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Introduction

Two of the best known of Hecke’s achievements are his theory of L-functions with
grossencharakter, which are Dirichlet series which can be represented by Euler products,
and his theory of the Euler products, associated to automorphic forms on GL(2). Since a
grossencharakter is an automorphic form on GL(1) one is tempted to ask if the Euler products
associated to automorphic forms on GL(2) play a role in the theory of numbers similar to
that played by the L-functions with grossencharakter. In particular do they bear the same
relation to the Artin L-functions associated to two-dimensional representations of a Galois
group as the Hecke L-functions bear to the Artin L-functions associated to one-dimensional
representations? Although we cannot answer the question definitively one of the principal
purposes of these notes is to provide some evidence that the answer is affirmative.

The evidence is presented in §12. It comes from reexamining, along lines suggested by a
recent paper of Weil, the original work of Hecke. Anything novel in our reexamination comes
from our point of view which is the theory of group representations. Unfortunately the facts
which we need from the representation theory of GL(2) do not seem to be in the literature
so we have to review, in Chapter I, the representation theory of GL(2, F') when F' is a local
field. §7 is an exceptional paragraph. It is not used in the Hecke theory but in the chapter
on automorphic forms and quaternion algebras.

Chapter [ is long and tedious but there is nothing hard in it. None the less it is necessary
and anyone who really wants to understand L-functions should take at least the results
seriously for they are very suggestive.

§9 and §10 are preparatory to the Hecke theory which is finally taken up in §11. We would
like to stress, since it may not be apparent, that our method is that of Hecke. In particular
the principal tool is the Mellin transform. The success of this method for GL(2) is related to
the equality of the dimensions of a Cartan subgroup and the unipotent radical of a Borel
subgroup of PGL(2). The implication is that our methods do not generalize. The results,
with the exception of the converse theorem in the Hecke theory, may.

The right way to establish the functional equation for the Dirichlet series associated
to the automorphic forms is probably that of Tate. In §13 we verify, essentially, that this
method leads to the same local factors as that of Hecke and in §14 we use the method of
Tate to prove the functional equation for the L-functions associated to automorphic forms
on the multiplicative group of a quaternion algebra. The results of §13 suggest a relation
between the characters of representations of GL(2) and the characters of representations of
the multiplicative group of a quaternion algebra which is verified, using the results of §13, in
§15. This relation was well-known for archimedean fields but its significance had not been
stressed. Although our proof leaves something to be desired the result itself seems to us to
be one of the more striking facts brought out in these notes.

Both §15 and §16 are afterthoughts; we did not discover the results in them until the rest
of the notes were almost complete. The arguments of §16 are only sketched and we ourselves



vi INTRODUCTION

have not verified all the details. However the theorem of §16 is important and its proof is
such a beautiful illustration of the power and ultimate simplicity of the Selberg trace formula
and the theory of harmonic analysis on semi-simple groups that we could not resist adding it.
Although we are very dissatisfied with the methods of the first fifteen paragraphs we see no
way to improve on those of §16. They are perhaps the methods with which to attack the
question left unsettled in §12.

We hope to publish a sequel to these notes which will include, among other things, a
detailed proof of the theorem of §16 as well as a discussion of its implications for number
theory. The theorem has, as these things go, a fairly long history. As far as we know the first
forms of it were assertions about the representability of automorphic forms by theta series
associated to quaternary quadratic forms.

As we said before nothing in these notes is really new. We have, in the list of references
at the end of each chapter, tried to indicate our indebtedness to other authors. We could not
however acknowledge completely our indebtedness to R. Godement since many of his ideas
were communicated orally to one of us as a student. We hope that he does not object to the
company they are forced to keep.

The notesﬂ were typed by the secretaries of Leet Oliver Hall. The bulk of the work was
done by Miss Mary Ellen Peters and to her we would like to extend our special thanks. Only
time can tell if the mathematics justifies her great efforts.

New York, N.Y. August, 1969
New Haven, Conn.

that appeared in the SLM volume



CHAPTER 1

Local Theory

§1. Weil representations

Before beginning the study of automorphic forms, we must review the representation
theory of the general linear group in two variables over a local field. In particular we have to
prove the existence of various series of representations. One of the quickest methods of doing
this is to make use of the representations constructed by Weil in [I]. We begin by reviewing
his construction adding, at appropriate places, some remarks which will be needed later.

In this paragraph F' will be a local field and K will be an algebra over I’ of one of the
following types:

(i) The direct sum F & F.

(ii) A separable quadratic extension of F'.
(iii) The unique quaternion algebra over F. K is then a division algebra with centre F'.
(iv) The algebra M (2, F') of 2 x 2 matrices over F.

In all cases we identify F' with the subfield of K consisting of scalar multiples of the identity.
In particular if K = F' @ F we identify F' with the set of elements of the form (z,z). We can
introduce an involution ¢ of K, which will send x to z*, with the following properties:
(i) It satisfies the identities (z + y)* = 2* + y* and (zy)" = y'z".
(ii) If = belongs to F' then x = x*.
(ili) For any = in K both 7(z) = x + 2* and v(z) = z2* = x*z belong to F.
If K=F&F and x = (a,b) we set * = (b,a). If K is a separable quadratic extension
of F' the involution ¢ is the unique non-trivial automorphism of K over F. In this case 7(x)
is the trace of x and v(x) is the norm of z. If K is a quaternion algebra, a unique ¢ with
the required properties is known to exist. 7 and v are the reduced trace and reduced norm
respectively. If K is M (2, F') we take ¢ to be the involution sending

-}
=)

Then 7(z) and v(z) are the trace and determinant of x.

If ¢ =9 is a given non-trivial additive character of F' then ¥ = ¥ o 7 is a non-trivial
additive character of K. By means of the pairing

(,y) = Yr(zy)
we can identify K with its Pontrjagin dual. The function v is of course a quadratic form on

K which is a vector space over F and f = 1r o v is a character of second order in the sense
of [I]. Since

to

v(z+y) —v(z) —v(y) = 7(zy")
1



2 I. LOCAL THEORY

and
fla+y) (@) (y) = (a.y)
the isomorphism of K with itself associated to f is just ¢. In particular v and f are
nondegenerate.
Let S(K) be the space of Schwartz-Bruhat functions on K. There is a unique Haar
measure dz on K such that if ® belongs to S(K') and

¥(2) = [ )intan) dy
then
(I)(O):/KCD/($) dr.

The measure dx, which is the measure on K that we shall use, is said to be self-dual with
respect to Y.

Since the involution ¢ is measure preserving the corollary to Weil’s Theorem 2 can in the
present case be formulated as follows.

Lemma 1.1. There is a constant v which depends on the g and K, such that for every
function ® in S(K)
[ @4 D@l dy = f )0 @)
K
® x f is the convolution of ® and f. The values of v are listed in the next lemma.

Lemma 1.2.
(i) f K=F&F or M(2,F) then v = 1.
(i) If K is the quaternion algebra over F then v = —1.
(i) If F=R, K = C, and

then
v =t
lal
(iv) If F' is non-archimedean and K is a separable quadratic extension of F' let w be the
quadratic character of F* associated to K by local class-field theory. If Up is the
group of units of F* let m = m(w) be the smallest non-negative integer such that w
1s trivial on
Up ={acUp|a=1 (modp})}
and let n = n(yr) be the largest integer such that ¥p is trivial on the ideal p". If a
is any generator on the ideal Pl then

fUF w N a)Yp(aa™) da |
fUF w™Ha)Yp(aa=r) da‘

The first two assertions are proved by Weil. To obtain the third apply the previous lemma
to the function

VZW(G)‘

B(z) = e 27
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We prove the last. It is shown by Weil that |y| = 1 and that if ¢ is sufficiently large v differs
from

, Yp(zx') de
P

by a positive factor. This equals

Yp(xxt)|z|x d*x = Vp(za')|zxt|pd
Pi P
if d*x is a suitable multiplicative Haar measure. Since the kernel of the homomorphism v is
compact the integral on the right is a positive multiple of

/ Yp(z)|e|pd .
v(pRh)

Set k = 2¢if K/ F is unramified and set k = ¢ if K/F is ramified. Then v(p3’) = parnuv(K).
Since 1 + w is twice the characteristic function of v(K*) the factor 7 is a positive multiple of

VYp(x) do + /k Yp(r)w(r) de.
br

Prt
For ¢ and therefore k sufficiently large the first integral is 0. If K/F is ramified well-known
properties of Gaussian sums allow us to infer that the second integral is equal to

()

Since w = w™" we obtain the desired expression for v by dividing this integral by its absolute
value. If K/F is unramified we write the second integral as

Z<—1>““{ L e de | tr@ dx}

=0 bp

1

In this case m = 0 and

Yp(z)de

]
P +J

is 0 if kK — j > n but equals ¢*7 if k — j < n, where ¢ is the number of elements in the residue
class field. Since w(a) = (—1)" the sum equals

wla)d g+ 2(—1)%]‘ (1-1)

q

A little algebra shows that this equals 2‘”(21—'1;”“ so that v = w(a), which upon careful

inspection is seen to equal the expression given in the lemma.
In the notation of [19] the third and fourth assertions could be formulated as an equality

7= AK/F, ¥p).
It is probably best at the moment to take this as the definition of A\(K/F,¢r).
If K is not a separable quadratic extension of F' we take w to be the trivial character.

Proposition 1.3. There is a unique representation r of SL(2, F') on S(K) such that
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(i) r (g a(ll))wx):w(a)ra\}f@mx)
i i))ﬂx):w(zv(x))@(x)

(i) 7 (_(1) é))@(aﬁ) — ().
If S(K) is given its usual topology, r is continuous. It can be extended to a unitary rep-
resentation of SL(2, F) on L*(K), the space of square integrable functions on K. If F is

archimedean and ® belongs to S(K) then the function r(g)® is an indefinitely differentiable
function on SL(2, F') with values in S(K).

This may be deduced from the results of Weil. We sketch a proof. SL(2, F') is the group
generated by the elements (g o ), ($%), and w = (_(1) (1)) with o in /' and z in F' subject

to the relations

X o6 at) - (0
o3 )
) oo o= (5 206 3G )

together with the obvious relations among the elements of the form (§ %) and (}%). Thus
the uniqueness of r is clear. To prove the existence one has to verify that the mapping
specified by (i), (ii), (iii) preserves all relations between the generators. For all relations
except @, (]ED, and this can be seen by inspection. @ translates into an easily verifiable
property of the Fourier transform. (]ED translates into the equality 42 = w(—1) which follows
readily from Lemma 1.2.

If @ = 1 the relation becomes

(1.3.1) A@’(yL)wF(V(y))@,M dy:va(—V(w))/KCP(y)z/JF(—V(y))(y, —x') dy

which can be obtained from the formula of Lemma 1.1 by replacing ®(y) by ®'(—y*) and
taking the inverse Fourier transform of the right side. If a is not 1 the relation can again
be reduced to (|1.3.1]) provided ¢ is replaced by the character  — ¢ r(ax) and v and dz are
modifed accordingly. We refer to Weil’s paper for the proof that r is continuous and may be
extended to a unitary representation of SL(2, F') in L*(K).

Now take F' archimedean. It is enough to show that all of the functions r(g)® are
indefinitely differentiable in some neighbourhood of the identity. Let

NF:{(; /) xeF}
wo={ (5 ) [oer]

and let
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Then NpwApNp is a neighbourhood of the identity which is diffeomorphic to Ngp x Ap X Np.
It is enough to show that
o(n,a,ny) = r(nwang)®

is infinitely differentiable as a function of n, as a function of a, and as a function of n; and
that the derivations are continuous on the product space. For this it is enough to show that
for all @ all derivatives of r(n)® and r(a)® are continuous as functions of n and ® or a and
®. This is easily done.

The representation r depends on the choice of ¥p. If a belongs to F* and ¢ (z) = ¥ (az)
let ' be the corresponding representation. The constant v = w(a)7y.

Lemma 1.4.

(i) The representation r' is given by

o=((s (3 )

(i) If b belongs to K* let \(b)®(x) = ®(b~'x) and let p(b)®(x) = ®(zb). If a = v(b)
then

and

r(9)p(b) = p(b)r(g).
In particular if v(b) = 1 both \(b) and p(b) commute with r.

We leave the verification of this lemma to the reader. Take K to be a separable quadratic
extension of F' or a quaternion algebra of centre F. In the first case v(K*) is of index 2 in
F*. In the second case v(K*) is F* if F' is non-archimedean and v(K*) has index 2 in F'*
if F'is R.

Let K’ be the compact subgroup of K* consisting of all x with v(z) = zz* =1 and let G
be the subgroup of GL(2, F') consisting of all g with determinant in v(K*). G, has index 2
or 1 in GL(2, F'). Using the lemma we shall decompose r with respect to K’ and extend r to
a representation of G.

Let Q) be a finite-dimensional irreducible representation of K* in a vector space U over C.
Taking the tensor product of r with the trivial representation of SL(2, F') on U we obtain a
representation on

S(K)®cU=S8(K,U)
which we still call » and which will now be the centre of attention.

Proposition 1.5.
(i) If S(K, Q) is the space of functions ® in S(K,U) satisfying
®(xh) = Q1 (h)®(x)

for all h in K' then S(K, ) is invariant under r(g) for all g in SL(2, F).
(i) The representation r of SL(2, F') on S(K,Q) can be extended to a representation rg

of G satisfying
ro ((0 ‘1))) (z) = [ *Qh)®(xh)

if a =wv(h) belongs to v(K*).
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(#i) If ) is the quasi-character of F* such that
Qa) = nla)l

((O 0)) ~ wl@()!

(iv) The representation rq is continuous and if F' is archimedean all factors in S(K, )
are infinitely differentiable.

(v) If U is a Hilbert space and 2 is unitary let L*(K,U) be the space of square integrable
functions from K to U with the norm

o) = /K |@ ()| de

If L*(K,Q) is the closure of S(K,Q) in L*(K,U) then rq can be extended to a
unitary representation of G, in L*(K,Q).

for a in F* then

The first part of the proposition is a consequence of the previous lemma. Let H be the
group of matrices of the form
a 0
(6 1)

with a in v(K*). It is clear that the formula of part (ii) defines a continuous representation
of H on §(K, ). Moreover GG, is the semi-direct product of H and SL(2, F') so that to prove
(ii) we have only to show that

((0 Da("y (j)):m((g $)>m<g>m((a; 2))

Let a = v(h) and let r' be the representation associated % (x) = ¥r(ax). By the first part
of the previous lemma this relation reduces to

ra(9) = p(h)ra(g)p™" (h),
which is a consequence of the last part of the previous lemma.

To prove (iii) observe that
a 0y (a® 0\[a' O
0 a/) \O 1 0 a

and that a® = v(a) belongs to v(K*). The last two assertions are easily proved.
We now insert some remarks whose significance will not be clear until we begin to discuss
the local functional equations. We associate to every ® in S(K,2) a function

(1.5.1) Wa(g) = ra(g)®(1)

on G and a function

(15.2) oa(a) =W¢((g ?))

on v(K*). The both take values in U.
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%((é f)g) = ¥p()Walg)

If g € G4 and F is a function on G let p(g)F be the function h — F(hg). Then

p(g)Wa = W,y ()@
Let B, be the group of matrices of the form

6 1)

with a in v(K*). Let £ be the representation of B, on the space of functions on v(K*) with

values in U defined by
5((3 (f))go(b) ~ p(ba)

s(((l) f))w(b) = v (be)p(b).

It is easily verified that

and

Then for all b in B,

(1.5.3) £(b)pa = prqy(b)®.
The application ® — ¢g, and therefore the application ® — Wy, is injective because
(1.5.4) va(v(h)) = [B[2Q(R)®(h).

Thus we may regard rq as acting on the space V' of functions e, ® € S(K, Q). The effect of
a matrix in By is given by (1.5.3). The matrix (§9) corresponds to the operator w(a)n(a)l.
Since G is generated by B, the set of scalar matrices, and w = (_(1) (1)) the representation
rq on V is determined by the action of w. To specify this we introduce, formally at first, the
Mellin transform of ¢ = pg.

If 1 is a quasi-character of F'* let

(1.5.5) B = [ elata)da
v(KX)

Appealing to (1.5.4) we may write this as

(1.5.6) Foli) = 2) = [ Wl )220 4
KX

If A is a quasi-character of F'* we sometimes write A for the associated quasi-character \ o v
of K*. The tensor product A ® €2 of A and (2 is defined by

A®@Q)(h) = A(h)Q(h).
If ag : h — |h|k is the module of K then
P @ Q(h) = A (v (h) Q(b).

We also introduce, again in a purely formal manner, the integrals

2(0,®) = / QR)D(h) d*h
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and
Z(Q 1 ®) = Q' (R)®(R)d*h
K><
so that
(1.5.7) Pp) = Z(poyl* @ Q, ).

Now let ¢’ = @r,(w)o and let @ be the Fourier transform of ® so that ro(w)®(z) = y®'(z*).
If 1o = wn
G tugt) = Z(u’luala}f ®Q, m(w)fb)

which equals
v [ () U ()
K
Since yo(v(h)) = n(v(h)) = Q(h*h) = Q(h*)Q(h) this expression equals

7 KM_I(Wh))Q‘l(hL)@’(h‘) d*h =~ /K (v (h) Q7Y (R)® (h) d*h

so that
(1.5.8) P =12 o0 071 @),
Take p = pyaj where iy is a fixed quasi-character and s is complex number. If K is a

separable quadratic extension of I’ the representation {2 is one-dimensional and therefore a
quasi-character. The integral defining the function

Z (,uoz}(/z ® Q, D)

is known to converge for Re s sufficiently large and the function itself is essentially a local
zeta-function in the sense of Tate. The integral defining

Zn e lf @0 @)
converges for Res sufficiently small, that is, large and negative. Both functions can be
analytically continued to the whole s-plane as meromorphic functions. There is a scalar C'(u)
which depends analytically on s such that

Z(pail? @ Q,0) = C(uZ(p oyl @ Q71 @),

All these assertions are also known to be valid for quaternion algebras. We shall return to
the verification later. The relation

P(p) =~ Cm@ (1 ")
determines ¢’ in terms of .
If A is a quasi-character of F* and ; = A ® Q then S(K,Q;) = S(K,Q2) and
ra,(9) = Aldet g)ra(g)
so that we may write
TQl = /\ ® ro
However the space V; of functions on v(K ™) associated to rq, is not necessarily V. In fact
Vi={\|peV]

and ro, (¢g) applied to A, is the product of A(det g) with the function A - rqo(g),. Given Q one
can always find a A such that A ® Q is equivalent to a unitary representation.
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If ©2 is unitary the map ® — g is an isometry because
/ loa(@)|> @*a = / |(m)® ()| 1hlx &b = / ()| dh
v(K*) K K

if the measures are suitably normalized.

We want to extend some of these results to the case K = F & F. We regard the element
of K as defining a row vector so that K becomes a right module for M (2, F'). If & belongs to
S(K) and g belongs to GL(2, F'), we set

p(g)®(z) = ®(xg).

Proposition 1.6.
(i) If K =F @ F then r can be extended to a representation r of GL(2, F') such that

()

(i) If ® is the partial Fourier transform

B(a,b) = / B(a, y)r(by) dy

and the Haar measure dy is self-dual with respect to Vg then

[r(9)®]” = plg)®
for all ® in S(K) and all g in Gp.

It is easy to prove part (ii) for ¢ in SL(2, F'). In fact one has just to check it for the
standard generators and for these it is a consequence of the definitions of Proposition 1.3.
The formula of part (ii) therefore defines an extension of r to GL(2, F') which is easily seen
to satisfy the condition of part (i).

Let €2 be a quasi-character of K*. Since K* = F* x F'* we may identify (2 with a pair
(w1, ws) of quasi-characters of F'*. Then rq will be the representation defined by

ra(g) = |det g| " (det g)r(g).
If z belongs to K* and v(z) = 1 then x is of the form (¢,¢7!) with ¢ in F*. If ® belongs
to S(K) set

WQ@:/‘M@tWQWJUMW

Since the integrand has compact support on F'* the integral converges. We now associate to
® the function

(1.6.1) Wa(g) = 0(2,ra(9)®)
on GL(2, F') and the function

(1.62) pala) =w¢((g 2))

on F*. We still have
p(g)Wa = W, (9)®.
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BF:{(g 0)

and if the representation £ of Br on the space of functions on F* is defined in the same
manner as the representation £ of B then

g(b%&b = @rq(b)®
for b in Bp. The applications ® — Wg and & — g are no longer injective.
If po is the quasi-character defined by

po(a) = Q((@a a)) = wi(a)wz(a)

%((3 g)g) = (@) Wa(g).

It is enough to verify this for g = e.

wa( (5 0)) =0l (5 1))

If

aEFX,xGF}

then

and
a 0\  (a® 0\[(a ! O
0 a) \O 1 0 a
so that
a 0 - _
((o a>>‘b<x,y> — |2l (@)l *®(ax, a”'y)
Consequently

%((8 2)) _ /F (@ () (2)0(ar, 0 e ¥

= wi(a)ws(a) /Fx wi(2)wy N (2)®(x, 27 1) d¥x

which is the required result.
Again we introduce in a purely formal manner the distribution

Z(Q,®) = Z(wy,wq, P) = /(I)(Q?l,.TQ)wl(l'g)WQ(iEg) d*ze d* .

If i is a quasi-character of F'* and ¢ = g we set
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The integral is

/qu(oz)é Qm<((g ?))@ d*a
:/FX 1(c) /F m(((g (1)>)@(x,x_l)wl(x)wgl(:p)dxx o

which in turn equals

/FX plagale ”O“I/Q{AX ®(az, 7w (@)wy ' (2) dxx} d*a

Writing this as a double integral and then changing variables we obtain

[ [ etepma@ua@asly dad
Fx JFX
so that

(1.6.3) Blp) = Z(pwiayf?, pusal?, @),
Let ¢" = ¢y @w)e. Then

gt = 2 (p sy e i w ol ro(w) @)
which equals

[ ¥ e @ Wl a e dy

so that

(1.6.4) Pl gt = 2wt e w gl @),
Suppose p = piaf where py is a fixed quasi-character and s is a complex number. We shall

see that the integral defining the right side of ([1.6.3)) converges for Re s sufficiently large and
that the integral defining the right side of ((1.6.4)) converges for Re s sufficiently small. Both

can be analytically continued to the whole complex plane as meromorphic functions and
there is a meromorphic function C'(u) which is independent of ® such that

Z(uwrayf?, e, ®) = C() Z(p~ wy Mo, i wy T2, @),

Thus
P(u) = C(W)? (1 g )
The analogy with the earlier results is quite clear.



12 I. LOCAL THEORY

§2. Representations of GL(2, F') in the non-archimedean case

In this and the next two paragraphs the ground field F' is a non- archimedean local field.
We shall be interested in representations m of Gr = GL(2, F') on a vector space V over C
which satisfy the following condition.

(2.1). For every vector v in V the stabilizer of v in Gg is an open subgroup of Gp.

Those who are familiar with such things can verify that this is tantamount to demanding
that the map (g,v) — 7(g)v of Gp x V into V' is continuous if V' is given the trivial locally
convex topology in which every semi-norm is continuous. A representation of G satisfying
(2.1) will be called admissible if it also satisfies the following condition.

(2.2). For every open subgroup G' of GL(2,OF) the space of vectors v in V stabilized by G’
15 finite-dimensional. Op s the ring of integers of F'.

Let Hr be the space of functions on G which are locally constant and compactly
supported. Let dg be that Haar measure on G which assigns the measure 1 to GL(2, OF).
Every f in Hp may be identified with the measure f(g)dg. The convolution product

fix fa(h) = ; f1(9)f2(g~"h) dg

turns Hp into an algebra which we refer to as the Hecke algebra. Any locally constant
function on GL(2, Or) may be extended to G by being set equal to 0 outside of GL(2, Or)
and therefore may be regarded as an element of Hp. In particular if m;; 1 < i < r, is a family
of inequivalent finite-dimensional irreducible representations of GL(2, Or) and

&i(g) = dim(m) trmi(g™")
for g in GL(2,OF) we regard &; as an element of H . The function

E=> ¢
i=1

is an idempotent of Hp. Such an idempotent will be called elementary.
Let m be a representation satisfying (2.1). If f belongs to Hr and v belongs to V' then
f(g)m(g)v takes on only finitely many values and the integral

flg)m(g)vdg = n(f)v

GF
may be defined as a finite sum. Alternatively we may give V the trivial locally convex
topology and use some abstract definition of the integral. The result will be the same and
f — 7w(f) is the representation of Hr on V. If g belongs to G then A(g)f is the function
whose value at h is f(g~h). Tt is clear that

m(Mg)f) = m(g)m(f).

Moreover
(2.3). For every v in'V there is an f in Hp such that wf(v) = v.

In fact f can be taken to be a multiple of the characteristic function of some open and
closed neighbourhood of the identity. If 7 is admissible the associated representation of H g
satisfies
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(2.4). For every elementary idempotent & of Hp the operator mw(§) has a finite-dimensional
range.

We now verify that from a representation m of Hp satisfying (2.3) we can construct a
representation m of G satisfying (2.1) such that

m(f) = ; f(g)m(g)dg.

By (2.3) every vector v in V is of the form

v= Z 7(fi)vi

with v; in V' and f; in Hp. If we can show that

(2.3.1) > (v =0
i=1

implies that

w = Z W()\(g)fi)vi

is 0 we can define 7(g)v to be

Z d ()\(g)fi)vi
i=1
7 will clearly be a representation of G satisfying (2.1).

Suppose that (2.3.1)) is satisfied and choose f in Hp so that 7(f)w = w. Then

T

w = Zﬂ'(f * Mg) f;)vi-
It p(g) f(h) = f(hg) then

X9 fi=plg™)f * fi
so that

w=> w(plg ) f* fi)vi =7(p(g ™) F)D 7 (fi)vi p = 0.
i=1 i=1
It is easy to see that the representation of G satisfies (2.2) if the representation of Hp
satisfies (2.4). A representation of Hp satisfying (2.3) and (2.4) will be called admissible.
There is a complete correspondence between admissible representations of G and of Hp.
For example a subspace is invariant under G if and only if it is invariant under Hp and an
operator commutes with the action of G if and only if it commutes with the action of Hp.
From now on, unless the contrary is explicitly stated, an irreducible representation of
G or Hp is to be assumed admissible. If 7 is irreducible and acts on the space V' then any
linear transformation A of V' commuting with H g is a scalar. In fact if V' is assumed, as it
always will be, to be different from 0 there is an elementary idempotent & such that (&) # 0.
Its range is a finite-dimensional space invariant under A. Thus A has at least one eigenvector
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and is consequently a scalar. In particular there is a homomorphism w of F* into C* such

that
w<(g 2)) — w(a)l

for all @ in F*. By (2.1) the function w is 1 near the identity and is therefore continuous.
We shall refer to a continuous homomorphism of a topological group into the multiplicative
group of complex numbers as a quasi-character.

If x is a quasi-character of F'* then g — x(det g) is a quasi-character of Gp. It determines
a one-dimensional representation of G which is admissible. It will be convenient to use the
letter x to denote this associated representation. If 7 is an admissible representation of G g
on V then y ® 7 will be the representation of Gg on V defined by

(x ® ) (g) = x(det g)m(g).
It is admissible and irreducible if 7 is.
Let m be an admissible representation of Gr on V and let VV* be the space of all linear
forms on V. We define a representation 7* of Hp on V* by the relation

<v, ﬂ*(f)v*> = <7r(f)v, v*>

where f(g) = f(¢~"). Since 7* will not usually be admissible, we replace V* by V= ™ (Hp)V*.
The space V is invariant under Hp. For each f in Hp there is an elementary idempotent &
such that £ * f = f and therefore the restriction 7 of 7* to V satisfies (2.3). It is easily seen
that if ¢ is an elementary idempotent so is €. To show that 7 is admissible we have to verify
that

V(e =7V =TV
is finite-dimensional. Let V(€) = 7(£)V and let V, = (1 - W(E))V V' is clearly the direct

sum of V(€), which is finite-dimensional, and V,. Moreover V(&) is orthogonal to V. because
(v =70, 7)) = (7w - (€)v,7) = 0.

It follows immediately that ‘7(5) is isomorphic to a subspace of the dual of V(€) and is
therefore finite-dimensional. It is in fact isomorphic to the dual of V() because if v*
annihilates V, then, for all v in V,

(v, T (E)v*) — (v,v*) = —<v - W(f)v,v*> =0

so that 7 (&)v* = v*.

7 will be called the representation contragredient to 7. It is easily seen that the natural
map of V' into V* is an isomorphism and that the image of this map is 7*(Hr)V* so that =
may be identified with the contragredient of 7.

If V7 is an invariant subspace of V' and V5 = V4 \V we may associate to 7 representations
71 and 7 on V; and VQ They are easily seen to be admissible. It is also clear that there is a
natural embedding of V, in V. Moreover any element v; of V4 lies in Vl(f) for some £ and

therefore is determined by its effect on Vi (€). It annihilates (I — 7r(f)>V1. There is certainly
a linear function v on V which annihilates <I - ﬂ(f))V and agrees with V; on V4 (€). 7 is
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necessarily in V so that V; may be identified with ‘72\‘7 Since every representation is the
contragredient of its contragredient we easily deduce the following lemma.

Lemma 2.5.
(a) Suppose Vi is an invariant subspace of V. If Va is the annihilator of Vi in V' then V)

is the annihilator of Vo in V.
(b) 7 is irreducible if and only if T is.
Observe that for all g in Gp
<7r(g)v,5> = <v, %(g_l)@.
If 7 is the one-dimensional representation associated to the quasi-character y then ™ =y~
Moreover if y is a quasi-character and 7 any admissible representation then the contragredient
of y®@mis x ' ®T.

Let V' be a separable complete locally convex space and 7 a continuous representation of
Gr on V. The space Vy = m(H )V is invariant under G and the restriction my of 7 to Vj
satisfies (2.1). Suppose that it also satisfies (2.2). Then if 7 is irreducible in the topological
sense 7y is algebraically irreducible. To see this take any two vectors v and w in V; and choose
an elementary idempotent £ so that 7({)v = v. v is in the closure of 7(Hr)w and therefore
in the closure of m(Hp)w N7(§)V. Since, by assumption, 7(£)V is finite-dimensional, v must
actually lie in m(Hp)w.

The equivalence class of 7 is not in general determined by that of my. It is, however, when
7 is unitary. To see this one has only to show that, up to a scalar factor, an irreducible
admissible representation admits at most one invariant hermitian form.

1

Lemma 2.6. Suppose m and my are irreducible admissible representations of Gg on Vi and
Vo respectively. Suppose A(vy,v9) and B(vy,vs) are non-degenerate forms on Vi x V, which
are linear in the first variable and either both linear or both conjugate linear in the second
variable. Suppose moreover that, for all g in Gg

A(m(g)vl,WQ(g)UQ) = A(vy,v9)
and

B(m(g)vl,ﬂg(g)vg) = B(vy,v2)
Then there is a complex scalar A such that

B(?}l, UQ) = )\A(?}l, UQ)

Define two mappings S and T of V5 into i by the relations

A(v1,v2) = (v1, Sva)
and

B(Ul, ’02) = <U1, TU2>,
Since S and T" are both linear or conjugate linear with kernel 0 they are both embeddings.
Both take V5 onto an invariant subspace of V;. Since V] has no non-trivial invariant subspaces
they are both isomorphisms. Thus S~!7 is a linear map of V5 which commutes with G and
is therefore a scalar AI. The lemma follows.

An admissible representation will be called unitary if it admits an invariant positive
definite hermitian form.
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We now begin in earnest the study of irreducible admissible representations of Gg. The
basic ideas are due to Kirillov.

Proposition 2.7. Let m be an irreducible admissible representation of Gr on the vector
space V.

(a) If V is finite-dimensional then V is one-dimensional and there is a quasi-character
x of F* such that
m(g) = x(det g)
(b) If V is infinite-dimensional there is no nonzero vector invariant by all the matrices
(19), zeF.

z 1

If 7 is finite-dimensional its kernel H is an open subgroup. In particular there is a positive
number € such that
1 =z
0 1

belongs to H if || < e. If = is any element of F' there is an a in F'* such that |az| < €. Since

(0 )6 )6 )6 5)
b 3)

belongs to H for all z in F'. For similar reasons the matrices

(oY)

do also. Since the matrices generate SL(2, F)) the group H contains SL(2, F). Thus
7(g1)7(g2) = m(g2)m(g1) for all g; and go in Gp. Consequently each 7(g) is a scalar matrix
and 7(g) is one-dimensional. In fact

m(g) = x(det g)I

where y is a homomorphism of F* into C*. To see that y is continuous we need only observe

that
7r<(8 ?)) = y(a)l.

Suppose V' contains a nonzero vector v fixed by all the operators

((; 1))

Let H be the stabilizer of the space Cv. To prove the second part of the proposition we need
only verify that H is of finite index in G'r. Since it contains the scalar matrices and an open
subgroup of G it will be enough to show that it contains SL(2, F'). In fact we shall show
that Hy, the stabilizer of v, contains SL(2, F'). Hy is open and therefore contains a matrix

(¢ 0

the matrix
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with ¢ # 0. It also contains
1 —act\fa b\ (1 —dc'\ [0 by\ _
0 1 cd)\o 1 )7 \c 0)7 "
LOY (L) e
y 1)~ "%\0 1

also belongs to Hy. As before we see that H, contains SL(2, F').
Because of this lemma we can confine our attention to infinite-dimensional representations.
Let ¢ = ¢ be a non-trivial additive character of F'. Let Br be the group of matrices of the

form
a T
= (5 7)

with @ in F”* and = in F. If X is a complex vector space we define a representation &, of Bp
on the space of all functions of F* with values in X by setting

(£u(0)p) (@) = P(az)p(aa).
&y leaves invariant the space S(F*, X)) of locally constant compactly supported functions.
The function &, is continuous with respect to the trivial topology on S(F™*, X).

If x = b?oy then

Proposition 2.8. Let 7 be an infinite-dimensional irreducible representation of Gr on the
space V. Let p = pr be the mazximal ideal in the ring of integers of F', and let V' be the set
of all vectors v in 'V such that

/ Yp(— ((0 1>)vdaz=0
for some integer n. Then

(i) The set V' is a subspace of V.
(i) Let X =V'\V and let A be the natural map of V onto X. If v belongs to V' let ¢,
be the function defined by

oua) = A w<(8 ?))v

The map v — @, s an injection of V' into the space of locally constant functions on
F>* with values in X.
(#i) If b belongs to Bp and v belongs to V' then

b — gw(b) Pu

If m > n so that p~™™ contains p~™" then

/pm¢(—x)w<((1) f))m:n
5 stem( (b 1)) [t (5 ) )oe

yeEP~™ /p~

is equal to
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Thus if the integral of the lemma vanishes for some integer n it vanishes for all larger integers.
The first assertion of the proposition follows immediately.
To prove the second we shall use the following lemma.

Lemma 2.8.1. Let p~™ be the largest ideal on which ¥ s trivial and let f be a locally
constant function on p~* with values in some finite-dimensional complex vector space. For
any integer n < £ the following two conditions are equivalent

(i) f is constant on the cosets of p~™ in p~*
(ii) The integral
(—ax)f(x) dx
p—t

is zero for all a outside of p~™*".

Assume (i) and let a be an element of F* which is not in p~™"". Then x — ¢ (—ax) is a
non-trivial character of p~™ and

/ Zw(—al")f(l") dx = Z ¢(—ay){/ P(—ax) d:)s}f(y) =0.
P pon

yep~t/p—n

f may be regarded as a locally constant function on F with support in p~¢. Assuming (ii)
is tantamount to assuming that the Fourier transform f’ of f has its support in p~™*". By
the Fourier inversion formula

fx) = / b(—ay) f'(y) dy.
p,me

If y belongs to p~™*" the function x — ¥ (—zy) is constant on cosets of p~™. It follows
immediately that the second condition of the lemma implies the first.

To prove the second assertion of the proposition we show that if ¢, vanishes identically
then v is fixed by the operator 7r((31C (1))) for all z in F' and then appeal to Proposition 2.7.

Take
fz) = w<(é f)>v

The restriction of f to an ideal in F' takes values in a finite-dimensional subspace of V. To
show that f is constant on the cosets of some ideal p~" it is enough to show that its restriction
to some ideal p~¢ containing p~™ has this property.

By assumption there exists an ny such that f is constant on the cosets of p™°. We shall
now show that if f is constant on the cosets of p~™*1 it is also constant on the cosets of p~".
Take any ideal p~¢ containing p~". By the previous lemma

(—az)f(x)der =0
pfl
if a is not in p~™*~!. We have to show that the integral on the left vanishes if a is a
generator of p~ "1,
If Ur is the group of units of Op the ring of integers of F' there is an open subgroup U;

of Ur such that
b 0 B
g 1) ]v=v
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for b in U;. For such b

| () ot [ ocane( (5 0)((3 2))
pr—mww<(ézf)>w<(g§D>vdx:142¢<_%x)ﬂxﬁm,

Thus it will be enough to show that for some sufficiently large ¢ the integral vanishes when a
is taken to be one of a fixed set of representatives of the cosets of Uy in the set of generators
of p~™*m=1  Since there are only finitely many such cosets it is enough to show that for each
a there is at least one ¢ for which the integral vanishes.

By assumption there is an ideal a(a) such that

I (G ) e
But this integral equals
0 1
|a|7r((g 1)) /ala(a)w(—ax)w<<0 a{))vdﬁ

so that ¢ = ¢(a) could be chosen to make
p~f =a'a(a).

To prove the third assertion we verify that

(2.8.2) A w((é 3{))@ = ¥(y)A(v)

for all v in V and all y in F'. The third assertion follows from this by inspection. We have to

show that
1
W<Q)§)>v—w@w
is in V'’ or that, for some n,

e () (G R A ()

is zero. The expression equals

/ o ((1 x‘fy)>vdx—/pn¢(—x+y)w<(é f))m;c_

If p~ contains y we may change the variables in the first integral to see that it equals the
second.
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It will be convenient now to identify v with ¢, so that V' becomes a space of functions on
F* with values in X. The map A is replaced by the map ¢ — ¢(1). The representation 7
now satisfies

m(b)p = &u(b)e
if b is in Bp. There is a quasi-character wy of F* such that

77((3 2)) — wola)].
w= ((_? é))

the representation is determined by wy and 7(w).

If

Proposition 2.9.
(i) The space V' contains
Vo= S(FX7X>
(i) The space V is spanned by Vy and w(w)Vp.

For every ¢ in V there is a positive integer n such that

if z and a — 1 belong to p". In particular p(aa) = ¢(a) if o belongs to F* and a — 1 belongs
to p”. The relation
Ulaz)e(a) = p(a)

for all x in p”™ implies that p(a) = 0 if the restriction of 1 to ap™ is not trivial. Let p=™
be the largest ideal on which ¢ is trivial. Then ¢(«) = 0 unless |a| < |w|™™ ™ if w is a
generator of p.

Let Vy be the space of all ¢ in V' such that, for some integer ¢ depending on ¢, ¢(«) =0
unless |a| > |@|*. To prove (i) we have to show that Vo = S(F*, X). It is at least clear that
S(F*, X) contains Vy. Moreover for every ¢ in V' and every z in F' the difference

wf:@—ﬂ<(g f))g)

(@) = (1 - d(az))p(a)
is identically zero for # = 0 and otherwise vanishes at least on z~'p~™. Since there is no
function in V invariant under all the operators

1 =z
™ \o 1
the space Vj is not 0.

Before continuing with the proof of the proposition we verify a lemma we shall need.

is in V4. To see this observe that
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Lemma 2.9.1. The representation &y, of Br in the space S(F*) of locally constant, compactly
supported, complex-valued functions on F* s irreducible.

For every character p of Up let ¢, be the function on F* which equals ;1 on Up and
vanishes off Up. Since these functions and their translates span S(F*) it will be enough
to show that any non-trivial invariant subspace contains all of them. Such a space must
certainly contain some non-zero function ¢ which satisfies, for some character v of Up, the
relation

p(ae) = v(e)p(a)
for all a in F* and all € in Up. Replacing ¢ by a translate if necessary we may assume that
(1) # 0. We are going to show that the space contains ¢, if p is different from v. Since Up
has at least two characters we can then replace ¢ by some ¢, with p different from v, and
replace v by p and p by v to see it also contains ¢,,.

Se
B e (B ()

where x is still to be determined. g is to be different from v. ¢ belongs to the invariant
subspace and

¢'(ae) = p(e)¢(a)
for all @ in F'* and all € in Ur. We have

¢/() = p(a) / 5N (e (aze) de

The character u~'v has a conductor p™ with n positive. Take x to be of order —n — m. The
integral, which can be rewritten as a Gaussian sum, is then, as is well-known, zero if a is
not in Up but different from zero if a is in Up. Since ¢(1) is not zero ¢’ must be a nonzero
multiple of ¢,,.

To prove the first assertion of the proposition we need only verify that if u belongs to X
then V{ contains all functions of the form o — n(a)u with n in S(F*). Thereis a ¢ in V'
such that ¢(1) = u. Take x such that ¢ (z) # 1. Then

o=o=r((3 1))

is in Vo and ¢/(1) = (1 — ¢ (x))u. Consequently every u is of the form ¢(1) for some ¢ in V4.
If 11 is a character of U let V(u) be the space of functions ¢ in Vj satisfying
p(ae) = p(e)p(a)
for all @ in F* and all € in Up. Vj is clearly the direct sum of the space Vy(i). In particular
every vector u in X can be written as a finite sum

u=>Y @il
where ¢; belongs to some Vj(u;).
If we make use of the lemma we need only show that if u can be written as u = ¢(1) where
@ is in Vy(v) for some v then there is at least one function in Vj of the form o — n(a)u where
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7 is a nonzero function in S(F*). Choose p different from v and let p™ be the conductor of
plv. We again consider

¢“=A;u*kk¢<cig)cgf)>¢%

where x is of order —n — m. Then
P =pla) [ m(Or(ene)de
Ur

The properties of Gaussian sums used before show that ¢ is a function of the required kind.

The second part of the proposition is easier to verify. Let Pr be the group of upper
triangular matrices in Gp. Since Vj is invariant under Pr and V is irreducible under G the
space V' is spanned by Vj and the vectors

90’=7T<((1) f))ﬂ(w)w

o' ={¢ —m(w)e} +m(w)e
and as we saw, ¢ — m(w)p is in V. The proposition is proved.
To study the effect of w we introduce a formal Mellin transform. Let @ be a generator of
p. If ¢ is a locally constant function on F* with values in X then for every integer n the
function € — p(ew™) on U takes its values in a finite-dimensional subspace of X so that the
integral

with ¢ in V4. But

/U Pl ) = Bul)

is defined. In this integral we take the total measure of Up to be 1. It is a vector in X. The
expression o(v,t) will be the Formal Laurent series
Z t"on(v)

If ¢ is in V the series has only a finite number of terms with negative exponent. Moreover
the series p(v,t) is different from zero for only finitely many v. If ¢ belongs to Vj these series
have only finitely many terms. It is clear that if ¢ is locally constant and all the formal series
(v, t) vanish then ¢ = 0.

Suppose ¢ takes values in a finite-dimensional subspace of X, w is a quasi-character of
>, and the integral

(2.10.1) /Fx w(a)p(a)d*a

is absolutely convergent. If w’ is the restriction of w to U this integral equals
S [ @ de =3 2 w)
n Ur n

if 2 = w(w). Consequently the formal series p(w’, t) converges absolutely for t = z and the
sum is equal to . We shall see that X is one-dimensional and that there is a constant
co = co(¢p) such that if |w(w)| = |@|® with ¢ > ¢, then the integral is absolutely
convergent. Consequently all the series p(v,t) have positive radii of convergence.
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If ¢» = 1¢p is a given non-trivial additive character of F', y any character of Up, and x any
element of F' we set

0, z) = / (e (ex) de

The integral is taken with respect to the normalized Haar measure on Ug. If g belongs to
Gr, ¢ belongs to V', and ¢’ = 7(g)p we shall set

m(9)p(v,t) = &' (v,1).
Proposition 2.10.
(i) If 0 belongs to Up and ¢ belongs to Z then

” (&ge ?) B, 1) =t ()3, 1)

(i) If © belongs to F then

w((é f))@(v,t>:zt" S (v )3 (0)

where the inner sum is taken over all characters of Up
(iii) Let wy be the quasi-character defined by

w<(g 2)) — wola)]

for a in F*. Let vy be its restriction to U and let zg = wo(w). For each character v
of Up there is a formal series C(v,t) with coefficients in the space of linear operators
on X such that for every ¢ in V;

" < (_(1) é) ) Bnt) = Clu)p(r vt 11550,

Set

Then
Pty =>_t" / v(€)p(w"de) de.
n Ur
Changing variables in the integration and in the summation we obtain the first formula of

the proposition.
Now set

Then
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By Fourier inversion

p(@"e) = Bulwu(e).
o
The sum on the right is in reality finite. Substituting we obtain
P =03 [ wv(ule"s) dedu
n m Ur
as asserted.

Suppose v is a character of Ur and ¢ in Vj is such that @(p,t) = 0 unless p = v~
This means that

-1
VO .

o(ae) = vy(e)p(a)
or that

for all € in Up. If ¢’ = m(w)yp then

ince W<(S (1))>¢IZW )
(

so that @' (u,t) = 0 unless p = v.
Now take a vector v in X and a character v of Ur and let ¢ be the function in V{ which
is zero outside of Up and on Uy is given by

(2.10.2) o(€) = v(e)vy(€)u.
If ¢ = m(w)p then @, is a function of n, v, and u which depends linearly on u and we may
write
Pn(v) = Cu(v)u
where C),(v) is a linear operator on X.
We introduce the formal series

Clv,t) =Y 1"Cu(v).
We have now to verify the third formula of the proposition. Since ¢ is in Vj the product
on the right is defined. Since both sides are linear in ¢ we need only verify it for a set of

generators of V. This set can be taken to be the functions defined by (2.10.2) together
with their translates by powers of w. For functions of the form (2.10.2)) the formula is valid
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because of the way the various series C'(v,t) were defined. Thus all we have to do is show
that if the formula is valid for a given function ¢ it remains valid when ¢ is replaced by

ngo
0o 1] ]%

By part (i) the right side is replaced by
2t C (v, Op(v vyt g ).

() (%Z ?) p=mn (é woz) w(w)p

and m(w)p(v,t) is known we can use part (i) and the relation

b2)-( =)

to see that the left side is replaced by
ot m(w)P(v,t) = 2t Cr, )P g 't ).

For a given u in X and a given character v of Upr there must exist a ¢ in V' such that

Py, t) = Z t"Cy(v)u

Consequently there is an ng such that C,(v)u = 0 for n < ngy. Of course ny may depend on u
and v. This observation together with standard properties of Gaussian sums shows that the
infinite sums occurring in the following proposition are meaningful, for when each term is
multiplied on the right by a fixed vector in X all but finitely many disappear.

Since

Proposition 2.11. Let p~* be the largest ideal on which ) is trivial.
(i) Let v and p be two characters of Ur such that vpvy is not 1. Let p™ be its conductor.

Then
> nle v, @ (o p, @) Cpyin(o)

18 equal to
N p e @) 2 v (1) Co (V) Cp ()

for all integers n and p.
(ii) Let v be any character of Up and let v = v—'yy . Then

> (e v, @) (o 7, @p)Cyyn(0)

1

18 equal to
20v0(—1)0np + (|w| - 1)_1Zg+10n—1—Z(V)Cp—1—Z(;) - Z 27 Cnr (V) Cpir (V)
—2—¢

for all integers n and p.
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The left hand sums are taken over all characters o of Up and 9, is Kronecker’s delta.

The relation
(06 ) o) =0 ) )6 )
implies that
w<w>7r<(é }))w(w)w:m—l)w(((ﬁ ‘}))ﬂwm((ﬁ) ‘})>¢

for all ¢ in Vj. Since 7(w)ep is not necessarily in V we write this relation as

~(w) w((é D)W(w)w—ﬂw)s@ £ (w)p

The term 72(w)y is equal to vp(—1)¢p.
We compute the Mellin transforms of both sides

ﬂ(((l) _})>@(V,t)zzt" > 0o, —=")@n(p)

1 =1\~ n 11— - ~
w<w>w<(0 1))90(% 0= 30 0oy, )5 Cren (1))
n PP
so that the Mellin transform of the right side is
(2.11.1) vo(=1)) > o v, =" (e o vyt =) 20 P Con (0) ().

n p7p70—

On the other hand
T(W)@w,t) = "> 2P Copn(W)Bp(v "1 ")

and
7T ( ((1) }) ) m(w)p(v,t) = Z " Z 25 n(p ™ v, @™)Coin(p)Pplp vy )
so that ' o
W((é D)“wm”’ £) = ()P
is equal to

Doz nlprve, @) = 6(prin)] Con(p™ 5 ) Bolp)-

p,p
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Here d(priyp) is 1 if pryy is the trivial character and 0 otherwise. The Mellin transform of
the left hand side is therefore

(2.11.2)
Doy " oy @) = 8(pr )] Cogr () Cor (07 15 Pulp) + 10(=1) D 17 Bu(v).
pirp
The coefficient of t"@,(p) in (2.11.1)) is
(2.113) (1) Y o v, —= (o o i~z Cprao)

and in it is
(2114) Y (v @) = 6(pr )] 20" Cur () Cpir (p7 ' 05) + 10(=1)80,00(pr ™)1

T

These two expressions are equal for all choice of n, p, p, and v.
If p # v and the conductor of vp~! is p™ the gaussian sum n(pr~

r = —m — {. Thus (2.11.4)) reduces to

(v @ )2 T o (V) Gt (07 ).

1 @") is zero unless

Since
n(p, =) = p(=1)n(p, )
the expression ([2.11.3)) is equal to

ptv(—1) Z n(o v, @ n(p oy ' wP) 2y PCpin(0).

Replacing p by p~'y, ! we obtain the first part of the proposition.
If p = v then 6(pr~1) = 1. Moreover, as is well-known and easily verified, n(pr=',@") =1
ifr > —¢,
IR -1
n(pr~ @) = |w| (jw] - 1)
and n(pr~t, @) = 0if r < —¢ — 2. Thus (2.11.4) is equal to

vo(=1)0n I + (|| — 1)_lzapHHCn,g,l(y)Cn,g,l(Vﬁlyofl)

—0o0

The second part of the proposition follows.

Proposition 2.12.
(i) For everyn, p, v and p

Ca(¥)Cp(p) = Cp(p)Cn(v)
(ii) There is no non-trivial subspace of X invariant under all the operators C,(v).
(#ii) The space X is one-dimensional.

Suppose prry # 1. The left side of the first identity in the previous proposition is
symmetric in the two pairs (n,v) and (p,p). Since n(v—'p~'y;t, @ ™) is not zero we
conclude that

Crnm—t(V) Cpm—t(p) = Cpm—t(p) Crimm—e (V)
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for all choices of n and p. The first part of the proposition is therefore valid in p # v.

Now suppose p = v. We are going to prove that if (p,n) is a given pair of integers and u

belongs to X then

Crr(V)Cpir(V)u = Cpiy (V) Crpr (V)
for all  in Z. If » < 0 both sides are 0 and the relation is valid so the proof can proceed
by induction on r. For the induction one uses the second relation of Proposition 2.11 in the
same way as the first was used above.

Suppose X is a non-trivial subspace of X invariant under all the operators C,,(v). Let
V1 be the space of all functions in V; which take values in X; and let V] be the invariant
subspace generated by V;. We shall show that all functions in V] take values in X; so that
V/ is a non-trivial invariant subspace of V. This will be a contradiction. If ¢ in V takes
value in X; and g belongs to Pr then m(g)¢ also takes values in X;. Therefore all we need to
do is show that if ¢ is in V} then 7(w)e takes values in X;. This follows immediately from
the assumption and Proposition 2.10.

To prove (iii) we show that the operators C,(v) are all scalar multiples of the identity.
Because of (i) we need only show that every linear transformation of X which commutes
with all the operators C,(v) is a scalar. Suppose T is such an operator. If ¢ belongs to V' let
T, be the function from F'* to X defined by

T,(a) = T((p(a)).
Observe that T is still in V. This is clear if ¢ belongs to Vj and if ¢ = m(w)py we see on
examining the Mellin transforms of both sides that

T, = n(w)T

%o -

Since V' = Vj + w(w)V} the observation follows. T therefore defines a linear transformation of
V' which clearly commutes with the action of any g in Pp. If we can show that it commutes
with the action of w it will follow that it and, therefore, the original operator on X are scalars.
We have to verify that

m(w)T, = Tm(w)p

at least for ¢ on Vj and for ¢ = 7(w)pe with ¢g in Vy. We have already seen that the identity
holds for ¢ in V. Thus if ¢ = 7(w)pq the left side is

7T(IU>T7T(U))Q00 = 7T2<w)Ts00 = VO(_1>T<P0

and the right side is
T (w)po = vo(—1)T,,.
Because of this proposition we can identify X with C and regard the operators C,(v)
as complex numbers. For each r the formal Laurent series C(v,t) has only finitely many
negative terms. We now want to show that the realization of 7 on a space of functions on
F* is, when certain simple conditions are imposed, unique so that the series C(v,t) are

determined by the class of m and that conversely the series C'(v,t) determine the class of 7.

Theorem 2.13. Suppose an equivalence class of infinite-dimensional irreducible admaissible
representations of G is given. Then there exists exactly one space V' of complex-valued
functions on F* and exactly one representation © of Grp on V' which is in this class and
which 1s such that

m(b)p = (D)
if b isin Bp and ¢ is in V.
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We have proved the existence of one such V' and 7. Suppose V' is another such space
of functions and 7’ a representation of Gr on V' which is equivalent to m. We suppose of
course that

™' (b)p = &y (b)y
if bis in Br and ¢ is in V’. Let A be an isomorphism of V' with V"’ such that An(g) = 7'(g)A
for all g. Let L be the linear functional

L(p) = Ap(1)

L W((g ?))so = Ap(a)

so that A is determined by L. If we could prove the existence of a scalar A such that
L(p) = Ap(1) it would follow that

on V. Then

Agp(a) = Ap(a)
for all a such that Ay = Ap. This equality of course implies the theorem.
Observe that

(2.13.1) I w<((1) 3{7))@ :ﬂ((é f>>A¢(1):¢(m)L(<p).

Thus we need the following lemma.

Lemma 2.13.2. If L is a linear functional on V' satisfying (2.13.1)) there is a scalar A such
that

L(p) = Ap(1).
This is a consequence of a slightly different lemma.

Lemma 2.13.3. Suppose L is a linear functional on the space S(F*) of locally constant
compactly supported functions on F* such that

L @((3 f))w () L)

for all ¢ in S(F*) and all x in F'. Then there is a scalar A such that L() = Ap(1).

Suppose for a moment that the second lemma is true. Then given a linear functional L
on V satisfying (2.13.1)) there is a A such that L(p) = A\p(1) for all ¢ in Vj = S(F*). Take z
in F' such that ¢ (z) # 1 and ¢ in V. Then

o= e=n( (5 7)) +2(=( (0 7))

Since
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is in V} the right side is equal to

Ap(1) = Mp(2)e(1) + () L(p)
so that
(1 =%(@))Llp) = M1 = ¥(2))p(1)
which implies that L(y) = Ap(1).
To prove the second lemma we have only to show that ¢(1) = 0 implies L(p) = 0. If we
set ©(0) = 0 then ¢ becomes a locally constant function with compact support in F'. Let ¢’
be its Fourier transform so that

p(a) _/Fw(ba)@’(—b) db.

Let 2 be an open compact subset of F’* containing 1 and the support of . There is an ideal
a in F so that for all a in €2 the function ¢’'(—b)y(ba) is constant on the cosets of a in F.
Choose an ideal b containing a and the support of ¢'. If S is a set of representatives of b/a
and if ¢ is the measure of a then

pla) = ¢ w(ba)y'(=b).

bes
If g is the characteristic function of €2 this relation may be written

p = ;Ab&p((é 1{))@@0

with Ay = c¢/(—=b). If (1) = 0 then
Z Avip(b) =0

bes

p= N fw(((l) ?))@o—zﬂ(b)%

It is clear that L(¢) = 0.

The representation of the theorem will be called the Kirillov model. There is another
model which will be used extensively. It is called the Whittaker model. Its properties are
described in the next theorem.

Theorem 2.14.
(i) For any ¢ in'V set

so that

Wo(9) = (m(9)v) (1)
so that W, is a function in Gg. Let W(m, 1) be the space of such functions. The
map @ — W, is an isomorphism of V' with W (w,v). Moreover

Waige = p(9)W,
(i) Let W (1)) be the space of all functions W on Gg such that

W((é f)>g=w<x>w<g>
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for all x in F and g in G. Then W (m, ) is contained in W () and is the only
wmvariant subspace which transforms according to m under right translations.

WW((g ?)): w((g ‘1)))@ (1) = ela)

the function W, is 0 only if ¢ is. Since
p(g)W (h) = W (hg)

Since

the relation
Wi = p(g)W,,
is clear. Then W (m, ) is invariant under right translation and transforms according to .

Since
Ww(((l) T)g) - W((é f))ﬂ(g)w (1) = () {m(9)e(1)}

the space W (m, 1)) is contained in W (). Suppose W is an invariant subspace of W (1)) which
transforms according to w. There is an isomorphism A of V' with W such that

A(r(g9)e) = p(9)(Ap).
Let
L(p) = Ap(1).
Since

L(m(g9)p) = Ar(g)e(1) = p(g9)Ap(1) = Ap(g)
the map A is determined by L. Also

L ﬂ<(g f))¢ =As0(<é 1)) = ¥(2)Ap() = ¥(@) L)

so that by Lemma 2.13.2 there is a scalar A such that

L(p) = Ap(1).
Consequently Ap = AW, and W = W (m, ).
The realization of m on W (m, 1) will be called the Whittaker model. Observe that the
representation of G on W () contains no irreducible finite-dimensional representations. In
fact any such representation is of the form

m(g) = x(det g).
If 7 were contained in the representation on W (v) there would be a nonzero function W on

Gr such that
W((é “’{)g) ~ () det g) V()

In particular taking g = e we find that

W((é 1)) = Y@ ()
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However it is also clear that

W((}) 1)) =X<det (6 f))me):vv(e)

so that ¢(x) = 1 for all . This is a contradiction. We shall see however that 7 is a constituent
of the representation on W (). That is, there are two invariant subspaces W; and Wy of
W (1) such that W; contains W5 and the representation of the quotient space W; /Wy is
equivalent to .

Proposition 2.15. Let 7 and 7' be two infinite-dimensional irreducible representations of
Gr realized in the Kirillov form on spaces V' and V'. Assume that the two quasi-characters

defined by
ﬁ<(g 2)) — w(a)] 7r<<8 2)) — ()]

are the same. Let {C(u, t)} and {C/(I/, t)} be the families of formal series associated to the
two representations. If
C(v,t) = C'(v,t)

for all v then m = 7’.
If ¢ belongs to S(F*) then, by hypothesis,

m(w)@(v, 1) = 7' (w)@(v, 1)
so that m(w)yp = 7'(w)e. Since V' is spanned by S(F*) and 7(w)S(F*) and V' is spanned
by S(F*) and 7'(w)S(F*) the spaces V and V' are the same. We have to show that

m(9)e = 7'(9)¢
for all ¢ in V and all g in Gp. This is clear if ¢ is in Pr so it is enough to verify it
for ¢ = w. We have already observed that m(w)py = 7'(w)ypo if @y is in S(F*) so we
need only show that m(w)y = 7'(w)p if ¢ is of the form m(w)yy with ¢y in S(F*). But
m(w)p = 7 (w)py = w(—1)pg and, since m(w)py = 7' (w)po, (W) = W' (—1)p.
Let N be the group of matrices of the form

o

with z in F' and let B be the space of functions on Gz invariant under left translations by
elements of Ng. B is invariant under right translations and the question of whether or not a
given irreducible representation 7 is contained in B arises. The answer is obviously positive
when 7 = x is one-dimensional for then the function g — y(det g) is itself contained in 5.

