still possible to define Ψ(g, s,W ) and Ψ̃(g, s,W ) when W
lies in W (µ1, µ2, ψ) and to use the method used to prove Theorem 5.15 to show that

Ψ̃(wg, 1− s,W )

L(1− s, π̃)

is equal to

ϵ(s, π, ψ)
Ψ(g, s,W )

L(s, π)

Applying the equality to an element of W (σ, ψ) we obtain the first assertion of the lemma.
The second is most easily obtained by calculation. Replacing µ1 and µ2 by µ1α

t
R and

µ2α
t
R is equivalent to a translation in s so we may assume that µ2 is of the form µ2(x) =

(sgnx)m2 . There is a quasi-character ω of C× such that σ = π(ω). If ω(z) = (zz)rzmzn then
µ1(x) = |x|2r+m+n(sgnx)m+n+m2+1, µ1(x) = xm+n(sgnx)m2+1 so that r = 0. Apart from an
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exponential factor L(s, σ) is equal to Γ(s + m + n) while L(s, π) is, again apart from an
exponential factor,

(5.16.1) Γ

(
s+m+ n+m2

2

)
Γ

(
s+m2

2

)
where m1 = m+ n+m2 + 1 (mod 2). Since m+ n > 0 the number

k =
1

2
(m+ n+ 1 +m1 −m2)− 1

is a non-negative integer and m2 + 2k = m+ n+m1 − 1. Thus

Γ

(
s+m2

2

)
=

 1

2k+1

k∏
j=0

(s+m2 + 2j)


−1

Γ

(
s+m+ n+m1 + 1

2

)
.

By the duplication formula the product (5.16.1) is a constant times an exponential times

Γ(s+m+ n+m1)∏k
j=0(s+m2 + 2j)

.

If m1 = 0 the lemma follows immediately. If m1 = 1

Γ(s+m+ n+m2) = (s+m+ n)Γ(s+m+ n)

and m2 + 2k = m+ n. The lemma again follows.

Lemma 5.17. Suppose ω(z) = (zz)rzmzn is a quasi-character of C× with mn = 0 and
m+n > 0. Suppose µ1 and µ2 are two quasi-characters of F× with µ1µ2(x) = |x|2rxm+n sgnx
and µ1µ

−1
2 (x) = xm+n sgnx. Then for every Φ in S(R2) such that∫

xi
∂jΦ

∂yj
(x, 0) dx = 0

for i > 0, j ⩾ 0, and i+ j + 1 = m+ n the quotient

Z(µ1α
s
R, µ2α

s
R,Φ)

L
(
s, π(w)

)
is a holomorphic function of s and for some Φ it is an exponential.

If WΦ belongs to W (µ1, µ2, ψ) this is a consequence of Corollary 5.14 and Theorem 5.15.
Unfortunately we need the result for all Φ. The observations made during the proof of
Lemma 5.16 show that if π = π(µ1, µ2) the quotient

Z(µ1α
s
R, µ2α

s
R,Φ)

L(s, π)

is holomorphic. Since L(s, π) and L(s, σ) have no zeros we have only to show that the extra
poles of L(s, π) are not really needed to cancel poles of Z(µ1α

s
R, µ2α

s
R,Φ). As in the proof

of Lemma 5.16 we may take r = 0. We have to show that Z(µ1α
s
R, µ2α

s
R,Φ) is holomorphic

at s = −m2 − 2j, 0 ⩽ j ⩽ k if m1 = 0 and at s = −m2 − 2j, 0 ⩽ j ⩽ k if m1 = 1. We
remark first that if µ1 and µ2 are two quasi-characters of R×, Φ belongs to S(R2), and Re s
is sufficiently large then, by a partial integration,∫

µ1(x)µ2(y)|x|s|y|sΦ(x, y) d×x d×y = −1

s

∫
µ1(x)µ2(y)η(y)|x|s|y|s+1∂Φ

∂y
(x, y) d×x d×y
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if η(y) = sgn y. Integrating by parts again we obtain∫
µ1(x)µ2(y)|x|s|y|sΦ(x, y) d×x d×y =

1

s(s+ 1)

∫
µ1(x)µ2(y)|x|s|y|s+2∂

2Φ

∂y2
(x, y) d×x d×y.

If Φ belongs to S(R2) the function defined by

(5.17.1)

∫
Φ(x, y)|x|s+1|y|s d×x d×y

is certainly holomorphic for Re s > 0. We have to show that if∫
Φ(x, 0) dx = 0

it is holomorphic for Re s > −1. Suppose first that Φ(x, 0) ≡ 0. Since

Φ(x, y) = y
∂Φ

∂y
(x, 0) +

∫ y

0

(y − u)
∂2Φ

∂y2
(x, u) du

the function

Ψ(x, y) =
1

y
Φ(x, y)

is dominated by the inverse of any polynomial. Thus (5.17.1) which equals∫
Ψ(x, y)|x|s+1|y|s+1η(y) d×x d×y

is absolutely convergent for Re s > −1. In the general case we set

Φ(x, y) =
{
Φ(x, y)− Φ(x, 0)e−y

2
}
+ Φ(x, 0)e−y

2

= Φ1(x, y) + Φ2(x, y).

Since Φ1(x, 0) = 0 we need only consider∫
Φ2(x, 0)e

−y2|x|s+1|y|s d×x d×y

which is the product of a constant and

Γ

(
s

2

)∫
Φ2(x, 0)|x|s dx.

The integral defines a function which is holomorphic for Re s > −1 and, when the assumptions
are satisfied, vanishes at s = 0.

We have to show that if 0 ⩽ j ⩽ m+ n− 1 and j −m2 is even then Z(µ1α
s
R, µ2α

s
R,Φ) is

holomorphic at −j. Under these circumstances the function Z(µ1α
s
R, µ2α

s
R,Φ) is equal to∫

η(x)m1η(y)m2|x|m+n|x|s|y|sΦ(x, y) d×x d×y

which equals
(−1)j∏j−1
i=0 (s+ i)

∫
η(x)m1|x|s+m+n|y|s+j ∂

jΦ

∂yj
(x, y) d×x d×y.

The factor in front is holomorphic at s = −j. If

Ψ(x, y) = xm+n−j−1∂
jΦ

∂yj
(x, y)
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the integral itself is equal to ∫
|x|s+j+1|y|s+jΨ(x, y) d×x d×y.

Since, by assumption, ∫
Ψ(x, 0) dx = 0,

it is holomorphic at s = −j.
We observe that if m+ n is even

Φ(x, y) = e−π(x
2+y2)xym+n

satisfies the conditions of the lemma and, if r = 0 and m2 = 0, Z(µ1α
s
R, µ2α

s
R,Φ) is equal to∫

e−π(x
2+y2)|x|m+n+s+1|y|m+n+s d×x d×y

which differs by an exponential from Γ(s + m + n) and L
(
s, π(ω)

)
. If m2 = 1 we take

Φ(x, y) = e−π(x
2+y2)ym+n+1 to obtain the same result. If m + n is odd and m2 = 0 the

polynomial factor will be ym+n+1 but if m+ n is odd and m2 = 1 it will again be xym+n.

Proposition 5.18. Suppose π and π′ are two infinite-dimensional irreducible admissible
representations of HR such that, for some quasi-character ω of F×,

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω(a)I.

If
L(1− s, χ−1 ⊗ π̃)

L(s, χ⊗ π)
ϵ(s, χ⊗ π, ψ) =

L(1− s, χ−1 ⊗ π̃′)

L(s, χ⊗ π′)
ϵ(s, χ⊗ π′, ψ)

for all quasi-characters χ and π and π′ are equivalent.

Suppose π = π(µ1, µ2) or σ(µ1, µ2). From Lemma 5.16 and the definitions the expression
on the left is equal to

(i sgnu)m1+m2 |u|2s+s1+s2−1π2s+s1+s2−1Γ
(
1−s−r1+m1

2

)
Γ
(
1−s−r2+m2

2

)
Γ
(
s+r1+m1

2

)
Γ
(
s+r2+m2

2

)
if χ is trivial and µi(x) = |x|ri(sgnx)m1 . If χ(x) = sgnx and ni is 0 or 1 while mi + ni = 1
(mod 2) the quotient is

(i sgnu)m1+m2|u|2s+s1+s2−1π2s+s1+s2−1Γ
(
1−s−r1−n1

2

)
Γ
(
1−s−r2+n2

2

)
Γ
(
s+r1+n1

2

)
Γ
(
s+r2+n2

2

) .

If we let π′ be π(µ′
1, µ

′
2) or σ(µ

′
1, µ

′
2) we obtain similar formulae with ri replaced by r′i and

mi by m
′
i.

Consider first the quotients for π. The first has an infinite number of zeros of the
form −r1 −m1 − 2p where p is a non-negative integer and an infinite number of the form
−r2 −m2 − 2p where p is a non-negative integer, but no other zeros. Similarly the zeros of
the second are at points −r1 − n1 − 2p or −r2 − n2 − 2p. Thus if the quotients are equal
r1 + m1 ≡ r2 + n2 ≡ r2 + m2 + 1 (mod 2). Moreover if r1 + m1 = r2 + m2 + 1 (mod 2)
then π = σ(µ1, µ2) and, as we saw in Theorem 5.11, σ(µ1η, µ2η) = σ(µ1, µ2) so that the two
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quotients are equal. As a result either r1+m1 = r2+m2+1 (mod 2) and r′1+m
′
1 = r′2+m

′
2+1

(mod 2) or neither of these congruences hold.
Suppose first that π = π(µ1, µ2) and π

′(µ′
1, µ

′
2). Then the first quotient for π has zeros

at the points −r1 −m1,−r1 −m1 − 2, . . . and −r2 −m2,−r2 −m2 − 2, . . . while that for
π′ has zeros at −r′1 −m′

1,−r′1 −m′
1 − 2, . . . and −r′2 −m′

2,−r′2 −m′
2 − 2, . . . . Thus either

r1 + m1 = r′1 + m′
1 or r1 + m1 = r′2 + m′

2. Interchanging µ′
1 and µ′

2 if necessary we may
assume that the first of these two alternatives hold. Then r2 +m2 = r′2 +m′

2. Moreover
r1 + r2 = r′1 + r′2 and |m1 − m2| = |m′

1 − m′
2|. If m1 = m′

1 it follows immediately that
µ1 = µ′

1 and µ2 = µ′
2. Suppose that m1 ̸= m′

1. Examining the second quotient we see that
either r1 + n1 = r′1 + n′

1 or r1 + n1 = r′2 + n′
2. The first equality is incompatible with the

relations r1 +m1 = r′1 +m′
1 and m1 ≠ m′

1. Thus r1 + n1 = r′2 + n′
2. For the same reason

r2 + n2 = r′1 + n′
1. Interchanging the roles of µ1, µ2 and µ′

1, µ
′
2 if necessary we may suppose

that m1 = 0 and m′
1 = 1. Then r1 = r′1 + 1. Since r1 + r2 = r′1 + r′2 we have r2 = r′2 − 1 so

that m2 = 1, m′
2 = 0. Thus n1 = n′

2 = 1 and r1 = r′2 so that r2 = r′1. It follows that µ1 = µ′
2

and µ2 = µ′
1.

Finally we suppose that π = σ(µ1, µ2) and π′ = σ(µ′
1, µ

′
2). Then there are quasi-

characters ω1 and ω′
1 of C× such that π = π(ω1) and π′ = π(ω′

1). Replacing ω1 by the
quasi-character z → ω1(z) does not change π(ω1) so we may suppose that ω1(z) = (zz)rzm

while ω′
1(z) = (zz)r

′
zm

′
. Since ω1 and ω′

1 must have the same restriction to R× the numbers
2r + m and 2r′ + m′ are equal while m ≡ m′ (mod 2). Apart from a constant and an
exponential factor the quotient

ϵ(s, π, ψ)
L(1− s, π̃)

L(s, π)
is given by

Γ(1− s− r)

Γ(s+ r +m)

whose pole furthest to the left is at 1− r. Consequently r = r′ and m = m′.

Corollary 5.19. Suppose π and π′ are two irreducible admissible representations of HR.
Suppose there is a quasi-character ω of R× such that

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω(a)I

If for all quasi-characters χ, L(s, χ⊗ π) = L(s, χ⊗ π′), L(s, χ−1 ⊗ π̃) = L(s, χ−1 ⊗ π̃′), and
ϵ(s, χ⊗ π, ψ) = ϵ(s, χ⊗ π′, ψ) then π and π′ are equivalent.

Combining Lemma 5.16 with the previous proposition we infer that there is a pair of
quasi-characters µ1 and µ2 such that both π and π′ are one of the representations π(µ1, µ2)
or σ(µ1, µ2). However the computations made during the proof of Lemma 5.16 show that
L
(
s, χ⊗ π(µ1, µ2)

)
differs from L

(
s, χ⊗ σ(µ1, µ2)

)
for a suitable choice of χ.

Let K be the quaternion algebra over R. We could proceed along the lies of the fourth
paragraph and associate to every finite-dimensional irreducible representation Ω of K× a
representation π(Ω) of GR. Since we have just classified the representations of GR we can
actually proceed in a more direct manner.
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We identify K with the algebra of 2× 2 complex matrices of the form

z =

(
a b

−b a

)
Then

zι =

(
a −b
b a

)
and ν(z) = zzι is the scalar matrix

(
|a|2 + |b|2

)
I while τ(z) is the scalar matrix (a+a+b+b)I.

Let ρ1 be the two-dimensional representation of K× associated to this identification and
let ρn be the nth symmetric power of ρ1. Any irreducible representation is equivalent to a
representation of the form χ⊗ ρn where χ is a quasi- character of R×. Thus

(χ⊗ ρn)(h) = χ
(
ν(h)

)
ρn(h)

Since ν(h) is always positive we may suppose that χ is of the form χ(x) = |x|r.
Let Ω be a finite-dimensional representation and let Ω act on U . In the first paragraph

we introduced the space S(K,U). It is clear that if Φ is in S(K,U) the integrals

Z(αsR ⊗ Ω,Φ) =

∫
K×

Ω(h)
∣∣ν(h)∣∣sΦ(h) d×h

and

Z(αsR ⊗ Ω−1,Φ) =

∫
K×

Ω−1(h)
∣∣ν(h)∣∣sΦ(h) d×h

converge absolutely in some right half-plane.

Proposition 5.20. Suppose χ(x) = |x|r and Ω = χ ⊗ ρn. Let ω be the character of C×

defined by ω(z) = (zz)r−1/2zn+1. Set L(s,Ω) = L(s, ω) and

ϵ(s,Ω, ψR) = λ(C/R, ψR)ϵ(s, ω, ψC/R)

The quotient

Z(α
s+1/2
R ⊗ Ω,Φ)

L(s,Ω)
can be analytically contained to the whole complex plane as a holomorphic function. Given u
in U there exists a Φ in S(K,U) such that

Z(α
s+1/2
R ,Φ)

L(s,Ω)
= asu.

For all Φ the two functions

Z(α
3/2−s
R ⊗ Ω−1,Φ′)

L(1− s, Ω̃)
and

−ϵ(s,Ω, ψR)
Z(α

s+1/2
R ⊗ Ω,Φ)

L(s,Ω)

are equal. Finally Z(α
s+1/2
R ⊗ Ω,Φ) is bounded in any region obtained by removing discs about

the poles L(s,Ω) from a vertical strip of finite width.
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Suppose K1 is the subgroup of K× formed by the elements of reduced norm one. Let Φ1

be the function on R defined by

Φ1(t) =

∫
K1

Ω(h)Φ(th) dh

Φ1 belongs to S(R) and if ω0 is the quasi-character of R× defined by Ω(t) = ω0(t)I the
function ω0(t)Φ1(t) is even. Moreover if the multiplicative Haar measures are suitably
normalized

Z(α
s+1/2
R ⊗ Ω,Φ) = Z(α2s+1

R ω0,Φ1).

Since ω0(t) = |t|2rtn we can integrate by parts as in the proof of Lemma 5.17 to see that
for any non-negative integer m

Z(α2s+1
R ω0,Φ1) =

(−1)m∏m−1
j=0 (2s+ 2r + n+ j + 1)

∫
η(t)m+n|t|2s+2r+m+n+1∂

mΦ1

∂tm
d×t.

The integral is holomorphic for Re(2s+ 2r +m+ n) > −1 and, if ∂mΦ1

∂tm
vanishes at t = 0, for

Re(2s+ 2r +m+ n) > −2. Thus the function on the left has an analytic continuation to the
whole complex plane as a meromorphic function with simple poles. Since

L(s,Ω) = 2(2π)−(s+r+n+1/2)Γ

(
s+ r + n+

1

2

)
we have to show that its poles occur at the points s+ r + n+ 1

2
+ j = 0 with j = 0, 1, 2, . . . .

Since ∂mΦ1

∂tm
vanishes at 0 if m+n is odd its only poles are at the points 2s+2r+2n+2j+1 = 0

with n+ 2j ⩾ 0. To exclude the remaining unwanted poles we have to show that ∂mΦ1

∂tm
= 0 at

0 if m < n. If we expand Φ in a Taylor’s series about 0 we see that ∂mΦ1

∂tm
= 0 at 0 unless the

restriction of ρn to K1 is contained in the representation on the polynomials of degree m on
K. This can happen only if m ⩾ n.

Since Ω̃ is equivalent to the representation h→ Ω−1(hι) the quotient

Z(α
3/2−s
R ⊗ Ω−1,Φ′)

L(1− s, Ω̃)

is also holomorphic. The argument used to prove Lemma 5.15.1 shows that there is a scalar
λ(s) such that, for all Φ,

Z(α
3/2−s
R ⊗ Ω−1,Φ′)

L(1− s, Ω̃)
= λ(s)

Z(α
s+1/2
R ⊗ Ω,Φ)

L(s,Ω)
.

We shall used the following lemma to evaluate λ(s).

Lemma 5.20.1. Let φ be a function in S(C) of the form

φ(x) = e−2πxxP (x, x)

where P is a polynomial in x and x. Suppose φ(xu) = φ(x)ω−1(u) if uu = 1. Define the
function Φ in K× by

Φ(z) = φ(α)ω(α)(αα)−1/2
〈
u, Ω̃(z)ũ

〉
if ν(z) = αα. Then Φ extends to a function in S(K) and its Fourier transform is given by

Φ′(z) = −λ(C/R, ψR)φ
′(α)ω−1(α)(αα)−1/2

〈
Ω(z)u, ũ

〉
if φ′ is the Fourier transform of φ.
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By linearity we may assume that φ is of the form

φ(x) = e−2πxx(xx)pxn+1

where p is a non-negative integer. We may suppose that the restriction of ρn to the elements

of norm one is orthogonal and identify the space U on which its acts with its dual Ũ . Then

Ω̃ = α−r−n
R ⊗ ρn. Thus if

z =

(
a b

−b a

)
the value of Φ at z is

e−2π(aa+bb)(aa+ bb)r+n+p
〈
u, Ω̃(z)ũ

〉
= e−2π(aa+bb)(aa+ bb)p

〈
u, ρn(z)ũ

〉
The expression on the right certainly defines a function in S(K).

We are trying to show that if

F (z) = φ(α)ω(α)(αα)−1/2Ω−1(z)

when z = αα then the Fourier transform of F is given by

(5.20.2) F ′(z) = −λ(C/R, ψR)φ
′(α)ω−1(α)(αα)−1/2Ω(z).

If h1 and h2 have norm one

F (h1zh2) = Ω(h−1
2 )F (z)Ω(h−1

1 )

and therefore
F ′(h1zh2) = Ω(h1)F

′(z)Ω(h2)

In particular if z is a scalar in K the operator F ′(z) commutes with the elements of norm
one and is therefore a scalar operator. The expression F1(z) on the right of (5.20.2) has the
same properties so that all we need do is show that for some pair of vectors u and ũ which
are not orthogonal 〈

F ′(z)u, ũ
〉
=
〈
F1(z)u, ũ

〉
for all positive scalars z.

If we only wanted to show that F ′(z) = cF1(z) where c is a positive constant it would be
enough to show that

(5.20.3)
〈
F ′(z)u, ũ

〉
= c
〈
F1(z)u, ũ

〉
.

Once this was done we could interchange the roles of φ and φ′ and Φ and Φ′ to show that
c2 = 1. To obviate any fuss with Haar measures we prove (5.20.3).

Recall that if

a(θ) =

(
eiθ 0

θ e−iθ

)
then, apart from a positive constant,∫

K1

〈
u, Ω̃(k)ũ

〉
f(k) dk

is equal to

⟨u, ũ⟩
∫ π

0

sin(n+ 1)θ sin θf
(
a(θ)

)
dθ
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if f is a class function on K1, the group of elements of norm one. The equality is of course a
consequence of the Weyl character formula and the Schur orthogonality relations.

If x is a positive scalar in K then, apart from a positive constant, Φ′(x) is given by∫
K×

Φ(z)ψR

(
τ(xz)

)∣∣ν(z)∣∣2 d×z
which is a positive multiple of∫ ∞

0

t3φ(t)

{∫
K1

〈
u, Ω̃(k)ũ

〉
ψR

(
xtτ(k)

)
dk

}
d×t.

Since τ(k) is a class function this expression is a positive multiple of

⟨u, ũ⟩
∫ ∞

0

t3φ(t)

{∫ π

0

sin(n+ 1)θ sin θψR(2xt cos θ) dθ

}
d×t

Integrating the inner integral by parts we obtain

⟨u, ũ⟩ n+ 1

4πiux

∫ ∞

0

t2φ(t)

{∫ π

0

cos(n+ 1)θψR(2xt cos θ) dθ

}
d×t.

On the other hand if x, which is a positive real number, is regarded as an element of C
then φ′(x) is a positive multiple of∫

C×
φ(z)ψR

(
τ(xz)

)
zz d×z

or of ∫ ∞

0

t2φ(t)

{∫ 2π

0

e−i(n+1)θψR(xt cos θ) dθ

}
d×t.

Since ∫ 2π

0

e−i(n+1)θψR(xt cos θ) dθ = 2

∫ π

0

cos(n+ 1)θψR(xt cos θ) dθ

and λ(C/R) = i sgnu the identity (5.20.3) follows for any choice of u and ũ.
To evaluate λ(s) we choose Φ as in the lemma and compute〈

Z

(
α
s+ 1

2
R ⊗ Ω,Φv

)
, ṽ

〉
=

∫
Φ(z)

∣∣ν(z)∣∣s+ 1
2
〈
Ω(z)v, ṽ

〉
d×z

and 〈
Z

(
α

3
2
−s

R ⊗ Ω−1,Φv

)
, ṽ

〉
=

∫
Φ(z)

∣∣ν(z)∣∣ 32−s〈v, Ω̃(z)ṽ〉 d×z.
The first is equal to ∫

K×/K1

∣∣ν(z)∣∣s+ 1
2

{∫
K1

Φ(zk)
〈
Ω(zk)v, ṽ

〉
dk

}
d×z.

Since ∫
K1

〈
Ω(zk)v, ṽ

〉〈
u, Ω̃(zk)ũ

〉
dk
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is, by the Schur orthogonality relations, equal to

1

deg Ω
⟨v, ũ⟩⟨u, ṽ⟩

the double integral is equal to

1

deg Ω
⟨v, ũ⟩⟨u, ṽ⟩

∫
K×

φ(α)ω(α)(αα)s d×z

where αα = ν(z). If the Haar measure on C× is suitably chosen the integral here is equal to
Z(ωαsC, φ). The same choice of Haar measures lead to the relation〈

Z

(
α

3
2
−s

R ⊗ Ω−1,Φv

)
, ṽ

〉
=

−λ(C/R, ψR)

deg Ω
⟨v, ũ⟩⟨u, ṽ⟩Z(ω−1α1−s

C , φ′).

Since L(s,Ω) = L(s, ω) and L(s, Ω̃) = L(s, ω−1) we can compare the functional equation

for Z(ωαsC, φ) with that for Z(α
s+1/2
R ⊗ Ω,Φv) to see that

λ(s) = −λ(C/R, ψR)ϵ(s, ω, ψC/R)

as asserted.
If

φ(x) = e−2πxx

then Z(αsCω, φ) is an exponential times L(s, ω) so that Z(α
s+1/2
R ⊗ Ω,Φv) is, with a suitable

choice of v and ũ, a non-zero scalar times an exponential times L(s, ω)u. The last assertion
of the proposition is proved in the same way as Lemma 5.15.2.

We end this paragraph with the observation that the space W (π, ψ) of Theorem 5.13
cannot exist when π is finite-dimensional. If W = W (π, ψ) did exist the contragredient

representation π̃ on the dual space W̃ would also be finite-dimensional and π̃(X+) would
be nilpotent. However if λ is the linear functional φ → φ(e) then π̃(X+)λ = −2iπa if
ψ(x) = e2iπax.
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§6. Representations of GL(2,C)

In this paragraph we have to review the representation theory of GC = GL(2,C) and
prove the local functional equation for the complex field. Many of the definitions and results
of the previous paragraph are applicable, after simple modifications which we do not always
make explicit, to the present situation.

The standard maximal compact subgroup of GL(2,C) is the group U(2,C) of unitary
matrices. H1 will be the space of infinitely differentiable compactly supported functions on
GC. H2 will be the space of functions on U(2,C) which are finite linear combinations of the
matrix elements of finite-dimensional representations. HC = H1 ⊕H2 can be regarded as
a space of measures. Under convolution it forms an algebra called the Hecke algebra. The
notion of an elementary idempotent and the notion of an admissible representation of HC

are defined more or less as before.
Let g be the Lie algebra of the real Lie group of GL(2,C) and let gC = g ⊗R C. A

will be the universal enveloping algebra of gC. A representation of A will be said to be
admissible if its restriction to the Lie algebra of U(2,C) decomposes into a direct sum of
irreducible finite-dimensional representations each occurring with finite multiplicity. There
is a one-to-one correspondence between classes of irreducible admissible representations of
HC and those of A. We do not usually distinguish between the two. The representation π̃
contragredient to π and the tensor product of π with a quasi-character of C× are defined as
before.

If µ1 and µ2 are two quasi-characters of C× we can introduce the space B(µ1, µ2) and the
representation ρ(µ1, µ2) of HC or of A on B(µ1, µ2). In order to study this representation
we identify gC with gℓ(2,C)⊕ gℓ(2,C) in such a way that g corresponds to the elements of
X ⊕X. If A1 is the universal enveloping algebra of gℓ(2,C) we may then identify A with
A1 ⊗ A1.

In the previous paragraph we introduced the elements D and J of A1. Set D1 = D ⊗ 1,
D2 = 1 ⊗ D, J1 = J ⊗ 1, and J2 = 1 ⊗ J . These four elements lie in the centre of
A. A representation of A is admissible if its restriction to the Lie algebra of the group
SU(2,C) of unitary matrices of determinant one decomposes into the direct sum of irreducible
finite-dimensional representations each occurring with finite multiplicity.

The first part of the next lemma is verified by calculations like those used in the proof of
Lemma 5.6. The second is a consequence of the Frobenius reciprocity law applied to the pair
SU(2,C) and its subgroup of diagonal matrices.

Lemma 6.1. Let
µi(z) = (zz)si−

1
2
(ai+bi)zaizbi

and
µ1µ

−1
2 (z) = µ(z) = (zz)s−

1
2
(a+b)zazb

where ai, bi, a, and b are non-negative integers and aibi = ab = 0.
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(i) On B(µ1, µ2) we have the following four relations

ρ(D1) =
1

2

{(
s+

a− b

2

)2

− 1

}
I

ρ(D2) =
1

2

{(
s+

b− a

2

)2

− 1

}
I

ρ(J1) =

{
(s1 + s2) +

a1 − b1 + a2 − b2
2

}
I

ρ(J2) =

{
(s1 + s2) +

b1 − a1 + b2 − a2
2

}
I

(ii) ρ(µ1, µ2) is admissible and contains the representation ρn of the Lie algebra of
SU(2,C) if and only if n ⩾ a+ b and n ≡ a+ b (mod 2) and then it contains it just
once.

ρn is the unique irreducible representation of SU(2,C) of degree n+ 1. Let B(µ1, µ2, ρn)
be the space of functions in B(µ1, µ2) transforming according to ρn.

Theorem 6.2.

(i) If µ is not of the form z → zpzq or z → z−pz−q with p ⩾ 1 and q ⩾ 1 then ρ(µ1, µ2)
is irreducible. A representation equivalent to ρ(µ1, µ2) will be denoted by π(µ1, µ2),

(ii) If µ(z) = zpzq with p ⩾ 1, q ⩾ 1 then

Bs(µ1, µ2) =
∑
n⩾p+q

n≡p+q (mod 2)

B(µ1, µ2, ρn)

is the only proper invariant subspace of B(µ1, µ2). σ(µ1, µ2) will be any representation
equivalent to the representation on Bs(µ1, µ2) and π(µ1, µ2) will be any representation
equivalent to the representation on the quotient space

Bf (µ1, µ2) = B(µ1, µ2)/Bs(µ1, µ2)

(iii) If µ(z) = z−pz−q with p ⩾ 1, q ⩾ 1 then

Bf (µ1, µ2) =
∑

|p−q|⩽n<p+q
n≡p+q (mod 2)

B(µ1, µ2, ρn)

is the only proper invariant subspace of B(µ1, µ2). π(µ1, µ2) will be any representation
equivalent to the representation on Bf (µ1, µ2) and σ(µ1, µ2) will be any representation
equivalent to the representation on the quotient space

Bs(µ1, µ2) = B(µ1, µ2)/Bf (µ1, µ2).

(iv) π(µ1, µ2) is equivalent to π(µ′
1, µ

′
2) if and only if (µ1, µ2) = (µ′

1, µ
′
2) or (µ1, µ2) =

(µ′
2, µ

′
1).

(v) If σ(µ1, µ2) and σ(µ′
1, µ

′
2) are defined they are equivalent if and only if (µ1, µ2) =

(µ′
1, µ

′
2) or (µ1, µ2) = (µ′

2, µ
′
1).

(vi) If µ(z) = zpzq with p ⩾ 1, q ⩾ 1 there is a pair of characters ν1, ν2 such that
µ1µ2 = ν1ν2 and ν1ν

−1
2 = zpz−q and σ(µ1, µ2) is equivalent to π(ν1, ν2).
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(vii) Every irreducible admissible representation of HC or A is a π(µ1, µ2) for some choice
of µ1 and µ2.

The proofs of the first three assertions will be based on two lemmas.

Lemma 6.2.1. If there exists a proper invariant subspace V of B(µ1, µ2) which is finite-
dimensional then µ1µ

−1
2 (z) = z−pz−q with p ⩾ 1, q ⩾ 1 and V = Bf (µ1, µ2).

Lemma 6.2.2. Let V be a proper invariant subspace of B(µ1, µ2) and let n0 be the smallest
integer such that some subspace of V transforms according to the representation ρn0 of the
Lie algebra of SU(2,C). Either

V =
∑
n⩾n0

B(µ1, µ2, ρn)

or V contains a finite-dimensional invariant subspace.

Grant these lemmas for a moment and let V be a proper invariant subspace of B(µ1, µ2).
As in the case of the non-archimedean and real fields there is an invariant non-degenerate
bilinear form on B(µ1, µ2)×B(µ−1

1 , µ−1
2 ). The orthogonal complement V ⊥ of V in B(µ−1

1 , µ−1
2 )

is a proper invariant subspace. By Lemma 6.2.1 they cannot both contain an invariant
finite-dimensional subspace. Therefore by Lemma 6.2.2 one of them is of finite codimension.
The other must be of finite dimension. If V is finite-dimensional then µ1µ

−1
2 (z) = z−pz−q

and V = Bf (µ1, µ2). If V
⊥ is finite-dimensional then µ1µ

−1
2 (z) = zpzq. Since the orthogonal

complement of Bf (µ1, µ2) is Bs(µ1, µ2) we must have V = Bs(µ1, µ2).
We shall now show that Bf(µ1, µ2) is invariant when µ1µ

−1
2 (z) = z−pz−1. It will follow

from duality that Bs(µ1, µ2) is invariant when µ1µ
−1
2 (z) = zpzq. Every irreducible finite-

dimensional representation π of A determines a representation π of GC. If π acts on X there
is a nonzero vector v0 in X such that

π

((
z x
0 z−1

))
v0 = zmznv0

for all z in C× and all x in C. v0 is determined up to a scalar factor and m and n are
non-negative integers. Moreover there is a quasi-character ω0 of C× such that

π

((
a 0
0 a

))
= ω0(a)I

Thus

π

((
z1 x
0 z2

))
v0 = ω1(z1)ω2(z2)v0

where ω1ω
−1
2 (z) = zmzn. π is determined up to equivalence by ω1 and ω2 so we write

π = κ(ω1, ω2). As long as ω1ω
−1
2 (z) = zmzn with non-negative integers m and n the

representation κ(ω1, ω2) exists. By the Clebsch-Gordan formula the restriction of κ(ω1, ω2)
or its contragredient to SU(2,C) breaks up into the direct sum of the representations ρi with
|m−n| ⩽ i ⩽ m+n and 1 ≡ m+n (mod 2). Let π be κ(ω1, ω2) and let π̃, the contragredient

representation, act on X̃. To each vector ṽ in X̃ we associate the function

φ(g) =
〈
v0, π̃(g)ṽ

〉
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on GC. The map ṽ → φ is linear and injective. Moreover π̃(g)ṽ → ρ(g)φ while

φ

((
z1 x
0 z2

)
g

)
= ω−1

1 (z1)ω
−1
2 (z2)φ(g)

so that if µ1 = ω−1
1 α

−1/2
C and µ2 = ω−1

2 α
1/2
C the function φ belongs to B(µ1, µ2). As we vary

ω1 and ω2 the quasi-characters µ1 and µ2 vary over all pairs such that µ1µ
−1
2 (z) = z−pz−q

with p ⩾ 1 and q ⩾ 1.
We have still to prove the two lemmas. Suppose V is a proper finite-dimensional subspace of

B(µ1, µ2). The representation of A on V is certainly a direct sum of irreducible representations

each occurring with multiplicity one. Let V ′ be an irreducible subspace of V and let Ṽ ′ be the
dual space of V ′. Let λ be the linear functional λ : φ→ φ(e) on V ′. If π is the representation
of A or of GC on V ′ then

π̃

((
z1 x
0 z2

))
λ = µ−1

1 (z1)µ
−1
2 (z2)

(
z1z1z

−1
2 (z2)

−1
)−1/2

λ

Thus if ω1 = µ−1
1 α

−1/2
C and ω2 = µ−1

2 α
1/2
C the representation π̃ is κ(ω1, ω2). It follows

immediately that µ1µ
−1
2 is of the form µ1µ

−1
2 (z) = z−pz−q with p ⩾ 1 and q ⩾ 1 and that V ′

and therefore V is Bf (µ1, µ2).
To prove the second lemma we regard g as the real Lie algebra of 2× 2 complex matrices.

Then

a =

{(
a 0
0 a

) ∣∣∣∣∣ a ∈ C

}
is the centre of g and

u =


(
ia b

−b −ia

) ∣∣∣∣∣∣ a ∈ R, b ∈ C


is the Lie algebra of SU(2,C). If

g =


(
a b

b −a

) ∣∣∣∣∣∣ a ∈ R, b ∈ C


then u⊕ g is the Cartan decomposition of the Lie algebra of the special linear group. The
space gC = g⊗R C is invariant under the adjoint action of u on gC. Moreover u acts on gC
according to the representation ρ2. One knows that ρ2 ⊗ ρn is equivalent to ρn+2 ⊕ ρn ⊕ ρn−2

if n ⩾ 2, that ρ2 ⊗ ρ1 is equivalent to ρ3 ⊕ ρ1 and, of course, that ρ2 ⊗ ρ0 is equivalent to ρ2.
The map of gC ⊗ B(µ1, µ2, ρn) into B(µ1, µ2) which sends X ⊗ f to ρ(X)f commutes with
the action of u. Thus ρ(X)f is contained in

B(µ1, µ2, ρn+2)⊕ B(µ1, µ2, ρn)⊕ B(µ1, µ2, ρn−2).

It is understood that B(µ1, µ2, ρℓ) = 0 if ℓ < 0.
Now let V be a proper invariant subspace of B(µ1, µ2). Let n0 be the smallest non-negative

integer n for which V contains B(µ1, µ2, ρn). If n ⩾ n0 set

V (n) =
∑

n⩾k⩾n0
k≡n0 (mod 2)

B(µ1, µ2, ρk)
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If V contains every V (n) there is nothing to prove so assume that there is a largest integer
n1 for which V contains V (n1). All we need do is show that V (n1) is invariant under g. It is
invariant under a and u by construction so we need only verify that if X lies in gC then ρ(X)
takes V (n1) into itself. It is clear that ρ(X) takes V (n1 − 2) into V (n1) so we have only to
show that it takes B(µ1, µ2, ρn1) into V (n1). Take f in B(µ1, µ2, ρn1) and let ρ(X)f = f1 + f2
with f1 in V (n1) and f2 in B(µ1, µ2, ρn1+2). Certainly f2 lies in V . Since

V ∩ B(µ1, µ2, ρn1+2)

is either 0 or B(µ1, µ2, ρn1+2) and since, by construction, it is not B(µ1, µ2, ρn1+2) the function
f2 is 0.

The first three assertions of the theorem are now proved and we consider the remaining
ones. We make use of the fact that D1, D2, J1 and J2 generate the centre of A as well
as a result of Harish-Chandra to be quoted later. Suppose π and π′ are two irreducible
representations of A which are constituents of ρ(µ1, µ2) and ρ(µ

′
1, µ

′
2) respectively. Assume π

and π′ contain the same representations of the Lie algebra of SU(2,C) and are associated
to the same homomorphism of the centre of A into C. Comparing the scalars π(J1) and

π(J1) with π
′(J1) and π

′(J2) we find that µ1µ2 = µ′
1µ

′
2. Let µ1µ

−1
2 (z) = (zz)s−

a+b
2 zazb and

let µ′
1µ

′
2
−1(z) = (zz)s

′−a′+b′
2 za

′
zb

′
. Comparing π(D1) and π(ν2) with π

′(D1) and π
′(D2) we

see that (
s+

a− b

2

)2

=

(
s′ +

a′ − b′

2

)2

and (
s+

b− a

2

)2

=

(
s′ +

b′ − a′

2

)2

.

These relations will hold if µ1µ
−1
2 = µ′

1µ
′
2
−1 or µ−1

1 µ2 = µ′
1µ

′
2
−1 and therefore, when µ1µ2 =

µ′
1µ

′
2, (µ1, µ2) = (µ′

1, µ
′
2) or (µ1, µ2) = (µ′

2, µ
′
1). If neither of these alternatives hold we must

have

s =
a′ − b′

2
, s′ =

a− b

2
,

or

s =
b′ − a′

2
, s′ =

b− a

2
.

Since µ1µ2 = µ′
1µ

′
2 the integers a+ b and a′ + b′ must have the same parity. Let µ = µ1µ

−1
2

and µ′ = µ′
1µ

′
2
−1. In the first case µµ′ is of the form µµ′(z) = z2p and µµ′−1 is of the form z2q

and in the second µµ′(z) = z2p while µµ′−1(z) = z2q. Since {µ1, µ2} is not {µ′
1, µ

′
2} neither

p nor q is 0. In the first case µ = zpzq and µ′ = zpz−q and in the second µ = zqzp while
µ′ = z−qzp.

In conclusion we see that π and π′ contain the same representations of the Lie algebra
of SU(2,C) and are associated to the same homomorphism of the centre of A into C if and
only if one of the following alternatives holds.

(i) For some pair of quasi-characters ν1 and ν2 we have {π, π′} =
{
π(ν1, ν2), π(ν1, ν2)

}
or {π, π′} =

{
π(ν1, ν2), π(ν2, ν1)

}
.

(ii) For some pair of quasi-characters ν1 and ν2 we have {π, π′} =
{
σ(ν1, ν2), σ(ν1, ν2)

}
or {π, π′} =

{
σ(ν1, ν2), σ(ν2, ν1)

}
.
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(iii) For some pair of quasi-characters ν1 and ν2 with ν1ν
−1
2 (z) = zpzq where p ⩾ 1, q ⩾ 1

we have {π, π′} =
{
σ(ν1, ν2), π(ν

′
1, ν

′
2)
}
where ν1ν2 = ν ′1ν

′
2 and ν ′ν ′2

−1(z) is either
zpz−1 or z−pzq.

(iv) For some pair of quasi-characters ν1 and ν2 with ν1ν
−1
2 (z) = z−pz−q where p ⩾ 1,

q ⩾ 1 we have {π, π′} =
{
σ(ν1, ν2), π(ν

′
1, ν

′
2)
}
where ν1ν2 = ν ′1ν

′
2 and ν ′1ν

′
2
−1(z) is

either zpz−q or z−pzq.

The remaining assertions are now all consequences of a theorem of Harish-Chandra which, in
the special case of interest to us, we may state in the following manner.

Lemma 6.2.3. If π is an irreducible admissible representation of A there exists a pair
of quasi-characters µ1 and µ2 such that ρ(µ1, µ2) and π contain at least one irreducible
representation of the Lie algebra of SU(2,C) in common and are associated to the same
homomorphism of the centre of A into C. When this is so π is a constituent of ρ(µ1, µ2).

As before χ⊗ π(µ1, µ2) is π(χµ1, χµ2) and χ⊗ σ(µ1, µ2) is σ(χµ1, χµ2). If

π

((
a 0
0 a

))
= ω0(a)I

then π̃ = ω−1
0 ⊗ π.

Theorem 6.3. Let π be an infinite-dimensional irreducible admissible representation of HC

and let ψ be a non-trivial additive character of C. There is exactly one space W (π, ψ) of
functions on GC which satisfies the following three conditions.

(i) Every function W in W (π, ψ) satisfies

W

((
1 x
0 1

)
g

)
= ψ(x)W (g).

(ii) The functions inW (π, ψ) are continuous andW (π, ψ) is invariant under the operators
ρ(f) for f in HC. Moreover the representation of HC on W (π, ψ) is equivalent to π.

(iii) If W is in W (π, ψ) there is a positive number N such that

W

((
t 0
0 1

))
= O

(
|t|N

)
as |t| → ∞.

Since every π is of the form π = π(µ1, µ2) the existence is rather easy to prove. If Φ is in
S(C2) let

θ(µ1, µ2,Φ) =

∫
C×

Φ(t, t−1)µ1(t)µ
−1
2 (t) d×t

We let W (µ1, µ2, ψ) be the space of functions on GC of the form

W (g) = WΦ(g) = µ1(det g)|det g|1/2C θ
(
µ1, µ2, r(g)Φ

)
where Φ in S(C2) is SU(2,C)-finite under the action defined by r. It is clear that

W (µ1, µ2, ψ) = W (µ2, µ1, ψ)

and that W (µ1, µ2, ψ) is invariant under right translations by elements of HC and of A.
The existence of W (π, ψ) will, as before, be a consequence of the following analogue of

Lemma 5.13.1.
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Lemma 6.3.1. Suppose µ1µ
−1
2 (t) = (tt)s−

a+b
2 tat

b
with Re s > −1. Then there is a bijection

A of W (µ1, µ2, ψ) with B(µ1, µ2) which commutes with the action of HC.

As before A associates to WΦ the function

fΦ̃(g) = µ1(det g)|det g|1/2C z
(
µ1µ

−1
2 αC, ρ(g)Φ̃

)
The proof of course proceeds as before. However we should check that A is surjective.
Theorem 6.2 shows that, under the present circumstances, there is no proper invariant
subspace of B(µ1, µ2) containing B(µ1, µ2, ρa+b) so that we need only show that at least one
nonzero function in B(µ1, µ2, ρa+b) is of the form fΦ where Φ is in S(C2) and SU(2,C)-finite
under right translations.

If
Φ(x, y) = e−2π(xx+yy)yayb

then, since a+ b = 0, Φ transforms under right translations by SU(2,C) according to ρa+b so
we need only check that fΦ is not 0. Proceeding according to the definition we see that

fΦ(e) =

∫
C×

Φ(0, t)(tt)s−
a+b
2 tat

b
d×t

=

∫
C×

e−2πtt(tt)1+s+
a+b
2 d×t.

Apart from a constant which depends on the choice of Haar measure this is

(2π)−s−
a+b
2 Γ

(
1 + s+

a+ b

2

)
and is thus not 0.

Just as in the previous paragraph W (µ1, µ2, ψ) is spanned by functions WΦ where Φ is of
the form

Φ(x, y) = e−2π(xx+uuyy)xpxqymyn

where p, q, m, and n are integers. The complex number u is determined by the relation
ψ(z) = e4πiReuz. We can show that

WΦ

((
t 0
0 1

))
decreases exponentially as |t| → ∞.

To prove the uniqueness we will use a differential equation as in the previous chapter. This
time the equations are a little more complicated. Suppose W1(π, ψ) is a space of functions
satisfying the first two conditions of the theorem. We regard ρn as acting on the space Vn of
binary forms of degree n according to the rule

ρn

((
a b
c d

))
φ(x, y) = φ(ax+ cy, bx+ dy)

If
φ(x, y) =

∑
|k|⩽n

n
2
−k∈Z

φkx
n
2
+kx

n
2
−k
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then φk is called the kth coordinate of φ. On the dual space Ṽn we introduce the dual
coordinates.

If ρn is contained in π there is an injection A of Vn into W1(π, ψ) which commutes with

the action of SU(2,C). Let Φ(g) be the function on GC with values in Ṽn defined by〈
φ,Φ(g)

〉
= Aφ(g).

It is clear that W1(π, ψ) is determined by Φ which is in turn determined by W1(π, ψ) up to a
scalar factor. The function Φ(g) is determined by the function

φ(t) = Φ

(t1/2 0

0 t−1/2

)
on the positive real numbers. If φk(t) is the kth coordinate of φ(t) and if π is a constituent
of ρ(µ1, µ2) the differential equations

ρ(D1)Φ =
1

2

{(
s+

a− b

2

)2

− 1

}
Φ

ρ(D2)Φ =
1

2

{(
s+

b− a

2

)2

− 1

}
Φ

may, if our calculations are correct, be written as

1

2

[
t
d

dt
+ k − 1

]2
φk − t2

|u|2

2
φk +

(
n

2
+ k

)
tiuφk−1 =

1

2

(
s+

a− b

2

)2

φk

1

2

[
t
d

dt
− k − 1

]2
φk − t2

|u|2

2
φk −

(
n

2
− k

)
tiuφk+1 =

1

2

(
s+

b− a

2

)2

φk.

We have set φk = 0 if |k| ⩾ n/2. Recall that ψ(z) = e4πiReuz. These equations allow one to
solve for all φk in terms of φn/2 or φ−n/2.

For k = n
2
the second equation may be written as

(∗) 1

2

d2φn/2

dt2
+

(
−1

2
− n

2

)
1

t

dφ

dt

n/2

+

−|u|2

2
+

(
n
2
+ 1
)2

2t2

φn/2 = 1

2t2

(
s+

b− a

2

)2

φn/2.

If we have two independent solutions of this equation their Wronskian W (t) is a non-trivial
solution of the equation

dW

dt
=

(n+ 1)

t
W

and therefore a non-zero multiple of tn+1. Since we already have shown the existence of a
solution of (∗) which decreases exponentially we see that there cannot be another solution
which is bounded by a power of t as t→ ∞. The uniqueness of the space W (π, ψ) follows

Every irreducible admissible representation of HC is of the form π = π(µ1, µ2). Moreover
π(µ1, µ2) = π(µ′

1, µ
′
2) if and only if {µ1, µ2} = {µ′

1, µ
′
2}. Thus we may set

L(s, π) = L(s, µ1)L(s, µ2)

and
ϵ(s, π, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ).
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Then
L(s, π̃) = L(s, µ−1

1 )L(s, µ−1
2 ).

The local functional equation which is proved just as in the real case reads as follows.

Theorem 6.4. Let π be an infinite-dimensional irreducible admissible representation of HC.
Let ω be the quasi-character of C× defined by

π

((
a 0
0 a

))
= ω(a)I

for a in C×. If W is in W (π, ψ) the integrals

Ψ(g, s,W ) =

∫
C×

W

((
a 0
0 1

)
g

)
|a|s−1/2

C d×a,

Ψ̃(g, s,W ) =

∫
C×

W

((
a 0
0 1

)
g

)
|a|s−1/2

C ω−1(a) d×a

converge absolutely in some right half-plane. Set

Ψ(g, s,W ) = L(s, π)Φ(g, s,W ),

Ψ̃(g, s,W ) = L(s, π̃)Φ̃(g, s,W ).

The functions Φ(g, s,W ) and Φ̃(g, s,W ) can be analytically continued to the whole complex
plane as holomorphic functions of s. For a suitable choice of W the function Φ(e, s,W ) is an
exponential function of s. The functional equation

Φ̃(wg, 1− s,W ) = ϵ(s, π, ψ)Φ(g, s,W )

is satisfied. Moreover, if W is fixed
∣∣Ψ(g, s,W )

∣∣ remains bounded as g varies over a compact
subset of GC and s varies in a vertical strip of finite width from which discs about the poles
of L(s, π) have been removed.

The following lemma can be verified by an explicit computation. The first assertion may
also be proved by the method of Lemma 5.16.

Lemma 6.5. If σ = σ(µ1, µ2) and π = π(µ1, µ2) are defined then

L(1− s, σ̃)ϵ(s, σ, ψ)

L(s, σ)
=
L(1− s, π̃)ϵ(s, π, ψ)

L(s, π)

and the quotient
L(s, χ⊗ σ)

L(s, χ⊗ π)
is the product of a constant, a polynomial, and an exponential. Moreover the polynomial is of
positive degree for some choice of the quasi-character χ.

We verify the last assertion. There is no harm in supposing that σ = π(ν1, ν2) and that
χµ1(z) = za+pzb+q, χµ2(z) = zazb, χν1(z) = za+pzb, and χν2(z) = zazb+q, where p ⩾ 1 and
q ⩾ 1 are integers. Varying χ is equivalent to varying a and b through all the integers. If m1
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is the largest of a + p and b + q and m2 is the largest of a and b while n1 is the largest of
a+ p and b and n2 is the largest of a and b+ q the quotient

L(s, χ⊗ σ)

L(s, χ⊗ π)

differs from
Γ(s+ n1)Γ(s+ n2)

Γ(s+m1)Γ(s+m2)
by a constant times an exponential. It is clear that n1 and n2 are both greater than or
equal to m2 and that either n1 or n2 is greater than or equal to m1. Thus the quotient is a
polynomial. If p ⩾ q choose a and b so that b+ q > a ⩾ b. Then n1 = m1 and n2 > m2 so
that the quotient is of positive degree. If q ⩾ p choose a and b so that a+ p > b ⩾ a. Then
n2 = m1 and n1 > m2.

Lemma 6.6. Let π and π′ be two infinite-dimensional irreducible representations of HC.
Suppose there is a quasi-character ω of C× such that

π

((
a 0
0 a

))
= ω(a)I

and

π′

((
a 0
0 a

))
= ω(a)I

for all a in C×. If

ϵ(s, χ⊗ π′, ψ)
L(1− s, χ−1 ⊗ π̃′)

L(s, χ⊗ π′)
= ϵ(s, χ⊗ π, ψ)

L(1− s, χ−1 ⊗ π̃)

L(s, χ⊗ π)

for all quasi-characters χ then π and π′ are equivalent.

Let π = π(µ1, µ2) and let π′ = (µ′
1, µ

′
2). We let

µi(z) = (zz)si
{

z

(zz)1/2

}ai
and

µ′
i(z) = (zz)s

′
i

{
z

(zz)1/2

}ai
with ai and a

′
i in Z. By assumption, s1 + s2 = s′1 + s′2 and a1 + a2 = a′1 + a′2. Choose

χ(z) =

{
z

(zz)1/2

}n
with n in Z. The quotient on the right has the same zeros and poles as

Γ
(
1− s− s1 +

∣∣n+a1
2

∣∣)
Γ
(
s+ s1 +

∣∣n+a1
2

∣∣) ·
Γ
(
1− s− s2 +

∣∣n+a2
2

∣∣)
Γ
(
s+ s2 +

∣∣n+a2
2

∣∣) .

A pole of the numerator can cancel a pole of the denominator if and only if there are two
non-negative integers ℓ and m such that

s1 − s2 = 1 + ℓ+m+

∣∣∣∣n+ a1
2

∣∣∣∣+ ∣∣∣∣n+ a2
2

∣∣∣∣
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or

s2 − s1 = 1 + ℓ+m+

∣∣∣∣n+ a1
2

∣∣∣∣+ ∣∣∣∣n+ a2
2

∣∣∣∣.
This can happen only if µ1µ

−1
2 is of the form µ1µ

−1
2 (z) = zpzq or µ1µ

−1
2 (z) = z−pz−q where

p ⩾ 1 and q ⩾ 1 are integers. Since π(µ1, µ2) is infinite-dimensional it cannot be of either
these forms and no poles cancel.

Consequently for every integer n,{
s1 +

∣∣∣∣n+ a1
2

∣∣∣∣, s2 + ∣∣∣∣n+ a2
2

∣∣∣∣
}

=

{
s′1 +

∣∣∣∣n+ a′1
2

∣∣∣∣, s′2 + ∣∣∣∣n+ a′2
2

∣∣∣∣
}
.

This can happen only if s1 = s′1, a1 = a′1, s2 = s′2, and a2 = a′2 or s1 = s′2, a1 = a′2, s2 = s′1,
and a2 = a′1. Thus π and π′ are equivalent.

The following proposition is an easy consequence of these two lemmas.

Proposition 6.7. Suppose π and π′ are two irreducible admissible representations of HC.
Suppose there is a quasi-character ω of C∗ such that

π

((
a 0
0 a

))
= ω(a)I

and

π′

((
a 0
0 a

))
= ω(a)I.

If L(s, χ⊗ π) = L(s, χ⊗ π′), L(s, χ−1 ⊗ π̃) = L(s, χ−1 ⊗ π̃′) and

ϵ(s, χ⊗ π, ψ) = ϵ(s, χ⊗ π′, ψ)

for all quasi-characters χ the representations π and π′ are equivalent.
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§7. Characters

If F is a non-archimedean local field and π is an admissible representation of GF the
operator π(f) is of finite rank for every f in HF and therefore has a trace Tr π(f). In this
paragraph we prove that if π is irreducible there is a locally integrable function χπ on Gf

such that

Tr π(f) =

∫
GF

f(g)χπ(g) dg.

Although Trπ(f) depends on the choice of the Haar measure the function χπ does not.
The following simple lemma shows that χπ determines the class of π.

Lemma 7.1. If {π1, . . . , πp} is a set of inequivalent irreducible admissible representations of
HF the set of linear forms Tr π1,Tr π2, . . . ,Tr πp is linearly independent.

Let πi act on Vi and let ξ be an elementary idempotent such that none of the spaces
πi(ξ)Vi, 1 ⩽ i ⩽ p, are 0. Let πi be the representation of ξHF ξ on the finite-dimensional
space πi(ξ)Vi = Vi(ξ). Suppose πi and πj are equivalent. Then there is an invertible linear
map A from Vi(ξ) to Vj(ξ) which commutes with the action of ξHF ξ. Choose a non-zero
vector vi in Vi(ξ) and let vj = Avi. We are going to show that πi and πj are equivalent. It is
enough to show that, for any f in HF , πi(f)vi = 0 if and only if πj(f)vj = 0. But πi(f)vi = 0
if and only if πi(ξ ∗ h)πi(f)vi = 0 for all h in HF . Since πi(ξ ∗ h)πi(f)vi = πi(ξ ∗ h ∗ f ∗ ξ)vi
and ξ ∗ h ∗ f ∗ ξ is in ξHF ξ the assertion follows.

Thus the representations π1, . . . , πp are inequivalent. Using this we shall show that the
linear forms Tr π1, . . . ,Tr πp on ξHF ξ are linearly independent. The lemma will then be
proved. Take h in ξHF ξ. Since πi is irreducible and finite-dimensional Tr πi(hf) = 0 for all
f in ξHF ξ if and only if πi(h) = 0. Suppose we had h1, . . . , hp in ξHF ξ so that for at least
one i the operator πi(hi) was not 0 while

p∑
i=1

Tr πi(hif) = 0

for all f in ξHF ξ. There must then be at least two integers j and k such that πj(hj) ̸= 0 and
πk(hk) ̸= 0. Since πj and πk are not equivalent we can find an h in ξHF ξ such that πj(h) = 0
while πk(h) is invertible. Replacing hi by hih we obtain a relation of the same type in which
the number of i for which πi(hi) = 0 has been increased. By induction we see that no such
relation is possible. Since ξHF ξ contains a unit the required independence follows.

For most of these notes the existence of χπ is irrelevant. It is used only toward the end.
The reader who is more interested in automorphic forms than in group representations will
probably want to take the existence of χπ for granted and, for the moment at least, skip this
paragraph. To do so will cause no harm. However he will eventually have to turn back to
read the first few pages in order to review the definition of the Tamagawa measure.

Choose a non-trivial additive character ψ of F . If X is an analytic manifold over F and
ω is a differential form of highest degree on X we can associate to ω a measure on X which
is denoted by |ω|F or sometimes simply by ω. If X = F and ω = dx is the differential of the
identity application the measure |ω|F = dx is by definition the Haar measure on F which is
self-dual with respect to ψ. In general if p belongs to X and x1, . . . , xn are local coordinates
near p so that

ω = a(x1, . . . , xn) dx1 ∧ · · · ∧ dxn
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then, if f is a continuous real-valued functions with support in a small neighbourhood of p,∫
X

f |ω|F =

∫
f(x1, . . . , xn)

∣∣a(x1, . . . , xn)∣∣ dx1 · · · dxn.
The absolute value

∣∣a(x1, . . . , xn)∣∣ is the normalized absolute value in the field F . To prove
the existence of the measure ω one has to establish the usual formula for a change of variable
in a multiple integral. For this and other facts about these measures we refer to the notes of
Weil [12].

If G is an algebraic group over F then GF is an analytic space. If ω is a left-invariant
form of highest degree on GF the measure |ω|F is a Haar measure on GF . It is called the
Tamagawa measure. It depends on ω and ψ.

If M is the algebra of 2× 2 matrices over F the additive group of M is an algebraic group.
If a typical element of M is

x =

(
a b
c d

)
then

µ = da ∧ db ∧ dc ∧ dd
is an invariant form of highest degree and |µ| = dx is the additive Haar measure which is
self-dual with respect to the character ψM(x) = ψF

(
τ(x)

)
if τ is the trace of x.

On the multiplicative group G of M we take the form ω(x) = (detx)−2µ(x). The
associated Haar measure is ∣∣ω(x)∣∣ = |detx|−2

F dx = |x|−1
M dx.

An element of G is said to be regular if its eigenvalues are distinct. The centralizer in GF

of a regular element in GF is a Cartan subgroup of GF . Such a Cartan subgroup BF is of
course abelian. There seems to be no canonical choice for the invariant form on BF . However
the centralizer of BF in MF is an algebra E of degree two over F . It is either isomorphic
to the direct sum of F with itself or it is a separable quadratic of F . The subgroup BF is
the multiplicative group of E. In the first paragraph we introduced a map ν from E to F .
Once a form µE on E which is invariant for the additive group has been chosen we can set
µB(x) = ν(x)−1µE(x), and µB is then an invariant form on BF . The associated measure is
invariant under all automorphisms of E over F . We should also recall at this point that two
Cartan subgroups BF and B′

F are conjugate in GF if and only if the corresponding algebras
are isomorphic.

Once µE and therefore µB has been chosen we can introduce on BF\GF which is also an
analytic manifold the form ωB which is the quotient of ω by µB. Then∫

GF

f(g)ω(g) =

∫
BF \GF

{∫
BF

f(bg)µB(b)

}
ωB(g).

The centre of the algebra of MF is isomorphic to F and the centre ZF of GF is isomorphic to
F×. On F× we have the form x−1 dx. We take µZ to be the corresponding form on ZF . µ

0
B

will be the quotient of µB by µZ and ω0 will be the quotient of ω by µZ . The corresponding
integration formulae are∫

BF

f(b)µB(b) =

∫
Zf\BF

{∫
ZF

f(zb)µZ(z)

}
µ0
B(b)
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and ∫
GF

f(g)ω(g) =

∫
ZF \GF

{∫
ZF

f(zg)µZ(z)

}
ω0(g).

If g belongs to GF its eigenvalues α1 and α2 are the roots of the equation

X2 − τ(g)X + ν(g) = 0

and
(α1 − α2)

2

α1α2

=

{
τ(g)

}2 − 4ν(g)

ν(g)
belongs to F . Set

δ(g) =

∣∣∣∣∣(α1 − α2)
2

α1α2

∣∣∣∣∣
F

.

Since g is regular if and only if δ(g) ̸= 0 the set ĜF of regular elements is open in GF and its
complement has measure zero.

There are two more integration formulae that we shall need. Their proof proceeds as for
archimedean fields. Choose a system S of representatives of the conjugacy classes of Cartan
subgroups of GF . Then∫

GF

f(g)ω(g) =
∑
BF∈S

1

2

∫
BF

δ(b)

{∫
BF \GF

f(g−1bg)ωB(g)

}
µB(b)(7.2.1)

∫
ZF \GF

f(g)ω0(g) =
∑
BF∈S

1

2

∫
ZF \BF

δ(b)

{∫
BF \GF

f(g−1bg)ωB(g)

}
µ0
B(b)(7.2.2)

if f is an integrable function on GF or ZF\GF . Notice that the sum on the right is not

necessarily finite. Let B̂F = BF ∩ ĜF and let

B̂G
F =

{
g−1bg

∣∣∣ b ∈ B̂F , g ∈ GF

}
.

Then ĜF is the disjoint union ⋃
BF∈S

B̂G
F .

There is a simple lemma to be verified.

Lemma 7.2.

(i) For any Cartan subgroup BF the set B̂G
F is open.

(ii) The set ĜF is open.

(iii) The set G̃F of g in GF whose eigenvalues do not belong to F is open.

The second statement is a consequence of the first. If BF corresponds to the separable

quadratic extension E then B̂G
F is the set of matrices with distinct eigenvalues in E and if BF

splits and therefore corresponds to the direct sum of F with itself, B̂G
F is the set of matrices

with distinct eigenvalues in F . Thus the first assertion is a consequence of the following
lemma which is a form of Hensel’s lemma or of the implicit function theorem.
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Lemma 7.2.1. Let E be a separable extension of F . Assume the equation

Xp + a1X
p−1 + · · ·+ ap = 0

with coefficients in F has a simple root λ in E. Given ϵ > 0 there is a δ > 0 such that
whenever b1, . . . , bp are in F and |bi − ai|F < δ for 1 ⩽ i ⩽ p the equation

Xp + b1X
p−1 + · · ·+ bp = 0

has a root µ in E for which |λ− µ|E < ϵ.

There is no need to prove this lemma. To prove the third assertion we have to show that
the set of matrices with eigenvalues in F is closed. Suppose gn → g and gn has eigenvalues
λn and µn in F . Then λn + µn → τ(g) and λnµn → ν(g). If λn and µn did not remain in
a compact subset of F× then, since their product does, we would have, after passing to a
subsequence, |λn| → 0, |µn| → ∞ or |λn| → ∞, |µn| → 0. In either case λn + µn could not
converge. Thus, again passing to a subsequence, we have λn → λ and µn → µ. λ and µ are
the eigenvalues of g.

If the characteristic of F is not two the sets ĜF and G̃F are the same. We now introduce a
function on GF which plays an important role in the discussion of characters. If BF is a split
Cartan subgroup we set c(BF ) = 1 but if BF is not split and corresponds to the quadratic
extension E we set

c(BF ) = |ϖ|
t+1
2
F

where ϖ is a generator of pF and pt+1
F is the discriminant of E over F . If g in ĜF belongs to

the Cartan subgroup BF we set

ξ(g) = c(BF )δ
−1/2(g).

If g is singular we set ξ(g) = ∞. The factor c(BF ) is important only in characteristic two
when there are an infinite number of conjugacy classes of Cartan subgroups.

Lemma 7.3. The function ξ is locally constant on ĜF and bounded away from zero on any
compact subset of GF . It is locally integrable on ZF\GF and on GF .

It is of course implicit in the statement of the lemma that ξ is constant on cosets of ZF .

The two previous lemmas show that ξ is locally constant on ĜF . To prove the remaining
assertions we recall some facts about orders and modules in separable quadratic extensions
of non-archimedean fields.

If E is a separable quadratic extension of F an order R of E is a subring of OE which
contains OF and a basis of E. A module I in E is a finitely generated OF submodule of E
which contains a basis of E. If I is a module the set

{α ∈ E | αI ⊆ I }
is an order RI . It is clear that an order is a module and that RR = R. Two modules I and J
are said to be equivalent if there is an α in E× so that J = αI. Then RI = RJ .

Suppose the module I is contained on OE and contains 1. Since I/OF is a torsion-free
OF module the module I has a basis of the form {1, δ}. Since δ is integral δ2 belongs to
I. Therefore I is an order and RI = I. Since any module is equivalent to a module which
contains 1 and lies in OE the collection of modules I for which RI = R forms, for a given
order R, a single equivalence class.

As observed any order has a basis, over OF , of the form {1, δ}. The absolute values of the
numbers δ occurring in such bases are bounded below. A basis {1, δ} is said to be normal if
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δ has the smallest possible absolute value. It is easily seen, by considering the ramified and
unramified extensions separately, that if {1, δ} is normal

R = OF + δOE.

Thus R determines and is determined by |δ|E. It is easily seen that if E/F is unramified
|δ|E is any number of the form |ϖE|nE with n ⩾ 0, where ϖE is a generator of pE. We set
n = ω(R). If E/F is ramified |δ|E is any number of the form |ϖE|2n+1

E with n ⩾ 0. We set
ω(R) = n. In the ramified case[

E× : F×(UE ∩R)
]
= 2|ϖF |−ω(R)

F .

In the unramified case [
E× : F×(UE ∩R)

]
= |ϖF |−ω(R)

F

(
1 + |ϖF |F

)
unless ω(R) = 0 and then [

E× : F×(UE ∩R)
]
= 1.

It is clear that R′ contains R if and only if ω(R′) ⩽ ω(R). Thus ω(R) + 1 is the number
of orders which contain R. If γ belongs to OE but not to OF let R(γ) be the order with basis
{1, γ} and let ω(γ) = ω

(
R(γ)

)
.

Lemma 7.3.1. Let γ be the conjugate of γ in E and let∣∣(γ − γ)2
∣∣1/2
F

= |ϖF |m(γ)
F .

If pt+1
E is the discriminant of E and γ belongs to OK but not to OF then

m(γ) = ω(γ) +
t+ 1

2
.

Let {1, δ} be a normal basis of R(γ). Then γ = a + bδ with a and b in OF . Moreover
δ = c + dγ with c and d in OF . Thus γ = (a + bc) + bdγ so that a + bc = 0 and bd = 1.
Therefore b is a unit and |γ − γ| = |δ − δ|. We can thus replace γ by δ. Suppose first that
E/F is unramified so that t+ 1 = 0. We take δ = ϵϖn

F where n = ω
(
R(γ)

)
and ϵ is a unit of

OE. Since
δ − δ = (ϵ− ϵ)ϖn

F

we have only to show that ϵ− ϵ is a unit. ϵ is not congruent to an element of OF modulo pE
and therefore {1, ϵ} determines a basis of OE/pE. Since the Galois group acts faithfully on
OE/pE the number ϵ− ϵ is not in pE.

If E/F is ramified we may take δ = ϖn
FϖE with n = ω(δ). It is well-known that

|ϖE −ϖE| = |ϖE|t+1
E

Thus ∣∣∣(δ − δ)2
∣∣∣1/2
F

= |δ − δ|1/2E = |ϖF |nF |ϖK |
t+1
2
K = |ϖF |

n+ t+1
2

F

The lemma follows.
There are two more lemmas to be proved before we return to the proof of Lemma 7.3.

Lemma 7.3.2. Let C be a compact subset of ZF\GF and let χC be the characteristic function
of C and of its inverse image in GF . There is a constant c such that for every b in GF which
is contained in an anisotropic Cartan subgroup∫

ZF \GF

χC(g
−1bg)ω0(g) ⩽ cξ(b).
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The assertion is trivial unless b is regular. Then the assumption is that its eigenvalues
are distinct and do not lie in F . Any h in GF can be written as

g1

(
ϖp
F

ϖq
F

)
g2

where g1 and g2 belongs to GL(2, OF ) and p ⩽ q. The numbers ϖp
F and ϖq

F are the elementary
divisors of h. Let Tr be the set of all those h for which q − p ⩽ r. This set is the inverse
image of a compact subset T ′

r of ZF\GF . If r is sufficiently large C is contained in T ′
r. Thus

we may replace χC and χr the characteristic function of T ′
r.

If h belongs to GL(2, OF ) then h
−1g−1bgh belongs to Tr if and only if g−1bg belongs to

Tr. Thus the integral is the product of the measure of GL(2, OF ) ∩ ZF\GL(2, OF ) by the
number of right cosets of ZFGL(2, OF ) whose elements g are such that g−1bg belong to Tr.
If H is such a coset and BF is the Cartan subgroup containing b then for any b′ in BF the
coset b′H has the same property. Thus the integral equals

measure
(
GL(2, OF ) ∩ ZF\GL(2, OF )

)∑[
BFgGL(2, OF ) : ZFGL(2, OF )

]
.

The sum is over a set of representatives of the cosets in BF\GF/GL(2, OF ).
Let BF correspond to the separable quadratic extension E. Choose a basis of OE over

OF . It will also be a basis of E over F . By means of this basis we identify GF with the
group of invertible linear transformations of E over F . GL(2, OF ) is the stabilizer of OE.
Every γ in E× determines a linear transformation bγ : x→ γx of E. The set of all such linear
transformations is a Cartan subgroup conjugate to BF and with no loss of generality we may
assume that it is BF . Choose γ so that b = bγ.

Every module is of the form gOE with g in GF . Moreover g1OE and g2OE are equivalent
if and only if g1 and g2 belong to the same double coset in BF\GF/GL(2, OF ). Thus there
is a one-to-one correspondence between the collection of double cosets and the collection of
orders of E. Let BFgGL(2, OF ) correspond to the order R. The index[

BFgGL(2, OF ) : ZFGL(2, OF )
]

is equal to [
BF : BF ∩ ZFgGL(2, OF )g

−1
]

Two elements b1 and b2 in BF belong to the same coset of BF ∩ZFgGL(2, OF )g
−1 if and only

if there is a z in ZF and an h in GL(2, OF ) such that

b1g = b2zgh

This can happen if and only if
b1gOE = b2zgOE.

Let I = gOE and let bi = bγi . If we identify ZF and F× so that z may be regarded as an
element of F× the last relation is equivalent to

γ1I = γ2zI

or γ−1
1 γ2z ∈ R ∩ UE. Thus[

BFgGL(2, OF ) : ZFGL(2, OF )
]
=
[
E× : F×(R ∩ UE)

]
.

Let |det b|F = |γ|K = |ϖF |mF . Let ϖ
p
F and ϖq

F with p ⩽ q be the elementary divisors of
g−1bg. Certainly p+ q = m. The matrix g−1bg belongs to Tr if and only if q−p = m−2p ⩽ r.
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If s is the integral part of r−m
2

this is so if and only if ϖs
Fg

−1bg has integral coefficients, that
is if and only if

ϖs
Fg

−1bgOE ⊆ OE

or ϖs
Fγ ∈ R.

Our integral is therefore equal to

(∗) measure
(
GL(2, OF ) ∩ ZF\GL(2, OF )

) ∑
ϖs

F γ∈R

[
E× : F×(R ∩ UE)

]
.

The sum is over all orders of E which contains ϖs
Fγ. The element ϖs

Fγ does not lie in F . If
it does not lie in OK the sum is zero. If it lies in OK then ϖs

Fγ belongs to R if and only if
ω(R) ⩽ ω(ϖs

Fγ). In this case the expression (∗) is bounded by

2 measure
(
GL(2, OF ) ∩ ZF\GL(2, OF )

) ∑
0⩽k⩽ω(ϖs

F γ)

|ϖF |−kF .

This in turn is bounded by a constant, which is independent of BF and r, times

|ϖF |
−ω(ϖs

F γ)

F

We have c(BF ) = |ϖF |
t+1
2
F , m(ϖs

Fγ) = s+m(γ) ⩽ r−m
2

+m(γ), and

δ(b)1/2 =

∣∣(γ − γ)2
∣∣1/2
F

|γγ|1/2F

= |ϖF |−m/2F |ϖF |m(γ)
F .

To prove the lemma we have only to show that

−m(γ) +
m

2
+
t+ 1

2
+ ω(ϖs

Fγ)

is bounded above by a constant which depends only on r. By the previous lemma

ω(ϖs
Fγ) = m(ϖs

Fγ)−
t+ 1

2
so that

−m(γ) +
m

2
+
t+ 1

2
+ ω(ϖs

Fγ) ⩽
r −m

2
+
m

2
=
r

2
.

Suppose the Cartan subalgebra BF corresponds to the algebra E. Once the measure µE
on E has been chosen we can form the measure µB on BF and the measure ωB on BF\GF .
Once µE and therefore µB and ωB are chosen we let n(BF ) be that constant which makes
n(BF )µE self-dual with respect to the character x→ ψ

(
τ(x)

)
on E.

Lemma 7.3.3. If r is a non-negative integer there is a constant dr such that for any Cartan
subgroup BF and any b in BF∫

BF \GF

χr(g
−1bg)ωB(g) ⩽ drn(BF )δ(b)

−1/2.

We may again suppose that b belongs to B̂F . If BF is anisotropic the left side is equal to

1

measure(ZF\BF )

∫
ZF \GF

χr(g
−1bg)ω0(g).
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Suppose BF corresponds to the quadratic extension E. If E/F is unramified

measure(Zf\BF ) =
1

n(BF )

(
1 + |ϖF |

)
because n(BF )µE assigns the measure 1 to OE. If E/F is ramified n(BF )µE assigns the

measure |ϖF |
t+1
2 to OE and

measure(ZF\BF ) =
2

n(BF )
|ϖF |

t+1
2 =

2

n(BF )
c(BF )

In these cases the assertion is therefore a consequence of the previous lemma.
If the inequality of the lemma is true for one Cartan subgroup it is true for all conjugate

subgroups. To complete the proof we have to verify it when BF is the group AF of diagonal
matrices. Since we are now dealing with a fixed Cartan subgroup the choice of Haar measure
on BF\GF is not important. Moreover GL(2, OF )TrGL(2, OF ) = Tr so that, using the
Iwasawa decomposition and the associated decomposition of measures, we may take the
integral to be ∫

F

χr

((
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

))
dx

if

b =

(
α 0
0 β

)
The argument in the integrand is(

α 0
0 β

)1
(
1− β

α

)
x

0 1


Changing the variables in the integral we obtain

1∣∣∣1− β
α

∣∣∣
∫
F

χr

((
α 0
0 β

)(
1 x
0 1

))
dx.

Let |α| = |ϖF |ℓ, |β| = |ϖF |m, and |x| = |ϖF |n. With no loss of generality we may suppose
|α| ⩾ |β|. If n ⩾ 0 the elementary divisors of(

α 0
0 β

)(
1 x
0 1

)
are ϖℓ

F and ϖm
F so that it is in Tr if and only if m− ℓ ⩽ r. If n < 0 its elementary divisors

are ϖℓ+n
F and ϖm−n

F so that it is in Tr if and only if m− ℓ− 2n ⩽ r. Thus the integral is at
most

measure
{
x
∣∣∣ |x| ⩽ |ϖF |

m−ℓ−r
2

}
which is, apart from a factor depending on the choice of the Haar measure, |ϖF |

m−ℓ−r
2 . Since

|ϖF |
m−ℓ−r

2 =

∣∣∣∣βα
∣∣∣∣1/2|ϖF |−r/2
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and ∣∣∣βα ∣∣∣1/2∣∣∣1− β
α

∣∣∣ = δ(b)−1/2

the lemma follows.
We return to Lemma 7.3 and prove first that ξ is bounded away from zero on each compact

subset C. In other words we show that there is a positive constant c such that ξ(h) ⩾ c on
C. There is a z in ZF such that every matrix in zC has integral entries. Since ξ(zh) = ξ(h)
we may as well assume that every matrix in C itself has integral entires. There is a constant
c1 > 0 such that

|deth|1/2F ⩾ c1
on C and a constant c2 such that ∣∣τ(h)2 − 4ν(h)

∣∣1/2 ⩽ c2

on C. τ and ν are the trace and determinant of h. Thus

δ−1/2(h) ⩾
c1
c2

on C. Here ξ(h) is certainly bounded away from 0 on the singular elements and the preceding
inequality shows that it is bounded away from 0 on the regular elements in C which lie in a
split Cartan subalgebra. Suppose h is regular and lies in the anisotropic Cartan subgroup
BF . Let BF correspond to the field E and let h have eigenvalues γ and γ in E. Then∣∣(γ − γ)2

∣∣−1/2

F
c(BF ) = |ϖF |−m(γ)|ϖF |

t+1
2 = |ϖF |−ω(γ)

Since ω(γ) ⩾ 0 we have ξ(h) ⩾ c1.
The function ξ is certainly measurable. It is locally integrable in GF if and only if it is

locally integrable on ZF\GF . Let C be a compact set in ZF\GF . We have to show∫
ZF \GF

χC(g)ξ(g)ω
0(g)

is finite. As usual it will be enough to show that∫
ZF \GF

χr(g)ξ(g)ω
0(g)

is finite for every non-negative integer r. According to formula (7.2.2) this integral is the
sum of

1

2

∫
ZF \AF

ξ(a)δ(a)

{∫
AF \GF

χr(g
−1ag)ωA(g)

}
µ0
A(a)

and
1

2

∑
BF∈S′

∫
ZF \BF

ξ(b)δ(b)

{∫
BF \GF

χr(g
−1bg)ωB(g)

}
µ0
B(b).

It is easy to see that there is a compact set C0 in ZF\AF such that χr(g
−1ag) = 0 for

all g unless the projection of a lies in C0. Thus the first integral need only be taken over
C0. The inner integral is at most drn(AF )δ(a)

−1/2. Since ξ(a)δ(a)δ(a)−1/2 = 1 on AF the
first integral causes no trouble. We can also use Lemma 7.3.3 to see that the sum over S ′,
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which is by the way a set of representatives for the conjugacy classes of anisotropic Cartan
subgroups, is less than or equal to

1

2

∑
BF∈S′

drn(BF )c(BF )

∫
ZF \BF

µ0
B(b).

If the characteristic is not two this sum is finite and there is no problem.
In general if BF corresponds to the field E and ptE+1

F is the discriminant of E we have

c(BF ) = |ϖF |
tE+1

2 and

n(BF )

∫
ZF \BF

µ0
B(b) ⩽ 2|ϖF |(tE+1)/2

To complete the proof we have to show that∑
E

|ϖF |tE+1

is finite if F has characteristic 2. The sum is over all separable quadratic extensions of F .
Let M(t) be the number of extensions E for which tE = t. Associated to any such E is a
quadratic character of F× with conductor pt+1

F . Thus

M(t) ⩽
[
F× : (F×)2(1 + pt+1

F )
]
= 2
[
UF : U2

F (1 + pt+1
F )

]
if t ⩾ 0. Of course M(−1) = 1. Any element of UF is congruent modulo 1 + pt+1

F to an
element of the form

a0 + a1ϖF + · · ·+ atϖ
t
F .

Such a number is a square if ai = 0 for i odd. Thus

M(t) = O
(
|ϖF |−

t+1
2

)
and the series converges.

We can now begin the study of characters.

Proposition 7.4. The character of an absolutely cuspidal representation exists as a locally
integrable function whose absolute value is bounded by a multiple of ξ. It is continuous on

ĜF ∪ G̃F .

If the character χπ of π exists and χ is a quasi-character of F× then the character of
π′ = χ ⊗ π also exists and χπ′(g) = χ(det g)χπ(g). Thus the proposition has only to be
proved for unitary representations π. Then π is square integrable and we can make use of
the following lemma for which, although it is well-known, we provide a proof.

Lemma 7.4.1. Let f belong to HF and let u be a vector of length one in the space on which
the absolutely cuspidal unitary representation π acts. Then

Tr π(f) = d(π)

∫
ZF \GF

{∫
GF

f(h)
(
π(g−1hg)u, u

)
dh

}
dg

if d(π) is the formal degree of π.

Let Q be the operator

π(f) =

∫
GF

f(h)π(h) dh.
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Let {vi} be an orthonormal basis of the space on which π acts. All but a finite number of
the coefficients

Qij = (Qvi, vj)

are zero. We have (
π(g−1)Qπ(g)u, u

)
=
(
Qπ(g)u, π(g)u

)
The right side equals ∑

i

(
Qπ(g)u, vi

)(
vi, π(g)u

)
which in turn equals ∑

i

∑
j

(
π(g)u, vj

)
Qji

(
vi, π(g)u

)
In both series there are only a finite number of non-zero terms. Thus∫

ZF \GF

(
π(g−1)Qπ(g)u, u

)
dg =

∑
i,j

Qji

∫
ZF \GF

(
π(g)u, vj

)(
vi, π(g)u

)
dg

The integrals on the right exist because the representation is square-integrable. Applying the
Schur orthogonality relations we see that the right side is equal to

1

d(π)

∑
i,j

Qij(vi, vj) =
1

d(π)

∑
i

Qii =
1

d(π)
Tr π(f).

Since (
π(g−1)Qπ(g)u, u

)
=

∫
GF

f(h)
(
π(g−1)π(h)π(g)u, u

)
dh

the lemma follows.
Observe that the integral of the lemma is an iterated and not a double integral. It is the

limit as r approaches infinity of∫
T ′
r

{∫
GF

f(h)
(
π(g−1hg)u, u

)
dh

}
dg

Since T ′
r is compact this integral is absolutely convergent and equals∫

GF

f(h)

{∫
T ′
r

(
π(g−1hg)u, u

)
dg

}
dh.

To prove the first part of the proposition we show that the sequence of functions

φr(h) =

∫
T ′
r

(
π(g−1hg)u, u

)
dg

is dominated locally by a multiple of ξ and converges almost everywhere on GF . We shall set

χπ(h) = d(π) lim
r→∞

φr(h)

whenever the limit exists.
When proving the second part of the proposition we shall make use of the following

lemma.
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Lemma 7.4.2. Let C1 be a compact subset of G̃F and let C2 be a compact set in GF . The
image in ZF\GF of {

g ∈ GF

∣∣ g−1C1g ∩ ZFC2 ̸= ∅
}

is compact.

The set is clearly closed so we have only to show that it is contained in some compact set.
We may suppose that GL(2, OF )C2GL(2, OF ) = C2. Let

g =

(
α x
0 1

)(
β 0
0 β

)
h

with h in GL(2, OF ). Then
g−1C1g ∩ ZFC2 ̸= ∅

if and only if (
α x
0 1

)−1

C1

(
α x
0 1

)
∩ ZFC2 ̸= ∅.

We have to show that this condition forces α to lie in a compact subset of F× and x to lie in
a compact subset of F . Since

det(g−1cg) = det c

we may replace ZFC2 by the compact set

C3 = {h ∈ ZFC2 | deth ∈ detC1 }.
Let (

a b
c d

)
be a typical element of C1. The entry c is never 0 on C1 and therefore its absolute value is
bounded below, (

α x
0 1

)−1(
a b
c d

)(
α x
0 1

)
=

(
a− xc y
cα cx+ d

)
.

The number y is of no interest. The matrix on the right cannot lie in C3 unless |cx + d|
is bounded above by some number depending on C3. Since |d| is bounded above and |c| is
bounded below x is forced to lie in some compact set Ω of F . If C4 is the compact set{(

1 −x
0 1

)
h

(
1 x
0 1

) ∣∣∣∣∣ x ∈ Ω, h ∈ C1

}
we have finally to show that if(

α−1 0
0 1

)
C4

(
α 0
0 1

)
∩ C3 ̸= ∅

then α is forced to lie in a compact subset of F×. We now let(
a b
c d

)
be a typical element of C4. On C4 both |b| and |c| are bounded blow. Since(

α 0
0 1

)(
a b
c d

)(
α−1 0
0 1

)
=

(
a b/α
cα d

)
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and all matrix entries are bounded above in absolute value on C3 the absolute value |α| must
indeed be bounded above and below.

If π acts on V then for any u in V the support of the function
(
π(g)u, u

)
has been shown,

in the second paragraph during the proof of proposition 2.20, to be compact modulo ZF . Let
C be its compact image in ZF\GF . Let C1 be a compact subset of GF . By the previous
lemma the set of g in GF such that (

π(g−1hg)u, u
)
̸= 0

for some h in C1 has an image in ZF\GF which is contained in a compact set C2. Therefore
the integral ∫

ZF \GF

(
π(g−1hg)u, u

)
dg =

∫
C2

(
π(g−1hg)u, u

)
dg

is convergent for h in C1. Moreover if r is large enough T ′
r contains C2 and

φr(h) =

∫
Zf\GF

(
π(g−1hg)u, u

)
dg.

Therefore the sequence {φr} converges uniformly on any compact subset of G̃F and its limit

d−1(π)χπ(h) is continuous on G̃F . We may state the following proposition.

Proposition 7.5. If h belongs to G̃F then∫
ZF \GF

(
π(g−1hg)u, u

)
dg

exists and is equal to d−1(π)χπ(h).

Since ∣∣∣(π(g)u, u)∣∣∣ ⩽ χC(g)

it follows from Lemma 7.3.2 that, for some constant c,∣∣φr(h)∣∣ ⩽ cξ(h)

on G̃F . The set ĜF − G̃F is ÂGF which is open. To complete the proof of Proposition 7.4

we show that on the intersection of ÂGF with a compact subset of GF the sequence {φr} is

dominated by a multiple of ξ and that it converges uniformly in a compact subset of ÂGF .

Let C3 be a compact subset of GF . Any h in ÂF may be written in the form

h = h−1
1

(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
h1

where h1 belongs to GL(2, OF ) and α ̸= β. In C3 ∩ ÂGF the absolute values of α and β are

bounded above and below. If C3 is contained in ÂGF the absolute value of 1 − β
α
is also

bounded above and below on C3. Since(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
=

(
α 0
0 β

)1
(
1− β

α

)
x

0 1


the absolute value of x will be bounded above.



134 I. LOCAL THEORY

Since GL(2, OF )TrGL(2, OF ) = Tr the integral which defines φr(h) is equal to∫
T ′
r

(
π(g−1h′g)u, u

)
dg

if

h′ =

(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
and we may as well assume that h itself is of this form. We are going to show that there is a
constant c such that ∣∣φr(h)∣∣ ⩽ c

∣∣∣∣1− β

α

∣∣∣∣−1

for all r and all such h and that the sequence {φr} converges uniformly if x remains in a
compact subset of F and α, β and 1− β

α
remain in a compact subset of F×. Then the proof

of the proposition will be complete.
The stabilizer of u is some open subgroup U of GL(2, OF ). Let h1, . . . , hp be a set of coset

representatives for GL(2, OF )/U and let ui = π(hi)u. Apart from an unimportant factor
coming from the Haar measure φr(h) is given by

p∑
i=1

φir(h)

with

φir(h) =

∫ π((γ γx1
0 1

)
h

(
γ γx1
0 1

))
ui, ui

 dx1 d
×γ.

The integral is taken over the set of all those γ and x1 for which(
γ γx1
0 1

)
belongs to Tr. Since(

γ γx1
0 1

)−1

h

(
γ γx1
0 1

)
=

(
α 0
0 β

)1
(
1− β

α

)
(γ−1x+ x1)

0 1


we can change variables in the integral to obtain

(7.4.3)

∣∣∣∣1− β

α

∣∣∣∣−1 ∫ π
(α 0

0 β

)1 γ−1
(
1− β

α

)
x+ x1

0 1


ui, ui

 dx1 d
×γ.

The integration is now taken over all those x1 and γ for which

(7.4.4)

γ γ
(
1− β

α

)−1

x1

0 1


is in Tr.
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Let
∣∣∣1− β

α

∣∣∣ = |ϖF |t, |γ| = |ϖF |m, and |x| = |ϖF |n. Let ϖp
F and ϖq

F be the elementary

divisors of the matrix (7.4.4). We now list the possibilities for p and q together with the
condition that the matrix belong to Tr, that is that q − p be at most r.

(i) m ⩾ 0, −t+m+ n ⩾ 0, p = 0, q = m : 0 ⩽ m ⩽ r
(ii) m ⩾ 0, −t+m+ n ⩽ 0, p = −t+m+ n, q = n− t : −r ⩽ m+ 2n− 2t
(iii) m ⩽ 0, −t+m+ n ⩽ m, p = −t+m+ n, q = n− t : −r ⩽ m+ 2n− 2t
(iv) m ⩽ 0, −t+m+ n ⩾ m, p = m, q = 0 : −r ⩽ m ⩽ 0.

These conditions amount to the demand that −r ⩽ m ⩽ r and that 2n ⩾ 2t− r −m. On
the other hand we know that there is an integer s such that∫

|x|⩽|ϖF |j
π

((
1 x1
0 1

))
ui dx = 0

for 1 ⩽ i ⩽ p if j ⩽ s.
Thus if |γ| = |ϖF |m the integral

∫ π
(α 0

0 β

)1 γ−1
(
1− β

α

)x+x1
0 1


ui, ui

 dx1

taken over all x1 for which γ γ
(
1− β

α

)
x1

0 1


is in Tr is zero if 2t− r −m ⩽ 2s. Therefore in (7.4.3) we need only take the integral over

those γ and x for which |γ| = |ϖF |m with 0 ⩽ m + r ⩽ 2(t − s) and |x| ⩽ |ϖF |t−
m+r

2 . We
should also have m ⩽ r but since we are about to replace the integrand by its absolute value
that does not matter. For each such γ the integration with respect to x gives a result which
is bounded in absolute value by a constant times |ϖF |t−

m+r
2 . Integrating with respect to γ

we obtain a result which is bounded in absolute value by a constant times

|ϖF |t
2(t−s)−1∑
k=0

|ϖF |−k/2 ⩽ |ϖf |s
∞∑
k=0

|ϖF |k/2

The right side depends on neither r nor t.

The value of
∣∣∣1− β

α

∣∣∣φir(h) is
∫ π

((
α 0
0 β

))
π


1 ϖr

Fγ
−1
(
1− β

α

)
x+ x1

0 1


ui, ui

 dx1 d
×γ.

The integration is taken over those γ and x1 for which |γ| = |ϖF |m with 0 ⩽ m < 2(t−s) and
|x| ⩽ |ϖF |t−

m
2 . Of course

∣∣∣1− β
α

∣∣∣ = |ϖF |t. Since we are now interested in a set of α and β on

which t takes only a finite number of values we may as well assume it is constant. Then the
integral is taken over a fixed compact subset of F × F×. The integrand converges uniformly
on this set uniformly in the α, β and x under consideration as r approaches infinity.
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We have still to prove the existence of the character of a representation which is not
absolutely cuspidal. Most of them are taken care of by the next proposition.

Proposition 7.6. Let µ1 and µ2 be a pair of quasi-characters of F×. Let χµ1,µ2 be the

function which is 0 on ĜF ∩ G̃F , undefined on the singular elements, and equal to{
µ1(α)µ2(β) + µ2(β)µ1(α)

}∣∣∣∣ αβ

(α− β)2

∣∣∣∣1/2
at an element of g of ÂGF with eigenvalues α and β. Then χµ1,µ2 is continuous on ĜF and is
dominated in absolute value by some multiple of ξ. Moreover if π = ρ(µ1, µ2)

Tr π(f) =

∫
GF

χµ1,µ2(g)f(g) dg

for all f in HF .

Only the last assertion requires verification. Since the absolute value of χµ1,µ2 is bounded
by a multiple of ξ the function χµ1,µ2 is locally integrable. Suppose f belongs to HF . When
applied to the function χµ1,µ2f the relation (7.2.1) shows that

(7.6.1)

∫
GF

χµ1,µ2(g)f(g) dg

is equal to

1

2

∫
AF

δ(a)

{∫
AF \GF

χµ1,µ2(g
−1ag)f(g−1ag) dg

}
da.

Since χµ1,µ2 is a class function this may be written as

1

2

∫
AF

{
µ1(α)µ2(β) + µ2(α)µ1(β)

}∣∣∣∣∣(α− β)2

αβ

∣∣∣∣∣
1/2

∫
AF \GF

f

(
g−1

(
α 0
0 β

)
g

)
dg

 da

if

a =

(
α 0
0 β

)
.

Since a is conjugate to (
β 0
0 α

)
we have ∫

AF \GF

f

(
g−1

(
α 0
0 β

)
g

)
dg =

∫
AF \GF

f

(
g−1

(
β 0
0 α

)
g

)
dg.

Thus (7.6.1) is equal to

(7.6.2)

∫
AF

µ1(α)µ2(β)

∣∣∣∣∣(α− β)2

αβ

∣∣∣∣∣
1/2

∫
AF \GF

f

(
g−1

(
α 0
0 β

)
g

)
dg

 da.
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As long as the measure on AF\GF is the quotient of the measure on GF by that on AF
the choice of Haar measure on AF and GF is not relevant. Thus we may write (7.6.2) as∫

AF

µ1(α)µ2(β)

∣∣∣∣∣(α− β)2

αβ

∣∣∣∣∣
1/2
f
(
k−1n−1

(
α 0
0 β

)
nk

)
dk dn

 da.

The inner integral is taken over GL(2, OF )×NF . If

n =

(
1 x
0 1

)
then

n−1

(
α 0
0 β

)
n =

(
α 0
0 β

)1
(
1− β

α

)
x

0 1


Changing variables in the last integral we obtain

(7.6.3)

∫
AF

µ1(α)µ2(β)

∣∣∣∣αβ
∣∣∣∣1/2

∫
f

(
k−1

(
α 0
0 β

)
nk

)
dk dn

da.
To evaluate Trπ(f) we observe that if φ belongs to B(µ1, µ2) then, if k1 is in GL(2, OF )

π(f)φ(k1) =

∫
GF

φ(k1g)f(g) dg.

Replacing g by k−1
1 g and writing the integral out in terms of the Haar measure we have

chosen we obtain∫
GL(2,OF )

φ(k2)


∫
f

(
k−1
1

(
α 0
0 β

)
nk2

)
µ1(α)µ2(β)

∣∣∣∣αβ
∣∣∣∣1/2 da dn

 dk2.

The inner integral is taken over AF ×NF . We have of course used the relation

φ

((
α 0
0 β

)
nk2

)
= µ1(α)µ2(β)

∣∣∣∣αβ
∣∣∣∣1/2φ(k2).

If

K(k1, k2) =

∫
f

(
k−1
1

(
α 0
0 β

)
nk2

)
µ1(α)µ2(β)

∣∣∣∣αβ
∣∣∣∣1/2 da dn

then

π(f)φ(k1) =

∫
GL(2,OF )

K(k1, k2)φ(k2) dk2.

B(µ1, µ2) may be regarded as a space of functions on GL(2, OF ). Then π(f) is the integral
operator with kernel K(k1, k2). It is easily seen that this operator, when allowed to act on
the space of all GL(2, OF )-finite functions on GL(2, OF ), has range in B(µ1, µ2). Thus the
trace of π(f) is the same as the trace of the integral operator which is of course∫

GL(2,OF )

K(k, k) dk.

When written out in full this integral becomes (7.6.3).
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Theorem 7.7. Let π be an irreducible admissible representation of HF . There is a function

χπ which is continuous on GF and locally bounded in absolute value of ĜF by a multiple of ξ
such that

Tr π(f) =

∫
GF

χπ(g)f(g) dg

for all f in HF .

The theorem has only to be verified for the one-dimensional and the special representations.
If π is a one-dimensional representation associated to the quasi-character χ we may take
χπ(g) = χ(det g). The character χπ is locally bounded and therefore, by Lemma 7.3, locally
bounded by a multiple of ξ.

Suppose π1, π2 and π3 are three admissible representations of F on the spaces V1, V2, and
V3 respectively. Suppose also that there is an exact sequence

0 V1 V2 V3 0

of HF -modules. If f is in HF all the operators π1(f), π2(f) and π3(f) are of finite rank so
that

Tr π2(f) = Trπ1(f) + Trπ3(f).

Thus if χπ1 and χπ2 exist so does χπ3 . Applying this observation to π3 = σ(µ1, µ2), π2 =
ρ(µ1, µ2), and π1 = π(µ1, µ2) we obtain the theorem.

If F is taken to be the real or complex field Theorem 7.7 is a special case of a general and
difficult theorem of Harish-Chandra. The special case is proved rather easily however. In fact
Proposition 7.6 is clearly valid for archimedean fields and Theorem 7.7 is clearly valid for
archimedean fields if π is finite-dimensional. There remains only the special representations
and these are taken care of as before.



§8. ODDS AND ENDS 139

§8. Odds and ends

In this paragraph various facts which will be used in the discussion of the constant term
in the Fourier expansion of an automorphic form are collected together. If H is a locally
compact abelian group a continuous complex-valued function f on H will be called H-finite
or simply finite if the space spanned by the translates of f is finite-dimensional.

Let H be a group of the form

H = H0 × Zm ×Rn

where H0 is compact. We regard Zm ×Rn as a subgroup of Rm+n. The projection

ξi : h = (h0, x1, . . . , xm+n) → xi

may be regarded as a function on H with values in R. If p1, . . . , pm+n is a sequence of
non-negative integers and χ is a quasi-character we may introduce the function

χ
m+n∏
i=1

ξpii

on H.

Lemma 8.1. For any sequence p1, . . . , pm+n and any quasi-character χ the function

χ
m+n∏
i=1

ξpii

is continuous and finite. These functions form a basis of the space of continuous finite
functions on H.

If χ is a fixed quasi-character of H and p is a non-negative integer let V (χ, p) be the
space spanned by the functions χ

∏m+n
i=1 ξpii with 0 ⩽ pi ⩽ p. Since it is finite-dimensional

and invariant under translations the first assertion of the lemma is clear.
To show that these functions are linearly independent we shall use the following simple

lemma.

Lemma 8.1.1. Suppose E1, . . . , Er are r sets and F1, . . . ,Fr are linearly independent sets
of complex-valued functions on E1, . . . , Er respectively. Let F be the set of functions

(x1, . . . , xr) → f1(x1)f2(x2) · · · fr(xr)
on E1 × · · · × Er. Here fi belongs to Fi. Then F is also linearly independent.

Any relation ∑
f1,...,fr

a(f1, . . . , fr)f1(x1) · · · fr(xr) ≡ 0

leads to ∑
fr

 ∑
f1,...,fr−1

a(f1, . . . , fr)f1(x1) · · · fr−1(xr−1)

fr(xr) ≡ 0

As Fr is linearly independent this implies that∑
f1,...,fr−1

a(f1, . . . , fr)f1(x1) · · · fr−1(xr−1) ≡ 0
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and the lemma follows by induction.
To show that the functions χ

∏m+n
i=1 ξpii span the space of continuous finite functions we

use another simple lemma.

Lemma 8.1.2. Let H1 and H2 be two locally compact abelian groups and let H = H1 ×H2.
Then every continuous finite function f on H is a finite linear combination of the form

f(x, y) =
∑
i

λiφi(x)ψi(y)

where the φi and ψi are continuous finite functions on H1 and H2 respectively.

Let V be any finite-dimensional space of continuous functions on H. We associate to any
point ξ in H the linear functional f → f(ξ) on V . Since no function but zero is annihilated
by all these functionals we can choose ξ1, . . . , ξp so that the corresponding functionals form a
basis of the dual of V . Then we can choose a basis f1, . . . , fp of V so that fi(ξj) = δij.

Now suppose V is invariant under translations. It could for example be the space spanned
by the translates of a single finite continuous function. The space V1 of functions φ on
H1 defined by φ(x) = f(x, 0) with f in V is finite-dimensional and translation invariant.
Therefore the functions in it are finite and of course continuous. We define V2 in a similar
manner. If f is in V the function h→ f(g + h) is, for any g in H, also in V . Thus

f(g + h) =
∑
i

λi(g)fi(h).

Since
λi(g) = f(g + ξi)

the function λi belongs to V . If φi(x) = λi(x, 0) and ψi(y) = fi(0, y) then

f(x, y) =
∑

φi(x)ψi(y)

as required.
These two lemmas show that we need prove the final assertions of Lemma 8.1 only for H

compact, H = Z, or H = R.
Suppose H is compact. If we have a non-trivial relation

r∑
i=1

aiχi(h) ≡ 0

we may replace h by g + h to obtain
r∑
i=1

aiχi(g)χi(h) ≡ 0.

If such a relation holds we must have r ⩾ 2 and at least two coefficients say a1 and a2 must
be different from zero. Choose g so that χ1(g) ̸= χ2(g). Multiplying the first relation by
χ1(g) and subtracting the second relation from the result we obtain a relation

r∑
i=2

biχi(h) ≡ 0.

Since b2 =
{
χ1(g)− χ2(g)

}
a2 the new relation is non-trivial. The independence of the

quasi-characters can therefore be proved by induction on r.
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To prove that when H is compact the quasi-characters span the space of finite continuous
functions we have just to show that any finite-dimensional space V of continuous functions
which is translation invariant is spanned by the quasi-characters it contains. Choose a basis
{fi} of V as before and let

ρ(g)fi =
∑

λij(g)fj.

We saw that the functions λij(g) are continuous. Thus the action of H on V by right
translations is continuous and V is the direct sum of one-dimensional translation invariant
spaces. Each such space is easily seen to contain a character.

When applied to a locally compact abelian group the argument of the previous paragraph
leads to weaker conclusions. We can then find subspaces V1, . . . , Vr of V and quasi-characters
χ1, . . . , χr of H such that

V =
r⊕
i=1

Vi

and, for every h in H, {
ρ(h)− χi(h)

}dimVi

annihilates Vi. Now we want to take H equal to Z or R. Then H is not the union of a finite
number of proper closed subgroups. Suppose µ1, . . . , µ2 are quasi-characters of H and for
every h in H the operator

(8.1.3)
s∏
i=1

{
ρ(h)− µi(h)

}
on V is singular. Then for every h in H there is an i and a j such that µi(h) = χj(h). If

Hij =
{
h
∣∣ µi(h) = χj(h)

}
then Hij is a closed subgroup of H. Since the union of these closed subgroups is H there
must be an i and a j such that Hij = H and µi = χj. If the operator (8.1.3) were zero the
same argument would show that for every j there is an i such that µi = χj.

If µ is a quasi-character of H, now taken to be Z or R, we let V (µ, p) be the space
spanned by the functions µξi, with 0 ⩽ i ⩽ p. Here ξ is the coordinate function on H. It is

clear that V (µ, p) is annihilated by
{
ρ(h)− µ(h)

}p+1
for all h in H. Suppose µ, µ1, . . . , µ2

are distinct and

V = V (µ, p)
s∑
i=1

V (µi, pi)

is not zero. Decomposing V as above we see that χ1, . . . , χr must all be equal to µ on one
hand and on the other that every µi is a χj. This is a contradiction. Thus if there is any
non-trivial relation at all between the functions χξi where χ is any quasi-character and i is a
non-negative integer there is one of the form

p∑
i=0

aiµξ
i = 0.

Since the polynomial
∑p

i=0 aiξ
i would then have an infinite number of zeros this is impossible.

To prove the functions χξi span the space of finite continuous functions we have only to
show that if χ is a given quasi-character and V is a finite-dimensional space of continuous

functions which is invariant under translations and annihilated by
{
ρ(h)− χ(h)

}dimV
for all
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h in H then every function in V is the product of χ and a polynomial. Since we can always
multiply the functions in V by χ−1 we may as well suppose that χ is trivial. We have only
to observe that any function f annihilated by the operator

{
ρ(h)− 1

}n
for all h in H is a

polynomial of degree at most n. This is clear if n = 1 so by induction we can assume that
ρ(h)f − f is a polynomial

∑n−1
i=0 ai(h)ξ

i. We can certainly find a polynomial f ′ of degree n
such that

ρ(1)f ′ − f ′ =
n−1∑
i=0

ai(1)ξ
i

and we may as well replace f by f − f ′. The new f satisfies ρ(1)f = f . It is therefore
bounded. Moreover ρ(h)f − f is a bounded polynomial function and therefore a constant
c(h). c(h) is a bounded function of h and satisfies c(h1 + h2) = c(h1) + c(h2). It is therefore
zero and the new f is a constant.

Lemma 8.1 is now completely proved. Although it is trivial it is important to the notes
and we thought it best to provide a proof. We might as well prove Lemma 2.16.4 at the same
time. Let B be the space of all functions f on Z such that for some n0 depending on f we
have f(n) = 0 for n < n0. Let A0 be the space of functions on Z which vanish outside a finite
set. Z acts on B and on A0 by right translations and therefore it also acts on B = B/A0.
In particular let D = ρ(1). We have merely to show that if P is a polynomial with leading
coefficient 1 then the null space of P (D) in B is finite-dimensional. If

P (X) =
r∏
i=1

(X − αi)
pi

the null space of P (D) is the direct sum of the null spaces of the operators (D − αi)
pi . The

null space of (D − α)p is the image in B of the functions in B which are zero to the left of 0
and of the form

n→ αnQ(n)

to the right of 0. Q is a polynomial of degree at most p.
Lemma 8.1 is certainly applicable to the direct product of a finite number of copies of the

multiplicative group of a local field F . If H = (F×)n any finite continuous function on H is
a linear combination of functions of the form

f(x1, . . . , xn) =
n∏
i=1

{
χi(xi)

(
log|xi|F

)ni

}
.

Let B = BF be the space of continuous functions f on GF which satisfy the following
three conditions.

(i) f is finite on the right under the standard maximal compact subgroup K of GF .
(ii) f is invariant on the left under NF .
(iii) f is AF -finite on the left.

BF is invariant under left translations by elements of AF . If f is in BF let V be the finite-
dimensional space generated by these left translates. Choose g1, . . . , gp in GF so that the
linear functions φ→ φ(gi) are a basis of the dual of V and let f1, . . . , fp be the dual basis. If
a is AF we may write

f(a, g) =

p∑
i=1

θi(a)fi(g).
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Then
θi(a) = f(agi)

so that

θi(ab) =

p∑
j=1

θj(a)fj(bgi).

Thus the functions θi are continuous and finite. We may write them in the form

θi(a) =
∑

cim,n,µ,νµ(α1)ν(α2)
(
log|α1|

)m(
log|α2|

)n
if

a =

(
α1 0
0 α2

)
.

The sum is over all quasi-characters µ and ν of F× and all non-negative integers m and n.
Of course only a finite number of the coefficients cim,n,µ,ν are different from zero.

We may replace µ by α
1/2
F µ and ν by α

−1/2
F ν in the sum. Thus if

fm,n,µ,ν =

p∑
i=1

cim,n,µ,νfi

we have

(8.2) f(ag) =

∣∣∣∣α1

α2

∣∣∣∣1/2∑µ(α1)ν(α2)
(
log|α1|

)m(
log|α2|

)n
fm,n,µ,ν(g).