Assume that the representation m which is given in the Kirillov form acts on B. Then
there is a map A of V into B such that

Ar(g)e = p(g)Ap
If L(p) = Ap(1) then

(2.15.1) L £w(<(1) f))s@ = L(y)
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for all p in V' and all z in F'. Conversely given such a linear form the map ¢ — Ay defined
by

Ap(g) = L(m(9)¢)

satisfies the relation Ar(g) = p(g)A and takes V into B. Thus 7 is contained in B if and only
if there is a non-trivial linear form L on V which satisfies (2.15.1]).

Lemma 2.15.2. If L is a linear form on S(F*) which satisfies (2.15.1) for all x in F' and
for all ¢ in S(F*) then L is zero.

We are assuming that L annihilates all functions of the form

@((5 "f))so—sa

so it will be enough to show that they span S(F*). If ¢ belongs to S(F*) we may set
©(0) = 0 and regard ¢ as an element of S(F'). Let ¢’ be its Fourier transform so that

p(z) = /F ¢ (—b)(bx) db.

Let Q be an open compact subset of F'* containing the support of ¢ and let p~™ be an ideal
containing €. There is an ideal a of F' such that ¢'(—b)y(bx) is, as a function of b, constant
on cosets of a for all  in p~™. Let b be an ideal containing both a and the support of . If
S is a set of representatives for the cosets of a in b, if ¢ is the measure of a, and if g is the
characteristic function of €2 then

p(r) = Mtb(ba)po(x)

beS

p = ;Ab&ﬁ((é lj))@o.

ZAbzo
b

)
Y = Z)\b 5@[}((0 1))900 — Yo
b
as required.

Thus any linear form on V' verifying (2.15.1)) annihilates S(F*). Conversely any linear
form on V' annihilating S(F*) satisfies (2.15.1]) because

@((3 f))w—so

is in S(F7) if p is in V. We have therefore proved

if \y = c’(—b). Thus

Since ¢(0) = 0 we have

so that

Proposition 2.16. For any infinite-dimensional irreducible representation m the following
two properties are equivalent:

(i) m is not contained in B.
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(i) The Kirillov model of m is realized in the space S(F™).
A representation satisfying these two conditions will be called absolutely cuspidal.

Lemma 2.16.1. Let m be an infinite-dimensional irreducible representation realized in the
Kirillov form on the space V.. Then Vo = S(F™) is of finite codimension in V.

We recall that V =V + m(w) V4. Let V; be the space of all ¢ in Vj with support in Up.
An element of 7(w)Vy may always be written as a linear combination of functions of the form

w((?f ?))w(ww

with ¢ in V; and p in Z. For each character u of Up let ¢, be the function in V; such that
©u(€) = p(e)ry(e) for € in Up. Then
Pu(v, t) = 0(vuwy)
and
T(w)3, (v, t) = (v ") C (v, t).
Let 0, = m(w)y,. The space V is spanned by V; and the functions

w? 0
Lo 1))
For the moment we take the following two lemmas for granted.

Lemma 2.16.2. For any character p of (71: there is an integer ng and a family of constants
Ai, 1 <1< p, such that

Cu(p) = Z AiCoi(12)

forn = ny.

Lemma 2.16.3. There is a finite set S of characters of Ur such that for v not in S the
numbers C,(v) are 0 for all but finitely many n.

If 41 is not in S the function 7, is in V4. Choose p in S and let V, be the space spanned

by the functions
w? 0
n o 1/ |k

and the functions ¢ in Vj satisfying ¢(ae) = ¢(a)u'(¢) for all @ in F* and all € in Ug. Tt
will be enough to show that V,,/(V,, N V}) is finite-dimensional.

If ¢ is in V), then $(v,t) = 0 unless ¥ = p and we may identify ¢ with the sequence
{@n(,u)} The elements of V,, NV}, are the elements corresponding to sequences with only
finitely many nonzero terms. Referring to Proposition 2.10 we see that all of the sequences
satisfy the recursion relation

Pn(p) = Z Ai@n—i(1t)

for n > ny. The integer n; depends on ¢.
Lemma 2.16.1 is therefore a consequence of the following elementary lemma whose proof
we postpone to Paragraph 8.
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Lemma 2.16.4. Let \;, 1 < i < p, be p complex numbers. Let A be the space of all sequences
{a,}, n € Z for which there exist two integers ny and ny such that

ap = E )\z Qp—g
1<i<p

for n > ny and such that a, = 0 for n < ny. Let Ag be the space of all sequences with only a
finite number of nonzero terms. Then AJAy is finite-dimensional.

We now prove Lemma 2.16.2. According to Proposition 2.11
S n(o v, @07, 5)Chin(0)

is equal to
Zg’/0<_1)5nm + (|w| - 1)_1Zg+10n—1—ﬁ<’/)cp—l—é(g) - Z Z(J_Ton-x-r(’/)op—i-r(;)-
—2—¢

Remember that p~¢ is the largest ideal on which 4 is trivial. Suppose first that 7 = v.
Take p = —¢ and n > —¢. Then 6(n — p) = 0 and

no~ v, = (o v, =) = 0
unless 0 = v. Hence
_ =1 _¢+1 — —r
On—€<y) = (|w| - 1) 20 Cn—1—€<y)0—2€—1(’/) - Z 20 n+r(’/)0—€+r(”)
24

which, since almost all of the coefficients C_,.,.(v) in the sum are zero, is the relation required.

If v # U take p > —¢ and n > p. Then n(c~'v,@w") = 0 unless 0 = v and n(oc~'v, @) = 0
unless 0 = v. Thus

=1 1 ~ — —r ~
(2.16.5) (lwl = 1) 25 Crcr—e(¥)Cpar—e(@) = Y 25" Crrer () Cpir (7) = 0.
—2-¢

There is certainly at least one ¢ for which C;(v) # 0. Take p — 1 — £ > 4. Then from ([2.16.5)
we deduce a relation of the form

q
Cn+r(V) = Z )\icn-‘rr—i(V)
i=1

where r is a fixed integer and n is any integer greater than p.
Lemma 2.16.3 is a consequence of the following more precise lemma. If p™ is the conductor
of a character p we refer to m as the order of p.

Lemma 2.16.6. Let mg be of the order vy and let mq be an integer greater than mqg. Write
vy in any manner in the form vy = vy 'vy ' where the orders of vi and vy are strictly less
than my. If the order m of p is large enough

m—é)

-1 _
C, - — —1 _1 —m—L T](Vl p? w
am—20(p) = V5 p(—1)2g 1(vap1, o—m=b)

and Cp(p) =0 if p # —2m — 20.
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Suppose the order of p is at least m;. Then privy = pry * is still of order m. Applying
Proposition 2.11 we see that

Z (o™, wn+m+£>77(0_1pa wp+m+g)cp+n+2m+2€(0)
is equal to
(e~ vy @) g v e (= 1) Cone (V) Cpmrne(p)
for all integers n and p. Choose n such that C,(v1) # 0. Assume also that m +n + ¢ > —/
or that m > —2¢ — n. Then n(oc~ vy, @™+ = 0 unless o = v; so that

Ny p, @Y Cpingomaar (1) = (vep™ @ ™) 2 v prg(—1) Cr(11) Gy ().

Since vy 'p is still of order m the left side is zero unless p = —2m — 2¢. The only term on the
right side that can vanish is C,(p). On the other hand if p = —2m — 2¢ we can cancel the
terms C,,(v1) from both sides to obtain the relation of the lemma.

Apart from Lemma 2.16.4 the proof of Lemma 2.16.1 is complete. We have now to discuss
its consequences. If w; and wy are two quasi-characters of F'* let B(w;,ws) be the space of
all functions ¢ on Gy which satisfy

(i) For all g in G, a1, ag in F*, and z in F
1/2

D1 eg).

@((%1 ;2>9> = wi(ar)ws(az) al

2
(ii) There is an open subgroup U of GL(2,Op) such that ¢(gu) = ¢(g) for all w in U.
Since
Gr = NpApGL(2,Op)
where Ap is the group of diagonal matrices the elements of B(wy,ws) are determined by their
restrictions to GL(2,Op) and the second condition is tantamount to the condition that ¢ be

locally constant. B(wy,ws) is invariant under right translations by elements of G so that we
have a representation p(wy,ws) of Gr on B(wy,ws). It is admissible.

Proposition 2.17. If 7 is an infinite-dimensional irreducible representation of G which is
not absolutely cuspidal then for some choice of py and o it is contained in p(jy, f2).

We take 7 in the Kirillov form. Since Vj is invariant under the group Pr the representation
7 defines a representation ¢ of Pr on the finite-dimensional space V/V;. It is clear that o is
trivial on Ng and that the kernel of ¢ is open. The contragredient representation has the
same properties. Since Pr/Np is abelian there is a nonzero linear form L on V/Vj such that

5 ( (5 o) ) )

for all ay, as, and x. p; and uo are homomorphisms of F* into C* which are necessarily
continuous. L may be regarded as a linear form on V. Then

’ w<(%1 ))so = pa(n)a(a2) (o)

If pisin V let Ay be the function
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on Gp. A is clearly an injection of V' into B(puq, p2) which commutes with the action of Gp.
Before passing to the next theorem we make a few simple remarks. Suppose 7 is an
infinite-dimensional irreducible representation of Gr and w is a quasi-character of F*. It is
clear that W (w ® 7,1) consists of the functions
g9 — W(g)w(det g)

with W in W(m, ). If V is the space of the Kirillov model of 7 the space of the Kirillov
model of w ® 7 consists of the functions a — ¢(a)w(a) with ¢ in V. To see this take 7 in the
Kirillov form and observe first of all that the map A : ¢ — ¢w is an isomorphism of V' with
another space V' on which G acts by means of the representation 7’ = A(w @ 7)A~!. If

a x
(o 1)
belongs to Br and ¢’ = ¢w then

'(b)¢'(a) = w(a){w(a)y(az)p(aa) } =1 (ax)¢ (aa)
so that 7/(b)¢’ = &, (b)¢’. By definition then 7’ is the Kirillov model of w ® 7. Let wy be the
restriction of w to Up and let z; = w(w). If ¢’ = gw then

P (v, t) = p(vwy, 21t).

Thus
1 -1, -1 1 1t*1).

T (w)¢' (v,t) = m(w)p(vwy, 21t) = C(vwy, z21)P(v ' wi vy ', 25 21
The right side is equal to
Clvwy, 21) (v vy twy ?, 25 2 %t

so that when we replace ™ by w ® 7 we replace C(v,t) by C(vwy, z1t).
Suppose ¢'(x) = ¢ (bxr) with b in F* is another non-trivial additive character. Then
W (m,4') consists of the functions

W'(g) = W((g ?) g)
with W in W (r, ).

The last identity of the following theorem is referred to as the local functional equation.
It is the starting point of our approach to the Hecke theory.

Theorem 2.18. Let m be an irreducible infinite-dimensional admissible representation of Gp.
(i) If w is the quasi-character of G defined by

w<(g 2)) — w(a)]

then the contragredient representation T is equivalent to w™' ® 7.
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(ii) There is a real number sy such that for all g in Gp and all W in W (m, ) the integrals

/FX W((g ?)9) ja* "2 d*a = (g, s, W)
/Fx W((g (1))9> "W (a) d¥a = W(g, 5, W)

converge absolutely for Res > sq.
(#i) There is a unique Euler factor L(s, ) with the following property: if
U(g,s, W)= L(s,m)®(g,s, W)
then ®(g,s, W) is a holomorphic function of s for all g and all W and there is at
least one W in W (1)) such that
O(e, s, W) =a’
where a is a positive constant.
(i) If
U(g,s, W)= L(s,7)®(g,s, W)
there is a unique factor €(s,m, 1) which, as a function of s, is an exponential such
that

5((_(1’ é)g, 1, W) = (s, 1) ®(g, 5, )

for all g in Gp and all W in W (m, ).

To say that L(s,7) is an Euler factor is to say that L(s,7) = P7'(¢™*) where P is a
polynomial with constant term 1 and ¢ = || ™! is the number of elements in the residue field.
If L(s,m) and L'(s,7) were two Euler factors satisfying the conditions of the lemma their
quotient would be an entire function with no zero. This clearly implies uniqueness.

If 9 is replaced by v’ where ¢/(x) = ¢(bx) the functions W are replaced by the functions

W' with
N b 0
W(g)—W(<O )9
and
U(g, s, W') = [b]'/>U(g,s, V)
while

W(g,s,W') = [b]'/*~w(b)¥(g, s, W).
Thus L(s, ) will not depend on . However
(s, m ") = w(b)|b|* te(s, 7, ).
According to the first part of the theorem if W belongs to W (m, ) the function
W(g) = W(g)w™ (det g)
is in W (m, ). It is clear that
U(g,s, W) = w(det g)¥(g, s, W)
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so that if the third part of the theorem is valid when 7 is replaced by 7 the function 5(9, s, W)
is a holomorphic function of s. Combining the functional equation for = and for 7 one sees
that

E(Sa T, 77/})6(1 -5 %7 ¢> = w(_l)
Let V' be the space on which the Kirillov model of 7 acts. For every W in W (m, 1) there

is a unique ¢ in V' such that
a 0
W(<0 1>> = (a).

If 7 is itself the canonical model

where

o= (2

If x is any quasi-character of F'* we set

P(x) = / p(a)x(a)d*a
X
if the integral converges. If x( is the restriction of x to Up then
P(x) = B(x0, x(@))-

Thus if ap is the quasi-character ap(z) = || and the appropriate integrals converge

(e, s, W) = Play ) = 3(1,477)

(e, s, W) = Glaf " *w™) = Bp " 55 a2
if vy is the restriction of w to Ur and 2y = w(w). Thus if the theorem is valid the series ¢(1, )
and @(v, ', t) have positive radii of convergence and define functions which are meromorphic

in the whole t-plane.
It is also clear that

\Ij(wv 1- S, W) ( )@(VO ) 1(]8 1/2)
If ¢ belongs to V{ then
T(w)B( ' 2 ) = Clog 7 P OB, ¢,

Choosing ¢ in Vj such that $(1,t) = 1 we see that C'(v;',t) is convergent in some disc and
has an analytic continuation to a function meromorphic in the whole plane.
Comparing the relation

11— 1 _—1/2 _
m(w)P(vg 1Zo 'q I/QQS) = C(yg g 20 / q I/QC]S)@(l q1/2 *)
with the functional equation we see that

(2.18.1) Clut, 2 g 2g") = LA - 2(7;);()8 )
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Replacing 7 by x ® m we obtain the formula

Tl 2y = L(1—s,x ' @7)e(s,x @7,¢)
: L(s,x ®)
Appealing to Proposition 2.15 we obtain the following corollary.

1

Clug'xo ' 20

Corollary 2.19. Let w and 7' be two irreducible infinite-dimensional representations of Gp.
Assume that the quasi-characters w and W' defined by

7r<(g 2)) — w(a)l ﬂ((% 2)) — W (a)]

are equal. Then m and @' are equivalent if and only if
Ll —s,x'@m)e(s,x@m¢) Ll—sx o7 )e(s,x @7, 1)

L(s,x ® ) L(s,x ® ')
for all quasi-characters.

We begin the proof of the first part of the theorem. If ¢; and ¢ are numerical functions
on F* we set

(1, p2) = /901(a)902(—a) d*a.

The Haar measure is the one which assigns the measure 1 to Ug. If one of the functions is in
S(F*) and the other is locally constant the integral is certainly defined. By the Plancherel

theorem for Ug
(@) =D > v(=D@u (W)@, (v ).
The sum is in reality finite. It is easy to see that if b belongs to B
(&u(b), &4 (D)¢") = (0,¢').

Suppose 7 is given in the Kirillov form and acts on V. Let 7/, the Kirillov model of
wt®m, act on V'. To prove part (i) we have only to construct an invariant non-degenerate
bilinear form S on V' x V. If ¢ belongs to V; and ¢’ belongs to V' or if ¢ belongs to V' and
¢’ belongs to V we set

Ble,¢') = (e, ¢).
If ¢ and ¢’ are arbitrary vectors in V and V' we may write ¢ = 1 + m(w)py and ¢’ =
01 + 7 (W)l with ¢, pg in Vo and ¢}, ¢4 in V. We want to set
Ble,¢') = (o1, ¢1) + (o1, 7' (w)¢h) + (m(w)p2, 01) + (02, ).
The second part of the next lemma shows that 3 is well-defined.

Lemma 2.19.1. Let ¢ and ¢’ belong to Vo and Vy respectively. Then
(Z) / / /
<7T(w)<107 2 > = VO(_1)<(:07 ™ (w)(p >
(i) If either m(w)y belongs to Vi or ©'(w)y’ belongs to V then

(m(w)e, ' (w)e") = (@, ¢).
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The relation
m(w)p(v,t) = Z t" Z Crap(V) (v 15 1) 2"
n P
implies that
(2.19.2) (7(@)p, ') = S U=1)Crip () B (05 )20 P B (0.
’I’L,p,l/

Replacing m by 7’ replaces w by w™, vy by v5', 20 by 25!, and C(v,t) by C(vig?, 25 't).
Thus

(2.19.3) (o7 (W)g') = 3 U(1)Crip5 ™) 2" B, (™ 10) Bul7).

n7p7y

Replacing v by vig in (2.19.3) and comparing with (2.19.2)) we obtain the first part of the

lemma.
Because of the symmetry it will be enough to consider the second part when 7m(w)ep
belongs to Vy. By the first part

(m(w)e, 7' (w)¢') = vo(=1)(7*(w)p, ') = (¢, ¢).
It follows immediately from the lemma that

B(r(w)e, ' (w)e') = B, ¢)

so that to establish the invariance of S we need only show that

B(r(p)e, 7' (p)¢') = B, ¥')
for all triangular matrices p. If ¢ is in V or ¢ is in Vj this is clear. We need only verify it
for ¢ in m(w)Vy and ¢ in 7' (w)Vj.
If pisin Vg, ¢’ is in Vj and p is diagonal then

B(m(p)m(w)p, 7' (p)7' (w)g') = B(r(w)m(pr)e, 7' (w)' (1))
where p; = w™pw is also diagonal. The right side is equal to
B(m(p1)e. 7' (p1)¢) = Be,¢') = B(m(w)p, 7' (w)p').
Finally we have to show that]

(2.19.2) 3 W((é f))go,w’((é f))w’ = B(e,¢)

for all z in F and all ¢ and ¢'. Let ¢;, 1 <i < r, generate V modulo Vj and let ¢, 1 < j <7/,
generate V' modulo Vj. There certainly is an ideal a of F" such that

W<(g ff))w:%
”(((1) gf))éé?}:s@}

IThe tags on Equations 2.19.2 and 2.19.3 have inadvertently been repeated.

and
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for all 7 and j if x belongs to a. Then

B ﬂ((é f))%ﬂ’((é f))s@} = B(pi, ;).

Since (2.19.2) is valid ¢ is in Vj or ¢’ is in Vj it is valid for all ¢ and ¢’ provided that x is in
a. Any y in F' may be written as ar with a in F* and z in a. Then

O 1= 606 D)

and it follows readily that

(=6 1))er( (b 1)) - s

Since [ is invariant and not identically zero it is non-degenerate. The rest of the theorem
will now be proved for absolutely cuspidal representations. The remaining representations
will be considered in the next chapter. We observe that since W(w, ) is invariant under
right translations the assertions need only be established when ¢ is the identity matrix e.

If 7 is absolutely cuspidal then V = 1 = S(F*) and W((g(l])) = p(a) is locally
constant with compact support. Therefore the integrals defining W(e, s, W) and ¥(e, s, W)
are absolutely convergent for all values of s and the two functions are entire. We may take
L(s,m) = 1. If v is taken to be the characteristic function of Up then ®(e, s, W) = 1.

Referring to the discussion preceding Corollary 2.19 we see that if we take

e(s,mv) = Clvgt, % 'a )
the local functional equation of part (iv) will be satisfied. It remains to show that e(s, 7, 1)
is an exponential function or, what is at least as strong, to show that, for all v, C(v,1) is a
multiple of a power of £. It is a finite linear combination of powers of ¢ and if it is not of the
form indicated it has a zero at some point different from 0. C'(viy?, 25 't7!) is also a linear
combination of powers of ¢t and so cannot have a pole except at zero. To show that C(v,t)
has the required form we have only to show that

(2.19.3) Cw,t)C(v gt 2 't = wp(—1).
Choose ¢ in Vg and set ¢’ = m(w)p. We may suppose that ¢'(v,t) # 0. The identity is
obtained by combining the two relations
P (v,t) = Clv,)o(v 'yt 201t )
and
(=1 vy ) = Clv g L )P (v, 20 ).

We close this paragraph with a number of facts about absolutely cuspidal representations

which will be useful later.

Proposition 2.20. Let m be an absolutely cuspidal representation of Gr. If the quasi-
character w defined by

1s actually a character then m is unitary.
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As usual we take m and 7 in the Kirillov form. We have to establish the existence of a
positive-definite invariant hermitian form on V. We show first that if ¢ belongs to V' and ¢
belongs to V' then there is a compact set 2 in G such that if

2 (5 %) [aer}

the support of <7T(g)g0, §5>, a function of g, is contained in Zg§2. If Ap is the group of diagonal
matrices Grp = GL(2,0r)ArGL(2,0F). Since ¢ and ¢ are both invariant under subgroups
of finite index in GL(2, OF) it is enough to show that the function (7 (b)p, @) on Ap has
support in a set Zr§2 with 2 compact. Since

<w<(g 2) b) @, &> = w(a)(m(b)p, )

it is enough to show that the function

(G 3)-2)

has compact support in F'*. This matrix element is equal to

/F plar)p(—o) d*

Since ¢ and ¢ are functions with compact support the result is clear.
Choose pg # 0 in V' and set

(901,902) :/Z o <7T(9)901,@0><7T(9)902,950> dg.

This is a positive invariant hermitian form on V.

We have incidentally shown that 7 is square-integrable. Observe that even if the absolutely
cuspidal representation 7 is not unitary one can choose a quasi-character x such that y ® 7
is unitary. B

If 7 is unitary there is a conjugate linear map A : V' — V defined by

(01, p2) = (o1, Aps).
Clearly A&, (b) = &,(b)A for all b in Br. The map A, defined by

Aop(a) =P(—a)
has the same properties. We claim that

A= NA
with A in C*. To see this we have only to apply the following lemma to Ay A.

Lemma 2.21.1. Let T be a linear operator on S(F*) which commutes with £, (b) for all b
i Br. Then T is a scalar.
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Since &, is irreducible it will be enough to show that T has an eigenvector. Let p~* be
the largest ideal on which v is trivial. Let p be a non-trivial character of Up and let p™ be
its conductor. T' commutes with the operator

s— [ w5 ) (é “f”) de

and it leaves the range of the restriction of S to the functions invariant under Uy invariant.
If ¢ is such a function

Sip(a) = (a) / i () (aewmt") de.

The Gaussian sum is 0 unless a lies in Up. Therefore S¢ is equal to (1) times the function
which is zero outside of Ur and equals p on Upr. Since T leaves a one-dimensional space
invariant it has an eigenvector.

Since A = AAj the hermitian form (1, ¢9) is equal to

A\ /F _ei@P(a) d*a.

Proposition 2.21.2. Let m be an absolutely cuspidal representation of G for which the
quasi-character w defined by

s a character.
(i) If m is in the Kirillov form the hermitian form

| at@m@da

18 1nvariant.

(i) If || =1 then |C(v,z)| =1 and if Res = 1/2
}e(s,ﬂ,w)‘ = 1.
Since |zp| = 1 the second relation of part (ii) follows from the first and the relation
(s m 1) = Cog ™t a2 ).
If nisin Z and v is a character of Ur let

plew™) = 6pmr(€)vp(e)

/ ‘(p(a)}2 da = 1.
FX
If ' = 7(w)p and C(v,t) = Cy(v)t* then

@' (e@™) = 6p—nmCe(v)zy "V (€).

for min Z and € in Ur. Then

Since |zp| =1

[ 1o dn = o
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Applying the first part of the lemma we see that, if |z| = 1, both |C[(l/)’2 and |C(v, z)|2 =
}Cg(y)|2|z|2£ are 1.

Proposition 2.22. Let w be an irreducible representation of Gg. It is absolutely cuspidal if
and only if for every vector v there is an ideal a in F such that

/((g ﬂ;))vdx:o_

It is clear that the condition cannot be satisfied by a finite-dimensional representation.
Suppose that 7 is infinite-dimensional and in the Kirillov form. If ¢ is in V' then

/w<(é ‘f))sodx:o
/¢ az) dz = 0

for all a. If this is so the character x — 1 (ax) must be non-trivial on a for all a in the support
of ¢. This happens if and only if ¢ is in S(F*). The proposition follows.

if and only if

Proposition 2.23. Let 7 be an absolutely cuspidal representation and assume the largest
ideal on which v is trivial is Op. Then, for all characters v, Cy,(v) =0 if n > —1.

Take a character v and choose n; such that C,,,(v) # 0. Then C,(v) =0 for n # ny. If

V= V*1V51 then, as we have seen,

Cv,t)C(v,t 1251 = vp(—1)
so that
C,(r)=0
for n # ny and
Cny (V) Cy (V) = vo(—1) 25"
In the second part of Proposition 2.11 take n = p = ny + 1 to obtain
Zn(o_ilya wnlJrl)n(o—il/Ija wn1+1)02n1+2< ) - Zgﬁ_l 0(_1> + (’w‘ - 1)_1200711 (I/)Cnl (D)

g

The right side is equal to

Zgl+1yo(_1> . |w|

|| —1

Assume n; > —1. Then n(oc~ v, @) is 0 unless 0 = v and n(oc~'v,@™ ") is 0 unless
o = v. Thus the left side is 0 unless v = v. However if v = v the left side equals Cy,, 12(v).
Since this cannot be zero 2n; + 2 must equal ny so that ny = —2. This is a contradiction.
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§3. The principal series for non-archimedean fields

In order to complete the discussion of the previous paragraph we have to consider
representations which are not absolutely cuspidal. This we shall now do. We recall that if
1, pe is a pair of quasi-characters of F* the space B(u1, o) consists of all locally constant
functions f on G which satisfy
1/2

f(g)

a1

3.1) f((%l )g> = p(or)a(a)|

for all g in G, ay, as, in F*, and = in F. p(p, u2) is the representation of Gg on B(uy, pa).

Because of the Iwasawa decomposition Gr = PrGL(2, Or) the functions in B(u, o) are
determined by their restrictions to GL(2, Or). The restriction can be any locally constant
function on GL(2, OF) satisfying

f((‘gl )g> = () a(aa) ()

for all g in GL(2,OF), ay, ag in Up, and z in Op. If U is an open subgroup of GL(2, OF) the
restriction of any function invariant under U is a function on GL(2,OF)/U which is a finite
set. Thus the space of all such functions is finite-dimensional and as observed before p(p1, o)
is admissible.

Let F be the space of continuous functions f on Gy which satisfy

(5 2)e) -

for all g in G, a1, as in F*, and x in F. We observe that F contains B(a};ﬂ, a}l/g). Gr
acts on F. The Haar measure on G if suitably normalized satisfies

fodg= [ [ f
Gp Np JAp GL(?,OF)
. aq 0
a = 0 as .

/ F(k) dk
GL(2,0F)

is a G p-invariant linear form on F. There is also a positive constant ¢ such that

. f(g)dg:c/NF /AF /NF 1f<na(_(1) é)m)dndadnl,
/G o S = /F f((_‘f (1)) ((1) f))w.

ai

f(9)

as

ai

a2

-1
f(nak) dn da dk

It follows easily from this that

a1
Q2

Consequently
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If ; belongs to B(u, p12) and o, belongs to B(uy*, pz ") then 1y belongs to F and we set

(o1,02) = / o1(k)p2(k) dk.
GL(2,0r)

Clearly
(p(9)e1, p(9)02) = (@1, 02)
so that this bilinear form is invariant. Since both ¢, and ¢, are determined by their restrictions
to GL(2,Or) it is also non-degenerate. Thus p(u; ', 5 ") is equivalent to the contragredient
of p(fur, pia).
In Proposition 1.6 we introduced a representation r of G and then we introduced a
representation rq = r,, ,,. Both representations acted on S(F?). If

B(a,b) = / D (a, ) (by) dy

is the partial Fourier transform

(3.1.1) [7(9)®]" = p(g)®
and
(3.1.2) Pz (9) = pa(det g)|det g|/?r(g).

We also introduced the integral

Bz ®) = [ Ohns (OB(e. ) a7
FX
and we set

(3.1.3) Wa(g) = 01, 125 Ty o (9) D).

The space of functions Ws is denoted W (uy, pa; ).
If w is a quasi-character of F* and if |w(w)| = |@|* with s > 0 the integral

2(w, ®) = /FX O(0,t)w(t)d*t

is defined for all ® in S(F?). In particular if |ui(@)p; ' (@) = |@|* with s > —1 we can
consider the function

Ja(g) = m(det g)ldet g2z (apppis ", p(9)®)
on Gp. Recall that ap(a) = |a|. Clearly

(3.1.4) p(h)fe = fu
if
U = yiy(det h)|det h|*2p(h)®.

We claim that fg belongs to B(u1, te). Since the stabilizer of every ® under the repre-
sentation g — ju;(det g)|det g|'/2p(g) is an open subgroup of G the functions fg are locally
constant. Since the space of functions fg is invariant under right translations we need verify
(3.1) only for g =e.

a, _ a; T
f@((ol a2>>:z /~01N210¢F,P<(01 a2>><1>,u1(a1a2>|a1a2|1/2
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By definition the right side is equal to

m(alaz)!amlm/ul(t)uzl(t)|t\<1>(0,azt) d*t.

Changing variables we obtain

ai

pa(ar)pa(az) s

1/2
/ i (£) 13 (1)1 D(0, 1) d* 1.

The integral is equal to fg(e). Hence our assertion.

Proposition 3.2. Assume ‘,ul(w),ugl(wﬂ = |w|® with s > —1.

(i) There is a linear transformation A of W (1, pe; 1) into B(u1, p2) which, for all ® in
S(F?), sends We to f.
(i) A is bijective and commutes with right translations.

To establish the first part of the proposition we have to show that f5 is 0 if Wg is. Since
N FAF(_? é)N r is a dense subset of G this will be a consequence of the following lemma.

Lemma 3.2.1. If the assumptions of the proposition are satisfied then, for all ® in S(F?),

the function
—1 —-1/2 a 0
a — fi5 (a)lal We 0 1

15 integrable with respect to the additive Haar measure on F and

/ %((g ‘f)>u;1<a>|a|-1/2w<ax>da=fa>(((f )6 1))

By definition
f&)<(§) _(1)> ((1) T)) :/&)(tvm)ﬂl(t)ugl(t)mdXt
while

a 0 _ _ _ _ _
(3.2.2) W@((O 1>)M21(a>|a| 1/2 _ ,u,1<a)ﬂ21(a)/q)(at,t 1)’u1(t>lu21(t) d*t.
After a change of variable the right side becomes

[ vttat o 0

Computing formally we see that

[ ((o ?))u;wa)rar%(m) da
is equal to

/F w(a@{ /F (e 0t s (i () m} da
= /F ,ul(t),ugl(t){/FCI)(t,at_l)l/J(ax) da}dxt
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which in turn equals

[ 0w o] [ @it b ai= [ B,0m 0" O

Our computation will be justified and the lemma proved if we show that the integral

/Fx /F‘@(t’ at™)m (pz (1) ¥t da

/ /}@(t,a)“tﬁ“dxtda
F*x JF

which is finite because s is greater than —1.

To show that A is surjective we show that every function f in B(u, o) is of the form
fo for some ® in S(F?). Given f let ®(z,y) be 0 if (z,y) is not of the form (0, 1)g for some
g in GL(2,0r) but if (z,y) is of this form let ®(x,y) = u;'(det g)f(g). It is easy to see
that ® is well-defined and belongs to S(F?). To show that f = fs we need only show that
f(g) = fa(g) for all g in GL(2,Op). If g belongs to GL(2, Of) then ®((0,¢)g) = 0 unless ¢
belongs to Ur so that

is convergent. It equals

folg) = et ) [ B((0.)9)m (0" (1) .

Ur
Since

©((0,t)g) = py " (t)py (et 9)f(<(1) (j) g) = piy ()t (det 9) f(g)

the required equality follows.
Formulae (3.1.2)) to (3.1.4]) show that A commutes with right translations. Thus to show
that A is injective we have to show that Wg(e) = 0 if f5 is 0. It follows from the previous

lemma that
a 0

is zero for almost all a if fz is 0. Since Wg <(8 ?)) is a locally constant function on F'* it

must vanish everywhere.
We have incidentally proved the following lemma.

Lemma 3.2.3. Suppose | (w)p; (@)| = |@|* with s > =1 and W belongs to W (1, piz; ).

If w((g $)> y

Theorem 3.3. Let iy and ps be two quasi-characters of F*.

for all a in F* then W 1is 0.

(i) If neither pipy nor py us is ap the representations p(uy, po) and p(pe, i) are
equivalent and irreducible.
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(i) If paps ' = ap write g = Xa}m, fo = Xa;1/2. Then B(p, 2) contains a unique
proper invariant subspace Bs(p1, o) which is irreducible. B(uz, p1) also contains a
unique proper invariant subspace By(ug, p1). It is one-dimensional and contains the
function x(det g). Moreover the G p-modules Bs(ji1, p12) and B(pa, p1)/By(pz, 1) are
equivalent as are the modules B(pu, p2)/Bs(p1, o) and By (pz, ).

We start with a simple lemma.

Lemma 3.3.1. Suppose there is a non-zero function f in B(uy, po) invariant under right
translations by elements of Ng. Then there is a quasi-character x such that pu, = X&;/Q and

fho = Xagl/z and f is a multiple of x.

Since NpA F( 9 10)N r is an open subset of G the function f is determined by its value
at (% ). Thus if y; and py have the indicated form it must be a multiple of y.
If ¢ belongs to F'* then

(D=0 )0 )6 %)

Thus if f exists and w = uzufla}1

f((l (1))>—w(6)f<((1) }ﬁ))

Since f is locally constant there is an ideal a in F' such that w is constant on a — {0}. It
follows immediately that w is identically 1 and that p; and us have the desired form.
The next lemma is the key to the theorem.

Lemma 3.3.2. If |u1u2(w)’ = |w|® with s > —1 there is a minimal non-zero invariant
subspace X of B(ui, pe). For all f in B(ui, pe) and all n in Ng the difference f — p(n)f
belongs to X.

By Proposition 3.2 it is enough to prove the lemma when B(ui, ps2) is replaced by
W (1, p2;v). Associate to each function W in W (uy, pe; 1) a function

so<a>:w<(3 (f))

on F*. If ¢ is 0 so is W. We may regard m = p(u1, p2) as acting on the space V' of such
functions. If b is in Bp
m(b)p = &y (D).
Appealing to (3.2.2]) we see that every function ¢ in V has its support in a set of the form
{ae F*|]a| <c}

where ¢ = ¢(y) is a constant. As in the second paragraph the difference p—m(n)p = p—&,(n)g
is in S(F™) for all n in Np. Thus V N S(F*) is not 0. Since the representation &, of Bp
on S(F*) is irreducible, V' and every non-trivial invariant subspace of V' contains S(F).
Taking the intersection of all such spaces we obtain the subspace of the lemma.

We first prove the theorem assuming that | (@)puy' (@)| = |@|* with s > —1. We

have defined a non-degenerate pairing between B(juy, po) and B(u', s ). All elements
of the orthogonal complement of X are invariant under Np. Thus if pqpuy Lis not ap the
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orthogonal complement is 0 and X is B(uq, p2) so that the representation is irreducible. The
contragredient representation p(u; ", uy ') is also irreducible.

If st = ap we write p; = Xa}/Q, o = Xa}1/2. In this case X is the space of the
functions orthogonal to the function x =% in B(u;*, puy ). We set By(u, it2) = X and we let
By(ui', u3") be the space of scalar multiples of x~!. The representation of G on Bg(pu, a)
is irreducible. Since Bg(fu1, 112) is of codimension one it is the only proper invariant subspace
of B(p, pa). Therefore By(uy ', piy*) is the only proper invariant subspace of B(ui™, uyt).

If |p1(@)ps (@)| = |@|* then | (@)pe(w)| = |@|~* and either s > —1 or —s > —1.
Thus if p; 'pe is neither ap nor az' the representation @ = p(uy, p2) is irreducible. If

W = fi1jts then
w<(g 2)) = w(a)l

so that 7 is equivalent to w ® 7 or to w ® p(uy ', pyt). It is easily seen that w @ p(uy’, ps )
is equivalent to p(wpy ', wuyt) = plug, p1).

If it = ap and 7 is the restriction of p to B,(p1, p2) then 7 is the representation on
B(uyt py ) /By(uyt, uy ') defined by p(uy!, puy'). Thus 7 is equivalent to the tensor product
of w = pypo and this representation. The tensor product is of course equivalent to the

representation on B(ue, p1)/Br(pe, pn). If py = Xa}/Q and o = Xa}1/2 the representations on
B, p2)/Bs(per, p12) and By(pue, 1) are both equivalent to the representation g — x(det g).
The space W (1, t12;1) has been defined for all pairs py, pus.

Proposition 3.4.
(i) For all pairs py, po

W, p2; ) = Wipa, p; ¥)
(ii) In particular if pipy ' # o' the representation of Gg on W (i, pa; 1) is equivalent
to p(p, pa)-

If ® is a function on F? define ®* by

' (z,y) = (y, ).
To prove the proposition we show that, if @ is in S(F?),

pa(det g)|det g['/20 (ur, p12;7(9) ) = po(det g)|det g0 (s, a; 7(9)®).
If g is the identity this relation follows upon inspection of the definition of (1, po; ®*). It is
also easily seen that
r(g)®" = [r(g)2]

if ¢ is in SL(2, F') so that it is enough to prove the identity for

(a0
9=\o 1)
It reduces to

a) [ @att (O Ot = pafa) [ Slatt sl 1) .
The left side equals
ma) [ @ty (04"t
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which, after changing the variable of integration, one sees is equal to the right side.

If iyt is not ap or az' so that p(u, up) is irreducible we let 7(ju1, 12) be any rep-
resentation in the class of p(u1, pu2). If p(u1, p2) is reducible it has two constituents one
finite-dimensional and one infinite-dimensional. A representation in the class of the first will
be called 7(pu1, p12). A representation in the class of the second will be called o (pu1, p2). Any
irreducible representation which is not absolutely cuspidal is either a 7(u1, p2) or a o(u1, o).
The representations o (1, p2) which are defined only for certain values of py and pg are called
special representations.

Before proceeding to the proof of Theorem 2.18 for representations which are not absolutely
cuspidal we introduce some notation. If w is an unramified quasi-character of F'* the associated

L-function is

1
SR

It is independent of the choice of the generator w of p. If w is ramified L(s,w) = 1. If ¢
belongs to S(F') the integral

Zwapo) = [ pla)(a)lal* da
FX
is absolutely convergent in some half-plane Re s > sy and the quotient
Z(wag, @)
L(s,w)
can be analytically continued to a function holomorphic in the whole complex plane. Moreover
for a suitable choice of ¢ the quotient is 1. If w is unramified and

/ da=1
Ur

one could take the characteristic function of Op. There is a factor €(s,w, ) which, for a
given w and 1, is of the form ab® so that if ¥ is the Fourier transform of ¢

Z(w o, P) Z(wag, ¢)
L(1—s,w™) L(s,w)

If w is unramified and Op is the largest ideal on which 9 is trivial €(s, w,¥) = 1.

= €(s,w, )

Proposition 3.5. Suppose juy and po are two quasi-characters of F* such that neither puy * o
nor piply ' is ap and 7 is w(p1, o). Then

W(m, ) = W (g, p2; )
and if
Lis,m) = L(s, i) L(5, i2)
L(s,%) = L(s, p1 ") L(s, 13 ")
€(s,m,1) = €(s, pa, )e(s, 2, )

all assertions of Theorem 2.18 are valid. In particular if |pi(@)| = |@|™ and |p2(w)| =
|cw| =52 the integrals defining V(g, s, W) are absolutely convergent if Re s > max{sy, so}. If i1
and po are unramified and Op is the largest ideal of F' on which v is trivial there is a unique
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function Wy in W () which is invariant under GL(2,Op) and assumes the value 1 at the

wdentity. If
/ da=1
Ur

That W (1) = W (1, pe; 1) is of course a consequence of the previous proposition. As
we observed the various assertions need be established only for g = e. Take ® in S(F?) and
let W = W4 be the corresponding element of W (7, 1)). Then

¢<a>=w<(3 ‘f))

belongs to the space of the Kirillov model of 7. As we saw in the closing pages of the first
paragraph
Yes )= | W((S ?)) af" 2 0 = Gl
Fx

Z(p g, poos, P)
if the last and therefore all of the integrals are defined.
Also

then ®(e, s, Wy) = 1.

is equal to

Ve, s, W) = Z(uy " ap, iy "o, D).
Any function in S(F?) is a linear combination of functions of the form

O(z,y) = e1(x)p2(y).
Since the assertions to be proved are all linear we need only consider the functions ® which
are given as products. Then

Z(p g, po0p, @) = Z(1ap, 1) Z(p20f, 2)
so that the integral does converge in the indicated region. Moreover

Z(py o, i, @) = Z(p3 o, 1) Z (17 0, 02)
also converges for Re s sufficiently large. ®(e, s, W) is equal to

Z(pcp, 1) Z(p20y, 92)
L(Saul) L(‘S?MQ)
and is holomorphic in the whole complex plane. We can choose ¢; and ¢, so that both
factors are 1.

It follows from the Iwasawa decomposition Gr = PrGL(2, Or) that if both uy and po are
unramified there is a non-zero function on B(f, p2) which is invariant under GL(2, Or) and
that it is unique up to a scalar factor. If the largest ideal on which v is trivial is Op, if ®q is
the characteristic function of O%, and if ® is the partial Fourier transform introduced in

Proposition 1.6 then Dy = . Consequently
LT (g)(I)O - CI)O
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for all g in GL(2,0p). If Wy = Wy, then, since @, is the product of the characteristic
function of O with itself, ®(e, s, W) = 1 if

/ d*a=1.
Ur

The only thing left to prove is the local functional equation. Observe that
d(w,s, W) = &)(e, s, p(w)W),
that if W = Wy then p(w)W = W, (e, and that r(w)®(z,y) = ®'(y, z) if @ is the Fourier
transform of ®. Thus if ®(z,y) is a product ¢ (x)ps(y)
Ef)(w7 s, W) _ Z(lul_laﬁ?lgp,l) Z(Mg_la%a@é)
L(‘S?/’l’l ) L<S7M2 )

The functional equation follows immediately.

If pypyt is ap or ap' and m = 7(py, o) we still set

L(57 7T) = L(87 :ul)L(Sa :u2)

and
e(s,m, ) = €(s, p1,V)e(s, o, V).
Since 7 is equivalent to (", pty )
L(s,7) = L(s, p; ') L(s, piz ).
Theorem 2.18 is not applicable in this case. It has however yet to be proved for the special
representations. Any special representation o is of the form o(uq, p2) with py = xallm/Q and

o = Xagl/ ®. The contragredient representation of & is o(uy ', g7 *). This choice of iy and s
is implicit in the following proposition.

Proposition 3.6. W (o,1) is the space of functions W = We in W (uy, po; 00) for which

/ O (2,0) dx = 0.

F

Theorem 2.18 will be valid if we set L(s,0) = L(s,0) =1 and €(s,0,9) = €(s, p1, Y)e(s, 2, )
when x is ramified and we set L(s,0) = L(s, 1), L(s,5) = L(s, iy ), and

L(l -5, :ul_l)

€(s,0,1) = €(s, 1, Y )e(s, pia, ¥) L(s, po)

when x s unramified.

W (o, ) is of course the subspace of W (1, ;1) corresponding to the space Bg(pu1, p2)
under the transformation A of Proposition 3.2. If W = W4 then A takes W to the function
f = f3 defined by

£(g) = =(p1z"ar, p(9)® ) (det g)det g|'/2
f belongs to Bg(u1, p2) if and only if

/ ¥ (9)f(g)dg = 0.
GL(2,0r)
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As we observed this integral is equal to a constant times

I A C ) C O S C
/- “%’f“ww((é T))Eﬁ i [ { / EI“><—t,—m>rt|2dXt}dx.

The double integral does converge and equals, apart from a constant factor,

//(T)(t,tx)|t|dtdx: //ci(t,x) dt dz
/cp(z,()) dt.

We now verify not only the remainder of the theorem but also the following corollary.

Corollary 3.7.
(i) If m = w(pq, u2) then

which in turn equals

L(1—s,0) L(1—s,m)
e(s, 0, ¢)W = €(S7W,¢>W
(i) The quotient
L(s, )
L(s,0)
18 holomorphic
(#i) For all ® such that
/Cb(x, 0)dez =0

the quotient
Z(Mla%7 MQa%a (1))
L(s,0)
1s holomorphic and there exists such a ® for which the quotient is one.

The first and second assertions of the corollary are little more than matters of definition.
Although W (uy, o)) is not irreducible we may still, for all W in this space, define the

integrals
@ 0\ | ere
w<g,s,w>=/W<(o 1)g>|a| V2 g%
U _ a 0 s=1/2, =10\ g%
(g, s, W)= [ W 0 19 lal w”(a)d”a.
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They may be treated in the same way as the integrals appearing in the proof of Proposition 3.5.
In particular they converge to the right of some vertical line and if W = W
\I,(ea S, W) - Z(luloésFa M?aiﬁ (I))

\I[(67 Sy W) = Z(MEIQ;W :U“l_lasFa @)

Moreover
U(g,s, W)
L(s, m)
is a holomorphic function of s and
{i}(g,]_—S,W) _ \11(9787W>
L(l—s7) (s, m9) L(s,m)
Therefore a( W)
g7 87
P(g, s, W) = TL0so)
and _
= ‘Ij(gv S, W)
P(g,s,W) = L)

are meromorphic functions of s and satisfy the local functional equation

O(wg,1 — s, W) =e(s,0,0)P(g,s, W).

To compete the proof of the theorem we have to show that €(s, o,) is an exponential
function of s and we have to verify the third part of the corollary. The first point is taken
care of by the observation that u;*(w)|w| = p; ' (@) so that

K= si) _ 1= p(@)lel
L(s, o) L= py (@)
If x is ramified so that L(s,0) = L(s,m) the quotient of part (iii) of the corollary is
holomorphic. Moreover a ® in S(F?) for which
Z(:u’last /’LQQL;U (I)> = L(87 U) =1

= —pu(@)|w]"

can be so chosen that
®(ex,ny) = x(en)®(z,y)
for € and 7 in Up. Then

/Fcp(g;,()) dz = 0.

Now take x unramified so that x(a) = |a|” for some complex number r. We have to show
that if

/FCD(JC,O) dz =0

then
Z(ula%a N?a%a q))

L(Sa /ll)
is a holomorphic function of s. Replacing s by s —r + 1/2 we see that it is enough to show

that
(1= 1) [[ @twlelof a*ay
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is a holomorphic function of s. Without any hypothesis on ® the integral converges for
Re s > 0 and the product has an analytic continuation whose only poles are at the roots of
|co|® = 1. To see that these poles do not occur we have only to check that there is no pole at
s = 0. For a given ® in S(F?) there is an ideal a such that

O(z,y) = &(x,0)

for y in a. If @’ is the complement of a

//‘I’(xay)lxl”llylsdxxdxy

[ [ el iy
FJa

which has no pole at s = 0 and a constant times

([aonra{fore)

If a = p™ the second integral is equal to

[ (1 — |w]*)

is equal to the sum of

If
/ O(x,0)der =0
F

the first term, which defines a holomorphic function of s, vanishes at s = 0 and the product
has no pole there.
If ¢ is the characteristic function of Op set

®(z,y) = {po(z) — o] po(w'z) feo(y).

Then
/ O(z,0)der =0
F
and
Z(Nlaiﬁ ,MZO[IGW (I))
is equal to

{ [ o) = w1 ) mtallat @} { [ttt ay
The second integral equals L(s, u2) and the first equals

(1= pa () ") L, 1)
so their product is L(s, u1) = L(s,0).
Theorem 2.18 is now completely proved. The properties of the local L-functions L(s, )
and the factors €(s, 7, 1) described in the next proposition will not be used until the paragraph
on extraordinary representations.

Proposition 3.8.

(i) If m is an irreducible representation there is an integer m such that if the order of x
is greater than m both L(s,x @ ) and L(s,x ® ) are 1.
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(i) Suppose m and Ty are two irreducible representations of Gr and that there is a
quasi-character w such that

m((g 2)) — w(a)l w2(<g 2)) — w(a)l

Then there is an integer m such that if the order of x is greater than m

€(s, X ® 1, 1)) = €(s, X ® m2, 1))
(#i) Let m be an irreducible representation and let w be the quasi-character defined by

w<(g 2)) — w(a)l

Write w in any manner as w = pyps. Then if the order of x is sufficiently large in
comparison to the orders of py and po

6(37 X & T, ¢) = 6(57 XH1, ¢)6<S7 X2, w>

It is enough to treat infinite-dimensional representations because if o = o (uq, p2) and
m = 7(p1, o) are both defined L(s,x ® o) = L(s,x ® 7), L(s,x ® 0) = L(s,x ® 7), and
€(s,x ® 0,1) = €(s, x @ m, ) if the order of x is sufficiently large.

If 7 is not absolutely cuspidal the first part of the proposition is a matter of definition. If
7 is absolutely cuspidal we have shown that L(s,x ® 7) = L(s, x ® ) = 1 for all 7.

According to the relation (2.18.1))

e(s,x@m ) = Clyytvyt, 25tz g 22

if the order of y is so large that L(s,x ® 7) = L(s,x ' ® 7) = 1. Thus to prove the second
part we have only to show that if {C}(v,t)} and {Cs(v,t)} are the series associated to m
and 7y then
01<V7 t) = CQ(”? t)

if the order of v is sufficiently large. This was proved in Lemma 2.16.6. The third part is also
a consequence of that lemma but we can obtain it by applying the second part to 7 = 7 and
to my = w(p1, f2).

We finish up this paragraph with some results which will be used in the Hecke theory to
be developed in the second chapter.

Lemma 3.9. The restriction of the irreducible representation m to GL(2,Op) contains the
trivial representation if and only if there are two unramified characters py and py such that

T =m(p, p2).

This is clear if 7 is one-dimensional so we may as well suppose that 7 is infinite-dimensional.
If 7 = w(pq, o) we may let m = p(uq, pe). It is clear that there is a non-zero vector in
B(p1, o) invariant under GL(2, OF) if and only if x4y and uy are unramified and that if there
is such a vector it is determined up to a scalar factor. If 7 = o (p1, o) and py ;' = ap we can
suppose that 7 is the restriction of p(u1, 2) to Bs(u, pe). The vectors in B(puy, p2) invariant
under GL(2,0p) clearly do not lie in Bg(p1, p12) so that the restriction of © to GL(2, Op)
does not contain the trivial representation. All that we have left to do is to show that the
restriction of an absolutely cuspidal representation to GL(2, Or) does not contain the trivial
representation.
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Suppose the infinite-dimensional irreducible representation 7 is given in the Kirillov form
with respect to an additive character ¢ such that O is the largest ideal on which ¢ is trivial.
Suppose the non-zero vector ¢ is invariant under GL(2, Og). It is clear that if

w<(g 2)) — w(a)l

then w is unramified, that ¢(v,t) = 0 unless v = 1 is the trivial character, and that ¢(v,t)
has no pole at t = 0. Suppose 7 is absolutely cuspidal so that ¢ belongs to S(F*). Since
m(w)yp = ¢ and the restriction of w to Up is trivial

P(1,1) = C(LHG(L, %'t

if zyp = w(w). Since C(1,t) is a constant times a negative power of ¢ the series on the left
involves no negative powers of ¢ and that on the right involves only negative powers. This is
a contradiction.

Let Hy be the subalgebra of the Hecke algebra formed by the functions which are
invariant under left and right translations by elements of GL(2,Of). Suppose the irreducible
representation 7 acts on the space X and there is a non-zero vector x in X invariant under
GL(2,0p). If fisin Hg the vector 7(f)x has the same property and is therefore a multiple
A(f)z of . The map f — A(f) is a non-trivial homomorphism of Hg into the complex
numbers.

Lemma 3.10. Suppose m = m(uy1, p2) where py and po are unramified and X\ is the associated
homomorphism of Hy into C. There is a constant ¢ such that

(3.10.1) MOl <e [ [7@ds
Gr
for all f in Ho if and only if puyps is a character and ’,ul(w)uz_l(w)‘ = |ow|® with —1 < s < 1.

Let 7 act on X and let 7 in X be such that (x,7) # 0. Replacing = by

/ #(g)7 dg
GL(2,0F)

if necessary we may suppose that z is invariant under GL(2,Op). We may also assume that
(z,7) = 1. If n(g) = (7(g9)x, ) then

APta) = [ nlah) (k) an
for all f in Hy. In particular
A = [ ne s an

If ‘n(h)| < ¢ for all h the inequality (3.10.1)) is certainly valid. Conversely, since 7 is invariant
under left and right translations by GL(2, Or) we can, if the inequality holds, apply it to the
characteristic functions of double cosets of this group to see that |77(h)‘ < ¢ for all h. Since

n((g ) h) = im(@yp(an(h)
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the function 7 is bounded only if uipus is a character as we now assume it to be. The
finite-dimensional representations take care of themselves so we now assume 7 is infinite-
dimensional.

Since 7w and 7 are irreducible the function <7T(g)x,5> is bounded for a given pair of
non-zero vectors if and only if it is bounded for all pairs. Since Gp = GL(2, Op)ArGL(2, OF)
and gy 1o is a character these functions are bounded if and only if the functions

(6 9)-)

are bounded on F*. Take m and 7 in the Kirillov form. If ¢ isin V and ¢ is in V' then

<((0 ?))%%(w)$>
is equal to
<w1<w>w<(§ [1))>90,<,5> _ m<a>m<a><w((a§ ?))Wl(w)%95>

Thus 7(g) is bounded if and only if the functions

(G 3)-2)

are bounded for all ¢ in V' and all ¢ in S(F*).

It is not necessary to consider all @ in S(F*) but only a set which together with its
translates by the diagonal matrices spans S(F*). If p is a character of Up let ¢, be the
function on F* which is 0 outside of Ur and equals p on Up. It will be sufficient to consider
the functions ¢ = ¢, and all we need show is that

(o

is a bounded function of n for all x and all . The expression (3.10.2)) is equal to @, (u). If ¢
belongs to S(F*) the sequence {$, (1)} has only finitely many non-zero terms and there is
no problem. If ¢ = 7(w)yy then

> Gu(wt" = Cp,t)n(t)

where 7(t) depends on ¢y and is an arbitrary finite Laurent series. We conclude that
is valid if and only if ;s is a character and the coefficients of the Laurent series C'(u,t) are
bounded for every choice of .

It follows from Proposition 3.5 and formula that, in the present case, the series
has only one term if p is ramified but that if p is trivial

1/2, -1 —1 _ (1= p(@)t™") (1 = pa(e)t ™)

The function on the right has zeros at ¢ = pi(w) and ¢t = ps(w) and poles at t = 0,
t = |w|tui (@), and t = |w| *ua(w). A zero can cancel a pole only if uy(w) = |@| 1 (@)
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or ju1(w) = |w| ' pe(w). Since p1 and po are unramified this would mean that z;*ps equals
ap or ap' which is impossible when 7 = 7(p1, p12) is infinite-dimensional.

If C(p,t) has bounded coefficients and g9 is a character the function on the right has
no poles for [t| < |@|~!/? and therefore |pi(w)| = |w|"/? and |p2(w)| > |=|"/?. Since

(@) (@)] = |m(@)]" = |uy ()]
where piq 15 is a character these two inequalities are equivalent to that of the lemma. Conversely
if these two inequalities are satisfied the rational function on the right has no pole except
that at 0 inside the circle |t| = |&|~/? and at most simple poles on the circle itself. Applying,
for example, partial fractions to find its Laurent series expansion about 0 one finds that the
coefficients of C'(u,t) are bounded.

Lemma 3.11. Suppose py and po are unramified, pypio is a character, and m = m(uy, fia) 18
infinite-dimensional. Let |y (w)| = |@|" where 1 is real so that |ps(w@)| = |=|™". Assume
Or is the largest ideal on which v is trivial and let Wy be that element of W (m, 1) which is
invariant under GL(2,OFp) and takes the value 1 at the identity. If s > |r| then

a 0 1
W s—1/2 dx <
/FX 0 ((0 1)) |a| a (1 _ |w|s+r) (1 _ |w|s—r)

if the Haar measure is so normalized that the measure of Ug is one.

If ® is the characteristic function of O% then

a 0 _ 1 x
WO((O 1) Zul(a)|a|1/2/ ®(at,t ") (g ' d*t
FX

[ w6 9)

Changing variables in the left-hand side we obtain

and

ol ~V2 *a < // B(at, 1=V ]a|"+ [H2 d¥a d*t.

1
al* b d*a d*b = )
/OF OFl | | | (1 - |w|s+r) (1 - |w|877ﬂ)
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§4. Examples of absolutely cuspidal representations

In this paragraph we will use the results of the first paragraph to construct some examples
of absolutely cuspidal representations.

First of all let K be a quaternion algebra over F'. K is of course unique up to isomorphism.
As in the first paragraph  will denote a continuous finite-dimensional representation of K *
the multiplicative group of K. If x is a quasi-character of F'* and v is the reduced norm on
K we denote the one-dimensional representation g — X(l/(g)) of K* by x also. If €2 is any
representation y ® 2 is the representation g — x(¢)Q(g). If Q is irreducible all operators
commuting with the action of K* are scalars. In particular there is a quasi-character w of
F such that

Qa) = w(a)l
for all @ in F which is of course a subgroup of K. If {2 is replaced by x ® € then w is
replaced by y2w. Q will denote the representation contragredient to €.

Suppose (2 is irreducible, acts on V, and the quasi-character w is a character. Since
K> /F* is compact there is a positive definite hermitian form on V' invariant under K*.
When this is so we call  unitary.

It is a consequence of the following lemma that any one-dimensional representation of
K> is the representation associated to a quasi-character of F'*.

Lemma 4.1. Let Ky be the subgroup of K* consisting of those x for which v(x) = 1. Then
Ky is the commutator subgroup, in the sense of group theory, of K*.

K certainly contains the commutator subgroup. Suppose x belongs to K. If x = x* then
2% = za* = 1 so that £ = +1. Otherwise = determines a separable quadratic extension of F.
Thus, in all cases, if xx* = 1 there is a subfield L of K which contains = and is quadratic and
separable over L. By Hilbert’s Theorem 90 there is a y in L such that z = yy™*. Moreover
there is an element ¢ in K such that czo™! = 2* for all z in L. Thus 2 = yoy o~ ! is in the
commutator subgroup.

In the first paragraph we associated to €) a representation rq of a group G4 on the space
S(K,Q). Since F is now non-archimedean the group G is now Gr = GL(2, F).

Theorem 4.2.
(i) The representation rq is admissible.
(ii) Let d = degree Q. Then rq is equivalent to the direct sum of d copies of an irreducible
representation mw(€2).
(4ii) If Q is the representation associated to a quasi-character x of F* then
m(Q) = o(xay’, xap"?).
() If d > 1 the representation 7(2) is absolutely cuspidal.