Let M be a non-negative integer and S a finite set of pairs of quasi-characters of F×. The set
B(S,M) will be the collection of f in B for which the sum in (8.2) need only be taken over
those m, n, µ, ν for which m+ n ⩽M and (µ, ν) belong to S. Observe that the functions
fm,n,µ,ν are determined by f . B is the union of the spaces B(S,M); if S consists of the single
pair (µ1, µ2) we write B(µ1, µ2,M) instead of B(S,M). If f is in (µ1, µ2,M)

f(ag) =

∣∣∣∣α1

α2

∣∣∣∣1/2µ1(α1)µ2(α2)
∑(

log|a1|
)m(

log|a2|
)n
fm,n(g).

The space B(µ1, µ2, 0) is just B(µ1, µ2).
The functions fm,n,µ,ν are uniquely determined and by their construction belong to the

space spanned by left translates of f by elements of AF . Thus if f belongs to B(S,M) so do
the functions fm,n,µ,ν . We want to verify that f0,0,µ,ν belongs to B(µ, ν,M). If

b =

(
β1 0
0 β2

)
and we replace a by ab in the relation (8.2) we find that∣∣∣∣α1

α2

∣∣∣∣1/2∑µ(α1)ν(α2)
(
log|α1|

)m(
log|α2|

)n
fm,n,µ,ν

is equal to∣∣∣∣α1β1
α2β2

∣∣∣∣1/2∑µ(α1β1)ν(α2β2)
(
log|α1|+ log|β1|

)m(
log|α2|+ log|β2|

)n
fm,n,µ,ν(g).
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Fix b and g and regard this equality as an identity in the variable a. Because of Lemma 8.1
we can compare the coefficients of the basic finite functions. The coefficient of µ(α1)ν(α2) on
one side is f0,0,µ,ν(bg). On the other it is∣∣∣∣β1β2

∣∣∣∣1/2 ∑
m+n⩽M

µ(β1)ν(β2)
(
log|β1|

)m(
log|β2|

)n
fm,n,µ,ν(g).

The resulting identity is the one we wanted to verify.
Taking a = 1 in (8.2) we see that

f(g) =
∑

(µ,ν)∈S

f0,0,µ,ν(g).

Therefore
B(S,M) =

∑
(µ,ν)∈S

B(µ, ν,M).

The sum is direct.
It is fortunately possible to give a simple characterization of B.

Proposition 8.3. Let φ be a continuous function on GF . Assume φ is K-finite on the right
and invariant under NF on the left. Then φ belongs to B if and only if the space{

ρ(ξf)φ
∣∣ f ∈ HF

}
is finite-dimensional for every elementary idempotent in HF .

We have first to show that if φ belongs to B{
ρ(ξf)φ

∣∣ f ∈ HF

}
is finite-dimensional. Certainly φ belongs to some B(S,M). Both B and B(S,M) are invariant
under right translations by elements of HF . Thus we have only to show that the range of
ρ(ξ) as an operator on B(S,M) is finite-dimensional. This is tantamount to showing that
any irreducible representation of K occurs with finite multiplicity in the representation of
B(S,M).

Let σ be such a representation and let V be the space of continuous functions on K which
transform according to σ under right translations. V is finite-dimensional. If f is in B(S,M)
we may write

f(ag)

∣∣∣∣α1

α2

∣∣∣∣1/2∑µ(α1)ν(α2)
(
log|α1|

)m(
log|α2|

)n
fm,n,µ,ν(g)

The restriction of fm,n,µ,ν to K lies in V . Call this restriction fm,n,µ,ν . Moreover f is
determined by its restriction to AFK. Thus

f →
⊕

(µ,ν)∈S
m+n⩽M

fm,n,µ,ν

is an injection of the space of functions under consideration into the direct sum of a finite
number of copies of V .

The converse is more complicated. Suppose φ is K-finite on the right, invariant under
NF on the left, and the space {

ρ(ξf)φ
∣∣ f ∈ HF

}
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is finite-dimensional for every elementary idempotent ξ. Choose ξ so that ρ(ξ)φ = φ. There
is actually a function f in ξHF ξ such that ρ(f)φ = φ. If F is non-archimedean ξ is itself a
function so this is clear. If F is archimedean we observe that if f1 is an approximation to
the δ-function then ρ(f1)φ is close to φ. Then if f ′

1 = ξ ∗ f1 ∗ ξ the function f ′
1 is in ξHF ξ

and ρ(f ′
1)φ is also close to φ. The existence of f then follows from the fact that ρ(ξHF ξ)φ is

finite-dimensional. This argument was used before in Paragraph 5.
Take F to be archimedean. Then φ must be an infinitely differentiable function on GF .

Let Z be the centre of the universal enveloping algebra of the Lie algebra of GF . If Z is in Z
then

ρ(Z)φ = ρ(Z)ρ(f)φ = ρ(Z ∗ f)φ
and Z ∗f is still in ξHF ξ. Thus φ is also Z-finite. For the rest of the proof in the archimedean
case we refer to Chapter I of [11].

Now take F non-archimedean. We may replace ξ by any elementary idempotent ξ′ for
which ξ′ξ = ξ. In particular if we choose n to be a sufficiently large positive integer and let
K ′ be the elements of K which are congruent to the identity modulo pn we may take

ξ =
∑

ξi

where the sum is over all elementary idempotents corresponding to irreducible representations
of K whose kernel contains K ′. Notice that n is at least 1. Then ξHF ξ is the space of
functions on GF which are constant on double cosets of K ′.

Let V be the space spanned by the functions ρ(k)φ with k in K. It is finite-dimensional
and all the functions in V satisfy the same conditions as φ. Let φi, 1 ⩽ i ⩽ p, be a basis of
V . If k belongs to K we may write

φ(gk) =

p∑
i=1

θi(k)φi(g)

and φ is determined by the functions θi and the restrictions of the functions φi to AF . To
show that φ is AF -finite on the left we have merely to show that the restriction of each φi to
AF is finite. We may as well just show that the restriction of φ to AF is finite.

Suppose f is in ξHF ξ and ρ(f)φ = φ. If a is in ZF then

λ(a)φ = ρ(a−1)φ = ρ(δa−1 ∗ f)φ
if δa−1 is the δ-function at a−1. Since δa−1 ∗ f is still in ξHF ξ the function φ is certainly
ZF -finite and so is its restriction φ to AF . If α and β are units and α ≡ β ≡ 1 (mod pn) then

λ

((
α 0
0 β

))
φ = φ.

Thus the translates of φ by the elements of Af ∩K span a finite-dimensional space and if ϖ
is a generator of p we have only to show that the translates of φ by the group

H =

{(
ϖp 0
0 1

) ∣∣∣∣∣ p ∈ Z

}
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span a finite-dimensional space. Suppose the span W ofλ

((
ϖp 0
0 1

))
φ

∣∣∣∣∣∣ p ⩽ 0


is finite-dimensional. Then

λ

((
ϖ−1 0
0 1

))
maps W into itself and annihilates no vector but zero so that it has an inverse on W which
must be

λ

((
ϖ 0
0 1

))
.

Thus W is invariant under H and φ is finite.
To show that W is finite-dimensional we show that if

a =

(
ϖ−p 0
0 1

)
with p > 0 there is a function fa in ξHF ξ such that

λ(a)φ = φ′

if φ′ = ρ(fa)φ. There is an f in ξHF ξ such that

φ(g) =

∫
GF

φ(gh)f(h) dh

for all g in GF . Thus if b belongs to AF

λ(a)φ(b) = φ(a−1b) =

∫
GF

φ(ba−1h)f(h) dh.

If f1(h) = f(ah) the integral is equal to∫
GF

φ(bh)f1(h) dh.

If f1 were in ξHF ξ we would be done. Unfortunately this may not be so. However
f1(hk) = f1(h) if k belongs to K ′. If

k =

(
α β
γ δ

)
then

f1(kh) = f

((
α ϖ−pβ
ϖpγ δ

)
ah

)
.

Thus f1(kh) = f1(h) if α ≡ δ ≡ 1 (mod pn), γ ≡ 0 (mod pn), and β ≡ 0 (mod pn+p). Set

f2(h) =

∫
pn/pn+p

f1

((
1 x
0 1

)
h

)
dx
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where the Haar measure is so chosen that the measure of the underlying space pn/pn+p is 1.
Since φ(bnh) = φ(bh) for all n in NF

λ(a)φ(b) =

∫
GF

φ(bh)f2(h) dh.

We show that f2 lies in ξHF ξ.
Certainly f2(hk) = f2(h) if k is in K ′. Moreover, because of its construction, f2(kh) =

f2(h) if

k =

(
α β
0 δ

)
with α ≡ δ ≡ 1 (mod pn) and β ≡ 0 (mod pn). Since every element of K ′ is a product(

1 0
γ 1

)(
α β
0 δ

)
where both terms lie in K ′ we have only to show that f2 is invariant under the first factor. If

k =

(
1 0
γ 1

)
with γ ≡ 0 (mod pn) and

k1(x) =

(
1 0
0 1 + xγ

)( 1
1+xγ

0
−γ

1+xγ
1

)
then

k1(x)

(
1 x
0 1

)
k =

(
1 x

1+xγ

0 1

)
.

Moreover if x is in OF

f1
(
k1(x)g

)
= f1(g).

Thus f2(kg) which is given by ∫
pn/pn+p

f1

((
1 x
0 1

)
kh

)
dx

is equal to ∫
pn/pn+p

f1

(1 x
1+xγ

0 1

)
h

 dx.

Since the map x→ x
1+xγ

is a one-to-one map of the finite set pn/pn+p onto itself it is measure

preserving and the above integral is equal to f2(h).
Analyzing the above proof one sees that in the non-archimedean case the left translates

of φ are contained in the space X obtained by restricting the functions in ρ(ξHF ξ)φ to AF .
Thus if Y is the space of the functions on K/K ′ the left translates of φ by elements of AF
are contained in the space of functions on NF\GF of the form

φ′(ak) =
∑

θi(k)φi(a)

with θi in Y and φi in X.



148 I. LOCAL THEORY

In the archimedean case Y is the space of continuous functions θ on K for which
θ ∗ ξ = ξ ∗ θ = θ. It is again finite-dimensional. X is defined in the same way. In this case
there are a finite number of invariant differential operators D1, . . . , Dr on AF such that the
left translates of φ by elements of AF are contained in the space of functions NF\GF of the
form

φ′(ak) =
∑

θi(k)φi(a)

with θi in Y and φi in
∑r

j=1DjX.
There is a corollary of these observations. Let F1, . . . , Fn be a finite collection of local

fields. Let Gi = GFi
, Ni = NFi

, Ai = AFi
, and let Ki be the standard maximal compact

subgroup of Gi. We set G =
∏n

i=1Gi, N =
∏n

i=1Ni and so on. If Hi = HFi
we let H =

⊗
iHi.

Then H may be regarded as an algebra of measures on G.

Corollary 8.4. Let φ be a continuous function on N\G which is K-finite on the right. If
for every elementary idempotent ξ in H the space{

ρ(ξf)φ
∣∣ f ∈ H

}
is finite-dimensional φ is A-finite on the left.

If φ satisfies the conditions of the lemma so does any left translate by an element of
A. Thus we need only show that φ is Ai-finite on the left for each i. If g is in G we write

g = (gi, ĝi) where gi is in Gi and ĝi is in Ĝi =
∏

j ̸=iGj . We may suppose that there is a ξ′ of

the form ξ′ =
⊗

i ξ
′
i where ξ

′
i is an elementary idempotent of Hi such that ρ(ξ′)φ = φ. By

means of the imbedding f → f ⊗
∏

j ̸=i ξ
′
j the algebra Hi becomes a subalgebra of H. The

left translates of φ by Ai all lie in the space of functions of the form

φ(aiki, ĝ1) =
∑
j

θj(ki)φj(ai, ĝ1)

where the θj lie in a certain finite-dimensional space determined by ξ′i and the φj lie in the

space obtained by restricting the functions in ρ(ξiHi)φ to Ai × Ĝi or, in the archimedean
case, the space obtained from this space by applying certain invariant differential operators.
Here ξi is a certain elementary idempotent which may be different from ξ′i.

With the odds taken care of we come to the ends.

Proposition 8.5. Let B(µ, ν,∞) =
⋃
M⩾0 B(µ, ν,M). If an irreducible admissible repre-

sentation π of HF is a constituent of the representation ρ(µ, ν,∞) on B(µ, ν,∞) it is a
constituent of ρ(µ, ν).

There are two invariant subspaces V1 and V2 of B(µ, ν,∞) such that V1 contains V2 and
π is equivalent to the representation on HF on V1/V2. Choose M so that V1 ∩ B(µ, ν,M) is
not contained in V2. Since π is irreducible

V1 = V2 +
(
V1 ∩ B(µ, ν,M)

)
and

V1/V2 =
{
V2 +

(
V1 ∩ B(µ, ν,M)

)}/
V2

is isomorphic as an HF module to

V1 ∩ B(µ, ν,M)/V2 ∩ B(µ, ν,M)

so that we may as well suppose that V1 is contained in B(µ, ν,M).
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Given π we choose M as small as possible. If M = 0 there is nothing to prove so assume
M is positive. If φ is in B(µ, ν,M) we can express

φ

((
α1 0
0 α2

)
g

)
as ∣∣∣∣α1

α2

∣∣∣∣1/2µ(α1)ν(α2)
∑

m+n⩽M

(
log|α1|

)m(
log|α2|

)n
φm,n(g)

We can express

φ

((
α1 0
0 α2

)(
β1 0
0 β2

)
g

)
in two ways because the second factor can be absorbed into the first or the third. One way
we obtain ∣∣∣∣α1

α2

∣∣∣∣1/2µ(α1)ν(α2)
∑

m+n⩽M

(
log|α1|

)m(
log|α2|

)n
φm,n

((
β1 0
0 β2

)
g

)
and the other way we obtain∣∣∣∣α1β1

α2β2

∣∣∣∣1/2µ(α1β1)ν(α2β2)
∑

m+n⩽M

(
log|α1|+ log|β1|

)m(
log|α2|+ log|β2|

)n
φm,n(g).

On comparing coefficients we see that if m+ n =M

φm,n

((
β1 0
0 β2

)
g

)
=

∣∣∣∣β1β2
∣∣∣∣1/2µ(β1)ν(β2)φm,n(g)

so that φm,n is in B(µ, ν). Consider the map

φ→
⊕

m+n=M

φm,n

of V1 into ⊕
m+n=M

B(µ, ν).

Its kernel is V1 ∩ B(µ, ν,M − 1). Since V2 +
(
V1 ∩ B(µ, ν,M − 1)

)
cannot be V1 the image of

V2 is not the same as the image of V1. Since the map clearly commutes with the action of
HF the representation π is a constituent of

⊕
m+n=M ρ(µ, ν).

Proposition 8.5 is now a consequence of the following simple lemma.

Lemma 8.6. Suppose π is an irreducible representation of an algebra H. Suppose ρ is
a representation of H of which π is a constituent and that ρ is the direct sum of the
representations ρλ, λ ∈ Λ. Then π is a constituent of at least one of the ρλ.

Let ρλ act on Xλ and let ρ act on X the direct sum of Xλ. Suppose that Y1 and Y2 are
invariant subspaces of X and that the representation on the quotient Y1/Y2 is equivalent to
π. There is a finite subset Λ0 of Λ such that

Y1 ∩

∑
λ∈Λ0

Xλ
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is not contained in Y2. We may as well replace Y1 by Y1 ∩
(∑

λ∈Λ0
Xλ

)
and Y2 by Y2 ∩(∑

λ∈Λ0
Xλ

)
and suppose that Λ is finite. If Λ = {λ1, . . . , λp} we have only to show that π is

a constituent of ρλ1 or of ρλ2 ⊕ · · · ⊕ ρλp for we can then use induction. Thus we may as well
take p = 2. If the projections of Y1 and Y2 on Xλ1 are not equal we can replace Y1 and Y2 by
these projections to see that π is a constituent of ρλ1 . If they are equal Y1 = Y2 + (Y1 ∩Xλ2)
and we can replace Y1 and Y2 by Y1 ∩Xλ2 and Y2 ∩Xλ2 to see that π is a constituent of ρλ2 .
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CHAPTER II

Global Theory

§9. The global Hecke algebra

Let F be a global field, that is, an algebraic number field of finite degree over the rationals
or a function field in one variable over a finite field. A will be the adèle ring of F . Before
studying the representations of GL(2,A) or, more precisely, the representations of a suitable
group algebra of GL(2,A) we introduce some simple algebraic notions.

Let {Vλ | λ ∈ Λ } be a family of complex vector spaces. Suppose that for all but a finite
number of λ we are given a non-zero vector eλ in Vλ. Let V

0 be the set of all x =
∏

λ xλ in∏
λ Vλ such that xλ = eλ for all but a finite number of λ. Let C be the free vector space with

complex coefficients over V 0 and let D be the subspace generated by vectors of the form(aYµ + bZµ)×
∏
λ ̸=µ

xλ

− a

yµ ×∏
λ ̸=µ

xλ

− b

zµ ×∏
λ ̸=µ

xλ

.
a and b belong to C and µ is any element of Λ. The quotient of C by D is called the tensor
product of the Vλ with respect to the family eλ and is written

V =
⊗
eλ

Vλ

or simply
⊗

Vλ. It has an obvious universal property which characterizes it up to isomorphism.
The image of

∏
xλ in V is written

⊗
xλ.

If Λ′ is a subset of Λ with finite complement we may form the ordinary tensor product⊗
λ∈Λ−Λ′

Vλ

and we may form ⊗
λ∈Λ′

Vλ

with respect to the family eλ. Then
⊗

λ∈Λ Vλ is canonically isomorphic to ⊗
λ∈Λ−Λ′

Vλ

⊗

⊗
λ∈Λ′

Vλ


If S is a finite subset of Λ let

VS =
⊗
λ∈S

Vλ

If S is so large that eλ is defined for λ not in S let φS be the map of VS into V which sends⊗
λ∈S xλ to

{⊗
λ∈S xλ

}
⊗
{⊗

λ/∈S eλ
}
. If S ′ contains S there is a unique map φS,S′ of VS into

VS′ which makes

153
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VS V ′
S

V

φS,S′

φS φS′

commutative. If we use these maps to form the inductive limit of the spaces VS we obtain a
space which the layman is unable to distinguish from V .

Suppose that for every λ we are given a linear map Bλ of Vλ into itself. If Bλeλ = eλ for
all but a finite number of λ there is exactly one linear transformation B of

⊗
Vλ such that

B :
⊗

xλ →
⊗

Bλxλ

B is denoted by
⊗

Bλ.
For example if Aλ, λ ∈ Λ is a family of associative algebras, which may or may not have

a unit, and if, for almost all λ, ξλ is a given idempotent of Aλ one may turn

A =
⊗
ξλ

Aλ

into an algebra in such a way that(⊗
aλ

)(⊗
bλ

)
=
⊗

(aλbλ).

Let Vλ, λ ∈ Λ, be an Aλ module. If for almost all λ a vector eλ such that ξλeλ = eλ is
given we may turn V =

⊗
eλ
Vλ into an A =

⊗
ξλ
Aλ module in such a way that(⊗

aλ

)(⊗
xλ

)
=
⊗

(aλxλ)

Suppose the family {eλ} is replaced by a family {e′λ} but that, for all but a finite number of
λ, e′λ = αλeλ where αλ is a non-zero scalar. Suppose for example that e′λ = αλeλ if λ is not
in the finite set S. There is a unique map of

⊗
eλ
Vλ to

⊗
e′λ
Vλ which sends⊗

λ∈S

xλ

⊗

⊗
λ/∈S

xλ


to ⊗

λ∈S

xλ

⊗

⊗
λ/∈S

αλxλ


It is invertible and commutes with the action of A. Moreover apart from a scalar factor it is
independent of S.

Now suppose F is a global field. A place of F is an equivalence class of injections, with
dense image, of F into a local field. If λ1 takes F into F1 and λ2 takes F into F2 they are
equivalent if there is a topological isomorphism φ of F1 with F2 such that λ2 = φ ◦ λ1. The
symbol for a place will be v. If v contains the imbedding λ1 and a belongs to F we set
|a|v =

∣∣λ1(a)∣∣. To be definite we let Fv be the completion of F with respect to the absolute
value a→ |a|v. Where v is archimedean or non-archimedean according to the nature of Fv.
Non-archimedean places will sometimes be denoted by p.

If GF = GL(2, F ) we set
Gv = GFv = GL(2, Fv).
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The group Kv will be the standard maximal compact subgroup of Gv. Then GA = GL(2,A)
is the restricted direct product of the groups Gv with respect to the subgroups Kv.

If v is non-archimedean we set Ov = OFv and Uv = UFv . Ov is the ring of integers of
Fv and Uv is the group of units of Ov. Suppose M ′ is a quaternion algebra over F . Let
M ′

v = M ′
Fv

= M ′ ⊗F Fv. For almost all v the algebra M ′
v is split, that is, there is an

isomorphism
θv :M

′
v →M(2, Fv)

where M(2, Fv) is the algebra of 2× 2 matrices over Fv. For every place v at which M ′
v is

split we want to fix such an isomorphism θv. Let B be a basis of M over F and let Lv be the
Ov module generated in Mv by B. We may and do choose θv so that for almost all v

θv(Lv) =M(2, Ov).

If B′ is another basis and {θ′v} a family of isomorphisms associated to B′ then for every
place v at which M ′

v splits there is a gv in GL(2, Fv) such that

θ′vθ
−1
v a = gvag

−1
v

for all a in M(2, Fv). Moreover gv belongs to Kv for all but a finite number of v.
Suppose the family of isomorphisms θv has been chosen. IfM ′

v is split we define a maximal
compact subgroup K ′

v of G
′
v, the group of invertible elements of M ′

v, by the condition

θv(K
′
v) = Kv.

If M ′
v is not split we set

K ′
v =

{
x ∈M ′

v

∣∣∣ ∣∣ν(x)∣∣
v
= 1

}
.

This group is compact. In any case K ′
v is defined for all v. Since many of the constructions

to be made depend on the family K ′
v, which in turn depends on the family of θv it is very

unfortunate that the family of θv is not unique. We should really check at every stage of the
discussion that the constructions are, apart from some kind of equivalence, independent of
the initial choice of θv. We prefer to pretend that the difficulty does not exist. As a matter of
fact for anyone lucky enough not to have been indoctrinated in the functorial point of view it
doesn’t. We do however remark that any two choices of the family of K ′

v lead to the same
result for almost all v. The adelic group G′

A is the restricted direct product of the groups G′
v

with respect to the subgroups K ′
v.

We have now to introduce the Hecke algebras H and H′ of GA and G′
A. Let Hv be HFv .

If M ′
v is split G

′
v isomorphic, by means of θv, to Gv and we let H′

v be the algebra of measures
on G′

v corresponding to Hv. Suppose M ′
v is not split. If v is non-archimedean H′

v is the
algebra of measures defined by the locally constant compactly supported functions on G′

v.
If v is archimedean H′

v will be the sum of two subspaces, the space of measures defined by
infinitely differentiable compactly supported functions on G′

v which are K ′
v-finite on both

sides and the space of measures on K ′
v defined by the matrix coefficients of finite-dimensional

representations of K ′
v.

Let ϵv and ϵ′v be the normalized Haar measures on Kv and K ′
v. The measure ϵv is an

elementary idempotent of Hv and ϵ
′
v is an elementary idempotent of H′

v. We set

H =
⊗
ϵv

Hv
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and
H′ =

⊗
ϵ′v

H′
v

If S is the finite set of places at which M ′
v does not split we may write

H =

⊗
v∈S

Hv

⊗

⊗
v/∈S

Hv

 = Hs ⊗ Ĥs

and

H′ =

⊗
v∈S

H′
v

⊗

⊗
v/∈S

H′
v

 = H′
s ⊗ Ĥ′

s

By construction, if M ′
v is split, Hv and H′

v are isomorphic in such a way that ϵv and ϵ′v
correspond. Using these isomorphism we may construct an isomorphism of Ĥs and Ĥ′

S. We
may also write

GA =

∏
v∈S

Gv

×

∏
v/∈S

Gv

 = GS × ĜS

and

G′
A =

∏
v∈S

G′
v

×

∏
v/∈S

G′
v

 = G′
S × Ĝ′

S.

The second factor is in both cases a restricted direct product. There is an isomorphism

θ : Ĝ′
S → Ĝs defined by

θ

∏
v/∈S

g′v

 =
∏
v/∈S

θv(g
′
v)

We will interpret ĤS and Ĥ′
S as algebras of measures on ĜS and Ĝ′

S and then the isomorphism
between them will be that associated to θ.

We can also interpret the elements of H and H′ as measures on GA and G′
A. For example

any element of H is a linear combination of elements of the form f =
⊗

v fv. Let T be a
finite set of places and suppose that fv = ϵv for v not in T . If T ′ contains T , on the group

GA(T ′) =

∏
v∈T ′

Gv

×

∏
v/∈T ′

Kv


we can introduce the product of the measures fv. Since GA is the union of these groups and
the measures on them are consistent we can put the measures together to form a measure f
on GA. If each fv is the measure associated to a function then f is also. Such measures form
a subalgebra H1 and H.

The notion of an elementary idempotent of H or H′ is defined in the obvious way. If ξ
is an elementary idempotent of H there is another elementary idempotent ξ1 of the form
ξ1 =

⊗
v ξv where ξv is an elementary idempotent of Hv and ξv = ϵv for almost all v so that

ξ1ξ = ξ.
We shall now discuss the representations of H. A representation π of H on the vector

space V over C will be called admissible if the following conditions are satisfied
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(i) Every w in V is a linear combination of the form
∑
π(fi)wi with fi in H1.

(ii) If ξ is an elementary idempotent the range of π(ξ) is finite-dimensional.
(iii) Let v0 be an archimedean place. Suppose that for each v an elementary idempotent

ξv is given and that ξv = ϵv for almost all v. Let ξ =
⊗

v ξv. If w is in V the map

fv0 → π

fv0 ⊗
⊗
v ̸=v0

ξv


w

of ξv0Hv0ξv0 into the finite-dimensional space π(ξ)V is continuous.

Suppose that an admissible representation πv of HV on Vv is given for each v. Assume that
for almost all v the range of πv(ϵv) is not zero. Assume also that the range of πv(ϵv) has
dimension one when it is not zero. As we saw in the first chapter this supplementary condition
is satisfied if the representations πv are irreducible. Choosing for almost all v a vector ev
such that πv(ϵv)ev = ev we may form V =

⊗
ev
Vv. Let π be the representation

⊗
v πv on V .

Because of the supplementary condition it is, apart from equivalence, independent of the
choice of the ev.

The representations π will be admissible. To see this observe first of all that condition (i)
has only to be verified for vectors of the form w =

⊗
v wv. Suppose wv = ev when v is not in

the finite set T which we suppose contains all archimedean places. If v is not in T let fv = ϵv
so that wv = π(fv)wv. If v is in T let

wv =
∑

πv(f
i
v)w

i
v.

Then

w =

⊗
v∈T

∑
πv(f

i
v)w

i
v

⊗

⊗
v/∈T

π(fv)wv

.
Expanding the right hand side we obtain the desired relation. The second condition has only
to be verified for elementary idempotents of the form ξ =

⊗
v ξv. Then

π(ξ)V =
⊗

π(ξv)Vv

Since π(ξv)Vv is finite-dimensional for all v and π(ξv)Vv = π(ϵv)Vv, which has dimension
one, for almost all v the right side is finite-dimensional. The last condition results from the
admissibility of πv0 .

Certainly π cannot be irreducible unless each πv is. Suppose however that each πv is
irreducible. If ξv is an elementary idempotent of Hv and if πv(ξv) ̸= 0 we have a representation
πξv of ξvHvξv on πv(ξv)Vv. Since it is irreducible πξv determines a surjective map

πξv : ξvHvξv → L(ξv)

if L(ξv) is the ring of linear transformations of V (ξv) = πv(ξv)Vv. To show that π is
irreducible we have only to show that for every elementary idempotent of the form ξ =

⊗
v ξv

the representation of ξHξ on V (ξ) = π(ξ)V is irreducible. Suppose that ξv = ϵv if v is not in
T . Then

V (ξ) =
⊗
v

V (ξv)
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is isomorphic to
⊗

v∈T V (ξv). The full ring of linear transformations of this space is⊗
v∈T

L(ξv)

and therefore the full ring of linear transformations of V (ξ) is⊗
v∈T

L(ξv)

⊗

⊗
v/∈T

πv(ϵv)

.
This is the image under π of ⊗

v∈T

ξvHvξv

⊗

⊗
v/∈T

ϵv


which is contained in ξHξ.

An admissible representation equivalent to one constructed by tensor products is said to
be factorizable.

Proposition 9.1. Every irreducible admissible representation of H is factorizable. The
factors are unique up to equivalence.

Suppose π is such a representation. Let I be the set of elementary idempotents of the
form ξ =

⊗
ξv for which π(ξ) is not 0. I is certainly not empty. Let V (ξ) = π(ξ)V if V

is the space on which π acts. If ξ and ξ′ are elementary idempotents we write ξ ⩽ ξ′ if
ξ′ξ = ξ. Then ξξ′ will also equal ξ. If ξ =

⊗
ξv and ξ′ =

⊗
ξ′v then ξ ⩽ ξ′ if and only

if ξvξ
′
v = ξ′vξv = ξv for all v. If ξ ⩽ ξ′ and ξ belongs to I so does ξ′. Moreover ξHξ is a

subalgebra of ξ′Hξ′. Let ι(ξ′, ξ) be the corresponding injection and let L(ξ) and L(ξ′) be the
spaces of linear transformations of V (ξ) and V (ξ′). There is exactly one map

φ(ξ′, ξ) : L(ξ) → L(ξ′)

which makes

ξHξ ι(ξ′, ξ)

L(ξ) L(ξ′)

ι(ξ′,ξ)

πξ πξ′

φ(ξ′,ξ)

commutative.
There is a map of ξvHvξv into ξHξ which sends fv to fv ⊗

{⊗
w ̸=v ξw

}
. Composing this

map with πξ we obtain a map πvξ of ξvHvξv onto a subalgebra Lv(ξ) of L(ξ). L(ξ) and Lv(ξ)
have the same unit, namely πξ(ξ). If v ≠ w the elements of Lv(ξ) commute with those of
Lw(ξ). If we form the tensor product of the algebras Lv(ξ) with respect to the family of
units there is a map from

⊗
v Lv(ξ) to L(ξ) which sends

⊗
v λv to

∏
v λv. Moreover we may

identify
⊗

v ξvHvξv and ξHξ. Since the diagram⊗
v ξvHvξv ξHξ

⊗
v Lv(ξ) L(ξ)

⊗
v π

v
ξ

πξ

φ(ξ′,ξ)
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is commutative the bottom arrow is surjective.

Lemma 9.1.1. The algebras Lv(ξ) are simple and the map
⊗

v Lv(ξ) → L(ξ) is an isomor-
phism.

To show that Lv(ξ) is simple we need only show that the faithful Lv(ξ)-module V (ξ)
is spanned by a family of equivalent irreducible submodules. Let M be any irreducible

submodule. Then the family {TM} where T runs over the image of 1v ⊗
{⊗

w ̸=v Lw(ξ)
}

spans V (ξ) and each TM is 0 or equivalent to M because T commutes with the elements of
Lv(ξ). The element 1v is the unit of Lv(ξ). We have only to show that

⊗
v Lv(ξ) ↪→ L(ξ).

Since
⊗

v Lv(ξ) is the inductive limit of
⊗

v∈T Lv(ξ), where T is a finite set, we have only to
show that the map is injective on these subalgebras. As they are tensor products of simple
algebras they are simple and the map is certainly injective on them.

If ξ ⩽ ξ′ there is a commutative diagram⊗
v ξvHvξv

⊗
v ξ

′
vHvξ

′
v

⊗
v Lv(ξ)

⊗
v Lv(ξ

′)

L(ξ) L(ξ′)

ι(ξ′,ξ)

φ(ξ′,ξ)

Moreover if ιv(ξ
′, ξ) is the imbedding of ξvHvξv into ξ

′
vHvξ

′
v then ι(ξ

′, ξ) =
⊗

v ιv(ξ
′, ξ). We

want to verify that a horizontal arrow
⊗

v φv(ξ
′, ξ) can be inserted in the middle without

destroying the commutativity. To do this we have only to show that if fv is in ξvHvξv and
therefore in ξ′vHvξ

′
v then πvξ (fv) = 0 if and only if πvξ′(fv) = 0. Let U = πvξ (fv) and let

T = πvξ′(fv). If

E = πξ′

ξ′v ⊗
⊗
w ̸=v

ξw




then

TE = πξ′

fv ⊗
⊗
w ̸=v

ξw




is determined by its restriction to V (ξ) and that restriction is U .
It is clear that if S is a sufficiently large finite set the map

⊗
w∈S Lw(ξ

′) → L(ξ′) is an

isomorphism. We suppose that S contains v. E belongs to the imageM of 1v⊗
{⊗

w ̸=v Lw(ξ
′)
}
.

Since M is simple and E is not 0 there are Ai, Bi 1 ⩽ i ⩽ r in M such that
r∑
i=1

AiEBi = 1

Thus
T =

∑
i

TAiEBi =
∑
i

AiTEBi

and T = 0 if and only if U = 0.



160 II. GLOBAL THEORY

Since the necessary compatibility conditions are satisfied we can take inductive limits,
over I, to the left and right. The inductive limit of the ξHξ is H and that of the ξvHvξv
is Hv. Let Lv be that of Lv(ξ) and L that of L(ξ). There is a map πv : Hv → Lv and, for
almost all v, πv(ϵv) = µv is not zero. We have a commutative diagram⊗

Hv H

⊗
v Lv L

⊗
πv

in which the rows are isomorphisms. Moreover L acts faithfully on V and the representation
of H on V can be factored through L.

If A is an algebra with a minimal left ideal J then any faithful irreducible representation
of A on a vector space X is equivalent to the representation on J . In fact we can choose x0
in X so that Jx0 ̸= 0. The map j → jx0 of J to X gives the equivalence. Thus to prove
that π is factorizable it will be enough to show that L has a minimal left ideal, that the
representation of L on this minimal left ideal is a tensor product of representations σv of Lv,
and that σv ◦ πv is admissible.

Suppose A is a simple algebra and J is a left ideal in A. If a in A is not 0 and aJ = 0
then AaAJ = AJ = 0. If J is not 0 this is impossible. Suppose e is an idempotent of A
and A1 = eAe. Let J1 be a minimal left ideal of A1 and let J = AJ1. If J were not minimal
it would properly contain a non-zero ideal J ′. Moreover J ′ ∩ A1 would have to be 0. Since
Je = J we must have eJ = eJe = 0. Since this is a contradiction J is minimal. Suppose for
example that A is the union of a family {Aλ} of matrix algebras. Suppose that for each λ
there is an idempotent eλ in A such that Aλ = eλAeλ and that given λ1 and λ2 there is a
λ3 such that Aλ3 contains Aλ1 and Aλ2 . Then A is certainly simple and, by the preceding
discussion, contains a minimal left ideal.

The algebras L and Lv satisfy these conditions. In fact, speaking a little loosely, L is
the union of the L(ξ) and Lv is the union of Lv(ξ). Choose ξ so that V (ξ) ̸= 0 and let Jv
be a minimal left ideal in Lv(ξ). Since Lv(ξ) is one-dimensional for almost all v the ideal
Jv = Lv(ξ) for almost all v. Thus J =

⊗
Jv exists and is a minimal left ideal of L(ξ). Thus

LJ =
⊗

LvJv. LJ is a minimal left ideal of L and LvJv is a minimal left ideal of Lv. The
representation of L on LJ is clearly the tensor product of the representations σv of Lv on
LvJv.

Thus π is equivalent to the tensor product of the representations πv = σv ◦ πv. The
representations πv are irreducible. Since it is easily seen that a tensor product

⊗
πv is

admissible only if each factor is admissible we may regard the first assertion of the proposition
as proved.

If π is an admissible representation of H on V and v is a place we may also introduce a
representation of Hv on V which we still call π. If u is in V we choose ξ =

⊗
w ξw so that

π(ξ)u = u. Then if f belongs to Hv we set

π(f)u = π

fξv ⊗
⊗
w ̸=v

ξw


u

The second part of the proposition is a consequence of the following lemma whose proof is
immediate.
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Lemma 9.1.2. Suppose π =
⊗

w πw. Then the representation π of Hv is the direct sum of
representations equivalent to πv.

Let Sa be the set of archimedean primes. One can also associate to an admissible

representation π of H on V a representation of ĜSa , the group formed by the elements of
GA whose components at every archimedean place are 1, on V . If v is archimedean one can
associate to π a representation of Av, the universal enveloping algebra of the Lie algebra
of Gv, on V . Finally π determines a representation of the group ZA of scalar matrices in
GL(2,A). If π is irreducible there is a quasi-character η of I the group of idèles such that

π

((
a 0
0 a

))
= η(a)I

for all a in I. If πv is associated to ηv and π =
⊗

v πv then π is associated to the quasi-character
η defined by

η(a) =
∏
v

ηv(av).

One may define the contragredient of π and the tensor product of π with a quasi-character
of I. All the expected formal relations hold. In particular π̃ is equivalent to η−1 ⊗ π if π is
irreducible.

The above discussion applies, mutatis mutandis, to the algebra H′. The next proposition,
which brings us a step closer to the theory of automorphic forms, applies to H alone.

Proposition 9.2. Let π =
⊗

πv be an irreducible admissible representation of H. Suppose
that πv is infinite-dimensional for all v. Let ψ be a non-trivial character A/F . There is
exactly one space W (π, ψ) of continuous functions on GA with the following properties:

(i) If W is in W (π, ψ) then for all g in GA and all x in A

W

((
1 x
0 1

)
g

)
= ψ(x)W (g)

(ii) The space W (π, ψ) is invariant under the operators ρ(f), f ∈ H, and transforms
according to the representation π of H. In particular it is irreducible under the action
of H.

(iii) If F is a number field and v an archimedean place then for each W in W (π, ψ) there
is a real number N such that

W

((
a 0
0 1

))
= O

(
|a|N

)
as a→ ∞ in F×

v .

In the last assertion F×
v is regarded as a subgroup of I. Fv is a subgroup of A and

the restriction ψv of ψ to Fv is non-trivial. Thus for each place v the space W (πv, ψv) is
defined and we may suppose that πv acts on it. Moreover for almost all v the largest ideal
of Fv on which ψv if trivial is Ov and πv contains the trivial representation of Kv. Thus by
Proposition 3.5 there is a unique function φ0

v in W (πv, ψv) such that φ0
v(gvkv) = φ0

v(gv) for
all kv in Kv and φ

0
v(I) = 1. Then φ0

v(kv) = 1 for all kv in Kv. The representation π acts on⊗
φ0
v

W (πv, ψv)
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If g is in GA and
⊗

φv belongs to this space then φv(gv) = 1 for almost all v so that we can
define a function φ on GA by

φ(g) =
∏
v

φv(gv).

The map
⊗

φv → φ extends to a map of
⊗

W (πv, ψv) into a space W (π, ψ) of functions on
GA. W (π, ψ) certainly has the required properties. We have to show that it is characterized
by these properties.

Suppose M is another space with these properties. There is an isomorphism T of⊗
W (πv, ψv) and M which commutes with the action of H. All we have to do is show that

there is a constant c such that if φ =
⊗

φv then

Tφ(g) = c
∏
v

φv(gv).

Let S be a finite set of places and let

WS =
⊗
v∈S

W (πv, ψv)

and
ŴS =

⊗
v/∈S

W (πv, ψv).

Then ⊗
W (πv, ψv) = WS ⊗ ŴS.

We first show that if S is given there is a function cS on ĜS × ŴS such that if

f = T


⊗

v∈S

φv

⊗ φ


with φ in ŴS then

f(gh) = cS(h, φ)
∏
v∈S

φv(gv)

if g is in GS and h is in ĜS.

Suppose that S consists of the single place v. If φ belongs to ŴS and h belongs to ĜS

associate to every function φv in W (πv, ψv) the function

φ′
v(gv) = f(gvh)

on Gv. The function f is T (φv ⊗ φ). By construction, if φv is replaced by ρ(fv)φv with fv in
Hv the function φ′

v is replaced by ρ(fv)φ
′
v. Moreover if x is in Fv

φ′
v

((
1 x
0 1

)
gv

)
= ψv(x)φ

′
v(gv).

Since any conditions on rates of growth can easily be verified we see that the functions φ′
v

are either all zero or they fill up the space W (πv, ψv). In both cases the map φv → φ′
v is a

map of W (πv, ψv) into itself which commutes with the action of Hv and therefore consists
merely of multiplication by a scalar cS(h, φ).
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Now suppose that S ′ is obtained by adjoining the place w to S and that our assertion is

true for S. Take h in ĜS′ and φ in ŴS′ . If

f = T


⊗
v∈S′

φv

⊗ φ


then, for g in GS, and gw in Gw,

f(ggwh) = cS(gwh, φw ⊗ φ)
∏
v∈S

φv(gv).

The argument used before shows that for a given h and φ the function

gw → cS(gwh, φw ⊗ φ)

is a multiple cS′(h, φ) of φw.
To prove the existence of c we observe first that if S is the disjoint union of S1 and S2 we

may write any h1 in ĜS1 as h1 = h
∏

v∈S2
hv with h in ĜS. Suppose φ1 =

{⊗
v∈S2

φv

}
⊗ φ

with φ in ŴS is in ŴS1 . Then

(9.2.1) cS1(h1, φ1) =

∏
v∈S2

φv(hv)

cS(h, φ)
because the right hand side has all the properties demanded of the left. If S1 is large enough

that φ0
v exists for v not in S1 then, by its definition, cS1

(
h,
⊗

v/∈S1
φ0
v

)
has a constant value

c(S1) on ∏
v/∈S1

Kv

The formula (9.2.1) shows that c(S) = c(S1) if S contains S1. We take c to be the common
value of these constants. Given φ =

⊗
φv and g =

∏
gv we choose S so that φv = φ0

v and
gv ∈ Kv for v not in S. Then

Tφ(g) = c

∏
v/∈S

gv,
⊗
v/∈S

φv

∏
v∈S

φv(gv)

= c
∏
v

φv(gv).

We observed that if πv is finite-dimensional the space W (πv, ψv) cannot exist if v is
non-archimedean or real. Although we neglected to mention it, the argument used for the
real field also shows that W (πv, ψv) cannot exist if v is complex. The proof of Proposition 9.2
can therefore be used, with minor changes, to verify the next proposition.

Proposition 9.3. If π =
⊗

πv is given and if one of the representations πv is finite-
dimensional there can exist no space W (π, ψ) satisfying the first two conditions of the previous
proposition.
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An admissible representation π of H on the space V is said to be unitary if there is a
positive definite hermitian form (v1, v2) on V such that, if f ∗(g) = f(g−1),(

π(f)v1, v2
)
=
(
v1, π(f

∗)v2
)

for all f in H.

Lemma 9.4. If π is unitary and admissible then V is the direct sum of mutually orthogonal
invariant irreducible subspaces.

The direct sum of the lemma is to be taken in the algebraic sense. We first verify that if
V1 is an invariant subspace and V2 is its orthogonal complement then V = V1 ⊕ V2. Certainly
V1 ∩ V2 = 0. Let ξ be an elementary idempotent and let V (ξ), V1(ξ), V2(ξ) be the ranges
of π(ξ) in V , V1, and V2. Let V

⊥
1 (ξ) be the range of 1− π(ξ) acting on V1. Then V (ξ) and

V ⊥
1 (ξ) are orthogonal and

V1 = V1(ξ)⊕ V ⊥
1 (ξ).

Thus V2(ξ) is just the orthogonal complement of V1(ξ) in V (ξ). Since V (ξ) is finite-dimensional

V (ξ) = V1(ξ)⊕ V2(ξ).

Since every element of V is contained in some V (ξ) we have V = V1 + V2.
To complete the proof we shall use the following lemma.

Lemma 9.4.1. If π is a unitary admissible representation of H on the space V then V
contains a minimal non-zero invariant subspace.

Choose an idempotent ξ so that V (ξ) = π(ξ)V ̸= 0. Since V (ξ) is finite-dimensional
amongst all the non-zero subspaces of it obtained by intersecting it with an invariant subspace
of V there is a minimal one N . LetM be the intersection of all invariant subspaces containing
N . If M is not irreducible it is the direct sum of two orthogonal invariant subspaces M1 and
M2. Then

N =M ∩ V (ξ) = π(ξ)M = π(ξ)M1 ⊕ π(ξ)M2

The right side is {
M1 ∩ V (ξ)

}
⊕
{
M2 ∩ V (ξ)

}
so that one of M1 ∩ V (ξ) and M2 ∩ V (ξ) is N . Then M1 or M2 contains M . This is a
contradiction.

Let A be the set consisting of families of mutually orthogonal invariant, and irreducible
subspaces of V . Each member of the family is to be non-zero. Let {Vλ} be a maximal
family. Then V =

⊕
λ Vλ. If not let V1 =

⊕
λ Vλ. The orthogonal complement of V1 would

be different from zero and therefore would contain a minimal non-zero invariant subspace
which when added to the family {Vλ} would make it larger.

If T is a finite set of places most of the results of this paragraph are valid for representations

π of ĤT . For example π is factorizable and W (π, ψ) exists as a space of functions on ĜT .
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§10. Automorphic forms

In this paragraph F is still a global field. We shall begin by recalling a simple result from
reduction theory. If v is a place of A and a is in A then |a|v is the absolute value of av the
vth component of a. If a is in I

|a| =
∏
v

|a|v

Lemma 10.1. There is a constant c0 such that if g belongs to GA there is a γ in GF for
which ∏

v

max
{
|c|v, |d|v

}
⩽ c0|det g|1/2

if

γg =

(
a b
c d

)
If F is a number field let OF be the ring of integers in F and if F is a function field take

any transcendental element x of F over which F is separable and let OF be the integral
closure in F of the ring generated by 1 and x. A place v will be called finite if |a|v ⩽ 1 for all
a in OF ; otherwise it will be called infinite. If S is a finite set of places which contains all the
infinite places let

A(S) =
{
a ∈ A

∣∣ |a|v ⩽ 1 if v /∈ S
}

I(S) =
{
a ∈ I

∣∣ |a|v = 1 if v /∈ S
}

Then A = F + A(S) and if S is sufficiently large I = F×I(S). We first verify that if
I = F×I(S) then

GA = GFGA(S)

where GA(S) = GL
(
2,A(S)

)
. If v is not in S then v is non-archimedean and we can speak of

ideals of Fv. Any element of GA may be written as a product

g =

(
α β
0 γ

)(
a b
c d

)
in which the second factor belongs to

K =
∏
v

Kv

and therefore to GA(S). It will be sufficient to show that the first factor is in GFGA(S). If
α = α1α2 and γ = γ1γ2 with α1 and γ1 in F× and α2 and γ2 in I(S)(

α β
0 γ

)
=

(
α1 0
0 γ1

)(
1 β/α1γ2
0 1

)(
α2 0
0 γ2

)
The first factor is in GF and the third in GA(S). Since

β
α1γ2

belongs to F +A(S) the second

factor is in GFGA(S) and the assertion follows.
There is certainly a u in OF such that |u|v < 1 at all finite places in S. Enlarging S if

necessary we may assume that a finite place v belongs to S if and only if |u|v < 1. Then

F ∩A(S) =

{
x

um

∣∣∣∣ x ∈ OF ,m ∈ Z

}
.
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We identify the prime ideals of OF with the places corresponding to them. By the theory of
rings of quotients the proper ideals of F ∩A(S) are the ideals of the form(

F ∩A(S)
)∏
p/∈S

pmp

Since I = F×I(S) every such ideal is principal. Thus F ∩A(S) is a principal ideal domain.
To prove the lemma we show that there is a constant c0 such that if g belongs to GA(S)

there is a γ in GF∩A(S) such that∏
v∈S

max
{
|c|v, |d|v

}
⩽ c0|det g|1/2

if

γg =

(
a b
c d

)
.

Fix a Haar measure on the additive group A(S). This determines a measure on A(S)⊕
A(S). The group L =

(
F ∩A(S)

)
⊕
(
F ∩A(S)

)
is a discrete subgroup of A(S)⊕A(S) and

the quotient A(S)⊕A(S)/L is compact and has finite measure c1. If g belongs to GA(S) the
lattice Lg is also discrete and the quotient A(S)⊕A(S)/Lg has measure c1|det g|.

Suppose (m,n) = (µ, ν)g belongs to Lg. If a ̸= 0 belongs to F ∩A(S) then∏
v∈S

max
{
|am|v, |an|v

}
=

∏
v∈S

|a|v

∏
v∈S

max
{
|c|v, |d|v

}.
Since

1 =
∏
v

|a|v =

∏
v∈S

|a|v

∏
v/∈S

|a|v


the product

∏
v∈S|a|v is at least 1 and∏

v∈S

max
{
|am|v, |an|v

}
⩾
∏
v∈S

max
{
|m|v, |n|v

}
.

Let R be a positive number and consider the set

E =

 (m,n) ∈ Lg

∣∣∣∣∣∣
∏
v∈S

max
{
|m|v, |n|v

}
⩽ R

.
The previous inequality shows that if E contains a non-zero element of Lg it contains one
(m,n) = (µ, ν)g for which µ and ν are relatively prime. Then we may choose κ and λ in
F ∩A(S) so that κν − λµ = 1. If

γ =

(
κ λ
µ ν

)
then γ belongs to GF ∩A(S) and if

γg =

(
a b
c d

)
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then c = m and d = n so that ∏
v∈S

max
{
|c|v, |d|v

}
⩽ R.

To prove the lemma we have to show that there is a constant c0 such that if g is in GA(S)

and R = c0|det g|1/2 the set E is not reduced to {0}. We will show in fact that there is a
constant c2 such that for all g there is a non-zero vector (m,n) in Lg with

sup
v∈S

max
{
|m|v, |n|v

}
⩽ c2|det g|

1
2s

if s is the number of elements in S. There is certainly a positive constant c3 such that the
measure of {

(m,n) ∈ A(S)⊕A(S)

∣∣∣∣∣ supv∈S
max

{
|m|v, |n|v

}
⩽ R

}
is, for any choice of R, at least c3R

2s. Choose c2 so that

c2 > 2

(
c1
c3

) 1
2s

.

If Lg contained no non-zero vector satisfying the desired inequality the set{
(m,n) ∈ As ⊕AS

∣∣∣∣∣ supv∈S
max

{
|m|v, |n|v

}
⩽
c2
2
|det g|

1
2s

}
would intersect none of its translates by the elements of Lg. Therefore its measure would not
be changed by projection on A(S)⊕A(S)/Lg and we would have

c1 ⩽ c3

(
c2
2

)2s

which is impossible.
Choose some place v of F which is to be archimedean if F is a number field. If c is any

positive constant there is a compact set C in I such that{
a ∈ I

∣∣ |a| ⩾ c
}

is contained in {
ab
∣∣ a ∈ F×

v , |a| ⩾ c, b ∈ C
}

If ω1 is a compact subset of A, ω2 a compact subset of I, and c a positive constant we may
introduce the Siegel domain S = S(ω1, ω2, c, v) consisting of all

g =

(
1 x
0 1

)(
a 0
0 a

)(
bb1 0
0 1

)
k

with x in ω1, a in I, b in ω2, b1 in F×
v with |b1| ⩾ c, and k in K. Then ZAS = S. If we use

the Iwasawa decomposition of GA to calculate integrals we easily see that the projection of
S on ZA\GA has finite measure. Moreover it follows readily from the previous lemma that,
for a suitable choice of ω1, ω2, and c,

GA = GFS.

Thus ZAGF\GA has finite measure.
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Let φ be a continuous function on GF\GA. If it is ZA-finite the space V spanned by the
functions ρ(a)φ, a ∈ ZA, is finite-dimensional. We may choose a finite set of points g1, . . . , gp
and a basis φ1, . . . , φp of V so that φi(gj) = δij. Then

ρ(a)φ =

p∑
i=1

λi(a)φi.

Since λi(a) = φ(agi) the function λi are continuous and finite as functions on ZA or ZF\ZA.
Since ZF\ZA is isomorphic to F×\I it satisfies the hypothesis of Lemma 8.1 and λi is a finite
linear combination of functions of the form

λi

((
α 0
0 α

))
= χ(a)

(
log|α|

)m
where χ is a quasi-character of F×\I.

A continuous function φ on GF\GA which is ZA-finite will be called slowly increasing if
for any compact set Ω in GA and any c > 0 there are constants M1 and M2 such that∣∣∣∣∣∣φ

((
a 0
0 1

)
g

)∣∣∣∣∣∣ ⩽M2|a|M1

for g in Ω, a in I, and |a| ⩾ c. If such an inequality is valid, with suitable choice of M2, for
any M1 we will say, for lack of a better terminology, that φ is rapidly decreasing.

Suppose φ is a continuous function on GF\GA. Assume it is K-finite on the right and
that for every elementary idempotent ξ in H the space{

ρ(ξf)φ
∣∣ f ∈ H

}
is finite-dimensional. An argument used more than once already shows that there is a ξ and
an f in ξH1ξ such that ρ(f)φ = φ. If a belongs to ZA

ρ(a)φ = ρ(δa ∗ f)φ
so that φ is ZA-finite. Thus we can make the following definition.

Definition 10.2. A continuous function φ on GF\GA is said to be an automorphic form if

(i) It is K-finite on the right.
(ii) For every elementary idempotent ξ in H the space{

ρ(ξf)φ
∣∣ f ∈ H

}
is finite-dimensional.

(iii) If F is a number field ξ is slowly increasing.

We observe, with regret, in passing that there has been a tendency of late to confuse the
terms automorphic form and automorphic function. If not the result it is certainly the cause
of much misunderstanding and is to be deplored.