If n is a natural number we set
G, = {g € GL(2,0p) } g=1 (mod p”)}

We have first to show that if ® is in S(K, Q) there is an n such that rq(¢)® = ® if g is in
G, and that for a given n the space of ® in S(K, Q) for which ro(g)® = @ for all g in G,, is
finite-dimensional.
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_fa b
9= \¢ d
B 1 0\ /a ¥V
9= \ea? 1)\0 &

and both the matrices on the right are in GG,,. Thus G, is generated by the matrices of the

forms
a 0 1 =z a 0\ _; 1 z\ 4
0 1 0 1 Yo 1% Yo 1)%

with a =1 (mod p") and x =0 (mod p™). It will therefore be enough to verify the following
three assertions.

(4.2.1) Given ® there is an n > 0 such that

m((g ?))(I):CI)
ifa=1 (mod p")

(4.2.2) Given ® there is an n > 0 such that

m((é f))@:@
if =0 (mod p").

(4.2.3) Given n > 0 the space of ® in S(K,2) such that

ro (((1] ”f))cb Sy
ro(w!)rg ((é T))T’Q(w)‘b =

for all x in p” is finite-dimensional.

If a = v(h) then
ro ((g ?)) O = |h|Y2Q(h)D(zh).

Since ¢ has compact support in K and is locally constant there is a neighbourhood U of 1 in
K™ such that

Any

in GG, may be written as

and

O(R)(xh) |} = @(x)
for all A in U and all x in K. The assertion (4.2.1) now follows from the observation that v
is an open mapping of K* onto F'*.

We recall that
rQ (((1) JI) ) d(z) = w(:m/(z))@(z)
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Let p~¢ be the largest ideal on which %) is trivial and let px be the prime ideal of K. Since

v(p) = pi
m((é f))@ )

for all z in p™ if and only if the support of ® is contained in p;("_e. With this (4.2.2) is
established.

® satisfies the two conditions of (4.2.3) if and only if both ® and r(w)® have support in
p" " or, since r(w)® = —@', if and only if ® and @', its Fourier transform, have support
in this set. There is certainly a natural number k such that ¢ (7(y)) = 1 for all y in pf.
Assertion (4.2.3) is therefore a consequence of the following simple lemma.

Lemma 4.2.4. If the support of ® is contained in pg" and w(T(y)) =1 for all y in p% the

Fourier transform of ® is constant on cosets of pht™.

Since
)= [ Sw)(re.y)dy
PK"
the lemma is clear.

We prove the second part of the theorem for one-dimensional €2 first. Let 2 be the
representation associated to x. S(K,€2) is the space of ® in S(K) such that ®(zh) = ¢(x)
for all A in K. Thus to every ® in S(K,)) we may associate the function ¢ on F* defined
by

1/2
pa(a) = [h[Q(h)2(h)
if a = v(h). The map ® — g is clearly injective. If ¢ belongs to S(F*) the function ®
defined by
(h) = |l () (v()
if h # 0 and by
®(0)=0

belongs to S(K, Q) and ¢ = ¢g. Let So(K, Q) be the space of functions obtained in this way.
It is the space of functions in S(K, Q) which vanish at 0 and therefore is of codimension one.
If ® belongs to Sy(K, ), is non-negative, does not vanish identically and &’ is its Fourier
transform then

'(0) = /@(m) dz 0.

Thus rq(w)® does not belong to So(K,Q2) and Sy(K,2) is not invariant. Since it is of
codimension one there is no proper invariant subspace containing it.

Let V be the image of S(K,w) under the map ® — . We may regard rq as acting in
V. From the original definitions we see that

ra(b)p = &y (b)y
if b is in Bp. If V; is a non-trivial invariant subspace of V' the difference

go_m((g ”{)>so
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isin Vo NV for all ¢ in V} and all x in F. If ¢ is not zero we can certainly find an z for
which the difference is not zero. Consequently Vo N V; is not 0 so that V; contains V;, and
hence all of V.

The representation rq is therefore irreducible and when considered as acting on V' it is in
the Kirillov form. Since V4 is not V' it is not absolutely cuspidal. It is thus a m(us, p2) or
a o(pu1, pe). To see which we have to find a linear form on V' which is trivial on V4. The
obvious choice is

if o = g. Then

L ((0 >s0> (axaz)

To see this we have only to recall that

<( 0)) Q)T = 2(a)]
( )@ = [h[}2Q(h)®(0)

where a = v(h) so that |h|1/2 la| and Q(h) = x(a)I. Thus if
Ap(g) = L(m(g)w)
1/2

A is an injection of V' into an irreducible invariant subspace of B(xaj”, xap 1/2 ). The only
such subspace is B (Xo&,ﬂ, XaFl/ ) and rq is therefore U(XC(F/2, XaFl/Q).

Suppose now that €2 is not one-dimensional. Let €2 act on U. Since K; is normal and
K/K; is abelian there is no non-zero vector in U fixed by every element of K;. If ® is in

S(K, ) then

and that

O(xh) = Q1 (h)®(x)
for all A in K;. In particular ®(0) is fixed by every element in K; and is therefore 0. Thus all
functions in S(K, Q) have compact supports in K* and if we associate to every ® in S(K, Q)

the function »
pa(a) = Bl Q) B(h)
where a = v(h) we obtain a bijection from S(K, ) to S(F*,U). It is again clear that

oy — &/J(b)@q’
if b is in Br and &1 = rq(b)®.

Lemma 4.2.5. Let ) be an irreducible representation of K* in the complex vector space U.
Assume that U has dimension greater than one.

(i) For any ® in S(K,U) the integrals
Z0r90,9) = [ 0@

Z(ap© Q@) = / 0207 (@)®(a) d*a
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are absolutely convergent in some half-plane Re s > sy.

(i) The functions Z(a% @ Q,®) and Z(as @ Q71 @) can be analytically continued to
functions meromorphic in the whole complex plane.

(#i) Given u in U there is a ® in S(K,U) such that

Z(am®9Q,P) = u.
(i) There is a scalar function €(s, 2, ¥) such that for all ® in S(K,U)
Z(ef’ @7 @) = —(s, 0, ¢) Z(af " 0 Q, @)

if ® is the Fourier transform of ®. Moreover, as a function of s, €(s,Q,1) is a
constant times an exponential.

There is no need to verify the first part of the lemma. Observe that ar(v(z)) = |v(z) |F =
|$|}(/2 so that

(a5 ® Q)(2) = 2|3 2Q(x).
If @ belongs to S(K,U) set

Oy (z) = / Q(h)®(zh).
K
The integration is taken with respect to the normalized Haar measure on the compact group
K. & clearly belongs to S(K,U) and
(4.2.6) Z(ap®Q,0) =Z(ay @ Q,d)

and the Fourier transform @} of &, is given by

¥() = [ Q0@ (ha)
K
The function @/ (x*) belongs to S(K, ) and
(4.2.7) Z(ah Q1 ) = Z(ah @ Q7 ).

Since ®; and ) both have compact support in K* the second assertion is clear.
If wis in U and we let ¢, be the function which is O outside of Uy, the group of units of
Og, and on U is given by ®,(z) = Q7 !(z)u then

Z(ap®Q,9,) = cu

c= / d*a.
Uk

If  belongs to S(K ™) let A(p) and B(p) be the linear transformations of U defined by
AU = Z(a7 " @ 0, ¢")
Blp)u=2 (an+3/ fo 07 )
where ¢’ is the Fourier transform of ¢. If A(h)p(x) = p(h™tx) and p(h)p(x) = p(xh) then
AA(h)p) = [l () Ale)

if

and
A(p(h)g) = [h[ T A(R)2 7 (h),
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Since the Fourier transform of A\(h)y is |h|xp(h)¢’ and the Fourier transform of p(h)ep is
|h| %' M(h)¢', the map ¢ — B(p) has the same two properties. Since the kernel of © is open
it is easily seen that A(y) and B(y) are obtained by integrating ¢ against locally constant
functions a and . They will of course take values in the space of linear transformations of
U. We will have
a(ha) = B Qh)a(a)

and

aah™) = |l a(@Q ()
[ will satisfy similar identities. Thus

a(h) = W2 (h)a(1),
B(h) = |2 (h)B(1),

where a(1) is of course the identity. However (1) must commute with Q(h) for all A in K*
and therefore it is a scalar multiple of the identity. Take this scalar to be —e(s, 2, 1)).

The identity of part (iv) is therefore valid for ® in S(K*,U) and in particular for ® in
S(K, ). The general case follows from ([£.2.6]) and (4.2.7). Slnce

(5,0, 1) = —%Z(a%—s 201 )
the function €(s, 2,)) is a finite linear combination of powers |w|® if @ is a generator of pp.
Exchanging the roles of ®, and @/, we see that e~ (s, (2, 1) has the same property. The factor
€(s,€2, 1) is therefore a multiple of some power of |w|®.
We have yet to complete the proof of the theorem. Suppose ¢ = ¢q belongs to S(F*,U)
and ¢' = @ (w)e- We saw in the first paragraph that if x is a quasi-character of F™* then

(4.2.8) P(x) = Z(arx ®Q, @)
and, if Q(a) = w(a)! for a in F*,
(4.2.9) P(xw ) = ~Zlapx Q).

Suppose Uy is a subspace of U and ¢ takes its values in Uy. Then, by the previous lemma,
?(x) and @' (x'w™!) also lie in Uy for all choices of x. Since ¢’ lies in S(F*,U) we may
apply Fourler inversion to the multiplicative group to see that ¢’ takes values in Uj.

We may regard rq as acting on S(F*,U). Then S(F*,Up) is invariant under ro(w).
Since rq(b)p = &y(b)e for b in By it is also invariant under the action of Bp. Finally
ro((39))e = w(a)p so that S(F*, Up) is invariant under the action of G itself. If we take
Up to have dimension one then S(F*, Uy) may be identiﬁed with S(F) and the representation
ro restricted to S(F*, Up) is 1rredu01ble From ({ and (4.2.9) we obtain

Blag ' *x) = Z(a; 3“/2 X ® 0, @)
? (a;s+1/2X—1w—1) —Z( —s+3/2 —1 ® Q (I))
so that » L
Flap ™A™ = (s, x @ Q) @5 7).
Thus if 7 is the restriction of rq to S(EF*, Uy)
6(87 X & Uor w) = 6(87 X ® Q7 2/})

so that my = 7(2) is, apart from equivalence, independent of Uy. The theorem follows.
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Let €2 be any irreducible finite-dimensional representation of K and let (2 act on U. The
contragredient representation Q acts on the dual space UofU. If u belongs to U and u

belongs to U
If ® belongs to S(K) set

Z(a% @ Q, ®;u, ) = /Kx|u(h)\scb(h)<9(h)u,ﬂ> d*h

and set
Z(a%  Q, & u,7) = /K |1/(h)|s<I>(h)<u, ﬁ(h)a> d*h.

Theorem 4.3. Let ) be an irreducible representation of K* in the space U.
(i) For any quasi-character x of F'*
T(x ® Q) = x @ 7(Q).

(i) There is a real number so such that for all u, u and ® and all s with Res > sq the
integral defining Z(a3 ® Q, ®;u,w) is absolutely convergent.
(#ii) There is a unique Euler factor L(s,$) such that the quotient

Z(a5? @ Q, @, u, 1)

L(s, )
s holomorphic for all u, uw, ® and for some choice of these variables is a non-zero
constant.
(iv) There is a functional equation
3/2—s ~ ~ s+1 2
Z(aF/ ®Q,<I>’,u,u)__€<S’Q’w)Z( 2 @0, 0, u,1)

L(1—s,Q) a L(s,Q)

where €(s,Q,1) is, as a function of s, an exponential.

(v) If Qa) = w(a)l for a in F* and if 7 = w(QQ) then

7r<<g 2)) — w(a)l.

Moreover L(s, ) = L(s,), L(s, %) = L(s,Q) and e(s,m, 1) = e(s, Q, ).

The first assertion is a consequence of the definitions. We have just proved all the others
when () has a degree greater than one. Suppose then that Q(h) = x(v(h)) where y is a
quasi-character of F'*. Then 7({2) = W(XO(};/ 2 xap ) and if the last part of the theorem is
to hold L(s, 2), which is of course unlquely determined by the conditions of part (iii), must
equal L(s,m) = L(s, on} ). Also L(s, Q) must equal L(s,7) = L(s, X_loz}ﬂ).

In the case under consideration U = C and we need only consider

Z(ar@Q,0:1,1) = Z(ah @ Q, D).
As before the second part is trivial and

Z(ap®Q,0) =Z(ay @0, P)
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if
By (2) = / B(h).
K,

The Fourier transform of ®; is

P (2) = /K (k) = /K @(ah)

Z(a5 @ Q) = Z(ash 0 Q, ).
It is therefore enough to consider the functions in S(K, Q).

If ¢ = g is defined as before then ¢ lies in the space on which the Kirillov model of 7
acts and

and

Blay ) = 2P 2 0, 0).
The third assertion follows from the properties of L(s, 7). The fourth follows from the relation
Pl v ) = -2} o0t ),

which was proved in the first paragraph, and the relation

~ 1/2—s _q ~/ s—1/2
90/(0‘1? w™) o QO(O‘F )
057 T T

which was proved in the second, if we observe that Q(h) = Q~1(h). Here ¢’ is of course
(w)ep.
Corollary 4.4. If 7 = w(Q) then 7 = 7(9).

This is clear if {2 if of degree one so suppose it is of degree greater than one. Combining
the identity of part (iv) with that obtained upon interchanging the roles of Q2 and 2 and of ¢
and @' we find that

(s, 0 )e(1 — 5,9, 1) = w(—1).
The same considerations show that

e(s,m ) e(1 —s,m,19) =w(—1).
Consequently

e(s, 7, 0) = €(s, Q,¥).
Replacing €2 by y ® 2 we see that

(s, X ©F ) = (s X @ DY) = e(s,x T @ 7(),0)

for all quasi-characters y. Since 7 and 7(€2) are both absolutely cuspidal they are equivalent.
There is a consequence of the theorem whose significance we do not completely understand.

Proposition 4.5. Let €2 be an irreducible representation of K* on the space U and suppose
that the dimension of U 1is greater than one. Let U be the dual space of U. Let m be the
Kirillov model of m(Q2), let ¢ lie in S(F*), and let ¢ = w(w)p. If u belongs to U and u
belong to U the function ® on K which vanishes at 0 and on K* is defined by

o(z) = p(v(z)) |u<x>\‘1<u, fz(m)a>
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is in S(K) and its Fourier transform ® wvanishes at 0 and on K* is given by

-1 _ -
' (z) = —¢' (v(2)) |v()] W (v(@))(Qz)u, 0)
if Qa) =w(a)l fora in F*.
It is clear that ® belongs not merely to S(K) but in fact to S(K*). So does the function
®; which we are claiming is equal to ®'. The Schur orthogonality relations for the group K;

show that ®'(0) = 0 so that ®" also belongs to S(K ™).
We are going to show that for every irreducible representation of €' of K*

/ ®i(e) (. H@T ) )™ e / e(s, 2, ) (@) (@)l T) ()| a2
L(1 — s, L(s, Q)

for all choices of v/ and @’. Applying the theorem we see that

/{@1(3:) & ()} @) o) [ = 0

for all choices of €V, «/, ¥/, and all s. An obvious and easy generalization of the Peter-Weyl
theorem, which we do not even bother to state, shows that &; = ®’.

It
U(z) = /K (o, )i (€ (hrut 7 i
then '
/Kx q)(x)<§2'(:v)u',ﬂ’>‘u($)|s+l/2dxx:/KX/K @(V(JE))!I/(:U)‘S_I/Q\IJ(I') d*z
while

/KX @1(x)<u’§’(x), ﬂ/> ‘I/(l’)|3/2_8 d*x
= — /KX/K1 ¢ (v(z))w " (v(z)) }V(x)‘l/%s\l/(x_l) d*x

If ¥ is 0 for all choice of u’ and %’ the required identity is certainly true. Suppose then W is
different from 0 for some choice v’ and u’.

Let U be the intersection of the kernels of €2’ and 2. It is an open normal subgroup of K*
and H = UK, F* is open, normal, and of finite index in K*. Suppose that '(a) = w'(a)l
for a in F*. If h belongs to H

U(zh) = xo(h)¥(z)
where g is a quasi-character of H trivial on U and K; and equal to w'w™! on F*. Moreover
Yo extends to a quasi-character xy of K* so that

/KX/H U(x)x ' (z) = /KX/FX () Hz) £ 0

x may of course be identified with a quasi-character of F'*.

Lemma 4.5.1. If
| wanci@ £
KX | Fx
then Q' is equivalent to x ® €.
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The representation €2’ and xy ® 2 agree on F'* and
/ <u, Xi@?ﬁ(x)ﬂXQ’(x)u’, u'y #0.
K*/FX

The lemma follows from the Schur orthogonality relations.
We have therefore only to prove the identity for ' = y ® Q. Set

F(z) = / <u,§(hx)ﬂ><9(hm)u’,ﬁ’>dh.
K
The vectors u' and @ now belong to the spaces U and U. There is a function f on F* such

that
F(x) = f(v(z))
The identity we are trying to prove may be written as
(4.5.2)
S P @)x(@)w (@) f(a™")|a]** d*a >j;xwﬁﬂx0ﬂf(aﬂaff”2dxa
L(l—s,x'®7) L(s,x ® ) '
Let H be the group constructed as before with U taken as the kernel of 2. The image F” of

H under v is a subgroup of finite index in F* and f, which is a function on F*/F’ may be
written as a sum

= e(s,x@m

fla) = Z Aixi(a)

where {x1, ..., Xp} are the characters of F*/F’ which are not orthogonal to f. By the lemma
Q) is equivalent to y; ® 2 for 1 < ¢ < p and therefore 7 is equivalent to x; ® w. Consequently

(s, x @ m, ) = e(s, xx; ® 7,1))
and
Jex ¢ (@)x Ha)x7 (@)w™ (a)]a]** d*a
L(l - S?X_l ®%>
The identity (4.5.2)) follows.

Now let K be a separable quadratic extension of . We are going to associate to each
quasi-character w of K* an irreducible representation 7(w) of Gp. If G is the set of all ¢ in
G whose determinants belong to v(K*) we have already, in the first paragraph, associated
to w a representation r, of G,. To emphasize the possible dependence of r, on ¥ we now

denote it by m(w, ). The group G is of index 2 in Gp. Let m(w) be the representation of
G induced from 7(w, V).

Theorem 4.6.

(i) The representation mw(w, 1)) is irreducible.
(i) The representation m(w) is admissible and irreducible and its class does not depend
on the choice of 1.
(#1) If there is no quasi-character x of F* such that w = xov the representation w(w) is
absolutely cuspidal.
(iv) If w = xov and n is the character of F* associated to K by local class field theory
then m(w) is T(X, Xy)-

)fo SO(G)X(G)Xi(a)MP*l/Q an.

=e(s,x@m, L(sx & 1)
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It is clear what the notion of admissibility for a representation of G, should be. The
proof that m(w, ) is admissible proceeds like the proof of the first part of Theorem 4.2 and
there is little point in presenting it.

To every @ in S(K,w) we associate the function pg on Fy = v(K*) defined by

pa(a) = w(h)|hl*®(h)
if @ = v(h). Clearly v = 0 if and only if & = 0. Let V, be the space of functions on

F, obtained in this manner. Then V. clearly contains the space S(F;) of locally constant
compactly supported functions on F,. In fact if ¢ belongs to S(F) and

®(h) = w (W)l e (v(h)

then ¢ = pg. If the restriction of w to the group K of elements of norm 1 in K* is not
trivial so that every element of S(K,w) vanishes at 0 then Vi = S(F). Otherwise S(F}) is
of codimension one in V.

Let B, be the group of matrices of the form

6 1)

with @ in F} and z in F'. In the first paragraph we introduced a representation { = &, of B,
on the space of functions on F;. It was defined by

5((3 ?))@(b) ~ 4(ba)
s((é ”{))wb) — (ba)(d).

We may regard m(w, ) as acting on V., and if we do the restriction of 7(w, ) to By is &,.

and

Lemma 4.6.1. The representation of Br induced from the representation &, of By on S(F)
is the representation &, of Bp. In particular the representation &, of By is irreducible.

The induced representation is of course obtained by letting Br act by right translations
on the space of all functions ¢ on Bp with values in S(Fy) which satisfy

p(b1b) = &y (b1)o(b)
for all b; in B,. Let L be the linear functional in S(F';) which associates to a function its
value at 1. Associate to ¢ the function

pla) = L @((8 ?)) L p((g ‘f))@@)
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The value of $((29)) at o in Fy is

(o)) -G )R )

— (az)L @((OB‘L ?)) — (az)p(aa).

Since F*/F, is finite it follows immediately that ¢ is in S(F'*) and that ¢ is 0 if ¢ is. It
also shows that ¢ can be any function in S(F*) and that if ¢’ = p(b)® then ¢’ = £,(b)yp for
all b in Bpr. Since a representation obtained by induction cannot be irreducible unless the
original representation is, the second assertion follows from Lemma 2.9.1.

If the restriction of w to Kj is not trivial the first assertion of the theorem follows
immediately. If it is then, by an argument used a number of times previously, any non-zero
invariant subspace of V. contains S(F';) so that to prove the assertion we have only to show
that S(F) is not invariant.

As before we observe that if ¢ in S(K,w) = S(K) is taken to vanish at 0 but to be
non-negative and not identically 0 then

rw)@(0) = [ @(w)do £ 0
K
so that ¢g is in S(F) but ¢, (w)e is not.
The representation 7(w) is the representation obtained by letting G4 act to the right on
the space of functions @ on G with values in V, which satisfy

$(hg) = m(w,¥)(h)@(g)
for h in G,. Replacing the functions ¢ by the functions

7(9) =§5<(g ﬁ’)g)

we obtain an equivalent representation, that induced from the representation

9= W(w,ib)((g (1)>9<a(_)1 ?))

of Gy. Tt follows from Lemma 1.4 that this representation is equivalent to 7(w,v’) if
' (x) = 1(ax). Thus m(w) is, apart from equivalence, independent of 1.

Since
a 0

¢ is determined by its restrictions to Bg. This restriction, which we again call ¢, is any one
of the functions considered in Lemma 4.6.1. Thus, by the construction used in the proof of
that lemma, we can associate to any ¢ a function ¢ on F*. Let V' be the space of functions
so obtained. We can regard m = 7(w) as acting on V. It is clear that, for all ¢ in V|

m(b)p = &y (b)y

g€G+,a€FX}
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if bis in Bp. Every function on F; can, by setting it equal to 0 outside of F!,, be regarded

as a function F'*. Since
[ fa O
s@((o 1)) (@) = p(aa)

V is the space generated by the translates of the functions in V. Thus if V, = S(F) then
V = S(F*) and if S(F,) is of codimension one in V then S(F*) is of codimension two in V.

It follows immediately that m(w) is irreducible and absolutely cuspidal if the restriction
of w to K7 is not trivial.

The function ¢ in V. corresponds to the function ¢ which is 0 outside of G and on G
is given by

v(g9) = m(w,¥)(9)e-
It is clear that
m(w)(g)p = m(w, ¥)(g)y

if g is in G;. Any non-trivial invariant subspace of V' will have to contain S(F*) and therefore
S(F). Since 7(w, ) is irreducible it will have to contain V; and therefore will be V' itself.
Thus 7(w) is irreducible for all w.

If the restriction of w to K is trivial there is a quasi-character x of F'* such that w = yov.
To establish the last assertion of the lemma all we have to do is construct a non-zero linear
form L on V which annihilates S(F*) and satisfies

L w((%l CED)@O = x(a1a2)n(az)

if 7 = m(w). We saw in Proposition 1.5 that

7r<(3 2))9@ = x*(a)n(a)e

so will only have to verify that

If o =g isin V, we set

so that if a is in F.

’ w((g ?))w =m((g‘ (1))>@(0)=X(a)|all/2L(90)-

If € is in F* but not in F; any function ¢ in V' can be written uniquely as

<p=901+7r<<8 2))%

L(p) = L(1) + x(€)L(p2).

with ¢ and @9 in V.. We set
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Theorem 4.7.
(i) If 7 = m(w) then = 7(w") if w'(a) = w(a'), * = w(w™) and x @ © = w(wY') if x is
a quasi-character of F* and X' = x o v.
(i) If a is in F* then

(i) L(s,m) = L(s,w) and L(s,7) = L(s,w™"). Moreover if Yx(z) = ¢¥r(&(x)) for x in
K and if N\(K/F,vr) is the factor introduced in the first paragraph then

€(s,m,Yr) = €(s,w, V) ANK/F, ¢r)

It is clear that y @ is the representation of G'r induced from the representation y @ (w, 1))
of G,. However by its very construction y ® m(w, ) = m(wy’, ). The relation

w((g 0)) — w(ayn(a)]

is a consequence of part (iii) of Proposition 1.5 and has been used before. Since n’ =nowv is
trivial and w(v(a)) = w(a)w'(a)

T=wn'®r=nw™)
To complete the proof of the first part of the theorem we have to show that 7(w) = 7(w").
It is enough to verify that m(w,v) = w(w*,¥). If ® belongs to S(K) let ®*(z) = P(z*).
The mapping & — ®* is a bijection of S(K,w) with S(K,w") which changes m(w, ) into
m(w',1). Observe that here as elsewhere we have written an equality when we really mean

an equivalence.
We saw in the first paragraph that if p = ¢g is in V. then

Blai*™) = Z(ajw, @)
and that if ¢’ = m(w)yp and @’ is the Fourier transform of ® then, if wy(a) = w(a)n(a) for a
in £,
Blwgtay ) = vZ 0w, @)
if v = ANK/F,vr). Thus for all ¢ in V; the quotient

o~ s—1/2
plas ')

L(s,w)
has an analytic continuation as a holomorphic function of s and for some ¢ it is a non-zero
constant. Also

Py ™) _ Blai ")
m = AMK/F, %UF)E(SMWK)W-

To prove the theorem we have merely to check that these assertions remain valid when ¢
is allowed to vary in V. In fact we need only consider functions of the form

@:w((g 2)>%

where g is in V. and € is not in F,. Since

~; s—1/2 —g~ s—1/2
Plas %) = [e| 2o (a1



76 I. LOCAL THEORY

the quotient

~/ s—1/2

Bloy )

L(s,w)

is certainly holomorphic in the whole plane. Since
_ 1/2—s s — 1/2—s s — 1/2—s
B (wy ta ™) = wole)wp (el > Byl ™) = |ef2 7B (wg ')

the functional equation is also satisfied.
Observe that if w = x o v then m(w) = (X, x,) so that

L(s,w) = L(s,x)L(s, xy)
and

€(s,w, Yr)ANK/F,op) = €(s, X, ¥r)e(s, X, VF)

These are special cases of the identities of [19].
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§5. Representations of GL(2,R)

We must also prove a local functional equation for the real and complex fields. In this
paragraph we consider the field R of real numbers. The standard maximal compact subgroup
of GL(2,R) is the orthogonal group O(2,R). Neither GL(2, R) nor O(2,R) is connected.

Let H; be the space of infinitely differentiable compactly supported functions on GL(2,R)
which are O(2, R) finite on both sides. Once a Haar measure on Gg = GL(2,R) has been
chosen we may regard the elements of H; as measures and it is then an algebra under
convolution.

fix hlo)= | fi(gh™") f2(h) dh.
R
On O(2,R) we choose the normalized Haar measure. Then every function £ on O(2,R)
which is a finite sum of matrix elements of irreducible representations of O(2, R) may be
identified with a measure on O(2,R) and therefore on GL(2,R). Under convolution these
measures form an algebra Hs. Let Hgr be the sum of H; and H,. It is also an algebra under
convolution of measures. In particular if £ belongs to Hs and f belongs to H;

€% flg) = /QCZR)g(“)f(“_lg)d“

and
Fré@) = [ flou e du
O(2,R)
If 0;, 1 <i < p, is a family of inequivalent irreducible representations of O(2,R) and

&i(u) = dim o trace o (u™")

p
£ = Zfz‘
i=1

is an idempotent of Hg. Such an idempotent is called elementary.
It is a consequence of the definitions that for any f in H; there is an elementary idempotent
& such that

then

Exf=fxE=]
Moreover for any elementary idempotent &
ExHixE=ExCF(Gr) * ¢

is a closed subspace of C2°(GR), in the Schwartz topology. We give it the induced topology.
A representation 7 of the algebra Hgr on the complex vector space V is said to be
admissible if the following conditions are satisfied.

(5.1) Every vector v in V' is of the form

v= Z 7(fi)vi

with f; in H; and v; in V.

(5.2) For every elementary idempotent £ the range of m(¢) is finite-dimensional.

(5.3) For every elementary idempotent £ and every vector v in 7(§)V the map f — 7(f)v
of £H1€ into the finite-dimensional space 7(£)V is continuous.
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If v=> ., 7(fi)v; we can choose an elementary idempotent & so that {f; = fi{ = f; for
1 <i¢<r. Then 7(§)v = v. Let {¢,} be a sequence in C°(Ggr) which converges, in the
space of distributions, towards the Dirac distribution at the origin. Set ¢! = £ % ¢,, * . For
each i the sequence {¢), * f;} converges to f; in the space {H; €. Thus by (5.3) the sequence
{m(¢))v} converges to v in the finite-dimensional space m(¢£)v. Thus v is in the closure of
the subspace 7({H1€)v and therefore belongs to it.

As in the second paragraph the conditions (5.1) and (5.2) enable us to define the
representation 7 contragredient to 7. Up to equivalence it is characterized by demanding
that it satisfy (5.1) and (5.2) and that there be a non-degenerate bilinear form on V' x V'
satisfying

(m(f)0,7) = (v, 7()7)
for all f in Hgr. Here V is the space on which 7 acts and f is the image of the measure f

under the map g — ¢g~!. Notice that we allow ourselves to use the symbol f for all elements
of Hr. The condition (5.3) means that for every v in V and every v in V' the linear form

f—=A(r(f)v,v)
is continuous on each of the spaces {H;§. Therefore 7 is also admissible.
Choose ¢ so that m(§)v = v and 7(§)v = v. Then for any f in H,

<7r(f)1)7’27> = <7r(§f§)v,’17>

There is therefore a unique distribution g on Gr such that

= <7T(f)v,’vv>

for f in H;. Choose ¢ in £H € so that m(¢)v = v. Then

u(fe) = n(§fe€) = nEfep) = (m(§fEp)v, ) = (n(€fE)v, D)

so that p(fe) = u(f). Consequently the distribution p is actually a function and it is not
unreasonable to write it as g — <7r(g)v, §> even though 7 is not a representation of Gg. For
a fixed g, <7r(g)v,"15> depends linearly on v and v. If the roles of 7 and 7 are reversed we
obtain a function (v,7(g)v). It is clear from the definition that

<7r(g v v> <v (g ~>

Let g be the Lie algebra of Gr and let gc = g ®g C. Let 2 be the universal enveloping
algebra of go. If we regard the elements of 2 as distributions on Gr with support at the
identity we can take their convolution product with the elements of C2°(Gr). More precisely
if X belongs to g

X flo) = Gh(exn(-1X)|
and 4 B
J*X(9) = 5 (gexp(—1X))|

If f belongs to H; so do f* X and X x f.
We want to associate to the representation m of Hgr on V a representation 7 of 2l on V
such that

m(X)7(f) = m(X * )
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and
m(f)m(X) =7 (f * X)
for all X in 2 and all f in Hy. If v =Y w(f;)v; we will set

T(X)v = Z’/T(X * fi)v;

and the first condition will be satisfied. However we must first verify that if
Z m(fi)vi =0
then
w = Z’/T(X * fi)v;
is also 0. Choose f so that w = 7(f)w. Then
w= Zﬂ(f)W(X * fi)ui = Zﬁ(f * X ok fi)up=m(f * X){Z”(fi)vi} =0.

From the same calculation we extract the relation

(N SR % fojwr p = w(f + X){ Y 7(foyoi}
for all f so that w(f)m(X) =7n(f * X).

If g is in Gr then A\(g)f = 0,4 * f if 0, is the Dirac function at ¢g. If g is in O(2,R) or
in Zr, the groups of scalar matrices, d, * f is in H; if f is, so that the same considerations
allow us to associate to m a representation 7 of O(2, R) and a representation 7 of Zg. It is
easy to see that if h is in either of these groups then

7(AdhX) = 7(h)n(X)m(h™1).

To dispel any doubts about possible ambiguities of notation there is a remark we should
make. For any f in H;

(n(f)o,7) = /G F(9)(m(g)0.7) dg.
Thus if h is in O(2,R) or Zgr

(n(f % 8n)0,T) = /G £(9){m(gh)v, ) dg

and
(r(f)m(h)o,7) = g F(g){m(g)m(h)v, ) dg

so that
(m(gh)v,v) = (m(g)m(h)v,).
A similar argument shows that
<7T(hg)'u,'17> = <7r(g)v,%(h’1)"ﬁ>.
It is easily seen that the function (7(g)v,7) takes the value (v,?) at g = e. Thus if h belongs
to O(2,R) or Zg the two possible interpretations of (7(h)v,) give the same result.
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It is not possible to construct a representation of Gg on V and the representation of 2l is
supposed to be a substitute. Since G'r is not connected, it is not adequate and we introduce
instead the notion of a representation m; of the system {2, e} where

(=10
€= 0 1)

It is a representation m; of 2 and an operator 7 (¢) which satisfy the relations

m2(e) =1
and

m(AdeX) = m(e)m (X)m (e h).
Combining the representation 7 with 21 with the operator m(e) we obtain a representation of
the system {2, ¢€}.
There is also a representation 7 of 2 associated to 7 and it is not difficult to see that
(r(X ), D) = <U,7~T(X)’ﬁ>

if X — X is the automorphism of 2 which sends X in g to —X.

Let
p(g) = ((9)v,7).
The function ¢ is certainly infinitely differentiable. Integrating by parts we see that
flg)exX(g)dg= [ fxX(g)e(g)dg
Gr Gr
The right side is

(xnepe) = [ 7o) (rlo)m(X)0.7)
Gr
so that )
o+ X(9) = (m(g)n(X)0, 7).
Assume now that the operators w(X) are scalar if X is in the centre 3 of 2. Then the

standard proof, which uses the theory of elliptic operators, shows that the functions ¢ are
analytic on Ggr. Since

o X(e) = <7T(X)v,a>

o * X(e) = <7r(e)7r()?)v, 5>
and Gr has only two components, one containing e and the other containing €. The function ¢
vanishes identically if <7T(X)v, '17> and <7r(e)7r(X)v,i7> are 0 for all X in A. Any subspace V;
of V invariant under 2( and e is certainly invariant under O(2, R) and therefore is determined
by its annihilator in V. If v is in V; and v annihilates V; the function <7r(g)v, 5> is 0 so that

(r(f)v,0) =0
for all fin H;. Thus 7(f)v is also in Vj. Since Hy clearly leaves Vi invariant this space is
left invariant by all of Hg.
By the very construction any subspace of V' invariant under Hg is invariant under 2 and
€ so that we have almost proved the following lemma.
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Lemma 5.4. The representation m of Hg is irreducible if and only if the associated repre-
sentation ™ of {A, €} is.

To prove it completely we have to show that if the representation of {2, €} is irreducible
the operator m(X) is a scalar for all X in 3. As 7(X) has to have a non-zero eigenfunction
we have only to check that 7(X) commutes with 7(Y) for Y in 2 with 7(e). It certainly
commutes with 7(Y’). X is invariant under the adjoint action not only of the connected
component of Gg but also of the connected component of GL(2,C). Since GL(2,C) is
connected and contains €

m(e)m(X)7  (e) = m(Ad (X)) = 7(X).

Slight modifications, which we do not describe, of the proof of Lemma 5.4 lead to the
following lemma.

Lemma 5.5. Suppose m and 7' are two irreducible admissible representations of Hgr. Then
7 and 7' are equivalent if and only if the associated representations of {2, €} are.

We comment briefly on the relation between representations of Gg and representations
of Hr. Let V be a complete separable locally convex topological space and 7 a continuous
representation of Gg on V. Thus the map (g,v) — 7(g)v of Gr X V to V' is continuous and
for f in C°(GRr) the operator

m(f) = [ fl@)n(x)dx

Gr

is defined. So is 7w(f) for f in H,. Thus we have a representation of Hgr on V. Let V{ be
the space of O(2, R)-finite vectors in V. It is the union of the space 7(§)V as £ ranges over
the elementary idempotents and is invariant under Hg. Assume, as is often the case, that
the representation my of Hg on Vj is admissible. Then 7 is irreducible if and only if 7 is
irreducible in the topological sense.

Suppose 7’ is another continuous representation of Gg in a space V' and there is a
continuous non-degenerate bilinear form on V' x V' such that

<7T<g)1}, U,> - <U7 ﬂ-,(g_l)vl>'
Then the restriction of this form to Vj x V is non-degenerate and
(r(Fyo,v') = (v, 7 (Fp')

for all fin Hgr, vin Vj, and ¢’ in V. Thus 7(, is the contragredient of my. Since

(i) = [ o) mom v

we have
(mo(g)v,v") = (m(g)v,v").

The special orthogonal group SO(2,R) is abelian and so is its Lie algebra. The one-
dimensional representation
cosf siné ind
(—Sine COSH) -

of SO(2,R) and the associated representation of its Lie algebra will be both denoted by
Kn. A representation m of 2 or of {2, ¢} will be called admissible if its restrictions to
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the Lie algebra of SO(2,R) decomposes into a direct sum of the representations k,, each
occurring with finite multiplicity. If 7 is an admissible representation of Hg the corresponding
representation of {2, e} is also admissible. We begin the classification of the irreducible
admissible representations of Hg and of {2, e} with the introduction of some particular
representations.
Let p1 and po be two quasi-characters of F*. Let B(uq, p2) be the space of functions f
on G'g which satisfy the following two conditions.
(i)
a, T aq 1/2
! (O a2)9 = pa(a1)p2(az) o f(9)
for all g in Ggr, a1, as in R*, and = in R.
(ii) fis SO(2,R) finite on the right.
Because of the Iwasawa decomposition
Gr = NrARSO(2,R)

these functions are complete determined by their restrictions to SO(2,R) and in particular
are infinitely differentiable. Write
t\"™
w(t) =11 )
i

where s; is a complex number and m; is 0 or 1. Set s = s; — $3 and m = |m; — my| so

that pps ' (t) = [t]® <ﬁ) . If n has the same parity as m let ¢, be the function in B(uy, o)
defined by
a

1 z\ (a1 O cosf sind B 1
Pl lo 1 0 ay)\ —sinf cosb _“1<a1)u2(a2>a

2

1/2
einG‘

The collection {¢,} is a basis of B(u1, u2).
For any infinitely differentiable function f on Gr and any compactly supported distribution

pu we defined \(p) f by
M) f(g) = i(p(9)f)
and () by

If, for example, u is a measure

M) f(g) = i f(htg) dp(h)

and
p(r)f(g) = [ f(gh)du(h).
Gr
In all cases A\(u)f and p(p)f are again infinitely differentiable. For all f in Hg the space
B(p1, p1o) is invariant under p(f) so that we have a representation p(py, o) of Hr on B(p1, f12).
It is clearly admissible and the associated representation p(u1, o) of {2, €} is also defined by
right convolution.
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We introduce the following elements of g which is identified with the Lie algebra of 2 x 2
matrices.

0 1 10 1 1 i
() =) () =G D)
0 1 0 0 10
R U SR ) S (O}

2

Z
D - X+X_ + X_X+ + 7,

as well as

which belongs to 2.

Lemma 5.6. The following relations are valid

(i) p(U)pn = inpy (1) ple)pn = (=1)" 0y
(@) p(Vi)pn = (s +14n)pnsz () p(V-)pn = (5+1=n)pns
(v) p(D)pn = =5tpn (vi) p(J)on = (s1+ 52)@n

The relations (i), (ii), and (vi) are easily proved. It is also clear that for all ¢ in B(p, u2)
p(Z)ple) = (s + 1)e(e)

and
p(X)p(e) = 0.

cosf sinf Y
Ad((—sin& cos@))mr_6 Vi

Adf (st smONY ey,
—sinf@ cos0

show that p(V )¢, is a multiple of ¢, 2 and that p(V_)y, is a multiple of ¢,_». Since
V., = Z —iU +2iX,

The relations

and

and
Vo =2Z+4iU - 2iX,
the value of p(V, )y, at the identity e is s + 1+ n and that of p(V_)¢, = s+ 1 —n. Relations
(iii) and (iv) follow.
It is not difficult to see that D belongs to 3 the centre of 2. Therefore p(D)p = A\(D)p =
D)y since D = D. If we write D as

Z2
2X Xy + 2+

and observe that A(X;)o =0 and A\(Z)p = —(s+ 1)p if ¢ is in B(ui, pe) we see that

(s+1)2 s2—1
¥n =
2 2

p(D)pn = {—(S +1)+ Pn-

Lemma 5.7.
(i) If s — m is not an odd integer B(u, pu2) is irreducible under the action of g.
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(i) If s —m is an odd integer and s = 0 the only proper subspaces of B(u1, p2) invariant
under g are

Bl (:ula M?) = Z Cgon
n>s+1
n=s+1 (mod 2)
By (i1, po) = Z Co,
n<—s—1

n=s+1 (mod 2)
and, when it is different from B(u, p2),

Bs(p1, p2) = Bi(pa, p2) + Bz(,ul,m).

(#i) If s —m is an odd integer and s < 0 the only proper subspaces of B(u1, p2) invariant
under g are

31(,u1; ,u2) = Z Con
n>s+1
n=s+1 (mod 2)
BQ(Mla M?) = Z Cgon
n<—s—1

n=s+1 (mod 2)
and
By(p, po) = Bi(pa, p2) 0 Ba(pir, pi2)-

Since a subspace of B(p1, f12) invariant under g is spanned by those of the vectors ,, that
it contains, this lemma is an easy consequence of the relations of Lemma 5.6. Before stating
the corresponding results for {2, e} we state some simple lemmas.

Lemma 5.8. If 7w is an irreducible admissible representation of {24, €} there are two possibil-
1ties:
(i) The restriction of m to A is irreducible and the representations X — w(X) and
X — w(Ade(X)) are equivalent.
(i) The space V' on which m acts decomposes into a direct sum Vi @& Vy where Vi and Vs
are both invariant and irreducible under 2A. The representations my and s of A on V)
and Vy are not equivalent but my is equivalent to the representation X — F(Ad e(X)).

If the restriction of 7 to 2 is irreducible the representations X — m(X) and X —
W(Ad e(X )) are certainly equivalent. If it is not irreducible let Vi be a proper subspace
invariant under . If Vo = 7(e)V] then V3 NV, and V) 4+ V5 are all invariant under {2, €}.
Thus Vi NV, = {0} and V = V] @ V. If V] had a proper subspace V] invariant under 2 the
same considerations would show that V' = V] @ Vj with Vj = m(€)V]. Since this is impossible
Vi and V5 are irreducible under 2.

Ifv;isin V)

To(X)m(e)vy = m(e)m (ad e(X)) vy
so that the representations X — m(X) and X — m (Ade(X)) are equivalent. If 7; and
were equivalent there would be an invertible linear transformation A from V; to V5 so that
A?Tl(X) = WQ(X)A If U1 is in ‘/1

A7 (e)m(X)vr = A ma(ad e(X))m(e)vr = mi (Ad e(X)) A7 m(e)vy
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Consequently {A_lw(e)}2 regarded as a linear transformation of V; commutes with 2 and
is therefore a scalar. There is no harm in supposing that it is the identity. The linear
transformation

V1 + Vg — A_lvg + AUl
then commutes with the action of {2, ¢}. This is a contradiction.

Let x be a quasi-character of R* and let x(t) = t¢ for t positive. For any admissible
representation 7 of 2 and therefore of g we define a representation y ® 7 of g and therefore
2 by setting

xQ7(X)= gtraceX + 7(X)

if X isin g. If 7 is a representation of {2, ¢} we extend x ® 7 to {2, €} by setting

x @ m(e) = x(=1)m(e)
If 7 is associated to a representation m of Hr then y ® 7 is associated to the representation
of Hgr defined by

x ®@m(f) =m(xf)
if x f is the product of the functions xy and f.

Lemma 5.9. Let my be an irreducible admissible representation of 2. Assume that my is
equivalent to the representation X — m (Ad e(X)). Then there is an irreducible representation
7 of {2, €} whose restriction to A is m. If n is the non-trivial quadratic character of R*
the representations m and n ® m are not equivalent but any representation of {2, e} whose
restriction to 2L is equivalent to my is equivalent to one of them.

Let my act on V. There is an invertible linear transformation A of V' such that Am(X) =
To(Ad (X)) A for all X in . Then A? commutes with all mo(X) and is therefore a scalar.
We may suppose that A% = I. If we set 7(¢) = A and 7(X) = 7(X) for X in 2 we obtain
the required representation. If we replace A by —A we obtain the representation n ® m. 7 and
n ® m are not equivalent because any operator giving the equivalence would have to commute
with all of the 7(X) and would therefore be a scalar. Any representation 7’ of {2, e} whose

restriction to 2( is equivalent to m can be realized on V4 in such a way that 7'(X) = mo(X)
for all X. Then 7'(¢) = £A.

Lemma 5.10. Let m be an irreducible admissible representation of 2. Assume that m and
T, with (X ) = m (Ad (X)), are not equivalent. Then there is an irreducible representation
7 of {2, €} whose restriction to A is the direct sum of w1 and my. Every irreducible admissible
representation of {2, e} whose restriction to A contains m is equivalent to w. In particular
N m 1S equivalent to .

Let m; act on V;. To construct @ we set V =V, & V, and we set
T(X)(v1 B vg) = m(X)vg B (X )vg
and
7(€)(v1 B va) = Vo D 1.
The last assertion of the lemma is little more than a restatement of the second half of
Lemma 5.8.

Theorem 5.11. Let puy and ps be two quasi-characters of F*.
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(1) If pipy ' is not of the form t — tPsgnt with p a non-zero integer the space B(py, jta)
is irreducible under the action of {U, e} or Hr. w(p1,u2) is any representation
equivalent to p(piy, pz).

(id) If pps ' (t) = tPsgnt, where p is a positive integer, the space B(ui, i2) contains ex-
actly one proper subspace Bg(ji1, po) invariant under {2, €}. It is infinite-dimensional
and any representation of {2, €} equivalent to the restriction of p(p1, pa) to Bs(u, pi2)
will be denoted by o(uy, po). The quotient space

Bf(ﬂhlm) = B(Ml,ﬂz)/Bs(Nh ,u2)

is finite-dimensional and mw(uy, p2) will be any representation equivalent to the repre-
sentation of {A, €} on this quotient space.

(ii3) If pypy *(t) = tPsgnt, where p is a negative integer, the space B(juy, p2) contains
ezactly one proper subspace By(pi1, pia) invariant under {2, e}. It is finite-dimensional
and 7(py, po) will be any representation equivalent to the restriction of p(p1, p2) to
B(p, p2). Moreover o(pu, pe) will be any representation equivalent to the represen-
tation on the quotient space

By(p1, p2) = B, p2) /By (pa, p2).-

(3 representation mw{ i, (2) 1S NEVET equivatent 1o a 1epresentation oy, Uy ).

v) A tati ' walent t tati Lt

v € representations mw\Uy, U2) ana Ty, W are equivaient vy ana only iy either
Th tati d w(1y, 1l walent if and only if eith
(p1; p2) = (ps o) or (pa, po) = (b, pth)-

vl € representations oy, H2) ana o by, W are equivaient if anda onty if (Ui, U2) 1S

) Th tati d o, 1t walent if and only i '

one of the four pairs (1, ta), (4o, 1), (41, Hom), or (pan, ).
(vit) Every irreducible admissible representation of {2, e} is either a m(ui,pu2) or a

O-(/Lla ”2)'

Let gy (t) = |t|s<ﬁ> . 8 —m is an odd integer if and only if s is an integer p and

paps () = tPsgnt. Thus the first three parts of the lemma are consequences of Lemma 5.6
and 5.7. The fourth follows from the observation that m(uy, u2) and o(u}, p5) cannot contain
the same representations of the Lie algebra of SO(2, R).

We suppose first that s—m is not an odd integer and construct an invertible transformation

T from B(j, p2) to B(pe, p11) which commutes with the action of {2, ¢}. We have introduced a
basis {¢,} of B(u1, u2). Let {¢] } be the analogous basis of B(us, 111). The transformation T

will have to take ¢, to a multiple a,¢/, of ¢/. Appealing to Lemma 5.6 we see that it

commutes with the action of {2, €} if and only if

(s+14+n)ayo=(—s+1+n)a,
(s+1—=n)a,—o=(—s+1—n)a,

and

a, = (—1)"a_p.

These relations will be satisfied if we set

I

tp, = an(s) = W
2

Since n = m (mod 2) and s —m — 1 is not an even integer all these numbers are defined and
different from 0.
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If s <0 and s —m is an odd integer we let
an(s) = lima,(z)
zZ—S

The numbers a,(s) are still defined although some of them may be 0. The associated operator
T maps B(ui, o) into B(us, p1) and commutes with the action of {2, e}. If s = 0 the
operator 7' is non-singular. If s < 0 its kernel is By(u1, 12) and it defines an invertible
linear transformation from B(fuq, po) to Bg(ua, p1). If s > 0 and s — m is an odd integer the
functions a,(z) have at most simple poles at s. Let

bu(s) = il_rg(z — S)an(2)

The operator T associated to the family {b,(s)} maps B(y, t2) into B(pe, 11) and commutes
with the action of {2, e}. It kernel is Bg(uq, p2) so that it defines an invertible linear
transformation from By (1, pt2) to By(pe, pt1). These considerations together with Lemma 5.10
give us the equivalences of parts (v) and (vi).

Now we assume that 7 = m(uq, u2) and 7" = w(uf, ph) or m = o(py, p2) and @ = o(uf, ph)

si (ﬁ) " and let pi(t) = |t (ﬁ) " Let s = 51 — 59,
m = |m; —mgl|, s = s} — sy, m' = |m| —m)|. Since the two representations must contain
the same representations of the Lie algebra of SO(2, R) the numbers m and m’ are equal.
Since 7(D) and 7’'(D) must be the same scalar Lemma 5.6 shows that s’ = £s. n(J) and
7'(J) must also be the same scalar so s} + 5 = s1 + s9. Thus if n(t) = sgnt the pair (uq, o)
must be one of the four pairs (uy, py), (45, 11), (npy, M), (Mg, npy). Lemma 5.9 shows
that m(u)jph) and w(nu), nuy) are not equivalent. Parts (v) and (vi) of the theorem follow
immediately.

Lemmas 5.8, 5.9, and 5.10 show that to prove the last part of the theorem we need only
show that any irreducible admissible representation 7 of 2l is, for a suitable choice of iy and
l2, a constituent of p(uq, po). That is there should be two subspaces By and By of B(p1, p2)
invariant under 2 so that B; contains By and 7 is equivalent to the representation of 2l on
the quotient By /Bs. If x is a quasi-character of F'* then 7 is a constituent of p(u1, o) if and
only if x ® 7 is a constituent of p(xu1, xp2). Thus we may suppose that 7(.J) is 0 so that
7 is actually a representation of 2y, the universal enveloping algebra of the Lie algebra of
Zr\GRr. Since this group is semi-simple the desired result is a consequence of the general
theorem of Harish-Chandra [6].

It is an immediate consequence of the last part of the theorem that every irreducible ad-
missible representations of {2, ¢} is the representation associated to an irreducible admissible
representation of Hr. Thus we have classified the irreducible admissible representations of
{2, ¢} and of Hr. We can write such a representation of Hgr as m(u1, pe) or o (1, i2).

In the first paragraph we associated to every quasi-character w of C* a representation of
r, of G, the group of matrices with positive determinant. The representation r, acts on the
space of functions ® in S(C) which satisfy

O(xh) = w H(h)P(x)
for all h such that hh = 1. All elements of S(C,w) are infinitely differentiable vectors for 7,

so that r,, also determines a representation, again called r,,, of 2. r, depended on the choice
of a character of R. If that character is

w(x) — e27ru:m'

are equivalent. Let p;(T) = |t
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then
ro(X)®(2) = (2muzzi)®(2).

Lemma 5.12. Let So(C,w) be the space of functions ® in S(C,w) of the form
D(z) = e Ep (4 7)

where P(z,Z) is a polynomial in z and Z. Then Sy(C,w) is invariant under A and the
restriction of 1, to So(C,w) is admissible and irreducible.

It is well known and easily verified that the function e=2"1“1%% is its own Fourier transform

provided of course that the transform is taken with respect to the character

ve(z) =Y(z+72)
and the self-dual measure for that character. From the elementary properties of the Fourier
transform one deduces that the Fourier transform of a function

D(z) = e Ep (5 %)

where P is a polynomial in z and Z is of the same form. Thus r,(w) leaves Sy(C,w) invariant.

Recall that
B 0 1
w=\|_1 o)

So(C,w) is clearly invariant under 7, (X, ). Since X_ = Adw(X}) it is also invariant under
X_. But X, X_ — X_X, =7, so that it is also invariant under Z. We saw in the first
paragraph that if wy is the restriction of w to R* then

((O 0)) - (senaywola)]

thus r,(J) = ¢l if wy(a) = a° for a positive a. In conclusion Sy(C,w) is invariant under g
and therefore under 2.

It

o) = () o

where r is a complex number and m and n are two integers, one 0 and the other non-negative,
the functions

_ —27|u|zZ jn+pzm+p
Q,(2)=e ZVTPZMTP,

with p a non-negative integer, form a basis of Sy(C,w). Suppose as usual that % = %% + 5

9]
&l

and that (% =190 _ 19 Thep the Fourier transform @), of @, is given by

2 Oz 2i Oy
n—+p m-+p
o’ (Z) _ 1 9 9 —27|u|zZ
p (27T-Z'u)m+n+2p Ozn+p azm-i-l’
which is a function of the form
p—1
(Z sgn u)m+n+2p€—27r|u|zzzn+pzm+p + E aq6—2ﬂ|u|zzzn+qzm+q‘

q=0

Only the coefficient a,_; interests us. It equals

(isgnu)
2miu

m—+n+2p—1

{p(n+m+1+p-1)}.
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Since
ro(w)®(2) = (isgnu)d'(z)
and
ro(Xo) = (1) "ry (w)re (Xo)r(w)
while
ru(X )8, = (27ui) by
we see that
p—1
ru(X_)®, = (2mui)®piq — (isgnu)(n +m+2p+1)0, + Z by P,
q=0
Since U = X — X_ we have
p—1
7o(U)®, = (isgnu)(n +m+2p +1)®, — Z b, ®,
q=0

and we can find the functions ¥, p=0,1,..., such that

p—1
U, =0+ )y,
q=0

while
ro(U)V, = (isgnu)(n +m+2p+ 1)V,
These functions form a basis of Sy(C,w). Consequently r,, is admissible.

If it were not irreducible there would be a proper invariant subspace which may or not
contain ®y. In any case if S is the intersection of all invariant subspaces containing ®; and S,
is the sum of all invariant subspaces which do not contain ®y3 both &; and S, are invariant and
the representation 71 of 20 on §1/8,NS; is irreducible. If the restriction of 7y to the Lie algebra
of SO(2, R) contains k, it does not contain x_,. Thus 7 is not equivalent to the representation
X — m(Ade(X)). Consequently the irreducible representation 7 of {2, €} whose restriction
to 2 is m must be one of the special representations o (uy, p2) or a representation (g, p2n).
Examining these we see that since 7 contains x, with ¢ = sgnu(n 4+ m + 1) it contains all
the representations k, with ¢ =sgnu(n+m+2p+1), p=0,1,2,.... Thus S; contains all
the functions ¥, and &, contains none of them. Since this contradicts the assumption that
So(C,w) contains a proper invariant subspace the representation r, is irreducible.

For the reasons just given the representation 7 of {2, €} whose restriction to [ contains
1y, is either a o(py, u2) or a m(uy, 1n). It is a w(uy, pan) if and only if n 4+ m = 0. Since

w<(§§ 0)) — (o) sgnal = w(ap(a)l

we must have 1 = won in the first case and pu? = wy in the second. wy is the restriction of
w to R*. Since the two solutions u? = wy differ by n they lead to the same representation. If
n+m =0 then pf = wy if and only if w(z) = pi(v(2)) for all z in C*. Of course v(z) = 2Z.
5 (ﬁ) ". Because of
Theorem 5.11 we can suppose that m; = 0. Let s = s; — so. We can also suppose that s is

non-negative. If m = |my; — msy| then s —m is an odd integer so m and mgy are determined
by s. We know what representations of the Lie algebra of SO(2,R) are contained in 7.

Suppose n + m > 0 so that 7w is a o(u1, pe). Let w;i(t) = |t
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Appealing to Lemma 5.7 we see that s = n 4+ m. Since ;s = nwy we have s; + sy = 2r.

Thus sy = r + 2 and s, = 7 — "™ In all cases the representation 7 is determined by

w alone and does not depend on 1. We refer to it as m(w). Every special representation

o(p1, o) is a m(w) and 7(w) is equivalent to m(w’) if and only if w = W’ or W'(2) = w(Z).
We can now take the first step in the proof of the local functional equation.

Theorem 5.13. Let w be an infinite-dimensional irreducible admissible representation of
Hr. If 1 is a non-trivial additive character of R there exists exactly one space W (w, 1) of
functions W on Gr with the following properties

(i) If W is in W (m, 1) then

W((é ""f)g) = (@)W (g)
for all z in F.

(i) The functions W are continuous and W (mw, ) is invariant under p(f) for all f in
Hgr. Moreover the representation of Hr on W (w, 1) is equivalent to .
(4ii) If W is in W (m, 1)) there is a positive number N such that

(i 5)) <o)

We prove first the existence of such a space. Suppose m = 7(w) is the representation
associated to some quasi-character w of C*. An additive character ¢ being given the
restriction of 7 to 2 contains the representation r, determined by w and . For any ® in
S(C,w) define a function Wg on G4 by

Wa(g) = r(9)2(1)
Since p(g)We = W, (go the space of such functions is invariant under right translations.

Moreover
Wq)((é f)g) = §(2)Wa(g)

Every vector in S(C,w) is infinitely differentiable for the representation r,. Therefore the
functions Wy are all infinitely differentiable and, if X is in 2,

P(X)Wq> = Wrw(x)q»

In particular the space Wi (7, 1) of those Wg for which & is in So(C,w) is invariant under 2.
We set Ws equal to 0 outside of G, and regard it as a function on GR.

We want to take W(m, 1) to be the sum of Wi(w, 1) and its right translate by e. If
we do it will be invariant under {2, ¢} and transform according to the representation m
of {2, e}. To verify the second condition we have to show that it is invariant under Hg.
For this it is enough to show that Sy(C,w) is invariant under the elements of Hg with
support in G. The elements certainly leave the space of functions in §(C, w) spanned by the
functions transforming according to a one-dimensional representation of SO(2, R) invariant.
Any function in §(C,w) can be approximated uniformly on compact sets by a function in
So(C,w). If in addition it transforms according to the representation x,, of SO(2, R) it can
be approximated by functions in Sy(C,w) transforming according to the same representation.

as |t| — oo.
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In other words it can be approximated by multiples of a single function in Sy(C,w) and
therefore is already in Sy(C,w).
The growth condition need only be checked for the functions Wy in Wi(7,¢). If a is

negative
wal (“ V)] =0
*\\o 1))~

B(z) = e 2= P (4 %)

but if a is positive and

it is equal to
e—27r\u|ap(al/2’ a1/2)w(a)|a|1/27
and certainly satisfies the required condition.
We have still to prove the existence of W(m, 1) when 7 = m(uy, u2) and is infinite-
dimensional. As in the first paragraph we set

Opnopns®) = [ a0z Ot
RX
for ® in S(R®) and we set
Wa(g) = pa(det g)|det 9|0 (p1, p2, 7(9) @)

= e(lula Ha2, TMI:IJ«Q (g)q))
Ty e 18 the representation associated to the quasi-character (a,b) — py(a)p2(b) of R* x R*.
If X isin®A

p(X)Wa(g) =W, ,..cx)a(9)

Let W (pu, p2;¢) be the space of those Wg which are associated to O(2, R)-finite functions ®.
W (1, pio; ) is invariant under {2, ¢} and under Hg.

Lemma 5.13.1. Assume u(x)u; ' (v) = |x|s<|§—|> with Res > —1 and m equal to 0 or

1. Then there exists a bijection A of W (uy, pa; 1) with B(py, p2) which commutes with the
action of {2, €}.

We have already proved a lemma like this in the non-archimedean case. If ® is in S(R?)
and w is a quasi-character of R* set

2w, @) = / B0, ) (t) d* (1)

The integral converges if w(t) = |t|"(sgnt)” with » > 0. In particular under the circumstances
of the lemma

falg) = m(detg)ldet |2 (u1p1y o, p(9) @)
is defined. As usual agr(x) = |z|. A simple calculation shows that

1
a

f@((%l CZ)Q) = pa(a1)pz(az) al

/2
fa(g)-

2

If ® is the partial Fourier transform of ® introduced in the first paragraph then
p(9)fs = I3,
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if &1 =17y, ,,(f)®. A similar relation will be valid for a function f in Hg, that is

p(Nfs =15,
if &1 =7y, ,,(f)®. In particular if f; is O(2, R)-finite there is an elementary idempotent
¢ such that p(€)fz = f3. Thus, if ®; = 1, ,,(6)®, f3 = f5, and &; is O(2,R) finite. Of
course f3 is O(2, R)-finite if and only if it belongs to B(p1, p2).

We next show that given any f in B(uy, po) there is an O(2, R)-finite function ® in S(R?)
such that f = fz. According to the preceding observation together with the self-duality of
S(R?) under Fourier transforms it will be enough to show that for some ® in S(R?), f = fs.
In fact, by linearity, it is sufficient to consider the functions ¢,, in B(u, p12) defined earlier by

demanding that
cosf sinf Y
Pr\ \ —sinf cosd —°

n must be of the same parity as m. If 6 = sgnn set
O(z,y) = 6_”(”32+y2)(x + idy)"!

cosf sinf  ing
p<(—sin9 COSQ))qD_e CI)

Since p(9) fo = fo(g)e When det g = 1 the function fp is a multiple of ¢,. Since
fole) = (") [ et

—0o0

Then

7(|n\+s+l
2

)
1
r In| + s+
2 2
which is not 0, the function fg is not 0.

The map A will transform the function Wy to fg. It will certainly commute with the
action of {2, e}. That A exists and is injective follows from a lemma which, together with its
proof, is almost identical to the statement and proof of Lemma 3.2.1.

The same proof as that used in the non-archimedean case also shows that W (juq, pe; 1) =
W (g, p1;9) for all 4. To prove the existence of W (m, 1) when m = m(p1, o) and is infinite-
dimensional we need only show that when p; and 9 satisfy the condition the previous lemma
the functions W in W (uy, po; ¢) satisfy the growth condition of the theorem. We have seen
that we can take W = Wg with
5(33’ y> — e—ﬂ(zQ—&-yQ)P(x, y)
where P(x,y) is a polynomial in z and y. Then

B(z,y) = e "HIQ(x, y)

where Q(z,y) is another polynomial. Recall that ¢ (z) = €?™*. Then

W<I><(8 (1))> = (a)|al'/? / eI at ut TV [ (sgn )™ d

[e.e]
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The factor in front certainly causes no harm. If § > 0 the integrals from —oco to —9 and from
d to oo decrease rapidly as |a| — oo and we need only consider integrals of the form

1)
/ 677T(a2t2+U2t72)tr dt
0

where r is any real number and v is fixed and positive. If v = 5 then u? = v? + % and
e~ 117 s hounded in the interval [0, 6] so we can replace u by v and suppose r is 0. We

may also suppose that a and v are positive and write the integral as
5
6727rcw / efrr(atJrvt_l)2 dt.
0

The integrand is bounded by 1 so that the integral is O(1). In any case the growth condition
is more than satisfied.

We have still to prove uniqueness. Suppose Wi (m, ) is a space of functions satisfying the
first two conditions of the lemma. Let k,, be a representation of the Lie algebra of SO(2,R)
occurring in m and let W be a function in Wi (m, ) satisfying

cosf sinf ind
W1<g(—sin9 cos@))ze Wilg).

t
\t|1/2 O

If

e1(t) =Wy

1
0 |t‘1/2

the function Wy is completely determined by ¢;. It is easily seen that

t
0
172 .
pOWi | | "7 ) | =it
ERE
‘t|11€/2 0 dSOI
p(Z)W; 1 =2t—-
a7 dt
¢
0
/2 .
p(X)Wh MO 1 = dutp:(1).
|t‘1/2
Thus if o] and ¢] correspond to p(Vy)W; and p(V_)W;
dy
@i (1) = 2t—= — (2ut —n)pi (#)
and J
- ¥
e (t) =2t + (2ut — n)pr (1)
Since
1 U?
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p(D)W; corresponds to

dt\ dt dt

Finally p(e)W; corresponds to ¢1(—t).

Suppose that 7 is either 7(uy, po) or o (g, pi2). Let pypy ' (t) = |t|*(sgnt)™. If s —m is
an odd integer we can take n = |s| + 1. From Lemma 5.6 we have p(V_)W; = 0 so that ¢,
satisfies the equation

d( d d
p <tﬂ - 2tﬁ> + (2nut — 202,

d
Qt% + (2ut — n)g, = 0.
If the growth condition is to be satisfied ¢, must be 0 for ut < 0 and a multiple of |t|"/2e~"
for ut > 0. Thus W is determined up to a scalar factor and the space W (w, 1)) is unique.
Suppose s —m is not an odd integer. Since p(D)W; = £

the equation

5 L/, the function ¢; satisfies

d2 1 — 2
@1+{—u2+%+< 8)}s01—0

dt? 4t2
We have already constructed a candidate for the space W (m, ). Let’s call this candidate
Wy (7, 1). There will be a non-zero function ¢ in it satisfying the same equation as ¢;. Now
¢1 and all of its derivatives go to infinity no faster than some power of |¢| as t — oo while as
we saw ¢y and its derivations go to 0 at least exponentially as |t| — co. Thus the Wronskian
des __ din
1 o Y2 I
goes to 0 as |t| — oco. By the form of the equation the Wronskian is constant. Therefore it is
identically 0 and ¢;(t) = awps(t) for t > 0 and ¢, (t) = Bps(t) for t < 0 where a and 3 are
two constants. The uniqueness will follow if we can show that for suitable choice of n we
have o = 5. If m = 0 we can take n = 0. If u(¢t) = [t|** (sgnt)™ then w(e)WW; = (—1)™W;
so that ¢1(—t) = (—=1)™py(t) and @o(—t) = (—=1)"2¢ps(t). Thus « = B. If m = 1 we can
take n = 1. From Lemma 5.6

m(Vo)Wy = (=)™ sm(e)W,

so that

2104 (gut — 1)ut) = (~1)" 1 (1)

Since y satisfies the same equation o = f3.

If p is a quasi-character of R* and w is the character of C* defined by w(z) = u(22)
then 7(w) = m(p, un). We have defined W (m(w), %) in terms of w and also as W (u1, po; ).
Because of the uniqueness the two resulting spaces must be equal.

Corollary 5.14. Let m and n be two integers, one positive and the other 0. Let w be a
quasi-character of C* of the form

w(z) = (zE)“mTJrnsz"
and let puy and po be two quasi-characters of R* satisfying pype(z) = |z|* (sgnz)™™ ! and
papiy (z) = 2™ sgnax so that w(w) = o(p1, o). Then the subspace By(p1, o) of Bpa, pi2)
is defined and there is an isomorphism of B(p1, po) with W (uy, pio; 1) which commutes with



§5. REPRESENTATIONS OF GL(2,R) 95

the action of {2, e}. The image W,(pr, po; V) of Bs(p, p2) is W (w(w), ). If @ belongs to
S(R?) and Wy belongs to W (1, po; 1) then W belongs to Wi(juy, pia; b)) if and only if

oo 8j
/ ' —®(z,0)der =0
o O
for any two non-negative integers i and j withi+j=m+n — 1.
Only the last assertion is not a restatement of previously verified facts. To prove it we
have to show that f5 belongs to Bs(u, p2) if and only if ¢ satisfies the given relations. Let

f = fz. Itisin By(us, o) if and only if it is orthogonal to the functions in By(uy ", py*). Since
By(uy', pyt) is finite-dimensional there is a non-zero vector fo in it such that p(X,)fy = 0.

Then
fo <w<(1) %)) = fo(w)

and f is orthogonal to fy if and only if

(5.14.1) /Rf<w ((1) ?)) dy = 0.

The dimension of By(u;", p52) is m + n. It follows easily from Lemmas 5.6 and 5.7 that the
vectors p(X%)p(w) fo, 0 < p < m+n — 1 span it. Thus f is in Bs(ui, 12) if and only if each
of the functions p(X%)p(w)f satisfy (5.14.1). For f itself the left side of (5.14.1) is equal to

Iy Ef><<o,t>w(é f))mzf)u;l(t)\trm i

Apart from a positive constant which relates the additive and multiplicative Haar measure
this equals

// (—t, —tx)t™ " sgn t dt dz
which is
(—1)mtn—t / / O(t, )™ dt da

or, in terms of P,
(5.14.2) (—1)mtnt / ®(t,0)t™ " dt.

By definition
Tpa,p2 (w)@(m, y) = CI),(% ZL“)
and an easy calculation based on the definition shows that
Ty o (X)) O (2, y) = (2imuay)PO(z,y).
Thus 7, 4y (X7 )7y 4o (W)@ is & non-zero scalar times
o%r
OxPOyP

' (y, x)
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For this function (5.14.2)) is the product of a non-zero scalar and

821) / m—+n—1 d
8x1’8yp )T v

Integrating by parts we obtain

o —— &0, z)z™ Py
oyp

except perhaps for sign. If we again ignore a non-zero scalar this can be expressed in terms

of ® as
aernfpfl

N p
g1 O(z,0)2P de.
The proof of the corollary is now complete.
Before stating the local functional equation we recall a few facts from the theory of local

zeta-functions. If F'is R or C and if ® belongs to S(F') we set

Z(wag, D) :/q)(a)w(a)]a\‘} d*a.

w is a quasi-character. The integral converges in a right half-plane. One defines functions
L(s,w) and €(s,w,¥r) with the following properties:
(i) For every ® the quotient
Z(was, @)
L(s,w)
has an analytic continuation to the whole complex plane as a holomorphic function.
Moreover for a suitable choice of ® it is an exponential function and in fact a
constant.
(ii) If @ is the Fourier transform of ® with respect to the character 1 then
Z(w tal™s @ Z(was., ®
( F _1):€(S,W,@Z)F) ( F )
L(1—s,w™t) L(s,w)
If F =R and w(z) = |z|j(sgnx)™ with m equal to 0 or 1 then
s+r+ m)

L(s,w) = W‘é(””m)l“( 5

and if p(x) = e2mue
(s, ) = (isgnu)uly”

If F=C and
w(r) = |z]ge™T"
where m and n are non-negative integers, one of which is 0, then
L(s,w) = 2(2m) "+ +mED (s v 4 m + n).
Recall that |z|c = 27. If ¢p(z) = ™ Re(w2)
€(s,w,0r) = i w(w) fwlg .
These facts recalled, let m be an irreducible admissible representation of Hgr. If 7 =

(1, fo) We set
L<S? 7T) = L(Sa ,UI)L(Sa :UZ)
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and
6(87 ™, ¢R) = 6(57 M1, ¢R)€(Sa H2, wR)
and if 7 = m(w) where w is a character of C* we set
L(s,m) = L(s,w)
and
e(s,m Ur) = M(C/R, Yr)e(s,w, Yo/r)
if Yc/r(2) = Yr(z +Z). The factor A(C/R,9¥r) was defined in the first paragraph. It is of

course necessary to check that the two definitions coincide if 7(w) = (1, pio). This is an
immediate consequence of the duplication formula.

Theorem 5.15. Let m be an infinite-dimensional irreducible admissible representation of
Hr. Let w be the quasi-character of R* defined by

7r<(8 2)) = w(a)l
W is in W(r, ) set

o= [ (
Cl'f(g,s,W):/RXW«

U(g,s,W) = L(s,7)®(g,s, W)

U(g,s, W)= L(s,m)P(g,s,W).

0 ?)g) =

g) w ™ (a)la]*? d*a

o

and let

(i) The integrals defined ¥(g,s, W) and ‘i(g, s, W) are absolutely convergent in some
right half- plane. N

(i) The functions ®(g,s, W) and ®(g,s,W) can be analytically continued to the whole
complex plane as meromorphic functions. Moreover there exists a W for which
O(e, s, W) is an exponential function of s.

(#i) The functional equation

O(wg,1 — s, W) =e(s,m,1)P(g,s, W)

1s satisfied.

() If W is fized ¥(g, s, W) remains bounded as g varies in a compact set and s varies in
the region obtained by removing discs centred at the poles of L(s, ) from a vertical
strip of finite width.

We suppose first that 7 = 7w(u1, p2). Then W(m ) = W(uy, uo;¢). Each W in
W (1, p2; 1) is of the form W = Wy where

O(z,y) = e TV Pz, )

with P(z,y) a polynomial. However we shall verify the assertions of the theorem not merely
for W in W (mr, ) but for any function W = Wg with ® in S(R?). Since this class of functions
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is invariant under right translations most of the assertions need then be verified only for
! A6 'computation already performed in the non-archimedean case shows that
\Il(e, S, W) = Z(MlasRv 20k (I))
the integrals defining these functions both being absolutely convergent in a right half-plane.
Also for s in some left half-plane
Ej(w71_5>W> = Z(:U’lla%{ s::u2 aR Sﬂq))

if & is the Fourier transform of ®.

Since ¢ can always be taken to be a function of the form ®(z,y) = ®,(z)P2(y) the
last assertion of part (ii) is clear. All other assertions of the theorem except the last are
consequence of the following lemma.

Lemma 5.15.1. For every ® in S(R?) the quotient

Z(pog , f20g, P)
L(s, p1) L(s, p2)
is a holomorphic function of (s1,ss) and
Z(pitag 51”“2 aRSQaq)/)
L(1 = s,y )L(L = 2,15 7)

15 equal to
Z(“1QR7 “2OZR7 (I))
L(s1, 1) L(s2, pi2) -
We may as well assume that p; and ps are characters so that the integrals converge for
Res; > 0 and Re sy > 0. We shall show that when 0 < Res; <1 and 0 < Ress < 1

€(s1, p1, ¥)e(s2, p2, V)

Z(mag, poag, ®)Z(ny oy ™, iy tag W)
is equal to
Z(py 10‘%{ oyt aR 2, ) Z(may, peag, V)
if ® and ¥ belong to S(R?).
The first of these expressions is equal to

fowtwon(QuP)l BT

d*xd*ydudv
if we assume, as we may, that d*z = |z|~! dz. Changing variables we obtain

[ @mlel ] [ oeu 0w o deary aeay

The second expression is equal to

[ kel [ @ gowe o) dudo b ey

which equals

/ u1<x>u2<y>\x|81|y|82{ [l ), d dv} P dy.
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Since the Fourier transform of the function (u,v) — ®(zu, yv) is the function
jzy| 71 (@7, y ),
the Plancherel theorem implies that

/@(mu,yv)llll(u,v) dudv = /|xy|_1®’(x_1u,y_lv)\ll(u,v) dudv.

The desired equality follows.
Choose ®; and ®, in S(R) such that
L(s, i) = Z(picg, i)
and take U(x,y) = ®1(z)P2(y). The functional equation of the lemma follows immediately if
0 <s; <1landO0 < sy < 1. The expression on one side of the equation is holomorphic for
0 < Res; and 0 < Resy. The expression on the other side is holomorphic for Res; < 1 and
Re sy < 1. Standard and easily proved theorems in the theory of functions of several complex
variables show that the function they define is actually an entire function of s; and sy. The
lemma is completely proved.

For m = m(p1, u2) the final assertion of the theorem is a consequence of the following
lemma.

Lemma 5.15.2. Let Q be a compact subset of S(R?) and C' a domain in C* obtained by
removing balls about the poles of L(s1, p11)L(S2, pt2) from a tube a; < Res; < by, as < Resy <
by. Then

Z(ﬂla§> PO )
remains bounded as ® wvaries in Q and (s, s2) varies in C.

The theorems in the theory of functions alluded to earlier show that it is enough to prove
this when either both a; and a, are greater than 0 or both b; and by are less than 1. On
a region of the first type the function Z(pag, oo, ®) is defined by a definite integral.
Integrating by parts as in the theory of Fourier transforms one finds that

2o ™ paage L 8) = (7 4 73)

as 7¢ + 72 — oo uniformly for ® in Q and a; < 01 < by, as < 09 < by which is a much stronger
estimate than required. For a region of the second type one combines the estimates just
obtained with the functional equation and the known asymptotic behaviour of the I'-function.

Now let w be a quasi-character of C* which is not of the form w(z) = x(2z) with x
a quasi-character of R* and let 7 = 7(w). W (m, ) is the sum of Wi(m, ¢) and its right
translate by e. It is easily seen that

D(g,s,p(e)W) = w(—1)0(e 'ge, s, W)
and that _ _
®(wg, s, p(e)W) = w(—1)®(we ' ge, s, W)
Thus it will be enough to prove the theorem for W in Wi (m, ). Since
O(eg,s, W) = ®(g,s,W)

and

P(weg, s, W) = ®(wg, s, W)
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we can also take g in G4. Wi(m, ) consists of the functions Wg with @ in Sy(C,w). We
prove the assertions for functions Wg with ® in S(C,w). Since this class of functions is
invariant under right translations by elements of G, we may take g = e.

As we observed in the first paragraph we will have

Ule,s, W) = Z(wag, D)
U(w,1—s5,W) = ANC/R, ) Z(w ak*, &)

in some right half plane and the proof proceeds as before. If w(z) = (2Z)"2"z" and p — ¢ =
n — m the function B
d(2) = e~ 2mluleZ yp7a

belongs to Sy(C,w) and

Z(waSCa (P) = 27T/ @_2”|“|t2t2(8+r+p+m) dt
0

= 7r(27r|u|)_(s+r+p+m)F(s +r+p+m)

Taking p = n we obtain an exponential times L(s,w). The last part of the theorem follows
from an analogue of Lemma 5.15.2.

The local functional equation which we have just proved is central to the Hecke theory.
We complete the paragraph with some results which will be used in the paragraph on
extraordinary representations and the chapter on quaternion algebras.

Lemma 5.16. Suppose p1 and uy are two quasi-characters for which both m = mw(uy, p2) and
o = o, t2) are defined. Then

L(1—s,0)e(s,0,v)  L(1 —s,m)e(s,m, 1)

L(s,0) L(s,)

and the quotient

1s an exponential times a polynomial.

Interchanging ju; and ju, if necessary we may suppose that iy (z) = |2|*(sgnz)™ with
s > 0. According to Corollary 5.14, W (o,1) is a subspace of W (uq, u2,%). Although
W (1, p2, 1) is not irreducible it is still possible to define ¥(g, s, W) and ¥(g, s, W) when W
lies in W (p1, pio, ) and to use the method used to prove Theorem 5.15 to show that

\Ij(wgv 1— S, W)
L(1—s,7)

is equal to
U(g,s, W)

Applying the equality to an element of W (o,1)) we obtain the first assertion of the lemma.
The second is most easily obtained by calculation. Replacing p; and ps by piak and
p2cy is equivalent to a translation in s so we may assume that ps is of the form ps(z) =
(sgnz)™2. There is a quasi-character w of C* such that o = m(w). If w(z) = (22)" 22" then
pi(z) = |z|> T (sgn )™ rrrmetl sy (2) = 2™ (sgn o)™ so that r = 0. Apart from an
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exponential factor L(s, o) is equal to I'(s + m + n) while L(s, ) is, again apart from an
exponential factor,

S+m—+n+mg S+ mo
5.16.1 r r

where m; = m +mn+ my+ 1 (mod 2). Since m +n > 0 the number

1
k:zﬁ(m+n+1+m1—m2)—1

is a non-negative integer and msy + 2k = m +n + my — 1. Thus
-1

k

S+ mg 1 . s+m+n+my+1

F( 5 ): W||(8+m2+2]) F( 5 ! )
=0

By the duplication formula the product is a constant times an exponential times
L(s+m+n+m)
[T, (s +ma +2j)
If m; = 0 the lemma follows immediately. If m; =1
I(s+m+n+mg) =(s+m+n)(s+m+n)

and ms + 2k = m + n. The lemma again follows.

Lemma 5.17. Suppose w(z) = (22Z)"2™z" is a quasi-character of C* with mn = 0 and

m+n > 0. Suppose iy and po are two quasi-characters of F* with pyps(z) = |z|* 2™ " sgn
and pypy ' (z) = ™+ sgnw. Then for every ® in S(R?) such that

ok
/x’—.(x,O) dx =0
oy’
fori>0,720, andi+ 7+ 1=m+n the quotient
Z(pog, 2ok, )
L(s, 7'['(71)))

18 a holomorphic function of s and for some ® it s an exponential.

If Wg belongs to W (1, o, 1) this is a consequence of Corollary 5.14 and Theorem 5.15.
Unfortunately we need the result for all &. The observations made during the proof of
Lemma 5.16 show that if 7 = 7(uq, p2) the quotient

Z(Mlaiglv :LL204§{> (I))

L(s,m)
is holomorphic. Since L(s,7) and L(s, o) have no zeros we have only to show that the extra
poles of L(s,7) are not really needed to cancel poles of Z(uag, peag, ®). As in the proof
of Lemma 5.16 we may take » = 0. We have to show that Z(u 05, poag, ®) is holomorphic
at s = —my — 25,0 < < kifm=0andat s=—-my—27,0< < kifm =1. We
remark first that if y; and po are two quasi-characters of R*, ® belongs to S(R?), and Re s
is sufficiently large then, by a partial integration,

X X 1 S S 8® X X
/ul(x)uz(y)lwlslyls¢(x7y)d zd 'y = —g/ul(l’)ua(y)n(y)lxl |y| “a—y(fr,y)d zd*y
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if n(y) = sgny. Integrating by parts again we obtain

S S X X, 1 S s+2a2_q) X X
[ m@alel o) aa dy = s [ @@l ) e dy

If ® belongs to S(R?) the function defined by

(5.17.1) [ v lal ol vy

is certainly holomorphic for Re s > 0. We have to show that if

/Cb(x,O)dxzo

it is holomorphic for Re s > —1. Suppose first that ®(z,0) = 0. Since
0P Y 0*®
the function

1
is dominated by the inverse of any polynomial. Thus (5.17.1]) which equals

[ v lal ) d ey
is absolutely convergent for Res > —1. In the general case we set
O(z,y) = {q)(x,y) — ®(x, 0)67?;2} + ®(x,0)e Y
= ®y(z,y) + P2(z,y).

Since ®4(x,0) = 0 we need only consider
/ Da, 0)e ol |yl d*a d*y

which is the product of a constant and

r(g) / (2, 0)2]° da.

The integral defines a function which is holomorphic for Re s > —1 and, when the assumptions
are satisfied, vanishes at s = 0.

We have to show that if 0 < j < m+n —1 and j — my is even then Z(ujag, poog, @) is
holomorphic at —j. Under these circumstances the function Z (o, oo, ®) is equal to

/n(x)”“n(y)"”!x\m+”\:c!5!y\5<b(a:,y) d*x d*y

which equals . .
[ o522
_ )" x| Ty P — (2, y) d*x d*y.
T+ 1) n(z)™ |z| |yl oy (z,y) y
The factor in front is holomorphic at s = —j. If
m+4n—j— aJ(I)
\IJ([E,y)ZIE e la_yj(xay)
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the integral itself is equal to

1ty ) s vy
Since, by assumption,

/\IJ(x, 0)dz = 0,

it is holomorphic at s = —7.
We observe that if m + n is even

O(z,y) = e @) gymin

satisfies the conditions of the lemma and, if r = 0 and ms = 0, Z(pu105, peagk, ®) is equal to
/ G—Tr(az2+y2) |l,|m+n+s+1 |y|m+n+s d*r dxy

which differs by an exponential from I'(s + m + n) and L(s,m(w)). If my = 1 we take
O(z,y) = e "@H)ymintl to obtain the same result. If m + n is odd and my = 0 the
polynomial factor will be y™*"*! but if m + n is odd and my = 1 it will again be zy™™.

Proposition 5.18. Suppose m and 7' are two infinite-dimensional irreducible admissible
representations of Hr such that, for some quasi-character w of F*,

w<(g 2)) — w(a)l w(@ 2)) — w(a)l.

Ll-—s,x'®7 L(l-—s,xy'en
(oo 0m) oy s e )

L(s,x ® ) L(s,x ®7)
for all quasi-characters x and © and 7' are equivalent.

If

(s, x @', 1)

Suppose 7 = (1, ft2) or o(p1, p2). From Lemma 5.16 and the definitions the expression
on the left is equal to

(gt (e

T ( s+r12+m1 ) r ( s+r22+m2 )

mi+mso ‘u’23+31+3271ﬂ_23+51+5271

(isgnu)

if x is trivial and p;(x) = |z|"(sgnx)™ . If x(x) = sgnz and n; is 0 or 1 while m; +n; =1
(mod 2) the quotient is

[ (At (toemprten)

()T (5

(i sgn u)m1+m2 |U|28+81+82_17T2s+51+52_1

If we let @' be m(u}, ph) or (i), ph) we obtain similar formulae with r; replaced by r; and
m; by m!.

Consider first the quotients for m. The first has an infinite number of zeros of the
form —r; — my — 2p where p is a non-negative integer and an infinite number of the form
—ry — Mo — 2p where p is a non-negative integer, but no other zeros. Similarly the zeros of
the second are at points —ry — ny — 2p or —ry — ny — 2p. Thus if the quotients are equal
r1+my = re+ng =1y +moe+ 1 (mod 2). Moreover if r1 +my = ro + my + 1 (mod 2)
then m = o (1, o) and, as we saw in Theorem 5.11, o (17, pon) = o1, p2) so that the two
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quotients are equal. As a result either 71 +my = ro+mao+1 (mod 2) and 7} +m} = rh+mbh+1
(mod 2) or neither of these congruences hold.

Suppose first that 7 = 7w(uy, po) and 7'(p}, u5). Then the first quotient for 7 has zeros
at the points —r; —mqy,—ry —my — 2,... and —ry — mg, —1r9 — mg — 2, ... while that for
7" has zeros at —r] —m/,—r] —m} —2,... and —ry —mb, —ry —mbH —2,.... Thus either
r1+my = 1]+ m) or ry + my = rh + ml. Interchanging p) and pf if necessary we may
assume that the first of these two alternatives hold. Then ry + mg = 74 + mj,. Moreover
1+ re = 1y +rh and |my — mo| = |m) — mb|. If my = m) it follows immediately that
w1 = py and pe = pfh. Suppose that my # m/. Examining the second quotient we see that
either r1 +ny = r] +n} or r; +ny = 5, + n). The first equality is incompatible with the
relations 1 + my = r] +m} and my; # m/. Thus r; + n; = r} + n). For the same reason
ro 4+ ng = r} + n). Interchanging the roles of py, us and pf, pl if necessary we may suppose
that m; = 0 and m} = 1. Then r; =7 + 1. Since r; + o = 1] + 5 we have ry = rj, — 1 so
that my = 1, m}, = 0. Thus ny = n), =1 and r; = r} so that ro = r|. It follows that u; = b
and pip = .

Finally we suppose that @ = o(ui,p2) and @ = o(u), uy). Then there are quasi-
characters w; and wj of C* such that 7 = m(w;) and 7" = 7(w]). Replacing w; by the
quasi-character z — w(Z) does not change 7(wy) so we may suppose that w(z) = (22)" 2"
while w}(2) = (2Z)" ™. Since w; and w} must have the same restriction to R* the numbers
2r + m and 2r’' + m’ are equal while m = m’ (mod 2). Apart from a constant and an
exponential factor the quotient ( )

L(1—s,m
(s, m, 1) Lism)
is given by
'l—s—r)
I'(s+7r+m)
whose pole furthest to the left is at 1 — r. Consequently » = 1’ and m = m/.

Corollary 5.19. Suppose w and 7' are two irreducible admissible representations of HR.
Suppose there is a quasi-character w of R* such that

w<(8 2)) — w(a)l 7r<<g 2)) — w(a)l

If for all quasi-characters x, L(s,x @) = L(s,x @), L(s,x ' ®@7) = L(s,x ' ®7), and
e(s,x @, ) =€(s,x @7, ¢) then m and 7’ are equivalent.

Combining Lemma 5.16 with the previous proposition we infer that there is a pair of
quasi-characters p; and po such that both 7 and 7" are one of the representations (i1, o)
or o(u1, o). However the computations made during the proof of Lemma 5.16 show that
L(s, X @ 7(p, ug)) differs from L(s, X ® o(p, [Lg)) for a suitable choice of y.

Let K be the quaternion algebra over R. We could proceed along the lies of the fourth
paragraph and associate to every finite-dimensional irreducible representation €2 of K* a
representation 7(£2) of Gr. Since we have just classified the representations of Gr we can
actually proceed in a more direct manner.
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We identify K with the algebra of 2 x 2 complex matrices of the form

-9
5

and v(z) = z2* is the scalar matrix (|a|? 4 [b|*)] while 7(z) is the scalar matrix (a+a-+b+Db)I.
Let p; be the two-dimensional representation of K* associated to this identification and
let p, be the nth symmetric power of p;. Any irreducible representation is equivalent to a
representation of the form y ® p, where y is a quasi- character of R*. Thus

(X ® pu)(h) = X (v(h)) pu (1)
Since v(h) is always positive we may suppose that x is of the form y(z) = |z|".
Let €2 be a finite-dimensional representation and let {2 act on U. In the first paragraph
we introduced the space S(K,U). It is clear that if ® is in S(K, U) the integrals

Then

Z(aﬁ@Q,@):/ Q(h)|v(h)|*®(h) d*h

and
Z(ag, @ 0, ®) = / O ()[R [*B(h) d* R

KX
converge absolutely in some right half-plane.

Proposition 5.20. Suppose x(z) = |z|" and Q = x ® p,. Let w be the character of C*
defined by w(z) = (22)""/22"+1. Set L(s,Q) = L(s,w) and
€(s,9,Yr) = A(C/R, Yr)e(s,w, Yo/r)
The quotient
Z(a3? 2 Q, @)
L(s, )
can be analytically contained to the whole complex plane as a holomorphic function. Given u
in U there exists a ® in S(K,U) such that

Z(ag %, @)
L(s, )

= a’u.

For all ® the two functions
Z(a2* @ Q1 @)
L(1—5,Q)

and
Z(a3? @ Q, )
L(s,Q)
are equal. Finally Z(af;l/z ® Q, ®) is bounded in any region obtained by removing discs about
the poles L(s,2) from a vertical strip of finite width.

_6(87 Q7 ¢R)
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Suppose K is the subgroup of K* formed by the elements of reduced norm one. Let ®;
be the function on R defined by

By (1) = /K Q(R)D(th) dh

®; belongs to S(R) and if wy is the quasi-character of R* defined by €(¢) = wo(¢)I the
function wy(t)®(t) is even. Moreover if the multiplicative Haar measures are suitably
normalized
Z(aiM? @ Q, @) = Z(aZ wy, By).
Since wp(t) = [t|*"t" we can integrate by parts as in the proof of Lemma 5.17 to see that
for any non-negative integer m

_1>m

Z(a25+1w0’ (I)l) — — ( /n(t)m+n|t|2s+2r+m+n+1
R [175 (2s+2r +n+j+1)

The integral is holomorphic for Re(2s + 2r +m +n) > —1 and, if 8;31 vanishes at ¢ = 0, for

Re(2s 4 2r +m +n) > —2. Thus the function on the left has an analytic continuation to the

whole complex plane as a meromorphic function with simple poles. Since

0" P,y

d*t.
otm

2

we have to show that its poles occur at the points s +r +n + % +7=0with 7 =0,1,2,....
6;21 vanishes at 0 if m+n is odd its only poles are at the points 2s+2r+2n+2j+1 =10

with n+ 25 > 0. To exclude the remaining unwanted poles we have to show that ‘9;;31 =0 at

0 if m < n. If we expand ® in a Taylor’s series about 0 we see that % =0 at 0 unless the
restriction of p, to K is contained in the representation on the polynomials of degree m on
K. This can happen only if m > n.

Since € is equivalent to the representation i — Q~1(h') the quotient

Z(a¥ o 0t @)
L(1—s,Q)

is also holomorphic. The argument used to prove Lemma 5.15.1 shows that there is a scalar
A(s) such that, for all ®,

Z(@ o0 o) (5 Z(ai " 9 Q, 0)
L(1—s,9Q) L(s, )
We shall used the following lemma to evaluate A(s).
Lemma 5.20.1. Let ¢ be a function in S(C) of the form
o(x) = e ™ P(z,T)

where P is a polynomial in x and T. Suppose p(xu) = p(x)w ' (u) if uu = 1. Define the
function ® in K* by

1
L(s,Q) = 2(2m) (412 <s +r+n+ —)

Since

D(2) = pla)w(a)(m) 2 (u, O(2)i)
if v(z) = aa. Then ® extends to a function in S(K) and its Fourier transform is given by
¥'(2) = ~MC/R. br)¢ (@) () (o) 2(02)u, )

if ¢ is the Fourier transform of .
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By linearity we may assume that ¢ is of the form

p(r) =e
where p is a non-negative integer. We may suppose that the restriction of p, to the elements
of norm one is orthogonal and identify the space U on which its acts with its dual U. Then

Q=oag" " ®py. Thus if
_[oa b
-5 a
the value of ® at z is

e~ 2r(@a+th) (o7 4 bl"a)’”*”*p<u, ﬁ(z)ﬂ> = ¢~ 2@ ) (g 4 bB)P (u, p, (2)T0)

n+1

—27rx§<l,i>pf

The expression on the right certainly defines a function in S(K).
We are trying to show that if

F(2) = p(a)w(a)(aa) /207 ()
when z = aa then the Fourier transform of F' is given by
(5.20.2) F'(2) = =MC/R,¢r)¢ (0)w™ (o) (a@) " Y2Q(2).
If h; and hs have norm one

F(lnzhy) = Q(hy ") F(2)Q(h")
and therefore

F/(hlth) = Q(hl)F/(Z)Q(hQ)

In particular if z is a scalar in K the operator F’(z) commutes with the elements of norm
one and is therefore a scalar operator. The expression Fj(z) on the right of (5.20.2)) has the

same properties so that all we need do is show that for some pair of vectors v and w which
are not orthogonal
(F'(z)u, ) = (Fi(2)u,u)
for all positive scalars z.
If we only wanted to show that F'(z) = cFi(z) where ¢ is a positive constant it would be
enough to show that

(5.20.3) (F'(z)u,u) = c(Fi(2)u, ).

Once this was done we could interchange the roles of ¢ and ¢’ and ® and ®’ to show that
c? = 1. To obviate any fuss with Haar measures we prove (5.20.3)).
Recall that if

then, apart from a positive constant,

/K<u s”z(k;)ﬂ>f(k) dk

is equal to

(u, u) /07r sin(n + 1)0sin 0 f (a(f)) db
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if f is a class function on K7, the group of elements of norm one. The equality is of course a
consequence of the Weyl character formula and the Schur orthogonality relations.
If x is a positive scalar in K then, apart from a positive constant, ®'(z) is given by

/KX B (2 (r(22)) (o) 4 =

which is a positive multiple of

/OOO t3<,0(t){/K <u,fz(k)a>¢R(a;tT(k)) dk} It

Since 7(k) is a class function this expression is a positive multiple of

(u, w) /000 t?’go(t){/oﬂ sin(n + 1) sin 0yr (22t cos ) dQ}dXt

Integrating the inner integral by parts we obtain

oyl /OOo t2<,0(zf){/07r cos(n + 1)0yr(2xt cos ) d@} d*t.

(u, u)
On the other hand if z, which is a positive real number, is regarded as an element of C
then ¢'(x) is a positive multiple of

/ ) o(2)r(T(xz2)) 2z d* 2

o) 21
/ t%p(t){ / e~ V00 (2t cos 6) d@}cm.
0 0

™

2
/ 6—i(n+1)9¢R(xt cos ) df = 2/ cos(n + 1)0yr (xt cos 0) df
0 0

and \(C/R) = isgnu the identity (5.20.3) follows for any choice of u and .
To evaluate \(s) we choose ® as in the lemma and compute

<Z<a;j; ® Q, @v),6> = /@(z)|y(z)‘8+;<9(z)v,”ﬁ> d*z

<Z(a§3 @Q—l,q>v),a> _ /q><z)|y(z)\
The first is equal to
/[{X/Klyy(zﬂ”%{/m (k) (Qzk)v, D) dk} d*z.

(Qzk)v, %7><u, @(zk)ﬂ> dk

4miux

or of

Since

and

Njw

7S<v, Q(z)ﬁ> d*z.

Since

K,
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is, by the Schur orthogonality relations, equal to
1 — o~
@(% u){u, v)
the double integral is equal to

@@,m@,m /K pla)w(a)(am)* d*x

where aa@ = v(z). If the Haar measure on C* is suitably chosen the integral here is equal to
Z(wag, ¢). The same choice of Haar measures lead to the relation

<Z<a§_s RO @u),’ﬁ> - W@, W) (u,0)Z(w g, ¢).

Since L(s,Q) = L(s,w) and L(s, ) = L(s,w™) we can compare the functional equation
for Z(wag, p) with that for Z(ai{l/g ® Q, dv) to see that

A(s) = =A(C/R, ¢r)e(s,w, Yo/r)
as asserted.

If
S0( f) — e—27ra:f
then Z(agw, ) is an exponential times L(s,w) so that Z(Ozifl/2 ® Q, dv) is, with a suitable
choice of v and u, a non-zero scalar times an exponential times L(s,w)u. The last assertion
of the proposition is proved in the same way as Lemma 5.15.2.

We end this paragraph with the observation that the space W (m, ) of Theorem 5.13
cannot exist when 7 is finite-dimensional. If W = W (n, ) did exist the contragredient
representation 7 on the dual space W would also be finite-dimensional and 7(X ) would
be nilpotent. However if A is the linear functional ¢ — ¢(e) then 7T(X;)\ = —2ima if

w(x) — e2i7rax.
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§6. Representations of GL(2,C)

In this paragraph we have to review the representation theory of Go = GL(2,C) and
prove the local functional equation for the complex field. Many of the definitions and results
of the previous paragraph are applicable, after simple modifications which we do not always
make explicit, to the present situation.

The standard maximal compact subgroup of GL(2, C) is the group U(2,C) of unitary
matrices. H; will be the space of infinitely differentiable compactly supported functions on
Gc. Hao will be the space of functions on U(2, C) which are finite linear combinations of the
matrix elements of finite-dimensional representations. Hc = Hi @ Hs can be regarded as
a space of measures. Under convolution it forms an algebra called the Hecke algebra. The
notion of an elementary idempotent and the notion of an admissible representation of Hc
are defined more or less as before.

Let g be the Lie algebra of the real Lie group of GL(2,C) and let gc = g ®r C. 2
will be the universal enveloping algebra of gc. A representation of 20 will be said to be
admissible if its restriction to the Lie algebra of U(2,C) decomposes into a direct sum of
irreducible finite-dimensional representations each occurring with finite multiplicity. There
is a one-to-one correspondence between classes of irreducible admissible representations of
Hc and those of . We do not usually distinguish between the two. The representation 7
contragredient to 7 and the tensor product of m with a quasi-character of C* are defined as
before.

If py and py are two quasi-characters of C* we can introduce the space B(u1, p2) and the
representation p(u1, p2) of He or of 2 on B(uy, pe). In order to study this representation
we identify go with g¢(2, C) @ g¢(2, C) in such a way that g corresponds to the elements of
X @ X. If 2 is the universal enveloping algebra of g,(2, C) we may then identify 2 with
A @A

In the previous paragraph we introduced the elements D and J of ;. Set D1 =D ® 1,
Dy, =1®D, J, =J®1, and J, = 1 ® J. These four elements lie in the centre of
2. A representation of 2 is admissible if its restriction to the Lie algebra of the group
SU(2, C) of unitary matrices of determinant one decomposes into the direct sum of irreducible
finite-dimensional representations each occurring with finite multiplicity.

The first part of the next lemma is verified by calculations like those used in the proof of
Lemma 5.6. The second is a consequence of the Frobenius reciprocity law applied to the pair
SU(2, C) and its subgroup of diagonal matrices.

Lemma 6.1. Let )
pilz) = (27) Hort guigh
and

piy’ (2) = p(z) = (22) 72002

where a;, b;, a, and b are non-negative integers and a;b; = ab = 0.
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(i) On B(p, u2) we have the following four relations

p(Dy) = %{(H a;b>2 - 1}1
p(Dy) = %{(s—i— b;a)Q - 1}1

a;—by+ay—0b
) = {(s1 450 ¢ AR

by —ay + by —
P(JQ):{(31+S2)+ : a12 2 a2}[

(i) p(p1, po) is admissible and contains the representation p, of the Lie algebra of
SU(2,C) if and only if n > a+b and n = a+b (mod 2) and then it contains it just
once.

pn is the unique irreducible representation of SU(2, C) of degree n + 1. Let B(u1, pi2, pn)
be the space of functions in B(puy, o) transforming according to p,,.

Theorem 6.2.
(i) If v is not of the form z — zPZ% or z — z7PZ %7 with p > 1 and q¢ > 1 then p(u1, o)

is irreducible. A representation equivalent to p(u, p2) will be denoted by m(u1, pa),
(i) If p(z) = 2Pz% withp > 1, ¢ > 1 then

BS(M17M2) - Z B(N’hu%pn)

n2>p+q
n=p+q (mod 2)

is the only proper invariant subspace of B(j1, p2). o1, p2) will be any representation
equivalent to the representation on Bg(ju1, p2) and 7(py, o) will be any representation
equivalent to the representation on the quotient space

By (1, p2) = B, p2)/Bs (i, pi2)
(i6i) If p(z) = 2Pz~ T withp > 1, ¢ > 1 then

Bi(p, ) = > Blua, a2, pn)

lp—gl<n<p+q
n=p+q (mod 2)
is the only proper invariant subspace of B(ji1, p2). m(p1, p2) will be any representation
equivalent to the representation on By(puy, p2) and o (1, p12) will be any representation
equivalent to the representation on the quotient space

By(p, p2) = B, p2) /By (pa, pra).

() m(p1, po) is equivalent to m(py, piy) if and only if (1, po) = (1, pa) or (pa, p2) =
(H2s 11)-

(v) If o(p1, o) and o(p), ph) are defined they are equivalent if and only if (1, po) =
(ks ) or (pa, pra) = (b, p17)-

(vi) If p(z) = 2PZ9 with p > 1, ¢ > 1 there is a pair of characters vy, vs such that
piply = vy and vyt = 2PZ77 and o(p, po) s equivalent to w(vy, vy).
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(vit) Every irreducible admissible representation of Ho or A is a w(p, u2) for some choice
of p1 and pi.

The proofs of the first three assertions will be based on two lemmas.

Lemma 6.2.1. If there exists a proper invariant subspace V' of B(p1, p2) which is finite-
dimensional then pypy ' (2) = 27Pz 9 withp > 1, ¢ = 1 and V = By (1, pia).

Lemma 6.2.2. Let V be a proper invariant subspace of B(pu1, j12) and let ng be the smallest
integer such that some subspace of V' transforms according to the representation p,, of the

Lie algebra of SU(2,C). Either
V= Z B(ulau%pn)

nzng

or V contains a finite-dimensional invariant subspace.

Grant these lemmas for a moment and let V' be a proper invariant subspace of B(pu1, pa).
As in the case of the non-archimedean and real fields there is an invariant non-degenerate
bilinear form on B(p, p2) x B(py', p5t). The orthogonal complement V+ of V in B, 5 *)
is a proper invariant subspace. By Lemma 6.2.1 they cannot both contain an invariant
finite-dimensional subspace. Therefore by Lemma 6.2.2 one of them is of finite codimension.
The other must be of finite dimension. If V is finite-dimensional then g5 ' (2) = 277274
and V = By (1, pt2). If V4 is finite-dimensional then g5 ' (2) = 2PZ9. Since the orthogonal
complement of By(pi1, p12) is Bs (g, p12) we must have V' = By (1, p12).

We shall now show that By (pu, pg) is invariant when gy ;' (2) = 277271 Tt will follow
from duality that B,(ui,pe) is invariant when juyu, *(2) = 2Pz9. Every irreducible finite-
dimensional representation 7 of 2l determines a representation 7 of Gg. If 7 acts on X there
is a nonzero vector vy in X such that

z X m—n
7'('((0 Z_1>>U[):Z AN

for all z in C* and all x in C. vy is determined up to a scalar factor and m and n are
non-negative integers. Moreover there is a quasi-character wy of C* such that

w<(3 2)) — wola)]

Thus
Z1 X
7T<(0 ZQ)>U0 = wi(21)wa(22)v0
where wiw;'(2) = 2™2". 7 is determined up to equivalence by w; and wy so we write
7 = k(wy,ws). As long as wiw, '(z) = 2z™2" with non-negative integers m and n the

representation k(wq,ws) exists. By the Clebsch-Gordan formula the restriction of x(wy,ws)
or its contragredient to SU(2, C) breaks up into the direct sum of the representations p; with
Im—n| <i<m+nand 1 =m+n (mod 2). Let 7 be r(wy,ws) and let 7, the contragredient
representation, act on X. To each vector v in X we associate the function

o(g) = {vo, 7(g)D)
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on Gg. The map v — ¢ is linear and injective. Moreover 7(g)v — p(g)e while

go((o )g) = i () ()00

so that if yy = wy 0461/2 and po = wz_laéﬂ the function ¢ belongs to B(uy, u2). As we vary

w; and wy the quasi-characters p; and py vary over all pairs such that ppu,'(z) = 27 Pz79
with p > 1 and ¢ > 1.

We have still to prove the two lemmas. Suppose V' is a proper finite-dimensional subspace of
B(pt1, p2). The representation of 2 on V' is certainly a direct sum of irreducible representations
each occurring with multiplicity one. Let V’ be an irreducible subspace of V' and let V’ be the

dual space of V. Let A be the linear functional A : ¢ — ¢(e) on V'. If 7 is the representation
of 21 or of G¢ on V' then

%<<Zol ))A = (e () (2 (22) )

Z2

1

Thus if w; = uflaél/Q and wy = ,u;lozé/Q the representation 7 is k(wy,ws). It follows

immediately that g, " is of the form pypy ' (2) = 277277 with p > 1 and ¢ > 1 and that V'
and therefore V' is By(f1, pt2)-
To prove the second lemma we regard g as the real Lie algebra of 2 x 2 complex matrices.

Then
a 0
a:{<0 a) aGC}

is the centre of g and

is the Lie algebra of SU(2,C). If

a b
g = (E _a> CLGR,bEC

then u & g is the Cartan decomposition of the Lie algebra of the special linear group. The
space gc = g ®gr C is invariant under the adjoint action of u on ge. Moreover u acts on gc
according to the representation ps. One knows that ps ® p, is equivalent to p,.o @ pn B pPn_2
if n > 2, that ps ® py is equivalent to p3 @ p; and, of course, that ps ® py is equivalent to ps.
The map of gc ® B(u1, pi2, pn) into B, p2) which sends X ® f to p(X)f commutes with
the action of u. Thus p(X)f is contained in

B, pos i) ® B, po, pn) @ B, 2, pr—2)-

It is understood that B(u1, p2, pe) = 0 if £ < 0.
Now let V' be a proper invariant subspace of B(p1, j12). Let ng be the smallest non-negative
integer n for which V' contains B(u1, e, pn). If n > ng set

V(n) = Z B(pa b2, pi)

n=k>ng
k=no (mod 2)
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If V' contains every V' (n) there is nothing to prove so assume that there is a largest integer
ny for which V' contains V'(ny). All we need do is show that V(n;) is invariant under g. It is
invariant under a and u by construction so we need only verify that if X lies in gc then p(X)
takes V(nq) into itself. It is clear that p(X) takes V(n; — 2) into V(n;) so we have only to
show that it takes B(u1, pi2, pn,) into V(ny). Take f in B(u, g2, pn,) and let p(X)f = f1 + fo
with f; in V(ny) and fo in B(p, 2, pry+2). Certainly fo lies in V. Since

V-0 B(p, ph2s py+2)

is either 0 or B(u1, pi2, pny+2) and since, by construction, it is not B(j1, f2, pn,+2) the function
f2 is 0.

The first three assertions of the theorem are now proved and we consider the remaining
ones. We make use of the fact that Dy, Ds, J; and Jy generate the centre of 2 as well
as a result of Harish-Chandra to be quoted later. Suppose 7 and 7’ are two irreducible
representations of 20 which are constituents of p(juq, o) and p(p}, ) respectively. Assume 7
and 7’ contain the same representations of the Lie algebra of SU(2,C) and are associated
to the same homomorphism of the centre of 2 into C. Comparing the scalars m(.J;) and
7(J1) with 7/(J1) and 7'(Jo) we find that pypus = pi . Let gy (2) = (zZ)S’aTH’zCLEb and

a,+b,

let iy~ (2) = (22)* "% 22", Comparing m(D;) and 7(v,) with 7'(D;) and «'(Ds) we

see that LN N
(o552

b—a\’ LoV —d\?

<s+ 5 ) :<s+ 5 )

These relations will hold if pypyt = gy, ™" or pytpe = iy, " and therefore, when puy iy =
iy, (pa, p2) = (@, ph) or (pa, pe) = (b, py). If neither of these alternatives hold we must
have

and

a —bv , a—2>b
Y s = )

2 2
b —ad , b—a
: s = :
2 2
Since gy e = iyt the integers a + b and @’ + b must have the same parity. Let p = gy *
and g/ = g " In the first case py is of the form pp(z) = 2% and pp' ™" is of the form 7%
and in the second pup/(z) = 2% while pup' ™ (2) = 2% Since {py, o} is not {u}, b} neither
p nor ¢ is 0. In the first case p = 2Pz% and p/ = 2PZ~7 and in the second pu = z9zP while
w = z79zP.

In conclusion we see that m and 7’ contain the same representations of the Lie algebra

of SU(2, C) and are associated to the same homomorphism of the centre of 2 into C if and

only if one of the following alternatives holds.

S =

or

S =

(i) For some pair of quasi-characters v; and v we have {m, 7'} = {7 (v1,15), 7(v1,12)}
or {m, 7'} = {7T<I/1,V2),7T(V2,V1)}.
(ii) For some pair of quasi-characters vy and v, we have {m, 7'} = {o(v1,12),0(11,12)}

or {m, 7'} = {0(1/1, VQ),U(VQ,Vl)}.
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(iii) For some pair of quasi-characters vy and v, with vyvy '(2) = 2PZ% where p > 1, ¢ > 1
we have {m, @'} = {o(v1, 1), 7(v],v4)} where 11v, = {1}y and V'V, (2) is either
2Pz71 or 27P7A.

(iv) For some pair of quasi-characters v, and v, with v115(2) = 27279 where p > 1,
g > 1 we have {m, 7'} = {o(v1, 1), 7(v},v4)} where vivp = vjvh and vjvy ™' (2) is
either 2Pz~ 7 or 2Pz

The remaining assertions are now all consequences of a theorem of Harish-Chandra which, in
the special case of interest to us, we may state in the following manner.

Lemma 6.2.3. If 7 is an irreducible admissible representation of A there exists a pair
of quasi-characters py and ps such that p(py, o) and m contain at least one irreducible
representation of the Lie algebra of SU(2,C) in common and are associated to the same
homomorphism of the centre of 2 into C. When this is so m is a constituent of p(p1, p2).

As before x @ (1, p2) 18 w(xpu, Xp2) and x ® o(pu, pr2) is o (xpi1, xp2). 1
a 0
W((O a)) = wo(a)l

Theorem 6.3. Let m be an infinite-dimensional irreducible admissible representation of Hc
and let 1) be a non-trivial additive character of C. There is exactly one space W (m,v) of
functions on G which satisfies the following three conditions.

(i) Every function W in W (mw, 1) satisfies

W((é “”f)g) — V@)W ().

(ii) The functions in W (w, 1) are continuous and W (m, 1) is invariant under the operators
p(f) for f in Hc. Moreover the representation of Ho on W (m, 1) is equivalent to .
(72) If W is in W (m, 1) there is a positive number N such that

W((é g’)) = o(1t")

Since every 7 is of the form 7 = 7(uy, p2) the existence is rather easy to prove. If @ is in

S(C?) let

then 7 = w; ' @ 7.

as |t| — oo.

0(ur, o, @) = / B(t, ) (B)py (1) At

CX

We let W (1, po, 1) be the space of functions on G¢ of the form

W(g) = Wa(g) = u(det g)|det 9|0 (sur, 2. 7(9)®)
where ® in §(C?) is SU(2, C)-finite under the action defined by r. It is clear that

W(/Ll, M2, w) = W(M% 1, w)

and that W (uy, 2, ) is invariant under right translations by elements of H¢ and of 2.
The existence of W (w, 1) will, as before, be a consequence of the following analogue of
Lemma 5.13.1.
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Lemma 6.3.1. Suppose pip; " (t) = (tf)s_aTert“fb with Res > —1. Then there is a bijection
A of W (1, pa, ) with B(py, u2) which commutes with the action of He.

As before A associates to W the function

f3(9) = pa(det g)\detg\322<u1u51ac, p(gﬁ))

The proof of course proceeds as before. However we should check that A is surjective.
Theorem 6.2 shows that, under the present circumstances, there is no proper invariant
subspace of B(juq, p2) containing B(ji1, fi2, pasrs) s0 that we need only show that at least one
nonzero function in B(juy, pi2, pays) is of the form fg where @ is in S(C?) and SU(2, C)-finite
under right translations.
If
@(1‘,3;) _ 6727r(asf+y?)gayb

then, since a +b = 0, ® transforms under right translations by SU(2, C) according to p,1p SO
we need only check that fg is not 0. Proceeding according to the definition we see that

fale) = /C O(0, ) (H)* T L d*t

— / €_2ﬂti(tz)1+s+%+b dXt
CX

Apart from a constant which depends on the choice of Haar measure this is
o b
(2m) T (1 + 5+ %)

and is thus not 0.

Just as in the previous paragraph W (uy, e, ) is spanned by functions Wg where @ is of
the form

<D<$7 y) _ 6727r(:1:f+uﬂyy)$pfqymgn
where p, ¢, m, and n are integers. The complex number u is determined by the relation
P(z) = e™Reuz - We can show that
t 0
()

decreases exponentially as [t| — oo.

To prove the uniqueness we will use a differential equation as in the previous chapter. This
time the equations are a little more complicated. Suppose Wi (m, 1) is a space of functions

satisfying the first two conditions of the theorem. We regard p,, as acting on the space V,, of
binary forms of degree n according to the rule

Pn ((ﬁ Z) ) o(z,y) = plaz + cy, bx + dy)

plx,y)= > rrrthps

|k|<n
5—k€Z

If
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then ¢* is called the kth coordinate of ¢. On the dual space V,, we introduce the dual
coordinates.
If p,, is contained in 7 there is an injection A of V,, into Wi (7, 1) which commutes with

the action of SU(2, C). Let ®(g) be the function on G¢ with values in V;, defined by

(¢, 2(9)) = Ap(g).
It is clear that Wy(m, ) is determined by @ which is in turn determined by Wi(m, ) up to a
scalar factor. The function ®(g) is determined by the function

t2 0
p(t) =0 (O 751/2)

on the positive real numbers. If ©¥(¢) is the kth coordinate of ¢(t) and if 7 is a constituent
of p(p1, o) the differential equations

p(D))® = %{(s—i— a;b)Z - 1}@
p(Dy)® = %{(er b;a)Z - 1}@

may, if our calculations are correct, be written as

1. d 2 2 1 -0\’
—[t—+k—1] gpk—tQMgokJr(g+k>tiucpk_1:—(s+a ) oF

2| dt 2 2 2

11 d 2 |u? n 1 b—a\’
= — k=1 k—t2— k Z_k\tim k+1 _ k.
Q[dt }“0 2 ¥ (2 >Z“‘p Pt ) ¥

We have set o = 0 if |[k| > n/2. Recall that ¢(z) = e*™*Reu% These equations allow one to
solve for all ¢* in terms of /2 or ¢~™/2.
For k = % the second equation may be written as

1 2o/ 1 1 dp™? 2 (n4q)? 1 b—a\>
1oy ( ﬁ)__gp _M +<2 ) gD"/Z——(S—I— @) (pn/Q.

) 5 e T2 2 )t at 2 242 T o 2

If we have two independent solutions of this equation their Wronskian W (t) is a non-trivial
solution of the equation

aw 1

RS
dt t

and therefore a non-zero multiple of t"*1. Since we already have shown the existence of a

solution of which decreases exponentially we see that there cannot be another solution
which is bounded by a power of t as ¢ — co. The uniqueness of the space W (m, ) follows
Every irreducible admissible representation of H¢ is of the form 7 = 7(uy, p2). Moreover

(s p2) = m(py, py) if and only if {u1, po} = {py, pr}. Thus we may set
L('S’ 7T) = L(S’ Ml)L(S’ FLQ)

and

6(87 T, w) = 6(‘97 M1, w)6(87 2, ’l/})
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Then
L(s,7) = L(s, ;") L(s, p3 ).
The local functional equation which is proved just as in the real case reads as follows.

Theorem 6.4. Let w be an infinite-dimensional irreducible admissible representation of Hc.
Let w be the quasi-character of C* defined by

for a in C*. If W is in W (m, 1) the integrals

‘I’(Q,S;W)—/CXI/V((S ) )| 5 d%a,
%’S’W):/CXW«S ) )i & w0 (@) d"a

converge absolutely in some right half-plane. Set
U(g,s, W)= L(s,m)®(g,s, W),
U(g,s, W) = L(s,7)®(g,5,W).
The functions ®(g,s, W) and Ei;(g, s, W) can be analytically continued to the whole complex

plane as holomorphic functions of s. For a suitable choice of W the function ®(e, s, W) is an
exponential function of s. The functional equation

d(wg, 1 — s, W) = e(s, m,)®(g, s, W)

is satisfied. Moreover, if W is fixed ‘\If(g, s, W)} remains bounded as g varies over a compact
subset of Go and s varies in a vertical strip of finite width from which discs about the poles
of L(s,m) have been removed.

The following lemma can be verified by an explicit computation. The first assertion may
also be proved by the method of Lemma 5.16.
Lemma 6.5. If 0 = o(pq, u2) and m = mw(uy, p2) are defined then
L(1—s,0)e(s,0,¢)  L(1—s,7)e(s,m,9)
L(s,0) B L(s,)

and the quotient

L(s,x ® o)

L(s,x ® )
s the product of a constant, a polynomial, and an exponential. Moreover the polynomial is of
positive degree for some choice of the quasi-character x.

We verify the last assertion. There is no harm in supposing that ¢ = 7(vy, 15) and that
xp1(2) = 29TP2F9 o (2) = 292°, xv1(2) = 2%1PZ0, and yra(z) = 292879, where p > 1 and
q > 1 are integers. Varying y is equivalent to varying a and b through all the integers. If m;
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is the largest of a + p and b+ ¢ and my is the largest of a and b while n; is the largest of
a + p and b and nsy is the largest of a and b + ¢ the quotient

L(s,x®0)
L(s,x ®m)
differs from
(s +n1)(s+ ng)
L(s+m)l(s + ms)
by a constant times an exponential. It is clear that n; and ny, are both greater than or
equal to mo and that either n; or ny is greater than or equal to m;. Thus the quotient is a
polynomial. If p > ¢ choose a and b so that b+ ¢ > a > b. Then n; = m; and ny > my so
that the quotient is of positive degree. If ¢ > p choose a and b so that a +p > b > a. Then
ng = mq and ny > mo.