Let A be the vector space of automorphic forms. If φ is in A and f is in H then ρ(f)φ is
in A so that H operates on A. A continuous function on φ on GF\GA is said to be cuspidal
if ∫

F\A
φ

((
1 x
0 1

)
g

)
dx = 0
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for all g in GA. An automorphic form which is cuspidal is called a cusp form. The space A0

of cusp forms is stable under the action of H.

Proposition 10.3. Let F be a function field and let φ be a function on GF\GA. If φ satisfies
the following three conditions it is a cusp form.

(i) φ is K-finite on the right.
(ii) φ is cuspidal.
(iii) There is a quasi-character η of F×\I such that

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I.

If ξ is an elementary idempotent of H there is an open subgroup K ′ of K such that ξ is
invariant under translations on either side by the elements of K ′. Therefore the functions
ρ(ξf)φ are invariant under right translations. To prove the proposition we show that if K ′ is
a given open subgroup of K and η is a given quasi-character of F×\I then the space V of all
continuous functions φ on GF\GA which are cuspidal and satisfy φ(gk) = φ(g) for all k in
K ′ as well as

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in F×\I is finite-dimensional.
We shall show that there is a compact set C in GA such that the support of every φ in

V is contained in GFZZC. Then the functions in V will be determined by their restrictions
to C. Since C is contained in the union of a finite number of left translates of K ′ they will
actually be determined by their values on a finite set and V will be finite-dimensional.

Choose a Siegel domain S = S(ω1, ω2, c, v) so that GA = GFS. If

S′ =

{(
1 x
0 1

)(
bb1 0
0 1

)
k

∣∣∣∣∣ x ∈ ω1, b ∈ ω2, b1 ∈ F×
v , |b1| ⩾ c, k ∈ K

}
we have just to show that the support in S′ of every φ in V is contained in a certain compact
set which is independent of φ. In fact we have to show the existence of a constant c1 such
that φ vanishes on (

1 x
0 1

)(
bb1 0
0 1

)
k

as soon as |b1| ⩾ c1. Let k1, . . . , kn be a set of representatives of the cosets of K/K ′ and let
φi(g) = φ(gki). If k belongs to kiK

′ then φ(gk) = φi(g) and it will be enough to show that
there is a constant c2 such that, for 1 ⩽ i ⩽ n,

φi

((
1 x
0 1

)(
a 0
0 1

))
= 0

if x belongs to A and |a| > c2. It is enough to show this for a single, but arbitrary, φi. Since
φi satisfies the same hypothesis as φ, perhaps with a different group K ′, we just prove the
corresponding fact for φ.

We use the following lemma which is an immediate consequence of the theorem of
Riemann-Roch as described in reference [10] of Chapter I.



170 II. GLOBAL THEORY

Lemma 10.3.1. Let X be an open subgroup of A. There is a constant c2 such that A =
F + aX if a belongs to I and |a| > c2.

Let X be the set of all y for which (
1 y
0 1

)
belongs to K ′. Since

φ

((
1 ay
0 1

)(
a x
0 1

))
= φ

((
a x
0 1

)(
1 y
0 1

))
we have

φ

((
1 z
0 1

)(
a x
0 1

))
= φ

((
a x
0 1

))
if z is in aX. The equation also holds for z in F and therefore for all z in A if |a| > c2. Then

φ

((
a x
0 1

))
=

1

measure(F\A)

∫
F\A

φ

((
1 z
0 1

)(
a x
0 1

))
dz

which by assumption is zero.
There is a corollary.

Proposition 10.4. Suppose φ is a cusp form and for some quasi-character η of F×\I

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I. Then φ is compactly supported modulo GFZA. Moreover the function

a→ φ

((
a 0
0 1

))
on F×\I is compactly supported.

The first assertion has just been verified. We know moreover that there is a constant c
such that

φ

((
a 0
0 1

))
is 0 for |a| ⩾ c. If

w =

(
0 1

−1 0

)
and φ′(g) = φ(gw) then φ′ is also a cusp form. Since

φ

((
a 0
0 1

))
= φ

(
w−1

(
1 0
0 a

)
w

)
= η(a)φ

((
a−1 0
0 1

))
there is also a constant c1 such that it vanishes for |a| ⩽ c1.
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Proposition 10.5. Let F be a function field and η a quasi-character of F×\I. Let A0(η) be
the space of cusp forms φ for which

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I. The representation of H on A0(η) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

The proof of Proposition 10.3 showed that the representation π of H on A0(η) is admissible.

Let η′(α) =
∣∣η(α)∣∣−1

η(α). The map φ→ φ′ is an isomorphism of A0(η) with A0(η
′) which

replaces π by η1 ⊗ π if η1(α) =
∣∣η(α)∣∣−1/2

. Thus we may as well suppose that η is a character.
Then if φ1 and φ2 belong to A0(η) the function φ1φ2 is a function on GFZA\GA. Since it
has compact support we may set

(φ1, φ2) =

∫
GFZA\GA

φ1(g)φ2(g) dg.

It is easily seen that (
ρ(f)φ1, φ2

)
=
(
φ1, ρ(f

∗)φ2

)
so that, by Lemma 9.4, π is the direct sum of irreducible admissible representations. Since π is
admissible the range of π(ξ) is finite-dimensional for all ξ so that no irreducible representation
occurs an infinite number of times.

The analogue of this proposition for a number field is somewhat more complicated. If φ
is a continuous function on GA, if v is a place of F , and if fv belongs to Hv we set

ρ(fv)φ =

∫
Gv

φ(ghv)fv(hv) dhv.

Since fv may be a measure the expression on the right is not always to be taken literally. If v
is archimedean and if the function φ(hgv) on Gv is infinitely differentiable for any h in GA

then for any X in Av the universal enveloping algebra of Gv, we can also define ρ(X)φ. If S
is a finite set of places we can in a similar fashion let the elements of

Hs =
⊗
v∈S

Hv

or, if every place in S is archimedean,

AS =
⊗
v∈S

Av

act on φ. It is clear what an elementary idempotent in HS is to be. If S = Sa is the set of
archimedean places we set Ha = HS.

Proposition 10.6. Suppose F is a number field. A continuous function φ on GF\GA is a
cusp form if it satisfies the following five conditions.

(i) φ is K-finite on the right.
(ii) φ is cuspidal.
(iii) There is a quasi-character η of F×\I such that

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)
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for all a in I.
(iv) For any elementary idempotent ξ in Ha the space{

ρ(ξf)φ
∣∣ f ∈ Ha

}
is finite-dimensional.

(v) φ is slowly increasing.

There is a ξ in Ha such that ρ(ξ)φ = φ. Because of the fourth condition φ transforms
according to a finite-dimensional representation of ξHaξ and the usual argument shows that
there is a function f in Ha such that ρ(f)φ = φ.

Since φ is invariant under right translations by the elements of an open subgroup of∏
v/∈Sa

Kv this implies in turn the existence of another function f in H such that ρ(f)φ = φ.
From Theorem 2 of [14] one infers that φ is rapidly decreasing.

As before we may assume that η is a character. Then φ is bounded and therefore its
absolute value is square integrable on GFZA\GA which has finite measure. Let L2(η) be the
space of measurable functions h on GF\GA such that

h

((
a 0
0 a

)
g

)
= η(a)h(g)

for all g in GA and all a in I and∫
GFZA\GA

∣∣h(g)∣∣2 dg <∞.

According to a theorem of Godement (see reference [11] to Chapter I) any closed subspace of
L2(η) which consists entirely of bounded functions is finite-dimensional.

What we show now is that if ξ is an elementary idempotent of H the space

V =
{
ρ(ξf)φ

∣∣ f ∈ H
}

is contained in such a closed subspace. The functions in V itself certainly satisfy the five
conditions of the proposition and therefore are bounded and in L2(η). Replacing ξ by a

larger idempotent if necessary we may suppose that ξ = ξa ⊗ ξ̂a where ξa is an elementary
idempotent in Ha. There is a two-sided ideal a in ξaHaξa such that ρ(f)φ = 0 if f belongs
to a. The elements of a continue to annihilate V and its closure in L2(η). Approximating
the δ-function as usual we see that there is a function f1 in Ha and a polynomial P with
non-zero constant term such that P (f1) belongs to a. Therefore there is a function f2 in Ha

such that f2 − 1 belongs to a. To complete the proof of the proposition we have merely to
refer to Theorem 2 of [14] once again.

For a number field the analogue to Proposition 10.4 is the following.

Proposition 10.7. Suppose φ is a cusp form and for some quasi-character η of F×\I

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I. Then for any real number M1 there is a real number M2 such that∣∣∣∣∣∣φ
((

a 0
0 a

))∣∣∣∣∣∣ ⩽M2|a|M1
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for all a in I. Moreover the absolute value of φ is square integrable on GFZA\GA.

We need another corollary of Proposition 10.6. To prove it one has just to explain
the relation between automorphic forms on GA and GR, which is usually assumed to be
universally known, and then refer to the first chapter of reference [11] to Chapter I. It is
perhaps best to dispense with any pretence of a proof and to rely entirely on the reader’s
initiative. We do not however go so far as to leave the proposition itself unstated.

Proposition 10.8. Let Zv be the centre of Av and let a be an ideal of finite codimension in
Z =

⊗
v∈Sa

Zv. Let ξ be an elementary idempotent of H and η a quasi-character of F×\I.
Then the space of infinitely differentiable functions φ on GF\GA which satisfy the following
five conditions is finite-dimensional.

(i) φ is cuspidal.
(ii) ρ(ξ)φ = φ.
(iii) If a is in I then

φ

((
a 0
0 a

)
g

)
= η(a)φ(g).

(iv) ρ(X)φ = 0 for all X in a
(v) φ is slowly increasing.

Proposition 10.9. Let η be a quasi-character of F×\I and let A0(η) be the space of cusp
forms φ for which

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I. The representation of H on A0(η) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

Every element of A0(η) is annihilated by some ideal of finite codimension in Z. If a is
such an ideal let A0(η, a) be the space of functions in A0(η) annihilated by a. It is enough to
prove the first part of the proposition for the space A0(η, a). Then one may use the previous
proposition and argue as in the proof of Proposition 10.5. To show that every representation
occurs with finite multiplicity one combines the previous proposition with the observation
that two functions transforming under the same representation of H are annihilated by the
same ideal in Z.

The algebra H acts on the space A. An irreducible admissible representation π of H is a
constituent of the representation on A or, more briefly, a constituent of A if there are two
invariant subspaces U and V of A such that U contains V and the action on the quotient
space U/V is equivalent to π. A constituent of A0 is defined in a similar fashion. The
constituents of A0 are more interesting than the constituents of A which are not constituents
of A0.

Theorem 10.10. Let π =
⊗

πv be an irreducible admissible representation of H which is a
constituent of A but not of A0. Then there are two quasi-characters µ and ν of F×\I such
that for each place v the representation πv is a constituent of ρ(µv, νv).

The character µv is the restriction of µ to F×
v . Let B be the space of all continuous

functions φ on GA satisfying the following conditions.
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(i) For all x in A

φ

((
1 x
0 1

)
g

)
= φ(g).

(ii) For all α and β in F×

φ

((
α 0
0 β

)
g

)
= φ(g).

(iii) φ is K-finite on the right.
(iv) For every elementary idempotent ξ in H the space{

ρ(ξf)φ
∣∣ f ∈ H

}
is finite-dimensional.

Lemma 10.10.1. A continuous function φ on GA which satisfies the first three of these
conditions satisfies the fourth if and only if it is AA-finite on the left.

A is the group of diagonal matrices. Since φ is a function on AF\GA it is AA finite if
and only if it is AF\AA finite. If it is AF\AA finite there is a relation of the form

φ(ag) =
∑
i

λi(a)φi(g)

where the λi are finite continuous functions on AF\AA. Since AF\AA is isomorphic to the
direct product of F×\I with itself it is a group to which Lemma 8.1 can be applied. Thus
there is a unique family φm,n,µ,ν of functions on GA such that

φ

((
a1 0
0 a2

)
g

)
=

∣∣∣∣a1a2
∣∣∣∣∑µ(a1)ν(a2)

(
log|a1|

)m(
log|a2|

)n
φm,n,µ,ν(g)

The functions φm,n,µ,ν also satisfy the first three conditions. Moreover there is a finite set S
of pairs (µ, ν) and a non-negative integer M such that φm,n,µ,ν is 0 if (µ, ν) does not belong
to S or m+ n > M .

Given S and M let B(S,M) be the space of continuous functions f on GA which satisfy
the first three conditions and for which

f

((
a1 0
0 a2

)
g

)
can be expanded in the form∣∣∣∣a1a2

∣∣∣∣1/2∑µ(a1)ν(a2)
(
log|a1|

)m(
log|a2|

)n
fm,n,µ,ν(g)

where the sum is taken only over the pairs (µ, ν) in S the pairs (m,n) for which m+ n ⩽M .
B(S,M) is invariant under H. To show that if φ is AF\AA finite it satisfies the fourth
condition we show that the range of ρ(ξ) on B(S,M) is finite-dimensional.

A function f in B(S,M) is determined by the restriction of the finitely many functions
fm,n,µ,ν to K. If f is in the range of ρ(ξ) these restrictions lie in the range of ρ(ξ) acting on
the continuous functions on K. That range is finite-dimensional.

We have also to show that if φ satisfies the fourth condition it is AA finite. The space
V spanned by the right translates of φ by the elements of K is finite-dimensional and each
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element in it satisfies all four conditions. Let φ1, . . . , φp be a basis of V . We can express
φ(gk) as

p∑
i=1

λi(k)φi(g).

Because of the Iwasawa decomposition GA = NAAAK it is enough to show that the restriction
of each φi to AA is finite. Since φi satisfies the same conditions as φ we need only consider
the restriction of φ.

Since φ is K finite there is a finite set S of places such that φ is invariant under right
translations by the elements of

∏
v/∈SKv. Let

IS =
∏
v∈S

F×
v .

We regard IS as a subgroup of I. If we choose S so large that I = F×I(S) then every element
α of I is a product of α = α1α2α3 with α1 in F×, α2 in IS, and α3 in I(S) such that its
component at any place in S is 1. If β in I is factored in a similar fashion

φ

((
α 0
0 β

))
= φ

((
α2 0
0 β2

))
.

Thus we need only show that the restriction of φ to

AS =

{(
α 0
0 β

) ∣∣∣∣∣ α, β ∈ IS

}
is finite. This is a consequence of Corollary 8.4 since the restriction of φ to GS clearly satisfies
the conditions of the corollary.

The next lemma explains the introduction of B.

Lemma 10.10.2. If π is a constituent of A but not of A0 then it is a constituent of B.

If φ belongs to A the functions

φ0(g) =
1

measure(F\A)

∫
F\A

φ

((
1 x
0 1

)
g

)
dx

belongs to B. The map φ→ φ0 commutes with the action of H and its kernel is A0. Suppose
U and V are two invariant subspaces of A and π occurs on the quotient of U by V . Let
U0 be the image of U and V0 be the image of V in B. Since π is irreducible there are two
possibilities. Either U0 ̸= V0 in which case π is equivalent to the representation on U0/V0 and
is a constituent of B or U0 = V0. In the latter case

U = V + U ∩ A0

and π is equivalent to the representation on

U ∩ A0/V ∩ A0

which is precisely the possibility we have excluded.

Lemma 10.10.3. If π is a constituent of B then there is a pair of quasi-characters µ, ν and
a non-negative integer M such that π is a constituent of B(µ, ν,M).
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If S consists of the single pair (µ, ν) then, by definition, B(µ, ν,M) = B(S,M). Suppose
π occurs on the quotient of U by V . Choose the finite set S of pairs of quasi-characters
and the non-negative integer M so that U ∩ B(S,M) is different from V ∩ B(S,M). Then π
occurs on the quotient of U ∩ B(S,M) by V ∩ B(S,M) and we may as well assume that U is
contained in B(S,M). The argument used in the eighth paragraph in an almost identical
context shows that

B(S,M) =
⊕

(µ,ν)∈S

B(µ, ν,M)

so that the lemma is a consequence of Lemma 8.6.
The next lemma is proved in exactly the same way as Proposition 8.5.

Lemma 10.10.4. If π is a constituent of B(µ, ν,M) for some M then it is a constituent of
B(µ, ν) = B(µ, ν, 0).

Let µv and νv be the restrictions of µ and ν to F×
v . For almost all v the quasi-characters

µv and νv are unramified and there is a unique function φ0
v in B(µv, νv) such that φ0

v(gvkv) =
φ0
v(gv) for all kv in Kv while φ

0
v(e) = 1. We can form⊗

φ0
v

B(µv, νv)

There is clearly a linear map of this space into B(µ, ν) which sends
⊗

φv to the function

φ(g) =
∏
v

φv(gv)

It is easily seen to be surjective and is in fact, although this is irrelevant to our purposes, an
isomorphism. In any case an irreducible constituent of B(µ, ν) is a constituent of

⊗
v ρ(µv, νv).

With the following lemma the proof of Theorem 10.10 is complete.

Lemma 10.10.5. If the irreducible admissible representation π =
⊗

v πv is a constituent
of ρ =

⊗
ρv, the tensor product of admissible representations which are not necessarily

irreducible, then, for each v, πv is a constituent of ρv.

As in the ninth paragraph π and ρ determine representations π and ρ of Hv. The new π
will be a constituent of the new ρ. By Lemma 9.12 the representation π of Hv is the direct
sum of representations equivalent to πv. Thus πv is a constituent of π and therefore of ρ.
Since ρ is the direct sum of representations equivalent to ρv, Lemma 8.6 shows that πv is a
constituent of ρv.

The considerations which led to Proposition 8.5 and its proof will also prove the following
proposition.

Proposition 10.11. If π is an irreducible constituent of the space A0 then for some quasi-
character η it is a constituent of A0(η).

Observe that if π is a constituent of A0(η) then

π

((
a 0
0 a

))
= η(a)I

for all a in I. There are two more lemmas to be proved to complete the preparations for the
Hecke theory.
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Lemma 10.12. Suppose there is a continuous function φ on GA with the following properties.

(i) φ is K finite on the right.
(ii) For all α and β in F× and all x in A

φ

((
α x
0 β

)
g

)
= φ(g).

(iii) There is a quasi-character η of F×\I such that

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I.
(iv) There is a finite set S of non-archimedean places such that the space

V = ρ(ĤS)φ

transforms under ĤS according to the irreducible admissible representation π =⊗
v/∈S πv.
Then V is a subspace of B and there are two quasi-characters µ and ν of F×\I

such that πv is a constituent of ρ(µv, νv) for all v not in S.

If one observes that there is a finite set T of places which is disjoint from S such that
I = F×IT one can proceed as in Lemma 10.10.1 to show that φ is A-finite on the right. Thus
there is a finite set R of pairs of quasi-characters and a non-negative integer M such that V
is contained in B(R,M). The same reduction as before shows that π is a constituent of the

representation of ĤS on some B(µ, ν) and that πv is a constituent of ρ(µv, νv) if v is not in S.

Lemma 10.13. Let φ be a continuous function on GF\GA. If φ satisfies the four following
conditions it is an automorphic form.

(i) φ is K finite on the right.
(ii) There is a quasi-character η of F×\I such that

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I.

(iii) There is a finite set S of non-archimedean places such that ρ(ĤS)φ transforms

according to an irreducible admissible representation of ĤS.
(iv) If F is a number field φ is slowly increasing.

We have to show that for every elementary idempotent ξ in H the space ρ(ξH)φ is
finite-dimensional. If f is a continuous function on GF\GA let

f0(g) =
1

measure(F\A)

∫
F\A

f

((
1 x
0 1

)
g

)
dx.

The map f → f0 commutes with the action of H or of ĤS. Consequently φ0 satisfies the
conditions of the previous lemma and belongs to a space B(R,M) invariant under H on
which ρ(ξ) has a finite-dimensional range.
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We need only show that

V =
{
f ∈ ρ(ξH)φ

∣∣ f0 = 0
}

is finite-dimensional. If F is a function field then, by Proposition 10.3, V is contained in A0(η).
More precisely it is contained in the range of ρ(ξ), as an operator on A0(η), which we know
is finite-dimensional. Suppose F is a number field. Since every place of S is non-archimedean
the third condition guarantees that φ is an eigenfunction of every element of Z. In particular
there is an ideal a of finite codimension in Z which annihilates φ and therefore every element
of ρ(ξH)φ. By Proposition 10.6 the space V is contained in A0(η) and therefore in A0(η, a).
By Proposition 10.8 the range of ρ(ξ) in A0(η, a) is finite-dimensional.
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§11. Hecke theory

The preliminaries are now complete and we can broach the central topic of these notes.
Let ψ be a non-trivial character of F\A. For each place v the restriction ψv of ψ to Fv
is non-trivial. Let π =

⊗
v πv be an irreducible admissible representation of H. The local

L-functions L(s, πv) and the factors ϵ(s, πv, ψv) have all been defined. Since for almost all v
the representation πv contains the trivial representation of Kv and Ov is the largest ideal on
which ψv is trivial, almost all of the factors ϵ(s, πv, ψv) are identically 1 and we can form the
product

ϵ(s, π) =
∏
v

ϵ(s, πv, ψv).

In general it depends on ψ. Suppose however that

π

((
a 0
0 a

))
= η(a)I

and that η is trivial on F×. If ψ is replaced by the character x→ ψ(αx) with α in F× then
ϵ(s, πv, ψv) is multiplied by ηv(α)|α|2s−1

v so that ϵ(s, π) is multiplied by∏
v

ηv(α)|α|2s−1
v = η(α)|α|2s−1 = 1

The product ∏
v

L(s, πv)

does not converge and define a function L(s, π) unless π satisfies some further conditions.

Theorem 11.1. Suppose the irreducible admissible representation π =
⊗

πv is a constituent
of A. Then the infinite products defining L(s, π) and L(s, π̃) converge absolutely in a right
half-plane and the functions L(s, π) and L(s, π̃) themselves can be analytically continued to
the whole complex plane as meromorphic functions of s. If π is a constituent of A0 they are
entire. If F is a number field they have only a finite number of poles and are bounded at
infinity in any vertical strip of finite width. If F is a function field with field of constants Fq
they are rational functions of q−s. Finally they satisfy the functional equation

L(s, π) = ϵ(s, π)L(1− s, π̃).

Observe that if π =
⊗

v πv then π̃ =
⊗

v π̃v. Consider first a representation π which is a
constituent of A but not of A0. There are quasi-characters µ and ν of F×\I such that πv is
a constituent of ρ(µv, µv) for all v. Since πv has to contain the trivial representation of Kv

for all but a finite number of v it is equal to π(µv, νv) for almost all v.
Consider first the representation π′ =

⊗
v π(µv, νv). Recall that

L
(
s, π(µv, νv)

)
= L(s, µv)L(s, νv)

L
(
s, π̃(µv, νv)

)
= L(s, µ−1

v )L(s, ν−1
v )

and
ϵ
(
s, π(µv, νv), ψv

)
= ϵ(s, µv, ψv)ϵ(s, νv, ψv)

If χ is any quasi-character of F×\I the product∏
v

L(s, χv)
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is known to converge in a right half plane and the function L(s, χ) it defines is known to be
analytically continuable to the whole plane as a meromorphic function. Moreover if

ϵ(s, χ) =
∏
v

ϵ(s, χv, ψv)

the functional equation
L(s, χ) = ϵ(s, χ)L(1− s, χ−1)

is satisfied. Since
L(s, π′) = L(s, µ)L(s, ν)

and
L(s, π̃′) = L(s, µ−1)L(s, ν−1)

they too are defined and meromorphic in the whole plane and satisfy the functional equation

L(s, π′) = ϵ(s, π′)L(1− s, π̃′).

The other properties of L(s, π′) demanded by the lemma, at least when π′ is a constituent of
A, can be inferred from the corresponding properties of L(s, µ) and L(s, ν) which are well
known.

When πv is not π(µv, µv) it is σ(µv, νv). We saw in the first chapter that

L
(
s, σ(µv, νv)

)
L
(
s, π(µv, νv)

)
is the product of a polynomial and an exponential. In particular it is entire. If we replace
π(µv, νv) by πv we change only a finite number of the local factors and do not disturb the
convergence of the infinite product. If S is the finite set of places v at which πv = σ(µv, νv)
then

L(s, π) = L(s, π′)
∏
v∈S

L
(
s, σ(µv, νv)

)
L
(
s, π(µv, νv)

)
and therefore is meromorphic with no more poles that L(s, π′). For L(s, π̃) the corresponding
equation is

L(s, π̃) = L(s, π̃′)
∏
v∈S

L
(
s, σ(µ−1

v , ν−1
v )
)

L
(
s, π(µ−1

v , ν−1
v )
) .

The functional equation of L(s, π) is a consequence of the relations

L
(
s, σ(µv, νv)

)
L
(
s, π(µv, νv)

) =
ϵ
(
s, σ(µv, νv), ψv

)
L
(
1− s, σ(µ−1

v , ν−1
v )
)

ϵ
(
s, π(µv, νv), ψv

)
L
(
1− s, π(µ−1

v , ν−1
v )
)

which were verified in the first chapter. It also follows from the form of the local factors that
L(s, π) and L(s, π̃) are rational functions of q−s when F is a function field. If F is a number
field L(s, π) is bounded in vertical strips of finite width in a right half-plane and, because
of the functional equation, in vertical strips in a left half-plane. Its expression in terms of
L(s, π′) prevents it from growing very fast at infinity in any vertical strip of finite width. The
Phrágmen-Lindelöf principle implies that it is bounded at infinity in any such strip.

Now suppose π is a constituent of A0. It is then a constituent of A0(η) if

π

((
a 0
0 a

))
= η(a)I
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for a in I. Since the representation of H in A0(η) is the direct sum of invariant irreducible
subspaces there is an invariant subspace U of A0(η) which transforms according to π. Let φ
belong to U . If g is in GA

φg(x) = φ

((
1 x
0 1

)
g

)
is a function on F\A. Since φg is continuous it is determined by its Fourier series. The
constant term is

1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
dx

which is 0 because φ is a cusp form. If ψ is a given non-trivial character of F\A the other
non-trivial characters are the functions x→ ψ(αx) with α in F×. Set

φ1(g) =
1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
ψ(−x) dx.

Since φ is a function on GF\GA.

φ1

((
α 0
0 1

)
g

)
=

1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
ψ(−αx) dx

if α belongs to F×. Thus, formally at least,

φ(g) = φg(e) =
∑
α∈F×

φ1

((
α 0
0 1

)
g

)
.

In any case it is clear that φ1 is not 0 unless φ is.
Let

U1 = {φ1 | φ ∈ U }.
Since the map φ→ φ1 commutes with the action of H the space U1 is invariant and transforms
according to π under right translation by H. Moreover

φ1

((
1 x
0 1

)
g

)
= ψ(x)φ1(g)

if x is in A. If F is a number field φ is slowly increasing. Therefore if Ω is a compact subset
of GA there is a real number M such that

φ1

((
a 0
0 1

)
g

)
= O

(
|a|M

)
as |a| → ∞ for all g in Ω. Propositions 9.2 and 9.3 imply that all πv are infinite-dimensional
and that U1 is W (π, ψ). Therefore U1 is completely determined by π and ψ and U is
completely determined by π. We have therefore proved the following curious proposition.

Proposition 11.1.1. If an irreducible representation of H is contained in A0(η) it is
contained with multiplicity one.
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For almost all v there is in W (πv, ψv) a function φ0
v such that φ0

v(gvkv) = φ0
v(gv) for all

kv in Kv while φ
0
v(e) = 1. The space W (π, ψ) is spanned by functions of the form

(11.1.2) φ1(g) =
∏
v

φv(gv)

where φv is in W (πv, ψv) for all v and equal to φ0
v for almost all v.

Suppose φ corresponds to a function φ1 of the form (11.1.2). Suppose φv = φ0
v so that πv

contains the trivial representation of Kv. If ϵv is the normalized Haar measure on Kv let λv
be the homomorphism of ϵvHvϵv into C associated to πv. If fv is in ϵvHvϵv then

λv(fv)φ(g) =

∫
Gv

φ(gh)fv(h) dh

and if λ′v is the homomorphism associated to |ηv|−1/2 ⊗ πv

λ′v(fv)
∣∣η(det g)∣∣−1/2

φ(g)

is equal to ∫
Gv

∣∣η(det gh)∣∣−1/2
φ(gh)fv(h) dh.

Since φ is a cusp form the function
∣∣η(det g)∣∣−1/2

φ(g) is bounded and λ′v satisfies the conditions
of Lemma 3.10. Thus if πv = π(µv, νv) both µv and νv are unramified and∣∣η(ϖv)

∣∣1/2|ϖv|1/2 ⩽
∣∣µv(ϖv)

∣∣ ⩽ ∣∣η(ϖv)
∣∣1/2|ϖv|−1/2∣∣η(ϖv)

∣∣1/2|ϖv|1/2 ⩽
∣∣νv(ϖv)

∣∣ ⩽ ∣∣η(ϖv)
∣∣1/2|ϖv|−1/2

if ϖv is the generator of the maximal ideal of Ov. Consequently the infinite products defining
L(s, π) and L(s, π̃) converge absolutely for Re s sufficiently large.

We know that for any v and any φv in W (πv, ψv) the integral∫
F×
v

φv

((
av 0
0 1

)
gv

)
|av|s−

1
2 d×av

converges absolutely for Re s large enough. Suppose that, for all a in I,
∣∣η(a)∣∣ = |a|r with r

real. Applying Lemma 3.11 we see that if s+ r > 1
2
and φ0

v is defined∫
F×
v

∣∣∣∣∣∣φ0
v

((
av 0
0 1

)
gv

)∣∣∣∣∣∣|av|s− 1
2 d×av

is, for gv in Kv, at most
1(

1− |ϖv|s+r−
1
2

)2 .
Thus if φ1 is of the form (11.1.2) the integral

Ψ(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a
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is absolutely convergent and equal to ∏
v

Ψ(gv, s, φv)

for Re s sufficiently large. Since Φ(gv, s, φv) is, by Proposition 3.5, equal to 1 for almost all v
we can set

Φ(g, s, φ1) =
∏
v

Φ(gv, s, φv)

so that
Ψ(g, s, φ1) = L(s, π)Φ(g, s, φ1).

We can also introduce

Ψ̃(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
η−1(a)|a|s−

1
2 d×a

and show that
Ψ̃(g, s, φ1) = L(s, π̃)Φ̃(g, s, φ1)

if
Φ̃(g, s, φ1) =

∏
v

Φ̃(gv, s, φv).

Lemma 11.1.3. There is a real number s0 such that for all φ1 in W (π, ψ) the integrals

Ψ(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

Ψ̃(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
η−1(a)|a|s−

1
2 d×a

are absolutely convergent for Re s > s0. The functions Ψ(g, s, φ1) and Ψ̃(g, s, φ1) can both be
extended to entire functions of s. If F is a number field they are bounded in vertical strips
and if F is a function field they are rational functions of q−s. Moreover

Ψ̃(wg, 1− s, φ1) = Ψ(g, s, φ1).

We have seen that the first assertion is true for functions of the form (11.1.2). Since they
form a basis of W (π, ψ) it is true in general. To show that

φ(g) =
∑
α∈F×

φ1

((
α 0
0 1

)
g

)
we need only show that the series on the right is absolutely convergent. We will do this later
on in this paragraph. At the moment we take the equality for granted. Then, for all φ1,
Ψ(g, s, φ1) which equals ∫

F×\I

∑
α∈F×

φ1

((
αa 0
0 1

)
g

)|a|s−
1
2 d×a
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is equal to ∫
F×\I

φ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

for Re s sufficiently large. Also Ψ̃(g, s, φ1) is equal to∫
F×\I

φ

((
a 0
0 1

)
g

)
η−1(a)|a|s−

1
2 d×a.

We saw in the previous paragraph that, for a given g and any real number M ,∣∣∣∣∣∣φ
((

a 0
0 1

)
g

)∣∣∣∣∣∣ = O
(
|a|M

)
as |a| approaches 0 or ∞. Thus the two integrals define entire functions of s which are
bounded in vertical strips. If F is a function field the function

a→ φ

((
a 0
0 1

)
g

)
has compact support on F×\I so that the integral can be expressed as a finite Laurent series
in q−s.

The function Ψ̃(wg, 1− s, φ1) is equal to∫
φ

((
a 0
0 1

)
wg

)
η−1(a)|a|

1
2
−s d×a.

Since w is in GF the equality φ(wh) = φ(h) holds for all h in GA and this integral is equal to∫
φ

((
1 0
0 a

)
g

)
η−1(a)|a|

1
2
−s d×a.

Since (
1 0
0 a

)
=

(
a 0
0 a

)(
a−1 0
0 1

)
we can change variables in the integral to obtain∫

φ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

which is Ψ(g, s, φ1).
If we choose φ1 of the form (11.1.2) we see that L(s, π)Φ(g, s, φ1) is entire and bounded

in vertical strips of finite width. For almost all v the value of Φ(gv, s, φ
0
v) at the identity e is 1

and for such v we choose φv = φ0
v. At the other places we choose φv so that Φ(e, s, φv) is an

exponential eavs with real av. Then Φ(e, s, φ1) is an exponential. Consequently L(s, π) is also
entire and bounded in vertical strips of finite width. If F is a number field Φ(e, s, φ1) will be
a power of q−s so that L(s, π) will be a finite Laurent series in q−s. Similar considerations
apply to L(s, π̃).
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To prove the functional equation we start with the relation

L(s, π)
∏
v

Φ(e, s, φv) = L(1− s, π̃)
∏
v

Φ̃(w, 1− s, φv).

By the local functional equation the right hand side is

L(1− s, π̃)
∏
v

{
ϵ(s, πv, ψv)Φ(e, s, φv)

}
.

Cancelling the term
∏

v Φ(e, s, φv) we obtain

L(s, π) = ϵ(s, π)L(1− s, π̃).

Corollary 11.2. Suppose π =
⊗

v πv is a constituent of A. For any quasi-character ω of
F×\I the products ∏

v

L(s, ωv ⊗ πv)

and ∏
v

L(s, ω−1
v ⊗ π̃v)

are absolutely convergent for Re s sufficiently large. The functions L(s, ω⊗π) and L(s, ω−1⊗π̃)
they define can be analytically continued to the whole complex plane as meromorphic functions
which are bounded at infinity in vertical strips of finite width and have only a finite number
of poles. If F is a function field they are rational functions of q−s. If π is a constituent of A0

they are entire. In all cases they satisfy the functional equation

L(s, ω ⊗ π) = ϵ(s, ω ⊗ π)L(1− s, ω−1 ⊗ π̃)

if

ϵ(s, ω ⊗ π) =
∏
v

ϵ(s, ωv ⊗ πv, ψv).

If π =
⊗

v πv is a constituent of A or A0 and ω is a quasi-character of F×\I so is ω ⊗ π.
Moreover ω ⊗ π =

⊗
v(ωv ⊗ πv).

The converses to the corollary can take various forms. We consider only the simplest of
these. In particular, as far as possible, we restrict ourselves to cusp forms.

Theorem 11.3. Let π =
⊗

πv be a given irreducible representation of H. Suppose that the
quasi-character η of I defined by

π

((
a 0
0 a

))
= η(a)I

is trivial on F×. Suppose there is a real number r such that whenever πv = π(µv, νv) the
inequalities

|ϖv|−r ⩽
∣∣µv(ϖv)

∣∣ ⩽ |ϖv|r

and
|ϖv|−r ⩽

∣∣νv(ϖv)
∣∣ ⩽ |ϖv|r

are satisfied. Then for any quasi-character ω of F×\I the infinite products

L(s, ω ⊗ π) =
∏
v

L(s, ωv ⊗ πv)
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and
L(s, ω−1 ⊗ π̃) =

∏
v

L(s, ω−1
v ⊗ π̃v)

are absolutely convergent for Re s large enough. Suppose L(s, ω ⊗ π) and L(s, ω−1 ⊗ π̃) are,
for all ω, entire functions of s which are bounded in vertical strips and satisfy the functional
equation

L(s, ω ⊗ π) = ϵ(s, ω ⊗ π)L(1− s, ω−1 ⊗ π̃)

If the πv are all infinite-dimensional π is a constituent of A0.

The absolute convergence of the infinite products is clear. We have to construct a subspace
U of A0 which is invariant under H and transforms according to the representation π. The
space W (π, ψ) transforms according to π. If φ1 belongs to W (π, ψ) set

φ(g) =
∑
α∈F×

φ1

((
α 0
0 1

)
g

)
We shall see later that this series converges absolutely and uniformly on compact subsets of
GA. Thus φ is a continuous function on GA. Since the map φ1 → φ commutes with right
translations by the elements of H we have to show that, for all φ1, φ is in A0 and that φ is
not zero unless φ1 is.

Since ψ is a character of F\A

φ

((
1 ξ
0 1

)
g

)
= φ(g)

for all ξ in F . Thus, for each g,

φ

((
1 x
0 a

)
g

)
is a function on F\A. The constant term of its Fourier expansion is

1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
dx.

The integral is equal to ∑
α

∫
F\A

φ1

((
1 αx
0 1

)(
α 0
0 1

)
g

)
dx.

A typical term of this sum is

φ1

((
α 0
0 1

)
g

)∫
F\A

ψ(αx) dx = 0.

In particular φ is cuspidal. Another simple calculation shows that if β belongs to F×

1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
ψ(−βx) dx
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is equal to

φ1

((
β 0
0 1

)
g

)
.

Thus φ1 is zero if φ is.
By construction

φ

((
α 0
0 1

)
g

)
= φ(g)

if α is in F×. Moreover, for all a in I,

φ

((
a 0
0 a

)
g

)
= η(a)φ(g).

If a is in F× the right side is just φ(g). Thus φ is invariant under left translations by elements
of PF , the group of super-triangular matrices in GF . Since GF is generated by PF and
w =

(
0 −1
1 0

)
all we need do to show that φ is a function on GF\GA is to show that

φ(wg) = φ(g).

By linearity we need only establish this when φ1 has the form (11.1.2). The hypothesis
implies as in the direct theorem that the integrals

Ψ(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

and

Ψ̃(g, s, φ1) =

∫
I

φ1

((
a 0
0 1

)
g

)
η−1(a)|a|s−

1
2 d×a

converge absolutely for Re s sufficiently large. Moreover

Ψ(g, s, φ1) =
∏
v

Ψ(gv, s, φv) = L(s, π)
∏
v

Φ(gv, s, φv).

Almost all factors in the product on the right are identically 1 so that the product, and
therefore Ψ(g, s, φ1), is an entire function of s. In the same way

Ψ̃(g, s, φ1) = L(s, π̃)
∏
v

Φ̃(gv, s, φv)

and is entire. Since
Φ̃(wgv, 1− s, φv) = ϵ(s, πv, ψv)Φ(gv, s, φv)

the function Ψ̃(wg, 1− s, φv) is equal to

L(1− s, π̃)ϵ(s, π)
∏
v

Φ(gv, s, φv),

which, because of the functional equation assumed for L(s, π), is equal to Ψ(g, s, φ1).
From its integral representation the function Ψ(g, s, φ1) is bounded in any vertical strip of

finite width contained in a certain right half-plane. The equation just established shows that
it is also bounded in vertical strips of a left half-plane. To verify that it is bounded in any
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vertical strip we just have to check that it grows sufficiently slowly that the Phrágmen-Lindelöf
principle can be applied.

Ψ(g, s, φ1) = L(s, π)
∏
v

Φ(gv, s, φv).

The first term is bounded in any vertical strip by hypothesis. Almost all factors in the infinite
product are identically 1. If v is non-archimedean Φ(gv, s, φv) is a function of |ϖv|s and is
therefore bounded in any vertical strip. If v is archimedean

Φ(gv, s, φv) =
Ψ(gv, s, φv)

L(s, πv)

We have shown that the numerator is bounded at infinity in vertical strips. The denominator
is, apart from an exponential factor, a Γ-function. Stirling’s formula shows that it goes to 0
sufficiently slowly at infinity.

If Re s is sufficiently large

Ψ(g, s, φ1) =

∫
F×\I

∑
α∈F×

φ1

((
αa 0
0 1

)
g

)
|a|s−

1
2 d×a

which is ∫
F×\I

φ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a.

This integral converges absolutely when Re s is sufficiently large. If Re s is large and negative

Ψ̃(wg, 1− s, φ1) =

∫
F×\I

φ

((
a 0
0 1

)
wg

)
η−1(a)|a|

1
2
−s d×a

which equals ∫
F×\I

φ

(
w

(
1 0
0 a

)
g

)
η−1(a)|a|

1
2
−s d×a.

Using the relation (
1 0
0 a

)
=

(
a 0
0 a

)(
a−1 0
0 1

)
and changing variables we see that this integral is equal to∫

F×\I
φ

(
w

(
a 0
0 1

)
g

)
|a|s−

1
2 d×a.

Set

f1(a) = φ

((
a 0
0 1

)
g

)
and

f2(s) = φ

(
w

(
a 0
0 1

)
g

)
.

We are trying to show that for any g the functions f1 and f2 are equal. The previous
discussion applies to ω ⊗ π as well as to π. If φ1 is in W (π, ψ) the function

φ′
1(g) = ω(det g)φ1(g)
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is in W (ω ⊗ π, ψ). When φ1 is replaced by φ′
1 the function φ is replaced by

φ′(g) = ω(det g)φ(g)

and fi is replaced by
f ′
i(a) = ω(det g)ω(a)fi(a).

Thus for any quasi-character ω of F×\I the integral∫
F×\I

f1(a)ω(a)|a|s−
1
2 d×a

is absolutely convergent for Re s sufficiently large and the integral∫
F×\I

f2(a)ω(a)|a|s−
1
2 d×a

is absolutely convergent for Re s large and negative. Both integrals represent functions which
can be analytically continued to the same entire function. This entire function is bounded in
vertical strips of finite width.

The equality of f1 and f2 is a result of the following lemma.

Lemma 11.3.1. Let f1 and f2 be two continuous functions on F×\I. Assume that there is
a constant c such that for all characters of ω of F×\I the integral∫

F×\I
f1(a)ω(a)|a|s d×a

is absolutely convergent for Re s > c and the integral∫
F×\I

f2(a)ω(a)|a|s d×a

is absolutely convergent for Re s < −c. Assume that the functions represented by these
integrals can be analytically continued to the same entire function and that this entire function
is bounded in vertical strips of finite width. Then f1 and f2 are equal.

Let I0 be the group of idèles of norm 1. Then F×\I0 is compact. It will be enough to
show that for each b in I the functions f1(ab) and f2(ab) on F

×\I0 are equal. They are equal
if they have the same Fourier expansions. Since any character of F×\I0 can be extended to a
character of F×\I we have just to show that for every character ω of F×\I

f̂1(ω, b) = ω(b)

∫
F×\I0

f1(ab)ω(a) d
×a

is equal to

f̂2(ω, b) = ω(b)

∫
F×\I0

f2(ab)ω(a) d
×a.

These two functions are functions on I0\I which is isomorphic to Z if F is a number field
and to R if F is a function field.

If F is a function field we have only to verify the following lemma.

Lemma 11.3.2. Suppose
{
a1(n)

∣∣ n ∈ Z
}
and

{
a2(n)

∣∣ n ∈ Z
}
are two sequences and q > 1

is a real number. Suppose ∑
n

a1(n)q
−ns
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converges for Re s sufficiently large and∑
n

a2(n)q
−ns

converges absolutely for Re s large and negative. If the functions they represent can be
analytically continued to the same entire function of s the two sequences are equal.

Once stated the lemma is seen to amount to the uniqueness of the Laurent expansion. If
F is a number field the lemma to be proved is a little more complicated.

Lemma 11.3.3. Suppose g1 and g2 are two continuous functions on R. Suppose there is a
constant c such that

ĝ1(s) =

∫
R

g1(x)e
sx dx

converges absolutely for Re s > c and

ĝ2(s) =

∫
R

g2(x)e
sx dx

converges absolutely for Re s < −c. If ĝ1 and ĝ2 represent the same entire function and this
function is bounded in vertical strips then g1 = g2.

All we need do is show that for every compactly supported infinitely differentiable function
g the functions g ∗ g1 and g ∗ g2 are equal. If

ĝ(s) =

∫
R

g(x)esx dx

is the Laplace transform of g the Laplace transform of g ∗ gi is ĝ(s)ĝi(s). By the inversion
formula

g ∗ gi(x) =
1

2πi

∫ b+i∞

b−i∞
ĝ(s)ĝi(s)e

−xs ds

where b > c if i = 1 and b < −c if i = 2. The integral converges because ĝ goes to 0 faster
than the inverse of any polynomial in a vertical strip. Cauchy’s integral theorem implies that
the integral is independent of b. The lemma follows.

To complete the proof of Theorem 11.3, and Theorem 11.1, we have to show that for any
φ1 in W (π, ψ) the series ∑

α∈F×

φ1

((
α 0
0 1

)
g

)
is uniformly absolutely convergent for g in a compact subset of GA and that if φ(g) is its
sum then, if F is a number field, for any compact subset Ω of GA and any c > 0 there are
constants M1 and M2 such that ∣∣∣∣∣∣φ

((
a 0
0 1

)
g

)∣∣∣∣∣∣ ⩽M1|a|M2

for g in Ω and |a| ⩾ c. We prefer to prove these facts in a more general context which will
now be described.

For us a divisor is just a formal product of the form

D =
∏

pmp .
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It is taken over all non-archimedean places. The integers mp are non-negative and all but a
finite number of them are 0. Let S be a finite set of non-archimedean places containing all
the divisors of D, that is, all places p for which mp > 0.

If a belongs to I we can write a in a unique manner as a product aS âS where the
components of aS outside S are 1 and those of âS inside S are 1. The idèle aS belongs to
Is =

∏
v∈S F

×
v . Let ISD be the set of idèles a such that, for any p in S, ap is a unit which

satisfies ap ≡ 1 (mod pmp). Then I = F×ISD and F×\I is isomorphic to F× ∩ ISD\ISD.
If p is in S let KD

p be the subgroup of all(
a b
c d

)
in Kp for which c ≡ 0 (mod pmp). Let K̂D

p be the subgroup of such matrices for which
a ≡ d ≡ 1 (mod pmp). Set

KD
S =

∏
p∈S

KD
p

and set
K̂D
S =

∏
p∈S

K̂D
p

K̂D
S is a normal subgroup of KD

S and the quotient KD
S /K̂

D
S is abelian.

Let GS
D be the set of all g in GA such that gp is in the group KD

p for all p in S. Any g in
GA may be written as a product gS ĝS where gS has component 1 outside of S and ĝS has

component 1 inside S. GS is the set of gS and ĜS is the set of ĝS. In particular

GS
D = KD

S · ĜS.

It is easily seen that
GA = GFG

S
D.

In addition to D and S we suppose we are given a non-trivial character ψ of F\A, two

characters ϵ and ϵ̂ of KD
S /K̂

D
S , two complex valued functions α → aα and α → âα on F×, an

irreducible representation π of ĤS =
⊗

v/∈S Hv, and a quasi-character η of F×\I.
There are a number of conditions to be satisfied. If(

a 0
0 b

)
belongs to KD

S then

ϵ̂

((
a 0
0 b

))
= ϵ

((
b 0
0 a

))
.

If α belongs to F× and β belongs to F× ∩ ISD

aαβ = ϵ

((
βS 0
0 1

))
aα

and

âαβ = ϵ̂

((
βS 0
0 1

))
âα.
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The functions α → aα and α → âα are bounded. Moreover aα = âα = 0 if for some v in S
the number α regarded as an element of Fv does not lie in the largest ideal on which ψv is
trivial. If v belongs to S and a is a unit in Ov

ϵ

((
a 0
0 a

))
= ηv(a).

Let π =
⊗

v/∈S πv. Then for a in F×
v

πv

((
a 0
0 a

))
= ηv(a)I.

Because of these two conditions η is determined by π and ϵ. There is a real number r such
that if πv = π(µv, νv)

|ϖv|r ⩽
∣∣µv(ϖv)

∣∣ ⩽ |ϖv|−r

and
|ϖv|r ⩽

∣∣νv(ϖv)
∣∣ ⩽ |ϖv|−r.

Finally we suppose that πv is infinite-dimensional for all v not in S.
These conditions are rather complicated. None the less in the next paragraph we shall

find ourselves in a situation in which they are satisfied. When S is empty, D = 0, and
aα = âα = 1 for all α they reduce to those of Theorem 11.3. In particular with the next
lemma the proof of that theorem will be complete. We shall use the conditions to construct a

space U of automorphic forms on GA such that U transforms under ĤS according to π while
each φ in U satisfies

φ(gh) = ϵ(h)φ(g)

for h in KD
S . If U is such a space then for any φ in U and any a in I

φ

((
a 0
0 a

)
g

)
= η(a)φ(g).

This is clear if a belongs to ISD and follows in general from the relation I = F×ISD.

Recall that W (π, ψ) is the space of functions on ĜS spanned by functions of the form

φ1(g) =
∏
v/∈S

φv(gv)

where φv belongs to W (πv, ψv) for all v and is equal to φ0
v for almost all v.

Lemma 11.4. Suppose φ1 belongs to W (π, ψ).

(i) For any g in GS
D the series

φ(g) =
∑
α∈F×

aαϵ(gS)φ1

((
α̂S 0
0 1

)
ĝS

)
converges absolutely. The convergence is uniform on compact subsets of GS

D.
(ii) The function φ defined by this series is invariant under left translation by the matrices

in GF ∩GS
D of the form (

α β
0 δ

)
.
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(iii) Suppose F is a number field. Let Ω be a compact subset of GS
D. Then there are

positive constants M1 and M2 such that∣∣φ(g)∣∣ ⩽M1

{
|a|+ |a|−1

}M2

if

g =

(
1 x
0 1

)(
a 0
0 1

)
h

with h in Ω, a in ISD, and ( 1 0
x 1 ) in G

S
D.

It is enough to prove these assertions when φ1 has the form

φ1(g) =
∏
v/∈S

φv(gv).

To establish the first and third assertions we need only consider the series

(11.4.1)
∑
α∈F×

δ(α)
∏
v/∈S

∣∣∣∣∣∣φv
((

α 0
0 1

)
gv

)∣∣∣∣∣∣
where δ(α) = 0 if for some v in S the number α regarded as an element of Fv is not the
largest ideal on which ψv is trivial and δ(α) = 1 otherwise.

We need only consider compact sets Ω of the form

(11.4.2) Ω = KD
S

∏
v/∈S

Ωv

where Ωv is a compact subset of Gv and Ωv = Kv for almost all v.

Lemma 11.4.3. Suppose Ω is of the form (11.4.2). There is a positive number ρ such that
for each non-archimedean place v which is not in S there is a constant Mv such that∣∣∣∣∣∣φv

((
a 0
0 1

)
h

)∣∣∣∣∣∣ ⩽Mv|a|−ρ

for a in F×
v and h in Ωv and a constant cv such that∣∣∣∣∣∣φv

((
a 0
0 1

)
h

)∣∣∣∣∣∣ = 0

if |a| > cv and h is in Ωv. Moreover one may take Mv = cv = 1 for almost all v.

Since φv is invariant under an open subgroup of Kv for all v and is invariant under Kv

for almost all v while Ωv = Kv for almost all v it is enough to prove the existence of Mv, cv,
and ρ such that these relations are satisfied when h = 1. Since the function

a→ φv

((
a 0
0 1

))
belongs to the space of the Kirillov model the existence of cv is clear. The constant cv can be
taken to be 1 when Ov is the largest ideal of Fv on which ψv is trivial and φv = φ0

v.
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The existence of Mv, for a given v and sufficiently large ρ, is a result of the absolute
convergence of the integral defining Ψ(e, s, φv). Thus all we need do is show the existence of
a fixed ρ such that the inequality ∣∣∣∣∣∣φv

((
a 0
0 1

))∣∣∣∣∣∣ ⩽ |a|−ρ

is valid for almost all v. For almost all v the representation πv is of the form π(µv, νv) with
µv and νv unramified, Ov is the largest ideal of Fv on which ψv is trivial, and φv = φ0

v. Thus,
for such v,

φv

((
ϵa 0
0 1

))
= φv

((
a 0
0 1

))
if ϵ is a unit in Ov and ∑

n

φv

((
ϖn
v 0
0 1

))
|ϖv|n(s−

1
2) = L(s, πv).

If ρv = µv(ϖv) and σv = νv(ϖv)

L(s, πv) =
1(

1− ρv|ϖv|s
) 1(

1− σv|ϖv|s
) .

Since |ρv| ⩽ |ϖv|−r and |σv| ⩽ |ϖv|−r∣∣∣∣∣∣φv
((

ϖn
v 0
0 1

))∣∣∣∣∣∣ =
∣∣∣∣∣ρn+1

v − σn+1
v

ρv − σv

∣∣∣∣∣ ⩽ (n+ 1)|ϖv|−rn.

Since |ϖv| ⩽ 1
2
there is a constant ϵ > 0 such that

(n+ 1) ⩽ |ϖv|−ϵn

for all v and all n ⩾ 0.
If v is archimedean the integral representations of the functions in W (πv, ψv) show that

there are positive constants cv, dv, and Mv such that∣∣∣∣∣∣φv
((

a 0
0 1

)
h

)∣∣∣∣∣∣ ⩽Mv|a|−cv exp
(
−dv|a|ϵvv

)
for a in F×

v and h in Ωv. The exponent ϵv is 1 if v is real and 1
2
if v is complex.