Lemma 6.6. Let m and 7' be two infinite-dimensional irreducible representations of Hc.
Suppose there is a quasi-character w of C* such that

7r<(g 2)) — w(a)l

and

for all a in C*. If

L—-s,x o)
L(s,x ® )

for all quasi-characters x then m and @' are equivalent.

L(1—s,xt®T7)
L(s,x ®)

=e(s,x @™, )

e(s,x @7, 1)

Let m = w(p1, u2) and let 7" = (p), ph). We let

M@%qﬁw{giﬁri

i) = St

with a; and a in Z. By assumption, s; + s2 = s} + s, and a; + a2 = a) + a). Choose

Mdz{ggm}n

with n in Z. The quotient on the right has the same zeros and poles as
I‘(l—s—sl—k’%‘) F<1—8—82+|%‘>
Pls+si|=5m])  Ds+s+|252])

A pole of the numerator can cancel a pole of the denominator if and only if there are two
non-negative integers ¢ and m such that

and

n —+ as

2

n -+ a;

2

s1—82=1+0+m+
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or
n—+ ap n + as

2 2
This can happen only if 15! is of the form pips '(2) = 2PZ9 or pyuy *(2) = 277277 where
p > 1and g > 1 are integers. Since 7(uy, o) is infinite-dimensional it cannot be of either

these forms and no poles cancel.
), n+a)
} _ { o |

Consequently for every integer n,
{81 +
This can happen only if s; = s}, a1 = d/, so = s}, and ay = a}, or s; = s}, a1 = a}, s = ),
and ay = a}. Thus 7 and 7’ are equivalent.
The following proposition is an easy consequence of these two lemmas.

32—S1=1+f+m+‘

n+ aj
2

n —+ ao
2

n -+ a;
2

/
782

y 82

Proposition 6.7. Suppose m and @' are two irreducible admissible representations of Hc.
Suppose there is a quasi-character w of C* such that

w<(g 2)) — w(a)l
W((S 2)) — w(a)].

IfL(s,x®@m) = L(s,x®7'), L(s,x ' ®7) = L(s,x"' @7') and
6(57 X, ¢) = 6(37 X® 7T/7 ?/1)
for all quasi-characters x the representations ™ and @' are equivalent.

and
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§7. Characters

If F'is a non-archimedean local field and 7 is an admissible representation of G the
operator w(f) is of finite rank for every f in Hp and therefore has a trace Tr(f). In this
paragraph we prove that if 7 is irreducible there is a locally integrable function x, on Gy
such that

Trr(f) = g f(9)xx(g) dg.

Although Tr7(f) depends on the choice of the Haar measure the function x, does not.
The following simple lemma shows that x, determines the class of .

Lemma 7.1. If {m,...,m,} is a set of inequivalent irreducible admissible representations of
Hp the set of linear forms Trmy, Trmy, ..., Trm, is linearly independent.

Let m; act on V; and let £ be an elementary idempotent such that none of the spaces
mi(&)Vi, 1 < i < p, are 0. Let 7; be the representation of {H & on the finite-dimensional
space 7;(§)V; = V;(§). Suppose T; and 7; are equivalent. Then there is an invertible linear
map A from V;(§) to V;(£) which commutes with the action of éHr{. Choose a non-zero
vector v; in V;(£) and let v; = Av;. We are going to show that m; and 7; are equivalent. It is
enough to show that, for any f in Hp, m;(f)v; = 0 if and only if 7;(f)v; = 0. But m;(f)v; =0
if and only if m;(€ % h)m;(f)v; = 0 for all h in Hp. Since m;(& * h)m;(f)v; = m(§ x h* f % &)v;
and &x hx f* £ is in EHpE the assertion follows.

Thus the representations 7, ..., 7, are inequivalent. Using this we shall show that the
linear forms Tr7y,...,Tr7m, on {HpE are linearly independent. The lemma will then be
proved. Take h in EHpE. Since T; is irreducible and finite-dimensional Tr7;(hf) = 0 for all
fin EHpE if and only if 7;(h) = 0. Suppose we had hy, ..., h, in EHpE so that for at least
one i the operator 7;(h;) was not 0 while

1=1

for all f in EHpE. There must then be at least two integers j and k such that 7;(h;) # 0 and
Tk(hi) # 0. Since 7; and 7, are not equivalent we can find an h in {H g€ such that 7;(h) =0
while 7, (h) is invertible. Replacing h; by h;h we obtain a relation of the same type in which
the number of i for which 7;(h;) = 0 has been increased. By induction we see that no such
relation is possible. Since {Hp€ contains a unit the required independence follows.

For most of these notes the existence of y, is irrelevant. It is used only toward the end.
The reader who is more interested in automorphic forms than in group representations will
probably want to take the existence of y, for granted and, for the moment at least, skip this
paragraph. To do so will cause no harm. However he will eventually have to turn back to
read the first few pages in order to review the definition of the Tamagawa measure.

Choose a non-trivial additive character ¢ of F'. If X is an analytic manifold over F' and
w is a differential form of highest degree on X we can associate to w a measure on X which
is denoted by |w|r or sometimes simply by w. If X = F' and w = dx is the differential of the
identity application the measure |w|r = dx is by definition the Haar measure on F which is
self-dual with respect to 7. In general if p belongs to X and z!,..., 2" are local coordinates
near p so that

w=alx',.. ., 2"V de" N+ Adz"
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then, if f is a continuous real-valued functions with support in a small neighbourhood of p,
/ flwlr = /f(:z:l, coaM a2 dat - da
X
1

The absolute value |a(x b ,x”)| is the normalized absolute value in the field F. To prove
the existence of the measure w one has to establish the usual formula for a change of variable
in a multiple integral. For this and other facts about these measures we refer to the notes of
Weil [12].

If G is an algebraic group over F' then Gy is an analytic space. If w is a left-invariant
form of highest degree on G the measure |w|r is a Haar measure on Gp. It is called the
Tamagawa measure. It depends on w and .

If M is the algebra of 2 x 2 matrices over I’ the additive group of M is an algebraic group.
If a typical element of M is

_fa b
(e )

w=daNdbNdcAdd
is an invariant form of highest degree and |u| = dz is the additive Haar measure which is
self-dual with respect to the character ¢y (z) = ¢p(7(z)) if 7 is the trace of z.
On the multiplicative group G of M we take the form w(z) = (detz) 2u(z). The
associated Haar measure is

then

|w(z)| = |det z|* do = |z|y;} dw.

An element of G is said to be regular if its eigenvalues are distinct. The centralizer in G g
of a regular element in G is a Cartan subgroup of Gg. Such a Cartan subgroup Bp is of
course abelian. There seems to be no canonical choice for the invariant form on Br. However
the centralizer of Br in Mp is an algebra F of degree two over F'. It is either isomorphic
to the direct sum of F' with itself or it is a separable quadratic of F'. The subgroup Bp is
the multiplicative group of E. In the first paragraph we introduced a map v from F to F.
Once a form pp on E which is invariant for the additive group has been chosen we can set
up(z) = v(z) 'pp(x), and pp is then an invariant form on Bp. The associated measure is
invariant under all automorphisms of E over F'. We should also recall at this point that two
Cartan subgroups Br and B are conjugate in G if and only if the corresponding algebras
are isomorphic.

Once pup and therefore up has been chosen we can introduce on Bp\Gp which is also an
analytic manifold the form wp which is the quotient of w by pg. Then

flg)w(g) = / { f(bg)up(b) }wB(g)-
Gr Bpr\Gp Br

The centre of the algebra of Mg is isomorphic to F' and the centre Zr of G is isomorphic to
F*. On F* we have the form x=! dz. We take uz to be the corresponding form on Zp. p%
will be the quotient of g by py and w® will be the quotient of w by pz. The corresponding
integration formulae are

; f(b)uB(b)Z/Z\B { g f(Zb)uz(Z)}MOB(b)
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and

/f<g>w<g>: / { f(zg)uz(Z)}wo(g)-
Gp Zr\Gp Zr

If g belongs to G its eigenvalues a1 and «y are the roots of the equation
X2 —7(¢)X +v(9)=0

and )
(041 - 042)2 _ {7(9)} - 4’/(9)
10 V(g)
belongs to F. Set
. (061 - 042)2
o(g) = P

Since g is regular if and only if §(g) # 0 the set Gr of regular elements is open in G and its
complement has measure zero.

There are two more integration formulae that we shall need. Their proof proceeds as for
archimedean fields. Choose a system S of representatives of the conjugacy classes of Cartan
subgroups of Gp. Then

1 —1
(1.2.) [ o= 5 [ 6<b>{ [ bg)wB(g)}uB(b)

BpeS

72y SREOED S / . 6<b>{ / . f(g-lbng(g)}u%(b)

BreS
if f is an integrable function on Gr or Zp\Gp. Notice that the sum on the right is not
necessarily finite. Let B = B N Gr and let

B\g: {gilbg bEéF,geGF}.
Then G r is the disjoint union
U Bf.

BreS
There is a simple lemma to be verified.

Lemma 7.2.
(i) For any Cartan subgroup By the set BS is open.
(ii) The set Gp is open.
(#ii) The set Gr of g in G whose eigenvalues do not belong to F is open.

The second statement is a consequence of the first. If Br corresponds to the separable
quadratic extension £ then Eg is the set of matrices with distinct eigenvalues in E and if Bp
splits and therefore corresponds to the direct sum of F' with itself, Eg is the set of matrices
with distinct eigenvalues in F. Thus the first assertion is a consequence of the following
lemma which is a form of Hensel’s lemma or of the implicit function theorem.
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Lemma 7.2.1. Let E be a separable extension of F. Assume the equation
Xp+a1Xp_1+---+ap=0

with coefficients in F' has a simple root X\ in E. Given € > 0 there is a 6 > 0 such that
whenever by, ..., b, are in F and |b; — a;|p < § for 1 <i < p the equation

XP by XP 44, =0
has a root p in E for which |\ — p|gp < €.

There is no need to prove this lemma. To prove the third assertion we have to show that
the set of matrices with eigenvalues in F' is closed. Suppose g, — g and g,, has eigenvalues
A and p, in F. Then A\, + pu,, — 7(g) and A\, — v(g). If A\, and p,, did not remain in
a compact subset of F'* then, since their product does, we would have, after passing to a
subsequence, |A,| = 0, |p,| — 0o or |\, = 00, |pn| — 0. In either case A, + p, could not
converge. Thus, again passing to a subsequence, we have \,, = A and p,, — p. A and p are
the eigenvalues of g. R _

If the characteristic of F' is not two the sets Gy and G are the same. We now introduce a
function on G which plays an important role in the discussion of characters. If Br is a split
Cartan subgroup we set ¢(Bp) = 1 but if B is not split and corresponds to the quadratic
extension F we set .

o(Br) = |=|7

where @ is a generator of pr and pii is the discriminant of £ over F. If g in G r belongs to

the Cartan subgroup Br we set

£(9) = co(Br)s(9).
If ¢ is singular we set £(g) = oo. The factor ¢(Bp) is important only in characteristic two
when there are an infinite number of conjugacy classes of Cartan subgroups.

Lemma 7.3. The function £ is locally constant on CAJF and bounded away from zero on any
compact subset of Gg. It is locally integrable on Zp\Gr and on Gp.

It is of course implicit in the statement of the lemma that éi\ is constant on cosets of Zp.
The two previous lemmas show that £ is locally constant on Gpr. To prove the remaining
assertions we recall some facts about orders and modules in separable quadratic extensions
of non-archimedean fields.

If F is a separable quadratic extension of F' an order R of F is a subring of Og which
contains Op and a basis of £. A module [ in F is a finitely generated O submodule of
which contains a basis of E. If I is a module the set

{a€eE|alCI}

is an order R;. It is clear that an order is a module and that Rgr = R. Two modules I and J
are said to be equivalent if there is an « in £ so that J = al. Then R; = R;.

Suppose the module [ is contained on Og and contains 1. Since I/Op is a torsion-free
Or module the module I has a basis of the form {1,d}. Since ¢ is integral §° belongs to
I. Therefore I is an order and R; = I. Since any module is equivalent to a module which
contains 1 and lies in Og the collection of modules I for which R; = R forms, for a given
order R, a single equivalence class.

As observed any order has a basis, over Op, of the form {1,d}. The absolute values of the
numbers ¢ occurring in such bases are bounded below. A basis {1,4} is said to be normal if
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0 has the smallest possible absolute value. It is easily seen, by considering the ramified and
unramified extensions separately, that if {1,d} is normal

Thus R determines and is determined by |0]|g. It is easily seen that if F/F is unramified
|0 is any number of the form |wg|% with n > 0, where wg is a generator of pgp. We set
n =w(R). If E/F is ramified |§| is any number of the form |wp|2 ™ with n > 0. We set
w(R) = n. In the ramified case

[E* . F*(Ug N R)] = 2|owp| ™.
In the unramified case
[E*: F*(UgNR)| = |wF|;w(R)(1 + |wF|r)
unless w(R) = 0 and then
[E* : F*(UgNR)] = 1.
It is clear that R’ contains R if and only if w(R') < w(R). Thus w(R) + 1 is the number
of orders which contain R. If 7 belongs to Og but not to O let R(7y) be the order with basis

{1,7} and let w(y) = w(R(7)).
Lemma 7.3.1. Let 75 be the conjugate of v in E and let

_\211/2 m
(v =9} = wr|R.

If it is the discriminant of E and ~ belongs to Ok but not to Op then

t+1

m(y) = w(y) + 5

Let {1,d} be a normal basis of R(vy). Then v = a + bd with a and b in Op. Moreover
d = ¢+ dy with ¢ and d in Op. Thus 7 = (a + bc) + bdy so that a + bc = 0 and bd = 1.
Therefore b is a unit and |y — 7| = |§ — §|. We can thus replace v by §. Suppose first that
E/F is unramified so that ¢ + 1 = 0. We take § = ew} where n = w(R(7)) and € is a unit of
Og. Since

§—06=(c—e)h

we have only to show that € — € is a unit. € is not congruent to an element of Or modulo pg
and therefore {1, e} determines a basis of Og/pg. Since the Galois group acts faithfully on
Og/pg the number € — € is not in pp.

If E/F is ramified we may take § = whwg with n = w(6). It is well-known that

|we — | = |welF !

Thus

1
](5 _3)? 12

/2 — 41 NS
o =10 =0lgT = lwrlplwxly = |wplp *

The lemma follows.
There are two more lemmas to be proved before we return to the proof of Lemma 7.3.

Lemma 7.3.2. Let C be a compact subset of Zrp\Gr and let x¢ be the characteristic function
of C' and of its inverse image in Gg. There is a constant ¢ such that for every b in G which
is contained in an anisotropic Cartan subgroup

/Z y xc(g7'bg)w(g) < c€(b).
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The assertion is trivial unless b is regular. Then the assumption is that its eigenvalues
are distinct and do not lie in F. Any h in G can be written as

p
Wp
g1 ( w%) g2

where g; and g2 belongs to GL(2, Op) and p < ¢. The numbers w?. and w?, are the elementary
divisors of h. Let T, be the set of all those h for which ¢ — p < r. This set is the inverse
image of a compact subset T of Zp\Gp. If r is sufficiently large C' is contained in 7. Thus
we may replace x¢ and y, the characteristic function of 7.

If h belongs to GL(2,OF) then h=tg~'bgh belongs to T, if and only if g~'bg belongs to
T,. Thus the integral is the product of the measure of GL(2,0r) N Zp\GL(2,OF) by the
number of right cosets of ZrGL(2, Or) whose elements g are such that g~'bg belong to T.
If H is such a coset and Bp is the Cartan subgroup containing b then for any ¢’ in Bp the
coset b'H has the same property. Thus the integral equals

measure(GL(2,Op) N Zp\GL(2,Or)) Y _[BrgGL(2, O) : ZrGL(2, Or)].

The sum is over a set of representatives of the cosets in Bp\Gr/GL(2,Op).

Let Bp correspond to the separable quadratic extension E. Choose a basis of O over
Op. It will also be a basis of ¥ over F'. By means of this basis we identify G with the
group of invertible linear transformations of E over F. GL(2,0pr) is the stabilizer of Og.
Every v in £ determines a linear transformation b, : x — yx of E. The set of all such linear
transformations is a Cartan subgroup conjugate to Br and with no loss of generality we may
assume that it is Br. Choose 7 so that b = b,.

Every module is of the form ¢gOg with ¢ in Gp. Moreover ¢g:Of and ¢.Op are equivalent
if and only if g; and go belong to the same double coset in Bp\Gr/GL(2,0Fp). Thus there
is a one-to-one correspondence between the collection of double cosets and the collection of
orders of E. Let BpgGL(2, O) correspond to the order R. The index

is equal to

[Br : Bp N ZpgGL(2,0p)g "]
Two elements b; and by in B belong to the same coset of Bp N ZpgGL(2,0r)g™ ! if and only
if there is a z in Zp and an h in GL(2, Op) such that

b1g = bazgh

This can happen if and only if
blgOE == nggOE

Let I = gOg and let b; = b,,. If we identify Zr and F'* so that z may be regarded as an
element of F* the last relation is equivalent to

1l =zl
or v; 22 € RN Ug. Thus

[BrgGL(2,0p) : ZpGL(2,0p)] = [E* : F*(RN Ug)].

Let |det b|p = |y|x = |wr|R. Let wh and wf. with p < ¢ be the elementary divisors of
g~ 'bg. Certainly p+q = m. The matrix g~'bg belongs to T} if and only if g—p = m —2p < r.
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r—m

5 this is so if and only if w59 tbg has integral coefficients, that

If s is the integral part of
is if and only if

w}g_lbgOE C Og
or wyy € R.
Our integral is therefore equal to

(%) measure(GL(2,0p) N Zp\GL(2,0r)) Y [E*: F*(RNUg)).
wipvER
The sum is over all orders of £ which contains w.y. The element @~y does not lie in F'. If

it does not lie in Ok the sum is zero. If it lies in Ok then w}y belongs to R if and only if
w(R) < w(wiy). In this case the expression () is bounded by

2 measure(GL(2, Op) N Zp\GL(2, OF)) Z |wp|

0<h<w(@y)

This in turn is bounded by a constant, which is independent of Br and r, times

t+1

We have ¢(Br) = |wr|; , m(wiy) = s +m(y) < 5% 4+ m(y), and
o o(l/2

sy =10 le

RaiH

To prove the lemma we have only to show that

= o] |wr|p.

m t+1 s
—m(7) + 5 + —— +w(@py)

2 2
is bounded above by a constant which depends only on r. By the previous lemma
s s t+1
w(wpy) = m(@py) = ——
so that
()ij_i_t—l—l+ (S)<r—m+m r
-m —+ — 4+ w(w — ===
Py T FUS ™9 79 73

Suppose the Cartan subalgebra Bpr corresponds to the algebra E. Once the measure pg
on F has been chosen we can form the measure pp on Br and the measure wg on Bp\GF.
Once pup and therefore up and wp are chosen we let n(Bg) be that constant which makes
n(Bp)pp self-dual with respect to the character z — 1 (7(z)) on E.

Lemma 7.3.3. If r is a non-negative integer there is a constant d, such that for any Cartan
subgroup Br and any b in Bp

| el () < don(Be)s(s)
Br\GF
We may again suppose that b belongs to B r. If Br is anisotropic the left side is equal to

L -1
r b WO .
measure(Zg\Br) /ZF\GFX (97 bg)w (9)
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Suppose Br corresponds to the quadratic extension E. If F/F' is unramified
1
n(Br)
because n(Br)ug assigns the measure 1 to Og. If E/F is ramified n(Bp)ug assigns the

measure(Z;\Bp) = (1+ |=F|)

&1
measure |wr| 2 to Op and

Br)

2 t+1 2
measure(Zp\Br) = wF]% = (

n(Br). n ()"
In these cases the assertion is therefore a consequence of the previous lemma.

If the inequality of the lemma is true for one Cartan subgroup it is true for all conjugate
subgroups. To complete the proof we have to verify it when Bp is the group Ar of diagonal
matrices. Since we are now dealing with a fixed Cartan subgroup the choice of Haar measure
on Bp\Gp is not important. Moreover GL(2,0r)T,GL(2,0r) = T, so that, using the
Iwasawa decomposition and the associated decomposition of measures, we may take the

integral to be
1 —z\[(fa 0\/1 =x d
/FX’” o 1Jlo gJlo 1))

if

The argument in the integrand is

(a o) 1 (1-2)e

0 p

Changing the variables in the integral we obtain

T (656 9)

Let |a| = |@rl’, |8] = |@r|™, and |z| = |@g|?. With no loss of generality we may suppose
la| = |B8]. If n > 0 the elementary divisors of

(96 5)

are @ and @' so that it is in T, if and only if m — ¢ < r. If n < 0 its elementary divisors

are wff” and @y ™" so that it is in 7, if and only if m — ¢ — 2n < r. Thus the integral is at

most

m—L—r
measure{x ‘ |z| < |wp| 2 }

m—~—0—r

which is, apart from a factor depending on the choice of the Haar measure, |cwg|™ 2z . Since
1/2
|wF|—r/2

|7IJF|m72[7T = ‘é
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and
1/2

Q=

— 5(())71/2

-

Q™

the lemma follows.

We return to Lemma 7.3 and prove first that £ is bounded away from zero on each compact
subset C'. In other words we show that there is a positive constant ¢ such that £(h) > ¢ on
C'. There is a z in Zp such that every matrix in zC has integral entries. Since {(zh) = £(h)
we may as well assume that every matrix in C itself has integral entires. There is a constant
c1 > 0 such that

|det h,;/z >

on C and a constant ¢y such that
|7(h)? — 4v(h)|
on C. 7 and v are the trace and determinant of h. Thus
5V2(h) > a

1/2
/<C2

Co
on C. Here £(h) is certainly bounded away from 0 on the singular elements and the preceding
inequality shows that it is bounded away from 0 on the regular elements in C' which lie in a
split Cartan subalgebra. Suppose h is regular and lies in the anisotropic Cartan subgroup
Bpr. Let Bp correspond to the field E and let h have eigenvalues v and 7 in E. Then

|(’7 _7)2{;1/20(BF> _ |wF|—m(’Y)|wF|% = |wF|_w(’Y)

Since w(7y) = 0 we have £(h) > ¢;.
The function ¢ is certainly measurable. It is locally integrable in Gz if and only if it is
locally integrable on Zp\Gp. Let C' be a compact set in Zg\Gr. We have to show

/ xe@)E(@)(9)
Zr\GFr

is finite. As usual it will be enough to show that

/Z PRUCEORT

is finite for every non-negative integer r. According to formula (7.2.2)) this integral is the
sum of
1

§/ZF\AF f(a)é(a){/AF\GF Xr(g_lag)w,q(g)}#g(a)
1

B > /ZF\BF f(b)5(b){/BF\GF xr(glbg)wB(Q)}M%(b)‘

Bpes’

and

It is easy to see that there is a compact set Cy in Zr\ Ar such that x,(¢ 'ag) = 0 for
all g unless the projection of a lies in Cj. Thus the first integral need only be taken over
Co. The inner integral is at most d,n(Ar)d(a)~'/2. Since £(a)d(a)d(a)™/? = 1 on A the
first integral causes no trouble. We can also use Lemma 7.3.3 to see that the sum over 5,
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which is by the way a set of representatives for the conjugacy classes of anisotropic Cartan
subgroups, is less than or equal to

% Z drn(BF)c(BF)/ 15(b).

BpeS’ Zr\Br

If the characteristic is not two this sum is finite and there is no problem.

In general if Br corresponds to the field E and p;?“ is the discriminant of F we have

¢(Br) = |wF‘tE2+1 and

n(Br) / 1(b) < 2ep| D2
ZF\BF

To complete the proof we have to show that

Z‘WFVEJA

E

is finite if F' has characteristic 2. The sum is over all separable quadratic extensions of F.
Let M (t) be the number of extensions E for which tg = t. Associated to any such E is a
quadratic character of F* with conductor p’f*. Thus

M(t) < [F7 - (F*) (L +pi )] =2[Up - Up(1+pi)]

if t > 0. Of course M(—1) = 1. Any element of U is congruent modulo 1 + p4* to an
element of the form

ap + a1@F + - + Q.
Such a number is a square if a; = 0 for ¢ odd. Thus

M(t) = o(mr%)

and the series converges.
We can now begin the study of characters.

Proposition 7.4. The character of an absolutely cuspidal representation exists as a locally
integrable function whose absolute value is bounded by a multiple of §. It is continuous on

GrUGF.

If the character y, of 7 exists and y is a quasi-character of F'* then the character of
= x ® 7 also exists and x.(g9) = x(det g)x»(g). Thus the proposition has only to be
proved for unitary representations m. Then 7 is square integrable and we can make use of
the following lemma for which, although it is well-known, we provide a proof.

Lemma 7.4.1. Let f belong to Hr and let u be a vector of length one in the space on which
the absolutely cuspidal unitary representation m acts. Then

Ten() = di) [ { £(8) (g hg)u, ) dh} ”
Zp\GF Gr
if d(m) is the formal degree of .

Let Q be the operator
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Let {v;} be an orthonormal basis of the space on which 7 acts. All but a finite number of
the coefficients

Qij = (Qui,vj)
(vlg™)@m(g)u,u) = (Qn(g)u, w(g)u)
>~ (Qr(g)u, ) (vs. w(9)u)

i

ZZ 9)u, v;) Qi (vis 7(9)u)

In both series there are only a ﬁmte number of non-zero terms. Thus

/Z . (m(g~")Qm(9)u,u) dg = Z jS/ (7(9)u, v;) (vi, 7(g)u) dg

Zr\GF

are zero. We have

The right side equals

which in turn equals

The integrals on the right exist because the representation is square-integrable. Applying the
Schur orthogonality relations we see that the right side is equal to

ZQU (%% y ZQ’L’L: TI"TF(f)

Since

(g HQm(g)u,u) = [ f(h)(x(g~")mw(h)7(g)u, u) dh

GF
the lemma follows.
Observe that the integral of the lemma is an iterated and not a double integral. It is the
limit as r approaches infinity of

/T{ I (g hg)u. ) dh} dg

Since 77 is compact this integral is absolutely convergent and equals

I <h>{ [ (e gy dg} .

To prove the first part of the proposition we show that the sequence of functions

or(h) = /T (m(g~ " hg)u,u) dg

T

is dominated locally by a multiple of & and converges almost everywhere on Gr. We shall set
Xe() = d(m) lim g, (h)

whenever the limit exists.
When proving the second part of the proposition we shall make use of the following
lemma.
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Lemma 7.4.2. Let C be a compact subset of ép and let Cy be a compact set in Gg. The
image in Zp\Gp of
{gE Gr } g_lclgﬂZFC'Q 7&@}

18 compact.

The set is clearly closed so we have only to show that it is contained in some compact set.
We may suppose that GL(2,Or)CoGL(2,0r) = Cy. Let

(o x\ (B O
=5 1) 5)r
g 'CigNZpCo # @

a 2\ a T

(&) as Ynmere

We have to show that this condition forces « to lie in a compact subset of F'* and x to lie in
a compact subset of F'. Since

with A in GL(2,0p). Then

if and only if

det(g'cg) = detc
we may replace ZpCy by the compact set
Cg = {h c ZFCQ ’ deth € detC’l}.

(¢ 4

be a typical element of C'. The entry c is never 0 on C and therefore its absolute value is

bounded below,
a 2\ fa b\ [a z _ (a—uzc Yy
0 1 c dJ\0 1) ca cx+d)’

The number y is of no interest. The matrix on the right cannot lie in C5 unless |cx + d|
is bounded above by some number depending on C3. Since |d| is bounded above and |c| is
bounded below z is forced to lie in some compact set {2 of F'. If C} is the compact set

GG )

we have finally to show that if

a0 a 0
(o 1)C4<0 1)“037&@

then « is forced to lie in a compact subset of F'*. We now let

(¢ 0

be a typical element of Cy. On Cy both |b| and |c| are bounded blow. Since

G Y- ()

Let

er,heCl}
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and all matrix entries are bounded above in absolute value on Cj5 the absolute value || must
indeed be bounded above and below.

If 7 acts on V then for any u in V' the support of the function (W(g)u, u) has been shown,
in the second paragraph during the proof of proposition 2.20, to be compact modulo Zg. Let
C' be its compact image in Zp\Gp. Let C; be a compact subset of Gg. By the previous
lemma the set of g in G such that

(v(ghg)u,u) £ 0

for some h in C} has an image in Zz\Gp which is contained in a compact set Cy. Therefore

the integral
[t mgnwydg = [ (nl~thoyuu) do
Zp\GF

Co
is convergent for h in Cj. Moreover if 7 is large enough 7" contains Cy and

@r(h):/Z\G (7(g~ " hg)u, u) dg.

Therefore the sequence {¢,} converges uniformly on any compact subset of G r and its limit
d= (m)xx(h) is continuous on Gr. We may state the following proposition.

Proposition 7.5. If h belongs to Gp then

/ (w(g~"hg)u, u) dg
Zr\GFr

exists and is equal to d=1(m)x,(h).

Since
‘(W(g)u,u)‘ < xel9)

it follows from Lemma 7.3.2 that, for some constant c,
or(R)] < c(h)
on Gp. The set CA?F — Gr is Eg which is open. To complete the proof of Proposition 7.4
we show that on the intersection of A¢ with a compact subset of G the sequence {¢,} is
dominated by a multiple of ¢ and that it converges uniformly in a compact subset of A.
Let C3 be a compact subset of Gr. Any h in Ar may be written in the form

o 1) D

where h; belongs to GL(2,0r) and a # . In C3 N AG the absolute values of « and [ are

bounded above and below. If C3 is contained in AG the absolute value of 1 — E is also
bounded above and below on C5. Since

69666 ¢

the absolute value of z will be bounded above.
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Since GL(2, Or)T,GL(2,0p) = T, the integral which defines ¢, (h) is equal to
/ (w(g~" W g)u,u) dg
T/

r

-6 )66 )

and we may as well assume that h itself is of this form. We are going to show that there is a
constant ¢ such that
g

1-2
Q

-1

lor(h)| < c

for all r and all such h and that the sequence {p,} converges uniformly if z remains in a
compact subset of F' and «, f and 1 — g remain in a compact subset of F*. Then the proof
of the proposition will be complete.

The stabilizer of u is some open subgroup U of GL(2, Or). Let hq, ..., h, be a set of coset
representatives for GL(2,0r)/U and let u; = w(h;)u. Apart from an unimportant factor
coming from the Haar measure ¢, (h) is given by

Z oy (h)

@i(h):/ W((g ’yf1>h(g 7?))“%%‘ day d™7y.

The integral is taken over the set of all those v and x; for which

7T
0 1
belongs to T,.. Since

v oy (v a 0\ (1 (1-8)ry " e+m)
<0 1)h(0 1>:(05>0< >1 1

we can change variables in the integral to obtain

/ ™ (Oé 0) 1 v (1 a T Uy Uy dl’ldx’}/.

0 5)\0 1

with

B
(7.4.3) ’1 -

The integration is now taken over all those x; and  for which

(7.4.4) v (1= o
0 1

isin T;.
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Let ’1 — g) = |wr|', 7| = |wr|™, and |z| = |wg|". Let wh and @} be the elementary
divisors of the matrix . We now list the possibilities for p and ¢ together with the
condition that the matrix belong to 7)., that is that ¢ — p be at most r.

i)m=20,—t+m+n=20,p=0,g=m:0<m<r
(i)m>0,—t+m+n<0,p=—t+m+ng=n—t:—r<m+2n—2t

(iii)) m<0, t+m+n<m,p=—t+m+n,g=n—t:—r<m+2n—2t

(iv) m<0,—t+m+n=>m,p=m,q=0:—r<m<0.

These conditions amount to the demand that —r < m < r and that 2n > 2t —r —m. On
the other hand we know that there is an integer s such that

/ T ((1) 3311> w; dr =0
|z|<|wF|d
for1<i<pifj<s.

Thus if |y| = |wp|™ the integral

/ m (04 O) ) Tl( _§>x+w1 wg, u; | day

0 6/ \0 1

taken over all z; for which
gl 7(1 - §)x1
0 1

is in 7, is zero if 2t — r —m < 2s. Therefore in ([7.4.3]) we need only take the integral over
those v and 2 for which |v| = |wp|™ with 0 < m +r < 2(t — s) and |z| < |wp|~"2". We
should also have m < r but since we are about to replace the integrand by its absolute value

that does not matter. For each such v the integration with respect to x gives a result which
is bounded in absolute value by a constant times \wF]t’mTM. Integrating with respect to

we obtain a result which is bounded in absolute value by a constant times
2(t—s)—1

(o]
el D |we ™ < gl lr|*?

k=0 k=0
The right side depends on neither r nor .
The value of ‘1 — 2\pi(h) is

r —1 _ﬁ
/ ™ a 0 s 1 “r (1 a)x—f'l'l Ujgy Uy dl‘ldx’}/.
0 5 0 1

The integration is taken over those v and z; for which |y| = |wp|™ with 0 < m < 2(t —s) and

m

|z| < |wp|" 2. Of course ‘1 — g’ = |wp|'. Since we are now interested in a set of & and 3 on

which ¢ takes only a finite number of values we may as well assume it is constant. Then the
integral is taken over a fixed compact subset of F' x F*. The integrand converges uniformly
on this set uniformly in the «, f and x under consideration as r approaches infinity.
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We have still to prove the existence of the character of a representation which is not
absolutely cuspidal. Most of them are taken care of by the next proposition.

Proposition 7.6. Let i and (1o be a pair of quasi-characters of F*. Let xu, ., be the
function which is 0 on Gr N GF, undefined on the singular elements, and equal to

af 1/2
{m(@pa(B) + pa(Bua(o)} o =57

at an element of g of Eg with eigenvalues o and B. Then X, u, 5 continuous on @F and s
dominated in absolute value by some multiple of £&. Moreover if m = p(u1, fio)

Trr(f) = /G Xu1.2(9) f(9) dg

for all f in Hp.

Only the last assertion requires verification. Since the absolute value of x,,, ., is bounded
by a multiple of £ the function x,,, ., is locally integrable Suppose [ belongs to Hrp. When
applied to the function x,, ., f the relation shows that

(7.6.1) / Yoo a(9)£(9) dg

Gr

1 'y o )
5[4F 5(a){/AF\GF Xz (9~ 0g) f(g™ " ag) dg} da.

Since X, u, 18 a class function this may be written as
/ flo™ (3‘ 0)9 dg ¢ da
Ap\Gp p

is equal to

(a—pp2|"”
af

0 - (g g).
(0 o)
L A oL )

Thus ((7.6.1)) is equal to
a 0
f gl( )g dg ¢ da.
/AF\GF O /B

1

2 Ja,

{in(@)a(B) + pa(@)mn (8)}

Since a is conjugate to

we have

(7.6.2) /A pa (@) pa(B)|—————
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As long as the measure on Ap\Gp is the quotient of the measure on G by that on Ap
the choice of Haar measure on Ap and G is not relevant. Thus we may write (7.6.2)) as

/AF fi (@) p2(8) (a=p)* V2 f<k—1n—1 (g‘ 2)%) dk dn % da.

af
The inner integral is taken over GL(2,Op) x Np. If

()
(56 O

Changing variables in the last integral we obtain

1/2
/ f(k:—l(g‘ g>nk> dk dn S da.

To evaluate Trw(f) we observe that if ¢ belongs to B(us, p2) then, if &y is in GL(2, OF)

(k) = / (k) f(9) do.

GFr

then

(763 / Ml(a)#z(ﬁ)’%

Replacing ¢ by k;'g and writing the integral out in terms of the Haar measure we have
chosen we obtain

Joiaon 2 /7 <k (6 g)’“) ples(5)]

The inner integral is taken over Ar x Np. We have of course used the relation

go<(3 ‘) nk) - w3

o(ka).
Kl ) = | f(k‘fl (5 2)%) ul(a)m(ﬁ)'%

w(f)o(k) = / K (ky, ko) .

GL(2,0F)

B(j11, p12) may be regarded as a space of functions on GL(2, Or). Then 7(f) is the integral
operator with kernel K'(ki, ky). It is easily seen that this operator, when allowed to act on
the space of all GL(2, Op)-finite functions on GL(2, Of), has range in B(u1, p12). Thus the
trace of 7(f) is the same as the trace of the integral operator which is of course

/ K (k. k) dk.
GL(2,0F)

When written out in full this integral becomes ([7.6.3)).

1/2
dadn p dks.

It

1/2

da dn

then
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Theorem 7.7. Let m be an irreducible admissible representation of Hp. There is a function

Xx which is continuous on G and locally bounded in absolute value of Gr by a multiple of &
such that

Tra(f) = /G x=(9)£(9) dg
for all f in Hp. F

The theorem has only to be verified for the one-dimensional and the special representations.
If 7 is a one-dimensional representation associated to the quasi-character x we may take
Xr~(g) = x(det g). The character x, is locally bounded and therefore, by Lemma 7.3, locally
bounded by a multiple of &.

Suppose 7y, T and w3 are three admissible representations of F' on the spaces Vi, V5, and
V3 respectively. Suppose also that there is an exact sequence

0 > Vi > Vo > V3 » 0

of Hp-modules. If f is in Hp all the operators m1(f), m2(f) and m3(f) are of finite rank so
that

Trmo(f) = Trm(f) + Tras(f).

Thus if xr, and x,, exist so does x.,. Applying this observation to m3 = o, u2), m =
p(u1, p2), and m = m(uy, p2) we obtain the theorem.

If F is taken to be the real or complex field Theorem 7.7 is a special case of a general and
difficult theorem of Harish-Chandra. The special case is proved rather easily however. In fact
Proposition 7.6 is clearly valid for archimedean fields and Theorem 7.7 is clearly valid for
archimedean fields if 7 is finite-dimensional. There remains only the special representations
and these are taken care of as before.
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§8. Odds and ends

In this paragraph various facts which will be used in the discussion of the constant term
in the Fourier expansion of an automorphic form are collected together. If H is a locally
compact abelian group a continuous complex-valued function f on H will be called H-finite
or simply finite if the space spanned by the translates of f is finite-dimensional.

Let H be a group of the form

H=HyxZ" xR"
where Hj is compact. We regard Z™ x R™ as a subgroup of R™*". The projection
gi h = (ho,l‘l, .. 7xm+n> — T;

may be regarded as a function on H with values in R. If py,...,pp., iS a sequence of
non-negative integers and y is a quasi-character we may introduce the function

m+n
x ] ¢
=1
on H.

Lemma 8.1. For any sequence py, ..., Pmin and any quasi-character x the function

m+n
x ] ¢
=1

1s continuous and finite. These functions form a basis of the space of continuous finite
functions on H.

If x is a fixed quasi-character of H and p is a non-negative integer let V' (x,p) be the
space spanned by the functions y [[74" ¢ with 0 < p; < p. Since it is finite-dimensional
and invariant under translations the first assertion of the lemma is clear.

To show that these functions are linearly independent we shall use the following simple

lemma.

Lemma 8.1.1. Suppose FEy, ..., E, arer sets and Fy,...,F, are linearly independent sets
of complex-valued functions on En, ..., E, respectively. Let F be the set of functions

(@1, 2r) = fi(@) fa(z2) - fr(r)
on Ey x --- x E,.. Here f; belongs to F;. Then F is also linearly independent.

Any relation

Z a’(fl: SRR fr)fl(xl) e fr(xr) =0
Siseenfr
leads to

SUOST Al F i) foa(me) ) =0
fr f17---7fr—1
As F, is linearly independent this implies that

Z a(fi,..., fo)fi(z1) -+ frica(zeor) =0

flvn-vfrfl
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and the lemma follows by induction.
To show that the functions x [[7"4" & span the space of continuous finite functions we
use another simple lemma.

Lemma 8.1.2. Let H; and Hy be two locally compact abelian groups and let H = Hy, x H,.
Then every continuous finite function f on H is a finite linear combination of the form

flz,y) = Z Aipi ()i (y)

where the p; and ¥; are continuous finite functions on Hy and Hy respectively.

Let V be any finite-dimensional space of continuous functions on H. We associate to any
point & in H the linear functional f — f(£) on V. Since no function but zero is annihilated
by all these functionals we can choose &1, ..., &, so that the corresponding functionals form a
basis of the dual of V. Then we can choose a basis fi,..., f, of V so that f;(&;) = é;;.

Now suppose V is invariant under translations. It could for example be the space spanned
by the translates of a single finite continuous function. The space V; of functions ¢ on
H, defined by ¢(x) = f(x,0) with f in V is finite-dimensional and translation invariant.
Therefore the functions in it are finite and of course continuous. We define V5 in a similar
manner. If f isin V' the function h — f(g + h) is, for any ¢ in H, also in V. Thus

flg+h) = ZMg)ﬁ(h)

Since
Ailg) = flg+&)
the function A; belongs to V. If ¢;(z) = \i(z,0) and ¥;(y) = £:(0,y) then

Fla,y) =) eil@)ily)

as required.

These two lemmas show that we need prove the final assertions of Lemma 8.1 only for H
compact, H =7, or H = R.

Suppose H is compact. If we have a non-trivial relation

r

Z aixi(h) =0

i=1
we may replace h by g + h to obtain

Z aixi(g)xi(h) = 0.

If such a relation holds we must have » > 2 and at least two coefficients say a; and a, must
be different from zero. Choose g so that x1(g) # x2(¢). Multiplying the first relation by
X1(g) and subtracting the second relation from the result we obtain a relation

=2

Since by = {x1(9) — x2(9) }az the new relation is non-trivial. The independence of the
quasi-characters can therefore be proved by induction on 7.



§8. ODDS AND ENDS 141

To prove that when H is compact the quasi-characters span the space of finite continuous
functions we have just to show that any finite-dimensional space V' of continuous functions

which is translation invariant is spanned by the quasi-characters it contains. Choose a basis
{fi} of V as before and let

p(9)fi =D Nig(9)fy.

We saw that the functions \;;(g) are continuous. Thus the action of H on V by right
translations is continuous and V' is the direct sum of one-dimensional translation invariant
spaces. Each such space is easily seen to contain a character.

When applied to a locally compact abelian group the argument of the previous paragraph
leads to weaker conclusions. We can then find subspaces Vi, ..., V, of V and quasi-characters

X1,---,Xr of H such that
V=BV
i=1

dim V;
{p(h) = xi(h)}
annihilates V;. Now we want to take H equal to Z or R. Then H is not the union of a finite

number of proper closed subgroups. Suppose puq, ..., us are quasi-characters of H and for
every h in H the operator

(8.1.3) [L{o(h) = ()}

and, for every h in H,

on V is singular. Then for every h in H there is an ¢ and a j such that p;(h) = x;(h). If

H;; = {h ‘ pi(h) = x;(h) }
then H;; is a closed subgroup of H. Since the union of these closed subgroups is H there
must be an 7 and a j such that H,;; = H and p; = x;. If the operator were zero the
same argument would show that for every j there is an ¢ such that p; = x;.

If u is a quasi-character of H, now taken to be Z or R, we let V(u,p) be the space
spanned by the functions p&f, with 0 < ¢ < p. Here € is the coordinate function on H. It is
clear that V(u,p) is annihilated by {p(h) — u(h) }p+1 for all h in H. Suppose u, ji1, . .., fis
are distinct and

S
V=V(up)> Vi)
i=1
is not zero. Decomposing V' as above we see that xi,..., Y, must all be equal to ;x on one
hand and on the other that every p; is a x;. This is a contradiction. Thus if there is any
non-trivial relation at all between the functions x&* where y is any quasi-character and ¢ is a
non-negative integer there is one of the form
p
Z a;pé' = 0.
i=0
Since the polynomial Y 7 a;£" would then have an infinite number of zeros this is impossible.
To prove the functions &' span the space of finite continuous functions we have only to
show that if x is a given quasi-character and V' is a finite-dimensional space of continuous

functions which is invariant under translations and annihilated by {p(h) — X(h)}dimv for all



142 I. LOCAL THEORY

h in H then every function in V' is the product of y and a polynomial. Since we can always
multiply the functions in V' by x~! we may as well suppose that y is trivial. We have only
to observe that any function f annihilated by the operator { p(h) — 1}" for all h in H is a
polynomial of degree at most n. This is clear if n = 1 so by induction we can assume that
p(h)f — f is a polynomial 2?2—01 a;(h)&. We can certainly find a polynomial f’ of degree n
such that

p()f = =) a(1)€

and we may as well replace f by f — f’. The new f satisfies p(1)f = f. It is therefore
bounded. Moreover p(h)f — f is a bounded polynomial function and therefore a constant
c(h). ¢(h) is a bounded function of h and satisfies ¢(hy + hy) = ¢(hy) + ¢(hs). It is therefore
zero and the new f is a constant.

Lemma 8.1 is now completely proved. Although it is trivial it is important to the notes
and we thought it best to provide a proof. We might as well prove Lemma 2.16.4 at the same
time. Let B be the space of all functions f on Z such that for some ny depending on f we
have f(n) = 0 for n < ng. Let Ay be the space of functions on Z which vanish outside a finite
set. Z acts on B and on Ay by right translations and therefore it also acts on B = B/A,.
In particular let D = p(1). We have merely to show that if P is a polynomial with leading
coefficient 1 then the null space of P(D) in B is finite-dimensional. If

P(X) = [[(x - a>
i=1
the null space of P(D) is the direct sum of the null spaces of the operators (D — «;)Pi. The
null space of (D — )P is the image in B of the functions in B which are zero to the left of 0
and of the form
n— a"Q(n)
to the right of 0. @) is a polynomial of degree at most p.

Lemma 8.1 is certainly applicable to the direct product of a finite number of copies of the

multiplicative group of a local field F'. If H = (F*)" any finite continuous function on H is

a linear combination of functions of the form
n

flzy, ..., zn) = H{XZ(.CEZ) (log\a:i|p)m}.
i=1
Let B = Br be the space of continuous functions f on G which satisfy the following
three conditions.
(i) f is finite on the right under the standard maximal compact subgroup K of Gp.
(ii) f is invariant on the left under Np.
(iii) f is Ap-finite on the left.
Br is invariant under left translations by elements of Ag. If f is in Br let V' be the finite-
dimensional space generated by these left translates. Choose g1, ..., g, in G so that the
linear functions ¢ — ¢(g;) are a basis of the dual of V and let fi,..., f, be the dual basis. If
a is Ar we may write

fla,g) = Z(%(a)fi(g)-
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Then
0i(a) = f(ag:)

Ze a) f;(bgs).

Thus the functions 6; are continuous and ﬁmte. We may write them in the form

a) = Y Cnpwti(ar)v(as) (loglan])™ (loglaz|)"

. (03] 0
a = 0 ay )

The sum is over all quasi-characters y and v of ' and all non-negative integers m and n.

Of course only a finite number of the coefficients ¢}, ,, ,, are different from zero.
1/2

so that

We may replace p by &F u and v by o v in the sum. Thus if

p
fm,n,u,u = Z C:Lm,n#,yfi
=1

we have

(8.2) flag) =

Let M be a non-negative integer and S' a finite set of pairs of quasi-characters of F'*. The set
B(S, M) will be the collection of f in B for which the sum in (8.2]) need only be taken over
those m, n, u, v for which m +n < M and (i, v) belong to S. Observe that the functions
fmnpu are determined by f. B is the union of the spaces B(S, M); if S consists of the single
pair (p1, o) we write B(pq, 2, M) instead of B(S, M). If fisin (pq, u2, M)

ay V2

flag) = |— pl(al)m(o@)Z(log\a1|)m(log\aﬂ)nfm,n(g).

The space B(p1, f12,0) is just B, i2).

The functions f, . are uniquely determined and by their construction belong to the
space spanned by left translates of f by elements of Ap. Thus if f belongs to B(S, M) so do
the functions f,, ... We want to verify that fyp,, belongs to B(u,v, M). If

(B O
b‘(o ﬁz)

and we replace a by ab in the relation (8.2]) we find that

061

05_2 Z,u O-/l (1/2 IOg|O[1|> <log|a2|)nfm,n,u,u(g)'

aq

Qo

Z/J, Oél 052 10g|061|) (10g|a2|)nfm,n,,u,u
is equal to

1/2
a1
a3

Z,u aifBi)v 04252)(10g\041’ + 10g’51’) (log|a2| + 10g|ﬁ2|)nfm,n,u,u<g)-
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Fix b and g and regard this equality as an identity in the variable a. Because of Lemma 8.1
we can compare the coefficients of the basic finite functions. The coefficient of p(aq)v(az) on
one side is fo,,,(bg). On the other it is

B |2
Ba

The resulting identity is the one we wanted to verify.

Taking a = 1 in (8.2)) we see that
Z fO O,u,

(p,v)es

Z B(p,v, M).

(p,v)ES

Z M(ﬁl)’/(@) (log‘ﬂl Dm (log|52 anm,n,u,u(g)-

m+n<M

Therefore

The sum is direct.
It is fortunately possible to give a simple characterization of B.

Proposition 8.3. Let ¢ be a continuous function on Gr. Assume ¢ is K-finite on the right
and invariant under Ng on the left. Then ¢ belongs to B if and only if the space

{p&fp| feHr}

18 finite-dimensional for every elementary idempotent in Hp.
We have first to show that if ¢ belongs to B

{pfe| feHr}

is finite-dimensional. Certainly ¢ belongs to some B(S, M). Both B and B(S, M) are invariant
under right translations by elements of Hr. Thus we have only to show that the range of
p(€) as an operator on B(S, M) is finite-dimensional. This is tantamount to showing that
any irreducible representation of K occurs with finite multiplicity in the representation of
B(S, M).

Let o be such a representation and let V' be the space of continuous functions on K which
transform according to o under right translations. V' is finite-dimensional. If f is in B(S, M)
we may write
aq

flag)|— Zu ar)v(ag) (loglas|)™ (loglaa])" fmmpuw(9)

The restriction of fi,,,,, to K lies in V. Call this restriction f
determined by its restriction to ApK. Thus

f — @ Tm,n,u,l/

(wv)€S
m+n<M

mmn e Moreover fis

is an injection of the space of functions under consideration into the direct sum of a finite
number of copies of V.

The converse is more complicated. Suppose ¢ is K-finite on the right, invariant under
Nr on the left, and the space

{P(gf)QO‘fGHF}
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is finite-dimensional for every elementary idempotent . Choose £ so that p(§)¢ = ¢. There
is actually a function f in EHpE such that p(f)p = ¢. If F' is non-archimedean ¢ is itself a
function so this is clear. If F'is archimedean we observe that if f; is an approximation to
the o-function then p(f1)p is close to ¢. Then if f| = & *x f; x £ the function f] is in {H R
and p(f])e is also close to ¢. The existence of f then follows from the fact that p(§HrE)e is
finite-dimensional. This argument was used before in Paragraph 5.

Take F' to be archimedean. Then ¢ must be an infinitely differentiable function on Gp.
Let 3 be the centre of the universal enveloping algebra of the Lie algebra of Gp. If Z is in 3
then

p(2)p = p(Z)p(f)p = p(Z x [
and Z x f is still in EHpE. Thus ¢ is also 3-finite. For the rest of the proof in the archimedean
case we refer to Chapter I of [11].

Now take F' non-archimedean. We may replace £ by any elementary idempotent & for
which '€ = ¢. In particular if we choose n to be a sufficiently large positive integer and let
K’ be the elements of K which are congruent to the identity modulo p™ we may take

E=> &

where the sum is over all elementary idempotents corresponding to irreducible representations
of K whose kernel contains K’. Notice that n is at least 1. Then {H g€ is the space of
functions on G which are constant on double cosets of K’.

Let V' be the space spanned by the functions p(k)y with &k in K. It is finite-dimensional
and all the functions in V' satisfy the same conditions as ¢. Let ¢;, 1 < i < p, be a basis of
V. If k belongs to K we may write

p(gk) = Zé’i(k)goi(g)

and ¢ is determined by the functions #; and the restrictions of the functions ¢; to Ar. To
show that ¢ is Ap-finite on the left we have merely to show that the restriction of each y; to
Ap is finite. We may as well just show that the restriction of ¢ to A is finite.

Suppose [ is in EHpE and p(f)e = ¢. If a is in Zp then

Ma)e = pla™")p = p(Ga-1 % f)g

if §,-1 is the d-function at a=!. Since d,-1 * f is still in EHpE the function ¢ is certainly

Zp-finite and so is its restriction ¥ to Ap. If @ and § are units and « = f =1 (mod p") then

()

Thus the translates of @ by the elements of Ay N K span a finite-dimensional space and if @
is a generator of p we have only to show that the translates of by the group

H:{(wop ) pez}




146 I. LOCAL THEORY

span a finite-dimensional space. Suppose the span W of

A((wop ?))@ p<0
(G )

maps W into itself and annihilates no vector but zero so that it has an inverse on W which

e (0

Thus W is invariant under H and 9 is finite.
To show that W is finite-dimensional we show that if

(=@ ? 0
““Lo 1
with p > 0 there is a function f, in {H €& such that

Ma)p =7
if ¢ = p(fa)p. There is an f in EHpE such that

elo) = [ elam ) an
for all g in Gp. Thus if b belongs to Ap F
N@R() = pla™D) = [ (b ) (1) dn
If fi(h) = f(ah) the integral is equal to F

/ (b1 f1 (1) dbh.
GFr

If fi were in EHpE we would be done. Unfortunately this may not be so. However
fi(hk) = fi(h) if k belongs to K'. If

is finite-dimensional. Then

then
fi(kh) = f wo‘pv “ ;5) ah>.
Thus fi(kh) = fi(h) if a =d =1 (mod p™), v

=0
falh) = /pn/pw f1<<(1) f)h) dz
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where the Haar measure is so chosen that the measure of the underlying space p"/p™*? is 1.
Since @(bnh) = ¢(bh) for all n in Np

Aa)p(b) = /G o (bh) fo(h) dh.

We show that f5 lies in EHpE.
Certainly fo(hk) = fo(h) if k is in K’. Moreover, because of its construction, fo(kh) =

fa(h) if
-6

with « =0 =1 (mod p") and =0 (mod p"). Since every element of K’ is a product

D06

where both terms lie in K’ we have only to show that f, is invariant under the first factor. If

1 0
k:<7 1)
1
(1 o0 ey 0
k1(l‘)<0 1+x7) <1+;W 1
1 z 1 ==
kl(a?)(o 1)k3=<0 1+1m>.

fi (/ﬁ(l")g) = fi(g)-

1 =z
kh|d
/pn/pn+p fl ((O 1> ) s
/ fi L lfm h | dx.
p/pnte 0 1

Since the map z — 5 o is a one-to-one map of the finite set p™/p™*? onto itself it is measure
preserving and the above integral is equal to fa(h).

Analyzing the above proof one sees that in the non-archimedean case the left translates
of ¥ are contained in the space X obtained by restricting the functions in p(EH &)y to Ap.
Thus if Y is the space of the functions on K/K’ the left translates of ¢ by elements of Ap
are contained in the space of functions on Np\Gp of the form

¢(ak) = bi(k)pila)

with v =0 (mod p™) and

then

Moreover if x is in Op

Thus fo(kg) which is given by

is equal to

with 6; in Y and ¢; in X.
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In the archimedean case Y is the space of continuous functions # on K for which
Ox&=Ex60=40. It is again finite-dimensional. X is defined in the same way. In this case
there are a finite number of invariant differential operators D1, ..., D, on Ag such that the
left translates of ¢ by elements of Ar are contained in the space of functions Ngp\Gp of the

form
= Z 0:(k)pi(a
with 6; in Y and ¢; in 377, D; X.

There is a corollary of these observations. Let F},..., F,, be a finite collection of local
fields. Let G; = G, N; = Np,, A; = Ap,, and let K; be the standard maximal compact
subgroup of G;. Weset G =[]/, G;, N =[], N; and soon. If H; = Hp, welet H = @), H..
Then H may be regarded as an algebra of measures on G.

Corollary 8.4. Let ¢ be a continuous function on N\G which is K-finite on the right. If
for every elementary idempotent & in H the space

{pfle|feHH}

is finite-dimensional @ is A-finite on the left.

If ¢ satisfies the conditions of the lemma so does any left translate by an element of
A. Thus we need only show that ¢ is A;-finite on the left for each i. If g is in G we write
g = (9, g;) where g; is in G; and g; is in G, = H#i G;. We may suppose that there is a £’ of
the form & = @), £/ where ¢ is an elementary idempotent of H; such that p(¢')¢ = ¢. By
means of the imbedding f — f® H#i £ the algebra H; becomes a subalgebra of H. The
left translates of ¢ by A; all lie in the space of functions of the form

a'zkzagl Ze ij azagl)

where the 6; lie in a certain ﬁmte—dlmensmnal space determined by &; and the ¢; lie in the

space obtained by restricting the functions in p(§H;)p to A; X @Z or, in the archimedean
case, the space obtained from this space by applying certain invariant differential operators.
Here &; is a certain elementary idempotent which may be different from &.

With the odds taken care of we come to the ends.

Proposition 8.5. Let B(ju,v,00) = Jy50 By, v, M). If an irreducible admissible repre-
sentation m of Hp is a constituent of the representation p(p,v,00) on B(u,v,00) it is a
constituent of p(u,v).

There are two invariant subspaces Vi and V3 of B(u, v, 00) such that V; contains V;, and
7 is equivalent to the representation on Hp on V;/Vs. Choose M so that Vi N B(u,v, M) is
not contained in V5. Since 7 is irreducible

Vi=Vo+ (V1 ﬂB(M,I/,M))
and
ViV = {Ve+ (6B on) } /v
is isomorphic as an ‘Hpr module to
Vi B(p, v, M)/Va O B(p, v, M)
so that we may as well suppose that V; is contained in B(u, v, M).
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Given 7 we choose M as small as possible. If M = 0 there is nothing to prove so assume
M is positive. If ¢ is in B(u, v, M) we can express

A6 2))

plan)v(a) > (loglan])™ (loglaal)" ema(9)

m+n<M

A )@ 2

in two ways because the second factor can be absorbed into the first or the third. One way
we obtain

as
(€51

(%)

We can express

ay 1/2 . n L
- Iu(Oﬂ)V(OéQ) Z (log!al\) (10g|062’) (Pm,n(<60 /?2)9>

Q2
m+n<M

and the other way we obtain

a1 By 12

e ploa fr)v (o) Z (logay| + log|B1])™ (log|az| + log| Ba) " Pmn(9)-

m+n<M

On comparing coefficients we see that if m +n = M

B 0 | B 12
SOm,n((O ﬁ2>g> - E

BV (B2) Pm.n(9)
so that ¢, , is in B(u, ). Consider the map

of V} into

Its kernel is V4 N B(u, v, M — 1). Since Vo + (Vi N B(p, v, M — 1)) cannot be V; the image of
V5 is not the same as the image of V;. Since the map clearly commutes with the action of
H r the representation  is a constituent of @, ,,_,, p(p, v).

Proposition 8.5 is now a consequence of the following simple lemma.

Lemma 8.6. Suppose w is an irreducible representation of an algebra H. Suppose p s
a representation of H of which m is a constituent and that p is the direct sum of the
representations py, A € A. Then w is a constituent of at least one of the py.

Let py act on X, and let p act on X the direct sum of X,. Suppose that Y; and Y, are
invariant subspaces of X and that the representation on the quotient Y7 /Y5 is equivalent to
7. There is a finite subset Ay of A such that

vinfy X

AEAg
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is not contained in Y;. We may as well replace Y; by Y] N (Z,\er X)\> and Y5 by Yo N

<Z/\€AO X,\> and suppose that A is finite. If A = {\y, ..., \,} we have only to show that 7 is

a constituent of py, or of py, @ --- @ py, for we can then use induction. Thus we may as well
take p = 2. If the projections of ¥} and Y5 on X, are not equal we can replace Y; and Y5 by
these projections to see that 7 is a constituent of p,,. If they are equal Y1 =Y, + (Y1 N X))
and we can replace Y7 and Y5 by Y1 N X, and Y, N X, to see that 7 is a constituent of p,,.
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CHAPTER II

Global Theory

§9. The global Hecke algebra

Let I be a global field, that is, an algebraic number field of finite degree over the rationals
or a function field in one variable over a finite field. A will be the adele ring of F'. Before
studying the representations of GL(2, A) or, more precisely, the representations of a suitable
group algebra of GL(2, A) we introduce some simple algebraic notions.

Let { V) | A € A} be a family of complex vector spaces. Suppose that for all but a finite
number of A\ we are given a non-zero vector ey in V. Let V? be the set of all 7 = [[,zxin
I1 , Vi such that zy = ey for all but a finite number of A\. Let C' be the free vector space with
complex coefficients over VY and let D be the subspace generated by vectors of the form

(aY, +0Z,) x Hx)\ —aq Y, X Hx)\ —bg 2, X Hx,\
AFp AFp AFp
a and b belong to C and p is any element of A. The quotient of C' by D is called the tensor
product of the V) with respect to the family e, and is written

V=)V
ex

or simply &) V). It has an obvious universal property which characterizes it up to isomorphism.
The image of [[zy in V is written @) zy.
If A’ is a subset of A with finite complement we may form the ordinary tensor product

and we may form

AEN
with respect to the family ey. Then &),., V) is canonically isomorphic to

Q) VipeiXW

AEA-N/ AEN

Vs = QA

AesS
If S is so large that e, is defined for A not in S let ¢g be the map of Vg into V' which sends
Qs 2r to {Rycga} @ {®)\¢S ex}. If S’ contains S there is a unique map pg s of Vg into
Vs which makes

If S is a finite subset of A let

153
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Ve —2 5 VL
AN
v

commutative. If we use these maps to form the inductive limit of the spaces Vs we obtain a
space which the layman is unable to distinguish from V.

Suppose that for every A\ we are given a linear map B, of V) into itself. If Byey = e, for
all but a finite number of A there is exactly one linear transformation B of () V), such that

B : ®£L‘,\ — ®B)\£L')\
B is denoted by @ B,.

For example if Ay, A € A is a family of associative algebras, which may or may not have
a unit, and if, for almost all A, £, is a given idempotent of A, one may turn

A:@AA
13N

into an algebra in such a way that

<® a,\> (® b)\> = ®(a,\b,\).

Let V\, A € A, be an A, module. If for almost all A\ a vector ey such that ey = e, is
given we may turn V' =, Vj into an A = ), Ay module in such a way that

(@) (@) - o

Suppose the family {e,} is replaced by a family {e)} but that, for all but a finite number of
A, €\ = ajey where a, is a non-zero scalar. Suppose for example that €} = ayey if A is not
in the finite set S. There is a unique map of &), Vi to ®6& V\ which sends

®x)\ ® ®x,\

AesS ¢S
to

®l‘,\ & ®Oé)\£€,\

Aes ¢S
It is invertible and commutes with the action of A. Moreover apart from a scalar factor it is
independent of S.

Now suppose F is a global field. A place of F'is an equivalence class of injections, with
dense image, of F' into a local field. If A\ takes F' into F; and A, takes F' into Fy they are
equivalent if there is a topological isomorphism ¢ of F} with F, such that Ao = ¢ o A;. The
symbol for a place will be v. If v contains the imbedding \; and a belongs to F' we set
lal, = !Al(a)‘. To be definite we let F, be the completion of F' with respect to the absolute
value a — |al,. Where v is archimedean or non-archimedean according to the nature of F,.
Non-archimedean places will sometimes be denoted by p.

If Gp = GL(2, F) we set

G, = Ggr, = GL(2, F,).
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The group K, will be the standard maximal compact subgroup of G,. Then Gao = GL(2,A)
is the restricted direct product of the groups G, with respect to the subgroups K,.

If v is non-archimedean we set O, = Op, and U, = Up,. O, is the ring of integers of
F, and U, is the group of units of O,. Suppose M’ is a quaternion algebra over F. Let
M), = My = M' ®p F,. For almost all v the algebra M is split, that is, there is an
isomorphism

0,: M — M(2,F,)

where M (2, F,) is the algebra of 2 x 2 matrices over F,. For every place v at which M/ is
split we want to fix such an isomorphism 6,. Let B be a basis of M over F' and let L, be the
O, module generated in M, by B. We may and do choose 6, so that for almost all v

gv(Lv) = M(2> Ov)

If B’ is another basis and {0)} a family of isomorphisms associated to B’ then for every
place v at which M} splits there is a g, in GL(2, F,,) such that

9;‘9—10’ = gvagv_l

v

for all a in M (2, F,,)). Moreover g, belongs to K, for all but a finite number of v.
Suppose the family of isomorphisms 6, has been chosen. If M, is split we define a maximal
compact subgroup K of G/, the group of invertible elements of M, by the condition

0,(K)) = K,.
If M is not split we set
K = {x e M, | |v(x)], =1 }

This group is compact. In any case K/ is defined for all v. Since many of the constructions
to be made depend on the family K/, which in turn depends on the family of 6, it is very
unfortunate that the family of 6, is not unique. We should really check at every stage of the
discussion that the constructions are, apart from some kind of equivalence, independent of
the initial choice of #,. We prefer to pretend that the difficulty does not exist. As a matter of
fact for anyone lucky enough not to have been indoctrinated in the functorial point of view it
doesn’t. We do however remark that any two choices of the family of K] lead to the same
result for almost all v. The adelic group G, is the restricted direct product of the groups G/,
with respect to the subgroups K.

We have now to introduce the Hecke algebras H and H' of Ga and G'5. Let H, be Hp,.
If M is split G, isomorphic, by means of 6,, to G, and we let H/ be the algebra of measures
on G corresponding to H,. Suppose M is not split. If v is non-archimedean ! is the
algebra of measures defined by the locally constant compactly supported functions on G.
If v is archimedean H! will be the sum of two subspaces, the space of measures defined by
infinitely differentiable compactly supported functions on G’ which are K/-finite on both
sides and the space of measures on K defined by the matrix coeflicients of finite-dimensional
representations of K.

Let €, and €, be the normalized Haar measures on K, and K. The measure €, is an
elementary idempotent of H, and € is an elementary idempotent of H,. We set

H=Q)H,
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H=Qmn,

If S is the finite set of places at which M does not split we may write

and

H=S QR Hop @ RQHy g =H.@H,

vES vgS

and

H=SQRH, p @ QRQH, p =H., & H,
veES v¢S
By construction, if M, is split, H, and H. are isomorphic in such a way that €, and €
correspond. Using these isomorphism we may construct an isomorphism of ﬁs and ’;Q’S We
may also write

Ga=<]]6G.¢ xS]]G. =Gy x Gg
veS vgS
and

Ga=<[]6G. ¢ xS T] G,y =G5 x Gs.
veES v¢S
The second factor is in both cases a restricted direct product. There is an isomorphism

6 : @’S — G, defined by

vgS vgS

We will interpret 7:[\5 and ﬁg as algebras of measures on @g and @’S and then the isomorphism
between them will be that associated to 6.

We can also interpret the elements of H and H' as measures on G and G'5. For example
any element of #H is a linear combination of elements of the form f = Q) f,. Let T' be a
finite set of places and suppose that f, = €, for v not in T". If 77 contains T', on the group

GA(T’) = H Gv X H Kv

vel” vgT’

we can introduce the product of the measures f,. Since G4 is the union of these groups and
the measures on them are consistent we can put the measures together to form a measure f
on Gp. If each f, is the measure associated to a function then f is also. Such measures form
a subalgebra H; and H.

The notion of an elementary idempotent of H or H' is defined in the obvious way. If £
is an elementary idempotent of H there is another elementary idempotent & of the form
& =@, & where §, is an elementary idempotent of H, and &, = ¢, for almost all v so that
&&= ¢&.

We shall now discuss the representations of H. A representation 7 of H on the vector
space V over C will be called admissible if the following conditions are satisfied
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(i) Every w in V is a linear combination of the form > w(f;)w; with f; in #;.
(ii) If € is an elementary idempotent the range of 7(§) is finite-dimensional.
(iii) Let vy be an archimedean place. Suppose that for each v an elementary idempotent
&, is given and that &, = €, for almost all v. Let £ = @), &,. If wis in V' the map

fo =7 fo @S Q)& o |w
v#£v0

of &y, Hoy&u, into the finite-dimensional space 7w(£)V is continuous.

Suppose that an admissible representation 7, of Hy on V,, is given for each v. Assume that
for almost all v the range of m,(¢,) is not zero. Assume also that the range of m,(e,) has
dimension one when it is not zero. As we saw in the first chapter this supplementary condition
is satisfied if the representations 7, are irreducible. Choosing for almost all v a vector e,
such that m,(e,)e, = e, we may form V' = ), V,. Let 7 be the representation ), 7, on V.
Because of the supplementary condition it is, apart from equivalence, independent of the
choice of the e,.

The representations m will be admissible. To see this observe first of all that condition (i)
has only to be verified for vectors of the form w = @), w,. Suppose w, = e, when v is not in
the finite set T" which we suppose contains all archimedean places. If v is not in T' let f, = ¢,
so that w, = w(f,)w,. I[f visin T let

wo= (i,
Then

w = @Zm(fé)wi ® ®7T(fv>w”

veT vg¢T

Expanding the right hand side we obtain the desired relation. The second condition has only
to be verified for elementary idempotents of the form ¢ = @), & . Then

T(€)V = Qm(E)Vs

Since 7(&,)V, is finite-dimensional for all v and 7 (&,)V, = m(e,)V,, which has dimension
one, for almost all v the right side is finite-dimensional. The last condition results from the
admissibility of 7.

Certainly 7 cannot be irreducible unless each 7, is. Suppose however that each m, is
irreducible. If £, is an elementary idempotent of H, and if 7,(&,) # 0 we have a representation
e, of &H,E, on m,(&,)V,. Since it is irreducible 7, determines a surjective map

g, - €vHv€v — L(év)

if L(&,) is the ring of linear transformations of V(¢,) = m,(&,)V,. To show that 7 is
irreducible we have only to show that for every elementary idempotent of the form & = @), &,
the representation of {HE on V(€) = w(£)V is irreducible. Suppose that £, = €, if v is not in

T. Then
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is isomorphic to @, V(& ). The full ring of linear transformations of this space is

X L&)

veT
and therefore the full ring of linear transformations of V'(¢) is

QL&) p © Qe

veT vg¢T

This is the image under 7 of

® €UH'U§’U ® ® E’U

veT vgT

which is contained in EHE.
An admissible representation equivalent to one constructed by tensor products is said to
be factorizable.

Proposition 9.1. Every irreducible admissible representation of H is factorizable. The
factors are unique up to equivalence.

Suppose 7 is such a representation. Let I be the set of elementary idempotents of the
form £ = @&, for which 7(€) is not 0. [ is certainly not empty. Let V(§) = n(§)V if V
is the space on which 7 acts. If £ and & are elementary idempotents we write £ < &' if
¢ = & Then & will also equal €. If £ = @&, and & = Q& then £ < £ if and only
if £, = ¢& =&, for all v. If € < & and £ belongs to I so does £'. Moreover £HE is a
subalgebra of {'HE'. Let (&', €) be the corresponding injection and let L(£) and L(£') be the
spaces of linear transformations of V(§) and V' (¢'). There is exactly one map

(€, €) + L(§) — L(£)

which makes

eme 29 (¢ )

ng lﬁg/
(3E9)
L(&) = L(€)
commutative.
There is a map of &, H,&, into EHE which sends f, to f, ® {®w Lo fw}. Composing this

map with m¢ we obtain a map m¢ of {,H,§, onto a subalgebra L, (§) of L(§). L(§) and L,(§)
have the same unit, namely 7¢(§). If v # w the elements of L,({) commute with those of
L,(§). If we form the tensor product of the algebras L,(§) with respect to the family of
units there is a map from ), L,(§) to L(§) which sends @), A, to [[, A\,. Moreover we may
identify @), &, Ho&, and EHE. Since the diagram

®v SUva’U E— ng

®, 7t ¢

Q. L&) 25 Lg)
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is commutative the bottom arrow is surjective.

Lemma 9.1.1. The algebras L, (&) are simple and the map @), L,(§) = L(§) is an isomor-
phism.

To show that L,(§) is simple we need only show that the faithful L,(§)-module V()
is spanned by a family of equivalent irreducible submodules. Let M be any irreducible
submodule. Then the family {T'M} where T runs over the image of 1, ® {®w Lo Lw(f)}

spans V(&) and each T'M is 0 or equivalent to M because T' commutes with the elements of
L,(§). The element 1, is the unit of L,(§). We have only to show that &, L,(§) — L(§).
Since @), L,(&) is the inductive limit of &), ., Ly (&), where T is a finite set, we have only to
show that the map is injective on these subalgebras. As they are tensor products of simple
algebras they are simple and the map is certainly injective on them.

If £ < & there is a commutative diagram

®, &Moo “% ®, 6.8,

| |

&), Lo(§) S

| |

Le) —9 5 1)

Moreover if ¢,(&', €) is the imbedding of §,H,&, into & H,&, then «(,€) = @), (£, ). We
want to verify that a horizontal arrow @), ¢, (&', §) can be inserted in the middle without
destroying the commutativity. To do this we have only to show that if f, is in {,H,§, and
therefore in &, H,§, then 7¢(f,) = 0 if and only if 7{(f,) = 0. Let U = 7¢(f,) and let

T =mi(f,) I

E:ﬂ'g/ f:,@ ®£w

wWH#V
then

TE=me | fo® 4 Qbu
w#v

is determined by its restriction to V(§) and that restriction is U.
It is clear that if S is a sufficiently large finite set the map @, g Lw(§') = L(£') is an

isomorphism. We suppose that S contains v. E belongs to the image M of 1 ®{®w 4o Lw(gf)}.

Since M is simple and E is not 0 there are A;, B; 1 < i < r in M such that
Z AEB; =1
i=1

Thus

and T'= 0 if and only if U = 0.
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Since the necessary compatibility conditions are satisfied we can take inductive limits,
over I, to the left and right. The inductive limit of the {HE is ‘H and that of the £, H &,

is H,. Let L, be that of L,(§) and L that of L(§). There is a map n” : H, — L, and, for
almost all v, 7¥(€,) = p, is not zero. We have a commutative diagram

QH, — H

ol |

R, L, — L

in which the rows are isomorphisms. Moreover L acts faithfully on V' and the representation
of H on V can be factored through L.

If Ais an algebra with a minimal left ideal J then any faithful irreducible representation
of A on a vector space X is equivalent to the representation on .J. In fact we can choose x
in X so that Jxg # 0. The map j — jxg of J to X gives the equivalence. Thus to prove
that 7 is factorizable it will be enough to show that L has a minimal left ideal, that the
representation of L on this minimal left ideal is a tensor product of representations o, of L,,
and that o, o 7" is admissible.

Suppose A is a simple algebra and J is a left ideal in A. If ¢ in A is not 0 and aJ =0
then AaAJ = AJ = 0. If J is not 0 this is impossible. Suppose e is an idempotent of A
and A; = eAe. Let J; be a minimal left ideal of A; and let J = AJ;. If J were not minimal
it would properly contain a non-zero ideal J’. Moreover J' N A; would have to be 0. Since
Je = J we must have eJ = eJe = 0. Since this is a contradiction J is minimal. Suppose for
example that A is the union of a family {A4,} of matrix algebras. Suppose that for each A
there is an idempotent ey in A such that A, = eyAey and that given A\; and Ay there is a
Az such that Ay, contains A, and A,,. Then A is certainly simple and, by the preceding
discussion, contains a minimal left ideal.

The algebras L and L, satisfy these conditions. In fact, speaking a little loosely, L is
the union of the L(§) and L, is the union of L,(£). Choose £ so that V(£) # 0 and let J,
be a minimal left ideal in L,(§). Since L,(§) is one-dimensional for almost all v the ideal
Jy = L,(§) for almost all v. Thus J = ) J, exists and is a minimal left ideal of L(§). Thus
LJ =@ L,J,. LJ is a minimal left ideal of L and L,.J, is a minimal left ideal of L,. The
representation of L on LJ is clearly the tensor product of the representations o, of L, on
L, J,.

Thus 7 is equivalent to the tensor product of the representations m, = o, o 7¥. The
representations m, are irreducible. Since it is easily seen that a tensor product (), is
admissible only if each factor is admissible we may regard the first assertion of the proposition
as proved.

If 7 is an admissible representation of H on V and v is a place we may also introduce a
representation of #H, on V' which we still call 7. If u is in V' we choose { = ), & so that
m(&)u = u. Then if f belongs to H, we set

m(Nu=7| &% @ Qbw ¢ |u

wWHv

The second part of the proposition is a consequence of the following lemma whose proof is
immediate.
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Lemma 9.1.2. Suppose m = ), mw. Then the representation w of H, is the direct sum of
representations equivalent to m,.

Let S, be the set of archimedean primes. Omne can also associate to an admissible
representation 7 of H on V a representation of G s,, the group formed by the elements of
G 4 whose components at every archimedean place are 1, on V. If v is archimedean one can
associate to m a representation of 2,, the universal enveloping algebra of the Lie algebra
of G,, on V. Finally 7 determines a representation of the group Z, of scalar matrices in
GL(2,A). If 7 is irreducible there is a quasi-character n of I the group of ideles such that

W((S 2)) — n(a)l

for all ain I. If 7, is associated to 7, and m = @), 7, then 7 is associated to the quasi-character

71 defined by
n(a) = [ (@)

One may define the contragredient of 7w and the tensor product of = with a quasi-character
of I. All the expected formal relations hold. In particular 7 is equivalent to n~! @ 7 if 7 is
irreducible.

The above discussion applies, mutatis mutandis, to the algebra H’. The next proposition,
which brings us a step closer to the theory of automorphic forms, applies to H alone.

Proposition 9.2. Let m = Q) m, be an irreducible admissible representation of H. Suppose
that 7, is infinite-dimensional for all v. Let v be a non-trivial character A/F. There is
exactly one space W (m, ) of continuous functions on Ga with the following properties:

(i) If W is in W (m, ) then for all g in Ga and all x in A

W((é f)g) — v@)W(g)

(i) The space W (mw, 1) is invariant under the operators p(f), f € H, and transforms
according to the representation m of H. In particular it is irreducible under the action
of H.

(#i) If F' is a number field and v an archimedean place then for each W in W (mw, 1)) there
15 a real number N such that

W(<g g’)) = 0(jal")

In the last assertion F* is regarded as a subgroup of I. Fj is a subgroup of A and
the restriction v, of ¥ to F, is non-trivial. Thus for each place v the space W (m,,1,) is
defined and we may suppose that 7, acts on it. Moreover for almost all v the largest ideal
of F,, on which 1, if trivial is O, and m, contains the trivial representation of K,. Thus by
Proposition 3.5 there is a unique function ¢? in W (m,,,) such that ¢%(g,k,) = ©°(g,) for
all k, in K, and ¢%(I) = 1. Then ©%(k,) = 1 for all k, in K,. The representation 7 acts on

® W(ﬂ_va wv)
©)

as a — 00 in F.
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If g is in Ga and @ ¢, belongs to this space then ¢,(g,) = 1 for almost all v so that we can
define a function ¢ on G by
o(g) =[] eolov)-

The map ) v, — ¢ extends to a map of & W(m,,1,) into a space W (m, 1) of functions on
Ga. W(m, ¢) certainly has the required properties. We have to show that it is characterized
by these properties.

Suppose I is another space with these properties. There is an isomorphism 7T of
Q W (my, ) and 9t which commutes with the action of H. All we have to do is show that
there is a constant ¢ such that if ¢ = ) ¢, then

Te(g) = c] [ ¢ulg0).

Let S be a finite set of places and let
Ws = Q)W (m, ¢0)

veS
and -
WS = ® W(”v; wv)
v S
Then

®W(7TU777Z}’U> = WS X WS

We first show that if S is given there is a function cg on @S X WS such that if

with ¢ in /WS then

if g is in Gg and h is in @S.
Suppose that S consists of the single place v. If ¢ belongs to Wg and h belongs to Gg
associate to every function ¢, in W(m,,,) the function

90;(91;) = f(gvh)

on G,. The function f is T'(¢, ® ¢). By construction, if ¢, is replaced by p(f,)p, with f, in
H, the function ¢! is replaced by p(f,)¢.. Moreover if x is in F,

@L(((l) ”f)gv> — B @)el9)

Since any conditions on rates of growth can easily be verified we see that the functions ¢/
are either all zero or they fill up the space W(m,,,). In both cases the map ¢, — ¢, is a
map of W (m,,1,) into itself which commutes with the action of H, and therefore consists
merely of multiplication by a scalar cg(h, ¢).



§9. THE GLOBAL HECKE ALGEBRA 163

Now suppose that S’ is obtained by adjoining the place w to S and that our assertion is
true for S. Take A in GS/ and ¢ in WS/ If

F=TI{ Qe @v

veS!
then, for g in Gg, and g, in Gy,
F(gguh) = cs(guh, ouw @ ) [ [ @o(90)-

veES
The argument used before shows that for a given h and ¢ the function

Guw — CS(gwh> Puw & 90)

is a multiple cg/(h, @) of @,.
To prove the existence of ¢ we observe first that if S is the disjoint union of S; and S5 we

may write any hy in @& as hy = h]],cq, Mo With h in @S. Suppose p; = {®0652 <pv} ®
with ¢ in W\S is in Wsl- Then

(9.2.1) csi(hspr) = S [ eolho) pes(h, o)
vES?

because the right hand side has all the properties demanded of the left. If S; is large enough
that ¢? exists for v not in S then, by its definition, cg, (h, Q.es, 302) has a constant value

c(S1) on

11 %

v¢ Sy
The formula shows that ¢(S) = ¢(S1) if S contains S;. We take ¢ to be the common
value of these constants. Given ¢ = @) ¢, and g = [] g, we choose S so that ¢, = ¢? and
gv € K, for v not in S. Then

g =c|[[o- &0 | []2v(50)

vgS vgS veS
=cC H Po (gv)'

We observed that if , is finite-dimensional the space W (m,,,) cannot exist if v is
non-archimedean or real. Although we neglected to mention it, the argument used for the
real field also shows that W (m,,1,) cannot exist if v is complex. The proof of Proposition 9.2
can therefore be used, with minor changes, to verify the next proposition.

Proposition 9.3. If 1 = @, is given and if one of the representations m, is finite-
dimensional there can exist no space W (m, 1) satisfying the first two conditions of the previous
PTroposition.
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An admissible representation 7 of H on the space V' is said to be unitary if there is a
positive definite hermitian form (v1,vy) on V such that, if f*(g) = f(g~!),

(W(f)vlﬂb) = (Ulaﬂ(f*)"b)
for all f in H.

Lemma 9.4. If 7 is unitary and admissible then V is the direct sum of mutually orthogonal
wnwvariant irreducible subspaces.

The direct sum of the lemma is to be taken in the algebraic sense. We first verify that if
V] is an invariant subspace and V5 is its orthogonal complement then V' = V; @ V5. Certainly
ViNVy =0. Let £ be an elementary idempotent and let V' (§), Vi(§), Vo(§) be the ranges
of 7(€) in V, Vi, and V. Let V5(€) be the range of 1 — 7(€) acting on V4. Then V(£) and
Vi (€) are orthogonal and
Vi=Vi(&) @ Vi ().
Thus V3(€) is just the orthogonal complement of V;(£) in V(). Since V() is finite-dimensional

V(&) = Vi(§) ® Va().

Since every element of V' is contained in some V(§) we have V =V} + V4.
To complete the proof we shall use the following lemma.

Lemma 9.4.1. If 7w is a unitary admissible representation of H on the space V then V
contains a minimal non-zero invariant subspace.

Choose an idempotent ¢ so that V(§) = w(&§)V # 0. Since V() is finite-dimensional
amongst all the non-zero subspaces of it obtained by intersecting it with an invariant subspace
of V there is a minimal one N. Let M be the intersection of all invariant subspaces containing
N. If M is not irreducible it is the direct sum of two orthogonal invariant subspaces M; and
Ms. Then

N = MAV(E) = (&M = n(€) My & (€)M
The right side is
{MinV(©)} e {MNV(E)}
so that one of M; NV (§) and My NV(§) is N. Then M; or M, contains M. This is a
contradiction.

Let A be the set consisting of families of mutually orthogonal invariant, and irreducible
subspaces of V. Each member of the family is to be non-zero. Let {V)} be a maximal
family. Then V = @, V). If not let V; = @, V). The orthogonal complement of V; would
be different from zero and therefore would contain a minimal non-zero invariant subspace
which when added to the family {V,} would make it larger.

If Tisa finite set of places most of the results of this paragraph are valid for representations
7 of HT For example 7 is factorizable and W (m, 1) exists as a space of functions on GT
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§10. Automorphic forms

In this paragraph F' is still a global field. We shall begin by recalling a simple result from
reduction theory. If v is a place of A and a is in A then |al, is the absolute value of a, the
vth component of a. If a is in [

jal = [ [lal.

Lemma 10.1. There is a constant ¢y such that if g belongs to Ga there is a v in G for
which

Hmax{]c\v, |d],} < coldet g|/?

a b
79:<C d>

If F'is a number field let Op be the ring of integers in F' and if F' is a function field take
any transcendental element = of F' over which F' is separable and let Op be the integral
closure in F of the ring generated by 1 and x. A place v will be called finite if |a|, < 1 for all
a in Op; otherwise it will be called infinite. If S is a finite set of places which contains all the
infinite places let

AS)={acA|la, <1ifv¢g S}
I(S)={ael]|lal,=1ifv¢S}
Then A = F + A(S) and if S is sufficiently large I = F*I(S). We first verify that if
I = F*I(S) then
Ga = GrGags)

where Ga(sy = GL(2, A(S)). If v is not in S then v is non-archimedean and we can speak of
ideals of F,. Any element of Ga may be written as a product

=5 2)( )

in which the second factor belongs to
K =]]X.

and therefore to G'z(s). It will be sufficient to show that the first factor is in GrGa(s). If
a = ajag and v = 172 with oy and 47 in F* and ay and s in 1(5)

a B\ (o 0\[(1 B/aay) (o O

0 v/ \0 m/)\0 1 0 7
The first factor is in G and the third in Ga(s). Since %72 belongs to F'+ A(S) the second
factor is in GrpGa(s) and the assertion follows.

There is certainly a v in O such that |u|, < 1 at all finite places in S. Enlarging S if
necessary we may assume that a finite place v belongs to S if and only if |u|, < 1. Then

FmA(S):{im

u

a:EOF,mEZ}.
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We identify the prime ideals of Or with the places corresponding to them. By the theory of
rings of quotients the proper ideals of F'N A(S) are the ideals of the form

(FrAs) []om
pES
Since I = F*I(S) every such ideal is principal. Thus F' N A(S) is a principal ideal domain.
To prove the lemma we show that there is a constant cq such that if g belongs to G a(s)
there is a v in Gpna(s) such that

Hmax{\dv, |d],} < coldet g|/?

veS
a b
9=\ a)

Fix a Haar measure on the additive group A(S). This determines a measure on A(S) @
A(S). The group L = (FNA(S)) ® (FNA(S)) is a discrete subgroup of A(S) ® A(S) and
the quotient A(S) @ A(S)/L is compact and has finite measure c;. If g belongs to G a(s) the
lattice Lg is also discrete and the quotient A(S) @ A(S)/Lg has measure c;|det g|.

Suppose (m,n) = (u, v)g belongs to Lg. If a # 0 belongs to F'N A(S) then

Hmax{|am|v, lan|, } = H\a|v Hmax{]ch,, d|,} |

vES veES veS
Since

1=[Jlal. = { TTalo | { [Tlal

v vES vgS

the product [ .c|al, is at least 1 and

Hmax{|am|v, lan|, } > l_ImauX{|m|v7 Inf,}.

vES vES
Let R be a positive number and consider the set

veS

E =< (m,n) € Lg Hmax{|m|v, Inl,} <R .

veES

The previous inequality shows that if E contains a non-zero element of Lg it contains one
(m,n) = (u,v)g for which p and v are relatively prime. Then we may choose xk and A in

FNA(S)sothat kv — A= 1. If
(KA
=y v

a b
'Yg_(c d)

then v belongs to G N A(S) and if
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then ¢ = m and d = n so that
H max{|c|,, |d], } < R.
vES
To prove the lemma we have to show that there is a constant ¢ such that if g is in Ga(s)

and R = cy|det g|'/? the set E is not reduced to {0}. We will show in fact that there is a
constant cp such that for all g there is a non-zero vector (m,n) in Lg with

1
sup max{|m/,, [n|,} < cs|det g|2
veS

if 5 is the number of elements in S. There is certainly a positive constant c3 such that the
measure of

{ (m,n) € A(S)® A(S)

sup max{|mly, [n|,} <R }
veS

is, for any choice of R, at least c3R?*. Choose ¢ so that
1

C %
Co > 2(—1) .
C3

If Lg contained no non-zero vector satisfying the desired inequality the set

{(m,n) cA, D Ag

C: 1
supmax{|m|v, |n|v} < §2|detg|% }
veS

would intersect none of its translates by the elements of Lg. Therefore its measure would not
be changed by projection on A(S) & A(S)/Lg and we would have

Cs 2s
€1 <63 5
which is impossible.

Choose some place v of F' which is to be archimedean if F'is a number field. If ¢ is any
positive constant there is a compact set C' in I such that
{aecl]|lal>c}
is contained in
{abla€ FS |a| >cbeC}
If wy is a compact subset of A, wy a compact subset of I, and ¢ a positive constant we may
introduce the Siegel domain & = &(wy,ws, ¢, v) consisting of all

()G (8 9

with z in wy, ain I, b in we, by in F* with |by| > ¢, and k in K. Then Z,6 = &. If we use
the Iwasawa decomposition of G5 to calculate integrals we easily see that the projection of
S on Za\Ga has finite measure. Moreover it follows readily from the previous lemma that,
for a suitable choice of wq, ws, and ¢,

Ga = GFrG.

Thus ZaoGr\Ga has finite measure.
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Let ¢ be a continuous function on Gr\Ga. If it is Z-finite the space V' spanned by the
functions p(a)y, a € Za, is finite-dimensional. We may choose a finite set of points gy, ..., g,
and a basis ¢1, ..., ¢, of V so that ¢;(g;) = d;;. Then

pla)p = Z Xi(a)g:.

Since A;(a) = p(ag;) the function \; are continuous and finite as functions on Z or Zp\Za.
Since Zp\Za is isomorphic to F*\I it satisfies the hypothesis of Lemma 8.1 and ), is a finite
linear combination of functions of the form

A((g 2)) = x(a) (log|a])"

where x is a quasi-character of F*\I.
A continuous function ¢ on Gr\Ga which is Za-finite will be called slowly increasing if
for any compact set €2 in Ga and any ¢ > 0 there are constants M; and M; such that

a 0
S"((o 1)9) < Mofa[*

for g in ©, a in I, and |a| > c. If such an inequality is valid, with suitable choice of My, for
any M, we will say, for lack of a better terminology, that ¢ is rapidly decreasing.

Suppose ¢ is a continuous function on Gr\Ga. Assume it is K-finite on the right and
that for every elementary idempotent £ in H the space

{pNHe| feH}

is finite-dimensional. An argument used more than once already shows that there is a £ and
an f in {H1€ such that p(f)e = ¢. If a belongs to Za

pla)p = p(da s [y
so that ¢ is Za-finite. Thus we can make the following definition.

Definition 10.2. A continuous function ¢ on Gp\Ga is said to be an automorphic form if

(i) It is K-finite on the right.
(i) For every elementary idempotent £ in H the space

{pfe| feHr}
18 finite-dimensional.
(i0) If F' is a number field & is slowly increasing.

We observe, with regret, in passing that there has been a tendency of late to confuse the
terms automorphic form and automorphic function. If not the result it is certainly the cause
of much misunderstanding and is to be deplored.

Let A be the vector space of automorphic forms. If ¢ is in A and f is in H then p(f)yp is
in A so that H operates on A. A continuous function on ¢ on Gr\G, is said to be cuspidal

if /F\A<p<((1) f)g)dx:o
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for all g in Gao. An automorphic form which is cuspidal is called a cusp form. The space A,
of cusp forms is stable under the action of H.

Proposition 10.3. Let F' be a function field and let ¢ be a function on Gp\Ga. If @ satisfies
the following three conditions it is a cusp form.
(i) ¢ is K-finite on the right.
(i) ¢ is cuspidal.
(iii) There is a quasi-character n of F*\I such that

@((3 2)9) = n(a)p(9)

If £ is an elementary idempotent of H there is an open subgroup K’ of K such that ¢ is
invariant under translations on either side by the elements of K’. Therefore the functions
p(&f)p are invariant under right translations. To prove the proposition we show that if K’ is
a given open subgroup of K and 7 is a given quasi-character of F*\I then the space V of all
continuous functions ¢ on Gp\Ga which are cuspidal and satisfy ¢(gk) = ¢(g) for all k in

K’ as well as
w((g 2) g) = 1(a)e(9)

for all @ in F*\I is finite-dimensional.
We shall show that there is a compact set C in G such that the support of every ¢ in
V' is contained in GpZzC'. Then the functions in V' will be determined by their restrictions
to C. Since C is contained in the union of a finite number of left translates of K’ they will
actually be determined by their values on a finite set and V' will be finite-dimensional.
Choose a Siegel domain & = &(wq,ws, ¢, v) so that Go = Gp6&. If

o {0 1) s

we have just to show that the support in & of every ¢ in V' is contained in a certain compact
set which is independent of ¢. In fact we have to show the existence of a constant ¢; such

that ¢ vanishes on
1 )\ [(bby O 2
01 0 1

as soon as |b1| = c¢;. Let ky,...,k, be a set of representatives of the cosets of K/K' and let
vi(g) = p(gk;). If k belongs to k; K’ then p(gk) = ¢i(g) and it will be enough to show that
there is a constant ¢y such that, for 1 <i < n,

66 D) -

if = belongs to A and |a| > ¢. It is enough to show this for a single, but arbitrary, ¢;. Since
; satisfies the same hypothesis as ¢, perhaps with a different group K’, we just prove the
corresponding fact for ¢.

We use the following lemma which is an immediate consequence of the theorem of
Riemann-Roch as described in reference [10] of Chapter I.

for all a in I.

wal,bEwQ,bleFvX,|b1\ EC,ICEK}
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Lemma 10.3.1. Let X be an open subgroup of A. There is a constant ¢y such that A =
F +aX if a belongs to I and |a| > cs.

Ly

01

606 D) -6 D6 D)
G D6 D) ()

if z is in aX. The equation also holds for z in F' and therefore for all z in A if |a| > ¢;. Then

{5 b O )

which by assumption is zero.
There is a corollary.

belongs to K’. Since

we have

Proposition 10.4. Suppose ¢ is a cusp form and for some quasi-character n of F*\I

w((g 2)9) = n(a)p(9)

for all a in I. Then ¢ is compactly supported modulo GrZa. Moreover the function
a 0
a—=elly 1

The first assertion has just been verified. We know moreover that there is a constant ¢

such that
a 0
“Ilo 1
B 0 1
=110

and ¢'(g) = p(gw) then ¢’ is also a cusp form. Since

AG D) =o(e6 )=l (3 9)

there is also a constant ¢; such that it vanishes for |a| < ¢;.

on F*\I is compactly supported.

is 0 for |a| > c. If
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Proposition 10.5. Let F' be a function field and n a quasi-character of F*\I. Let Ao(n) be
the space of cusp forms ¢ for which

w((g 2)9) = 1(a)¢(9)

for all a in I. The representation of H on Ag(n) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

The proof of Proposition 10.3 showed that the representation 7 of H on Ay (n) is admissible.

Let n'(a) = |7](oz)}_177(oz). The map ¢ — ¢’ is an isomorphism of A4y (n) with Ay(n") which

replaces ™ by n; @ w if ny(a) = |n(« _1/2. Thus we may as well suppose that 7 is a character.
P Y N n n Y pp n

Then if ¢; and s belong to Ag(n) the function ¢1p3 is a function on GrZa\Ga. Since it
has compact support we may set

(sol,wz)z/G e ©1(9)p2(g) dg.

It is easily seen that
(o(f)ers p2) = (o1, p(f)p2)
so that, by Lemma 9.4, 7 is the direct sum of irreducible admissible representations. Since 7 is
admissible the range of (&) is finite-dimensional for all £ so that no irreducible representation
occurs an infinite number of times.
The analogue of this proposition for a number field is somewhat more complicated. If ¢
is a continuous function on G4, if v is a place of F', and if f, belongs to H, we set

p(fv)soz/a ©(ghy) fo(hy) dhy.

Since f, may be a measure the expression on the right is not always to be taken literally. If v
is archimedean and if the function ¢(hg,) on G, is infinitely differentiable for any h in Ga
then for any X in 2, the universal enveloping algebra of G, we can also define p(X)p. If S
is a finite set of places we can in a similar fashion let the elements of

o= Q) H,
veS
or, if every place in S is archimedean,
As = QA

veES

act on . It is clear what an elementary idempotent in Hg is to be. If S = S, is the set of
archimedean places we set H, = Hsg.

Proposition 10.6. Suppose F' is a number field. A continuous function ¢ on Gp\Ga is a
cusp form if it satisfies the following five conditions.
(i) ¢ is K-finite on the right.
(ii) @ is cuspidal.
(#ii) There is a quasi-character n of F*\I such that

w((g 2)9) = 1(a)p(g)
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for all a in I.
(iv) For any elementary idempotent & in H, the space

{pEhe| feH.}
is finite-dimensional.
(v) @ is slowly increasing.

There is a £ in H, such that p({)¢ = ¢. Because of the fourth condition ¢ transforms
according to a finite-dimensional representation of £H,£ and the usual argument shows that
there is a function f in H, such that p(f)p = ¢.

Since ¢ is invariant under right translations by the elements of an open subgroup of
[1.¢s, Ko this implies in turn the existence of another function f in H such that p(f)e = .
From Theorem 2 of [14] one infers that ¢ is rapidly decreasing.

As before we may assume that 7 is a character. Then ¢ is bounded and therefore its
absolute value is square integrable on GrZa\Ga which has finite measure. Let L?(n) be the
space of measurable functions h on Gr\Ga such that

h((g 2)9) = n(a)h(g)

for all g in G and all @ in [ and

/ ‘h(g)|2d9<oo.
GrZa\Ga

According to a theorem of Godement (see reference [I11] to Chapter I) any closed subspace of
L?(n) which consists entirely of bounded functions is finite-dimensional.
What we show now is that if ¢ is an elementary idempotent of H the space

V={pNHe|fer}

is contained in such a closed subspace. The functions in V itself certainly satisfy the five
conditions of the proposition and therefore are bounded and in L?(n). Replacing ¢ by a
larger idempotent if necessary we may suppose that £ = &, ® Ea where &, is an elementary
idempotent in H,. There is a two-sided ideal a in &, H,&, such that p(f)e = 0 if f belongs
to a. The elements of a continue to annihilate V' and its closure in L?(n). Approximating
the d-function as usual we see that there is a function f; in H, and a polynomial P with
non-zero constant term such that P(f;) belongs to a. Therefore there is a function f; in H,
such that fs — 1 belongs to a. To complete the proof of the proposition we have merely to
refer to Theorem 2 of [14] once again.
For a number field the analogue to Proposition 10.4 is the following.

Proposition 10.7. Suppose ¢ is a cusp form and for some quasi-character n of F*\I

w((g 2)9) = n(a)p(g)

for all a in I. Then for any real number M, there is a real number My such that

a 0
()
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for all a in I. Moreover the absolute value of ¢ is square integrable on GpZa\Ga .

We need another corollary of Proposition 10.6. To prove it one has just to explain
the relation between automorphic forms on G4 and Gg, which is usually assumed to be
universally known, and then refer to the first chapter of reference [11] to Chapter I. Tt is
perhaps best to dispense with any pretence of a proof and to rely entirely on the reader’s
initiative. We do not however go so far as to leave the proposition itself unstated.

Proposition 10.8. Let 3, be the centre of A, and let a be an ideal of finite codimension in
3= Qyes, dv- Let & be an elementary idempotent of H and n a quasi-character of F*\I.
Then the space of infinitely differentiable functions ¢ on Gp\Ga which satisfy the following
five conditions is finite-dimensional.

(i) @ is cuspidal.

(i) p(&)e = ¢
(#i) If a is in I then

(i) p(X)p =0 for all X in a
(v) @ is slowly increasing.

Proposition 10.9. Let n be a quasi-character of F*\I and let Ay(n) be the space of cusp

forms o for which
i < (3 2> g> = n(a)p(9)

for all a in I. The representation of H on Agy(n) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

Every element of Agy(n) is annihilated by some ideal of finite codimension in 3. If a is
such an ideal let Ay(n, a) be the space of functions in Ay(n) annihilated by a. It is enough to
prove the first part of the proposition for the space Agy(n, a). Then one may use the previous
proposition and argue as in the proof of Proposition 10.5. To show that every representation
occurs with finite multiplicity one combines the previous proposition with the observation
that two functions transforming under the same representation of H are annihilated by the
same ideal in 3.

The algebra H acts on the space A. An irreducible admissible representation m of H is a
constituent of the representation on A or, more briefly, a constituent of A if there are two
invariant subspaces U and V' of A such that U contains V' and the action on the quotient
space U/V is equivalent to m. A constituent of Ag is defined in a similar fashion. The
constituents of Ag are more interesting than the constituents of A which are not constituents

of .Ao.

Theorem 10.10. Let m = Q) m, be an irreducible admissible representation of H which is a
constituent of A but not of Ag. Then there are two quasi-characters p and v of F*\I such
that for each place v the representation m, is a constituent of p(pu,, Vy).

The character p, is the restriction of p to F°. Let B be the space of all continuous
functions ¢ on G5 satisfying the following conditions.
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¢<(}) "f)g> ~ (g,
w<(3 g)g) = olo)

(iii) ¢ is K-finite on the right.
(iv) For every elementary idempotent £ in ‘H the space

{pfHe| feH}

(i) For all z in A

(ii) For all @ and /3 in F™*

is finite-dimensional.

Lemma 10.10.1. A continuous function ¢ on G'a which satisfies the first three of these
conditions satisfies the fourth if and only if it is Aa-finite on the left.

A is the group of diagonal matrices. Since ¢ is a function on Ap\Ga it is A finite if
and only if it is Ap\ A, finite. If it is Ap\ A finite there is a relation of the form

plag) = Z Xi(a)ei(g)

where the \; are finite continuous functions on Ag\Aa. Since Ap\A, is isomorphic to the
direct product of F*\I with itself it is a group to which Lemma 8.1 can be applied. Thus
there is a unique family ¢y, 5, of functions on G 4 such that

A )

The functions ¢y, .. also satisfy the first three conditions. Moreover there is a finite set S
of pairs (u, ) and a non-negative integer M such that ¢y, ., is 0 if (i, v) does not belong
toSorm+n> M.

Given S and M let B(S, M) be the space of continuous functions f on G which satisfy
the first three conditions and for which

aq 0
f < ( 0 ag) g)
can be expanded in the form

1/2
Z M(al)l/(ch) (log‘all)m (log‘QQ‘)nfm,n,u,u(g)

where the sum is taken only over the pairs (u, ) in S the pairs (m,n) for which m +n < M.
B(S, M) is invariant under H. To show that if ¢ is Ap\Aa finite it satisfies the fourth
condition we show that the range of p(§) on B(S, M) is finite-dimensional.

A function f in B(S, M) is determined by the restriction of the finitely many functions
Jmmpw to K. If fis in the range of p(§) these restrictions lie in the range of p(£) acting on
the continuous functions on K. That range is finite-dimensional.

We have also to show that if ¢ satisfies the fourth condition it is A finite. The space
V' spanned by the right translates of ¢ by the elements of K is finite-dimensional and each

a

1
a2

Z p(ar)v(az) (IOg‘al |)m (log‘a2|)n90m,n,u,u(9)

ai

a2
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element in it satisfies all four conditions. Let ¢4,...,¢, be a basis of V. We can express
p(gk) as

Z Xi(k)i(g).-

Because of the Iwasawa decomposition G4 = Na Aa K it is enough to show that the restriction
of each p; to A, is finite. Since ; satisfies the same conditions as ¢ we need only consider
the restriction of .

Since ¢ is K finite there is a finite set S of places such that ¢ is invariant under right
translations by the elements of va ¢ Ky Let

Is=]]Fr.
vES

We regard Ig as a subgroup of I. If we choose S so large that I = F*I(S) then every element
a of I is a product of @ = ajasas with a7 in F*, as in Ig, and ag in I(S) such that its
component at any place in S is 1. If 5 in [ is factored in a similar fashion

(G 5) (5 )

Thus we need only show that the restriction of ¢ to

ASZ{(% g) Oé,ﬁ€ls}

is finite. This is a consequence of Corollary 8.4 since the restriction of  to G clearly satisfies
the conditions of the corollary.
The next lemma explains the introduction of B.

Lemma 10.10.2. If 7 is a constituent of A but not of Ay then it is a constituent of B.
If ¢ belongs to A the functions

vo(g) = measuri( F\A) /F\A v ( ([1) 916) g) "

belongs to B. The map ¢ — ¢y commutes with the action of H and its kernel is Ay. Suppose
U and V are two invariant subspaces of A and 7 occurs on the quotient of U by V. Let
Uy be the image of U and Vj be the image of V' in B. Since 7 is irreducible there are two
possibilities. Either Uy # V4 in which case 7 is equivalent to the representation on Uy /Vj and
is a constituent of B or Uy = V}. In the latter case

U=V+UnNA
and 7 is equivalent to the representation on
UNAy/V N Ay

which is precisely the possibility we have excluded.

Lemma 10.10.3. If 7 is a constituent of B then there is a pair of quasi-characters p, v and
a non-negative integer M such that 7 is a constituent of B(u, v, M).
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If S consists of the single pair (u, ) then, by definition, B(u, v, M) = B(S, M). Suppose
7 occurs on the quotient of U by V. Choose the finite set S of pairs of quasi-characters
and the non-negative integer M so that U N B(S, M) is different from V N B(S, M). Then =
occurs on the quotient of U N B(S, M) by VN B(S, M) and we may as well assume that U is
contained in B(S, M). The argument used in the eighth paragraph in an almost identical

context shows that
B(s.M) = @ Blu,v, M)

(mv)es
so that the lemma is a consequence of Lemma 8.6.
The next lemma is proved in exactly the same way as Proposition 8.5.

Lemma 10.10.4. If 7 is a constituent of B(u,v, M) for some M then it is a constituent of
B(u, v) = B(, ,0).

Let w1, and v, be the restrictions of p and v to F. For almost all v the quasi-characters
t, and v, are unramified and there is a unique function ¢ in B(u,, v,) such that ©%(g,k,) =
©%(g,) for all k, in K, while ©2(e) = 1. We can form

® B(po, v)
o9
There is clearly a linear map of this space into B(u,v) which sends @) ¢, to the function

<p(g) - H Spv(gv)

It is easily seen to be surjective and is in fact, although this is irrelevant to our purposes, an
isomorphism. In any case an irreducible constituent of B(y,v) is a constituent of &), p(tty, ).
With the following lemma the proof of Theorem 10.10 is complete.

Lemma 10.10.5. If the irreducible admissible representation m = Q) m, is a constituent
of p = Q pu, the tensor product of admissible representations which are not necessarily
wrreducible, then, for each v, m, is a constituent of p,.

As in the ninth paragraph 7 and p determine representations 7 and p of H,. The new 7
will be a constituent of the new p. By Lemma 9.12 the representation 7 of H, is the direct
sum of representations equivalent to m,. Thus 7, is a constituent of 7 and therefore of p.
Since p is the direct sum of representations equivalent to p,, Lemma 8.6 shows that 7, is a
constituent of p,.

The considerations which led to Proposition 8.5 and its proof will also prove the following
proposition.

Proposition 10.11. If 7 is an irreducible constituent of the space Ag then for some quasi-
character n it is a constituent of Ag(n).

Observe that if 7 is a constituent of Ay(n) then

7r<<g 2)) = (a)I

for all @ in I. There are two more lemmas to be proved to complete the preparations for the
Hecke theory.
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Lemma 10.12. Suppose there is a continuous function ¢ on Ga with the following properties.
(i) ¢ is K finite on the right.
(it) For all a and 5 in F* and all x in A

w<(3 g)g) = (o).

(#ii) There is a quasi-character n of F*\I such that

s@((g 2)9) = 1(a)e(9)
for alla in 1.

(i) There is a finite set S of non-archimedean places such that the space
V= p(Hs)e

transforms under ﬁs according to the irreducible admissible representation ™ =

Qs To-
Then V is a subspace of B and there are two quasi-characters p and v of F*\I
such that m, is a constituent of p(p.,vy) for all v not in S.

If one observes that there is a finite set T" of places which is disjoint from .S such that
I = F*Ip one can proceed as in Lemma 10.10.1 to show that ¢ is A-finite on the right. Thus
there is a finite set R of pairs of quasi-characters and a non-negative integer M such that V
is contained in B(R, M). The same reduction as before shows that 7 is a constituent of the

representation of ﬁg on some B(u, ) and that 7, is a constituent of p(p,, v,) if v is not in S.

Lemma 10.13. Let ¢ be a continuous function on Gp\Ga. If ¢ satisfies the four following
conditions it is an automorphic form.

(i) ¢ is K finite on the right.
(i) There is a quasi-character n of F*\I such that

s@((g 2)9) = 1(a)p(g)
for all a in I.

(iii) There is a finite set S of non-archimedean places such that p(”;‘:[\g)gp transforms
according to an irreducible admissible representation of Hs.
() If F is a number field ¢ is slowly increasing.

We have to show that for every elementary idempotent £ in H the space p(EH)p is
finite-dimensional. If f is a continuous function on Gg\Ga let

) = el Jro ((é ) g) “

The map f — fy commutes with the action of H or of 7:[\5. Consequently ¢ satisfies the
conditions of the previous lemma and belongs to a space B(R, M) invariant under H on
which p(&) has a finite-dimensional range.
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We need only show that

V={feplH)e| fr=0}

is finite-dimensional. If F' is a function field then, by Proposition 10.3, V' is contained in Ay(7).
More precisely it is contained in the range of p(§), as an operator on Ay(n), which we know
is finite-dimensional. Suppose F' is a number field. Since every place of S is non-archimedean
the third condition guarantees that ¢ is an eigenfunction of every element of 3. In particular
there is an ideal a of finite codimension in 3 which annihilates ¢ and therefore every element
of p(§H)p. By Proposition 10.6 the space V' is contained in Ay(n) and therefore in Ay(n, a).
By Proposition 10.8 the range of p(§) in Ay(n, a) is finite-dimensional.
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§11. Hecke theory

The preliminaries are now complete and we can broach the central topic of these notes.
Let 1 be a non-trivial character of F\A. For each place v the restriction 1, of ¥ to F,
is non-trivial. Let m = ), 7, be an irreducible admissible representation of . The local
L-functions L(s,,) and the factors €(s, m,,1,) have all been defined. Since for almost all v
the representation m, contains the trivial representation of K, and O, is the largest ideal on
which 1), is trivial, almost all of the factors €(s, m,,1,) are identically 1 and we can form the
product

€(s,m) = H €(8, Ty, 1y).

v
In general it depends on 1. Suppose however that

7r<(g 2)) = y(@)T

and that 7 is trivial on F*. If ¢ is replaced by the character z — ¥ (az) with a in F'* then
€(8, Ty, ¥,) is multiplied by 7,(a)|a|?*~! so that €(s, ) is multiplied by

L@l = n@)af* =1

The product
H L(s,m,)

does not converge and define a function L(s, ) unless 7 satisfies some further conditions.

Theorem 11.1. Suppose the irreducible admissible representation m = ) m, is a constituent
of A. Then the infinite products defining L(s, ) and L(s,T) converge absolutely in a right
half-plane and the functions L(s,m) and L(s,T) themselves can be analytically continued to
the whole complex plane as meromorphic functions of s. If w is a constituent of Aqy they are
entire. If F' is a number field they have only a finite number of poles and are bounded at
infinity in any vertical strip of finite width. If F' is a function field with field of constants F,
they are rational functions of q=°. Finally they satisfy the functional equation

L(s,m) =¢€(s,m)L(1 — s,7).

Observe that if 7 = @), 7, then 7 = ), 7,. Consider first a representation = which is a
constituent of A but not of Ag. There are quasi-characters p and v of F*\ such that m, is
a constituent of p(f,, 1,) for all v. Since 7, has to contain the trivial representation of K,
for all but a finite number of v it is equal to 7(u,, ) for almost all v.

Consider first the representation 7’ = @), m(ty, v). Recall that

L(s,7(po, v)) = L(s, o) L(s, )
L(S7 %(:uw Vv)) - L<S7 :U’;l)L(Sﬂ Vv_1>
and

6(37 W(u’ua Vv)a wv) = 6(57 o, w’v)e(sa Vo, 7vb’v)
If x is any quasi-character of F*\I the product

H L(s, Xv)
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is known to converge in a right half plane and the function L(s, x) it defines is known to be
analytically continuable to the whole plane as a meromorphic function. Moreover if

(s, ) = [ (s s )

the functional equation
L(s, x) = e(s, x)L(1 = s,x7")
is satisfied. Since
L(s,7") = L(s, ) L(s,v)
and
L(s,7) = L(s,u ") L(s,v ")
they too are defined and meromorphic in the whole plane and satisfy the functional equation
L(s,7") =e(s,7")L(1 — s,7").

The other properties of L(s,n") demanded by the lemma, at least when 7’ is a constituent of
A, can be inferred from the corresponding properties of L(s, 1) and L(s,v) which are well
known.

When 7, is not (i, fty) it is oy, ). We saw in the first chapter that

L(s, o (fy, I/U>)
L(s, 7 (fy, VU))
is the product of a polynomial and an exponential. In particular it is entire. If we replace

7y, 1) by 7, we change only a finite number of the local factors and do not disturb the
convergence of the infinite product. If S is the finite set of places v at which 7, = o(u,, 1)

then
s,m) = L(s, 7 L(s, 0(ptw, 1))
L(s, ) = L(s, )UeHgL(s,ﬂ(uva))

and therefore is meromorphic with no more poles that L(s,7’). For L(s,7) the corresponding
equation is

N _, L(s,o ;17%_1
L(S,ﬂ') = L(Saﬂ- ) :[E LES,T"EZvl?Vvlg;

The functional equation of L(s, ) is a consequence of the relations
L(s, o (fy, l/v)> e(s, oy, VU),¢U)L(1 —s,0(uyt, qul))

L(s,m(po, ) €(8, (o, 1), %) L(1 — s, 7(pyt, v 1))
which were verified in the first chapter. It also follows from the form of the local factors that
L(s,m) and L(s,7) are rational functions of ¢~* when F is a function field. If F' is a number
field L(s, ) is bounded in vertical strips of finite width in a right half-plane and, because
of the functional equation, in vertical strips in a left half-plane. Its expression in terms of
L(s, ') prevents it from growing very fast at infinity in any vertical strip of finite width. The
Phragmen-Lindelof principle implies that it is bounded at infinity in any such strip.
Now suppose 7 is a constituent of Ay. It is then a constituent of Ay(n) if

w(@ 2)) = p(a)I
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for a in I. Since the representation of H in Ay(n) is the direct sum of invariant irreducible
subspaces there is an invariant subspace U of Aq(n) which transforms according to m. Let ¢

belong to U. If g is in Ga
1 =z
QOQ(ZE) =¥ 0 1 g

is a function on F\A. Since ¢, is continuous it is determined by its Fourier series. The

constant term is
1 1 =z A
measure F\A Jp o 7A\o 1)

which is 0 because ¢ is a cusp form. If ¥ is a given non-trivial character of F'\ A the other
non-trivial characters are the functions x — ¥ (ax) with « in F'*. Set

p1(9) = —measuie VN ( (é :f) g) Y(—x)dx.

Since ¢ is a function on Gp\Ga.

(6 D)) = mrmmerin [ (6 D)oo

if a belongs to F*. Thus, formally at least,

ol9) = pgle) = Y %((3 ?)g)-

acFXx

In any case it is clear that ¢, is not 0 unless ¢ is.
Let

U ={poi|lpecU}.

Since the map ¢ — ¢ commutes with the action of H the space U is invariant and transforms
according to 7 under right translation by H. Moreover

w((é f)g> = Y(x)¢a(9)

if z isin A. If F'is a number field ¢ is slowly increasing. Therefore if €2 is a compact subset
of G5 there is a real number M such that

A(( 9)2) - o)

as |a| — oo for all g in Q. Propositions 9.2 and 9.3 imply that all 7, are infinite-dimensional
and that U; is W (m,¢). Therefore U; is completely determined by 7 and ¢ and U is
completely determined by 7. We have therefore proved the following curious proposition.

Proposition 11.1.1. If an irreducible representation of H is contained in Ay(n) it is
contained with multiplicity one.
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For almost all v there is in W (m,,,) a function ¢Y such that ¢%(g,k,) = ¢%(g,) for all
k, in K, while ©%(e) = 1. The space W (m, ) is spanned by functions of the form

(11.1.2) p1(9) = [ eol9)

where ¢, is in W (m,,,) for all v and equal to ¢? for almost all v.

Suppose ¢ corresponds to a function ¢, of the form . Suppose @, = ¢° so that T,
contains the trivial representation of K. If €, is the normalized Haar measure on K, let A,
be the homomorphism of €,H,¢, into C associated to m,. If f, is in €,H,€, then

M(f)elg) = / o(gh) fo(h) dh

and if X! is the homomorphism associated to |n,|~'/? ® =,

N (f.)|n(det 9)| " 0(g)
is equal to

/G [n(det gh)| " *o(gh) £, () dh.

Since ¢ is a cusp form the function |n(det g)| Y 2(,0(9) is bounded and X\, satisfies the conditions
of Lemma 3.10. Thus if 7, = (i, 1,) both u, and v, are unramified and

el Ve, |2

<[] < [n(@.)]
>|1/2

\77(% ||

)}1/2 |1/2 |—1/2

In(@,)| @] ? < vo(@)| < |n(@)| |,

if @, is the generator of the maximal ideal of O,. Consequently the infinite products defining
L(s,m) and L(s, ) converge absolutely for Re s sufficiently large.
We know that for any v and any ¢, in W (m,,,) the integral

a, 0 _1
()01) gv avs deav
[ (5 Do)

converges absolutely for Re s large enough. Suppose that, for all a in I, |77(a)| = |a|" with r
real. Applying Lemma 3.11 we see that if s +r > % and ¢? is defined

0 Ay O> s—% gx
2% Gu Qy Qdav
/. ((0 ! )\ |
1

1 2"
(1 — |wv]s+r_§>

Thus if ¢ is of the form (11.1.2) the integral

a 0 o1
W50 = [ sol((o 1)g>|a| Lda
I

is, for g, in K,, at most




§11. HECKE THEORY 183
is absolutely convergent and equal to

1%, 5.0

for Re s sufficiently large. Since ®(g,, s, ¢,) is, by Proposition 3.5, equal to 1 for almost all v
we can set

(g, 5, 1) H<I> Gur 5, %)

so that
\11(97 S, gpl) = L(S7 W)q)(gu S, @1)
We can also introduce

Foe ) = /1*01 <<8 (1)) 9) 0 (a)lal*"2 d*a

{Ivl(ga S, (;01) - L(Sa %)5(97 S, 901)

and show that

if
(g, s, 1) H<I> Gos 8, Pu)-

Lemma 11.1.3. There is a real number sq such that for all w1 in W{(mw, 1) the integrals

\11(9757901>:/1901<(3 (1)>g)|a‘8éd><a
Hosp) = /1*01 <(3 (1)>9> n (@) d*a

are absolutely convergent for Res > so. The functions V(g, s, ¢1) and {Ivl(g, s, p1) can both be
extended to entire functions of s. If F' is a number field they are bounded in vertical strips
and if F' is a function field they are rational functions of ¢=°. Moreover

U(wg,1—s,01) = V(g,5,1).