Since we want to prove not only the first assertion but also the third we consider the sum

f

((
b 0
0 1

)
g

)
=
∑
α∈F×

δ(α)
∏
v/∈S

∣∣∣∣∣∣φv
((

bvα 0
0 1

)
gv

)∣∣∣∣∣∣
where g lies in the set (11.4.2) and b is an idèle such that bv = 1 for all non-archimedean v.
We also suppose that there is a positive number t such that bv = t for all archimedean v. If Λ
is a set of α in F for which |α|v ⩽ cv for all non-archimedean v not in S and δ(α) ̸= 0 then

f

((
b 0
0 1

)
g

)
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is bounded by ∑
α∈Λ
α ̸=0

∏
v∈Sa

Mv|αt|−cvv exp
(
−dvt|α|ϵvv

)
 ∏
v/∈S∪Sa

Mv|αv|−ρ
.

If F is a function field Λ is a finite set and there is nothing more to prove. If it is a
number field choose for each v in S a constant cv such that δ(α) = 0 unless |α|v ⩽ cv. Since∏

v

|α|v = 1,

∏
v/∈S∪Sa

|α|−ρv ⩽

∏
v∈S

cρv


∏
v∈Sa

|α|ρv

.
Thus our sum is bounded by a constant times the product of

∏
v∈Sa

t−cv/ϵv and∑
α∈Λ
α ̸=0

∏
v∈Sa

{
|α|ρ−cvv exp

(
−dvt|α|ϵvv

)}
.

The product
∏

v∈Sa
|α|v is bounded below on Λ− {0}. Multiplying each term by the same

sufficiently high power of
∏

v∈Sa
|α|v we dominate the series by another series∑

α∈Λ

∏
v∈Sa

{
|α|ρvv exp

(
−dvt|α|ϵvv

)}
in which the exponents ρv are non-negative. This in turn is dominated by

∏
v∈Sa

t−ρv/ϵv times∑
α∈Λ

∏
v∈Sa

exp

(
−dv
2
t|α|ϵvv

)
.

Λ may be regarded as a lattice in
∏

v∈Sa
Fv. If λ1, . . . , λn is a basis of Λ there is a constant d

such that if α =
∑
aiλi ∑

v∈Sa

dv
2
|α|ϵvv ⩾ d

∑
|ai|.

Thus

f

((
b 0
0 1

)
g

)
is dominated by some power of t times a multiple of

∞∑
a=−∞

e−dt|a|


n

which is bounded by a multiple of
(
1 + 1

t

)n
.

The first assertion is now proved and the third will now follow from the second and the
observation that every element of ISD is the product of an element of F×, an idèle whose
components are 1 at all non-archimedean places and equal to the same positive number at all
archimedean places, and an idèle which lies in a certain compact set.
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Suppose ξ is in F and (
1 ξ
0 1

)
belong to GS

D. Then ξ is integral at each prime of S and ψv(αξ) = 1 if aα ̸= 0. If g belongs
to GS

D and

h =

(
1 ξ
0 1

)
g

then ϵ(hS) = ϵ(gS) and if v is not in S

φv

((
α 0
0 1

)
hv

)
= ψv(αξ)φv

((
α 0
0 1

)
gv

)
.

If aα ̸= 0 ∏
v/∈S

ψv(αξ) =
∏
v

ψv(αξ) = 1.

Consequently

φ

((
1 ξ
0 1

)
g

)
= φ(g).

If b belongs to ISD then

ϵ

((
bS 0
0 bS

)
gS

)
= η(bS)ϵ(gS)

and

φ1

(b̂Sα̂S 0

0 b̂S

)
ĝS

 = η(̂bS)φ1

((
α̂S 0
0 1

)
ĝS

)
so that

φ

((
b 0
0 b

)
g

)
= η(b)φ(g).

In particular if β belongs to F× ∩ ISD

φ

((
β 0
0 β

)
g

)
= φ(g).

If β belongs to F× ∩ ISD and

h =

(
β 0
0 1

)
g

then

ϵ(hS) = ϵ

((
βS 0
0 1

))
ϵ(gS)

and φ(h) is equal to ∑
α

aαϵ

((
βS 0
0 1

))
ϵ(gS)φ1

(α̂Sβ̂S 0
0 1

)
ĝS

.
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Since

aαβ = ϵ

((
βS 0
0 1

))
aα

we can change variables in the summation to see that φ(h) = φ(g).
The lemma is now proved. The function

φ̂(g) =
∑
α∈F×

âαϵ̂(gS)φ1

((
α̂S 0
0 1

)
ĝS

)
can be treated in the same fashion.

Theorem 11.5. If ω is a quasi-characters of F×\I such that

ωv(av)ϵ

((
av 0
0 1

))
= 1

for all units av of Ov set

Λ(s, ω) =


∑

F×∩ISD\F×

aαω(αS)|αS|s−
1
2


∏
v/∈S

L(s, ωv ⊗ πv).

If

ωv(av)ϵ̂

((
av 0
0 1

))
= 1

for all units av in Ov set

Λ̂(s, ω) =


∑

F×∩ISD\F×

âαω(αS)|αS|s−
1
2


∏
v/∈S

L(s, ω−1
v ⊗ π̃v).

Then Λ(s, ω) and Λ̂(s, ω) are defined for Re s sufficiently large. Suppose that whenever ω is

such that Λ(s, ω) or Λ̂(s, ω) is defined they can be analytically continued to entire functions
which are bounded in vertical strips. Assume also that there is an A in F× such that
|A|p = |ϖp|mp for any p in S and

Λ(s, ω) =

∏
v∈S

ωv(−A)|A|s−1/2
v


∏
v/∈S

ϵ(s, ωv ⊗ πv, ψv)

Λ̂(1− s, η−1ω−1)

whenever Λ(s, ω) is defined. Then for any φ1 in W (π, ψ) there is an automorphic form φ on
GA such that

φ(g) =
∑

aαϵ(gS)φ1

((
α̂S 0
0 1

)
ĝS

)
on GS

D.
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The infinite products occurring in the definition of Λ(s, ω) and Λ̂(s, ω) certainly converge
for Re s sufficiently large. To check that the other factors converge one has to check that∑

|αS|s−
1
2

converges for Re s sufficiently large if the sum is taken over those elements α of a system of
coset representatives of F× ∩ ISD\F× for which |α|v ⩽ cv for v in S. This is easily done.

The idèle AS has components 1 outside of S and A in S. Since(
0 1
AS 0

)(
a b
c d

)(
0 A−1

S

1 0

)
=

(
d cA−1

S

ASb a

)
the matrix (

0 1
AS 0

)
normalizes KD

S . In particular if g belongs to GS
D so does(

0 1
AS 0

)
g

(
0 A−1

S

1 0

)
.

Lemma 11.5.1. If φ1 is in W (π, ψ) and g is in GS
D then, under the hypotheses of the

theorem,

φ̂

( 0 1
AS 0

)
g

(
0 A−1

S

1 0

) = φ(g).

Let φ′(g) be the function on the left. As before all we need do is show that for every
character ω of F× ∩ ISD\ISD and every g in GS

D the integral

(11.5.2)

∫
F×∩ISD\ISD

φ

((
a 0
0 1

)
g

)
ω(a)|a|s−

1
2 d×a

is absolutely convergent for Re s large and positive. The integral

(11.5.3)

∫
F×∩ISD\ISD

φ′

((
a 0
0 1

)
g

)
ω(a)|a|s−

1
2 d×a

is absolutely convergent for Re s large and negative, and they can be analytically continued
to the same entire function which is bounded in vertical strips.

If for any v in S the character

a→ ωv(a)ϵ

((
a 0
0 a

))
on the group of units of Ov is not trivial the integrals are 0 when they are convergent. We
may thus assume that

ωv(a)ϵ

((
a 0
0 1

))
= 1

for all units in Ov if v is in S.
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We discuss the first integral in a formal manner. The manipulations will be justified by
the final result. The integrand may be written as a double sum∑∑

aαγϵ

((
aS 0
0 1

)
gS

)
φ1

((
âSα̂S γ̂S 0

0 1

)
ĝS

)
ω(a)|a|s−

1
2 .

The inner sum is over γ in F× ∩ ISD and the outer over a set of coset representatives α of
F× ∩ ISD\F×. Since

aαγϵ

((
aS 0
0 1

))
= aαϵ

((
γSaS 0
0 1

))
and

ω(a)|a|s−
1
2 = ω(γa)|γa|s−

1
2

the integral is equal to ϵ(gS) times the sum over α of

aα

∫
ISD

φ1

((
α̂S âS 0
0 1

)
ĝS

)
ϵ

((
aS 0
0 1

))
ω(a)|a|s−

1
2 d×a.

Since ISD is the direct product of

ÎS = { a ∈ I | aS = 1 }
and a compact group under which the integrand is invariant the previous expression is equal
to

aα

∫
ÎS

φ1

((
α̂Sa 0
0 1

)
ĝS

)
ω(a)|a|s−

1
2 d×a.

Changing variables to rid ourselves of the α̂S in the integrand and taking into account the
relation

1 = ω(α)|α|s−
1
2 = ω(αS)ω(α̂S)|αS|s−

1
2 |α̂S|s−

1
2

we can see that the original integral is equal to

ϵ(gS)
∑

aαω(αS)|αS|s−
1
2

∫
ÎS

φ1

((
a 0
0 1

)
ĝS

)
ω(a)|a|s−

1
2 d×a.

There is no harm in supposing that φ1 is of the form

φ1(ĝS) =
∏
v/∈S

φv(gv).

We have already seen that, in this case,∫
ÎS

φ1

((
a 0
0 1

)
ĝS

)
ω(a)|a|s−

1
2 d×a

is convergent for Re s large and positive and is equal to∏
v/∈S

∫
F×
v

φv

((
av 0
0 1

)
gv

)
ωv(av)|av|s−

1
2 d×av.

If φ′
v is the function

φ′
v(h) = ωv(h)φv(h)
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in W (ωv ⊗ πv, ψv) this product is∏
v/∈S

{
L(s, ωv ⊗ πv)Φ(gv, s, φ

′
v)ω

−1
v (det gv)

}
.

Thus the integral (11.5.2) is absolutely convergent for Re s large and positive and is equal to

ϵ(gS)ω(det ĝS)Λ(s, ω)
∏
v/∈S

Φ(gv, s, φ
′
v).

The argument used in the proof of Theorem 11.3 shows that this function is entire.
If

h =

(
0 1
A 0

)(
a 0
0 1

)
g

(
0 A−1

S

1 0

)
then

ϵ̂(hS) = ϵ

((
aS 0
0 1

)
gS

)
.

Thus the integrand in (11.5.3) is equal to∑
âαϵ

((
aS 0
0 1

)
gS

)
φ1

(α̂S 0
0 1

)(
0 1

ÂS 0

)(
âS 0
0 1

)
ĝS

ω(a)|a|s− 1
2 .

The sum can again be written as a double sum over γ and α. Since

âαγ = ϵ

((
aS 0
0 1

))
= âαϵ

((
1 0
0 γS

))
ϵ

((
aS 0
0 1

))
which equals

âαη(γS)ϵ

(γ−1
S aS 0
0 1

)
and

φ1

(α̂S γ̂S 0
0 1

)(
0 1

ÂS 0

)(
âS 0
0 1

)
ĝS


is equal to

η(γ̂S)φ1

(α̂S 0
0 1

)(
0 1

ÂS 0

)(
γ̂−1
S âS 0
0 1

)
ĝS


we can put the sum over F× ∩ ISD and the integration over F× ∩ ISD\ISD together to obtain
ϵ(gS) times the sum over F× ∩ ISD\F× of

âα

∫
ISD

ϵ

((
aS 0
0 1

))
φ1

(α̂S 0
0 1

)(
0 1

ÂS 0

)(
âS 0
0 1

)
ĝS

ω(a)|a|s− 1
2 d×a.

We write (
α̂S 0
0 1

)(
0 1

ÂS 0

)(
âS 0
0 1

)
=

(
0 1

−1 0

)(
α̂S 0
0 α̂S

)(
−α̂−1

S ÂS âS 0
0 1

)
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and then change variables in the integration to obtain the product of ω(−AS)|AS|s−
1
2 and

âαη
−1(αS)ω

−1(αS)|αS|
1
2
−s
∫
ÎS

φ1

((
0 1

−1 0

)(
a 0
0 1

)
ĝS

)
ω(a)|a|s−

1
2 d×a.

Replacing a by a−1 and making some simple changes we see that the integral is equal to∫
ÎS

φ1

((
a 0
0 1

)(
0 1

−1 0

)
ĝS

)
η−1(a)ω−1(a)|a|

1
2
−s d×a

which converges for Re s large and negative and is equal to∏
v/∈S

{
L(1− s, η−1

v ω−1
v ⊗ πv)Φ(wgv, 1− s, φ′

v)ωv(det gv)
}
.

Thus the integral 11.5.3 is equal to

ϵ(gS)ω(det ĝS)ω(−AS)|AS|s−
1
2 Λ̂(1− s, η−1ω−1)

∏
v/∈S

Φ(wg, 1− s, φ′
v)

which is entire.
Since

Φ(wgv, 1− s, φ′
v) = ϵ(s, ωv ⊗ πv, ψ)Φ(gv, s, φ

′
v)

the analytic continuations of (11.5.2) and (11.5.3) are equal. We show as in the proof of
Theorem 11.3 that the resultant entire function is bounded in vertical strips of finite width.

There is now a simple lemma to be proved.

Lemma 11.5.4. The group GF ∩GS
D is generated by the matrices in it of the form(

a β
0 δ

)
and (

α 0
γ δ

)
.

This is clear if S is empty. Suppose that S is not empty. If

g =

(
α β
γ δ

)
belongs to GF ∩GS

D and |α|v = 1 for all v in S then

g =

(
α 0

γ δ − βγ
α

)(
1 β

γ

0 1

)
and both matrices belong to GF ∩GS

D. In general if g is in GF ∩GS
D then, for each v in S,

|α|v ⩽ 1, |γ|v ⩽ 1 and either |α|v or |γ|v is 1. Choose ξ in F so that, for every v in S, |ξv| = 1
if |α|v < 1 and |ξv| < 1 if |α|v = 1. Then(

1 ξ
0 1

)(
α β
γ δ

)
=

(
α + ξγ β + ξδ
γ δ

)
and |α + ξγ|v = 1 for all v in S. The lemma follows.
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We know that if

h =

(
α β
0 δ

)
belongs to GF ∩GS

D then φ(hg) = φ(g) and φ̂(hg) = φ̂(g). Suppose(
α 0
γ δ

)
is in GF ∩GS

D. Then

φ

((
α 0
γ δ

)
g

)
= φ̂

(0 1
A 0

)(
α 0
γ δ

)
g

(
0 A−1

S

1 0

).
Since the argument on the right can be written(

δ γA−1

0 α

)(
0 1
A 0

)
g

(
0 A−1

S

1 0

)
and the first term of this product lies in GF ∩GS

D the right side is equal to

φ̂

(0 1
A 0

)
g

(
0 A−1

S

1 0

) = φ(g).

Thus φ is invariant under GF ∩ GS
D. Since GA = GFG

S
D the function φ extends in a

unique manner to a function, still denoted φ, on GF\GA. It is clear that φ is K-finite and
continuous and that

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I. It is not quite so clear that φ is slowly increasing. If Ω is a compact subset of
GA there is a finite set γ1, . . . , γℓ in GF such that

Ω =
ℓ⋃
i=1

Ω ∩ γ−1
i GS

D.

What we have to show then is that if γ belongs to GF and c > 0 is given there are constants
M1 and M2 such that for all g in Ω ∩ γ−1GS

D and all a in I for which |a| ⩾ c∣∣∣∣∣∣γ
((

a 0
0 1

)
g

)∣∣∣∣∣∣ ⩽M1|a|M2 .

If v is a place of F , which is not in S and is archimedean if F is a number field, there is a
compact set C in I such that{

a ∈ I
∣∣ |a| ⩾ c

}
⊆ F×{ a ∈ F×

v

∣∣ |a| ⩾ c
}
C

Thus the inequality has only to be verified for a in F×
v —of course at the cost of enlarging Ω.

If

γ =

(
α β
0 δ

)
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then

γ

(
a 0
0 1

)
g =

(
a x
0 1

)
γg

with x = (1− α)β
δ
and the conclusion results from Lemma 11.4 and the relation

BA = (BA ∩GF )(BA ∩GS
D)

if

BA =

{(
b y
0 1

)
∈ GA

}
.

Otherwise we write

γ =

(
α1 β1
0 δ1

)(
0 1

−1 0

)(
1 β2
0 1

)
.

Then

γ

(
a 0
0 1

)
g =

(
1 β1

δ1

0 1

)(
α1 0
0 δ1a

)(
0 1

−1 0

)(
1 β2

a

0 1

)
g.

The matrix (
0 1

−1 0

)(
1 β2

a

0 1

)
g

lies in a certain compact set which depends on Ω, c, and γ. The required inequality again
follows from Lemma 11.4.

The space U of functions φ corresponding to φ1 inW (π, ψ) transforms under ĤS according
to π. Lemma 10.13 implies that every element of U is an automorphic form. If it is not
contained in A0, Lemma 10.12 applied to the functions

φ0(g) =
1

measureF\A

∫
F\A

φ

((
1 x
0 1

)
g

)
dx

with φ in U shows that there are two quasi-characters µ and ν on F×\I such that πv = π(µv, νv)
for almost all v.

Corollary 11.6. Suppose there does not exist a pair µ, ν of quasi-characters of F×\I such
that πv = π(µv, νv) for almost all v. Then there is a constituent π′ =

⊗
π′
v of A0 such that

πv = π′
v for all v not in S.

Since U transforms under ĤS according to π it is, if v is not in S, the direct sum of
subspaces transforming under Hv according to πv. By assumption U is contained in A0 and
therefore in A0(η). The space A0(η) is the direct sum of subspaces invariant and irreducible
under H. Choose one of these summands V so that the projection of U on V is not 0. If
π′ =

⊗
π′
v is the representation of H on V it is clear that π′

v = πv if v is not in S.
Another way to guarantee that U lies in the space of cusp forms and therefore that the

conclusion of the corollary holds is to assume that for at least one v not in S the representation
πv is absolutely cuspidal.
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§12. Some extraordinary representations

In [18] Weil has introduced a generalization of the Artin L-functions. To define these
it is necessary to introduce the Weil groups. These groups are discussed very clearly in the
notes of Artin-Tate but we remind the reader of their most important properties. If F is a
local field let CF be the multiplicative group of F and if F is a global field let CF be the
idèle class group F×\I. If K is a finite Galois extension of F the Weil group WK/F is an
extension of G(K/F ), the Galois group of K/F , by CK . Thus there is an exact sequence

1 CK WK/F G(K/F ) 1 .

If L/F is also Galois and L contains K there is a continuous homomorphism τL/F,K/F of
WL/F onto WK/F . It is determined up to an inner automorphism of WK/F by an element
of CK . In particular WF/F = CF and the kernel of τK/F,F/F is the commutator subgroup of
WK/F . Also if F ⊆ E ⊆ K we may regard WK/F as a subgroup of WK/F . If F is global and
v a place of F we also denote by v any extension of v to K. There is a homomorphism αv of
WKv/Fv into WK/F which is determined up to an inner automorphism by an element of CK .

A representation σ of WK/F is a continuous homomorphism of WK/F into the group of
invertible linear transformations of a finite-dimensional complex vector space such that σ(w)
is diagonalizable for all w inWK/F . If K is contained in L then σ◦τL/F,K/F is a representation
of WL/F whose equivalence class is determined by that of σ. In particular if ω is a generalized
character of CF then ω ◦ τK/F,F/F is a one-dimensional representation of WK/F which we also
call ω. If σ is any other representation ω ⊗ σ has the same dimension as σ. If F ⊆ E ⊆ K
and ρ is a representation of WK/E on X let Y be the space of functions φ on WK/F with
values in X which satisfy

φ(uw) = ρ(u)φ(w)

for all u in WK/E. If v ∈ WK/F and φ ∈ Y let σ(v)φ be the function

w → φ(wv)

σ(v)φ also belongs to Y and v → σ(v) is a representation of WK/F . We write

σ = Ind(WK/F ,WK/E, ρ).

If F is global and σ is a representation of WK/F then, for any place v, σv = σ ◦ αv is a
representation of WKv/Fv whose class is determined by that of σ.

Now we remind ourselves of the definition of the generalized Artin L-functions. Since we
are going to need a substantial amount of detailed information about these functions the
best reference is probably [19]. In fact to some extent the purpose of [19] is to provide the
background for this chapter and the reader who wants to understand all details will need to
be quite familiar with it. If F is a local field then to every representation σ of WK/F we can
associate a local L-function L(s, σ). Moreover if ψF is a non-trivial additive character of F
we can define a local factor ϵ(s, σ, ψF ). The L-function and the factor ϵ(s, σ, ψF ) depend only
on the equivalance class of σ.

If F is a global field we set

L(s, σ) =
∏
v

L(s, σv)

The product converges in a right half-plane and L(s, σ) can be analytically continued to a
function meromorphic in the whole complex plane. If ψF is a non-trivial character of F\A
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the functions ϵ(s, σv, ψv) are identically 1 for all but a finite number of v. If

ϵ(s, σ) =
∏
v

ϵ(s, σv, ψv)

and σ̃ is the representation contragredient to σ the functional equation

L(s, σ) = ϵ(s, σ)L(1− s, σ̃)

is satisfied. For all but finitely many places v the representation σv is the direct sum
of d, the dimension of σ, one-dimensional representations. Thus there are generalized
characters µ1

v, . . . , µ
d
v of CFv such that σv is equivalent to the direct sum of the one-dimensional

representations
w 7→ µiv

(
τKv/Fv ,Fv/Fv(w)

)
.

Moreover, for all but finitely many of these v, µ1
v, . . . , µ

d
v are unramified and there is a constant

r, which does not depend on v, such that∣∣∣µiv(ϖv)
∣∣∣ ⩽ |ϖv|r 1 ⩽ i ⩽ d.

If F is a global or a local field and σ is a representation of WK/F then w → detσ(w) is a
one-dimensional representation and therefore corresponds to a generalized character of CF .
We denote this character by det σ.

If F is a local field, σ is a two-dimensional representation of WK/F , and ψF is a non-trivial
additive character of F then, as we saw in the first chapter, there is at most one irreducible
admissible representation π of HF such that

π

((
α 0
0 α

))
= detσ(α)I

and, for all generalized characters ω of CF ,

L(s, ω ⊗ π) = L(s, ω ⊗ σ)

L(s, ω−1 ⊗ π̃) = L(s, ω−1 ⊗ σ)

ϵ(s, ω ⊗ π, ψF ) = ϵ(s, ω ⊗ σ, ψF ).

If ψ′
F (x) = ψF (βx) then

ϵ(s, ω ⊗ σ, ψ′
F ) = detω ⊗ σ(β)ϵ(s, ω ⊗ σ, ψF )

and, since

π

((
α 0
0 α

))
= detσ(α)I

one also has
ϵ(s, ω ⊗ π, ψ′

F ) = detω ⊗ σ(β)ϵ(s, ω ⊗ π, ψF ).

Thus π, if it exists at all, is independent of ψF . We write π = π(σ).
There are a number of cases in which the existence of π(σ) can be verified simply by

comparing the definitions of the previous chapter with those of [19]. If µ and ν are two
quasi-characters of CF and σ is equivalent to the representation

w →

(
µ
(
τK/F,F/F (w)

)
0

0 ν
(
τK/F,F/F (w)

))
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then π(σ) = π(µ, ν). If K/F is a separable quadratic extension, χ is a quasi-character of
CK = WK/K , and

σ = Ind(WK/F ,WK/K , χ)

then π(σ) = π(χ). Observe that π(χ) is alway infinite-dimensional.
Suppose F is a global field and K is a separable quadratic extension of F . Let χ be a

quasi-character of CK and let

σ = Ind(WK/F ,WK/K , χ).

If v does not split in K
σv = Ind(WKv/Fv ,WKv/Kv , χv),

but if v splits in K the representation σv is the direct sum of two one-dimensional representa-
tions corresponding to quasi-characters µv and νv such that µvν

−1
v is a character. Thus π(σv)

is defined and infinite-dimensional for all v.

Proposition 12.1. If there is no quasi-character µ of CF such that χ(α) = µ(NK/Fα) for
all α in CK the representation

⊗
v π(σv) is a constituent of A0.

If ω is a generalized character of F then

(ω ⊗ σ)v = ωv ⊗ σv.

Define a generalized character ωK/F of CK by

ωK/F (α) = ω
(
NK/F (α)

)
.

Then
ω ⊗ σ = Ind(WK/F ,WK/K , ωK/Fχ)

and
L(s, ω ⊗ σ) = L(s, ωK/Fχ).

The L-function on the right is the Hecke L-function associated to the generalized character
ωK/Fχ of CK . It is entire and bounded in vertical strips unless there is a complex number r
such that

ωK/F (α)χ(α) = |α|r = |NK/Fα|r.
But then

χ(α) = ω−1(NK/Fα)|NK/Fα|r

which is contrary to assumption. The function

L(s, ω−1 ⊗ σ̃) = L(s, ω−1
K/Fχ

−1)

is also entire and bounded in vertical strips. It follows immediately that the collection{
π(σv)

}
satisfies the conditions of Theorem 11.3.

This proposition has a generalization which is one of the principal results of these notes.

Theorem 12.2. Suppose F is a global field and σ is a two-dimensional representation of
WK/F . Suppose also that for every generalized character ω of CF both L(s, ω ⊗ σ) and
L(s, ω−1 ⊗ σ̃) are entire functions which are bounded in vertical strips. Then π(σv) exists for
every place v and

⊗
v π(σv) is a constituent of A0.
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We observe that the converse to this theorem is an immediate consequence of Theorem 11.1.
We are going to apply Corollary 11.6. There are a large number of conditions which must

be verified. We know that π(σv) is defined for all but a finite number of v. In particular it is
defined for v archimedean for then σv is either induced from a quasi-character of a quadratic
extension of Fv or is the direct sum of two one-dimensional representations. If σv is equivalent
to the direct sum of two one-dimensional representations corresponding to quasi-characters
µv and νv then µvν

−1
v is a character so that π(σv) is infinite-dimensional. Let S be the set

of places for which π(σv) is infinite-dimensional. Let S be the set of places for which π(σv)
is not defined or, since this is still conceivable, finite-dimensional. We are going to show
that S is empty but at the moment we are at least sure that it is finite. If v is not in S set
πv = π(σv).

If v is in S the representation σv must be irreducible so that

L(s, ωv ⊗ σv) = L(s, ω−1
v ⊗ σ̃v) = 1

for every generalized character ωv of F
×
v . The Artin conductor pmv

v of σv is defined in the
Appendix to [19]. There is a constant cv, depending on σv, such that if ωv is unramified

ϵ(s, ωv ⊗ σv, ψv) = cvωv(ϖv)
mv+2n|ϖv|(mv+2nv)(s− 1

2)

if p−nv
v is the largest ideal on which ψv is trivial. ψv is the restriction to Fv of a given

non-trivial character of F\A.
We take

D =
∏
p∈S

pmp

and η = detσ. We define ϵ and ϵ̂ by

ϵ

((
av 0
0 bv

))
= detσv(bv)

and

ϵ̂

((
av 0
0 bv

))
= detσv(av)

if v belongs to S and av and bv are units of Ov. If α belongs to F× and |α|v = |ϖv|−nv for
every v in S we set aα = 1 and âα =

∏
v∈S cv detσv(α); otherwise we set aα = âα = 0.

The function Λ(s, ω) of Theorem 11.5 is defined only if ωv is unramified at each place of
S and then it equals∏

v∈S

ωv(ϖ
−nv
v )|ϖv|−nv(s− 1

2)


∏
v/∈S

L(s, ωv ⊗ πv)


which is ∏

v∈S

ωv(ϖ
−nv
v )|ϖv|−nv(s− 1

2)

L(s, ω ⊗ σ).
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The function Λ̂(s, ω−1η−1) is also defined if ωv is unramified at each place of S and is equal to∏
v∈S

cvωv(ϖ
nv
v )|ϖv|−nv(s− 1

2)

L(s, ω−1 ⊗ σ̃).

Choose A in F× so that |Av| = |ϖv|mv for every v in S. Then∏
v∈S

ωv(−A)|A|
s− 1

2
v =

∏
v∈S

ωv(ϖv)
mv |ϖv|mv(s− 1

2).

The functional equation asserts that L(s, ω ⊗ σ) is equal to∏
v∈S

ϵ(s, ωv ⊗ σv, ψv)


∏
v/∈S

ϵ(s, ωv ⊗ σv, ψv)

L(1− s, ω−1 ⊗ σ̃).

The first factor is equal to∏
v∈S

cvωv(ϖv)
2nv |ϖv|2nv(s− 1

2)


∏
v∈S

ωv(−A)|A|
s− 1

2
v

.
Therefore Λ(s, ω) is equal to∏

v∈S

ωv(−A)|A|
s− 1

2
v


∏
v/∈S

ϵ(s, ωv ⊗ σv, ψv)

Λ̂(1− s, ω−1η−1).

The assumptions of Theorem 11.5 are now verified. It remains to verify that of Corol-
lary 11.6. It will be a consequence of the following lemma.

Lemma 12.3. Suppose F is a global field, K is a Galois extension of F , and ρ and σ are
two representations of the Weil group WK/F . If for all but a finite number of places v of F
the local representations ρv and σv are equivalent then ρ and σ are equivalent.

We set
L0(s, σ) =

∏
p

L(s, σp).

The product is taken over all non-archimedean places. We first prove the following lemma.

Lemma 12.4. If σ is unitary the order of the pole of L0(s, σ) at s = 1 is equal to the
multiplicity with which the trivial representation is contained in σ.

There are fields E1, . . . , Er lying between F and K, characters χE1 , . . . , χEr , and integers
m1, . . . ,mr such that σ is equivalent to

r⊕
i=1

mi Ind(WK/F ,WK/E, χEi
)

Let δi = 1 if χEi
is trivial and 0 otherwise. Since

L0(s, σ) =
r∏
i=1

L0(s, χEi
)mi
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the order of its pole at s = 1 is
∑r

i=1miδi. However

Ind(WK/F ,WK/E, χEi
)

contains the trivial representation if and only if χEi
is trivial and then it contains it exactly

once. Thus
∑r

i=1miδi is also the number of times the trivial representation occurs in σ.
Observe that if T is any finite set of non-archimedean primes the order of the pole of∏

p/∈T

L(s, σp)

at s = 1 is the same as that of L0(s, σ).
The first step of the proof of Lemma 12.3 is to reduce it to the case that both ρ and σ are

unitary. Then ρ and σ certainly have the same degree d. Let ρ act on X and let σ act on Y .
Under the restriction ρ to CK the space X decomposes into the direct sum of invariant one-
dimensional subspaces X1, . . . , Xd which transform according to quasi-characters µ1, . . . , µd

of CK . If a is a real number let

M(a) =

{
i

∣∣∣∣ ∣∣∣µi(α)∣∣∣ = |α|a for all α in CK

}
and let

X(a) =
∑

i∈M(a)

Xi

X(a) is invariant under WK/F and X =
⊕

aX(a). Let ρ(a) be the restriction of ρ to X(a).
Replacing ρ by σ and X by Y we can define ν1, . . . , νd and Y (a) in a similar fashion.

We now claim that if ρv is equivalent to σv then ρv(a) is equivalent to σv(a) for each a. To
see this we need only verify that any linear transformation from X to Y which commutes with
the action of WKv/Fv , or even of CKv , takes X(a) to Y (a). Observe that under the restriction

of ρv to CKv the space Xi transforms according to the character µiv and that
∣∣µiv(α)∣∣ = |α|a

for all α in CKv if and only if
∣∣µi(α)∣∣ = |α|a for all α in CK . Thus X(a) and Y (a) can be

defined in terms of ρv and σv alone. The assertion follows.
Thus we may as well assume that for some real number a∣∣∣µi(α)∣∣∣ = ∣∣∣νi(α)∣∣∣ = |α|a

for all i and all α in CK . Replacing σ by α → |α|−aσ(α) and ρ by α → |α|−aρ(α) if necessary
we may even assume that a = 0. Then ρ and σ will be equivalent to unitary representations
and we now suppose them to be unitary.

If τ is irreducible and ρ ≃ τ ⊕ ρ′ and σ ≃ τ ⊕σ′ then ρ′v is equivalent to σ
′
v whenever ρv is

equivalent to σv. Since we can use induction on d it is enough to show that if τ is irreducible
and unitary and contained in ρ then it is contained in σ. Let ρ̃ and σ̃ be the representations
contragredient to ρ and σ. Certainly (ρ̃⊗ τ)v = ρ̃v ⊗ τv is equivalent to (σ̃ ⊗ τ)v for all but
a finite number of v. Moreover ρ̃ ⊗ τ contains τ̃ ⊗ τ which contains the identity. If σ̃ ⊗ τ
contains the identity then, as is well-known and easily verified, σ contains τ . On the other
hand the orders of the poles of L0(s, ρ̃ ⊗ τ) and L0(s, σ̃ ⊗ τ) at s = 1 are clearly equal so
that, by Lemma 12.4, σ̃ ⊗ τ contains the trivial representations if ρ̃⊗ τ does.

We return to the proof of Theorem 12.2. It follows from Lemma 12.3 that if the assumptions
of Corollary 11.6 are not satisfied σ is equivalent to the direct sum of two one-dimensional
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representations associated to quasi-characters µ and ν of CF . Then

L(s, ω ⊗ σ) = L(s, ωµ)L(s, ων).

The two functions on the right are Hecke L-functions. The function on the left is entire for
every choice of ω. Taking ω = µ−1 and ω = ν−1 we see that L(s, µ−1ν) and L(s, ν−1µ) have
a zero at s = 1. Let µ−1ν(α) = |α|rχ(α) where χ is a character. Then

L(s, µ−1ν) = L(s+ r, χ)

L(s, ν−1µ) = L(s− r, χ−1).

Now neither L(s, χ) nor L(s, χ−1) has a zero in the set Re s ⩾ 1. Therefore 1 + r < 1 and
1− r < 1. This is impossible.

We can now apply Corollary 11.6 to assert that there is a constituent π′ =
⊗

π′
v of A0

such that π′
v = π(σv) for v not in S. To prove the theorem we need only show that π′

v = π(σv)
for v in S. Taking the quotient of the two functional equations

L(s, ω ⊗ σ) =

{∏
v

ϵ(s, ωv ⊗ σv, ψv)

}
L(1− s, ω−1 ⊗ σ̃)

and

L(s, ω ⊗ π′) =

{∏
v

ϵ(s, ωv ⊗ π′
v, ψv)

}
L(1− s, ω−1 ⊗ π̃′),

we find that ∏
v∈S

L(s, ωv ⊗ σv)

L(s, ωv ⊗ π′
v)

is equal to ∏
v∈S

ϵ(s, ωv ⊗ σv, ψv)

ϵ(s, ωv ⊗ π′
v, ψv)


∏
v∈S

L(1− s, ω−1
v ⊗ σ̃v)

L(1− s, ω−1
v ⊗ π̃′

v)

.
We need one more lemma. If v is a non-archimedean place and ωv is a quasi-character of

F×
v let m(ωv) be the smallest non-negative integer such that ωv is trivial on the units of Ov

congruent to 1 modulo p
m(ωv)
v .

Lemma 12.5. Suppose S is a finite set of non-archimedean places and v0 ∈ S. Suppose that
we are given a quasi-character χv0 of F×

v0
and for each v ̸= v0 in S a non-negative integer

mv. Then there is a quasi-character ω of CF such that ωv0 = χv0 and m(ωv) ⩾ mv if v ̸= v0
belongs to S.

Suppose χv0(α) = |α|av0χ
′
v0
(α) where χ′

v0
is a character. If ω′ is a character of CF and

ω′
v0

= χ′
v0

while m(ω′
v) ⩾ mv for v ̸= v0 in S we may take ω to be the generalized character

α → |α|rω′(α) of CF . In other words we may assume initially that χv0 is a character. Let
A be the group of idèles whose component at places not in S is 1, whose component of a
place v /∈ v0 in S is congruent to 1 modulo pmv

v , and whose component at v0 is arbitrary.
Certainly F× ∩ A = {1}. We claim that F×A is closed in I. Indeed if α ∈ I there is a
compact neighbourhood X of α on which the norm is bounded above by 1/ϵ and below by ϵ
where ϵ is a positive constant. If β ∈ F× and γ ∈ A then |βγ| = |γ|. Moreover

Aϵ =

{
γ ∈ A

∣∣∣∣ ϵ ⩽ |γ| ⩽ 1

ϵ

}
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is compact. Since F× is discrete F×Aϵ is closed. Since any point has a compact neighbourhood
whose intersection with F×A is closed the set F×A is itself closed.

We can certainly find a character of A which equals χv0 on F×
v0

and, for any v ̸= v0 in S,
is non-trivial on the set of units in Ov congruent to 1 modulo pmv

v . Extend this character to
F×A by setting it equal to 1 on F×. The result can be extended to a character of I which is
necessarily 1 on F×. We take ω to be this character.

Let π′
v

((
αv 0
0 αv

))
= ηv(αv). If η(α) =

∏
v ηv(αv) then η is a quasi-character of F×\I.

Since, by construction, η = detσ on IsD the quasi-characters η and detσ are equal. Therefore
ηv = detσv for all v. We know that if m(ωv) is sufficiently large,

L(s, ωv ⊗ σv) = L(s, ωv ⊗ π′
v) = 1

and
L(1− s, ω−1

v ⊗ σ̃v) = L(1− s, ω−1
v ⊗ π̃′

v) = 1.

Moreover, by Proposition 3.8

ϵ(s, ωv ⊗ π′
v, ψv) = ϵ(s, ωvηv, ψv)ϵ(s, ωv, ψv).

It is shown in the Appendix of [19] that if m(ωv) is sufficiently large

ϵ(s, ωv ⊗ σv, ψv) = ϵ(s, ωv detσv, ψv)ϵ(s, ωv, ψv).

Applying Lemma 12.5 and the equality preceding it we see that if v is in S and ωv is any
quasi-character of F×

v

L(s, ωv ⊗ σv)

L(s, ωv ⊗ π′
v)

=

{
ϵ(s, ωv ⊗ σv, ψv)

ϵ(s, ωv ⊗ π′
v, ψv)

}{
L(1− s, ω−1

v ⊗ σ̃)

L(1− s, ω−1
v ⊗ π̃′

v)

}
.

Recalling that
L(s, ωv ⊗ σv) = L(1− s, ω−1

v ⊗ σ̃v) = 1

for v in S we see that

(12.5.1)
L(1− s, ω−1

v ⊗ π̃′
v)

L(s, ωv ⊗ π′
v)

=
ϵ(s, ωv ⊗ σv, ψv)

ϵ(, ωv ⊗ π′
v, ψv)

.

The theorem will follow if we show that

L(s, ωv ⊗ π′
v) = L(1− s, ω−1

v ⊗ π′
v) = 1

for all choices of ωv.
If not, either π′

v is a special representation or there are two quasi-characters µv and νv of
F×
v such that π′

v = π(µv, νv). According to (12.5.1) the quotient

L(1− s, ω−1
v ⊗ π′

v)

L(s, ωv ⊗ π′
v)

is an entire function of s for every choice of ωv. If π
′
v = π(µv, νv) and m(µ−1

v νv) is positive

L(1− s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

1− |ϖv|s

1− |ϖv|1−s

which has a pole at s = 1. If m(µ−1
v νv) = 0

L(1− s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

{
1− |ϖv|s

1− |ϖv|1−s

}{
1− µ−1

v νv(ϖv)|ϖv|s

1− µvν−1
v (ϖv)|ϖv|1−s

}
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which has a pole at s = 1 unless µvν
−1
v (ϖv) = |ϖv|. But then it has a pole at s = 2. If π′

v is
the special representation associated to the pair of quasi-characters

α → µv(α)|α|1/2 α → µv(α)|α|−1/2

of F×
v then

L(1− s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

1− |ϖv|s+
1
2

1− |ϖv|
1
2
−s

which has a pole at s = 1
2
.

There is a consequence of the theorem which we want to observe.

Proposition 12.6. Suppose E is a global field and that for every separable extension F
of E, every Galois extension K of F , and every irreducible two-dimensional representation
σ of WK/F the function L(s, σ) is entire and bounded in vertical strips. Then if F1 is the
completion of E at some place, K1 is a Galois extension of F1, and σ1 is a two-dimensional
representation of WK1/F1, the representation π(σ1) exists.

We begin with a simple remark. The restriction of σ1 to CK1 is the direct sum of two
one-dimensional representations corresponding to generalized characters χ1 and χ2 of CK1 . If
τ belongs to G = G(K1/F1) either χ1

(
τ(α)

)
= χ1(α) for all α in CK or χ1

(
τ(α)

)
= χ2(α)

for all α in CK . If the representation σ1 is irreducible there is at least one τ for which
χ1

(
τ(α)

)
= χ2(α). If χ1 ̸= χ2, the fixed field L1 of

H =
{
τ ∈ G

∣∣∣ χ1

(
τ(α)

)
≡ χ1(α)

}
is a quadratic extension of F . The restriction of σ1 to WK1/L1 is the direct sum of two
one-dimensional representations and therefore is trivial on the commutator subgroup W c

K1/L1

which is the kernel of τK1/F1,L1/F1 . With no loss of generality we may suppose that K1 equals
L1 and is therefore a quadratic extension of F1. Then σ1 is equivalent to the representation

Ind(WK1/F, ,WK1/K1 , χ1).

If σ1 is reducible π(σ1) is defined. The preceding remarks show that it is defined if σ1 is
irreducible and σ1(α) is not a scalar matrix for some α in CK1 . The proposition will therefore
follow from Theorem 12.2 and the next lemma.

Lemma 12.7. Suppose F1 is the completion of the field E at some place, K1 is a Galois
extension of F1, and σ1 is an irreducible two-dimensional representation such that σ1(α) is a
scalar matrix for all α in CK1. Then there is a separable extension F of E, a Galois extension
K of F , a place v of K, and isomorphism φ of Kv with K1 which takes Fv to F1, and an
irreducible two-dimensional representation σ of WK/F such that σv is equivalent to σ1 ◦ φ.

Observe that the existence of σ1 forces F1 to be non-archimedean. We establish a further
sequence of lemmas.

Lemma 12.8. Suppose V is a finite-dimensional real vector space, G is a finite group of linear
transformations of V , and L is a lattice in V invariant under G. If χ is a quasi-character
of L invariant under G there is a quasi-character χ′ of V invariant under G and a positive
integer m such that the restrictions of χ′ and χ to mL are equal.
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Let V̂ be the dual of V and V̂C its complexification. There is a y in V̂C such that

χ(x) = e2πi⟨x,y⟩ for all x in L. If z belongs to V̂C the generalized character x → e2πi⟨x,z⟩ is

trivial on L if and only if z belongs to L̂
m
. L̂ is the lattice{

v ∈ V̂
∣∣∣ ⟨x, v⟩ ∈ Z for all x in L

}
.

Let Ĝ be the group contragredient to G. We have to establish the existence of an m and a z

in L̂
m

such that y− z is fixed by Ĝ. If σ belongs to Ĝ then σy− y = wσ belongs to L̂. Clearly
σwτ + wσ = wστ . Set

z =
1

[G : 1]

∑
τ

wτ .

If m is taken to be [G : 1] this is the required element.

Lemma 12.9. Suppose F is a global field, K is a Galois extension of it, and v is a place of
K. Suppose also that [Kv : Fv] = [K : F ] and let χv be a quasi-character of CKv invariant
under G = G(Kv/Fv) = G(K/F ). There is a closed subgroup A of finite index in CK which
is invariant under G and contains CKv and a quasi-character χ of A invariant under G whose
restriction to CKv is χv.

Suppose first that the fields have positive characteristic. We can choose a set of non-
negative integers nw, w ̸= v, all but a finite number of which are zero, so that the group

B = CKv ×
∏
w ̸=v

Unw
Kw

is invariant under G and contains no element of K× except 1. Here Unw
Kw

is the group of units
of OKw which are congruent to 1 modulo pnw

Kw
. We extend χv to B by setting it equal to 1 on∏

w ̸=v

Unw
Kw

and then to A = K×B/K× by setting it equal to 1 on K×.
Now let the fields have characteristic 0. Divide places of K different from v into two

sets, S, consisting of the archimedean places, and T , consisting of the non-archimedean ones.
Choose a collection of non-negative integers n′

w, w ∈ T , all but a finite number of which are
zero, so that

B′ = CKv ×
∏
w∈S

CKw ×
∏
w∈T

U
n′
w

Kw
.

is invariant under G and contains no roots of unity in K except 1. If w is archimedean let
UKw be the elements of norm 1 in Kw and set

B′
1 =

∏
w∈S

UKw ×
∏
w∈T

U
n′
w

Kw
.

B′/B′
1 is isomorphic to the product of CKv and

V =
∏
w∈S

CKw/UKw

which is a vector group. The projection L of

M = B′
1(B

′ ∩K×)/B′
1
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on V is a lattice in V and the projection is an isomorphism. Define the quasi-character µ of
L so that if m in M projects to m1 in CKv and to m2 in V then

χv(m1)µ(m2) = 1.

µ is invariant under G. Choose a quasi-character µ′ of V and an integer n so that µ′ and µ
are equal on nL. Let ν ′ be the quasi-character obtained by lifting χv×µ′ from CKv ×V to B′.
It follows from a theorem of Chevalley ([20, Theorem 1]) that we can choose a collection of
non-negative integers {nw | w ∈ T } all but a finite number of which are zero so that nw ⩾ n′

w

for all w in T , so that

B = CKv ×
∏
w∈S

CKw ×
∏
w∈T

Unw
Kw

is invariant under G, and so that every element of B ∩K× is an nth power of some element
of B′ ∩K×. The restriction ν of ν ′ to B is trivial on B ∩K×. We take A = K×B/K× and
let χ be the quasi-character which is 1 on K× and ν on B.

Lemma 12.10. Suppose F1 is a completion of the global field E, K1 is a finite Galois
extension of F1 with Galois group G1, and χK1 is a quasi-character of CK1 invariant under
G1. There is a separable extension F of E, a Galois extension K of F , a place v of K such
that [Kv : Fv] = [K : F ], an isomorphism φ of Kv with K1 which takes Fv to F1, and a
quasi-character χ of CK invariant under G(K/F ) such that χv = χK1 ◦ φ.

We may as well suppose that F1 = Ew, where w is some place of E. It is known ([8, p. 31])
that there is a polynomial with coefficients in E such that if θ is a root of this polynomial
Ew(θ)/Ew is isomorphic to K1/F1. Let L be the splitting field of this polynomial and extend
w to a place of L. The extended place we also call w. Replacing E by the fixed field of
the decomposition group of w if necessary we may suppose that F1 = Ew, K1 = Lw and
[Lw : Ew] = [L : E]. Now set χw = χK1 and extend χw to a quasi-character χ′ of A as in the
previous lemma.

Let K be the abelian extension of L associated to the subgroup A. Since A is invariant
under G(L/E) the extension K/E is Galois. Let v be a place of K dividing the place w of L.
Since A contains CLw the fields Kv and Lw are equal. Let F be the fixed field of the image
of G(Kv/Ew) in G(K/E). Let v also denote the restriction of v to F . The fields Fv and Ew
are the same. The mapping NK/L : CK → CL maps CK into A. Let χ = χ′ ◦ NK/L. Then
χ is clearly invariant under G(K/F ). Since NK/L restricted to Kv is an isomorphism of Kv

with Lw which takes Fv onto Ew the lemma is proved.
To prove Lemma 12.7 we need only show that if F is a global field, K is a Galois extension

of F , χ is a quasi-character of CK invariant under G(K/F ), v is a place of K such that
[K : F ] = [Kv : Fv], and σ1 is an irreducible two-dimensional representation of WKv/Fv such
that σv(α) = χv(α)I for all α in CKv then there is a two-dimensional representation σ of
WK/F such that σv is equivalent to σ1. The representation σ will be irreducible because σ1 is.

Let σ1 act on X. Let ρv be the right regular representation of WKv/Fv on the space Vv of
functions f on WKv/Fv satisfying

f(αw) = χv(α)f(w)

for all α in CKv and all w in WKv/Fv . If λ is a non-zero linear functional on X the map from

x to the function λ
(
σ1(w)x

)
is a WKv/Fv -invariant isomorphism of X with a subspace Y of

Vv.
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Let V be the space of all functions f on WK/F satisfying

f(αw) = χ(α)f(w)

for all α in CK and all w in WK/F . Since [K : F ] = [Kv : Fv] the groups G(K/F ) and
G(Kv/Fv) are equal. Therefore

WK/F = CKWKv/Fv .

Moreover CKv = CK ∩ WKv/Fv . Thus the restriction of functions in V to WKv/Fv is an
isomorphism of V with Vv. For simplicity we identify the two spaces. Let ρ be the right
regular representation of WK/F on V . If α belongs to CK then

f(wα) = χ(wαw−1)f(w) = χ(α)f(w)

because χ is G(K/F ) invariant. Therefore ρ(α) = χ(α)I and a subspace V is invariant under
WK/F if and only if it is invariant under WKv/Fv . If we take for σ the restriction of ρ to Y
then σv will be equivalent to σ1.
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CHAPTER III

Quaternion Algebras

§13. Zeta-functions for M(2, F )

In this paragraph F is again a local field and A =M(2, F ) is the algebra of 2× 2 matrices
with entries from F . The multiplicative group A× of A is just GF = GL(2, F ). If g is in GF

we set
|g|A = αA(g) = |det g|2F .

Let π be an admissible representation of HF on the space V . Let the contragredient

representation π̃ act on on Ṽ . If v belongs to V and ṽ to Ṽ the function〈
π(g)v, ṽ

〉
=
〈
v, π̃(g−1)ṽ

〉
is characterized by the relation∫ 〈

π(gh), v, ṽ
〉
f(h) dh =

〈
π(g)π(f)v, ṽ

〉
for all f in HF .

If Φ belongs to the Schwartz space S(A) and v belongs to V and ṽ to Ṽ we set

Z(π,Φ, v, ṽ) =

∫
GF

Φ(g)
〈
π(g)v, ṽ

〉
d×g

and

Z(π̃,Φ, v, ṽ) =

∫
GF

Φ(g)
〈
v, π̃(g)ṽ

〉
d×g

The choice of Haar measure is not important provided that it is the same for both integrals.
If ω is a quasi-character of F×

Z(ω ⊗ π,Φ, v, ṽ) =

∫
GF

Φ(g)ω(det g)
〈
π(g)v, ṽ

〉
d×g

The purpose of this paragraph is to prove the following theorem.

Theorem 13.1. Let π be an irreducible admissible representation of HF and π̃ its contragre-

dient. Let π act on V and π̃ on Ṽ .

(i) For every v in V , ṽ in Ṽ , and Φ in S(A) the integrals defining Z(αsF ⊗ π,Φ, v, ṽ)
and Z(αsF ⊗ π̃,Φ, v, ṽ) converge absolutely for Re s sufficiently large.

(ii) Both functions can be analytically continued to functions which are meromorphic in
the whole plane and bounded at infinity in vertical strips of finite width.

(iii) If

Z

(
α
s+ 1

2
F ⊗ π,Φ, v, ṽ

)
= L(s, π)Ξ(s,Φ, v, ṽ)

217
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and

Z

(
α
s+ 1

2
F ⊗ π̃,Φ, v, ṽ

)
= L(s, π̃)Ξ̃(s,Φ, v, ṽ)

then Ξ(s,Φ, v, ṽ) and Ξ̃(s,Φ, v, ṽ) are entire.
(iv) There exist ϕ, v1, . . . , vn and ṽ1, . . . , ṽn such that

∑n
i=1 Ξ(s,Φ, vi, ṽi) is of the form

aebs with a ̸= 0.
(v) If Φ′ is the Fourier transform of Φ with respect to the character ψA(x) = ψF (trx)

then
Ξ̃(1− s,Φ′, v, ṽ) = ϵ(s, π, ψF ),Ξ(s,Φ, v, ṽ).

We suppose first that F is non-archimedean and π is absolutely cuspidal. Then we may
take π in the Kirillov form so that V is just S(F×). Since an additive character ψF = ψ is
given we will of course want to take the Kirillov model with respect to it. The next lemma is,
in the case under consideration, the key to the theorem.

Lemma 13.1.1. If φ belongs to S(F×), v belongs to V , and ṽ belongs to Ṽ set

Φ(g) = φ(det g)
〈
v, π̃(g)ṽ

〉
|det g|−1

F

if g belongs to GF and set Φ(g) = 0 if g in A is singular. Then Φ belongs to S(A) and its
Fourier transform is given by

Φ′(g) = φ′(det g)
〈
π(g)v, ṽ

〉
|det g|−1

F η−1(det g)

if g belongs to GF and
Φ′(g) = 0

if g is singular. Here η is the quasi-character of F× defined by

π

((
a 0
0 a

))
= η(a)I

and

φ′ = π

((
0 1

−1 0

))
φ.

This lemma is more easily appreciated if it is compared with the next one which is simpler
but which we do not really need.

Lemma 13.1.2. Let S0(A) be the space of all Φ in S(A) that vanish on the singular elements
and satisfy ∫

Φ

(
g1

(
1 x
0 1

)
g2

)
dx = 0

for g1 and g2 in GF . If Φ is in S0(A) so is its Fourier transform.

Since S0(A) is stable under left and right translations by the elements of GF it is enough
to show that

Φ′

((
a 0
0 0

))
= 0
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for a in F and that ∫
F

Φ′

((
1 x
0 1

))
dx = 0

To verify these relations we just calculate the left sides!