We have seen that the first assertion is true for functions of the form (11.1.2)). Since they
form a basis of W (m, 1) it is true in general. To show that

9) = aesz o1 ((3‘ (1)) g)

we need only show that the series on the right is absolutely convergent. We will do this later
on in this paragraph. At the moment we take the equality for granted. Then, for all oy,
U(g, s, 1) which equals

/FX\I Z%(Cm 0)9) "} d*a

eFx
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a 0 1
% g |lal’"2d*a
[ (6 D)

for Re s sufficiently large. Also \T/(g, s, 1) is equal to

/FX\I 90((8 [1)) 9) 0 (a)lal"? d*a.

We saw in the previous paragraph that, for a given ¢ and any real number M,

(o 9)s) - o)

as |a| approaches 0 or co. Thus the two integrals define entire functions of s which are
bounded in vertical strips. If F' is a function field the function

e (5 9)o)

has compact support on F*\I so that the integral can be expressed as a finite Laurent series
in g—°. B
The function ¥(wg, 1 — s, 1) is equal to

/*0<(3 (1)> w9> 0~ '(a)lalz~* d*a.

Since w is in G the equality p(wh) = ¢(h) holds for all h in G o and this integral is equal to

/""(((1) 2)9) 0 (@)lal? ™ d"a.
(0 2)=2)(o %)

we can change variables in the integral to obtain

a 0 o1
/@((0 1)g)|a| Laka
which is ¥(g, s, ¢1).

If we choose ¢ of the form ((11.1.2)) we see that L(s,7)®(g, s, 1) is entire and bounded
in vertical strips of finite width. For almost all v the value of ®(g,, s, ¢?) at the identity e is 1
and for such v we choose p, = . At the other places we choose ¢, so that ®(e, s, ¢,) is an
exponential e*® with real a,. Then ®(e, s, ;) is an exponential. Consequently L(s, ) is also
entire and bounded in vertical strips of finite width. If F' is a number field ®(e, s, ¢;) will be
a power of ¢—* so that L(s, ) will be a finite Laurent series in ¢—*. Similar considerations
apply to L(s, 7).

is equal to

Since
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To prove the functional equation we start with the relation
L(s,m) H D(e, s, @) = L(1 —s,7) H (w1 — s, p,).

By the local functional equation the right hand side is

L(1—s,7) H{e(s, T, Vo) @ (e, 5, 00) }-

Cancelling the term [, ®(e, s, p,) we obtain
L(s,m) =¢€(s,m)L(1 — s,m).

Corollary 11.2. Suppose m = ), 7, is a constituent of A. For any quasi-character w of
F*\I the products

H L(s,w, ® my)

and

H L(s,w;' ®7,)

are absolutely convergent for Re s sufficiently large. The functions L(s,w®m) and L(s,w @)
they define can be analytically continued to the whole complex plane as meromorphic functions
which are bounded at infinity in vertical strips of finite width and have only a finite number
of poles. If F is a function field they are rational functions of ¢=*. If w is a constituent of Ay
they are entire. In all cases they satisfy the functional equation

Ls,w®7) =e(s,w@mL(l —s5,w ' ®@7)
if
(s, wm) = H €(8, Wy ® Ty, 1y ).

If 7=Q),m, is a constituent of A or Ay and w is a quasi-character of F*\I sois w ® 7.
Moreover w ®@ m = @), (wy, @ 7).

The converses to the corollary can take various forms. We consider only the simplest of
these. In particular, as far as possible, we restrict ourselves to cusp forms.

Theorem 11.3. Let m = Q) 7, be a given irreducible representation of H. Suppose that the

quasi-character n of I defined by
a 0
71'((0 a)) =n(a)l

is trivial on F*. Suppose there is a real number r such that whenever m, = 7(jy,vy) the
imequalities

|| ™" < o ()| < o]
and

@ < |vu(@)| < @]

are satisfied. Then for any quasi-character w of F*\I the infinite products
L(s,w®m) = H L(s,w, ® m,)
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and
Lis,w ' ®7) = H L(s,w,' ®7,)

are absolutely convergent for Res large enough. Suppose L(s,w @ ) and L(s,w™! @ ) are,
for all w, entire functions of s which are bounded in vertical strips and satisfy the functional
equation

Ls,w®m) =¢e(s,w®@m)L(1 —s,w ' @)
If the m, are all infinite-dimensional 7 is a constituent of Ay.

The absolute convergence of the infinite products is clear. We have to construct a subspace
U of Ay which is invariant under H and transforms according to the representation 7. The
space W (m, 1) transforms according to 7. If ¢ belongs to W (m, ) set

olg) =D %((g (1))9>

aeFXx

We shall see later that this series converges absolutely and uniformly on compact subsets of
Ga. Thus ¢ is a continuous function on GA. Since the map ¢; — ¢ commutes with right
translations by the elements of H we have to show that, for all 1, ¢ is in Ay and that ¢ is

not zero unless ¢y is.
1
w((o §)9> = ¢(9)

Since 1 is a character of F'\ A
1

is a function on F\A. The constant term of its Fourier expansion is

1 1 = d
measure F'\ A F\Agp 0 1)9 '

£ Lae (6 )G D)

A typical term of this sum is

901((3 (f)g) RCELE

In particular ¢ is cuspidal. Another simple calculation shows that if 8 belongs to F'*

1 1
measure F\ A F\A%?((O 1)9>¢(_ﬁ$)dx

for all £ in F'. Thus, for each g,

The integral is equal to
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A0 2)e)

is equal to

Thus ¢y is zero if ¢ is.
By construction

if o is in £, Moreover, for all a in 1,

w((S 2)9) =1(a)¢(9).

If a is in F'* the right side is just ¢(g). Thus ¢ is invariant under left translations by elements

of Pp, the group of super-triangular matrices in Gp. Since G is generated by Pr and

w = (? _01) all we need do to show that ¢ is a function on Gr\G4 is to show that

p(wg) = ¢(9)-
By linearity we need only establish this when ¢; has the form (11.1.2). The hypothesis

implies as in the direct theorem that the integrals

\11(975a801):/1901<(8 (1)>g>‘a|8§d><a
¥ ) = /ﬁ”l ((8 (1)>9> 0 (a)lal*2 d*a

converge absolutely for Re s sufficiently large. Moreover

\Ij(gﬂsagpl) = H\P(QU,S,QOv) = L(S,W)H(I)(gv,s,@v).

and

Almost all factors in the product on the right are identically 1 so that the product, and
therefore (g, s, ¢1), is an entire function of s. In the same way

\i(ga S, 901) = L(S7%) H(i(gva 37901))

and is entire. Since

q)(wgva I —s, 9011) - 6(877T1}7¢1}>®(gv7 S, (PU)
the function ¥(wg, 1 — s, p,) is equal to

L(1 = s,m)e(s,m) [ ] (90,5, 00),

which, because of the functional equation assumed for L(s, ), is equal to ¥(g, s, ¢1).

From its integral representation the function W(g, s, 1) is bounded in any vertical strip of
finite width contained in a certain right half-plane. The equation just established shows that
it is also bounded in vertical strips of a left half-plane. To verify that it is bounded in any
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vertical strip we just have to check that it grows sufficiently slowly that the Phragmen-Lindelof
principle can be applied.

\Ij(g> S, 901) = L($> 7T) H (I)(gva S, Pu).-

The first term is bounded in any vertical strip by hypothesis. Almost all factors in the infinite
product are identically 1. If v is non-archimedean ®(g,, s, ¢,) is a function of |w,|* and is
therefore bounded in any vertical strip. If v is archimedean

\D(gva 87 Spv)
L(s,my)
We have shown that the numerator is bounded at infinity in vertical strips. The denominator
is, apart from an exponential factor, a I'-function. Stirling’s formula shows that it goes to 0
sufficiently slowly at infinity.
If Re s is sufficiently large

aa 0 o1
\Ij(gﬂgagpl):/ \ Z 901<(0 1)g>‘a’ Zan
F>X\T

aclx

a 0 1
® g |lal’"2 d*a.
I (A

This integral converges absolutely when Re s is sufficiently large. If Re s is large and negative

~ a 0 _ 1
Wwg. 1 - s.01) = [ \ go<<0 1>w9>n (a)]a]+* d*a
F>X\T

/FX\I 9”(“} ((1) 2) 9) 0~ (@)|a]> ™ da.
0 2) =6 (v 1)

and changing variables we see that this integral is equal to

AX\I¢<w(g (1))9> la|*~ d¥a.
fl(a)=w<(g (1))9)
f2(8)=w<w(g ?)g).

We are trying to show that for any g the functions f; and f; are equal. The previous

discussion applies to w ® m as well as to m. If ¢ is in W(mr, ) the function

¢ (g) = w(det g)¢1(g)

Cb(gm Sa SOU) =

which is

which equals

Using the relation

Set

and



§11. HECKE THEORY 189

is in W(w ® 7,1). When ¢, is replaced by ¢} the function ¢ is replaced by

¢'(g9) = w(det g)p(g)

and f; is replaced by
fi(a) = w(det g)w(a) fi(a).
Thus for any quasi-character w of F*\I the integral

fi(@)w(a)al* "2 d*a
FX\I

is absolutely convergent for Re s sufficiently large and the integral

fo(a)w(a)lal"* da
FX\T
is absolutely convergent for Re s large and negative. Both integrals represent functions which
can be analytically continued to the same entire function. This entire function is bounded in
vertical strips of finite width.
The equality of f; and f5 is a result of the following lemma.

Lemma 11.3.1. Let f; and fy be two continuous functions on F*\I. Assume that there is
a constant ¢ such that for all characters of w of F*\I the integral

fila)w(a)lal® d*a
FX\T

1s absolutely convergent for Res > ¢ and the integral

fa(a)w(a)lal® d*a
FX\T
1s absolutely convergent for Res < —c. Assume that the functions represented by these
integrals can be analytically continued to the same entire function and that this entire function
is bounded in vertical strips of finite width. Then f; and fs are equal.

Let Iy be the group of ideles of norm 1. Then F*\I, is compact. It will be enough to
show that for each b in I the functions fi(ab) and fy(ab) on F*\I, are equal. They are equal
if they have the same Fourier expansions. Since any character of F'*\ [y can be extended to a
character of F*\I we have just to show that for every character w of F*\I

Fi(w,b) = w(b) / fi(ab)w(a) d*a
FX\Io
is equal to
b =w®) [ Ao da
FX\Io
These two functions are functions on I\ 7 which is isomorphic to Z if F' is a number field

and to R if F'is a function field.
If F'is a function field we have only to verify the following lemma.

Lemma 11.3.2. Suppose { a1(n) | n € Z '} and { az(n) | n € Z} are two sequences and q > 1
s a real number. Suppose
> ailn)g™
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converges for Re s sufficiently large and
> as(n)g

converges absolutely for Res large and negative. If the functions they represent can be
analytically continued to the same entire function of s the two sequences are equal.

Once stated the lemma is seen to amount to the uniqueness of the Laurent expansion. If
F'is a number field the lemma to be proved is a little more complicated.

Lemma 11.3.3. Suppose g1 and gy are two continuous functions on R. Suppose there is a
constant ¢ such that

@@ZL%@WW

converges absolutely for Res > ¢ and

%@ZL@MWW

converges absolutely for Res < —c. If g1 and gy represent the same entire function and this
function is bounded in vertical strips then g1 = gs.

All we need do is show that for every compactly supported infinitely differentiable function
g the functions g * g; and g % g5 are equal. If

aﬁzﬁamﬂm

is the Laplace transform of g the Laplace transform of ¢ x g; is g(s)g;(s). By the inversion

formula ‘
1 b+Km,\ R s
gra) = 5m [ G s
where b > cif i = 1 and b < —c if i = 2. The integral converges because g goes to 0 faster
than the inverse of any polynomial in a vertical strip. Cauchy’s integral theorem implies that
the integral is independent of b. The lemma follows.

To complete the proof of Theorem 11.3, and Theorem 11.1, we have to show that for any

¢y in W(m, 1) the series
a 0
Z ¥1 0 1 g
acF'>

is uniformly absolutely convergent for g in a compact subset of G and that if ¢(g) is its
sum then, if F'is a number field, for any compact subset €2 of Go and any ¢ > 0 there are

constants M; and M, such that
a 0
S"((o 1)9) < Milaf™

for g in © and |a| > ¢. We prefer to prove these facts in a more general context which will
now be described.
For us a divisor is just a formal product of the form

D= Hpm*’.
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It is taken over all non-archimedean places. The integers m, are non-negative and all but a
finite number of them are 0. Let S be a finite set of non-archimedean places containing all
the divisors of D, that is, all places p for which m, > 0.

If a belongs to I we can write a in a unique manner as a product agag where the
components of ag outside S are 1 and those of ag inside S are 1. The idele ag belongs to
I, = [l,es . Let Ip be the set of ideles a such that, for any p in S, a, is a unit which
satisfies @, = 1 (mod p™). Then I = F*I$ and F*\I is isomorphic to F* N IH\I3.

Ifpisin S let KPD be the subgroup of all

(¢ 0

in K, for which ¢ = 0 (mod p™). Let IA(’? be the subgroup of such matrices for which
a=d=1 (mod p™). Set

K§ =] K/
pes
and set
7D 7D
Kg = HKP
pes

K Dis a normal subgroup of KZ and the quotient K%/ K D is abelian.

Let G, be the set of all g in G such that g, is in the group Kf for all p in S. Any g in
G A may be written as a product gsgs where gg has component 1 outside of S and gg has
component 1 inside S. Gg is the set of gg and és is the set of gg. In particular

G5 = KP - Gs.
It is easily seen that
Ga = GpG3.
In addition to D and S we suppose we are given a non-trivial character ¢ of F'\ A, two
characters € and € of K2/ K 2 two complex valued functions o« — a, and o — @, on F'*, an

irreducible representation 7 of Hg = ®U¢ s Ho, and a quasi-character n of F*\I.
There are a number of conditions to be satisfied. If

(o %)
(6 0) (¢ 9)

If a belongs to F* and 3 belongs to F* N I3

((ﬁ g))aa

belongs to K% then

and
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The functions a« — a, and o — a, are bounded. Moreover a, = a, = 0 if for some v in S
the number «a regarded as an element of F), does not lie in the largest ideal on which v, is
trivial. If v belongs to S and a is a unit in O,

e((g 2)) — ().

Let 7 = @, ¢5 Mo Then for a in I

Ty ((8 2)) = ny(a)l.

Because of these two conditions 7 is determined by 7 and €. There is a real number r such
that if m, = 7(py, )
@ |” < o) | < || ™"
and
|, |" < |Vv(wv)| < oo™
Finally we suppose that m, is infinite-dimensional for all v not in S.

These conditions are rather complicated. None the less in the next paragraph we shall
find ourselves in a situation in which they are satisfied. When S is empty, D = 0, and
a, = a, = 1 for all a they reduce to those of Theorem 11.3. In particular with the next
lemma the proof of that theorem will be complete. We shall use the conditions to construct a
space U of automorphic forms on G such that U transforms under 7/-25 according to 7 while
each ¢ in U satisfies

p(gh) = e(h)e(g)

for h in KP. If U is such a space then for any ¢ in U and any a in [

@((g 2)9) = n(a)¢(9).

This is clear if @ belongs to I3, and follows in general from the relation I = F*I5.
Recall that W (1) is the space of functions on Gg spanned by functions of the form

v1(9) = [ [ oo(90)
vgS
where ¢, belongs to W (m,,,) for all v and is equal to ¢ for almost all v.

Lemma 11.4. Suppose p; belongs to W (mw, ).
(i) For any g in G, the series

POEDS %e(gsm((%‘ ?)%)

ackFX

converges absolutely. The convergence is uniform on compact subsets of G,
(ii) The function @ defined by this series is invariant under left translation by the matrices

in Gp N G?3 of the form
a p
0 o0)



§11. HECKE THEORY 193

(iii) Suppose F is a number field. Let Q be a compact subset of G3,. Then there are
positive constants My and My such that

o(9)| < Mi{lal + |a| '}

1 z\[fa O
9= (0 1) (o 1)h
with h in Q, a in I3, and (L9) in G3).
It is enough to prove these assertions when ¢; has the form
e1(9) = [ [ #ol90)-

ve¢S
To establish the first and third assertions we need only consider the series

(11.4.1) > @ ]] %((g ?)gv)

a€eFx vegS

where §(a) = 0 if for some v in S the number « regarded as an element of F, is not the
largest ideal on which 1), is trivial and () = 1 otherwise.
We need only consider compact sets {2 of the form

(11.4.2) Q=K [
vegS
where €, is a compact subset of G, and 2, = K, for almost all v.

Lemma 11.4.3. Suppose ) is of the form (11.4.2)). There is a positive number p such that
for each non-archimedean place v which is not in S there is a constant M, such that

a 0 _
{59 v

fora in F) and h in €, and a constant c, such that

%((g ?)h) —0

if la| > ¢, and h is in Q,. Moreover one may take M, = ¢, = 1 for almost all v.

Since ¢, is invariant under an open subgroup of K, for all v and is invariant under K,
for almost all v while 2, = K, for almost all v it is enough to prove the existence of M,, ¢,,
and p such that these relations are satisfied when h = 1. Since the function

()

belongs to the space of the Kirillov model the existence of ¢, is clear. The constant ¢, can be
taken to be 1 when O, is the largest ideal of F, on which 1), is trivial and ¢, = .
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The existence of M,, for a given v and sufficiently large p, is a result of the absolute
convergence of the integral defining W(e, s, ¢,). Thus all we need do is show the existence of
a fixed p such that the inequality

%((8 ?)) <l

is valid for almost all v. For almost all v the representation 7, is of the form = (u,, v,) with
t, and v, unramified, O, is the largest ideal of F, on which 1), is trivial, and ¢, = ¢2. Thus,

for such v ¢v<(€§ ?)) :wv<(3 ?))

Xn: @ ((won ?)) @, |"(72) = L(s, ).

If p, = py(w,) and o, = v, (w,)

if € is a unit in O, and

1 1
(1 — pv|wv]3) (1 — 0U|wv|s) '

L(s,m,) =
Since |p,| < |w,|™" and |o,| < |w,| ™"

%<(w05 g)) _

Since |w,| < § there is a constant € > 0 such that

(n+1) < o[~

n+1 _ _n+l
Py Oy

g 1 v*Tn'
0 <+ D)

for all v and all n > 0.
If v is archimedean the integral representations of the functions in W (m,,,) show that
there are positive constants c,, d,, and M, such that

a0 . .
g0v<(0 1)h> < M, |al ”exp(—dv|a|v)

for a in F and h in €2,. The exponent €, is 1 if v is real and % if v is complex.
Since we want to prove not only the first assertion but also the third we consider the sum

f<<8 ?) g) = gF:X o() 1}1}9 Pu ((bga (1)> gu>

where ¢ lies in the set (11.4.2) and b is an idele such that b, = 1 for all non-archimedean v.
We also suppose that there is a positive number ¢ such that b, = t for all archimedean v. If A
is a set of @ in F' for which |a|, < ¢, for all non-archimedean v not in S and §(«) # 0 then

(G3))
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is bounded by

Z HMv|@t|;CveXp(—dvt|a|f}“) H M, |ow,| "

acN | vES, v¢SUS,
a#0

If F is a function field A is a finite set and there is nothing more to prove. If it is a
number field choose for each v in S a constant ¢, such that d(a) = 0 unless ||, < ¢,. Since

H‘a|1}:17
v
IT lelor << Tt ps TT ek

vgSUS, vES VES,

Thus our sum is bounded by a constant times the product of [], g t=e/ and

ST {lale exp(~dutlalsr) }.

acA vES,
a#0

The product [[,cg. |als is bounded below on A — {0}. Multiplying each term by the same

sufficiently high power of [, ¢ |a|, we dominate the series by another series

> T {lel exp(—ditlaly) }

acEN veS,

in which the exponents p, are non-negative. This in turn is dominated by [],. s, t=Pv/< times

S I exp (_Td”ﬂozﬁv)

acANveS,

A may be regarded as a lattice in HvGSa F,. If A\y,..., A, is a basis of A there is a constant d

such that if « = > a;\
dy, 1
> Lol > 4 Jal.

(6 )

is dominated by some power of ¢ times a multiple of

n

Thus

which is bounded by a multiple of (1 + 1)".

The first assertion is now proved and the third will now follow from the second and the
observation that every element of I3 is the product of an element of F*, an idele whose
components are 1 at all non-archimedean places and equal to the same positive number at all
archimedean places, and an idele which lies in a certain compact set.
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(o)

belong to G7,. Then ¢ is integral at each prime of S and 9, (a€) = 1 if a, # 0. If g belongs

to G and
_ (!¢
=)

then €(hg) = €(gs) and if v is not in S

20 ((3 ) ) bo(at)s ((3 ‘1’>gv>.

[T ¢u() = ¢nlad) =1.

vgS

Suppose £ is in F' and

If a, #0

Consequently

If b belongs to I3 then

and

so that

In particular if 5 belongs to F'* N IS

(<o >g)
= (0 1)

c(hs) —(( ))6(95)

> ane ( (%S ?))e(gsm ((asogs ﬁ’) 55) |

If B belongs to F* N I3 and

then

and ¢(h) is equal to
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((ﬁ g))%

we can change variables in the summation to see that ¢(h) = ¢(g).
The lemma is now proved. The function

EOEDY aaags)sol((‘%s ?)%)

aclF'x

Since

can be treated in the same fashion.

Theorem 11.5. Ifw is a quasi-characters of F*\I such that

wv<av>e((%” ?)) -1

A(s,w) = Z aaw(a5)|a5\5”% HL(S,%@%).

FXAIS\FX vES

for all units a, of O, set

If

for all units a, in O, set

Asw)y=4 Y Gaw(as)las 2 p [] L(s, ! @ 7).

FXAIZ\FX vgS

Then A(s,w) and K(s,w) are defined for Re s sufficiently large. Suppose that whenever w is

such that A(s,w) or A(s,w) is defined they can be analytically continued to entire functions
which are bounded in wvertical strips. Assume also that there is an A in F* such that
|Al, = |wy|™ for any p in S and

A(S’ W) = H wv(_A)|A|78;_1/2 H 6(57(")1) ) Ty, 77Z}’U) K(l -3 77_1(")_1)

veS vgS

whenever A(s,w) is defined. Then for any @1 in W (m, 1) there is an automorphic form ¢ on

G A such that
as 0\ .
p(g) =) aac(gs)pr << 0 1)95)

s
on G7p.
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The infinite products occurring in the definition of A(s,w) and A(s,w) certainly converge
for Re s sufficiently large. To check that the other factors converge one has to check that

D lasl

converges for Re s sufficiently large if the sum is taken over those elements « of a system of
coset representatives of F* N I3\ F* for which |a|, < ¢, for v in S. This is easily done.
The idele Ag has components 1 outside of S and A in S. Since

9690 9)- ()
(5 0)

normalizes K2. In particular if g belongs to G so does
0 1\ (0 A
As 0)9\1 o )

Lemma 11.5.1. If ¢ is in W(m,¢) and g is in G%) then, under the hypotheses of the

theorem,
(/0 1\ (0 A
P (As 0)9<1 5) = ¢(9)-

Let ¢'(g) be the function on the left. As before all we need do is show that for every
character w of F* N IH\I3 and every g in G, the integral

(11.5.2) / ¢<(8 ?)g>w(a)|a\s—%dxa
FXNIZ\I3

is absolutely convergent for Re s large and positive. The integral

a 0 1
(11.5.3) /F s @'((0 1>g>w(a)|a| >d*a
*n D \"D

is absolutely convergent for Re s large and negative, and they can be analytically continued
to the same entire function which is bounded in vertical strips.
If for any v in S the character

- wv(a)e(<3 2))

on the group of units of O, is not trivial the integrals are 0 when they are convergent. We

may thus assume that
wv(a)e(<8 2)) =1

the matrix

for all units in O, if v isin S.
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We discuss the first integral in a formal manner. The manipulations will be justified by
the final result. The integrand may be written as a double sum

ZZaawe((aoS ?)gs> w((asgéﬁs [f)as)wwaf-#

The inner sum is over v in F* N I3 and the outer over a set of coset representatives o of

F*NI2\F*. Since
€ as 0 —a€ Ysas 0
el 0 1 e 0 1

w(a)lal* 2 = w(ya)|yal*~3

and

the integral is equal to €(gg) times the sum over a of

asas 0\~ as 0 s 1
Ga/IS 901<( SOS 1)95)6((5 1))0.1(@)]@\ 2 d*a.
D

Since I3 is the direct product of
TSZ{GE[’aszl}

and a compact group under which the integrand is invariant the previous expression is equal

to
agsa 0Y) s_1
aa[¢1<<8 1>gg>w(a)]a\ 2 d”a.
Is

Changing variables to rid ourselves of the ag in the integrand and taking into account the
relation . . )

1 =w(a)la]"2 = wlas)w(@s)|as|* 2 |as|"2
we can see that the original integral is equal to

o1 a 0\ s—1 ox
€(gs) Y _aaw(as)las|”2 | ¢i| (135 |w(a)lal* 2 da.
Is
There is no harm in supposing that ¢, is of the form
901(9\5) - ngv(g’u)‘

véS
We have already seen that, in this case,

/TS o <<3 (1))§S>w(a)lals—5 d*a

is convergent for Re s large and positive and is equal to

a 0 1
ol | o 1) |wolan)la,]* 2 d"a,.
L[ o (% 9o atote

vgS
If ¢! is the function

py(h) = wy(h)eu(h)
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in W(w, ® m,,1,) this product is

H{L(s, wy @ )P (gy, 5, ¢, )w, ' (det g,,) }-
vgS

Thus the integral (11.5.2) is absolutely convergent for Re s large and positive and is equal to

e(gs)w(det Gs)A(s,w) [ @90, 5,6))-
vgS
The argument used in the proof of Theorem 11.3 shows that this function is entire.

If
(GG ()
2lhs) = ((0 y gs>.

Thus the integrand in (11.5.3) is equal to

~ as 0 6&\5 0 0 1 65 0\ - s—1
Zaae 0 1 gs |1 0 1 121\5 0 0 1 gs w(&)|a|

The sum can again be written as a double sum over v and a. Since

4 —e as 0 — G 1 0 ¢ as 0
@y 0 1)) ="\ 0 ~g 0 1
a O
Aon(7s)€ ((750 g
as’}/s O 9 CLS 0
a 0 0 Fslas 0\
77(%) s (AS ) (75 ag 1) G

we can put the sum over F* N I[S) and the integration over F* N I3\ 12 together to obtain
€(gs) times the sum over F* N I2\F* of

—~ as 0 as 0 0 1 /a\,g 0\~ s—1 ix
aa/f (0 1) & (0 1) As o)\o 1) |wl@)lal=da.
I3 S
We write
as 0N( 0 1\/as 0\ [ 0 1\(as 0)\[-agz'Asas 0
0 1)\4ag of\o 1)~ \-1 0)\0 as 0 1

then

which equals

and

is equal to
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and then change variables in the integration to obtain the product of w(—Ag)|Ag|*~2 and

~ _ 1 01 0\~ o1
Bl 1(045)0.) 1(a5)]a5|2 /A Spl<(_1 O) (8 1)g5>w(a)|a\ 5 d*a.
Is

Replacing a by a~! and making some simple changes we see that the integral is equal to
g a by g g

/ . ((O (1)> (—(1) é) 55) 0~ (@)w ™ (a)|a]F* d¥a

which converges for Re s large and negative and is equal to

TI{L( = s.n w !t @) @(wg, 1 — 5,0, )w,(det g,) }

véS
Thus the integral 11.5.3 is equal to

~ sl 1
e(gs)w(det Gs)w(—As)[As|2A(1 — s, 'w ™) [ @(wg, 1 - 5,))
vgS
which is entire.
Since

P(wgy, 1 — s, ¢,) = €(s, wy @ Ty, V)P(go, 5, ))

the analytic continuations of (11.5.2)) and (11.5.3]) are equal. We show as in the proof of
Theorem 11.3 that the resultant entire function is bounded in vertical strips of finite width.

There is now a simple lemma to be proved.

Lemma 11.5.4. The group Gr N G?%, is generated by the matrices in it of the form
g D

&
o)

This is clear if S is empty. Suppose that S is not empty. If

= (%)

belongs to G NG5, and |a, = 1 for all v in S then

[ 0 1%
I=\y o-2 10 1

and both matrices belong to Gp N G%. In general if g is in G N G then, for each v in S,
lal, < 1, |7y < 1 and either |af, or ||, is 1. Choose € in F' so that, for every v in S, [£,| =1
if |a|, <1 and |§,| < 1if ||, = 1. Then

(1 f)(a B)_(oHrE’V 5+£5)
0 1)\y ¢6) v )

and |a + &v|, = 1 for all v in S. The lemma follows.

and
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- (9

belongs to G N G2, then ¢(hg) = v(g) and P(hg) = $(g). Suppose

a 0
v 0
is in Gr N GY,. Then

a 0 (0 1\[fa O 0 Ag'
¥ v 0 gl =%1\a o v 0 I\1 o
Since the argument on the right can be written
§ vyATH\ /0 1 0 Ag'
0 a J\40)9\1 0

and the first term of this product lies in G N G¥, the right side is equal to

9 (21 é)g(? A()El) = ¢(9)-

Thus ¢ is invariant under Gg N G%. Since G = G FG% the function ¢ extends in a
unique manner to a function, still denoted ¢, on Gp\Ga. It is clear that ¢ is K-finite and

continuous and that
a 0
@ ( (0 a) g) = 1(a)e(9)

for all @ in I. It is not quite so clear that ¢ is slowly increasing. If €2 is a compact subset of
G A there is a finite set 71, ...,7, in Gg such that

We know that if

¢
Q=Jany'acy.
i=1
What we have to show then is that if v belongs to G and ¢ > 0 is given there are constants
M, and M, such that for all g in Q@ N~y ~!G% and all a in I for which |a| > ¢

a 0O
7((0 1)9) < Mifaf*.

If v is a place of F, which is not in S and is archimedean if F' is a number field, there is a
compact set C'in I such that

{acl|la|>c} CF*{acF)||a|>c}C

Thus the inequality has only to be verified for a in F,*—of course at the cost of enlarging (2.

It 5
o
it
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a 0 a
7(0 1)9:(0 1)79

with # = (1 — )2 and the conclusion results from Lemma 11.4 and the relation

)
Ba = (BANGp)(BaNGY)

Ba = {(8 ?{) eGA}.
= (T )4 o) 1)
O R [ [ G [
(430 1)

lies in a certain compact set which depends on €2, ¢, and . The required inequality again
follows from Lemma 11.4. R

The space U of functions ¢ corresponding to ¢ in W (w, ¢) transforms under Hg according
to m. Lemma 10.13 implies that every element of U is an automorphic form. If it is not
contained in Ay, Lemma 10.12 applied to the functions

(g) = 1 1 = A
P "~ measure F\ A F\AQD 0 1)9

with ¢ in U shows that there are two quasi-characters p and v on F*\ I such that w, = 7(u,, vy)
for almost all v.

then

if

Otherwise we write

Then

The matrix

Corollary 11.6. Suppose there does not exist a pair u, v of quasi-characters of F*\I such
that m, = 7(y, V) for almost all v. Then there is a constituent 7’ = Q. of Ay such that
m, =, for all v not in S.

Since U transforms under 7:[\5 according to m it is, if v is not in S, the direct sum of
subspaces transforming under H, according to m,. By assumption U is contained in Ay and
therefore in Agy(n). The space Ay(n) is the direct sum of subspaces invariant and irreducible
under H. Choose one of these summands V' so that the projection of U on V' is not 0. If
' = Q@ is the representation of H on V' it is clear that 7, = 7, if v is not in S.

Another way to guarantee that U lies in the space of cusp forms and therefore that the
conclusion of the corollary holds is to assume that for at least one v not in .S the representation
m, is absolutely cuspidal.
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§12. Some extraordinary representations

In [18] Weil has introduced a generalization of the Artin L-functions. To define these
it is necessary to introduce the Weil groups. These groups are discussed very clearly in the
notes of Artin-Tate but we remind the reader of their most important properties. If F is a
local field let Cr be the multiplicative group of F' and if F' is a global field let Cr be the
idele class group F*\I. If K is a finite Galois extension of F' the Weil group Wk, p is an
extension of &(K/F), the Galois group of K/F, by Ck. Thus there is an exact sequence

l — Cx — Wgyp — O(K/F) —— 1.

If L/F is also Galois and L contains K there is a continuous homomorphism 7,/p x/p of
Wrr onto Wi p. It is determined up to an inner automorphism of Wy, r by an element
of Ck. In particular Wg/r = Cr and the kernel of 7x/p F/r is the commutator subgroup of
Wgp. Also if FC E C K we may regard Wk as a subgroup of Wy p. If F' is global and
v a place of I’ we also denote by v any extension of v to K. There is a homomorphism «,, of
Wk, /F, into Wg,p which is determined up to an inner automorphism by an element of C.

A representation o of Wi/, is a continuous homomorphism of Wi, into the group of
invertible linear transformations of a finite-dimensional complex vector space such that o(w)
is diagonalizable for all w in Wy, p. If K is contained in L then o o7y /p k/F is a representation
of Wi,,r whose equivalence class is determined by that of o. In particular if w is a generalized
character of C'r then w o 7x/r p/F is a one-dimensional representation of Wy, r which we also
call w. If ¢ is any other representation w ® ¢ has the same dimension as o. If F C E C K
and p is a representation of Wy, g on X let Y be the space of functions ¢ on Wy, r with
values in X which satisfy

p(uw) = p(u)p(w)

for all w in Wi/g. If v € Wi/ and ¢ € Y let o(v)p be the function

w — p(wv)
o(v)yp also belongs to Y and v — o(v) is a representation of Wy, p. We write
0 = Il’ld(WK/F, WK/Ea p)

If F'is global and o is a representation of Wy then, for any place v, o, = 0 o, is a
representation of Wy, whose class is determined by that of o.

Now we remind ourselves of the definition of the generalized Artin L-functions. Since we
are going to need a substantial amount of detailed information about these functions the
best reference is probably [19]. In fact to some extent the purpose of [19] is to provide the
background for this chapter and the reader who wants to understand all details will need to
be quite familiar with it. If /" is a local field then to every representation o of Wy, r we can
associate a local L-function L(s, o). Moreover if ¢z is a non-trivial additive character of F’
we can define a local factor €(s, 0,19 r). The L-function and the factor €(s, o, ¢ r) depend only
on the equivalance class of o.

If I is a global field we set

L(s,0) = H L(s,0,)

The product converges in a right half-plane and L(s, o) can be analytically continued to a
function meromorphic in the whole complex plane. If ¢r is a non-trivial character of F'\ A
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the functions €(s, 0y, 1,) are identically 1 for all but a finite number of v. If

€(s,0) = H €(s, 0y, Yy)

v

and ¢ is the representation contragredient to ¢ the functional equation

L(s,0) =¢€(s,0)L(1 —s,0)
is satisfied. For all but finitely many places v the representation o, is the direct sum
of d, the dimension of o, one-dimensional representations. Thus there are generalized
characters i}, ..., ud of Cp, such that o, is equivalent to the direct sum of the one-dimensional
representations A

w [’L:LU(TKU/F'LMFU/FU(M))
Moreover, for all but finitely many of these v, ul, ..., ud are unramified and there is a constant
r, which does not depend on v, such that

di@)| <lwl  1<i<d

If I is a global or a local field and o is a representation of Wy, p then w — det o(w) is a
one-dimensional representation and therefore corresponds to a generalized character of Cp.
We denote this character by det o.

If I is a local field, o is a two-dimensional representation of Wy, r, and 9 is a non-trivial
additive character of F' then, as we saw in the first chapter, there is at most one irreducible
admissible representation m of H g such that

7r<(g‘ 2)) = det o(a)]

and, for all generalized characters w of Cp,
L(s,w®m) = L(s,w® o)
L(s,w ' ®7) =L(s,w ' ®0)
€(s,wRm Yr) =€(s,wR g, Yp).
If Y (x) = ¢Yr(Bx) then
e(s,wR0,Y5) =detw R o(B)e(s,w @ o, vr)

7r<((8‘ 2)) = deto(a)]

e(s,w@m ) =detw R o (B)e(s,w @, Yp).
Thus 7, if it exists at all, is independent of ¢¥p. We write 7 = (o).
There are a number of cases in which the existence of m(o) can be verified simply by
comparing the definitions of the previous chapter with those of [19]. If 1 and v are two
quasi-characters of Cr and o is equivalent to the representation

w%(mmmﬂw> 0 )

0 v(T/m /e (w))

and, since

one also has
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then 7(0) = 7(u,v). If K/F is a separable quadratic extension, x is a quasi-character of
C K = WK/ K and
0 = Ind(WK/F, WK/K, X)
then 7(o) = m(x). Observe that 7(x) is alway infinite-dimensional.
Suppose F'is a global field and K is a separable quadratic extension of F. Let x be a
quasi-character of C'x and let

o =IndWg/p, Wi/, X)-
If v does not split in K
oy = Ind(Wk,/r,, Wk, /K, Xo),
but if v splits in K the representation o, is the direct sum of two one-dimensional representa-

tions corresponding to quasi-characters y, and v, such that p,v; ! is a character. Thus 7(o,)
is defined and infinite-dimensional for all v.

Proposition 12.1. If there is no quasi-character ju of Cr such that x(o) = (Ng/par) for
all a in Ck the representation Q) m(0y) is a constituent of Aj.

If w is a generalized character of F' then
(w ® U)U = w’u ® 0-1)~

Define a generalized character wg,/r of Cx by

wi/r(a) = w(NK/F(a)).
Then
w® o =IndWg/p, Wk/Kk,wk/rX)
and
L(s,w®0) = L(s,wg/rX)-
The L-function on the right is the Hecke L-function associated to the generalized character

wi/rX of Ck. It is entire and bounded in vertical strips unless there is a complex number r
such that

wr/p(a)x(a) = la|” = [Ng/ral".
But then
x(@) = W™ (Ng/pa)|Nigyral’
which is contrary to assumption. The function
L(s,w™ ©) = L(s,w px )

is also entire and bounded in vertical strips. It follows immediately that the collection
{n(0,)} satisfies the conditions of Theorem 11.3.
This proposition has a generalization which is one of the principal results of these notes.

Theorem 12.2. Suppose F is a global field and o is a two-dimensional representation of
Wkp. Suppose also that for every generalized character w of Cp both L(s,w ® o) and
L(s,w™ ® &) are entire functions which are bounded in vertical strips. Then (o) exists for
every place v and Q, m(0,) is a constituent of A,.
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We observe that the converse to this theorem is an immediate consequence of Theorem 11.1.

We are going to apply Corollary 11.6. There are a large number of conditions which must
be verified. We know that (o) is defined for all but a finite number of v. In particular it is
defined for v archimedean for then o, is either induced from a quasi-character of a quadratic
extension of F), or is the direct sum of two one-dimensional representations. If o, is equivalent
to the direct sum of two one-dimensional representations corresponding to quasi-characters
iy and v, then p,v, l'is a character so that 7(0,) is infinite-dimensional. Let S be the set
of places for which 7(o,) is infinite-dimensional. Let S be the set of places for which 7 (o)
is not defined or, since this is still conceivable, finite-dimensional. We are going to show
that S is empty but at the moment we are at least sure that it is finite. If v is not in .S set
Ty = T(0y).

If v is in S the representation ¢, must be irreducible so that

L(s,w, ®0,) = L(s,w; ' ®7,) =1

for every generalized character w, of F*. The Artin conductor p;* of o, is defined in the
Appendix to [19]. There is a constant c,, depending on o,, such that if w, is unramified

6(*97 Wy & 0y, wv) = vav(wv)mv+2n|wv|(mu+2nu)(87%)

if p; ™ is the largest ideal on which 1, is trivial. 1, is the restriction to F), of a given
non-trivial character of F'\ A.
We take
D=]]»™
pesS
and 1 = det 0. We define € and € by

e<(% f)) = det o, (by)
e((‘g f)) — det oy (a)

if v belongs to S and a, and b, are units of O,. If a belongs to F’* and |«|, = |w,|™™ for
every v in S we set aq = 1 and @, = [],.q ¢y det 0, (a); otherwise we set a, = @, = 0.

The function A(s,w) of Theorem 11.5 is defined only if w, is unramified at each place of
S and then it equals

and

[T w7 =2) 33T L(s,w, @ )

veS vgS

which is

[T el ™08 bL(s,w @ 0).
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The function A(s,w 'n~1) is also defined if w, is unramified at each place of S and is equal to

Choose A in F* so that |A,| = |wv]m” for every v in S. Then

[T wo(—AIAL = T wo(w)™ w2

veS vES
The functional equation asserts that L(s,w ® o) is equal to

H €(s,wy ® 0y, Vy) H (s, wy @ 0y, 1y) pL(1 — 5,0 ®7).

veES v¢S

The first factor is equal to

[T el el <C2) b L TT (= A) AL

vES vES

Therefore A(s,w) is equal to

va |A\U 2 H €(s,wy ® 0y, 1) $A(L — s,w 7).

veS v¢S

The assumptions of Theorem 11.5 are now verified. It remains to verify that of Corol-
lary 11.6. It will be a consequence of the following lemma.

Lemma 12.3. Suppose F' is a global field, K is a Galois extension of F', and p and o are
two representations of the Weil group Wy, p. If for all but a finite number of places v of F
the local representations p, and o, are equivalent then p and o are equivalent.

We set
= H L(s,0y).
p

The product is taken over all non-archimedean places. We first prove the following lemma.

Lemma 12.4. If o is unitary the order of the pole of Lo(s,0) at s = 1 is equal to the
multiplicity with which the trivial representation is contained in o.

There are fields Ey, ..., E, lying between F' and K, characters xpg,, ..., Xg,, and integers
maq,...,m, such that o is equivalent to

@ m; Ind(Wg p, Wk/e, XE,)
i=1
Let 9; = 1 if xp, is trivial and 0 otherwise. Since

U) = H L0(57 XEz‘)mi
=1
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the order of its pole at s = 11is > _;_, m;0,. However
Ind(WK/F> WK/Ea XEZ-)

contains the trivial representation if and only if x g, is trivial and then it contains it exactly
once. Thus >77_ m;d; is also the number of times the trivial representation occurs in o.
Observe that if T" is any finite set of non-archimedean primes the order of the pole of

H L(s,oy)
peT
at s = 1 is the same as that of Ly(s, o).

The first step of the proof of Lemma 12.3 is to reduce it to the case that both p and o are
unitary. Then p and o certainly have the same degree d. Let p act on X and let o act on Y.
Under the restriction p to Cx the space X decomposes into the direct sum of invariant one-
dimensional subspaces X, ..., Xy which transform according to quasi-characters ', ..., u?
of Ck. If a is a real number let

M(a) = {z

,ui(oz)‘ = |a|® for all @ in Ck }

and let
X(a)= ) X
1€M(a)
X (a) is invariant under Wy,/p and X = @, X (a). Let p(a) be the restriction of p to X (a).
Replacing p by o and X by Y we can define v, ..., v? and Y (a) in a similar fashion.

We now claim that if p, is equivalent to o, then p,(a) is equivalent to o,(a) for each a. To
see this we need only verify that any linear transformation from X to Y which commutes with
the action of Wy, /r,, or even of Ck,, takes X (a) to Y (a). Observe that under the restriction
of p, to C, the space X; transforms according to the character 4} and that |u! ()| = |a|®
for all a in C, if and only if |M(oz)‘ = |a|* for all @ in Ck. Thus X(a) and Y (a) can be
defined in terms of p, and o, alone. The assertion follows.

Thus we may as well assume that for some real number a

v'(a)

p(e) = |af®

for all ¢ and all o in C. Replacing o by a@ — |a| %0 (a) and p by @ — |a|~*p(a) if necessary
we may even assume that a = 0. Then p and o will be equivalent to unitary representations
and we now suppose them to be unitary.

If 7 is irreducible and p ~ 7@ p’ and 0 ~ 7 @ o’ then pl is equivalent to o/ whenever p, is
equivalent to o,. Since we can use induction on d it is enough to show that if 7 is irreducible
and unitary and contained in p then it is contained in o. Let p and & be the representations
contragredient to p and o. Certainly (p ® 7), = p, ® 7, is equivalent to (¢ ® 7), for all but
a finite number of v. Moreover p ® T contains 7 ® 7 which contains the identity. If 0 ® 7
contains the identity then, as is well-known and easily verified, ¢ contains 7. On the other
hand the orders of the poles of Ly(s,p ® 7) and Lo(s,0 @ 7) at s = 1 are clearly equal so
that, by Lemma 12.4, ¢ ® 7 contains the trivial representations if p ® 7 does.

We return to the proof of Theorem 12.2. It follows from Lemma 12.3 that if the assumptions
of Corollary 11.6 are not satisfied o is equivalent to the direct sum of two one-dimensional
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representations associated to quasi-characters p and v of Cr. Then
L(s,w® o) = L(s,wp)L(s,wr).

The two functions on the right are Hecke L-functions. The function on the left is entire for
every choice of w. Taking w = p~! and w = v~! we see that L(s, u"'v) and L(s,v ') have
azero at s = 1. Let u~'v(a) = |a|"x(a) where x is a character. Then

L(s,p~'v) = L(s +7,x)
L(s,v'u) = L(s —r,x7).
Now neither L(s, ) nor L(s,x!) has a zero in the set Res > 1. Therefore 1 +r < 1 and
1 —r < 1. This is impossible.
We can now apply Corollary 11.6 to assert that there is a constituent 7’ = @) 7, of Ay

such that 7] = 7(o,) for v not in S. To prove the theorem we need only show that 7 = 7(o,)
for v in S. Taking the quotient of the two functional equations

L(s,w® o) {Hes%@aw@bv)} (1-s5w'®0)

and
L(s,w®7') = {He(s,wU ® w;,w}m — 5w @7T),
we find that
H s , Wey @ av
L(s,w, ® !
is equal to

HG(Suwv®0_v7¢v) HL(1_87wv1®5v)

5(5#%@7%:1%) vES L(1_57wv_1®%§))

We need one more lemma. If v is a non-archimedean place and w, is a quasi-character of

F let m(w,) be the smallest non-negative integer such that w, is trivial on the units of O,
(wv)

vES

congruent to 1 modulo py"

Lemma 12.5. Suppose S is a finite set of non-archimedean places and vy € S. Suppose that
we are given a quasi-character x,, of F, and for each v # vy in S a non-negative integer
m,. Then there is a quasi-character w of Cp such that wy, = X, and m(w,) = m, if v # vy
belongs to S.

Suppose X, (@) = |a|f x;, (@) where X/, is a character. If ' is a character of Cr and
Wy = Xu, While m(w;) > m, for v # v in S we may take w to be the generalized character
a — |af"w'(«) of Cp. In other words we may assume initially that y,, is a character. Let
A be the group of ideles whose component at places not in S is 1, whose component of a
place v € vy in S is congruent to 1 modulo p™, and whose component at v, is arbitrary.
Certainly F* N A = {1}. We claim that F*A is closed in I. Indeed if a € I there is a
compact neighbourhood X of o on which the norm is bounded above by 1/¢ and below by €
where € is a positive constant. If § € F'* and v € A then |v| = |y|. Moreover

1
Aez{veA €<h!<—}
€
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is compact. Since F'* is discrete F'*A, is closed. Since any point has a compact neighbourhood
whose intersection with F'* A is closed the set F'*A is itself closed.

We can certainly find a character of A which equals x,, on F; and, for any v # v in S,
is non-trivial on the set of units in O, congruent to 1 modulo p}'*. Extend this character to
F* A by setting it equal to 1 on F*. The result can be extended to a character of I which is
necessarily 1 on F*. We take w to be this character.

Let WL((O‘” 0 )) = ny(aw). If n(a) = [, m(w) then 7 is a quasi-character of F*\1I.

0 ay
Since, by construction, n = det o on [}, the quasi-characters 7 and det o are equal. Therefore
n, = det o, for all v. We know that if m(w,) is sufficiently large,

L(s,w, ® 0,) = L(s,w, @) =1
and
L(l—s5w,'®6,)=L(1—-sw,'®@7)=1.
Moreover, by Proposition 3.8
(8, wy @ T, 1y) = €(8, Wy, Wy )€(S, Wy, Vy).
It is shown in the Appendix of [19] that if m(w,) is sufficiently large
€(s,wy ® 00, y) = €(s,wy det 0y, Py )€(s, Wy, Py).-

Applying Lemma 12.5 and the equality preceding it we see that if v is in S and w, is any
quasi-character of £

L(s,0, ® 0,) {e(s,wv @av,m}{ L(1—s,w,' ®3) }

L(s,w, @) - €(s,wy @7 hy) ) | L(1 —s,wyt @7))
Recalling that
L(s,wy,®0,) = L(1 —s,w;' ®37,) =1
for v in S we see that
L1 —s,w,'®m) _ €(s,wy ® 0y, y)
L(s,we®m) el ,wo® ), thy)
The theorem will follow if we show that

L(s,w,@m)=L1—-sw'@r)=1

(12.5.1)

for all choices of w,,.
If not, either 7 is a special representation or there are two quasi-characters yu, and v, of

F)* such that 7, = 7(y, v,). According to the quotient
Ll -sw;t®n)
L(s,w, @)
is an entire function of s for every choice of w,. If 7/, = 7(py, v») and m(u;'v,) is positive
Ll-sm®®)  1-|ml
L(s,pt ©m) 1wyt

which has a pole at s = 1. If m(u,'v,) =0

L(1-s,1,®7) { 1~ |’ } { 1 — 1y vy () [ }

L(s, ;" © 7)) 1@y ['= ]| 1 = pory (@) |
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which has a pole at s = 1 unless v, ' (w,) = |w@,|. But then it has a pole at s = 2. If 7/, is
the special representation associated to the pair of quasi-characters

2 a— py(a)|al

o = ()]
of F then
L(l=5,,®7) 1= |m,[*"s

L(s,pt@m) 11— w2

which has a pole at s = %

There is a consequence of the theorem which we want to observe.

Proposition 12.6. Suppose E is a global field and that for every separable extension F
of £, every Galois extension K of F', and every irreducible two-dimensional representation
o of Wg/r the function L(s,o) is entire and bounded in vertical strips. Then if Fy is the
completion of E at some place, Ky is a Galois extension of Fi, and oy is a two-dimensional
representation of Wi, p,, the representation m(oy) exists.

We begin with a simple remark. The restriction of oy to Ck, is the direct sum of two
one-dimensional representations corresponding to generalized characters x; and ys of Ck,. If
7 belongs to G = (K, /Fy) either x;(7(a)) = x1() for all a in Cx or x;(7()) = x2(c)
for all a in Ck. If the representation o; is irreducible there is at least one 7 for which

X1 (7(@)) = xa(@). Tf x1 # X2, the fixed field L, of
= {T €G | xi(r(a) = xl(a)}

is a quadratic extension of F. The restriction of oy to W, /1, is the direct sum of two
one-dimensional representations and therefore is trivial on the commutator subgroup Wy /L
which is the kernel of 7x, /1, /F,. With no loss of generality we may suppose that K; equals
Ly and is therefore a quadratic extension of Fy. Then oy is equivalent to the representation

Ind(Wg,/r, Wk, /K15 X1)-

If oy is reducible 7(oy) is defined. The preceding remarks show that it is defined if oy is
irreducible and o4 («) is not a scalar matrix for some « in C,. The proposition will therefore
follow from Theorem 12.2 and the next lemma.

Lemma 12.7. Suppose Fy is the completion of the field E at some place, Ky is a Galois
extension of Fy, and oy is an irreducible two-dimensional representation such that o1(«) is a
scalar matrixz for all o in C,. Then there is a separable extension F of E, a Galois extension
K of F, a place v of K, and isomorphism ¢ of K, with K, which takes F, to F\, and an
irreducible two-dimensional representation o of Wy such that o, is equivalent to oy o .

Observe that the existence of o; forces F; to be non-archimedean. We establish a further
sequence of lemmas.

Lemma 12.8. Suppose V' is a finite-dimensional real vector space, G is a finite group of linear
transformations of V', and L is a lattice in 'V invariant under G. If x is a quasi-character
of L invariant under G there is a quasi-character X' of V' invariant under G and a positive
integer m such that the restrictions of X' and x to mL are equal.
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Let V be the dual of V and ‘70 its complexiﬁcation. There is a y in ‘70 such that
x(x) = e?™@v) for all x in L. If z belongs to V¢ the generalized character z — 2™ is

trivial on L if and only if z belongs to % L is the lattice
{U eV ‘ (x,v) € Z for allxinL}.

LetAé’\ be the group contragredient to G. We have to establish the existence of an m and a z

in % such that y — z is fixed by G. Ifo belongs to G then oy —y = w, belongs to L. Clearly

oW; + Wy = Wyr. Set )
Z = R?TETZE:HH.

T

If m is taken to be [G : 1] this is the required element.

Lemma 12.9. Suppose F' is a global field, K is a Galois extension of it, and v is a place of
K. Suppose also that [K, : F,] = [K : F| and let x, be a quasi-character of Ck, invariant
under G = &(K,/F,) = 8(K/F). There is a closed subgroup A of finite index in Cx which
is invariant under G and contains Ck, and a quasi-character x of A invariant under G whose
restriction to Ck, 5 Xo-

Suppose first that the fields have positive characteristic. We can choose a set of non-
negative integers n,,, w # v, all but a finite number of which are zero, so that the group

B=Ck, x [[Ur
w#v

is invariant under GG and contains no element of K except 1. Here Ug® is the group of units
of Ok,, which are congruent to 1 modulo p%* . We extend x, to B by setting it equal to 1 on

| §R&S
wHv
and then to A = K*B/K* by setting it equal to 1 on K*.
Now let the fields have characteristic 0. Divide places of K different from v into two
sets, S, consisting of the archimedean places, and T, consisting of the non-archimedean ones.

Choose a collection of non-negative integers n,,, w € T', all but a finite number of which are
zero, so that

_B/::CEQIX I]:Ck% X I]:UZ%.
weS weT
is invariant under G and contains no roots of unity in K except 1. If w is archimedean let

Uk, be the elements of norm 1 in K, and set
By =[] Uk, x [] U~
weS weT
B’/ Bj is isomorphic to the product of Ck, and
V=]]Cr./Ux.
weSs
which is a vector group. The projection L of

M = B)(B'nK*)/B,
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on V is a lattice in V' and the projection is an isomorphism. Define the quasi-character p of
L so that if m in M projects to m; in Ck, and to my in V' then

Xo(m)pu(mz) = 1.
i is invariant under GG. Choose a quasi-character u' of V' and an integer n so that p' and pu
are equal on nL. Let v/ be the quasi-character obtained by lifting y, x ' from Ck, x V to B’.
It follows from a theorem of Chevalley (J20, Theorem 1]) that we can choose a collection of
non-negative integers { n,, | w € T'} all but a finite number of which are zero so that n,, > n/,
for all w in T, so that
B=Ck, x |] Cx. x [ Urz
weS weT

is invariant under GG, and so that every element of B N K* is an nth power of some element
of B'N K*. The restriction v of v/ to B is trivial on BN K*. We take A = K*B/K* and
let x be the quasi-character which is 1 on K* and v on B.

Lemma 12.10. Suppose Fy is a completion of the global field E, Ky is a finite Galois
extension of Fy with Galois group G, and Xk, s a quasi-character of Ck, invariant under
G1. There is a separable extension F of E, a Galois extension K of F, a place v of K such
that [K, : F,] = [K : F|, an isomorphism ¢ of K, with Ky which takes F, to Fy, and a
quasi-character x of Cx invariant under &(K/F) such that x, = Xk, © .

We may as well suppose that F} = E,,, where w is some place of E. It is known ([8] p. 31])
that there is a polynomial with coefficients in E such that if 6 is a root of this polynomial
E,(0)/E, is isomorphic to K;/F;. Let L be the splitting field of this polynomial and extend
w to a place of L. The extended place we also call w. Replacing E by the fixed field of
the decomposition group of w if necessary we may suppose that F; = E,,, K; = L, and
(L, : E,] =[L: E]. Now set x, = Xk, and extend x,, to a quasi-character x’ of A as in the
previous lemma.

Let K be the abelian extension of L associated to the subgroup A. Since A is invariant
under &(L/F) the extension K/FE is Galois. Let v be a place of K dividing the place w of L.
Since A contains O}, the fields K, and L,, are equal. Let F' be the fixed field of the image
of 8(K,/E,) in &(K/E). Let v also denote the restriction of v to F. The fields F;, and E,,
are the same. The mapping Nk, : Cx — Cp, maps Ck into A. Let x = x’ o Ng/r. Then
x is clearly invariant under &(K/F). Since N, restricted to K, is an isomorphism of K,
with L,, which takes F, onto F,, the lemma is proved.

To prove Lemma 12.7 we need only show that if F'is a global field, K is a Galois extension
of F', x is a quasi-character of Cx invariant under &(K/F), v is a place of K such that
K : F| = [K, : F,], and 0, is an irreducible two-dimensional representation of Wy, /g, such
that o,(a) = xu(a)! for all a in Ck, then there is a two-dimensional representation o of
W, such that o, is equivalent to ;. The representation o will be irreducible because oy is.

Let 0, act on X. Let p, be the right regular representation of W, /r, on the space V,, of
functions f on Wk, /r, satisfying

flaw) = xo(a) f(w)
for all o in Cg, and all w in Wk, /p,. If A is a non-zero linear functional on X the map from
x to the function )\(01 (w)x) is a Wk, /p,-invariant isomorphism of X with a subspace Y of

V.



§12. SOME EXTRAORDINARY REPRESENTATIONS 215

Let V' be the space of all functions f on Wk, satisfying

flaw) = x(a) f(w)
for all a in Ck and all w in Wg/p. Since [K : F] = [K, : F,| the groups &(K/F) and
&(K,/F,) are equal. Therefore

Wkr = CxkWk,/F,-

Moreover Ck, = Cg N Wk, r,. Thus the restriction of functions in V' to Wk, /r, is an
isomorphism of V' with V,,. For simplicity we identify the two spaces. Let p be the right
regular representation of Wy, r on V. If a belongs to Cx then

flwa) = x(waw™) f(w) = x(a) f(w)
because x is & (K /F) invariant. Therefore p(a) = x ()] and a subspace V' is invariant under

Wk if and only if it is invariant under Wy, /r,. If we take for o the restriction of p to Y’
then o, will be equivalent to ;.
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CHAPTER III

Quaternion Algebras

§13. Zeta-functions for M (2, F')

In this paragraph F' is again a local field and A = M (2, F') is the algebra of 2 x 2 matrices
with entries from F. The multiplicative group A* of A is just Gp = GL(2, F). If g is in Gp
we set

9] = aalg) = |det g7
Let m be an admissible representation of Hr on the space V. Let the contragredient
representation 7 act on on V. If v belongs to V and v to V' the function

(r(g)v,0) = (v, 7(g7 "))
is characterized by the relation
[ (r(ah),v.5) 10 dh = (g 110,

for all f in Hp.
If @ belongs to the Schwartz space S(A) and v belongs to V' and v to V we set

T, v,0) = / 9)v,0)d*g
and
Z(’ﬁ,@,v,’ﬁ)_/G B(g) (v, 7(g)7) d*g

The choice of Haar measure is not important provided that it is the same for both integrals.
If w is a quasi-character of F'*

Zwem ®,v,0) = /G O(g)w(det g)<7r(g)v, 5> d”*g

The purpose of this paragraph is to prove the following theorem.