Φ′

((
a 0
0 0

))
=

∫
A

Φ(g)ψA

(
g

(
a 0
0 0

))
dg

The right side is a positive multiple of∫
GF

Φ(g)ψA

(
g

(
a 0
0 0

))
|det g|2 d×g

which equals ∫
GF /NF

ψA

(
g

(
a 0
0 0

))
|det g|2


∫
F

Φ

(
g

(
1 x
0 1

))
dx

 d×g

This is 0 because the inner integral vanishes identically.∫
F

Φ′

((
1 x
0 1

))
dx

is equal to ∫ 
∫

Φ

((
α β
γ δ

))
ψF (α + δ + γx) dα dβ dγ dδ

 dx

which, by the Fourier inversion formula, is equal to∫
Φ

((
α β
0 δ

))
ψF (α + δ) dα dδ dβ

which equals ∫
|α|ψF (α + δ)

Φ

((
α 0
0 δ

)(
1 β
0 1

))
dβ

 dα dδ

and this is 0.
We return to the proof of Lemma 13.1.1 for absolutely cuspidal π. Since

〈
v, π̃(g)ṽ

〉
has

compact support on GF modulo ZF the function Φ(g) belongs to S(A). Moreover∫
F

Φ

(
g

(
1 x
0 1

)
h

)
dx

is equal to

φ(det gh)|det gh|−1
F

∫ 〈
π(g−1)v, π̃

((
1 x
0 1

))
π̃(h)v

〉
dx.

Since π is absolutely cuspidal this integral is 0. Thus Φ belongs to S0(A) and, in particular,
Φ′ vanishes at the singular elements.
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Suppose we can show that for all choice of φ, v, and ṽ

(13.1.3) Φ′(e) = φ′(1)⟨v, ṽ⟩.
If h belongs to GF set Φ1(g) = Φ(h−1g). If a = deth, φ1(x) = |a|φ(a−1x), and v1 = π(h)v,

Φ1(g) = φ1(det g)
〈
v1, π̃(g)ṽ

〉
|det g|−1

F .

Then Φ′
1(e) is equal to

φ′
1(e)⟨v1, v⟩.

On the other hand

φ′
1 = π(w)φ = |a|π(w)π

((
a−1 0
0 1

))
φ

which equals

|a|π

(a−1 0
0 a−1

)π((a 0
0 1

))
π(w)φ.

Thus Φ′(h), which equals Φ′
1(e)|deth|−2, is

φ′(deth)
〈
π(h)v, ṽ

〉
η−1(deth)|deth|−1.

The formula (13.1.3) will be a consequence of the next lemma.

Lemma 13.1.4. Let dϵ be the normalized Haar measure on the group U = UF . If ν is a
character of U set

η(ν, x) =

∫
U

ν(ϵ)ψ(ϵx) dϵ

if x is in F . Let dx be the Haar measure on F which is self-dual with respect to ψ. Then∫
F

η(ν, xϖn)ψ(ax) dx = 0

unless |a| = |ϖ|n but if a = ζϖn with ζ in U∫
F

η(ν, xϖn)ψ(ax) dx = ν(−ζ)|ϖ|−nc−1

if c is the measure of U with respect to dx.

The general case results from the case n = 0 by a change of variable; so we suppose n = 0.
In this case the formulae amount to a statement of the Fourier inversion formula for the
function which is 0 outside of U and equal to c−1ν(ϵ) on U .

Suppose we could show that there is a positive constant d which does not depend on π
such that for all φ, v, and ṽ

Φ′(e) = dφ′(e)⟨v, ṽ⟩.
Then we would have

Φ′(g) = dφ′(det g)
〈
π(g)v, ṽ

〉
|det g|−1η−1(det g).

Exchanging π and π̃ and recalling that π̃ = η−1 ⊗ π we see that Φ′′, the Fourier transform of
Φ′, is given by

Φ′′(g) = d2φ′′(det g)
〈
v, π̃(g)ṽ

〉
|det g|−1

F η(det g),
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where φ′′ = π̃(w)φ1 if φ1(a) = φ′(a)η−1(a). According to the remarks preceding the statement
of Theorem 2.18, φ′′ is the product of π(w)φ′ = η(−1)φ and η−1(det g). Thus

Φ′′(g) = η(−1) d2φ(det g)
〈
v, π̃(g)ṽ

〉
|det g|−1

F .

Since Φ′′ = Φ(−g) = η(−1)Φ(g) the numbers d2 and d are both equal to 1. The upshot is
that in the proof of the formula (13.1.3) we may ignore all positive constants and in particular
do not need to worry about the normalization of Haar measures.

Moreover it is enough to prove the formula for φ, v, ṽ in a basis of the spaces in which
they are constrained to lie. Oddly enough the spaces are all the same and equal to S(F×).
Assume φ1 = v, φ2 = ṽ, and φ are supported respectively by ϖn1U , ϖn2U , and ϖnU and
that, for all ϵ in U , φ1(ϖ

n1ϵ) = ν−1
1 (ϵ), φ2(ϖ

n2ϵ) = ν−1
2 (ϵ) and φ(ϖnϵ) = ν−1(ϵ). All three of

ν, ν1 and ν2 are characters of U .
The formal Mellin transforms of these three functions are φ̂1(µ, t) = δ(µν−1

1 )tn1 , φ̂2(µ, t) =
δ(µν−1

2 )tn2 , and φ̂(µ, t) = δ(µν−1)tn. Recall that, for example,

φ̂(µ, t) =
∑
n

tn
∫
U

φ(ϖnϵ)µ(ϵ) dϵ.

The scalar product ⟨φ1, φ2⟩ is equal to∫
φ1(a)φ2(−a) d×a = δ(ν1ν2)δ(n1 − n2)ν2(−1).

If η(ϵϖn) = ν0(ϵ)z
n
0 then

φ̂′(µ, t) = C(µ, t)φ̂(µ−1ν−1
0 , t−1z−1

0 )

which equals

δ(νµν0)
∑
m

Cm(ν
−1ν−1

0 )tm−nz−n0 .

Consequently
φ̂′(1) = Cn(ν

−1ν−1
0 )z−n0 .

Thus the formula to be proved reads

Φ′(e) = Cn(ν
−1ν−1

0 )z−n0 ν2(−1)δ(ν1ν2)δ(n1 − n2).

Almost all g in A can be written in the form

g =

(
b 0
0 b

)(
1 −x
0 1

)(
a 0
0 a

)(
0 1

−1 0

)(
1 y
0 1

)
with a and b in F× and x and y in F . The additive Haar measure dg on A may be written as

dg = |det g|2F d×g = |b4| d×b dx|a| d×a dy
and for any g of this form

ψA(g) = ψF
(
b(x− y)

)
while Φ(g) is equal to

η−1(b)|b2a|−1φ(b2a)

〈
π

((
0 −1
1 0

)(
a−1 0
0 1

)(
1 x
0 1

))
φ1, π̃

((
1 y
0 1

))
φ2

〉
.
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Let f1 and f2 be the two functions which appear in the scalar product. Their formal
Mellin transforms can be calculated by the methods of the second paragraph,

f̂1(µ, t) = ν0(−1)C(µ, t)η(µ−1ν−1
0 ν−1

1 , ϖn1x)µ−1ν−1
0 (ζ)z−r−n1

0 t−r−n2

if a = ζϖr and

f̂2(µ, t) = η(µν−1
2 , ϖn2y)tn2 .

The scalar product of f1 and f2 is equal to∫
f1(a)f2(−a) d×a

which, by the Plancherel theorem for F×, is equal to∑
µ

µ(−1)
1

2π

∫ 2π

0

f̂1(µ, e
iθ)f̂2(µ

−1, e−iθ) dθ.

A typical integral is equal to the product of ν0(−1)µ−1ν−1
0 (ζ)z−r−n1

0 and∫ 2π

0

C(µ, eiθ)e−i(r+n1+n2)θη(µ−1ν−1
0 ν−1

1 , ϖn1x)η(µ−1ν−1
2 , ϖn2y) dθ

which equals
2πCr+n1+n2(µ)η(µ

−1ν−1
0 ν−1

1 , ϖn1x)η(µ−1ν2, ϖ
n2y).

Also if a = ζϖr

η−1(b)|b2a|−1φ(b2a) = φ(b2ϖr)ν−1(ζ)η−1(b)|b2|−1|a|−1.

If we put all this information together we get a rather complicated formula for Φ(g) which
we have to use to compute Φ′(e). The function Φ′(e) is expressed as an integral with respect
to a, b, x, and y. We will not try to write down the integrand. The integral with respect
to a is an integration over ζ followed by a sum over r. The integrand is a sum over µ. The
integration over ζ annihilates all but one term, that for which µνν0 = 1. We can now attempt
to write down the resulting integrand, which has to be integrated over b, x, and y, and
summed over r. It is the product of

η−1(b)|b|2ν(−1)z−r−n1
0 φ(b2ϖr)Cr+n1+n2(ν

−1ν−1
0 )

and
η(νν−1

1 , ϖn1x)η(νν0ν
−1
2 , ϖn2y)ψF

(
b(x− y)

)
.

The second expression can be integrated with respect to x and y. Lemma 13.1.4 shows
that the result is 0 unless |b| = |ϖ|n1 = |ϖ|n2 . In particular Φ′(e) = 0 if n1 ̸= n2. If n1 = n2

the integration over b need only be taken over ϖn1U . Then the summation over r disappears
and only the term for which r + 2n1 = n remains. Apart from positive constants which
depend only on the choices of Haar measure Φ′(e) is equal to

z−n0 ν1(−1)Cn(ν
−1ν−1

0 )

∫
U

ν−1
1 ν−1

2 (ϵ) dϵ.

Since ∫
U

ν−1
1 ν−1

2 (ϵ) dϵ = δ(ν1ν2)

the proof of Lemma 13.1.1 is complete.
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Since L(s, π) = L(s, π̃) = 1 if π is absolutely cuspidal the first three assertions of the
theorem are, for such π, consequences of the next lemma.

Lemma 13.1.5. Suppose Φ belongs to S(A), v belongs to V , and ṽ belongs to Ṽ . If π is
absolutely cuspidal the integral∫

Φ(g)
〈
π(g)v, ṽ

〉
|det g|s+

1
2 d×g

is absolutely convergent for Re s sufficiently large and the functions it defines can be analytically
continued to an entire function.

Suppose the integral is convergent for some s. If ξ is an elementary idempotent such that
π(ξ)v = v the integral is not changed if Φ is replaced by

Φ1(g) =

∫
GL(2,OF )

Φ(gh−1)ξ(h) dh.

Since π is absolutely cuspidal it does not contain the trivial representation of GL(2, OF ) and
we can choose ξ to be orthogonal to the constant functions on GL(2, OF ). Then Φ1(0) = 0.
Thus, when proving the second assertion of the lemma we can suppose that Φ(0) = 0.

The support of
〈
π(g)v, ṽ

〉
is contained in a set ZFC with C compact. Moreover there is

an open subgroup K ′ of GL(2, OF ) such that the functions Φ(g) and
〈
π(g)v, ṽ

〉
are invariant

under right translations by the elements of K ′. If

C ⊆
p⋃
i=1

giK
′

the integral is equal to
p∑
i=1

〈
π(gi)v, ṽ

〉
|det gi|s+

1
2

∫
F×

Φ

((
a 0
0 a

)
gi

)
η(a)|a|2s+1 d×a,

if each of the integrals in this sum converges. They are easily seen to converge if Re s is
sufficiently large and if Φ(0) = 0 they converge for all s. The lemma is proved.

Now we verify a special case of the fifth assertion.

Lemma 13.1.6. Suppose φ is in S(F×) and

Φ(g) = φ(det g)
〈
v, π̃(g)ṽ

〉
|det g|−1.

Then for all u in V and all ũ in Ṽ

Ξ̃(1− s,Φ′, u, ũ) = ϵ(s, π, ψ)Ξ(s,Φ, u, ũ).

The expression Ξ(s,Φ, u, ũ) is the integral over GF of

|det g|s−
1
2φ(det g)

〈
π(g)u, ũ

〉〈
v, π̃(g)ṽ

〉
.

The integral ∫
SL(2,F )

〈
π(gh)u, ũ

〉〈
v, π̃(gh)ṽ

〉
dh

depends only on det g. Set it equal to F (det g). Then Ξ(s,Φ, u, ũ) is equal to∫
F×

φ(a)F (a)|a|s−
1
2 d×a.
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By Lemma 13.1.1
Φ′(g) = φ′(det g)|det g|−1η−1(det g)

〈
π(g)v, ṽ

〉
so that Ξ(s,Φ′, u, ũ) is equal to∫

F×
φ′(a)F̃ (a)|a|s−

1
2η−1(a) d×a

if

F̃ (a)

∫
SL(2,F )

〈
u, π̃(gh)ũ

〉〈
π(gh)v, ṽ

〉
dh

whenever a = det g. Since the integrand is not changed when g is replaced by(
b 0
0 b

)
g

we have F̃ (b2a) = F̃ (a) and F̃ (a) = F̃ (a−1). The same relations are valid for F . Also

F̃ (a) = F (a−1) so that F = F̃ .
We remind ourselves that we are now trying to show that∫

F×
φ′(a)F̃ (a)η−1(a)|a|

1
2
−s d×a

is equal to

ϵ(s, π, ψ)

∫
F×

φ(a)F (a)|a|s−
1
2 d×a.

If U ′ is an open subgroup of UF such that

π̃

((
ϵ 0
0 1

))
ũ = ũ

and

π

((
ϵ 0
0 1

))
v = v

for ϵ in U ′ then F and F̃ are constant on cosets of (F×)2U ′ which is of finite index in F×.
Write

F (a) =

p∑
i=1

ciχi(a)

where χi are characters of F×/(F×)2U ′. We may assume that all ci are different from 0.
Then

F (a−1) =

p∑
i=1

ciχi(a
−1).

The factor ϵ(s, π ⊗ χi, ψ) was defined so that∫
F×

φ′(a)χ−1
i η−1(a)|a|

1
2
−s d×a

would be equal to

ϵ(s, χi ⊗ π, ψ)

∫
F×

φ(a)χi(a)|a|s−
1
2 d×a.
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All we need do is show that π and χi ⊗ π are equivalent, so that

ϵ(s, χi ⊗ π, ψ) = ϵ(s, π, ψ).

A character χ is one of the χi if and only if χ is trivial on (F×)2 and∫
F×/(F×)2

F (a)χ(a) d×a ̸= 0.

This integral is equal to ∫
GF /ZF

χ(g)
〈
π(g)u, ũ

〉〈
v, π̃(g)ṽ

〉
dg

which equals ∫
GF /ZF

〈
χ⊗ π(g)u, ũ

〉〈
v, π̃(g)ṽ

〉
dg.

The integral does not change if π is replaced by ω⊗π. Thus the Schur orthogonality relations
imply that it is non-zero only if π and χ⊗ π are equivalent.

If Φ belongs to S0(A) the functions Φ(g)|det g|s+ 1
2 belongs to HF and we can form the

operator

T (s,Φ) =

∫
GF

Φ(g)|det g|s+
1
2π(g) d×g.

If Φ has the form of the previous lemma the functional equation may be written as

T (1− s,Φ′) = ϵ(s, π, ψ)T (s,Φ).

Lemma 13.1.7. Given a non-zero w in V , the set of all u in V such that for some Φ of the
form

Φ(g) = φ(det g)
〈
v, π̃(g)ṽ

〉
|det g|−1

F

the vector T (s,Φ)w is of the form ebsu is a set that spans V .

If the function Φ is of this form so is the function Φ′(g) = Φ(hg) and

T (s,Φ′)w = |deth|−(s+
1
2)π(h−1)T (s,Φ)w

Since π is irreducible we need only show that there is at least one non-zero vector in the set
under consideration. Moreover there is an r such that αrF ⊗ π is unitary and we may as well
suppose that π itself is unitary. Let (u, v) be a positive invariant form on V .

Choose v = w and ṽ so that ⟨u, ṽ⟩ = (u,w) for all u. Let φ be the characteristic function
of UF . Then

Φ(g) =
(
w, π(g)w

)
if |det g| = 1 and is 0 otherwise. If

H =
{
g ∈ GF

∣∣ |det g| = 1
}

then

T (s,Φ)w =

∫
H

(
w, π(g)w

)
π(g)w d×g

is independent of s and is non-zero because(
T (s,Φ)w,w

)
=

∫
H

∣∣∣(π(g)w,w)∣∣∣2 d×g.
The fourth assertion follows immediately and the fifth will now be a consequence of the

following lemma.
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Lemma 13.1.8. Suppose Φ belongs to S(A) and Ψ belongs to S0(A). There is a vertical
strip in which the integrals∫∫

Φ(g)Ψ′(h)
〈
π(g)v, π̃(h)ṽ

〉
|det g|s+

1
2 |deth|

3
2
−s d×g d×h

and ∫∫
Φ′(g)Ψ(h)

〈
π−1(g)v, π̃(h−1)ṽ

〉
|det g|

3
2
−s|deth|s+

1
2 d×g d×h

exist and are equal.

A little juggling shows that there is no harm in supposing that the quasi-character η
defined by

π

((
a 0
0 a

))
= η(a)I

is a character. Fix v and ṽ. Let C be a compact subset of GF which contains the support of
Ψ and Ψ′. The set {

π̃(h)ṽ
∣∣ h ∈ C

}
is finite. Thus there is a compact set in GF such that for any h in C the function

g →
〈
π(g)v, π̃(h)ṽ

〉
has its support in ZFC

′. Moreover these functions are uniformly bounded. The first integral
is therefore absolutely convergent for Re s > −1

2
. The second is convergent for Re s < 3

2
.

If −1
2
< Re s < 3

2
the first integral is equal to∫

Ψ′(h)|deth|
3
2
−s
{∫

Φ(g)
〈
π(g)v, π̃(h)ṽ

〉
|det g|s+

1
2 d×g

}
d×h.

Replacing g by hg we obtain∫
Ψ′(h)|deth|2

{∫
Φ(hg)

〈
π(g)v, ṽ

〉
|det g|s+

1
2 d×g

}
d×h.

If we take the additive Haar measure to be dh = |deth|2 d×h this may be written as∫ 〈
π(g)v, ṽ

〉
|det g|s+

1
2

{∫
Φ(hg)Ψ′(h) dh

}
d×g.

The second integral is∫
Ψ(h)|deth|s+

1
2

{∫
Φ′(g)

〈
π−1(g)v, π̃−1(h)ṽ

〉
|det g|

3
2
−s d×g

}
d×h.

After a change of variables this becomes∫ 〈
π−1(g)v, ṽ

〉
|det g|

3
2
−s
{∫

Φ′(gh)Ψ(h) dh

}
d×g.

Replacing g by g−1 we obtain∫ 〈
π(g)v, ṽ

〉
|det g|s+

1
2

{
|det g|−2

∫
Φ′(g−1h)Ψ(h) dh

}
d×g.

Since ∫
Φ(hg)Ψ′(h) dh
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is equal to

|det g|−2

∫
Φ′(g−1h)Ψ(h) dh

the lemma follows.
The theorem is now proved when π is absolutely cuspidal. Suppose that it is a constituent

of τ = ρ(µ1, µ2). In this case the field may be archimedean. Although τ is not necessarily
irreducible it is admissible and its matrix coefficients are defined. The contragredient
representation τ̃ is ρ(µ−1

1 , µ−1
2 ) and the space of τ is B(µ1, µ2) while that of τ̃ is B(µ−1

1 , µ−1
2 ).

If f belongs to B(µ1, µ2) and f̃ belongs to B(µ−1
1 , µ−1

2 ) then〈
τ(g)f, f̃

〉
=

∫
K

f(kg)f̃(k) dk

and 〈
f, τ̃(g)f̃

〉
=

∫
K

f(k)f̃(kg) dk

if K is the standard maximal compact subgroup of GF .
If we set

L(s, τ) = L(s, µ1)L(s, µ2)

L(s, τ̃) = L(s, µ−1
1 )L(s, µ−1

2 )

and
ϵ(s, τ, ψ) = ϵ(s, µ1, ψ)ϵ(s, µ2, ψ)

the theorem may be formulated for the representation τ . We prove it first for τ and then for
the irreducible constituents of τ .

We use a method of R. Godement. If Φ belongs to S(A) then for brevity the function
x→ Φ(gxh) which also belongs to S(A) will be denoted by hΦg. Also let

φΦ(a1, a2) =

∫
F

Φ

((
a1 x
0 a2

))
dx

where dx is the measure which is self dual with respect to ψ. The function φΦ belongs
to S(F 2). The map Φ → φΦ of S(A) into S(F 2) is certainly continuous.

We are now going to define a kernel KΦ(h, g, s) on K ×K. We set

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , φΦ).

Recall that the right-hand side is∫∫
φΦ(a1, a2)µ1(a1)|a1|sµ2(a2)|a2|s d×a1 d×a2.

In general
KΦ(h, g, s) = KgΦh−1(e, e, s).

We also set
K̃Φ(e, e, s) = Z(µ−1

1 αsF , µ
−1
2 αsF , φΦ)

and
K̃Φ(h, g, s) = K̃gΦh−1(e, e, s).

The kernels are defined for Re s sufficiently large and are continuous in h, g, and s and, for
fixed h and g, holomorphic in s.
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We now make some formal computations which will be justified by the result. The

expression Z

(
α
s+ 1

2
F ⊗ τ,Φ, f, f̃

)
is equal to∫

GF

Φ(g)

{∫
K

f(kg)f̃(k) dk

}
|det g|s+

1
2 d×g

which is ∫
K

f̃(k)

{∫
GF

Φ(g)f(kg)|det g|s+
1
2 d×g

}
dk.

Changing variables in the inner integral we obtain∫
K

f̃(k)

{∫
GF

Φ(k−1g)f(g)|deth|s+
1
2 d×g

}
dk.

Using the Iwasawa decomposition to evaluate the integral over GF we see that this is equal to∫
K×K

KΦ(k1, k2, s)f(k2)f̃(k1) dk1 dk2.

Since we could have put in absolute values and obtained a similar result all the integrals are
convergent and equal for Re s sufficiently large. A similar computation shows that

Z

(
α
s+ 1

2
F ⊗ τ̃ ,Φ, f, f̃

)
is equal to ∫

K×K
K̃Φ(k1, k2, s)f(k1)f̃(k2) dk1 dk2

if Re s is large enough.

If ξ is an elementary idempotent such that τ(ξ)f = f and τ̃(ξ)f̃ = f̃ then

Z

(
α
s+ 1

2
F ⊗ τ,Φ, f, f̃

)
is not changed if Φ is replaced by

Φ1(g) =

∫∫
Φ(k1gk

−1
2 )ξ(k1)ξ(k2) dk1 dk2.

Thus, at least when proving the second and third assertions, we may suppose that Φ is
K-finite on both sides and, in fact, transforms according to a fixed finite set of irreducible
representations of K. Then, as s varies, the functions

KΦ(k1, k2, s)

stay in some fixed finite-dimensional space U of continuous functions on K ×K. The map

F →
∫∫

F (k1, k2)f(k2)f̃(k1) dk1 dk2

is a linear form on this space and we can find g1, . . . , gn and h1, . . . , hn in K such that it can
be represented in the form

F →
n∑
i=1

λiF (gi, hi).
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Thus

Z

(
α
s+ 1

2
F ⊗ τ,Φ, f, f̃

)
=
∑

λiKΦ(gi, hi, s).

Thus to prove the second and third assertions we need only show that for each g and h in
K the function

KΦ(g, h, s)

L(s, τ)

is entire and KΦ(g, h, s) itself is bounded at infinity in vertical strips. There is certainly no
harm in supposing that g = h = e so that

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , φΦ)

Thus the desired facts are consequences of the results obtained in paragraphs 3, 5, and 6 when
proving the local functional equation for constituents of τ . Replacing τ by its contragredient

representation we obtain the same results for Z

(
α
s+ 1

2
F ⊗ τ̃ ,Φ, f, f̃

)
.

To prove the functional equation we have to see what happens to the Fourier transform
when we pass from the function Φ to to Φ1. The answer is simple:

Φ′
1(g) =

∫∫
Φ′(k1gk

−1
2 )ξ(k1)ξ(k2) dk1 dk2.

Thus in proving the functional equation we may suppose that Φ is K-finite on both
sides. We may also suppose that if F (k1, k2) is in U so is F ′(k1, k2) = F (k2, k1). Then

Z

(
α
s+ 1

2
F ⊗ τ,Φ′, f, f̃

)
=
∑
λiK̃Φ′(hi, gi, s). To prove the functional equation we have to

show that
K̃Φ′(h, g, 1− s)

L(1− s, τ)
= ϵ(s, τ, ψ)

KΦ(g, h, s)

L(s, τ)

for any h and g in K. Since the Fourier transform of gΦh−1 is hΦ′g it will be enough to do
this for h = g = e. Then the equality reduces to

Z(µ−1
1 α1−s

F , µ−1
2 α1−s

F , φΦ′)

L(1− s, τ̃)
= ϵ(s, τ, ψ)

Z(µ1α
s
F , µ2α

s
F , φΦ)

L(s, τ)

and is a result of the facts proved in the first chapter and the next lemma.

Lemma 13.2.1. The Fourier transform of the function φΦ is the function φΦ′.

The value of Φ′ at (
α β
γ δ

)
is ∫

Φ

((
x y
z t

))
ψ(αx+ βz + γy + δt) dx dy dz dt

if dx, dy, dz, and dt are self-dual with respect to ψ. Thus φΦ′(α, δ) is equal to∫ 
∫

Φ

((
x y
z t

))
ψ(αx+ δt)ψ(βz) dx dy dz dt

 dβ
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Applying the Fourier inversion formula to the pair of variables β and z we see that this is
equal to ∫

Φ

((
x y
0 t

))
ψ(αx+ δt) dx dy dt

which is the value of the Fourier transform of φΦ at (α, δ).
The theorem, with the exception of the fourth assertion, is now proved for the representa-

tion τ . We will now deduce it, with the exception of the fourth assertion, for the constituents
of τ . We will return to the fourth assertion later.

If π is a constituent of τ either π = π(µ1, µ2) or π = σ(µ1, µ2). In the first case there
is nothing left to prove. In the second only the third assertion remains in doubt. If F is
the complex field, it is alright because we can always find another pair of quasi-characters
µ′
1 and µ′

2 such that π = π(µ′
1, µ

′
2). We ignore this case and suppose that F is real or

non-archimedean.
First take F to be non-archimedean. We may suppose that µ1 and µ2 are the form

µ1 = χα
1/2
F and µ2 = χα

−1/2
F . The one-dimensional representation g → χ(det g) is contained

in τ̃ = ρ(µ−1
1 , µ−1

2 ) and acts on the function g → χ(det g). The matrix elements for π are the
functions

g →
〈
τ(g)f, f̃

〉
=
〈
π(g)f, f̃

〉
where f̃ belongs to B(µ−1

1 , µ−1
2 ) and∫

K

f(k)χ(det k) dk = 0.

For such an f there is an elementary idempotent ξ such that τ(ξ)f = f while∫
K

ξ(k) dk = 0

The value of Z

(
α
s+ 1

2
F ⊗ π,Φ, f, f̃

)
is not changed if we replace Φ by

Φ1(g) =

∫
K

Φ(gh−1)ξ(h) dh.

Lemma 13.2.2. If g1 and g2 belong to GF then∫∫
Φ1

(
g1

(
x y
0 0

)
g2

)
dx dy = 0.

It will be enough to prove this when g1 is the identity. Let

φ(x, y) = Φ1

((
x y
0 0

))
.

If g1 is the identity then, after a change of variables, the integral becomes

|det g2|−1

∫∫
φ(x, y) dx dy
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so that we can also assume g2 is the identity. Then the integral equals∫
K


∫∫

Φ

((
x y
0 0

)
k

)
dx dy

ξ(k−1) dk.

Changing variables as before we see that the inner integral does not depend on K. Since∫
K

ξ(k−1) dk = 0

the lemma follows.
To establish the third assertion for the representation π all we need do is show that for

any g and h in K the function
KΦ(g, h, s)

L(s, π)
is entire provided ∫∫

Φ

(
g1

(
x y
0 0

)
g2

)
dx dy = 0

for all g1 and g2 in GF . As usual we need only consider the case that g = h = e. Since∫
φΦ(x, 0) dx = 0

and
KΦ(e, e, s) = Z(µ1α

s
F , µ2α

s
F , φΦ)

we need only refer to Corollary 3.7.
If F is the field of real numbers the proof is going to be basically the same but a little more

complicated. We may assume that µ1µ
−1
2 (x) = |x|2p+1−m(sgnx)m, where p is a non-negative

integer and m is 0 or 1, and that π acts on BS(µ1, µ2). The restriction of π to SO(2,R)
contains only those representations κn for which n ≡ 1−m (mod 2) and |n| ⩾ 2p+ 1−m.
Let ξn be the elementary idempotent corresponding to the representation κn. As before we
may suppose that

(13.2.3)

∫
SO(2,R)

Φ(xk−1)ξn(k) dk = 0

if κn does not occur in the restriction of π to SO(2,R).

Lemma 13.2.4. If Φ satisfies (13.2.3), if g1 and g2 belong to GF , and φ = φg1Φg2 then∫
R

xi
∂j

∂yj
φ(x, 0) dx = 0

if i ⩾ 0, j ⩾ 0 and i+ j = 2p−m.

We may assume that g2 = e. If φ = φΦ let

L(Φ) =

∫
R

xi
∂j

∂yj
φ(x, 0) dx

and let
F (g) = L(gΦ).
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We have to show that, under the hypothesis of the lemma, F (g) = 0 for all g. However F
is defined for all Φ in S(A) and if Φ is replaced by hΦ the function F is replaced by F (gh).
Thus to establish the identity

F

((
ai z
0 a2

)
g

)
= η1(a1)η2(a2)F (g),

where η1(a1) = a−i1 |a1|−1 and η2(a2) = aj2|a2|−1, we need only establish it for g = e.
Let

h =

(
a1 z
0 a2

)
.

Then

hΦ

((
x u
0 y

))
= Φ

((
a1y xz + a2u
0 a2y

))
.

If φ = φΦ and φ1 = φhΦ then φ1(x, y), which is given by∫
Φ

((
a1x xz + a2u
0 a2y

))
du,

is equal to

|a2|−1

∫
Φ

((
a1x u
0 a2y

))
du = |a2|−1φ(a1x, a2y).

Moreover F (h) is equal to ∫
xi
∂jφ1

∂yj
(x, 0) dx

which equals

a−i1 |a1|−1aj2|a2|−1

∫
xi
∂jφ

∂yj
(x, 0) dx

as required.
Finally if

g =

(
α β
γ δ

)
and φ = φgΦ then F (g) is equal to ∫

xi
∂jφ

∂yj
(x, 0) dv

and

φ(x, y) =

∫
Φ

((
αx+ γu βx+ δu
yγ yδ

))
du.

Since we can interchange the orders of differentiation and integration,

∂jφ

∂yj
(x, 0) =

j∑
n=0

λnγ
nδj−n

∫
φn(αx+ γu, βx+ δu) du
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where

φn(x, y) =
∂jΦ

∂γn∂δj−n

((
x y
0 0

))
and the numbers λn are constants. Thus F (g) is a linear combination of the functions

γnδj−n
∫∫

xiφn(αx+ γu, βx+ δu) dx du.

If α ̸= 0 we may substitute x− γu
2

for x to obtain

γnδj−n
∫∫

(x− γu)i

2
φn

(
αx, βx+

∆u

2

)
dx du

where ∆ = det g. Substituting u− αβ
∆
x for u we obtain

γnδj−n
∫∫ (

x+
βγ

∆
x− γu

2

)i
φn

(
αx,

∆u

2

)
dx du.

After one more change of variables this becomes

∆−i|∆|−1γnδj−n
∫∫

(δx− γu)iφn(x, u) dx du.

In conclusion F (g) is a function of the form

F

((
α β
γ δ

))
= ∆−i|∆|−1P (α, β, γ, δ)

where P is a polynomial.
Thus the right translates of F by the elements of GF span a finite-dimensional space.

In particular it is O(2,R) finite and if η1 = µ′
1α

1/2
F while η2 = µ′

2α
−1/2
F it lies in a finite-

dimensional invariant subspace of B(µ′
1, µ

′
2). Thus it lies in BF (µ′

1, µ
′
2). Since µ

′
1µ

′
2
−1 = µ−1

1 µ2

no representation of SO(2,R) occurring in π(µ′
1, µ

′
2) can occur in π = σ(µ1, µ2). If F is not

zero then for at least one such representation κn

F1(g) =

∫
SO(2,R)

f(gk−1)ξn(k) dk

is not identically 0. But F1 is the result of replacing Φ by

Φ1(x) =

∫
SO(2,R)

Φ(xk−1)ξn(k) dk

in the definition of F . In particular if Φ satisfies the conditions of the lemma both Φ1 and F1

are zero. Therefore F is also zero and the lemma is proved.
The third assertion can now be verified as in the non-archimedean case by appealing to

Lemma 5.17. The fourth has still to be proved in general.
If F is the real field let S1(A) be the space of functions of the form

Φ

((
a b
c d

))
= exp

(
−π(a2 + b2 + c2 + d2)

)
P (a, b, c, d)
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where P is a polynomial. If F is the complex field S1(A) will be the space of functions of the
form

Φ

((
a b
c d

))
= exp

(
−π(aa+ bb+ cc+ dd)

)
P (a, a, b, b, c, c, d, d)

where P is again a polynomial. If F is non-archimedean S1(A) will just be S(A). The space
S1(F

2) is defined in a similar manner.

Lemma 13.2.5. Suppose φ belongs to S1(F
2). Then there is a Φ in S1(A) such that

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , φ)

and f1, . . . , fn in B(µ1, µ2) together with f̃1, . . . , f̃n in B(µ−1
1 , µ−1

2 ) such that
n∑
i=1

∫
K×K

KΦ(h, g, s)fi(g)f̃i(h) dg dh = KΦ(e, e, s).

Since there is a φ in S1(F
2) such that

Z(µ1α
s
F , µ2α

s
F , φ) = aebsL(s, τ)

this lemma will imply the fourth assertion for the representation τ .
Given φ the existence of Φ such that φ = φΦ and therefore

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , φΦ)

is a triviality and we worry only about the existence of f1, . . . , fn and f̃1, . . . , f̃n.
It is easily seen that if (

a1 x
0 a2

)
and (

b1 y
0 b2

)
belong to K then

KΦ

((
a1 x
0 a2

)
h,

(
b1 y
0 b2

)
g, s

)
is equal to

µ1(a1)µ2(a2)µ
−1
1 (b1)µ

−1
2 (b2)KΦ(h, g).

Also
KΦ(hh1, gg1, s) = Kg1Φh

−1
1
(h, g, s).

Since Φ belongs to S1(A) it is K-finite on the left and right. Thus there is a finite set S of
irreducible representations of K such that if U1 is the space of functions F on K which satisfy

F

((
a1 x
0 a2

)
h

)
= µ1(a1)µ2(a2)F (h)

for all (
a1 x
0 a2

)
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in K and can be written as a linear combination of matrix elements of representations in S
and U2 is the space of functions F ′ on K which satisfy

F ′

((
a1 x
0 a2

)
h

)
= µ−1

1 (a1)µ
−1
2 (a2)F

′(h)

and can be written as a linear combination of matrix elements of representations in S then,
for every s, the function

(h, g) → KΦ(h, g, s)

belongs to the finite-dimensional space U spanned by functions of the form (h, g) → F (h)F ′(g)
with F in U1 and F ′ in U2.

Choose F1, . . . , Fn and F ′
1, . . . , F

′
n so that for every function F in U

F (e, e) =
n∑
i=1

λi

∫
K×K

F (h, g)F i(h)F
′
i(g) dh dg.

Since F i is the restriction to K of an element of B(µ−1
1 , µ−1

2 ) while F
′
i is the restriction to K

of an element of B(µ1, µ2) the lemma follows.
Unfortunately this lemma does not prove the fourth assertion in all cases. Moreover there

is a supplementary condition to be verified.

Lemma 13.2.6. Suppose F is non-archimedean and π is of the form π = π(µ1, µ2) with µ1

and µ2 unramified. Suppose Φ is the characteristic function of M(2, OF ) in M(2, F ). If v
and ṽ are invariant under K = GL(2, OF ) and if∫

K

d×g = 1

then

Z

(
α
s+ 1

2
F ⊗ π,Φ, v, ṽ

)
= L(s, π)⟨v, ṽ⟩.

Suppose f belongs to B(µ1, µ2) and is identically 1 on K while f̃ belongs to B(µ−1
1 , µ−1

2 )
and is identically 1 on K. Then

⟨f, f̃⟩ =
∫
K

f(k)f̃(k) dk = 1

and if τ = ρ(µ1, µ2) we are trying to show that

Z

(
α
s+ 1

2
F ⊗ τ,Φ, f, f̃

)
= L(s, τ).

The left side is equal to ∫
K×K

KΦ(h, g, s)f(h)f̃(g) dh dg.

Since Φ is invariant on both sides under K this is equal to

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , φ)

if

φ(x, y) =

∫
Φ

((
x z
0 y

))
dz.
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Since we have so normalized the Haar measure on GF that∫
GF

F (g) dg =

∫
K


∫
F

((
a1 0
0 a2

)(
1 x
0 1

)
k

)
d×a1 d

×a2 dx

 dk

where dk is the normalized measure on K, dx is the measure on F which assigns the measure
1 to OF , and d

×a is the measure on F× which assigns the measure 1 to UF , the function φ is
the characteristic function of OF ×OF and

Z(µ1α
s
F , µ2α

s
F , φ) = L(s, µ1)L(s, µ2)

as required.
This lemma incidentally proves the fourth assertion for the one-dimensional representation

g → χ(det g) if χ is unramified. If χ is ramified and π corresponds to χ then π = π(µ1, µ2) if
µ1(a) = χ(a)|a|1/2 and µ2(a) = χ(a)|a|−1/2. Thus L(s, π) = 1. If Φ is the restriction of the
function χ−1 to K then

Z(π,Φ, v, ṽ) = ⟨v, ṽ⟩
∫
K

d×g

and the fourth assertion is verified in this case.
Take µ1 and µ2 of this form with χ possibly unramified and suppose that π = σ(µ1, µ2).

Suppose first that χ is unramified. Let φ0 be the characteristic function of OF in F and let

φ1(x) = φ0(x)− |ϖ−1|φ0(ϖ
−1x).

It has OF for support. Set

Φ

((
a b
c d

))
= φ1(a)φ0(b)φ0(c)φ0(d).

It has M(2, OF ) for support and depends only on the residues of a, b, c, and d modulo pF . If

K1 =
{
k ∈ K

∣∣ k ≡ e (mod p)
}

then KΦ(h, g, s) depends only on the cosets of h and g modulo K1. Also

KΦ

(
e, w

(
1 x
0 1

)
, s

)
= 0

if x is in OF . To see this we observe first that if

Φ1(g) = Φ

(
gw

(
1 x
0 1

))
then φΦ1(a1, a2) is equal to ∫

F

Φ

((
−y a1 − xy
−a2 −a2x

))
dy

which equals

φ0(a2)φ0(a2x)

∫
OF

φ1(y)φ0(a1 − xy) dy.
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Since x is in OF the function φ0(a1 − xy) equals φ0(a1) for y in OF and this expression is 0
because ∫

OF

φ1(y) dy = 0.

We choose f in BS(µ1, µ2) so that f(gk) = f(g) if k belongs to K1, f(e) = 1, and

f(e) +
∑

x∈OF /p

f

(
w

(
1 x
0 1

))
= 0.

We choose f̃ in B(µ1, µ2) so that f̃(gk) = f̃(g) if k belongs to K1, f̃(e) = 1, and

f̃

(
w

(
1 x
0 1

))
= 0

if x belongs to OF . Then ∫
K×K

KΦ(h, g, s)f̃(h)f(g) dh dg

is equal to ∫
K

KΦ(e, g, s)f(g) dg = KΦ(e, e, s)

which equals
Z(µ1α

s
F , µ2α

s
F , φΦ).

Moreover
φΦ(a1, a2) = φ1(a)φ0(a2)

so that, as we saw when proving Corollary 3.7, L(s, π) is a constant times Z(µ1α
s
F , µ2α

s
F , φΦ).

If χ is ramified L(s, π) = 1. If Φ has support in K then Z(α
s+1/2
F ⊗ π,Φ, v, ṽ) is equal to∫

K

Φ(k)
〈
π(k)v, ṽ

〉
dk

and we can certainly choose v, ṽ and Φ so that this is not 0.
We are not yet finished. We have yet to take care of the representations not covered by

Lemma 13.2.5 when the field is archimedean. If F is the complex field we have only the
finite-dimensional representations to consider. There is a pair of characters µ1 and µ2 such
that π is realized on the subspace Bf(µ1, µ2) of B(µ1, µ2). There will be positive integers p
and q such that µ1µ

−1
2 (z) = z−pz−q. The representations σ = ρ|q−p| of SU(2,C) which is of

degree |q − p| + 1 is contained in the restriction of π to SU(2,C). In particular Bf(µ1, µ2)
contains all functions f in B(µ1, µ2) whose restrictions to SU(2,C) satisfy

f

((
a1 0
0 a2

)
k

)
= µ1(a1)µ2(a2)f(k)

and transform on the right according to σ.
We are going to use an argument like that used to prove Lemma 13.2.5. Suppose we can

find a function Φ in S1(A) such that

Z(µ1α
s
F , µ2α

s
F , φΦ)

differs from L(s, π) by an exponential factor and such that Φ transforms on the right under
SU(2,C) according to the representation σ. Then KΦ(h, g, s) will satisfy the same conditions
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as in Lemma 13.2.5. Moreover the functions F ′ in the space we called U2 can be supposed to

transform on the right under SU(2,C) according to σ, so that the functions F
′
i will correspond

to functions fi in Bf (µ1, µ2). Then∫
K×K

KΦ(h, g, s)f̃i(h)fi(g) dh dg = Z

(
α
s+ 1

2
F ⊗ τ,Φ, fi, f̃i

)
is equal to

Z

(
α
s+ 1

2
F ⊗ π,Φ, vi, ṽi

)
if vi = fi and ṽi is the restriction of f̃i, regarded as a linear functional, to Bf (µ1, µ2).

There are four possible ways of writing µ1 and µ2.

(i) µ1(z) = zm1(zz)s1 , µ2(z) = zm2(zz)s2 , m1 −m2 = q − p.
(ii) µ1(z) = zm1(zz)s1 , µ2(z) = zm2(zz)s2 , m1 +m2 = q − p.
(iii) µ1(z) = zm1(zz)s1 , µ2(z) = zm2(zz)s2 , −m1 −m2 = q − p.
(iv) µ1(z) = zm1(zz)s1 , µ2(z) = zm2(zz)s2 , m2 −m1 = q − p.

In all four cases m1 and m2 are to be non-negative integers. Φ is the product of

exp
(
−π(aa+ bb+ cc+ dd)

)
and a polynomial. We write down the polynomial in all four

cases and leave the verifications to the reader.

(i.a) m1 ⩾ m2 : a
m1−m2(ad− bc)m2 .

(i.b) m1 ⩽ m2 : (ad− bc)m1d
m2−m1

.
(ii) am1 dm2 .
(iii) am1d

m2
.

(iv.a) m1 ⩾ m2 : a
m1−m2(ad− bc)m2 .

(iv.b) m2 ⩾ m1 : (ad− bc)m1 dm2−m1 .

For the real field the situation is similar. Suppose first that π = π(µ1, µ2) is finite-dimensional.
If µ1µ2(−1) = 1 then π contains the trivial representation of SO(2,R) and if µ1µ2(−1) = 1
it contains the representation

κ1 :

(
cos θ sin θ

− sin θ cos θ

)
→ eiθ

defined after Lemma 5.5. We list the four possibilities for µ1 and µ2 and the polynomial P
by which exp

(
−π(a2 + b2 + c2 + d2)

)
is to be multiplied to obtain Φ.

(i) µ1(−1) = µ2(−1) = 1: P (a, b, c, d) = 1.
(ii) µ1(−1) = µ2(−1) = 1: P (a, b, c, d) = ad− bc.
(iii) µ1(−1) = 1, µ2(−1) = −1: P (a, b, c, d) = c− id.
(iv) µ1(−1), µ2(−1) = 1: P (a, b, c, d) = a− ib.

Only the special representations remain to be considered. We may suppose that π =
σ(µ1, µ2) where µ1 and µ2 are of the form µ1(x) = |x|r+ q

2 and µ2(x) = |x|r− q
2 (sgn t)m with

q = 2p+1−m and with p a non-negative integer. Moreover m is 0 or 1. The function L(s, π)
differs from

Γ

(
s+ r + q

2

2

)
Γ

(
s+ r + q

2
+ 1

2

)
by an exponential as does

Z(µ1α
s
F , µ2α

s
F , φ)
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if
φ(a1, a2) = e−π(a

2
1+a

2
2)aq+1

2 .

Since the representation of κq+1 occurs in the restriction of π to SO(2,R) we may take

Φ

((
a b
c d

))
= exp

(
−π(a2 + b2 + c2 + d2)

)
(c+ id)q+1.
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§14. Automorphic forms and quaternion algebras

Let F be a global field and let M ′ be a quaternion algebra over F . The multiplicative
group G′ of M ′ may be regarded as an algebraic group over F . In the ninth paragraph we
have introduced the group G′

A and the Hecke algebra H′. A continuous function φ on G′
F\G′

A

is said to be an automorphic form if for every elementary idempotent ξ in H′ the space{
ρ(ξf)φ

∣∣ f ∈ H′ }
is finite-dimensional.

If φ is an automorphic form it is Z ′
A finite on the left if Z ′ is the centre of G′. Let A′

be the space of automorphic forms on G′
A and if η is a quasi-character of F×\I let A′(η) be

the space of φ in A′ for which φ′(ag) = η(a)φ′(g) for all a in Z ′
A which, for convenience, we

identify with I. The first assertion of the following lemma is easily proved by the methods
of the eighth paragraph. The second is proved by the methods of the tenth. The proof is
however a little simpler because G′

FZ
′
A\G′

A is compact. Since, at least in the case of number
fields, the proof ultimately rests on general facts from the theory of automorphic forms
nothing is gained by going into details.

Lemma 14.1.

(i) If an irreducible admissible representation π of H′ is a constituent of A′ then for
some η it is a constituent of A′(η).

(ii) The space A′(η) is the direct sum of subspaces irreducible and invariant under H′. The
representation of H′ on each of these subspaces is admissible and no representation
occurs more than a finite number of times in A′(η).

Now we have to remind ourselves of some facts whose proofs are scattered throughout
the previous paragraphs. Suppose π =

⊗
v πv is an irreducible admissible representation of

H′. For each v the representation πv of H′
v is irreducible and admissible. Suppose ψ is a

non-trivial additive character of F\A and ψv is its restriction to Fv. We have defined L(s, πv),
L(s, π̃v), and ϵ(s, πv, ψv). If uv is in the space of πv and ũv in the space of π̃v we have set

Z

(
α
s+ 1

2
F ⊗ πv,Φ, uv, ũv

)
equal to ∫

G′
Fv

Φ(g)
〈
πv(g)uv, ũv

〉∣∣ν(g)∣∣s+ 1
2 d×g.

We know that

hvϵ(s, πv, ψv)


Z

(
α
s+ 1

2
F ⊗ πv,Φ, uv, ũv

)
L(s, πv)


is entire and equals

Z

(
α

1
2
−s

F ⊗ π̃v,Φ
′, uv, ũv

)
L(1− s, π̃v)

.
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The factor hv is 1 of G′
Fv

is isomorphic to GL(2, Fv) and is −1 otherwise. The case that
G′
Fv

is isomorphic to GL(2, Fv) was treated in the previous paragraph. The other cases were
treated in the fourth and fifth paragraphs.

Theorem 14.2. Suppose π is a constituent of the space of automorphic forms on G′
A. The

infinite products ∏
v

L(s, πv)

and ∏
v

L(s, π̃v)

are absolutely convergent for Re s sufficiently large. The functions L(s, π) and L(s, π̃) defined
by them can be analytically continued to the whole complex plane as meromorphic functions.
If F is a number field they will have only a finite number of poles and will be bounded at
infinity in vertical strips of finite width. If

ϵ(s, π) =
∏
v

ϵ(s, πv, ψv)

the functional equation
L(s, π) = ϵ(s, π)L(1− s, π̃)

will be satisfied.

We may suppose that π acts on the subspace V of A′(η). Let φ be a non-zero function
in V . For almost all v the algebra M ′

v = M ′ ⊗F Fv is split and G
′
Fv

= G′
v is isomorphic to

GL(2, Fv). Moreover for almost all such v, say for all v not in S, φ is an eigenfunction of the
elements of H′

v = H′
Fv

which are invariant on both sides under translations by the elements
of K ′

v. Thus if f is such an element and φ(g) ̸= 0 the corresponding eigenvalue λv(f) is

λv(f) = φ(g)−1

∫
G′

v

φ(gh)f(h) dh.

To prove the absolute convergence of the infinite products we have only to refer to Lemma 3.11
as in the proof of Theorem 11.1.

The representation π̃ contragredient to π can be defined. If π =
⊗

πv acts on V =
⊗

u0v
Vv

then π̃ =
⊗

π̃v acts on Ṽ =
⊗

u0v
Ṽv where ũ

0
v is, for almost all v, fixed by K ′

v and satisfies

⟨u0v, ũ0v⟩ = 1. The pairing between V and Ṽ is defined by〈⊗
uv,
⊗

ũv

〉
=
∏
v

⟨uv, ũv⟩.

Almost all terms in the product are equal to 1. If u is in V and ũ is in Ṽ the matrix element〈
π(g)u, ũ

〉
can also be introduced. If f is in H′〈

π(f)u, ũ
〉
=

∫
G′

A

f(g)
〈
π(g)u, ũ

〉
d×g.
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If F (g) is a linear combination of such matrix elements and Φ belongs to the Schwartz space
on A′

A we set1

Z

(
α
s+ 1

2
F ,Φ, F

)
=

∫
G′

A

Φ(g)F (g)
∣∣ν(g)∣∣s+ 1

2 d×g.

The function F̃ (g) = F (g−1) is a linear combination of matrix coefficients for the representation
π̃. We set

Z

(
α
s+ 1

2
F ,Φ, F̃

)
=

∫
G′

A

Φ(g)F̃ (g)
∣∣ν(g)∣∣s+ 1

2 d×g.

Before stating the next lemma we observe that if χ is a quasi-character of F×\I the
one-dimensional representation g → χ

(
ν(g)

)
is certainly a constituent of A′.

Lemma 14.2.1. If π is a constituent of A′ the integrals defining the functions Z

(
α
s− 1

2
F ,Φ, F

)
and Z

(
α
s− 1

2
F ,Φ, F̃

)
are absolutely convergent for Re s large enough. The two functions can

be analytically continued to the whole complex plane as meromorphic functions with only a
finite number of poles. If π is not of the form g → χ

(
ν(g)

)
they are entire. If F is a number

field they are bounded at infinity in vertical strips of finite width. In all cases they satisfy the
functional equation

Z

(
α
s+ 1

2
F ,Φ, F

)
= Z

(
α

3
2
−s

F ,Φ′, F̃

)
if Φ′ is the Fourier transform of Φ.

There is no harm in assuming that F is of the form

F (g) =
∏
v

〈
π(gv)uv, ũv

〉
=
∏
v

Fv(gv)

and that Φ is of the form
Φ(x) =

∏
v

Φv(xv)

where, for almost all v, Φv is the characteristic function of M(2, Ov). Recall that for almost
all v we have fixed an isomorphism θv of M

′
v with M(2, Fv).

We know that each of the integrals∫
G′

v

Φv(gv)Fv(gv)
∣∣ν(gv)∣∣s+ 1

2 d×gv

converges absolutely for Re s sufficiently large. Let S be a finite set of primes which contains
all archimedean primes such that outside of S the vector uv is u

0
v, the vector ũv is ũ

0
v, Φv is

the characteristic function of M(2, Ov), and πv = πv(µv, νv) where µv and νv are unramified.
Let π′

v = πv
(
|µv|, |νv|

)
. If v is not in S the integral∫

K′
v

Φ(gv)Fv(gv)
∣∣ν(gv)∣∣s+ 1

2 d×gv = 1

and if σ = Re s ∫
G′

v

∣∣Φv(gv)
∣∣∣∣Fv(gv)∣∣∣∣ν(gv)∣∣σ+ 1

2 d×gv

1Unfortunately the symbol F plays two quite different roles on this page!
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is, as we see if we regard πv as acting on B(µb, νv), at most∫
G′

v

Φv(gv)
〈
π′
v(gv)fv, f̃v

〉∣∣ν(gv)∣∣σ+ 1
2 d×gv

if fv and f̃v are the unique K ′
v-invariant elements in B

(
|µv|, |νv|

)
and B

(
|µv|−1, |νv|−1

)
which

take the value 1 at the identity. We suppose that the total measure of K ′
v is 1 so that

⟨fv, f̃v⟩ = 1. According to Lemma 13.2.6 the integral is equal to L(σ, π′
v). Since∏

v∈S

L(σ, π′
v)

is absolutely convergent for σ sufficiently large the integral defining Z

(
α
s+ 1

2
F ,Φ, F

)
is also

and is equal to ∏
v

Z

(
α
s+ 1

2
Fv

⊗ πv,Φv, uv, ũv

)
and to

L(s, π)
∏
v

Ξ(s,Φv, uv, ũv).

Notice that Ξ(s,Φv, uv, ũv) is identically 1 for almost all v. Z

(
α
s+ 1

2
F ,Φ, F̃

)
may be treated

in a similar fashion. If we take π to be the trivial representation we see that∫
G′

A

Φ(g)
∣∣ν(g)∣∣s+ 1

2 d×g

is absolutely convergent for Re s sufficiently large.
It will be enough to prove the remaining assertions of the lemma when η is a character.

We may also assume that if η is of the form η(a) = |a|r then r = 0. We have identified V

with a subspace of A′(η). We may take Ṽ to be { φ̃ | φ ∈ V }. To see this observe that this
space is invariant under H′ and that

⟨φ1, φ2⟩ =
∫
G′

FZ
′
A\G′

A

φ1(g)φ̃2(g) dg

is a non-degenerate bilinear form. Here φ1 belongs to V and φ̃2 belongs to Ṽ . The remaining
assertions need only be verified for functions of the form

F (g) =

∫
G′

FZ
′
A\G′

A

φ(hg)φ̃(h) dh

with φ in V and φ̃ in Ṽ .

For such an F the function Z

(
α
s+ 1

2
F ,Φ, F

)
is equal to∫

Φ(g)

{∫
φ(hg)φ̃(h) dh

}∣∣ν(g)∣∣s+ 1
2 d×g.

Since φ and φ̃ are bounded this double integral converges absolutely for Re s sufficiently
large. We first change variables by substituting h−1g for g. The integration with respect to g
can then be carried out in three steps. We first sum over G′

F , then we integrate over Z ′
F\Z ′

A
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which we identify with F×\I, and finally we integrate over G′
FZ

′
A\G′

A. Thus if KΦ(h1, h2, s)
is ∣∣ν(h−1

1 )
∣∣s+ 1

2
∣∣ν(h2)∣∣s+ 1

2

∫
F×\I

∑
G′

F

Φ(h−1
1 ξah2)η(a)|a|2s+1 d×a

the function Z

(
α
s+ 1

2
F ,Φ, F

)
is equal to∫∫
φ(h2)φ̃(h1)KΦ(h1, h2, s) dh1 dh2.

The integrations with respect to h1 and h2 are taken over G′
FZ

′
A\G′

A. A similar result is of

course valid for Z

(
α
s+ 1

2
F ,Φ, F̃

)
. If K̃Φ(h1, h2, s) is∣∣ν(h−1

1 )
∣∣s+ 1

2
∣∣ν(h2)∣∣s+ 1

2

∫
F×\I

∑
G′

F

Φ(h−1
1 ξah2)η

−1(a)|a|2s+1 d×a

then Z

(
α
s+ 1

2
F ,Φ, F̃

)
is equal to∫∫

φ(h2)φ̃(h2)K̃Φ(h1, h2, s) dh1 dh2.

We first study

θ(s,Φ) =

∫
F×\I

∑
ξ ̸=0

Φ(ξa)η(a)|a|2s+1
F d×a

and

θ̃(s,Φ) =

∫
F×\I

∑
ξ ̸=0

Φ(ξa)η−1(a)|a|2s+1
F d×a.

The sums are taken over G′
F , the set of non-zero elements of M ′. Choose two non-negative

continuous functions F0 and F1 on the positive real numbers so that F0(t) + F1(t) = 1,
F1(t) = F0(t

−1), and so that F0 vanishes near zero while F1 vanishes near infinity. If

θi(s,Φ) =

∫
F×\I

∑
ξ ̸=0

Φ(ξa)η(a)|a|2s+1Fi
(
|a|
)
d×a

we have
θ(s,Φ) = θ0(s,Φ) + θ1(s,Φ).

In the same way we may write

θ̃(s,Φ) = θ̃0(s,Φ) + θ̃1(s,Φ),

where θ0(s,Φ) and θ̃0(s,Φ) are entire functions of s which are bounded in vertical strips.
Applying the Poisson formula we obtain

Φ(0) +
∑
ξ ̸=0

Φ(ξa) = |a|−4
F

Φ′(0) +
∑
ξ ̸=0

Φ′(ξa−1)

.
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Thus, for Re s sufficiently large, θ1(s,Φ) is equal to the sum of∫
F×\I

∑
ξ ̸=0

Φ′(ξa−1)η(a)|a|2s−3F1

(
|a|
)
d×a,

which, after the substitution of a−1 for a, is seen to equal θ̃0(1− s,Φ′), and∫
F×\I

{
Φ′(0)|a|−4 − Φ(0)

}
η(a)|a|2s+1F1

(
|a|
)
d×a.

Thus if

λ(s) =

∫
F×\I

|a|sη(a)F1

(
|a|
)
d×a

the function θ(s,Φ) is equal to

θ0(s,Φ) + θ̃0(1− s,Φ′) + Φ′(0)λ(2s− 3)− Φ(0)λ(2s+ 1).

A similar result is valid for θ̃(s,Φ). The function

θ0(s,Φ) + θ̃0(1− s,Φ′)

is entire and bounded in vertical strips and does not change when s and Φ are replaced by
1− s and Φ′.

If η is not of the form η(a) = |a|r the function λ(s) vanishes identically. If η is trivial and
I0 is the group of idèles of norm 1

λ(s) =

∫
F×\I

|a|2s+1Fj
(
|a|
)
d×a.

It is shown in [10] that this function is meromorphic in the whole plane and satisfies
λ(s) + λ(−s) = 0. If F is a number field, its only pole is at s = 0 and is simple. Moreover
it is bounded at infinity in vertical strips of finite width. If F is a function field its poles
are simple and lie at the zeros of 1− q−s. Here q is the number of elements in the field of
constants.

Thus θ(s,Φ) is meromorphic in the whole plane and is equal to θ̃(1− s,Φ′). If hΦg is the
function x→ Φ(gxh) then

KΦ(h1, h2, s) =
∣∣ν(h−1

1 )
∣∣s+ 1

2
∣∣ν(h2)∣∣s+ 1

2 θ(s, h2Φh
−1
1 )

while

K̃Φ(h1, h2, s) =
∣∣ν(h−1

1 )
∣∣s+ 1

2
∣∣ν(h2)∣∣s+ 1

2 θ̃(s, h2Φh
−1
1 ).

Since the Fourier transform of h2Φh
−1
1 is∣∣ν(h2)∣∣−2∣∣ν(h1)∣∣2h1Φ′h−1

2

we have
KΦ(h1, h2, s) = K̃Φ′(h2, h1, s).

The functional equation of the lemma follows. So do the other assertions except the fact that

the functions Z

(
α
s+ 1

2
F ,Φ, F

)
and Z

(
α
s+ 1

2
F ,Φ, F̃

)
are entire when η is trivial and π is not of

the form g → χ
(
ν(g)

)
. In this case the functions φ and φ̃ are orthogonal to the constant

functions and the kernels KΦ(h1, h2, s) and K̃Φ′(h1, h2, s) may be replaced by

K ′
Φ′(h1, h2, s) = K̃Φ′(h1, h2, s) + Φ(0)λ(2s+ 1)− Φ′(0)λ(2s− 3)
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and
K̃ ′

Φ′(h1, h2, s) = K̃Φ′(h1, h2, s) + Φ′(0)λ(2s+ 1)− Φ(0)λ(2s− 3).

The functional equation of the kernels is not destroyed but the poles disappear.
The theorem follows easily from the lemma. In fact suppose that the finite set of places

S is so chosen that for v not in S

Ξ(s,Φ0
v, u

0
v, ũ

0
v) = 1

if Φ0
v is the characteristic function of M(2, Ov). If v is in S choose Φiv, u

i
v, ũ

i
v, 1 ⩽ i ⩽ nv, so

that
nv∑
i=1

Ξ(s,Φi
v, u

i
v, ũ

i
v) = ebvs

where bv is real. If α is a function from S to the integers and, for each v in S, 1 ⩽ α(v) ⩽ nv,
set

Φα(g) =

∏
v∈S

Φα(v)
v (gv)


∏
v/∈S

Φ0
v(gv)


and set

Fα(g) =

∏
v∈S

〈
πv(gv)u

α(v)
v , ũα(v)v

〉
∏
v/∈S

〈
πv(gv)u

0
v, ũ

0
v

〉.
Then ∑

α

Z

(
α
s+ 1

2
F ,Φα, Fα

)
= cbsL(s, π)

where b is real. The required analytic properties of L(s, π) follow immediately.
To prove the functional equation choose for each v the function Φv and the vectors uv

and ũv so that
Ξ(s,Φv, uv, ũv)

is not identically 0. We may suppose that, for almost all v, Φv = Φ0
v, uv = u0v, and ũv = ũ0v.

Let
Φ(g) =

∏
v

Φv(gv)

and let
F (g) =

∏
v

〈
πv(gv)uv, ũv

〉
.

Then

Z

(
α
s+ 1

2
F ,Φ, F

)
= L(s, π)

∏
v

Ξ(s,Φv, uv, ũv)

and

Z

(
α

3
2
−s

F ,Φ′, F̃

)
= L(1− s, π̃)

∏
v

Ξ̃(1− s,Φ′
v, uv, ũv).

Since
Ξ̃(1− s,Φ′

v, uv, ũv) = hvϵ(s, πv, ψv)Ξ(s,Φv, uv, ũv)
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the functional equation of the lemma implies that

L(s, π) =

{∏
v

hv

}
ϵ(s, π)L(1− s, π̃).

Since, by a well-known theorem, the algebra M ′ is split at an even number of places the
product

∏
v hv equals 1.

Corollary 14.3. If π is a constituent of A′ which is not of the form g → χ
(
ν(g)

)
then

for any quasi-character ω of F× the functions L(s, ω ⊗ π) and L(s, ω−1 ⊗ π̃) are entire and
bounded in vertical strips of finite width. Moreover they satisfy the functional equation

L(s, ω ⊗ π) = ϵ(s, ω ⊗ π)L(1− s, ω−1 ⊗ π̃).

We have only to observe that if π is a constituent of A′ then ω ⊗ π is also.
Now we change the notation slightly and let π′ =

⊗
π′
v be an irreducible admissible

representation of H′. We want to associate to it a representation π =
⊗

πv of H, the Hecke
algebra of GL(2,A). If M ′

v is split then πv is just the representation corresponding to π′
v by

means of the isomorphism θv of GFv and G′
Fv
. IfM ′

v is not split πv is the representation πv(π
′
v)

introduced in the fourth and fifth paragraphs. In both cases πv is defined unambiguously by
the following relations

L(s, ωv ⊗ πv) = L(s, ωv ⊗ π′
v)

L(s, ωv ⊗ π̃v) = L(s, ωv ⊗ π̃′
v)

ϵ(s, ωv ⊗ πv, ψv) = ϵ(s, ωv ⊗ π′
v, ψv)

which holds for all quasi-characters ωv of F
×
v .

Applying the previous corollary and Theorem 11.3 we obtain the following theorem.

Theorem 14.4. If π′ is a constituent of A′ and π′
v is infinite-dimensional at any place where

M ′ splits then π is a constituent of A0.

Some comments on the assumptions are necessary. If π′ is a constituent of A′ we can
always find a quasi-character of ω of F×\I such that ω⊗π′ is unitary. If π′ =

⊗
π′
v the same

is true of the representations π′
v. In particular if M ′ splits at v the representation π′

v will not
be finite-dimensional unless it is one-dimensional. Various density theorems probably prevent
this from happening unless π′ is of the form g → χ

(
ν(g)

)
. If π′ is of this form then all but a

finite number of the representations πv are one-dimensional. But if M ′ does not split at v the
representation πv is infinite-dimensional. Thus π cannot act on a subspace of A. However it
can still be a constituent of A. This is in fact extremely likely. Since the proof we have in
mind involves the theory of Eisenstein series we prefer to leave the question unsettled for
now.
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§15. Some orthogonality relations

It is of some importance to characterize the range of the map π′ → π from the con-
stituents of A′ to those of A discussed in the last chapter. In this paragraph we take up the
corresponding local question. Suppose F is a local field and M ′ is the quaternion algebra
over F . Let G′

F be the group of invertible elements of M ′. We know how to associate to
every irreducible admissible representation π′ of H′

F an irreducible admissible representation
π = π(π′) of HF the Hecke algebra of GL(2, F ).

Theorem 15.1. Suppose F is non-archimedean. Then the map π′ → π is injective and
its image is the collection of special representations together with the absolutely cuspidal
representations.

The proof requires some preparation. We need not distinguish between representations of
G′
F and H′

F or between representations of GF and HF . An irreducible admissible representa-
tion π of GF is said to be square-integrable if for any two vectors u1 and u2 in the space of π
and any two vectors ũ1 and ũ2 in the space of π̃ the integral∫

ZF \GF

〈
π(g)u1, ũ1

〉〈
u2, π̃(g)ũ2

〉
dg

is absolutely convergent. Since π̃ is equivalent to η−1 ⊗ π if

π

((
a 0
0 a

))
= η(a)I

this is equivalent to demanding that∫
ZF \GF

∣∣∣〈π(g)u1, ũ1〉∣∣∣2∣∣η−1(det g)
∣∣ dg

be finite for every u1 and ũ1.
If π is square-integrable and ω is a quasi-character of F× then ω ⊗ π is square integrable.

We can always choose ω so that ω2η is a character. If η is a character choose u0 different
from 0 in the space V of π. Then

(u1, u2) =

∫
ZF \GF

〈
π(g)u1, u0

〉〈
π(g)u2, u0

〉
dg

is a positive-definite form on the space V of π so that π is unitary and square-integrable in
the usual sense.

The Schur orthogonality relations when written in the form∫
ZF \GF

〈
π(g)u1, ũ1

〉〈
u2, π̃(g)ũ2

〉
dg =

1

d(π)
⟨u2, ũ1⟩⟨u1, ũ2⟩

are valid not only for representations which are square-integrable in the usual sense but also
for representations which are square-integrable in our sense. The formal degree d(π) depends
on the choice of Haar measure. Notice that d(ω ⊗ π) = d(π).

The absolutely cuspidal representations are certainly square-integrable because their
matrix elements are compactly supported modulo ZF .

Lemma 15.2. The special representations are square-integrable.
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Suppose σ = σ(α
1/2
F , α

−1/2
F ). Since

χ⊗ σ = σ(χα
1/2
F , χα

−1/2
F )

it is enough to show that σ is square-integrable. If φ belongs to Bs(α1/2
F , α

−1/2
F ) and φ̃ belongs

to B(α−1/2
F , α

1/2
F ) then

f(g) =
〈
φ, ρ(g−1)φ̃

〉
is the most general matrix coefficient of σ. Here B(α−1/2

F , α
1/2
F ) is the space of locally constant

functions on NFAF\GF and Bs(α1/2
F , α

−1/2
F ) is the space of locally constant functions φ on

GF that satisfy

φ

((
a1 x
0 a2

)
g

)
=

∣∣∣∣a1a2
∣∣∣∣φ(g)

and ∫
φ

(
w

(
1 x
0 1

))
dx = 0.

Since

GF =
⋃
n⩾0

ZFK

(
ϖ−n 0
0 1

)
K

we can choose the Haar measure on ZF\GF so that∫
ZF \GF

∣∣f(g)∣∣2 dg
is equal to ∑

n⩾0

c(n)

∫ ∣∣∣∣∣∣f
(
k1

(
ϖ−n 0
0 1

)
k2

)∣∣∣∣∣∣
2

dk1 dk2

where c(0) = 1 and

c(n) = qn
(
1 +

1

q

)
if n > 0. Here q = |ϖ|−1. Since f is K-finite on both sides and its translates are also matrix
coefficients we need only show that

∞∑
n=0

∣∣∣∣∣∣f
((

ϖ−n 0
0 1

))∣∣∣∣∣∣
2

qn

is finite. It will be more than enough to show that

Φ(a) = f

((
a 0
0 1

))
= O

(
|a|−1

)
as a→ ∞.

We recall that

Φ(a) =

∫
F

φ

(
w

(
1 x
0 1

))
φ̃

(
w

(
1 x
0 1

)(
a 0
0 1

))
dx.
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The function

φ1(x) = φ

(
w

(
1 x
0 1

))
is integrable and the function

φ2(x) = φ̃

(
w

(
1 x
0 1

))
is bounded and locally constant. Moreover

Φ(a) =

∫
F

φ1(x)φ2(a
−1x) dx.

Suppose φ2(x) = φ2(0) for |x| ⩽M . If |a| ⩾ 1

Φ(a) = φ2(0)

∫
{x | |x|⩽|a|M }

φ1(x) dx+

∫
{x | |x|>|a|M }

φ1(x)φ2(a
−1x) dx.

Since ∫
F

φ1(x) dx = 0

Φ(a) is equal to ∫
{x | |x|>|a|M }

(
φ2(a

−1x)− φ2(0)
)
φ1(x) dx.

The function φ2 is bounded so we need only check that∫
{x | |x|>|a|}

∣∣φ1(x)
∣∣ dx = O

(
|a|−1

)
as |a| → ∞. The absolute value of the function φ is certainly bounded by some multiple of

the function φ′ in B(α1/2
F , α

−1/2
F ) defined by

φ′

((
a1 x
0 a2

)
k

)
=

∣∣∣∣a1a2
∣∣∣∣

if k is in GL(2, OF ). Since

w

(
1 x
0 1

)
=

(
0 1

−1 −x

)
=

(
x−1 0
0 x

)(
1 y
0 1

)
k

with y in F and k in GL(2, OF ), if |x| > 1∫
{x | |x|>|ϖ|−n }

∣∣φ1(x)
∣∣ dx = O

 ∞∑
k=n+1

|ϖ|k
 = O

(
|ϖ|n

)
.

Since we need to compare orthogonality relations on the two groups GF = GL(2, F ) and
G′
F we have to normalize their Haar measure simultaneously. There are two ways of doing

this. We first describe the simplest. Choose a non-trivial additive character ψ of F . Then
ψM(x) = ψ(trx) and ψM ′(x) = ψ

(
τ(x)

)
are non-trivial additive characters of M =M(2, F )

and M ′. Let dx and dx′ be the Haar measures on M and M ′ self-dual with respect to ψM
and ψM ′ . Then

d×x = |x|−1
M dx = |detx|−2

F dx
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and
d×x′ = |x′|−1

M ′ dx
′ =
∣∣ν(x′)∣∣−2

F
dx′

are Haar measure on GF and G′
F .

The second method takes longer to describe but is more generally applicable and for this
reason well worth mentioning. Suppose G and G′ are two linear groups defined over F and
suppose there is an isomorphism φ of G′ with G defined over the finite Galois extension K.
Suppose the differential form ω on G is defined over F . In general the form ω′ = φ∗ω on
G′ is not defined over F . Suppose however that ω is left and right invariant and under an
arbitrary isomorphism it is either fixed or changes sign. Suppose moreover that for every σ
in G(K/F ) the automorphism σ(φ)φ−1 of G is inner. Then

σ(ω′) = σ(φ)∗σω = σ(φ)∗ω = φ∗
(
σ(φ)φ−1

)
∗ω = φ∗ω = ω′

and ω′ is also defined over F . If ξ is another such isomorphism of G′ with G then

ξ∗(ω) = φ∗(ξφ
−1)∗ω = ±φ∗ω = ±ω′

and the measures associated to φ∗ω and ξ∗ω are the same. Thus a Tamagawa measure on
GF determines one on G′

F .
We apply this method to the simple case under consideration. If

x =

(
a b
c d

)
is a typical element of M then

µ = da ∧ db ∧ dc ∧ dd
is a differential form invariant under translations and the associated measure is self-dual
with respect to ψM . If ω = (detx)−2µ then ω is an invariant form on G and the associated
measure is d×x.

If K is any separable quadratic extension of F we may imbed K in both M and M ′.
Let σ be the non-trivial element of G(K/F ). There is a u in M and a u′ in M ′ such that
M = K + Ku and M ′ = K + Ku′ while uxu−1 = xσ and u′xu′−1 = xσ for all x in K.
Moreover u2 is a square in F× and u′2 = γ is an element of F× which is not the norm of
any element of K. We may suppose that u2 = 1. If we let K act to the right the algebra
L = K ⊗F K is an algebra over K. The automorphism σ acts on L through its action on the
first factor. There is an isomorphism L → K ⊕K which transforms σ into the involution
(x, y) → (y, x). In particular every element of K ⊗ 1 is of the form δδσ with δ in L. Choose δ
so that γ = δδσ. If

M ′
K =M ′ ⊗F K = L⊗ Lu′

and
MK =M ⊗F K = L⊗ Lu,

let φ be the linear map from M ′
K to MK which sends x+ yu′ to x+ yδu. The map φ is easily

seen to be an isomorphism of M ′
K and MK as algebras over K. Moreover σ(φ)φ−1 takes

x+ yu to
x+ yδσδ−1u = δ−1(x+ yu)δ

and is therefore inner. Thus φ determines an isomorphism of G′ the multiplicative group of
M ′ with G the multiplicative group of M . The isomorphism φ is defined over K and σ(φ)φ−1

is inner. Let |ω′| be the Haar measure on G′
F associated to the Haar measure |ω| = d×x on

GF . We want to show that |ω′| is just d×x′.
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Let θ be an invariant form on K. The obvious projections of M = K ⊕Ku on K define
differential forms θ1 and θ2 on M . Let θ1 ∧ θ2 = cµ. In the same way the projections of
M ′ = K ⊕Ku′ on K define differential forms θ′1 and θ′2 on M ′. If we extend the scalars from
F to K we can consider the map x→ xδ of L into itself. We can also regard θ as a form on
L and then its inverse image is N(δ)θ = γθ. Thus

φ∗(θ1 ∧ θ2) = γθ′1 ∧ θ′2.
Thus if µ′ = φ∗(µ)

cµ′ = γθ′1 ∧ θ′2.
Suppose c1|θ| is self-dual with respect to the character ψK(x) = ψ

(
τ(x)

)
on K. Then∫ {∫

Φ(a, b)ψK(ax+ byσ)
∣∣θ(a)∣∣∣∣θ(b)∣∣}∣∣θ(x)∣∣∣∣θ(y)∣∣ = c−4

1 Φ(0, 0)

and

|γ|2F
∫ {∫

Φ(a, b)ψK(ax+ byσγ)
∣∣θ(a)∣∣∣∣θ(b)∣∣}∣∣θ(x)∣∣∣∣θ(y)∣∣ = c−4

1 Φ(0, 0).

If x+ yu belongs to M with x and y in K then, since τ(u) = 0,

τ(x+ yu) = τ(x) = TrK/F (x).

In the same way
τ(x+ yu′) = TrK/F (x).

Thus

ψM
(
(x+ yu)(a+ bu)

)
= ψK(xa+ ybσ)

ψM ′
(
(x+ yu′)(a+ bu′)

)
= ψK(xa+ ybσγ).

Thus c21|θ1 ∧ θ2| is self-dual with respect to ψM and c21|γ|F |θ′1 ∧ θ′2| is self-dual with respect to
ψM ′ . Since c21 = |c|F the measure |µ′| is self-dual with respect to ψM ′ . Finally ω′ = ν(x′)−2 dx′

so that |ω′| is just d×x′. Thus the two normalizations lead to the same result.
If b is in M or M ′ the eigenvalues of b are the roots α1 and α2 of the equation

X2 − τ(b)X + ν(b) = 0.

If b is in GF or G′
F it is said to be regular if α1 and α2 are distinct; otherwise it is singular.

We set

δ(b) =

∣∣∣∣∣(α1 − α2)
2

α1α2

∣∣∣∣∣
F

.

The set of singular elements is of measure 0. If b is regular the subalgebra of M or M ′

generated by b is a separable quadratic extension E of F and the multiplicative group of
E is a Cartan subgroup of GF or G′

F . To obtain a set of representatives for the conjugacy
classes of Cartan subgroups of GF or G′

F we choose once and for all a set S ′ of representatives
for the classes of separable quadratic extensions of F . We also choose for each E in S ′ an
imbedding of E in M and in M ′. The multiplicative group of E may be regarded as a Cartan
subgroup BF of either GF or G′

F . The symbol S ′ will also stand for the collection of Cartan
subgroups obtained in this way. It is a complete set of representatives for the conjugacy
classes of Cartan subgroups of G′

F . If S is the result of adjoining to S ′ the group AF of
diagonal matrices then S is a complete set of representatives for the conjugacy classes of
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Cartan subgroups of GF . If BF is in S ′ we choose the Tamagawa measure µB on BF as in
the seventh paragraph. The analogue for G′

F of the formula (7.2.2) is∫
Z′
F \G′

F

f(g)ω′
0(g) =

∑
S′

1

2

∫
ZF \BF

δ(b)

{∫
BF \G′

F

f(g−1bg)ω′
B(g)

}
µ0
B(b).

Let B̂F be the set of regular elements in BF and let

C =
⋃
S′

ZF\B̂F .

We may regard C as the discrete union of the spaces ZF\B̂F . We introduce on C the measure
µ(c) defined by ∫

C

f(c)µ(c) =
1

2

∑
S′

1

measure(ZF\BF )

∫
ZF \B̂F

f(b)δ(b)µ0
B(b).

Lemma 15.3. Let η be a quasi-character of F× and let Ω′(η) be the set of equivalence classes
of irreducible representations π of G′

F such that π(a) = η(a) for a in Z ′
F , which we identify

with F×. If π1 and π2 belong to Ω′(η) and

f(g) = χπ1(g)χπ̃2(g)

where χπ(g) = Trπ(g) then ∫
C

f(c)µ(c) = 0

if π1 and π2 are not equivalent and ∫
C

f(c)µ(c) = 1

if they are.

Since Z ′
F\G′

F is compact we may apply the Schur orthogonality relations for characters
to see that

1

measureZ ′
F\G′

F

∫
Z′
F \G′

F

f(g)ω′
0(g)

is 0 if π1 and π2 are not equivalent and is 1 if they are. According to the integration formula
remarked above this expression is equal to

1

measureZ ′
F\G′

F

∑
S′

1

2

∫
ZF \BF

f(b)δ(b)(measureBF\G′
F )µ

0
b(b).

Since
measureZ ′

F\G′
F = (measureZF\BF )(measureBF\G′

F )

the lemma follows. Observe that ZF and Z ′
F tend to be confounded.

There is form of this lemma which is valid for GF .

Lemma 15.4. Let η be a quasi-character of F×. Let Ω0(η) be the set of equivalence classes of
irreducible admissible representations π of GF which are either special or absolutely cuspidal
and satisfy π(a) = η(a) for all a in ZF . Suppose π1 and π2 belong to Ω0(η). Let f = fπ1,π2 be
the function

f(b) = χπ1(b)χπ̃2(b)
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on C. Then f is integrable and ∫
C

f(c)µ(c)

is 1 if π1 and π2 are equivalent and 0 otherwise.

It is enough to prove the lemma when η is a character. Then χπ̃ is the complex conjugate
of χπ and fπ,π is positive. If the functions fπ,π are integrable then by the Schwarz inequality
all the functions fπ1,π2 are integrable.

Let Ω(η) be the set of irreducible admissible representations π of GF such that π(a) = η(a)
for a in ZF . If φ is a locally constant function on GF such that

φ(ag) = η−1(a)φ(g)

for a in ZF and such that the projection of the support of φ on ZF\GF is compact then we
define π(φ), if π is in Ω(η), by

π(φ) =

∫
ZF \GF

φ(g)π(g)ω0(g).

It is easily seen that π(φ) is an operator of finite rank and that the trace of π(φ) is given by
the convergent integral ∫

ZF \GF

φ(g)χπ(g)ω
0(g).

In fact this follows from the observation that there is a φ1 in HF such that

φ1(g) =

∫
ZF

φ1(ag)η(a)µZ(a)

and the results of the seventh paragraph.
Suppose π1 is absolutely cuspidal and unitary and acts on the space V1. Suppose also

that π1(a) = η(a) for a in ZF . Choose a unit vector u1 and V1 and set

φ(g) = d(π1)
(
u1, π1(g)u1

)
.

Since π1 is integrable it follows from the Schur orthogonality relations that π2(φ) = 0 if π2 in
Ω(η) is not equivalent to π1 but that π2(φ) is the orthogonal projection on Cu1 if π2 = π1.
In the first case Trπ2(φ) = 0 and in the second Tr π2(φ) = 1.

On the other hand

Tr π2(φ) =

∫
ZF \GF

χπ2(g)φ(g)ω
0(g).

We apply formula (7.2.2) to the right side to obtain∑
S

1

2

∫
ZF \BF

χπ2(b)δ(b)

{∫
BF \GF

φ(g−1bg)ωB(g)

}
µ0
B(g).

If BF belongs to S ′ the inner integral is equal to

1

measureZF\BF

d(π1)

∫
ZF \GF

(
u1, π1(g

−1bg)u1
)
ωB(g)

which by Proposition 7.5 is equal to

1

measureZF\BF

χπ̃1(b).
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If BF is AF the group of diagonal matrices the inner integral is, apart from a constant relating
Haar measures, the product of d(π1) and the integral over GL(2, OF ) of∫

F

π1((1 −x
0 1

)
b

(
1 x
0 1

))
π1(k)u1, π1(k)u1

 dx.

If

b =

(
α1 0
0 α2

)
this is ∣∣∣∣1− α2

α1

∣∣∣∣−1 ∫
F

π1(b)π1((1 x
0 1

))
π1(k)u1, π1(k)u1

 dx

which we know is 0. Collecting these facts together we see that f = fπ2,π1 is integrable on C
if π1 is absolutely cuspidal and that its integral has the required value.

To complete the proof all we need do is show that if π = σ(χ
1/2
αF , χ

−1/2
F ) is a special

representation then f = fπ,π is integrable on C and∫
C

f(c)µ(c) = 1.

If π′ is the one-dimensional representation g → χ
(
ν(g)

)
of G′

F then π = π(π′). To prove the

existence of χπ we had to show in effect that if BF was in S ′ and b was in B̂F then

χπ(b) = −χπ′(b).

Thus fπ,π = fπ′,π′ and the assertion in this case follows from the previous lemma.
The relation just used does not seem to be accidental.

Proposition 15.5. Suppose π′ is an irreducible admissible representation of G′
F and π = π(π′)

the corresponding representation of GF . If BF is in S ′ and b is in B̂F

χπ′(b) = −χπ(b).

We may suppose that π′ is not one-dimensional and that π is absolutely cuspidal. We
may also suppose that they are both unitary. We take π in Kirillov form with respect to
some additive character ψ. If φ is in S(F×) the function

φ′ = π

((
0 1

−1 0

))
φ

is also.
Since the measures µ and µ′ are self-dual with respect to the characters ψM and ψM ′

Lemma 13.1.1 and Proposition 4.5 show us that for any λ in F×

(15.5.1)

∫
GF

φ(det g)
(
π(g−1)u, u

)
|det g|ψM(λg)ω(g)

is equal to
φ′(λ2)η−1(λ)|λ|−2
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and that

(15.5.2)

∫
G′

F

φ(det g)
(
π′(g−1)u′, u′

)
|det g|ψM ′(λg)ω′(g)

is equal to
−φ′(λ2)η−1(λ)|λ|−2.

Here u is a unit vector in the space of π and u′ a unit vector in the space π′. In any case
(15.5.1) is just the negative of (15.5.2).

If we use formula (7.2.1) to express the integral (15.5.1) as a sum over S we obtain

1

2

∑
S′

1

measureZF\BF

∫
BF

φ(det b)|det b|χπ(b
−1)

d(π)
δ(b)ψM(λb)µB(b).

The contribution from AF vanishes as in the previous lemma. The other integrals have been
simplified by means of Proposition 7.5. There is of course an obvious analogue for the group
G′
F of the formula (7.2.1). If we apply it we see that (15.5.2) is equal to

1

2

∑
S′

1

measureZF\BF

∫
BF

φ(det b)
∣∣ν(b)∣∣χπ′(b−1)

d(π′)
δ(b)ψM ′(λb)µB(b)

if ν(b) is the reduced norm. Of course on BF the functions ν(b) and det b are the same.

Choose B0
F in S ′ and b0 in B̂0

F . We shall show that

χπ′(b−1
0 )

d(π′)
=

−χπ(b−1
0 )

d(π)
.

The orthogonality relations of the previous two lemmas will show that d(π) = d(π′) and we
will conclude that

χπ′(b−1
0 ) = −χπ(b−1

0 ).

The norm and the trace of b0 are the same whether it is regarded as an element of M

or of M ′. In fact if B̂0
F is the multiplicative group of E in S ′ the norm and the trace are in

both cases the norm and the trace of b0 as an element of E. Since b0 and its conjugate in E
are conjugate in GF and G′

F we can choose an open set U in E× containing both b0 and its
conjugate so that ∣∣ν(b)∣∣χπ′(b−1)δ(b) =

∣∣ν(b0)∣∣χπ′(b−1
0 )δ(b0)

if b is in U . Lemma 7.4.2 shows that χπ is locally constant in B̂0
F . Thus we can also suppose

that
|det b|χπ(b−1)δ(b) = |det b0|χπ(b−1

0 )δ(b0)

if b is in U . Suppose α0 and β0 are the trace and norm of b0. We can choose a positive integer
m so that if α− α0 and β − β0 belong to pmF the roots of

X2 − αX + b

belong to E and in fact lie in U .
Let ξ(λ) be the expression (15.5.1) regarded as a function of λ. Keeping in mind the fact

that
ψM(λb) = ψM ′(λb) = ψ(λ tr b),
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we compute

(15.5.3)
1

measure p−m−n
F

∫
p−m−n
F

ξ(λ)ψ(−λα0) dλ

where p−nF is the largest ideal on which ψ is trivial. Since

1

measure p−m−n
F

∫
p−m−n
F

ψ
(
λ(tr b− α0)

)
dλ

is 0, unless tr b− α0 belongs to pmF when it is 1, the integral (15.5.3) is equal to

1

2

∑
S′

1

measureZF\BF

∫
V (BF )

φ(det b)|det b|χπ(b
−1)

d(π)
δ(b)µB(b)

if
V (BF ) = { b ∈ BF | tr b− α0 ∈ pmF }.

If we take φ to be the characteristic function of

{ β ∈ F | β − β0 ∈ pmF }
the summation disappears and we are left with

1

2
· 1

measureZF\BF

|det b0|
χπ(b

−1
0 )

d(π)
δ(b0)

∫
V (B0

F )

φ(det b)µB(b).

If we replace ξ(λ) by the expression (15.5.2) the final result will be

1

2
· 1

measureZF\BF

∣∣ν(b0)∣∣χπ′(b−1
0 )

d(π)
δ(b0)

∫
V (B0

F )

φ(det b)µB(b).

Since these differ only in sign the proposition follows.
We are now in a position to prove Theorem 15.1. The orthogonality relations and the

previous lemma show that the map π′ → π is injective because the map takes Ω′(η) into
Ω0(η). It is enough to verify that V is surjective when η is unitary. Let L2(η) be the space of
all measurable functions f on ⋃

S′

B̂F

such that f(ab) = η(a)f(b) if a is in ZF and∫
C

∣∣f(c)∣∣2µ(c)
is finite. By the Peter-Weyl theorem the set of functions χπ′ , π′ ∈ Ω′(η), form an orthonormal
basis of L2(η). The family χπ, π ∈ Ω0(η), is an orthonormal family in L2(η). By the previous
proposition the image of Ω′(η) in Ω0(η) is actually an orthonormal basis and must therefore
be the whole family.

We observe that it would be surprising if the relation d(π) = d(π′) were not also true
when π′ is one-dimensional. The facts just discussed are also valid when F is the field of real
numbers. They follow immediately from the classification and the remarks at the end of the
seventh paragraph.
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We conclude this paragraph with some miscellaneous facts which will be used elsewhere.
The field F is again a non-archimedean field. Let K = GL(2, OF ) and let K0 be the set of all
matrices (

a b
c d

)
in K for which c ≡ 0 (mod pF ). Suppose π is an irreducible admissible representation of GF

in the space V . We are interested in the existence of a non-zero vector v in V such that

π

((
a b
c d

))
v = ω1(a)ω2(d)v

for all matrices in K0 while

π

((
0 1
ϖ 0

))
v = ω0v

ω0 is a constant and ω1 and ω2 two characters of UF . The coefficient ϖ is a generator of pF .
Since (

0 ϖ−1

1 0

)(
a b
c d

)(
1 1
ϖ 0

)
=

(
d ϖ−1c
ϖb a

)
such a vector can exist only if ω1 = ω2 = ω.

Lemma 15.6. Suppose ω and ω0 are given. Let π be ρ(µ1, µ2) which may not be irreducible.
There is a non-zero vector φ in B(µ1, µ2) satisfying the above conditions if and only if the
restrictions of µ1 and µ2 to UF , the group of units of OF , are equal to ω and

ω2
0 = µ1(−ϖ)µ2(−ϖ)

Moreover φ if it exists is unique apart from a scalar factor.

It is easily seen that K is the disjoint union of K0 and

K0

(
0 1

−1 0

)
K0 = K0wK0

Let φ1 be the function which is 0 on K0wK0 and on K0 is given by

φ1

((
a b
c d

))
= ω(ad).

Let φ2 be the function which is 0 on K0 and takes the value ω(a′d′ad) at(
a′ b′

c′ d′

)(
0 1

−1 0

)(
a b
c d

)
.

If φ in B(µ1, µ2) satisfies

π

((
a b
c d

))
φ = ω(ad)φ

for all matrices in K0 then the restrictions of φ to K must be a linear combination of φ1 and
φ2. This already implies that ω is the restriction of µ1 and µ2 to UF . Suppose φ = aφ1 + bφ2.
Since

π

((
0 1
ϖ 0

))
φ1 = |ϖ|1/2µ1(ϖ)µ2(−1)φ2
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and

π

((
0 1
ϖ 0

))
φ2 = |ϖ|−1/2µ2(−ϖ)φ1

while µ1(−1) = µ2(−1) = ω(−1), we have

ω0b = |ϖ|1/2µ1(−ϖ)a

and
ω0a = |ϖ|−1/2µ2(−ϖ)b

Apart from scalar factors there is at most one solution of this equation. There is one
non-trivial solution if and only if ω2

0 = µ1(−ϖ)µ2(−ϖ).

Lemma 15.7. Suppose π = σ(µ1, µ2) is the special representation corresponding to the

quasi-characters µ1 = χα
−1/2
F and µ2 = χα

1/2
F . There is a non-zero vector v in the space of π

such that

π

((
a b
c d

))
v = ω(ad)v

for all matrices in K0 while

π

((
0 1
ϖ 0

))
v = ω0v

if and only if ω is the restriction of χ to UF and ω0 = −χ(−ϖ). If v exists it is unique apart
from a scalar.

We first let π act on Bs(µ2, µ1) a subspace of B(µ2, µ1). The condition on ω follows from
the previous lemma which also shows that ω0 must be ±χ(−ϖ). If we take the plus sign we
see that v must correspond to the function whose restriction to K is constant. Since this
function does not lie in Bs(µ2, µ1) only the minus sign is possible. To see the existence we let
π act on

Bs(µ1, µ2) = B(µ1, µ2)/Bf (µ1, µ2)

In B(µ1, µ2) there are two functions satisfying the conditions of the lemma. One with
ω0 = −χ(−ϖ) and one with ω0 = χ(−ϖ). One of the two, and we know which, must have a
non-zero projection on Bs(µ1, µ2).

The above lemmas together with the next one sometimes allow us to decide whether or
not a given representation is special.

Lemma 15.8. If the absolutely cuspidal representation π acts on V there is no non-zero
vector v in V such that

π

((
0 1
ϖ 0

))
v = ω0v

and

π

((
a b
c d

))
v = ω(ad)v

for all matrices in K0.
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We may suppose that π is the Kirillov form with respect to an additive character ψ such
that OF is the largest ideal on which ψ is trivial. Then v is a function φ in S(F×). If a is in
UF and b is in F× we must have φ(ab) = ω(a)φ(b). Moreover if b is in F× and x is in OF

then φ(b) = ψ(xb)φ(b). Thus φ(b) = 0 if b is not in OF . Consequently φ̂(ν, t) is 0 if ν ̸= ω−1

but φ̂(ω−1, t) is a polynomial of the form

amt
m + · · ·+ ant

n

with aman ̸= 0. If φ1(b) = φ(−ϖb) then

φ̂1(ω
−1, t) =

ω(−1)

t
φ̂(ω−1, t).

Let

π

((
a 0
0 a

))
= η(a)I

and let ν0 be the restriction of η to UF while z0 = η(ϖ). The character ν0 will have to be
equal to ω2. The relation

ω0φ = π

((
0 1
ϖ 0

))
φ = π

((
0 1

−1 0

))
φ1

implies that
ω0φ̂(ω

−1, t) = C(ω−1, t)ω(−1)z0tφ̂(ω
−1, z−1

0 t−1).

By Proposition 2.23, C(ω−1, t) is of the form ct−ℓ with ℓ ⩾ 2. Thus the right side has a pole
at 0 not shared by the left. This is a contradiction.
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§16. An application of the Selberg trace formula

In the fourteenth paragraph we saw that if π′ =
⊗

v π
′
v is a constituent of A′ and π′ is

not of the form g → χ
(
ν(g)

)
where χ is a quasi-character of F×\I then π =

⊗
v πv, with

πv = π(π′
v), is a constituent of A0. Let S be the set of places at which the quaternion algebra

M ′ does not split. Given the results of the previous paragraph it is tempting to conjecture
that the following theorem is valid.

Theorem 16.1. Suppose π =
⊗

πv is a constituent of A0. If for every v in S the represen-
tation πv is special or absolutely cuspidal then for every v there is a representation π′

v such
that πv = π(π′

v) and π
′ =
⊗

π′
v is a constituent of A′.

The existence of π′
v has been shown. What is not clear is that π′ is a constituent of A′. It

seems to be possible to prove this by means of the Selberg trace formula. Unfortunately a
large number of analytical facts need to be verified. We have not yet verified them. However
the theorem and its proof seem very beautiful to us; so we decided to include a sketch of the
proof with a promise to work out the analytical details and publish them later. We must
stress that the sketch is merely a formal argument so that the theorem must remain, for the
moment, conjectural.

We first review some general facts about traces and group representations. Suppose G is
a locally compact unimodular group and Z is a closed subgroup of the centre of G. Let η be
a character of Z. We introduce the space L1(η) of all measurable functions f on G which
satisfy f(ag) = η−1(a)f(g) for all a in Z and whose absolute values are integrable on Z\G.
If f1 and f2 belong to L1(η) so does their product f1 ∗ f2 which is defined by

f1 ∗ f2(g) =
∫
Z\G

f1(gh
−1)f2(h) dh

If f belongs to L1(η) let f ∗ be the function f ∗(g) = f(g−1). It also belongs to L1(η). A
subalgebra B of L1(η) will be called ample if it is dense and closed under the operation
f → f ∗.

Let π be a unitary representation of G on the Hilbert space H such that π(a) = η(a)I for
all a in Z. We do not suppose that π is irreducible. If f belongs to L1(η) we set

π(f) =

∫
Z\G

f(g)π(g) dg

If π(f) is compact for all f in some ample subalgebra B then π decomposes into the direct
sum of irreducible representations no one of which occurs more than a finite number of times.

Lemma 16.1.1. Suppose π1 and π2 are two unitary representations of G such that π1(a) =
η(a)I and π2(a) = η(a)I for all a in Z. Suppose there is an ample subalgebra B of L1(η)
such that π1(f) and π2(f) are of Hilbert-Schmidt class for all f in B.

(i) If for every f in B

traceπ1(f)π1(f
∗) ⩾ traceπ2(f)π2(f

∗)

then π2 is equivalent to a subrepresentation of π1.
(ii) If for every f in B

traceπ1(f)π1(f
∗) = trace π2(f)π2(f

∗)

then π2 is equivalent to π1.
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Let π1 act on H1 and let π2 act on H2. A simple application of Zorn’s lemma shows that
we can choose a pair of closed invariant subspaces M1 and M2, of H1 and H2 respectively,
such that the restrictions of π1 to M1 and π2 to M2 are equivalent and such that the pair
M1, M2 is maximal with respect to this property. Replacing H1 and H2 by the orthogonal
complements of M1 and M2 we may suppose that M1 = 0 and that M2 = 0. To prove the
first assertion of the lemma we have to show that with this assumption H2 = 0. If the second
condition is satisfied we can reverse the roles of π1 and π2 to see that H1 is also 0.

Before beginning the proof we make a simple remark. Suppose σ is an irreducible unitary
representation of G on L and σα, α ∈ A, is an irreducible unitary representation of G on Lα.
Suppose that σ(a) = η(a)I for all a in Z and σα(a) = η(a)I for all a in Z and all α in A.
Suppose that σ is equivalent to none of the σα and that a non-zero vector x in L and vectors
xα in Lα are given. Finally suppose that∑

α

∥∥σα(f)xα∥∥2
is finite for every f in B. Then if ϵ is any positive number there is an f in B such that∑

α

∥∥σα(f)xα∥∥2 < ϵ
∥∥σ(f)x∥∥2.

Suppose the contrary and let L′ be the closure in
⊕

α Lα of{⊗
σα(f)xα

∣∣∣ f ∈ B
}

L′ is invariant under G and the map⊕
σα(f)xα → σ(f)x

may be extended to a continuous G-invariant map A′ of L′ into L. If A′ were 0 then σ(f)x = 0
for all f in B which is impossible. Let A be the linear transformation from

⊕
Lα to L which

is A′ on L′ and 0 on its orthogonal complement. The transformation A commutes with G
and is not 0. Let Aα be the restriction of A to Lα. The transformation Aα is a G-invariant
map of Lα into L and is therefore 0. Thus A is 0. This is a contradiction.

Suppose H2 is not 0. There is an h in B such that π1(h) = 0. If f = h ∗ h∗ then π2(f)
is positive semi-definite and of trace class. It has a positive eigenvalue and with no loss of
generality we may suppose that its largest eigenvalue is 1. Let π2 =

⊗
πβ2 , where π

β
2 acts on

Hβ
2 , be a decomposition of π2 into irreducible representations. There is a β0 and a unit vector

x in Hβ0
2 such that π2(f)x = x. Let π1 =

⊕
πα1 , where π

α
1 acts on Hα

1 , be a decomposition
of π1 into irreducible representations. Choose an orthogonal basis {xα,γ | γ ∈ Γα } of Hα

1

consisting of eigenvectors of π1(f). Since

traceπ1(f) ⩾ traceπ2(f)

the largest eigenvalue of π1(f) is positive. Let it be λ.
If f1 belongs to B, ∑

α

∑
γ

∥∥πα1 (f1)xα,γ∥∥2
is the Hilbert-Schmidt norm of π1(f1) and is therefore finite. By assumption πβ02 is not
equivalent to any of the representations πα1 so that we can apply our earlier remark to the
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vector x and the family of representations πα,γ1 = πα1 together with the family of vectors xα,γ

to infer the existence of an f1 in B such that∑
α

∑
γ

∥∥π1(f1)xα,γ∥∥2 < 1

2λ

∥∥π2(f1)x∥∥2.
Then

traceπ1(f1f)π
∗
1(f1f) = trace π∗

1(f1f)π1(f1f)

is equal to ∑
α,γ

∥∥π1(f1)π1(f)xα,γ∥∥2 ⩽ λ
∑
α,γ

∥∥π1(f1)xα,γ∥∥2.
The right side is less than

1

2

∥∥π2(f1)x∥∥2 = 1

2

∥∥π2(f1f)x∥∥2
which is at most

1

2
traceπ2(f1f)π

∗
2(f1f).

This is a contradiction.
The next lemma is a consequence of the results of [35].

Lemma 16.1.2. Suppose η is trivial so that L1(η) = L1(Z\G). Suppose that B is an ample
subalgebra of L1(η) which is contained in L2(Z\G). If there is a positive constant γ and a
unitary representation π of Z\G such that π(f) is of Hilbert-Schmidt class for all f in B and

traceπ(f)π(f ∗) = γ

∫
Z\G

∣∣f(g)∣∣2 dg
then Z\G is compact.

In proving the theorem it is better to deal with representations in the adèle groups than
to deal with representations of the global Hecke algebras. We have to assume that the reader
is sufficiently well acquainted with the theory of group representations to pass back and forth
unaided between the two viewpoints.

If F is a global field, A is the adèle ring of F , G = GL(2), and η is a character of the
idèle class group F×\I the space A(η) of all measurable functions φ on GF\GA that satisfy

φ

((
a 0
0 a

)
g

)
= η(a)φ(g)

for all a in I and whose absolute values are square-integrable on GFZA\GA is a Hilbert space.
If φ belongs to this space ∫

NF \NA

φ(ng) dn

is defined for almost all g. If it is 0 for almost all g the function φ is said to be a cusp form. The
space A0(η) of all such cusp forms is closed and invariant under GA. It is in fact the closure
of A0(η). It decomposes in the same way but now into a direct sum of closed orthogonal
subspaces V on which GA acts according to an irreducible representation π =

⊗
πv. Thus V

is now isomorphic to a tensor product of Hilbert spaces. Of course the same representations
occur now as occurred before. Similar remarks apply to the multiplicative group G′ of a
quaternion algebra M ′ over F .
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It will be enough to prove the theorem when π is a constituent of some A0(η) or A0(η)
and η is a character because we can always take the tensor product of π with a suitable
quasi-character. Suppose η is given. Let S be the set of places at which M ′ does not split.
Suppose that for each v in S we are given an irreducible unitary representation σ′

v of G
′
Fv

= G′
v

such that
σ′
v(a) = ηv(a)I

for all a in F ∗
v which we identify with Z ′

v = Z ′
Fv
. Let σv = π(σ′

v) be the representation of
Gv corresponding to σ′

v. We may take σv unitary. Let σv act on Uv and let σ′
v act on U ′

v.
Fix a unit vector u′v in Uv and a unit vector uv in Uv which is Kv-finite. The vector u′v is
automatically K ′

v-finite.
Write A0(η) as the direct sum, in the Hilbert space sense, of mutually orthogonal invariant

irreducible subspaces V 1, V 2, . . . . Let the factorization of the representation πi on V i be⊗
πiv. Let πiv act on V i

v . For simplicity of notation we identify V i with
⊗

V i
v . We also

suppose that if v is in S and πiv is equivalent to σv then Uv = V i
v and πiv = σv. Let X be the

set of all i such that πiv = σv for all v in S and if i belongs to X let

M i =

⊗
v∈S

uv

⊗

⊗
v∈S

V i
v

.
M i is invariant and irreducible under the action of

ĜS =
{
g = (gv)

∣∣ gv = 1 for all v in S
}
.

Let
M =

⊕
i∈X

M i.

M is a Hilbert space and ĜS acts on M . If at least one of the representations σ′
v, v ∈ S, is

not one-dimensional set N =M . If they are all one-dimensional, let N be the subspace of
A0(η) spanned, in the Hilbert space sense, by M and the functions g → χ(det g) where χ is
a character of F×\I such that χ2 = η and σ′

v(g) = χv
(
ν(g)

)
for all g in G′

v if v is in S. If v
is non-archimedean this last condition determines χv uniquely. If v is real it only determines
it on the positive numbers.

Let A′(η) be the space of all measurable functions φ on G′
F\G′

A that satisfy φ(ag) =
η(a)φ(g) for all a in I and whose absolute values are square integrable on G′

FZ
′
A\G′

A.
Replacing σv by σ

′
v and uv by u

′
v we define N ′ in the same way as we defined M . If at least

one of the representations σ′
v, v ∈ S, is not one-dimensional we set M ′ = N ′. However if they

are all one-dimensional and χ is a character of F×\I such that χ2 = η and σ′
v(g) = χv

(
ν(g)

)
for all G in G′

V if v is in S then the function g → χ
(
ν(g)

)
belongs to N ′. We let M ′ be the

orthogonal complement in N ′of the set of such functions. The group Ĝ′
S acts on M ′ and

N ′. However by means of the local isomorphisms θv we can define an isomorphism of ĜS

and Ĝ′
S. Thus ĜS acts on M and M ′. To prove the theorem we need only show that the

representations on these two spaces are equivalent. To do this we combine Lemma 16.1.1
with the Selberg trace formula.
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To apply Lemma 16.1.1 we have to introduce an algebra B. It will be the linear span of

B0, the set of functions f on ĜS of the form

f(g) =
∏
v/∈S

fv(gv)

where the functions fv satisfy the following conditions.

(i) If av belongs to F
×
v then

fv(avgv) = η−1
v (av)fv(gv).

(ii) The function fv is Kv-finite on both sides and the projection of the support of fv on
Zv\Gv is compact.

(iii) If v is archimedean, fv is infinitely differentiable.
(iv) If v is non-archimedean, fv is locally constant.
(v) For almost all non-archimedean v the function fv is 0 outside of ZvKv but on ZvKv

is given by
fv(g) = ω−1

v (det g)

where ωv is unramified and satisfies ω2
v = ηv.

We introduce B′ in the same way. We may identify B and B′ and to verify the conditions of
the lemma we need only show that if f = f1 ∗ f2 with f1 and f2 in B0 then

traceσ(f) = trace σ′(f)

if σ is the representation on M and σ′ that on M ′. Let τ be the representation on N and τ ′

that on N ′. Since

trace τ(f) = trace σ(f) +
∑∫

ẐS\ĜS

χ(g)f(g) dg

and

trace τ ′(f) = trace σ′(f) +
∑∫

ẐS\ĜS

χ(g)f(g) dg

we need only show that
trace τ(f) = trace τ ′(f).

Before beginning the proof we had better describe the relation between the Haar measures
on the groups ZA\GA and Z ′

A\G′
A. Choose a non-trivial character ψ of F\A. If ω0 is any

invariant form of maximal degree on Z\G defined over F and therefore over each Fv we can
associate to ω0 and ψv a Haar measure ω0(v) on Zv\Gv. Then

∏
v/∈S ω0(v) determines a Haar

measure ω0 on ẐS\ĜS and
∏

v ω0(v) determines a Haar measure ω0 on ZA\GA. The measure
on ZA\GA is independent of ψ and is called the Tamagawa measure. As in the previous
paragraph we can associate to ω0(v) a measure ω′

0(v) on Z
′
v\G′

v and therefore to ω0 a measure

ω′
0 on Ẑ ′

S\Ĝ′
S or Z ′

A\G′
A.

We first take f = f1 ∗ f2 in B′ and find a formula for trace τ ′(f). Let d(σ′
v) be the formal

degree of σ′
v with respect to the measure ω′

0(v) and let ξ′v be the function

ξ′v(g) = d(σ′
v)
(
σ′
v(g)u

′
v, u

′
v

)
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on G′
v. Let Φ

′ = Φ′
f be the function

Φ′(g) =

∏
v∈S

ξ′v(gv)

f(ĝS)
on G′

A. Here ĝS is the projection of g on Ĝ′
S. If ρ

′ is the representation of G′
A on A′(η) the

restriction of ρ′(Φ′) to N ′ is τ ′(f) and ρ′(Φ) annihilates the orthogonal complement of N ′.
Thus

trace ρ′(Φ′) = trace τ ′(f).

If φ is in A′(η) then ρ′(Φ′)φ(g) is equal to∫
Z′
A\G′

A

φ(gh)Φ′(h)ω′
0(h) =

∫
Z′
A\G′

A

φ(h)Φ′(g−1h)ω′
0(h).

The integration on the right can be performed by first summing over Z ′
F\G′

F and then
integrating over ZAG

′
F\G′

A. If

Φ′(g, h) =
∑

Z′
F \G′

F

Φ′(g−1γh)

the result is ∫
Z′
AG

′
F \G′

A

φ(h)Φ′(g, h)ω′
0(h).

Thus the trace of ρ′(Φ) is equal to ∫
Z′
AG

′
F \G′

A

Φ′(g, g) dg.

If we write out the integrand and perform the usual manipulations (cf [29]) we see that
this integral is

(16.1.3)
∑
{γ}

measure
(
Z ′

AG
′
F (γ)\G′

A(γ)
) ∫

G′
A(γ)\G′

A

Φ′(g−1γg).

The sum is over a set of representatives of the conjugacy classes in G′
F . Here G

′
A(γ) is the

centralizer of γ in G′
A and G′

F (γ) is its centralizer in G
′
F .

Let Q′ be a set of representatives for the equivalence classes of quadratic extensions E
of F such that E ⊗F Fv is a field for all v in S. For each E in Q′ fix an imbedding of E in
the quaternion algebra M ′. Let BF = BF (E) be the multiplicative group of E, considered as
a subalgebra of M ′, or what is the same the centralizer of E in G′

F . Let BA = BA(E) be
the centralizer of E in G′

A. Let Q
′
1 be the separable extensions in Q′ and Q′

2 the inseparable
ones if they exist. Then (16.1.3) is the sum of

(16.1.4) measure(Z ′
AG

′
F\G′

A)Φ
′(e),

if e is the identity,

(16.1.5)
1

2

∑
Q′

1

∑
γ∈Z′

F \BF

γ /∈Z′
F

measure(Z ′
ABF\BA)

∫
BA\GA

Φ′(g−1γg)ωB(g)
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and

(16.1.6)
∑
Q′

2

∑
γ∈Z′

F \BF

γ /∈ZF

measure(Z ′
ABF\BA)

∫
BA\GA

Φ′(g−1γg)ωB(g).

The last sum is deceptive because Q′
2 has at most one element. The measure ωB is the

quotient of the measure on Z ′
A\G′

A by that on Z ′
A\BA. The choice of the measure on Z ′

A\BA

is not too important. We do suppose that it is a product measure.2

The expression (16.1.4) is equal to

measure(Z ′
AG

′
F\G′

A)

∏
v∈S

d(σ′
v)

f(e).
The integrals of (16.1.5) and (16.1.6) are equal to the product∏

v∈S

χσ′
v
(γ−1)

measure(Z ′
v\Bv)

and ∫
B̂S\Ĝ′

S

f(g−1γg)ωB.

Now regard f = f1 ∗ f2 as an element of B. We can still introduce for each v in S the
function

ξv(g) = d(σv)
(
σv(g)uv, uv

)
on Gv. The factor d(σv) is the formal degree of σv with respect to the measure ω0(v). If σ

′
v is

not one-dimensional ξv is integrable and we can use it to define a function Φ to which we
can hope to apply the trace formula. When σ′

v is one-dimensional the function ξv is not even
integrable so it is of no use to us. However in this case we can find an integrable function ζv
with the following properties:

(i) For all a in Fv

ζv

((
a 0
0 a

)
g

)
= η−1

v (a)ζv(g).

(ii) For a suitable choice of uv the operator σv(ζv) is the orthogonal projection on the
space Cuv.

(iii) If χv is a character of F×
v such that χ2

v = ηv then∫
Zv\Gv

χv(det g)ζv(g)ω0(v)

is −1 if σ′
v(h) = χv

(
ν(h)

)
for all h in G′

v and is 0 otherwise.
(iv) If πv is a unitary infinite-dimensional irreducible admissible representation of Gv

which is not equivalent to σv but satisfies

πv

((
a 0
0 a

))
= ηv(a)I

2In (16.1.5) the factor 1
2 is not quite correct. If we want to leave it in, both γ and its conjugate must be

counted, even if they differ only by an element of F .
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for all a in F×
v then

traceπv(ζv) = 0.

If v is real we cannot describe ζv without a great deal more explanation than is desirable at
present. However after a few preliminary remarks we will be able to describe it when v is
non-archimedean.

Suppose σ′
v(g) = χv

(
ν(g)

)
for g in G′

v and πv is a representation of Gv such that

πv

((
a 0
0 a

))
= ηv(a)I

for all a in F×
v . Applying Lemma 3.9 to χ−1

v ⊗ πv we see that the restriction of πv to Kv

contains the representation k → χv(det k) if and only if πv = π(µv, νv), µvνv = ηv, and the
restrictions of µv and νv to Uv, the group of units of Fv, are both equal to the restriction of
χv. Let ζ

′
v be the function on Gv which is 0 outside of ZvKv but on Kv is equal to

1

measure(Zv\ZvKv)
χ−1
v (det g).

Let Hv be the group generated by Zv, the matrices(
a b
c d

)
in Kv for which c ≡ 0 (mod pv), and (

0 1
ϖv 0

)
.

Let ωv be the character ωv(a) = (−1)nχv(a) if |a| = |ϖv|n. According to the concluding
lemmas of the previous paragraph there is a non-zero vector u in the space of πv such that

πv(g)u = ωv(det g)u

for all g in Hv if and only if πv is equivalent to σv, πv = π(µv, νv) is infinite-dimensional,
µvνv = ηv, and the restrictions of µv and νv to Uv are equal to the restriction of χv, or πv is
the one-dimensional representation

g → ωv(det g).

Let ζ ′′v be the function which is 0 outside of Hv and equal to

1

measureZv\Hv

ω−1
v (det g)

on Hv. We may take
ζv = ζ ′′v − ζ ′v.

There are some consequences of the four conditions on ζv which we shall need. If µv and
νv are two characters of F×

v such that µvνv = ηv, the trace of ρ(ζv, µv, νv) is a multiple of∫
Zv\Av

µv(α)νv(β)

∣∣∣∣αβ
∣∣∣∣1/2
{∫

Nv

∫
Kv

ζv(k
−1ank) dn dk

}
da

if

a =

(
α 0
0 β

)
.
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Since this is 0 for all possible choice of µv and νv∫
Nv

∫
Kv

ζv(k
−1ank) dk dn = 0

for all a. We also observe that if σ′
v is not one-dimensional then∫

Nv

∫
Kv

ξv(k
−1ank) dk dn = 0

for all a.
If πv is special or absolutely cuspidal traceπv(ζv) is therefore equal to

1

2

∑
S′

∫
Zv\Bv

{∫
Bv\Gv

ζv(g
−1bg)ωb(v)

}
χπv(b)δ(b)µ

0
B(b).

Since traceπv(ζv) is 1 if πv is equivalent to σv and 0 otherwise the orthogonality relations
imply that ∫

Bv\Gv

ζv(g
−1bg)ωB(v) =

−1

measureZv\Bv

χσv(b
−1)

for all regular b and therefore, by continuity, for all b whose eigenvalues do not lie in Fv.
It probably also follows from the Plancherel theorem that ζv(e) = d(σv). We do not need
this but we shall eventually need to know that ζv(e) = d(σ′

v). For the moment we content
ourselves with observing that if ωv is a character of F×

v and σ′
v is replaced by ωv ⊗ σ′

v the
formal degree does not change and ζv is replaced by the function g → ω−1

v (det g)ζv(g) so that
ζv(e) does not change. Thus the relation ζv(e) = d(σ′

v) need only be proved when σ′
v is trivial.

Let S1 be the subset of v in S for which σ′
v is one-dimensional and let S2 be the complement

of S1 in S. Given f = f1 ∗ f2 in B we set

Φ(g) =

∏
v∈S1

ζv(gv)


∏
v∈S2

ξv(gv)

f(ĝS).
Let ρ+0 be the representation of GA on A+

0 (η) the sum, in the Hilbert space sense, of A0(η)
and the functions χ : g → χ(det g) where χ is a character of F×\I such that χ2 = η and let ρ
be the representation on A(η). If at least one of the representations ρ′v is not one-dimensional
ρ+0 (Φ) annihilates the orthogonal complement of A0(η). If they are all one-dimensional we
apply the third condition on the functions ζv together with the fact that the number of places
in S is even to see that ρ+0 (Φ)χ = 0 unless σ′

v(h) = χv
(
ν(h)

)
for all h in G′

v and all v in S
but that if this is so

ρ+0 (Φ)χ = τ(f)χ.

Recall that A0(η) is the direct sum of spaces V i on which GA acts according to representations
πi =

⊗
πiv. If at least one of the representations σ′

v is not one-dimensional ρ+0 (Φ) is equal
to σ(f) on M and annihilates the orthogonal complement of M in A0(η). Suppose they are
all one-dimensional. If i belongs to X the restrictions of ρ+0 (Φ) and σ(f) or τ(f) to M

i are
equal and ρ+0 (Φ) annihilates the orthogonal complement of M i in V i. If i is not in X the
trace of the restriction of ρ+0 (Φ) to V

i is∏
v∈S

traceπiv(ζv)

{trace π̂iS(f)}
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if π̂iS =
⊗

v/∈S π
i
v. Since π

i
v, v ∈ S, are all infinite-dimensional and for at least one such v the

representation πiv is not equivalent to σv,∏
v∈S

traceπiv(ζv) = 0.

We conclude that
trace ρ+0 (Φ) = trace τ(f).

To show that
trace τ(f) = trace τ ′(f)

we have to apply the trace formula to find a suitable expression for trace ρ+0 (Φ). In order to
describe the formula we need to state some results in the theory of Eisenstein series.

Consider the collection of pairs of characters µ, ν of F×\I such that µν = η. Two such
pairs, µ, ν and µ′, ν ′ are said to be equivalent if there is a complex number r such that
µ′ = µαrF and ν ′ = να−r

F . If a belongs to I then αrF (a) = |a|r. Let P be a set of representatives
for these equivalence classes.

Suppose (µ, ν) belongs to P . If s is a complex number the space B(µαs/2F , να
−s/2
F ) of

functions on NA\GA is defined as in the tenth paragraph. Since the functions in this space
are determined by their restrictions to K we may think of it as a space of functions on K in
which case it is independent of s. Thus we have isomorphisms

Ts : B(µαs/2F , να
−s/2
F ) → B(µ, ν).

The theory of Eisenstein series provides us with a function (φ, s) → E(φ, s) from B(µ, ν)×
C to A(η). Let E(g, φ, s) be the value of E(φ, s) at g. For a given φ the function E(g, φ, s)
is continuous in g and meromorphic in s. Moreover there is a discrete set of points in C such
that outside of this set it is holomorphic in s for all g and φ. If s is not in this set the map

φ→ E(Tsφ, s) of B(µαs/2F , να
−s/2
F ) into A(η) commutes with the action of H.

If the total measure of NF\NA is taken to be 1 the integral∫
NF \NA

E(ng, Tsφ, s) dn

is equal to
φ(g) +

(
M(s)φ

)
(g),

where M(s) is a linear transformation from B(µαs/2F , να
−s/2
F ) to B(να−s/2

F , µα
s/2
F ) which

commutes with the action of H. It is meromorphic in the sense that〈
M(s)T−1

s φ1, T
−1
s φ2

〉
is meromorphic if φ1 belongs to B(µ, ν) and φ2 belongs to B(ν−1, µ−1). The quotient of M(s)
by

L(1− s, νµ−1)

L(1 + s, µν−1)
= ϵ(1− s, νµ−1)

L(s, µν−1)

L(1 + s, µν−1)

is holomorphic for Re s ⩾ 0. Since the analytic behaviour of E(g, φ, s) is controlled by that
of M(s) it should be possible, as we observed before, to use the Eisenstein series to show

that a constituent of B(µαs/2F , να
−s/2
F ) is also a constituent of A(η).

To indicate the dependence of M(s) on µ and ν we write M(µ, ν, s). Then

M(µ, ν, s)M(ν, µ,−s) = I.
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If s is purely imaginary we can introduce the inner product

(φ1, φ2) =

∫
K

φ1(k)φ2(k) dk

on B(µαs/2F , να
−s/2
F ). Let B(µα

s/2
F , να

−s/2
F ) be its completion with respect to this inner product.

We may think of B(µα
s/2
F , να

−s/2
F ) as a function space on GA on which GA acts by right

translations. The representation of GA on B(µα
s/2
F , να

−s/2
F ) is unitary. Let g correspond to

the operator ρ(g, µ, ν, s) and if f is in L1(η) let

ρ(f, µ, ν, s) =

∫
ZA\GA

f(g)ρ(g, µ, ν, s)ω0(g)

The isomorphism Ts extends to an isometry, from B(µα
s/2
F , να

−s/2
F ) to B(µ, ν) and M(µ, ν, s)

extends to an isometry from B(µα
s/2
F , να

−s/2
F ) to B(να

−s/2
F , µα

s/2
F ). In particular

M∗(µ, ν, s) =M(ν, µ,−s).

Suppose (µ, ν) is in P and, for some r, ν = µαrF and µ = να−r
F . Replacing µ by µα

r/2
F

and ν by να
−r/2
F if necessary we may suppose that µ = ν. We may also suppose that if (µ, ν)

is in P and is not equivalent to (ν, µ) then (ν, µ) is also in P . Let L be the Hilbert space sum⊕
P

B(µ, ν)

and let L be the algebraic sum ⊕
P

B(µ, ν).

If we define L(s) to be ⊕
p

B(µα
s/2
F , να

−s/2
F )

and L(s) to be ⊕
P

B(µαs/2F , να
−s/2
F )

we can again introduce the map
Ts : L(s) → L.

The representation g → ρ(g, s) is the representation

g →
⊕

ρ(g, µ, ν, s)

on L(s). M(s) will be the operator on L(s) which takes
⊕

φ(µ, ν) to
⊕

φ1(µ, ν) with

φ1(ν, µ) =M(µ, ν, s)φ(µ, ν).

It is unitary.
If F has characteristic 0 let H be the space of all square integrable functions φ from the

imaginary axis to L such that

T−1
−s φ(−s) =M(s)T−1

s φ(s)

with the norm
c

π

∫ i∞

−i∞

∥∥φ(s)∥∥2 d|s|,
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where c is a positive constant relating various Haar measures. It will be defined more precisely
later. If F is a function field with field of constants Fq the functions in H are to be periodic

of period log q
2π
i and the norm is to be

c log q

π

∫ 2π
log q

0

∥∥φ(s)∥∥2 d|s|.
On the whole we shall proceed as though F had characteristic 0 merely remarking from time
to time the changes to be made when the characteristic is positive.

If φ =
⊕

φ(µ, ν) is in L we set

E(g, φ, s) =
∑

E
(
g, φ(µ, ν), s

)
.

If φ in H takes values in L

lim
T→∞

1

2π

∫ iT

−iT
E
(
g, φ(s), s

)
d|s| = φ̃(g)

exists in A(η). The map φ→ φ̃ extends to an isometry of H with a subspace A1(η) of A(η).
If g is in GA and φ′ is defined by

φ′(s) = Tsρ(g, s)T
−1
s φ(s)

then φ̃′ is ρ(g)φ̃.
The orthogonal complement of A1(η) is A

+
0 (η). Thus if E is the orthogonal projection

of A(η) on A1(η) the trace of ρ+0 (Φ) is the trace of ρ(Φ) − Eρ(Φ) which, according to the
Selberg trace formula, is the sum of the following expressions which we first write out and
then explain.

(i)
measure(ZAGF\GA)Φ(e).

(ii)
1

2

∑
Q1

∑
γ∈ZF \BF

γ /∈ZF

measure(ZABF\BA)

∫
BA\GA

Φ(g−1γg)ωB(g).

(iii) ∑
Q2

∑
γ∈ZF \BF

γ /∈ZF

measure(ZABF\BA)

∫
BA\GA

Φ(g−1γg)ωB(g).

(iv)

−c
∑

γ∈ZF \AF

γ /∈ZF

∑
v

∏
w ̸=v

ω(γ, fw)

ω1(γ, fv).

(v)

c

λ0∏
v

θ(0, fv) + λ−1

∑
v

θ′(0, fv)
∏
w ̸=v

θ(0, fw)


.
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(vi) If F is a number field

−1

4
traceM(0)ρ(Φ, 0),

but

− log q

4

{
traceM(0)ρ(Φ, 0) + traceM

(
π

log q

)
ρ

(
Φ,

π

log q

)}
if F is a function field.

(vii) If F is a number field

1

4π

∫ i∞

−i∞
tracem−1(s)m′(s)ρ(Φ, s) d|s|,

but
log q

4π

∫ 2π
log q

0

tracem−1(s)m′(s)ρ(Φ, s) d|s|

if F is a function field.
(viii) The sum over (µ, ν) and v of

1

4π

∫ i∞

−i∞
tr
{
R−1(µv, νv, s)R

′(µv, νv, s)ρ(f, µv, νv, s)
}∏

w ̸=v

tr ρ(fw, µw, νw, s)

 d|s|

if F is a number field and of

log q

4π

∫ 2π
log q

0

tr
{
R−1(µv, νv, s)R

′(µv, νv, s)ρ(f, µv, νv, s)
}∏

w ̸=v

tr ρ(fw, µw, νw, s)

 d|s|

if F is a function field.

The function Φ is of the form
Φ(g) =

∏
v

fv(gv).

Let Q be a set of representatives for the equivalence classes of quadratic extensions of F . For
each E in Q fix an imbedding of E in the matrix algebra M =M(2, F ). Let BF = BF (E) be
the multiplicative group of E, considered as a subalgebra of M . It is the centralizer of E in
GF . Let BA = BA(E) be the centralizer of E in GA. Let Q1 be the collection of separable
extensions in Q and Q2 the collection of inseparable extensions. Let, moreover, AF be the
group of diagonal matrices in GF .

Choose on NA that Haar measure which makes the measure of NF\NA equal to 1. Choose
on K the normalized Haar measure. On the compact group H obtained by taking the quotient
of {(

α 0
0 β

)
∈ AA

∣∣∣∣∣ |α| = |β|

}
by ZAAF choose the normalized Haar measure. This group H is the kernel of the map(

α 0
0 β

)
→ log

∣∣∣∣αβ
∣∣∣∣1/2

of AFZA\AA onto R or log qZ. On R one has the standard measure dx and on log qZ one
has the standard measure which assigns the measure 1 to each point. The measures on H and
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on H\(AFZA\AA) together with the measure on ZA\AFZA which assigns the measure 1 to
each point serve to define a measure da on ZA\AA. The constant c is defined by demanding
that ∫

ZA\GA

f(g)ω0(g)

be equal to

c

∫
ZA\AA

∫
NA

∫
K

f(ank) da dn dk

if f is an integrable function on ZA\GA. We may suppose that the measures on ZA\AA,
NA, and K are given as product measures and in particular that∫

Kv

dkv = 1

and ∫
Nv

χ(nv) dnv = 1

for almost all v if χ is the characteristic function of{(
1 x
0 1

) ∣∣∣∣∣ x ∈ OFv

}
.

The factors ω(γ, fv) and ω1(γ, fv) appearing in the fourth expression are defined by

ω(γ, fv) =

∫
Nv

∫
Kv

fv(k
−1
v n−1

v γnvkv) dnv dkv

and

ω1(γ, fv) =

∫
Nv

∫
Kv

fv(k
−1
v n−1

v γnvkv) log λ(nv) dnv dkv.

If (
0 1

−1 0

)
n =

(
α′ 0
0 β′

)
n′k′

then

λ(n) =

∣∣∣∣α′

β′

∣∣∣∣.
Set θ(s, fv) equal to

1

L(1 + s, 1v)

∫
Zv\Av

∫
Kv

fv(k
−1
v a−1

v n0avkv)

∣∣∣∣αvβv
∣∣∣∣−1−s

dav dkv

where

av =

(
αv 0
0 βv

)
and

n0 =

(
1 1
0 1

)
.
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We take 1v to be the trivial character of F×
v . Then θ(s, fv) is analytic at least for Re s > −1.

Its derivative at 0 is θ′(0, fv). If

L(1 + s, 1F ) =
∏
v

L(1 + s, 1v)

the Laurent expansion of L(1 + s, 1F ) about s = 0 is

λ−1

s
+ λ0 + · · · .

The operator m(s) is the operator on L(s) which for each (µ, ν) multiplies every element

of B(µα
s/2
F , να

−s/2
F ) by

L(1− s, νµ−1)

L(1 + s, µν−1)
.

We may represent B(µα
s/2
Fv
, να

−s/2
F ) as⊗

v

B(µvα
s/2
Fv
, νvα

−s/2
Fv

)

when s is purely imaginary. If Re s > 0 let R(µv, νv, s) be the operator from B(µvαs/2Fv
, νvα

−s/2
Fv

)

to B(νvα−s/2
Fv

µvα
s/2
Fv

) defined by setting

R(µv, νv, s)φ(g)

equal to

ϵ(1− s, µ−1
v νv, ψv)

L(1 + s, µvν
−1
v )

L(s, µvν−1
v )

∫
Nv

φ

((
0 1

−1 0

)
ng

)
dn.

These operators can be defined for s purely imaginary by analytic continuation. They are
then scalar multiples of unitary operators and for a given µ, ν are in fact unitary for almost

all v. Thus R(µv, νv, s) can be defined as an operator B(µvα
s/2
Fv
, νvα

−s/2
Fv

) when s is purely
imaginary and

M(s) =
∑
(µ,ν)

{⊗
v

R(µv, νv, s)

}
L(1− s, νµ−1)

L(1 + s, µν−1)
.

Set
N(s) = TSM(s)T−1

S

and if N ′(s) is the derivative of N(s) set

M ′(s) = T−1
s N ′(s)Ts

Define R′(µv, νv, s) in a similar fashion. Then

traceM−1(s)M ′(s)ρ(Φ, s)

is the sum of
tracem−1(s)m′(s)ρ(Φ, s)

and ∑
(µ,ν)

∑
v

{
trR−1(µv, νv, s)R

′(µv, νv, s)ρ(fv, µv, νv, s)
}∏

w ̸=v

tr ρ(fw, µw, νw, s)

,
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where ρ(fv, µv, νv, s) is the restriction of ρ(fv) to B(µvα
s/2
Fv
, νvα

−s/2
Fv

).

If E(µ, ν, s) is the projection of L(s) on B(µα
s/2
F , να

−s/2
F ) we can write

m(s) =
∑

a(µ, ν, s)E(µ, ν, s)

where the a(µ, ν, s) are scalars. Thus

tracem−1(s)m′(s)ρ(Φ, s)

is equal to ∑ a′(µ, ν, s)

a(µ, ν, s)

{∏
v

trace ρ(fv, µv, νv, s)

}
.

We can also write
M(0) =

∑
a(µ, ν)E(µ, ν, 0)

so that
traceM(0)ρ(Φ, 0)

is equal to ∑
a(µ, ν)

{∏
v

trace ρ(fv, µv, νv, 0)

}
.

If F is a function field

M

(
π

log q

)
=
∑

B(µ, ν)E

(
µ, ν,

π

log q

)
.

If

(16.1.7)

∫
Kv

∫
Nv

fv(k
−1ank) dn dk = 0

for all a in Av = AFv then ω(γ, fv) = 0 for all γ, θ(0, fv) = 0, and

trace ρ(fv, µv, νv, s) = 0

for all µv, νv, and s. In particular if (16.1.7) is satisfied for at least two v the expressions (iv)
to (viii) vanish and the trace formula simplifies considerably.

We now apply this formula to the function

Φ(g) =

∏
v∈S1

ζv(gv)


∏
v∈S2

ξv(gv)

f(ĝS)
where f = f1 ∗ f2 with f1 and f2 in B is of the form

f(ĝS) =
∏
v/∈S

fv(gv).

Since S has at least two elements and the functions ζv and ξv satisfy (16.1.7), only the
expressions (i) to (iii) do not vanish identically. The expression (i) is now equal to∏

v∈S1

ζv(e)


∏
v∈S2

d(σv)

f(e)
We recall that d(σv) = d(σ′

v) if v is in S2.
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We may suppose that Q2 is equal to Q′
2 and that Q′

1 is a subset of Q1. If E is in Q1 or
Q2 and γ is in BF = BF (E) but not in ZF∫

BA\GA

Φ(g−1γg)ωB(g)

is equal to the product of∏
v∈S1

∫
Bv\Gv

ζv(g
−1
v γgv)ωB(v)


∏
v∈S2

∫
Bv\Gv

ξv(g
−1
v γgv)ωB(v)


and ∫

B̂S\ĜS

f(g−1γg)ωB.

If v is in S and E ⊗F Fv is not a field so that Bv is conjugate to Av, the corresponding factor
in the first of these two expressions vanishes. Thus the sum in (ii) need only be taken over
Q′

1. If E is in Q′
1 or Q2 the first of these two expressions is equal to∏

v∈S

χσv(γ
−1)

measureZv\Bv

.

Thus, in the special case under consideration, (ii) is equal to (16.1.5) and (iii) is equal to
(16.1.6) so that

trace τ(f)−

∏
v∈S1

ζv(e)


∏
v∈S2

d(σv)

measure(ZAGF\GA)f(e)

is equal to

trace τ ′(f)−

∏
v∈S

d(σ′
v)

measure(Z ′
AG

′
F\G′

A)f(e).

We may take η to be trivial and apply Lemmas 16.1.1 and 16.1.2 to see that, in this case,

trace τ(f) = trace τ ′(f)

and ∏
v∈S

d(σ′
v)

measure(Z ′
AG

′
F\G′

A)

is equal to ∏
v∈S1

ζv(e)


∏
v∈S2

d(σv)

measure(ZAGF\GA).

Still taking η trivial we choose the σ′
v so that none of them are one-dimensional and conclude

that

(16.1.8) measure(Z ′
AG

′
F\G′

A) = measure(ZAGF\GA).

Then we take exactly one of them to be one-dimensional and conclude that ζv(e) = d(σ′
v).

Thus ζv(e) = d(σ′
v) and

trace τ(f) = trace τ ′(f)
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in general.
The relation (16.1.8) is well-known. One can hope however that the proof of it just given

can eventually be used to show that the Tamagawa numbers of two groups which differ only
by an inner twisting are the same or at least differ only by an explicitly given factor. Since
the method of [33] can probably be used to evaluate the Tamagawa numbers of quasi-split
groups the problem of evaluating the Tamagawa numbers of reductive groups would then be
solved. However a great deal of work on the representation theory of groups over local fields
remains to be done before this suggestion can be carried out.

To complete our formal argument we need to sketch a proof of the trace formula itself.
One must use a bootstrap method. The first step, which is all we shall discuss, is to prove it
for some simple class of functions Φ. We take Φ of the form Φ = f ′ ∗ f ′′ with

f ′(g) =
∏
v

f ′
v(gv)

and
f ′′(g) =

∏
v

f ′′
v (gv)

where f ′
v and f

′′
v satisfy the five conditions on page 265. The function fv is f

′
v ∗ f ′′

v .
Suppose φ is a K-finite compactly supported function in A(η). For each purely imaginary

s define φ̃(s) in L by demanding that

1

2c

∫
GFZA\GA

φ(g)E(g, φ′, s)ω0(g) =
(
φ̃(s), φ′)

be valid for all φ′ in L. The map φ → φ̃(s) extends to a continuous map of A(η) onto H,
φ̃(s) being the function in H corresponding to Eφ in A1(η).

For each (µ, ν) in P choose an orthonormal basis
{
φi(µ, ν)

}
of B(µ, ν). We may suppose

that any elementary idempotent in H annihilates all but finitely many elements of this basis.
If

φ̃(s) =
∑
(µ,ν)

∑
i

ai(µ, ν, s)φi(µ, ν)

then

ai(µ, ν, s) =
1

2c

∫
GFZA\GA

φ(g)E
(
g, φi(µ, ν), s

)
ω0(g).

Let
ρ(Φ, s)T−1

S φi(µ, ν) =
∑
j

ρji(Φ, µ, ν, s)T
−1
S φj(µ, ν).

For all but finitely many µ, ν, i and j the functions ρji(Φ, µ, ν, s) vanish identically. Eρ(Φ)φ
is equal to

lim
T→∞

∑
µ,ν

∑
i,j

1

4πc

∫ iT

−iT
ρij(Φ, µ, ν, s)aj(µ, ν, s)E

(
g, φi(µ, ν), s

)
d|s|.

A typical one of these integrals is equal to the integral over GFZA\GA of the product of φ(g)
and ∫ iT

−iT
ρij(Φ, µ, ν, s)E

(
g, φi(µ, ν), s

)
E
(
h, φj(µ, ν), s

)
d|s|.
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Thus the kernel of Eρ(Φ) is the sum over (µ, ν) and i, j of

1

4πc

∫ i∞

−i∞
ρij(Φ, µ, ν, s)E

(
g, φi(µ, ν), s

)
E
(
h, φj(µ, ν), s

)
d|s|.

The kernel of ρ(Φ) is

Φ(g, h) =
∑

ZF \GF

Φ(g−1γh).

To compute the trace of ρ(Φ)− Eρ(Φ) we integrate the difference of these two kernels over
the diagonal.

The function Φ(g, g) may be written as the sum of

(16.2.1)
∑

δ∈PF \GF

∑
γ∈NF
γ ̸=e

Φ(g−1δ−1γδg),

where PF is the group of super-triangular matrices in GF ,

(16.2.2)
1

2

∑
γ∈ZF \AF

γ /∈ZF

∑
δ∈AF \GF

Φ(g−1δ−1γδg),

where AF is the group of diagonal matrices in GF ,

(16.2.3)
1

2

∑
Q1

∑
γ∈ZF \BF

γ /∈ZF

∑
δ∈BF \GF

Φ(g−1δ−1γδg)

and

(16.2.4)
∑
Q2

∑
γ∈ZF \BF

γ /∈ZF

∑
δ∈BF \GF

Φ(g−1δ−1γδg)

together with

(16.2.5) Φ(e).

The constant Φ(e) can be integrated over GFZA\GA immediately to give the first term of
the trace formula. The standard manipulations convert (16.2.3) and (16.2.4) into the second
and third terms of the trace formula.

The expressions (16.2.1) and (16.2.2) have to be treated in a more subtle fashion. We
can choose a constant e1 > 0 so that if

g =

(
1 x
0 1

)(
α 0
0 β

)
k,

with x in A, α and β in I such that
∣∣∣αβ ∣∣∣ ⩾ c1, and k in K, and if

γg =

(
1 x′

0 1

)(
α′ 0
0 β′

)
k′,
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with γ in GF , x
′ in A, α′ and β′ in I such that

∣∣∣α′

β′

∣∣∣ ⩾ c1, and k
′ in K, then γ belongs to PF .

Let χ be the characteristic function of{(
1 x
0 1

)(
α 0
0 β

)
k

∣∣∣∣∣
∣∣∣∣αβ
∣∣∣∣ ⩾ c1

}
.

The expression (16.2.2) is the sum of

1

2

∑
δ∈PF \GF

∑
γ∈ZF \PF

γ /∈ZFNF

Φ(g−1δ−1γδg)
(
χ(δg) + χ

(
ϵ(γ)δg

))
and

1

2

∑
δ∈PF \GF

∑
γ∈ZF \PF

γ /∈ZFNF

Φ(g−1δ−1γδg)
(
1− χ(δg)− χ

(
ϵ(γ)δg

))
.

Here ϵ(γ) is any element of GF not in PF such that

ϵ(γ)γϵ−1(γ) ∈ PF .

There is always at least one such ϵ(γ). The integral of the second sum over GFZA\GA

converges. It is equal to

1

2

∫
ZAPF \GA

∑
γ∈ZF \PF

γ /∈ZFNF

Φ(g−1γg)
(
1− χ(g)− χ

(
ϵ(γ)g

))
ω0(g).

Every γ occurring in the sum can be written as δ−1γ0δ with γ0 in AF and δ in PF . Then(
δ−1ϵ(γ0)δ

)
(δ−1γ0δ)

(
δ−1ϵ(γ0)δ

)−1
= δ−1

(
ϵ(γ0)γ0ϵ

−1(γ0)
)
δ,

so that we can take ϵ(γ) = δ−1ϵ(γ0)δ. We take

ϵ(γ0) = w =

(
0 1

−1 0

)
.

Since χ(δg) = χ(g) and
χ(δ−1wδg) = χ(wδg)

the integrand is ∑
γ∈ZF \AF

γ /∈ZF

∑
δ∈AF \PF

Φ(g−1δ−1γδg)
(
1− χ(δg)− χ(wδg)

)
.

The integral itself is equal to

1

2

∑
γ∈ZF \AF

γ /∈ZF

∫
ZAAF \GA

Φ(g−1γg)
(
1− χ(g)− χ(wg)

)
ω0(g).

All but a finite number of the integrals in this sum are 0.
It is convenient to write each of them in another form. If

g =

(
α 0
0 β

)
nk
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then χ(g) is 1 if
∣∣∣αβ ∣∣∣ ⩾ c1 and is 0 if

∣∣∣αβ ∣∣∣ < c1. If

wn =

(
α′ 0
0 β′

)
n′k′

and λ(n) is
∣∣∣α′

β′

∣∣∣ then χ(wg) is 1 if
∣∣∣αβ ∣∣∣ ⩽ λ(n)

c1
and is 0 if

∣∣∣αβ ∣∣∣ > λ(n)
c1

. It is easily seen that

λ(n) ⩽ 1. Thus if c1 > 1, as we may suppose, one of χ(g) and χ(wg) is always 0. The integral∫
ZAAF \GA

Φ(g−1γg)
(
1− χ(g)− χ(wg)

)
ω0(g)

is equal to

c

∫
NA

∫
K

Φ(k−1n−1γnk)
(
2 log c1 − log λ(n)

)
dn dk

which we write as the sum of

(16.2.6) 2c log c1

∫
NA

∫
K

Φ(k−1n−1γnk) dn dk

and

−
∑
v

c

∫
NA

∫
K

Φ(k−1n−1γnk) log λ(nv) dn dk.

If we express each of the integrals in the second expression as a product of local integrals we
obtain the fourth term of the trace formula. All but a finite number of the integrals are 0 so
that the sum is really finite. We will return to (16.2.6) later. If F is a function field over Fq
it is best to take c1 to be a power of qn of q. Then 2 log c1 is replaced by 2n− 1.

The expression (16.2.1) is the sum of∑
δ∈PF \GF

∑
γ∈NF
γ ̸=e

Φ(g−1δ−1γδg)χ(δg)

and ∑
δ∈PF \GF

∑
γ∈NF
γ ̸=e

Φ(g−1δ−1γδg)
(
1− χ(δg)

)
.

The integral of the second expression over GFZA\GA converges. It is equal to∫
PFZA\GA

∑
γ∈NF
γ ̸=e

Φ(g−1γg)
(
1− χ(g)

)
ω0(g).

If

n0 =

(
1 1
0 1

)
the integrand is equal to ∑

NFZF \PF

Φ(g−1δ−1n0δg)
(
1− χ(δg)

)
,

so that the integral itself is equal to∫
NFZA\GA

Φ(g−1n0g)
(
1− χ(g)

)
ω0(g)
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which is

c

∫
ZA\AA

∫
K

Φ(k−1a−1n0ak)
(
1− χ(a)

)∣∣∣∣αβ
∣∣∣∣−1

da dk

if

a =

(
α 0
0 β

)
.

The integrand vanishes outside of a compact set. Thus the integral is the limit as s approaches
0 from above of

c

∫
ZA\AA

∫
K

Φ(k−1a−1n0ak)
(
1− χ(a)

)∣∣∣∣αβ
∣∣∣∣−1−s

da dk,

which is the difference of

c

∫
ZA\AA

∫
K

Φ(k−1a−1n0ak)

∣∣∣∣αβ
∣∣∣∣−1−s

da dk

and

c

∫
ZA\AA

∫
K

Φ(k−1a−1n0ak)

∣∣∣∣αβ
∣∣∣∣−1−s

χ(a) da dk.

The first of these two expressions is equal to

c

{∏
v

∫
Zv\Av

∫
Kv

fv(k
−1
v a−1

v n0avkv)

∣∣∣∣αvβv
∣∣∣∣−1−s

dav dkv

}
which is

(16.2.7) cL(1 + s, 1F )

{∏
v

θ(s, fv)

}
.

Observe that if v is non-archimedean and fv is 0 outside of ZvKv and is 1 on the elements of
ZvKv of determinant 1 then∫

Zv\Av

∫
Kv

fv(k
−1
v a−1

v n0avkv)

∣∣∣∣αvβv
∣∣∣∣−1−s

dav dkv

is the product of the measure of{(
α 0
0 β

)
∈ Zv\Av

∣∣∣∣∣ |α| = |β|

}
and

∞∑
n=0

|ϖn
v |1+s = L(1 + s, 1v),

so that ∏
v

θ(s, fv) = θ(s,Φ)

is analytic for Re s > −1 and its derivative at 0 is∑
v

θ′(s, fv)

∏
w ̸=v

θ(s, fw)

.
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The function (16.2.7) has a simple pole at s = 0. The constant term in its Laurent expansion
is

c

λ0∏
v

θ(0, fv) + λ−1

∑
v

θ′(0, fv)
∏
w ̸=v

θ(0, fw)


,

which is the fifth term of the trace formula.
The expression

c

∫
ZA\AA

∫
K

Φ(k−1a−1n0ak)

∣∣∣∣αβ
∣∣∣∣−1−s

χ(a) da dk

is equal to

c

∫
ZAAF \AA

∫
K

∑
γ∈NF
γ ̸=e

Φ(k−1a−1γak)

∣∣∣∣αβ
∣∣∣∣−1−s

χ(a) da dk.

Choose a non-trivial character ψ of F\A and let

Ψ(y, g) =

∫
A

Φ

(
g−1

(
1 x
0 1

)
g

)
ψ(xy) dx.

Then

Ψ(y, ag) =

∣∣∣∣βα
∣∣∣∣−1

Ψ

(
α

β
y, g

)
.

Moreover by the Poisson summation formula∑
γ∈NF
γ ̸=e

Φ(k−1a−1γak)

is equal to ∑
y ̸=0

∣∣∣∣βα
∣∣∣∣−1

Ψ

(
α

β
y, k

)
+

∣∣∣∣βα
∣∣∣∣−1

Ψ(0, k)− Φ(e).

The integral

c

∫
ZAAF \AA

∫
K

∣∣∣∣αβ
∣∣∣∣−sχ(a)

∑
y ̸=0

Ψ

(
α

β
y, k

) da dk

is a holomorphic function of s and its value at s = 0 approaches 0 as c1 approaches ∞. Since
we shall eventually let c1 approach ∞ it contributes nothing to the trace formula. If F is a
number field

c

∫
ZAAF \AA

∫
K

Φ(e)

∣∣∣∣αβ
∣∣∣∣−1−s

χ(a) da dk

is a multiple of
1

1 + s
· 1

c1+s1

which is defined at s = 0. Its value there approaches 0 as c1 approaches ∞. Finally

c

∫
ZAAF \AA

∫
K

Ψ(0, k)

∣∣∣∣αβ
∣∣∣∣−sχ(a) da dk
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is equal to
c

scs1

∫
K

Ψ(0, k) dk.

The pole of this function at s = 0 must cancel that of (16.2.7). Consequently∫
K

Ψ(0, k) dk = λ−1θ(0,Φ).

The constant term in its Laurent expansion about 0 is

−c log c1
∫
K

Ψ(0, k) dk.

Not this expression but its negative

(16.2.8) c log c1

∫
K

Ψ(0, k) dk

enters into the integral of the kernel of ρ(Φ)− Eρ(Φ) over the diagonal. If F is a function
field c

scs1
is to be replaced by

cq−ns

1− q−s

and log c1 by n− 1
2
.

The Poisson summation formula can be used to simplify the remaining part of (16.2.1).
We recall that it is ∑

δ∈PF \GF

∑
γ∈NF
γ ̸=e

Φ(g−1δ−1γδg)χ(δg).

We subtract from this ∑
δ∈PF \GF

Ψ(0, δg)χ(δg)

to obtain the difference between ∑
δ∈PF \GF

∑
y ̸=0

Ψ(y, δg)χ(δg)

and ∑
δ∈PF \GF

Φ(e)χ(δg).

The integrals of both these functions over ZAGF\GA converge and approach 0 as c1 approaches
∞. They may be ignored.

The remaining part of (16.2.2) is the sum of

1

2

∑
δ∈PF \GF

∑
γ∈ZF \PF

γ /∈ZFNF

Φ(g−1δ−1γδg)χ(δg)

and
1

2

∑
δ∈PF \GF

∑
γ∈ZF \PF

γ /∈ZFNF

Φ(g−1δ−1γδg)χ
(
ϵ(γ)δg

)
.
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These two sums may be written as

1

2

∑
γ∈ZF \AF

γ /∈ZF

∑
AF \GF

Φ(g−1δ−1γδg)χ(δg)

and
1

2

∑
γ∈ZF \AF

γ /∈ZF

∑
AF \GF

Φ(g−1δ−1γδg)χ(wδg).

Replacing δ by w−1δ in the second sum we see that the two expressions are equal. Their sum
is equal to twice the first which we write as∑

γ1∈ZF \AF

γ1 /∈ZF

∑
δ∈PF \GF

∑
γ2∈NF

Φ(g−1δ−1γ1γ2δg)χ(δg).

For a given Φ all but finitely many of the sums

(16.2.9)
∑

δ∈PF \GF

∑
γ2∈NF

Φ(g−1δ−1γ1γ2δg)χ(δg)

are zero. Set

Ψ(y, γ1, g) =

∫
A

Φ

(
g−1γ1

(
1 x
0 1

)
g

)
ψ(xy) dx.

The expression (16.2.9) is the sum of∑
δ∈PF \GF

∑
y ̸=0

Ψ(y, γ1, δg)χ(δg)

and ∑
δ∈PF \GF

Ψ(0, γ1, δg)χ(δg).

The first of these two expressions is integrable on GFZA\GA and its integral approaches 0 as
c1 approaches ∞.

Since Ψ(0, g) = Ψ(0, e, g) we have expressed Φ(g, g) as the sum of

(16.2.10)
∑

δ∈PF \GF

∑
γ∈ZF \AF

Ψ(0, γ, δg)χ(δg)

and a function which can be integrated over GFZA\GA to give the first five terms of the
trace formula, the sum of (16.2.8) and one-half of the sum over γ in ZF\AF but not in ZF of
(16.2.6) which is

(16.2.11) c log c1
∑

γ∈ZF \AF

∫
NA

∫
K

Φ(k−1γnk) dn dk,

and an expression which goes to 0 as c1 approaches ∞.
Now we discuss the kernel of Eρ(Φ) in the same way. Set H(g;µ, ν, i, j, s) equal to

ρij(Φ, µ, ν, s)E
(
g, φi(µ, ν), s

)
E
(
g, φj(µ, ν), s

)
.
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On the diagonal the kernel of Eρ(Φ) is equal to∑
µ,ν

∑
i,j

1

4πc

∫ i∞

−i∞
H(g;µ, ν, i, j, s) d|s|

if F is a number field and to∑
µ,ν

∑
i,j

log q

4πc

∫ 2π
log q

0

H(g;µ, ν, i, j, s) d|s|

if F is a function field. We set E1(g, φ, s) equal to∑
PF \GF

{
T−1
s φ(δg) +M(s)T−1

s φ(δg)
}
χ(δg)

and let
E2(g, φ, s) = E(g, φ, s)− E1(g, φ, s).

If, for m = 1, 2, n = 1, 2, Hmn(g;µ, ν, i, j, s) is

ρij(Φ, µ, ν, s)Em
(
g, φi(µ, ν), s

)
En

(
g, φj(µ, ν), s

)
and Φmn(g) is, at least when F is a number field,∑

µ,ν

∑
i,j

1

4πc

∫ i∞

−i∞
Hm,n(g;µ, ν, i, j, s) d|s|,

the kernel of Eρ(Φ) is
n∑

m=1

2∑
n=1

Φmn(g)

on the diagonal.
If m or n is 2 ∫

GFZA\GA

Φmn(g)ω0(g)

is equal to

(16.2.12)
1

4πc

∫ i∞

−i∞

∑
µ,ν

∑
i,j

{∫
GFZA\GA

Hm,n(g, µ, ν, i, j, s)ω0(g)

}
d|s|.

Take first m = n = 2. If F is a number field a formula for the inner product∫
GFZA\GA

E2(g, φ1, s)E2(g, φ2, s)ω0(g)

can be inferred from the formulae of [26] and [27]. The result is the sum of

c lim
t↘0

1

2t

{
c2t1 (φ1, φ2)− c−2t

1

(
N(t+ s)φ1, N(t+ s)φ2

)}
,

where N(t+ s) = Tt+sM(t+ s)T−1
t+s, and

c lim
t↘0

1

2s

{
c2s1
(
φ1, N(t+ s)φ2

)
− c−2s

1

(
N(t+ s)φ1, φ2

)}
.
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The second expression is equal to
c

2s

{
c2s1
(
φ1, N(s)φ2

)
− c−2s

1

(
N(s)φ1, φ2

)}
.

The first is the sum of
2c log c1(φ1, φ2)

and
− c
2

{(
N−1(s)N ′(s)φ1, φ2

)
+
(
φ1, N

−1(s)N ′(s)φ2

)}
.

If F is a function field over Fq and c1 = qn the inner product is the sum of

c log q

{
1− qs + q−s

1− q−2s

(
φ1, N(s)φ2

)
q2(n−1)s +

1− q−s + qs

1− q2s
(
N(s)φ1, φ2

)
q−2(n−1)s

}
and

(2n− 1)c(φ1, φ2)

and
− c
2

{(
N−1(s)N ′(s)φ1, φ2

)
+
(
φ1, N

−1(s)N ′(s)φ2

)}
.

Certainly ∑
µ,ν

∑
i,j

ρij(Φ, µ, ν, s)
(
φi(µ, ν), φj(µ, ν)

)
= trace ρ(Φ, s)

which equals ∑
µ,ν

c

∫
NA

∫
ZA\AA

∫
K

Φ(k−1ank)µ(α)ν(β)

∣∣∣∣αβ
∣∣∣∣ s+1

2

dn da dk

or ∑
µ,ν

c

∫
NA

∫
ZAAF \AA

∫
K

∑
γ∈ZF \AF

Φ(k−1aγnk)µ(α)ν(β)

∣∣∣∣αβ
∣∣∣∣ s+1

2

dn da dk.

Thus if H is the set of all (
α 0
0 β

)
in ZAAF\AA for which |α| = |β|

(16.2.13)
1

4πc

∫ i∞

−i∞
trace ρ(Φ, s) d|s|

is equal to
1

2

∑
µ,ν

∫
H

∫
NA

∫
K

∑
γ

Φ(k−1aγnk)µ(α)ν(β) dn dk da

which is
1

2

∫
NA

∫
K

Φ(k−1γnk) dn dk.

When multiplied by 2c log c1 the effect of this is to cancel the term (16.2.11). If F is a function
field (16.2.13) is said to be replaced by

log q

4πc

∫ 2π
log q

0

trace ρ(Φ, s) d|s|

but the conclusion is the same.
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The expression ∑
µ,ν

∑
i,j

ρij(Φ, µ, ν, s)
(
φi(µ, ν), N(s)φj(µ, ν)

)
is equal to

traceM−1(s)ρ(Φ, s)

when s is purely imaginary and∑
µ,ν

∑
i,j

ρij(Φ, µ, ν, s)
(
N(s)φi(µ, ν), φj(µ, ν)

)
is equal to

traceM(s)ρ(Φ, s).

Since M(0) =M−1(0)

lim
c1→∞

1

8π

∫ i∞

−i∞

1

s

{
c2s1 traceM−1(s)ρ(Φ, s)− c−2s

1 traceM(s)ρ(Φ, s)
}
d|s|

is equal to
1

4
traceM(0)ρ(Φ, 0).

When multiplied by −1 this is the sixth term of the trace formula. For a function field it is
to be replaced by

log q

4

{
traceM(0)ρ(Φ, 0) + traceM

(
π

log q

)
ρ

(
Φ,

π

log q

)}
.

When s is purely imaginary(
N−1(s)N ′(s)φ1, φ2

)
=
(
φ1, N

−1(s)N ′(s)φ2

)
.

Moreover ∑
µ,ν

∑
i,j

ρij(Φ, µ, ν, s)
(
N−1(s)N ′(s)φi(µ, ν), φj(µ, ν)

)
is equal to

traceM−1(s)M ′(s)ρ(Φ, s).

Thus
1

4π

∫ i∞

−i∞
traceM−1(s)M ′(s)ρ(Φ, s) d|s|

is to be added to the trace formula. It gives the seventh and eighth terms.
Next we consider (16.2.12) when m = 2 and n = 1. If φ′

2 = T−1
s φ2 and φ′′

2 =M(s)T−1
s φ2

the integral

(16.2.14)

∫
GFZA\GA

E2(g, φ1, s)E1(g, φ2, s)ω0(g)

is the sum of ∫
PFZA\GA

E2(g, φ1, s)φ
′
2(g)χ(g)ω0(g)

and ∫
PFZA\GA

E2(g, φ1, s)φ
′′
2(g)χ(g)ω0(g).
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Since φ′
2, φ

′′
2 and χ are all functions on ZANAPF\GA while, as is known,

χ(g)

∫
NA

E2(ng, φ1, s) dn = 0

when c1 is sufficiently large, the integral (16.2.14) is 0. Thus (16.2.12) is 0 when m = 2 and
n = 1 and also when m = 1 and n = 2.

Set
F (g, φ, s) = T−1

s φ(g) +M(s)T−1
s φ(g)

and set H0(g, µ, ν, i, j, s) equal to

ρij(Φ, µ, ν, s)F
(
g, φi(µ, ν), s

)
F
(
g, φj(µ, ν), s

)
χ(g).

If c1 is so large that χ(δ1g)χ(δ2g) = 0 when δ1 and δ2 do not belong to the same coset of PF
the function Φ1,1(g) is equal to∑

µ,ν

∑
i,j

∑
PF \GF

1

4πc

∫ i∞

−i∞
H0(δg, µ, ν, i, j, s) d|s|.

If φ′
i(g, µ, ν) is the value of T−1

s φi(µ, ν) at g then∑
i,j

ρij(Φ, µ, ν, s)φ
′
i(h, µ, ν)φ

′
j(g, µ, ν)

is the kernel of ρ(Φ, µ, ν, s) which is

c

∫
NA

∫
ZA\AA

Φ(g−1anh)

∣∣∣∣αβ
∣∣∣∣ s+1

2

µ(α)ν(β) dn da.

If we set h = g, divide by 4πc, integrate from −i∞ to i∞, and then sum over µ and ν we
obtain

1

2

∑
γ∈ZF \AF

Ψ(0, γ, g).

If φ′′
i (g, µ, ν) is the value of M(s)T−1

s φi(µ, ν) at g∑
i,j

ρij(Φ, µ, ν, s)φ
′′
i (h, µ, ν)φ

′′
j (g, µ, ν)

is the kernel of
M(µ, ν, s)ρ(Φ, µ, ν, s)M(ν, µ,−s) = ρ(Φ, ν, µ,−s).

Thus Φ1,1(g) is the sum of

(16.2.15)
∑

δ∈PF \GF

∑
γ∈ZF \AF

Ψ(0, γ, δg)χ(δg)

and ∑
µ,ν

∑
i,j

∑
PF \GF

χ(δg)

4πc

∫ i∞

−i∞

{
H1(δg, µ, ν, i, j, s) +H2(δg, µ, ν, i, j, s)

}
d|s|

where H1(g, µ, ν, i, j, s) is

ρij(Φ, µ, ν, s)φ
′
i(g, µ, ν)φ

′′
j (g, µ, ν)

and H2(g, µ, ν, i, j, s) is
ρij(Φ, µ, ν, s)φ

′′
i (g, µ, ν)φ

′
j(g, µ, ν).
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The expression (16.2.15) cancels (16.2.10). If g = nak with

a =

(
α 0
0 β

)
,

H1(g, µ, ν, i, j, s) is equal to

ρij(Φ, µ, ν, s)µ

(
α

β

)
ν

(
β

α

)∣∣∣∣αβ
∣∣∣∣s+1

φ′
i(k)φ

′′
j (k).

The functions ρij(Φ, µ, ν, s) are infinitely differentiable on the imaginary axis. Thus

1

4πc

∫ i∞

−i∞
H1(g, µ, ν, i, j, s) d|s|

is O

(∣∣∣αβ ∣∣∣M) as
∣∣∣αβ ∣∣∣→ ∞ for any real M . Thus if this expression is multiplied by χ(g) and

averaged over PF\GF the result is integrable on ZAGF\GA and its integral approaches 0 as
c1 approaches ∞. Thus it contributes nothing to the trace. Nor do the analogous integrals
for H2(g, µ, ν, i, j, s).



§16. AN APPLICATION OF THE SELBERG TRACE FORMULA 291

References for Chapter III

The Dirichlet series associated to automorphic forms on a quaternion algebra are discussed in:
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