Theorem 13.1. Let 7 be an irreducible admissible representation of Hp and 7 its contragre-
dient. Let m act on'V and 7 on V.
(i) For every v in V, 0 in'V, and ® in S(A) the integrals defining Z(as @ m, ®,v,0)
and Z(a5 @ m, P, v,0) converge absolutely for Re s sufficiently large.
(i) Both functions can be analytically continued to functions which are meromorphic in
the whole plane and bounded at infinity in vertical strips of finite width.

(iii) If
Z(aF+2 Qm, v v) = L(s,m)=(s,P,v,0)

217
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and

1
Z(oz;jr2 R, (D,v,'ﬁ) = L(s,7)=(s,P,v,0)
then Z(s, ®,v,7) and Z(s, ®,v,7) are entire.
(i) There exist ¢, vy, ..., v, and Uy, ..., 0, such that > . Z(s, ®,v;,7;) is of the form
aeb with a # 0.
(v) If @' is the Fourier transform of ® with respect to the character 4(x) = Yp(trx)

then _
21— 5,9 v,0) = e(s,m,0r), Z(s, ®,v,0).

We suppose first that F' is non-archimedean and 7 is absolutely cuspidal. Then we may
take 7 in the Kirillov form so that V' is just S(F*). Since an additive character ¥ p = 9 is
given we will of course want to take the Kirillov model with respect to it. The next lemma is,
in the case under consideration, the key to the theorem.

Lemma 13.1.1. If ¢ belongs to S(F*), v belongs to V', and v belongs to V set

®(g) = p(det g)(v, 7(9)v)|det g| '
if g belongs to G and set ®(g) =0 if g in A is singular. Then ® belongs to S(A) and its
Fourier transform is given by

@'(g) = ¢/(det g)(m(g)v, V) |det g| 0" (det g)
if g belongs to Gr and
®'(g) =0
if g is singular. Here n is the quasi-character of F* defined by

W((S 2)) — n(a)l
==((0 1))

This lemma is more easily appreciated if it is compared with the next one which is simpler
but which we do not really need.

and

Lemma 13.1.2. Let So(A) be the space of all ® in S(A) that vanish on the singular elements

and satisfy
1
/‘D<91 (O T)QQ) dr =0

for g1 and gy in Gp. If ® is in So(A) so is its Fourier transform.
Since Sy(A) is stable under left and right translations by the elements of G it is enough

to show that
A (a 0O -
(E
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/F@f((g f;)>dx:o

To verify these relations we just calculate the left sides!

o((58)) = frwweas(; 1))

The right side is a positive multiple of

/GF ®(g)a <g (8 8)) ]detgyg d*g
/GF/NFwA<g(8 8)>|detg|2 /Fq><9(é f))dx g

This is 0 because the inner integral vanishes identically.

/;b’((é f))dx
/ /cp((: §>>wp(a+5+7x)dad6d7d5 d

which, by the Fourier inversion formula, is equal to

/@((‘5‘ g))wp(a+5)dad(5d5
/|a|wp(oz+5) @((8‘ g) (é f))dﬁ da do
and this is 0.

We return to the proof of Lemma 13.1.1 for absolutely cuspidal 7. Since <v, %(g)5> has
compact support on Gp modulo Zr the function ®(g) belongs to S(A). Moreover

A@(g(é f)h) dx
go(detgh)\detgh\}l/<7r(g_1)v,%<<(l) f))%(h)v> da.

Since 7 is absolutely cuspidal this integral is 0. Thus ® belongs to Sp(A) and, in particular,
®’ vanishes at the singular elements.

for a¢ in F and that

which equals

is equal to

which equals

is equal to
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Suppose we can show that for all choice of ¢, v, and v
(13.1.3) d'(e) = ' (1){v, V).
If h belongs to G set ®1(g) = ®(h~'g). If a = det h, v1(z) = |a|p(a™'z), and v, = 7(h)v,
®1(g) = pi(det g)(v1, 7(9))|det g| "
Then @/ (e) is equal to
(e (v, v).

¢ = m(w)p = ra|w<w>w<(“gl ?))so
jalm (“; a91> W((S (1)>>7r(w)<p.

Thus ®’(h), which equals ®(e)|det k|72, is
¢'(det h){(m(h)v,0)n~" (det h)|det h|~".
The formula ((13.1.3) will be a consequence of the next lemma.

Lemma 13.1.4. Let de be the normalized Haar measure on the group U = Up. Ifv is a
character of U set

On the other hand

which equals

n(v.z) = / v(e)pex) de

if v is in F'. Let dx be the Haar measure on F which is self-dual with respect to 1. Then
/ n(v, xw")(ax) de = 0
F

unless |a| = |@w|™ but if a = (w™ with ¢ in U

[ v () do = v(=Q) ] e
F
if ¢ 1s the measure of U with respect to dzx.

The general case results from the case n = 0 by a change of variable; so we suppose n = 0.
In this case the formulae amount to a statement of the Fourier inversion formula for the
function which is 0 outside of U and equal to ¢~'v(¢) on U.

Suppose we could show that there is a positive constant d which does not depend on 7
such that for all o, v, and v

®'(e) = dy¢'(e){v, D).
Then we would have
¥'(g) = di'(det g)(m(g)v,v)|det g|~'n~" (det g).

Exchanging 7 and 7 and recalling that # = ! ® 7 we see that ®”, the Fourier transform of

', is given by
®"(g) = d*¢"(det g) (v, T(9)7)|det gl n(det g),
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where ¢” = T(w)py if v1(a) = ¢'(a)n~'(a). According to the remarks preceding the statement
of Theorem 2.18, ¢” is the product of m(w)¢’ =n(—1)¢ and n~'(det g). Thus

®"(g) = n(—1) d*p(det g) (v, T(g)T)|det g[".
Since ®” = ®(—g) = n(—1)®(g) the numbers d* and d are both equal to 1. The upshot is
that in the proof of the formula (13.1.3)) we may ignore all positive constants and in particular
do not need to worry about the normalization of Haar measures.

Moreover it is enough to prove the formula for ¢, v, v in a basis of the spaces in which
they are constrained to lie. Oddly enough the spaces are all the same and equal to S(F*).
Assume ¢ = v, 3 = v, and ¢ are supported respectively by w™ U, @w™U, and @w"U and
that, for all € in U, @1 (™€) = v; (€), p2(w™e€) = vy *(¢) and p(w™€) = v~'(€). All three of
v, v1 and vy are characters of U.

The formal Mellin transforms of these three functions are @, (u, t) = §(uv; )t™, Pa(p, t) =
§(pvy )t and B(u,t) = 6(ur~")t". Recall that, for example,

Bt = 3o [ elwroute)de
" U
The scalar product (1, ps) is equal to

/(pl(a)gpz(—a) d*a = 0(1112)d(n1 — ng)ro(—1).
If n(ew™) = vy(€)zy then
P(p,t) = Clu, )p(p g 't 2 )

which equals

d(vuvy) Z Con(v g D™ 2™
Consequently
P1) =Culv iy D™
Thus the formula to be proved reads
d'(e) = Cp(v 'y 2y "va(—1)6 (1112)0(n1 — na).

Almost all g in A can be written in the form

(b 0\ (1 —x\[fa O 0 1\ /1 y
9=\0 o)\o 1 )J{0 a)\=1 0/\0 1
with a and b in F’* and x and y in F'. The additive Haar measure dg on A may be written as
dg = |det g|2 d*g = |b*| d*bdz|a| d*ady
and for any ¢ of this form
Yalg) = vr(b(z —y))
while ®(g) is equal to

n‘l(b)|b2a|_1¢(b2a)<w<<g (% N6 f)>¢1,%(<é %))¢2>.
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Let f; and f; be the two functions which appear in the scalar product. Their formal
Mellin transforms can be calculated by the methods of the second paragraph,

Filpt) = mo(=1)C G, O vy vy ) vy (T
if a = (" and R
falpst) = nluvy ' w2 y)t".
The scalar product of f; and f5 is equal to

[ f@n(-ada

which, by the Plancherel theorem for F'*, is equal to
2

LT s
Don(Dg [ Al )i e db.
1 T Jo
A typical integral is equal to the product of v5(—1)u= vy 1 (¢)z;" ™™ and

2m
/ C’(,u7 61‘0)e—i(r+n1+n2)07](/ub—1Vo—lyl—l’ w”lx)n(u_lugl, w”zy) do
0

which equals

1 1

20 Cpmy s ()N (1 g o @M ) (0 e, wy).

Also if a = (w"

- (B)[b*al e (bha) = (b= v (n (B)[7] al

If we put all this information together we get a rather complicated formula for ®(g) which
we have to use to compute ®’(e). The function ®’(e) is expressed as an integral with respect
to a, b, x, and y. We will not try to write down the integrand. The integral with respect
to a is an integration over ( followed by a sum over r. The integrand is a sum over . The
integration over ¢ annihilates all but one term, that for which prry = 1. We can now attempt
to write down the resulting integrand, which has to be integrated over b, x, and y, and
summed over r. It is the product of

N O)BPr(=1)2 " o0 @) Crsnyams (v 1)

and

n(wvy 't @ a)n(vegvy @™y ) e (b(x — y)).

The second expression can be integrated with respect to z and y. Lemma 13.1.4 shows
that the result is 0 unless |b| = |w|™ = |w|™. In particular ®'(e) = 0 if ny # ny. If ny = ny
the integration over b need only be taken over "™ U. Then the summation over r disappears
and only the term for which r» + 2n; = n remains. Apart from positive constants which
depend only on the choices of Haar measure ®'(e) is equal to

Zo_nl/1<—1)0n(1/_ll/0_1)/ v vyt (e) de.
U
Since
/ vitug t(e) de = 6(v11)
U

the proof of Lemma 13.1.1 is complete.
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Since L(s,m) = L(s,m) = 1 if 7 is absolutely cuspidal the first three assertions of the
theorem are, for such m, consequences of the next lemma.

Lemma 13.1.5. Suppose ® belongs to S(A), v belongs to V', and v belongs to V. If m s
absolutely cuspidal the integral

/ B(g)(n(g)v, B |det g|**+ d*g

is absolutely convergent for Re s sufficiently large and the functions it defines can be analytically
continued to an entire function.

Suppose the integral is convergent for some s. If £ is an elementary idempotent such that
7(&)v = v the integral is not changed if ® is replaced by

®i() = [ v, Mo ) dh

Since 7 is absolutely cuspidal it does not contain the trivial representation of GL(2, Or) and
we can choose £ to be orthogonal to the constant functions on GL(2, Or). Then ®,(0) =0
Thus, when proving the second assertion of the lemma we can suppose that ¢(0) = 0.

The support of <7r(g)v,’17> is contained in a set ZpC' with C' compact. Moreover there is

an open subgroup K’ of GL(2, Op) such that the functions ®(g) and (m(g)v,?) are invariant
under right translations by the elements of K'. If

C C LPJ g K’
=1

the integral is equal to

p

~ ol a 0 s
Z<W(9i)vav>\detgi!+2/ ‘I)<(O a)gi>?7(a)|a’2 1 d*a,
i=1 Fx

if each of the integrals in this sum converges. They are easily seen to converge if Res is
sufficiently large and if ®(0) = 0 they converge for all s. The lemma is proved.
Now we verify a special case of the fifth assertion.

Lemma 13.1.6. Suppose ¢ is in S(F*) and
®(g) = p(det g){v, T(g))|det g|~".
Then for all w in V' and all u in 1%
2(1— s, & u,0) = e(s,m,0)E(s, D, u, U).
The expression Z(s, ®, u, u) is the integral over G of

|det g[*~ 2 p(det g) (m(g)u, W) (v, 7(g)7).
The integral

/SL(2 F)<7r(gh)u, 17> <v, %(gh)5> dh

depends only on det g. Set it equal to F/(det g). Then =(s, ®,u, w) is equal to

/FX o(a)F(a)|al* 2 d*a.
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By Lemma 13.1.1
¥'(g) = ¢'(det g)|det g| "'y~ (det g)(7(g)v. V)
so that Z(s, ®’, u, u) is equal to

| @F @l @

F(a) /S o T )0, T)

whenever a = det g. Since the integrand is not changed when ¢ is replaced by

(b o)

we have F(b%a) = F(a) and F(a) = F(a™'). The same relations are valid for F. Also
F(a) = F(a™') so that F = F.
We remind ourselves that we are now trying to show that

| F@F @ @l
is equal to "
(s,m0) [ e@F@la da
If U’ is an open subgroup of Up sucﬁ Xthat

%((8?))&:6
ﬁ(g;§>)vzv

for € in U’ then F and F are constant on cosets of (F*)2U’ which is of finite index in F*.
Write

and

F(a) = Z cixi(a)

where y; are characters of F*/(F*)*U’. We may assume that all ¢; are different from 0.
Then

p

F(a™') = Z cixi(a™h).
i=1
The factor €(s, ™ ® x;, %) was defined so that

/ & ()X (@) |ald~ da
FX
would be equal to

soiomy) [ plap@ldtde

FX
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All we need do is show that m and y; ® m are equivalent, so that

6(57 Xi & T, @D) = 6(87 T, ,lvb)
A character x is one of the x; if and only if y is trivial on (F*)? and

/ F(a)x(a)d™a # 0.
FX/(FX)2
This integral is equal to
| Mo)rlopu @) 7 (0)7) dg
Grl/Zp
which equals
| xenlo o F(o)7) ds.
Gr/Zr

The integral does not change if 7 is replaced by w @ 7. Thus the Schur orthogonality relations
imply that it is non-zero only if 7 and y ® 7 are equivalent.

If & belongs to Sy(A) the functions ®(g)|det g|**2 belongs to Hy and we can form the
operator

7(5,9) = [ a(g)ldetgl*Ernlg) g
GFr
If ® has the form of the previous lemma the functional equation may be written as
T(1—s,®)=c¢(s,m V)T (s, ).

Lemma 13.1.7. Given a non-zero w in V', the set of all uw in V' such that for some ® of the
form

®(g) = p(det g) (v, 7(g))|det g|
the vector T(s, ®)w is of the form e*u is a set that spans V.

If the function ® is of this form so is the function ®’'(g) = ®(hg) and
T(s, ®)w = |det | (T2) r (A1) T (s, ®)w

Since 7 is irreducible we need only show that there is at least one non-zero vector in the set
under consideration. Moreover there is an r such that o} ® 7 is unitary and we may as well
suppose that 7 itself is unitary. Let (u,v) be a positive invariant form on V.

Choose v = w and v so that (u,v) = (u,w) for all u. Let ¢ be the characteristic function

of Ug. Then
®(g) = (w,7(g)w)
if |det g| = 1 and is 0 otherwise. If

H={geGp|l|detg| =1}
then
T(s,®)w = /H(w,w(g)w)ﬂ(g)wdxg

is independent of s and is non-zero because

(T'(s, ®)w,w) :/H‘(W(g)w,w)rdxg.

The fourth assertion follows immediately and the fifth will now be a consequence of the
following lemma.
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Lemma 13.1.8. Suppose ® belongs to S(A) and ¥ belongs to So(A). There is a vertical
strip wn which the integrals

/ / B(g)W' () (m(g)v, F(h)T)|det g|**F|det A3~ &g d*h
and
/ / &' (g)U(h) (x " (g)v, 7 (h~ )3 |det g|3*|det A" &g d*h
exist and are equal.

A little juggling shows that there is no harm in supposing that the quasi-character 7
defined by

is a character. Fix v and v. Let C be a compact subset of G which contains the support of
¥ and ¥'. The set
{7 |heC}

is finite. Thus there is a compact set in Gy such that for any A in C the function

g = (m(g)v, 7(h)7)
has its support in ZrC". Moreover these functions are uniformly bounded. The first integral

is therefore absolutely convergent for Re s > —%. The second is convergent for Re s < %
If —% < Res < % the first integral is equal to

/\If’(h)|det h|3—8{/<1>(g)<7r(g)v,%(h)5>|detg|8+édxg} d* .
Replacing g by hg we obtain
/\I/’(h)|det h|2{/ ®(hg){m(g)v,v)|det g|s+% dxg} d*h.
If we take the additive Haar measure to be dh = |det h|*> d*h this may be written as
/<w(g)v,5>ydetgys+%{/@(hg)\p/(h) dh} d*g.
The second integral is
/\If(h)]det hys+é{/@’(g)<7r—1(g)v,%—1(h)a>|detg|3—8dxg}dXh.
After a change of variables this becomes
/<7r_1(g)v,'17>|detg|g_s{/(D’(gh)\ll(h) dh}dxg.
Replacing g by ¢~! we obtain
/<7T(g)v,a;>|det g|s+%{|det g|_2/<1>'(g_1h)\11(h) dh} g,

Since

/ B(hg) W' () dh
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is equal to
\detg\_Q/CI)’(g_lh)\If(h) dh

the lemma follows.

The theorem is now proved when 7 is absolutely cuspidal. Suppose that it is a constituent
of 7 = p(p1, o). In this case the field may be archimedean. Although 7 is not necessarily
irreducible it is admissible and its matrix coefficients are defined. The contragredient
representation 7 is p(u; ', 1y ") and the space of 7 is B(uy, p12) while that of 7 is B(ui ', s t).

If f belongs to B(juy, p2) and f belongs to B(u;*, j5 ") then
(v 7) = [ saFin) dx

and
(170 = [ 10 Ftkg) dx

if K is the standard maximal compact subgroup of Gp.
If we set

L(87 T) = L(57 /jll)L(‘S? /jl2)
L(s,7) = L(s, i ") L(s, 13 )
and
6(87 T, ¢) = 6(87 M, w)e(sv 2, ¢)
the theorem may be formulated for the representation 7. We prove it first for 7 and then for
the irreducible constituents of 7.

We use a method of R. Godement. If ® belongs to S(A) then for brevity the function
x — ®(gxh) which also belongs to S(A) will be denoted by h®g. Also let

(pq)(al,ag):/F@((%l ;;))dx

where dx is the measure which is self dual with respect to ¥. The function pg belongs
to S(F?). The map ® — g of S(A) into S(F?) is certainly continuous.
We are now going to define a kernel Kg(h,g,s) on K x K. We set
Kq;(e, €, 8) = Z(:ula;‘v POl 90¢’)'
Recall that the right-hand side is

// wo(ar, az)pi(ar)|ar|* ua(az)|as|* d*ay d*as.

In general
Ko(h,g,s) = Kyon-1(e, €, 5).
We also set _
K‘:I)(ev €, S) = Z(:ul_la/;“v MZ_IO‘;W 90<D)
and

I?q)(h,g, s) = [?gqm_l(e, e,s).
The kernels are defined for Re s sufficiently large and are continuous in h, g, and s and, for
fixed h and g, holomorphic in s.
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We now make some formal computations which will be justified by the result. The

1 ~
expression 7 (aif? T, D, f, f> is equal to

/GF@(9>{/K f(kg)f (k) dk}|detg|s+; g

/Kf(k){/a <I>(g)f(k9)ldetg\s+5dxg}dk-

Changing variables in the inner integral we obtain

/Kf(k){/G <I>(k‘1g)f(g)\deth\s+édxg}dk-

Using the Iwasawa decomposition to evaluate the integral over Gr we see that this is equal to

which is

ch(kl, ]{ZQ, S)f(k’g)f(kl) dk’l de

KxK
Since we could have put in absolute values and obtained a similar result all the integrals are
convergent and equal for Re s sufficiently large. A similar computation shows that

s—&-l ~ re
Z(aF 2 ®7-7(I)7f7f>
is equal to

Ko (ky, ko, 8) f (k1) f (ko) dky dky
KxK
if Re s is large enough.

If ¢ is an elementary idempotent such that 7(£)f = f and ?(f)f: fthen
Z (a?“ ®7,0, f, f)
is not changed if ® is replaced by

B1(g) = / / D (kyghy V)& (k)€ (ko) dby dbs.

Thus, at least when proving the second and third assertions, we may suppose that ® is
K-finite on both sides and, in fact, transforms according to a fixed finite set of irreducible
representations of K. Then, as s varies, the functions

Ko (ki ks, s)

stay in some fixed finite-dimensional space U of continuous functions on K x K. The map

F — // F(ky, ko) f (ko) f(ky) dky dks

is a linear form on this space and we can find ¢1,...,¢, and hy, ..., h, in K such that it can
be represented in the form

i=1
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Thus
Z(O‘/SFJr2 ® T, (D7 f’ f) = Z )\ZK@(gza hia S)~

Thus to prove the second and third assertions we need only show that for each g and h in

K the function
Kq:.(g, ha 8)

L(s,T)
is entire and K¢ (g, h, s) itself is bounded at infinity in vertical strips. There is certainly no
harm in supposing that ¢ = h = e so that

K@(ea €, 3) = Z(/Jllof}g?v /L204}977 90'19)
Thus the desired facts are consequences of the results obtained in paragraphs 3, 5, and 6 when
proving the local functional equation for constituents of 7. Replacing 7 by its contragredient

1 ~
representation we obtain the same results for Z (aif? QT, P, f, f].

To prove the functional equation we have to see what happens to the Fourier transform
when we pass from the function ® to to ®;. The answer is simple:

¥ (g) = / / & (knghy e (k)€ (k) dly by

Thus in proving the functional equation we may suppose that ® is K-finite on both
sides. We may also suppose that if F'(ky,ks) is in U so is F'(ky, ko) = F(ko,k1). Then
Z a?i RT, Y f, f) = Z)\i[?@/(hi,gi, s). To prove the functional equation we have to
show that .
Kei(h,g,1— K h

‘I>( v 9, S) :E(S7T,w) @'(97 73)

L(1—s,7) L(s,T)
for any h and ¢ in K. Since the Fourier transform of g®h~! is h®'g it will be enough to do
this for h = g = e. Then the equality reduces to

Z(/Llilajln’ii ugl&}’isa 90<I>’> Z(:ulasFa IUQO@W ()0‘1’)

L —s7) I A

and is a result of the facts proved in the first chapter and the next lemma.

Lemma 13.2.1. The Fourier transform of the function pg is the function pg:.

The value of @' at
a f
A

/cb((g; i>>w(ax+ﬁz+fyy+5t) dz dy dz dt

if dz, dy, dz, and dt are self-dual with respect to 1. Thus e (a, d) is equal to

/ /@((ﬁ ?))w(aﬁét)w(ﬁz)dxdydzdt dg

is
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Applying the Fourier inversion formula to the pair of variables § and z we see that this is

equal to
/@((3 i’))mm + 6t) d dy dt

which is the value of the Fourier transform of pg at («, ).

The theorem, with the exception of the fourth assertion, is now proved for the representa-
tion 7. We will now deduce it, with the exception of the fourth assertion, for the constituents
of 7. We will return to the fourth assertion later.

If 7 is a constituent of 7 either m = 7(uy, u2) or @ = o(u1, pt2). In the first case there
is nothing left to prove. In the second only the third assertion remains in doubt. If F'is
the complex field, it is alright because we can always find another pair of quasi-characters
wy and ph such that 7 = 7w(u), uy). We ignore this case and suppose that F' is real or
non-archimedean.

First take F' to be non-archimedean. We may suppose that p; and ps are the form
W = onllp/ % and Lo = on;}/ ?. The one-dimensional representation g — y(det g) is contained
in 7= p(u;', py ') and acts on the function g — x(det g). The matrix elements for 7 are the

functions
g (1(9)f.F) = (@), ])
where f belongs to B(uy", u;") and

/ f(k)x(det k) dk = 0.

For such an f there is an elementary idempotent £ such that 7(§)f = f while

/ (k) dk = 0
K
The value of Z (OzSFJr; ®@m, D, f, f) is not changed if we replace ® by

B1(g) = /K B(gh~")E(h) dh.

Lemma 13.2.2. If g1 and go belong to G then

// ®, <91 (g 3)92) dz dy = 0.

It will be enough to prove this when g¢; is the identity. Let

w(m,y)zq)l((g ‘8))

If g1 is the identity then, after a change of variables, the integral becomes

|det go| ! // o(z,y)dedy
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so that we can also assume ¢, is the identity. Then the integral equals

/K //CD((g g>k> dvdy p&(k™") dk.

Changing variables as before we see that the inner integral does not depend on K. Since

/ 1S (k_l) dk =0
K
the lemma follows.

To establish the third assertion for the representation 7 all we need do is show that for

any ¢g and h in K the function
K<I> (97 h7 8)

L(s,m)

//q><gl(g g)92> dz dy = 0

for all g; and g5 in Gr. As usual we need only consider the case that g = h = e. Since

/%(x,O) dz =0

is entire provided

and
KCI’(67 ¢, 3) = Z(“la%a M2O‘§7‘7 ‘10@)
we need only refer to Corollary 3.7.

If F is the field of real numbers the proof is going to be basically the same but a little more
complicated. We may assume that ;" (2) = |2[**1"™(sgn z)™, where p is a non-negative
integer and m is 0 or 1, and that 7 acts on Bg(p1, i2). The restriction of 7 to SO(2,R)
contains only those representations k, for which n =1 —m (mod 2) and |n| > 2p+ 1 —m.
Let &, be the elementary idempotent corresponding to the representation k,,. As before we
may suppose that

(13.2.3) /80(2 o O(xk & (k) dk =0

if K, does not occur in the restriction of 7 to SO(2,R).

Lemma 13.2.4. If ® satisfies (13.2.3)), if g1 and g» belong to Gr, and ¢ = pg a4, then
I
r'—p(x,0)dr =0

[ a5t

ifi>0,7=20andi+j=2p—m.
We may assume that g, = e. If o = @g let
I
L(® :/ r'=—p(x,0)dx
@) = [ 2 etw.0

and let
F(g) = L(g9®).



232 III. QUATERNION ALGEBRAS

We have to show that, under the hypothesis of the lemma, F'(g) = 0 for all g. However F’
is defined for all ® in S(A) and if ® is replaced by h® the function F is replaced by F(gh).
Thus to establish the identity

F((CéZ ;2) 9) = m(a1)n2(az) F(g),

where n1(a;) = a7%|ay| ™" and 1,(az) = a}|as| ™", we need only establish it for g = e.
Let
- a; =z
-2
hb T U — P ary xz -+ agy .
0 y 0 asy
If o = po and @1 = @pe then ¢(x,y), which is given by

/<I> < (alx Tz + aw)) du,
0 azy
|a2|_1 /(I> ((a(l):c aZy)) du = |a2|_1gp(a1x,a2y).

Then

is equal to

which equals

as required.

Finally if
_ (o b
- (7 5)
and ¢ = g, then F(g) is equal to
O
ng—;f(x, 0) dv

and

B ar +yu Pr+du
@(w,y)—/@« - " ))du.

Since we can interchange the orders of differentiation and integration,

i ] .
g—yf(:r, 0) = Z Ay / on(ax + yu, fx + du) du
n=0
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e = o (5 0))

and the numbers A, are constants. Thus F(g) is a linear combination of the functions

T A // 2l on(ax 4+ yu, Bx + du) dv du.

If o # 0 we may substitute x — 3¢ for 2 to obtain

T // Mwn (ax, Bz + %) dz du

where A = det g. Substituting u — x for u we obtain

' A
AT ”//(:B+ — — 7u> gon(om,Tu) dz du.

After one more change of variables this becomes

where

Ai|A]1’y”5j”/ (62 — yu) o, (x, u) dr du.

In conclusion F(g) is a function of the form

(0] 5 —i _
F((’Y 5)) =A |A| 1P(a757775)
where P is a polynomial.

Thus the right translates of ' by the elements of Gy span a finite-dimensional space.
In particular it is O(2,R) finite and if 7, = p'loz;/ ? while 7, = péa}l/ ? it lies in a finite-
dimensional invariant subspace of B(}, 1). Thus it lies in By (), jib). Since pfpy ™" = puy pua
no representation of SO(2, R) occurring in 7 (g}, p) can occur in m = o (py, u2). If F is not
zero then for at least one such representation x,,

Fig) = / o O 8

is not identically 0. But F} is the result of replacing ® by

O, (z) = /S . O(ak™ )&, (k) dk

in the definition of F. In particular if ® satisfies the conditions of the lemma both ®; and Fj
are zero. Therefore F' is also zero and the lemma is proved.

The third assertion can now be verified as in the non-archimedean case by appealing to
Lemma 5.17. The fourth has still to be proved in general.

If F is the real field let S1(A) be the space of functions of the form

@((i 2)) =exp(—7(a® +b* + & + d*)) P(a, b, c,d)
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where P is a polynomial. If F'is the complex field S;(A) will be the space of functions of the
form

) ( ((2 2)) = exp(—ﬁ(ad + bb + cc + dE)) P(a,a,b,b,c,¢ d,d)
where P is again a polynomial. If F'is non-archimedean S;(A) will just be S(A). The space
S1(F?) is defined in a similar manner.
Lemma 13.2.5. Suppose ¢ belongs to Si(F?). Then there is a ® in S;(A) such that
Ko(e, €, s) = Z(mak, poog, o)
and f1,..., fn in B(ui, p2) together with Fiveoiifoin B(uit, pyt) such that

n

Ko(h.g.5)fi(9)fi(h) dgdh = Ka(e. e, s).

i=1 Y KxXK
Since there is a ¢ in S;(F?) such that
Z(MlasFa ,u2a18‘7‘7 90) = aebsL(S7 7_)

this lemma will imply the fourth assertion for the representation 7.
Given ¢ the existence of ® such that ¢ = pg and therefore

Ko(e e, s) = Z(map, ooy, po)

is a triviality and we worry only about the existence of fi,..., f, and fi,..., fa.
It is easily seen that if
a, T
( 0 CLQ)

b1 y
0 by
a, x by vy
Kq’((() a2>h’(0 bg)g’s>

p1(ar)po(az) eyt (b1) s (b2) Ko (b, g).

and

belong to K then

is equal to

Also

Ko (hhy,gg1,8) = K g1 (h, g, 5).
Since ® belongs to S1(A) it is K-finite on the left and right. Thus there is a finite set S of
irreducible representations of K such that if U; is the space of functions F' on K which satisfy

F((o )h) = (o )s(ar) (1)

a, T
0 a9

for all
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in K and can be written as a linear combination of matrix elements of representations in S
and U, is the space of functions F’ on K which satisfy

f“(Cﬁ i)h>:=uf0hN6WaﬁF%m

and can be written as a linear combination of matrix elements of representations in S then,
for every s, the function
(ha g) - K‘I’(h7 9, S)
belongs to the finite-dimensional space U spanned by functions of the form (h, g) — F(h)F'(g)
with F in U; and F’ in Us.
Choose Fi,...,F, and FJ,..., F so that for every function F' in U

Fle,e) = Z i /K . F(h, g)F:(h)Fy(g) dh dyg.

Since F; is the restriction to K of an element of B(u; "', ;') while F; is the restriction to K
of an element of B(puy, p2) the lemma follows.

Unfortunately this lemma does not prove the fourth assertion in all cases. Moreover there
is a supplementary condition to be verified.

Lemma 13.2.6. Suppose F' is non-archimedean and w is of the form m = w(pq, u2) with py
and py unramified. Suppose ® is the characteristic function of M(2,0F) in M(2,F). Ifv
and v are invariant under K = GL(2,Or) and if

/dxgzl
K

Z(a?? ® T, @,v,’ﬁ) = L(s,7)(v,0).

then

Suppose f belongs to B(u1, p2) and is identically 1 on K while  belongs to B(uy',py')
and is identically 1 on K. Then

(ﬂﬁzéjWﬂ@%:l

and if 7 = p(uq, pe) we are trying to show that

Z(oz?% T, f, f) = L(s, ).

The left side is equal to

KxK
Since ¢ is invariant on both sides under K this is equal to

Ko(e,e,s) = Z (105, o, @)

gp(:z:,y):/q)((g ;))dz.

if
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Since we have so normalized the Haar measure on G that

/GF F(g)dg:/K /F((“Ol 22) <(1) 915),{;> a; d¥ay dz b i

where dk is the normalized measure on K, dz is the measure on F' which assigns the measure
1 to Op, and d*a is the measure on F'* which assigns the measure 1 to Up, the function ¢ is
the characteristic function of Or x Op and
Z(:ulaiﬁ M2a;’7 @) - L(S, MI)L(SJ ,u2)

as required.

This lemma incidentally proves the fourth assertion for the one-dimensional representation
g — x(det g) if x is unramified. If y is ramified and 7 corresponds to x then = = 7(uy, o) if
p(a) = x(a)la|'’? and ps(a) = x(a)|a|~/2. Thus L(s,7) = 1. If ® is the restriction of the
function x~! to K then

Z(m, ®,v,0) = (v,’ﬁ)/ d*g
K

and the fourth assertion is verified in this case.

Take p17 and po of this form with y possibly unramified and suppose that © = o (1, p2).
Suppose first that x is unramified. Let ¢y be the characteristic function of O in F' and let

p1(x) = po(r) — |@ po(w ™).
It has Op for support. Set

» (( 3)) = ¢1(@)0b)pol(c)po(d).

It has M(2,Op) for support and depends only on the residues of a, b, ¢, and d modulo pg. If
K'={keK|k=e (modp)}
then Kg(h,g,s) depends only on the cosets of i and g modulo K. Also

if z is in Op. To see this we observe first that if

o) oo} 1))
/F @((_‘i “1_;2”;9» dy

900(a2)<ﬂ0(a23?)/0 ©1(y)polar — zy) dy.

then pe, (a1, as) is equal to

which equals
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Since z is in O the function ¢o(a; — zy) equals go(ay) for y in Op and this expression is 0

because
/ ¢1(y) dy = 0.
O

We choose f in Bg(p1, p12) so that f(gk) = f(g) if k belongs to K3, f(e) =1, and

fe+ 3 f(w(é f)):o.

Z‘EOF/]J

We choose f in B(p1, p2) so that f(gk;) = f(g) if k belongs to K!, f(e) =1, and

(o3 1)) -0

KxK

if x belongs to Op. Then

is equal to
| Kole.0.)1(0)dg = Kofere.s)
K

which equals

Z(ap, patip, Pa).
Moreover
pa(ar, az) = p1(a)polaz)
so that, as we saw when proving Corollary 3.7, L(s, 7) is a constant times Z(uia, ot o).

If x is ramified L(s, ) = 1. If ® has support in K then Z(o[;’;rl/2

/K (k) (K)o, ) dk

and we can certainly choose v, v and ® so that this is not 0.

We are not yet finished. We have yet to take care of the representations not covered by
Lemma 13.2.5 when the field is archimedean. If F'is the complex field we have only the
finite-dimensional representations to consider. There is a pair of characters p; and po such
that 7 is realized on the subspace Bf(p1, pia) of B(p1, p12). There will be positive integers p
and ¢ such that pypu; ' (2) = 277z~ % The representations o = py,_, of SU(2, C) which is of
degree |¢ — p| + 1 is contained in the restriction of m to SU(2, C). In particular By(uq, o)
contains all functions f in B(uq, p2) whose restrictions to SU(2, C) satisfy

f((”g 0)k> = u(ar)ynaas) F(8)

and transform on the right according to o.
We are going to use an argument like that used to prove Lemma 13.2.5. Suppose we can

find a function ® in S;(A) such that
Z (1O, 20 Po)

differs from L(s, ) by an exponential factor and such that ® transforms on the right under
SU(2, C) according to the representation o. Then Kg¢(h, g, s) will satisfy the same conditions

@ m, ®,v,v) is equal to
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as in Lemma 13.2.5. Moreover the functions F” in the space we called U; can be supposed to
transform on the right under SU(2, C) according to o, so that the functions F'; will correspond
to functions f; in By(p1, p2). Then

Ko(h, g,5)fi(h) fi(g) dh dg = Z(Oz?; ®T,,f; ﬁ)

KxK
is equal to

S 1 ~
Z(a;"’ ® ﬂ,@,vi,vi)

if v; = f; and v; is the restriction of fi, regarded as a linear functional, to By(pu, t2).
There are four possible ways of Writing w1 and po.

(i) pa(z) = 2™ (22)", pa(z) = 2™2(22)"2, My — ma = q — p.
(il) pu(2) = 2" (22)™, pa(z) = (22)52, m1 +my =q—p.
(iil) pi(z) =2 (22)", /@(z) M2(2Z)%2 —my — Mg = q — P.
(iv) ul( ) = 2" (2Z)", pa(z) = ZM(2Z)%2, my —my = q — p.

In all four cases my and mo are to be non-negative integers. @ is the product of
exp(—ﬂ(aa +bb + c¢ + da)) and a polynomial. We write down the polynomial in all four
cases and leave the verifications to the reader.

(i.a) my = my : @™ "2 (ad — be)™

m2—mji

my < my : (ad — be)™d

m1 dm2

(iv.a my = my :a™ "2 (ad — be)™2.
me = my : (ad — bc)™ ™2™,
For the real field the situation is similar. Suppose first that © = 7(u1, po) is finite-dimensional.
If p1p2(—1) = 1 then 7 contains the trivial representation of SO(2, R) and if pype(—1) =1

it contains the representation
_ cosf sinf L it
P\ —sinf cosd €

defined after Lemma 5.5. We list the four possibilities for p; and ps and the polynomial P
by which exp(—m(a? + b* 4 ¢* + d?)) is to be multiplied to obtain ®.
(i) p1(—=1) = po(—=1) = 1: P(a,b,c,d) =1
(i) p1(—=1) = po(—1) = 1: P(a,b,c,d) = ad — be.
(iii) p(=1) =1, po(—1) = =1: P(a,b,c,d) = c — id.
(iv) pa(—1), po(—1) =1: P(a,b,c,d) = a — ib.
Only the special representations remain to be considered. We may suppose that m =
o(p1, p12) where 1y and pig are of the form pq(z) = |z|"*% and py(z) = |z|"~%(sgnt)™ with
q =2p+1—m and with p a non-negative integer. Moreover m is 0 or 1. The function L(s, )

differs from
F(s—l—r—l—%)r(s—l—r—l—%—l—l)
2 2

Z(:ula%a M?aiﬁ (,0)

by an exponential as does
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if
—m(a?+a2) q+1
play,ay) = e (a1 2)a2 )

Since the representation of k41 occurs in the restriction of 7 to SO(2,R) we may take

o ((Z Z)) = exp(—m(a® + b + & + d%)) (c + id)*".
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§14. Automorphic forms and quaternion algebras

Let F' be a global field and let M’ be a quaternion algebra over F. The multiplicative
group G’ of M’ may be regarded as an algebraic group over F. In the ninth paragraph we
have introduced the group G’y and the Hecke algebra H'. A continuous function ¢ on G’%\G',
is said to be an automorphic form if for every elementary idempotent £ in H’ the space

{pfHe| feH}

is finite-dimensional.

If ¢ is an automorphic form it is Z/ finite on the left if Z’ is the centre of G’. Let A’
be the space of automorphic forms on G’y and if 7 is a quasi-character of F*\I let A'(n) be
the space of ¢ in A’ for which ¢'(ag) = n(a)¢’(g) for all a in Z’, which, for convenience, we
identify with I. The first assertion of the following lemma is easily proved by the methods
of the eighth paragraph. The second is proved by the methods of the tenth. The proof is
however a little simpler because G'»Z), \G'5 is compact. Since, at least in the case of number
fields, the proof ultimately rests on general facts from the theory of automorphic forms
nothing is gained by going into details.

Lemma 14.1.

(i) If an irreducible admissible representation m of H' is a constituent of A’ then for
some n it is a constituent of A'(n).

(i) The space A'(n) is the direct sum of subspaces irreducible and invariant under H'. The
representation of H' on each of these subspaces is admissible and no representation
occurs more than a finite number of times in A'(n).

Now we have to remind ourselves of some facts whose proofs are scattered throughout
the previous paragraphs. Suppose m = ), 7, is an irreducible admissible representation of
‘H'. For each v the representation m, of H. is irreducible and admissible. Suppose 9 is a
non-trivial additive character of F'\ A and 1), is its restriction to F,,. We have defined L(s, m,),
L(s,7,), and €(s, 7y, 1,). If u, is in the space of m, and @, in the space of T, we have set

s+% ~
Zl ap ? @my, ®, Uy, Uy

equal to

| e m)vo)] a

Py
We know that

s+% ~ )
ap 2 Q@ Ty, D, Uy, Uy

L(s,m,)

g
h’uE(sa Ty wv>

is entire and equals
l—S ~ ~
Z(a; ® Ty, D, Uy, uv>
L(1—s,m,)
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The factor h, is 1 of G, is isomorphic to GL(2, F,) and is —1 otherwise. The case that
G'r, is isomorphic to GL(2, F},) was treated in the previous paragraph. The other cases were
treated in the fourth and fifth paragraphs.

Theorem 14.2. Suppose 7 is a constituent of the space of automorphic forms on G's. The
infinite products
H L(s,my)

[1L6.7)

are absolutely convergent for Re s sufficiently large. The functions L(s, ) and L(s,7) defined
by them can be analytically continued to the whole complex plane as meromorphic functions.
If F is a number field they will have only a finite number of poles and will be bounded at
infinity in vertical strips of finite width. If

e(s,7) = [ els, mun)

v

and

the functional equation
L(s,m) =¢€(s,m)L(1 —s,T)
will be satisfied.

We may suppose that 7 acts on the subspace V' of A'(n). Let ¢ be a non-zero function
in V. For almost all v the algebra M, = M’ ®p F, is split and G’ = G, is isomorphic to
GL(2, F,,)). Moreover for almost all such v, say for all v not in S, ¢ is an eigenfunction of the
elements of H; = H}. which are invariant on both sides under translations by the elements
of K. Thus if f is such an element and ¢(g) # 0 the corresponding eigenvalue A, (f) is

Ao(f) = ¢lg)™! / w(gh) f () dh.
G,
To prove the absolute convergence of the infinite products we have only to refer to Lemma 3.11
as in the proof of Theorem 11.1.
The representation 7 contragredient to 7 can be defined. If 7 = @ m, actson V = @0 V,

then 7 = ® 7, acts on V = .0 V, where 0 is, for almost all v, fixed by K7 and satisfies
(u2, %) = 1. The pairing between V and V is defined by
<® Uy, ® av> - H<uv7 271,>

Almost all terms in the product are equal to 1. If v is in V and w is in V the matrix element
(m(g)u, ) can also be introduced. If f is in H'

(n(f)u,u) = . F9)(m(g)u, w) d*g.
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If F(g) is a linear combination of such matrix elements and ® belongs to the Schwartz space
on A’y we seff]

5+% S+% X
Z{ap?,®,F ) = [ ®(g)F(9)|v(g)] " d*y.

Ga
The function F(g) = F(g™) is a linear combination of matrix coefficients for the representation
7. We set

s+3 o I s+5 x
Z{ap?,®,F ) = [ ®(g)F(9)|v(g)] " d*g.
Ga
Before stating the next lemma we observe that if x is a quasi-character of F*\I the

one-dimensional representation g — x(v(g)) is certainly a constituent of A’.

s_1
Lemma 14.2.1. If 7 is a constituent of A’ the integrals defining the functions Z (aF SOR F)

s—1 =
and Z(ozF 2 P, F) are absolutely convergent for Re s large enough. The two functions can

be analytically continued to the whole complex plane as meromorphic functions with only a
finite number of poles. If w is not of the form g — X(l/(g)) they are entire. If F' is a number
field they are bounded at infinity in vertical strips of finite width. In all cases they satisfy the

functional equation
1 3_g ~
Z(a“';?,@,F) - Z(a; ,<I>’,F>

if ® is the Fourier transform of ®.

There is no harm in assuming that F' is of the form
F(g) = H<7T(gv)uva av> = H Fv(gv)

and that & is of the form

o) = ] @)

where, for almost all v, ®, is the characteristic function of M(2,0,). Recall that for almost
all v we have fixed an isomorphism 6, of M with M (2, F,).
We know that each of the integrals

s+1
| 2 Bilalvian) " ag,
a,
converges absolutely for Re s sufficiently large. Let .S be a finite set of primes which contains
all archimedean primes such that outside of S the vector u, is u?, the vector w, is u2, @, is
the characteristic function of M(2,0,), and 7, = m, (i, v,,) where u, and v, are unramified.
Let 7, = 7y (|, [1]). If v is not in S the integral

/K’ (D(gv)Fv(gv)|l/(gv)}S+% dxgv -1

v

and if c = Res 1
| el [oa)] " .

nfortunately the symbol F' plays two quite different roles on this page!
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is, as we see if we regard 7, as acting on B(uy, /), at most
/ @v(gv)<ﬂ';(gv)fm fv> ‘y(gv)’ 2 0% g,
a

if f, and f, are the unique K/-invariant elements in B(|s,|, |[v,|) and B(|po] ™, o] ™) which
take the value 1 at the identity. We suppose that the total measure of K/ is 1 so that
(fo, fo) = 1. According to Lemma 13.2.6 the integral is equal to L(o, 7). Since

HL(U, )

veES

/
v

S 1 .
is absolutely convergent for ¢ sufficiently large the integral defining 7 <a F+2 , O, F ) is also

and is equal to

s+% ~
HZ O[FﬂU ®7Tv7q)v>uv7uv
v

L(s,) HE(S,@v,uv,ﬂv).

and to

v

S 1 =
Notice that Z(s, @, u,, U,) is identically 1 for almost all v. Z(aF+2 , D, F) may be treated
in a similar fashion. If we take 7 to be the trivial representation we see that
s+1
/ O(g)|v(g)|* dg
Gy
is absolutely convergent for Re s sufficiently large.

It will be enough to prove the remaining assertions of the lemma when 7 is a character.
We may also assume that if 7 is of the form n(a) = |a|" then r = 0. We have identified V/

with a subspace of A’(n). We may take V' to be { ¢ | ¢ € V' }. To see this observe that this
space is invariant under H’ and that

<%wg=/' 01(9)32(g) dg
G ZA\G'y

is a non-degenerate bilinear form. Here ¢; belongs to V' and @y belongs to V. The remaining
assertions need only be verified for functions of the form

F(g) :/G’ e p(hg)p(h) dh

with ¢ in V and ¢ in V.
For such an F' the function Z (a?”, P, F ) is equal to
[ 2] [ etz nf vt v
Since ¢ and ¢ are bounded this double integral converges absolutely for Re s sufficiently

large. We first change variables by substituting ~~'¢ for g. The integration with respect to ¢
can then be carried out in three steps. We first sum over G, then we integrate over Z,\ Z'y
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which we identify with F*\/, and finally we integrate over G Z, \G's. Thus if Kg(hq, ha, s)
is
lv(hy )| v(hy)] s+3 / Z(I) (hy'€aho)n(a)|a| T d*a
FA\I'G
the function Z (a;ﬂ, o F ) is equal to

// @(hg)(z(hl)[(@(hl, hg, S) dhl dhz
The integrations with respect to h; and hs are taken over G Z, \G'5. A similar result is of
course valid for Z(aj:r?, D, ﬁ) If [}q)(hl, ha, 8) is

‘l/(hl_1> ‘5+% |]/(h2) ‘S‘F% / Z q)<h1_1£ah2)77_1(a)|a|28+1 an

FX\I
\Uye

then Z(aSF+2, D, f) is equal to

// 0(h2)@(ha) Ko (hy, ha, s) dhy dhs.
We first study

e(s,cb)z/F > d(ayn(a)|alzt d*a

“M g0

0(s,®) :/ > e(ga)yyH(a)|alF ! d¥a.
F\I'eZg
The sums are taken over G, the set of non-zero elements of M’. Choose two non-negative
continuous functions Fy and F) on the positive real numbers so that Fy(t) + Fi(t) = 1,

Fi(t) = Fy(t™1), and so that F, vanishes near zero while Fy vanishes near infinity. If

9i<8,q)) = /};X\IZ@ fa ’a‘2s+1F(’CLD d*a

§#0

and

we have
0(s, @) = Oy(s,P) + 01(s, P).
In the same way we may write

0(s, ®) = Oy(s, ) + 0, (s, D),

where 6,(s, ®) and (s, ®) are entire functions of s which are bounded in vertical strips.
Applying the Poisson formula we obtain

0) + ) ®(a) =lalz" ©'(0) + Y ¥'(€a”)

€40 €40
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Thus, for Re s sufficiently large, 6 (s, ®) is equal to the sum of

L., e @l A ol d

€0
which, after the substitution of a~! for a, is seen to equal 50(1 —s5,9’), and
{2'(0)]a]™" — @(0) }n(a)|al**** Fi(|a]) d*a.
FX\I
Thus if

Ao = [ laPn@P(ja]) a
FX\I
the function 6(s, ®) is equal to
0o(s,®) + Oo(1 — 5, D) + ' (0)A(2s — 3) — (0)A(2s + 1).

A similar result is valid for §(s, ®). The function
Bo(s, ) + Op(1 — s, D')

is entire and bounded in vertical strips and does not change when s and ® are replaced by
1—sand ®'.

If 7 is not of the form n(a) = |a|” the function A(s) vanishes identically. If n is trivial and
1y is the group of ideéles of norm 1

A(s) :/ |a|* T F} (Ja]) d*a.
PX\I

It is shown in [I0] that this function is meromorphic in the whole plane and satisfies
A(s) + A(—s) = 0. If F'is a number field, its only pole is at s = 0 and is simple. Moreover
it is bounded at infinity in vertical strips of finite width. If F'is a function field its poles
are simple and lie at the zeros of 1 — ¢~°. Here ¢ is the number of elements in the field of
constants. B

Thus (s, ®) is meromorphic in the whole plane and is equal to 8(1 — s, ®’). If hdg is the
function x — ®(gzh) then

s+1 s+1 _
Ka(h, ha,s) = [v(h )| |p(ha) ™2 0(s, ha®hy)
while B . L
Ka(h, ha,s) = [v(hi )| |p(ha)[™20s, ha®h ).
Since the Fourier transform of hy®h; " is
|v(ha)| 2 v () 1 @' By

we have _
Ko (hi,ha,s) = Kg(ha, hi, s).
The functional equation of the lemma follows. So do the other assertions except the fact that

the functions Z (a?ﬁ o F ) and Z (asF+2, D, F ) are entire when 7 is trivial and 7 is not of
the form ¢ — X(V(g)). In this case the functions ¢ and ¢ are orthogonal to the constant
functions and the kernels Kg(hy, ho, s) and Kg/(hy, he, s) may be replaced by

K (hy, ha, s) = Kar(hy, g, s) + B(0)A(2s 4+ 1) — @' (0)A(2s — 3)



246 III. QUATERNION ALGEBRAS

and
Kb (hy, hy, s) = Ker(hy, hy, s) + ' (0)A(2s + 1) — ®(0)A(2s — 3).
The functional equation of the kernels is not destroyed but the poles disappear.
The theorem follows easily from the lemma. In fact suppose that the finite set of places
S is so chosen that for v not in S

E(s, @2, ud, ) =1

if ®Y is the characteristic function of M(2,0,). If v is in S choose @/ u' @', 1 < i < n,, so
that

Ny

> E(s, @)l i) = b

i=1
where b, is real. If « is a function from S to the integers and, for each v in S, 1 < a(v) < ny,
set

Po(g) = H (I)g(v) (90) H CI)B (9v)

vES v¢S
and set
Fu(g) = § TT(molgn)us® s b8 TT (molgu)ul i)
veS vgS
Then

Sz (a‘;*%, o, Fa) — & L(s,m)

where b is real. The required analytic properties of L(s, ) follow immediately.
To prove the functional equation choose for each v the function ®, and the vectors u,
and u, so that
(s, Dy, Uy, Uy)

is not identically 0. We may suppose that, for almost all v, ®, = ®° u, = v, and u, = w..

Let
(I)(g) = H (I)v(gv)
and let
F(g) - H<7Tv(gv)uva ﬂv>

Then

Z(a;fg, P, F) = L(s,m) H ZE(s, Dy, Uy, Uy)
and

3_g ~ _ - N

Z(af; LD F) =L(1—s,7) HE(l — 8, D uy, Uy).

Since

E(l - 57 (I);7u1)7 ﬂv) = hv€<s7ﬂv7wv)5(57 (I)U7uv7ﬂv)
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the functional equation of the lemma implies that

{Hh} L1 —s,7).

Since, by a well-known theorem, the algebra M’ is split at an even number of places the
product [[, h, equals 1.

Corollary 14.3. If 7 is a constituent of A" which is not of the form g — X(u(g)) then
for any quasi-character w of F* the functions L(s,w ® 7) and L(s,w™ ® 7) are entire and
bounded in vertical strips of finite width. Moreover they satisfy the functional equation

Ls,w®7) =e(s,w@m)L(l — 5,0 @7).

We have only to observe that if 7 is a constituent of A’ then w ® 7 is also.

Now we change the notation slightly and let 7’ = Q) 7, be an irreducible admissible
representation of H’. We want to associate to it a representation m = @) 7, of H, the Hecke
algebra of GL(2, A). If M is split then 7, is just the representation corresponding to 7, by
means of the isomorphism 0 of Gg, and G’ . If M is not split , is the representation m(w )
introduced in the fourth and fifth paragraphs In both cases T, is defined unambiguously by
the following relations

L(s,wv &® 7Tv) = L(S,CL)@ ® ﬂ-;))
L(S,WU X :ﬁv) = L(57wv 02 Aﬂ:;;)
E(S,CUU X Ty, ¢v) = E(vav ® 7T’:17¢“)

which holds for all quasi-characters w, of F.
Applying the previous corollary and Theorem 11.3 we obtain the following theorem.

Theorem 14.4. If ' is a constituent of A" and 7, is infinite-dimensional at any place where
M’ splits then 7 is a constituent of Aj.

Some comments on the assumptions are necessary. If 7’ is a constituent of A" we can
always find a quasi-character of w of F*\I such that w ® 7’ is unitary. If 7/ = ) 7] the same
is true of the representations . In particular if M’ splits at v the representation 7/ will not
be finite-dimensional unless it is one-dimensional. Various density theorems probably prevent
this from happening unless 7’ is of the form g — X(l/(g)). If 7’ is of this form then all but a
finite number of the representations 7, are one-dimensional. But if M’ does not split at v the
representation 7, is infinite-dimensional. Thus 7 cannot act on a subspace of A. However it
can still be a constituent of A. This is in fact extremely likely. Since the proof we have in
mind involves the theory of Eisenstein series we prefer to leave the question unsettled for
NOw.
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§15. Some orthogonality relations

It is of some importance to characterize the range of the map n’ — x from the con-
stituents of A’ to those of A discussed in the last chapter. In this paragraph we take up the
corresponding local question. Suppose F' is a local field and M’ is the quaternion algebra
over F'. Let G be the group of invertible elements of M’. We know how to associate to
every irreducible admissible representation 7’ of ‘H/ an irreducible admissible representation
m = m(n") of Hp the Hecke algebra of GL(2, F').

Theorem 15.1. Suppose F is non-archimedean. Then the map © — 7 is injective and
its 1mage is the collection of special representations together with the absolutely cuspidal
representations.

The proof requires some preparation. We need not distinguish between representations of
G’ and H'z or between representations of Gp and Hp. An irreducible admissible representa-
tion 7 of G is said to be square-integrable if for any two vectors u; and us in the space of 7
and any two vectors u; and s in the space of 7 the integral

/Z “ <7T(9)U1, ﬂ1><u27 %(9)ﬂ2> dg

is absolutely convergent. Since 7 is equivalent to n~! ® 7 if

W((S 2)) = (a)]

this is equivalent to demanding that
2
/ <7T(g)ul,u1>’ [n~"(det g)| dg
Zp\GF

be finite for every u; and ;.

If 7 is square-integrable and w is a quasi-character of I’ then w ® 7 is square integrable.
We can always choose w so that w?n is a character. If 5 is a character choose u, different
from 0 in the space V' of m. Then

(u1,uz) = /ZF\GF<7T(9)U1,Uo><77(9)U2>U0> dg

is a positive-definite form on the space V of 7w so that 7 is unitary and square-integrable in
the usual sense.
The Schur orthogonality relations when written in the form

[ (rlgun ), ) dg = 2o, o) )
Zp\Gp ()
are valid not only for representations which are square-integrable in the usual sense but also
for representations which are square-integrable in our sense. The formal degree d(m) depends
on the choice of Haar measure. Notice that d(w ® ) = d(m).

The absolutely cuspidal representations are certainly square-integrable because their
matrix elements are compactly supported modulo Z.

Lemma 15.2. The special representations are square-integrable.
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Suppose o = a(a}ﬂ, a}lm). Since

1/2 —1/2
X®U:U(XO‘F/ » XOp / )
/2 —1/2

it is enough to show that o is square-integrable. If ¢ belongs to Bs(ay”, ap '*) and ¢ belongs
to B(a}lﬂ, a};ﬁ) then

f(9) = (e, p(g7")?)

is the most general matrix coefficient of o. Here B (a}l/ 2, 04}/2) is the space of locally constant

functions on NpAp\Gr and Bs(a;ﬂ, 04;1/ 2) is the space of locally constant functions ¢ on
G that satisfy

w((%l 52>9> - Z—;so(g)
and
/go(w((l] f)) dz = 0.
Since

Gr = ZFK<WO_ ?)K
n=0

we can choose the Haar measure on Zp\Gp so that

/ sl
3 e(n) / f (/ﬁ (WO ! (1)) /@) 2 dker dks
e(n) = ¢ (1 + é)

if n > 0. Here ¢ = |ow|™!. Since f is K-finite on both sides and its translates are also matrix
coefficients we need only show that

(%))

n=0

is equal to

where ¢(0) =1 and

is finite. It will be more than enough to show that

<1><a>=f<(3 ﬁ’)) ~ 0(ja)
q><a>=/F<,o<w<é f))@@(é D ?))d:p.

as a — 00.
We recall that
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¢1<x>=¢(w(}) 1))
o2() =§5<w(é 1))

is bounded and locally constant. Moreover

®(a) = / o1 (1) pa(a™tz) da.
F
Suppose pa(z) = p2(0) for |z| < M. If |a| > 1

P(a) = pa(0 1(x) dx W) oo(a ) de.
(@) ¢<>[{x|xlw}w<> +/{m|x|>la|M}so<>so< )

/ngl(g;) dr =0

2a_1£7€— 5(0 1(x) dz.
[[x|x|>a|M}(‘” )~ 2(0)) 1 (2)

The function ¢, is bounded so we need only check that

()| dz = O(la|™!
/{xma'}w )| (ja] ™)

as |a] = co. The absolute value of the function ¢ is certainly bounded by some multiple of
the function ¢’ in B!’ a}lﬂ) defined by

/ a; T .
A6 2))-
if k is in GL(2,OF). Since
1 z\ 0 1Y\ [zt 0\(/1l vy
“’(0 1) = (—1 —x) = ( 0 a:) (0 1)’“
with y in F' and k in GL(2,Op), if |z]| > 1

()| de =0 wlf | = O(|l=|).
/{Mwn}\@(ﬂ >ttt | =0(1=I")

k=n+1

The function

is integrable and the function

Since

®(a) is equal to

Since we need to compare orthogonality relations on the two groups Gr = GL(2, F') and
G’ we have to normalize their Haar measure simultaneously. There are two ways of doing
this. We first describe the simplest. Choose a non-trivial additive character ¢) of F'. Then
Yu(z) = ¢(trz) and ¢y (z) = ¥ (7(z)) are non-trivial additive characters of M = M(2, F)
and M’. Let dr and dx’ be the Haar measures on M and M’ self-dual with respect to 1,
and ¥,. Then

d*z = |z|y; dv = |det x| dx
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and
d*x' = |x/|541/ de’ = |V(x')|;2 dx’
are Haar measure on Gp and G’.

The second method takes longer to describe but is more generally applicable and for this
reason well worth mentioning. Suppose G and G’ are two linear groups defined over F' and
suppose there is an isomorphism ¢ of G’ with G defined over the finite Galois extension K.
Suppose the differential form w on G is defined over F'. In general the form w' = ¢,w on
G’ is not defined over F'. Suppose however that w is left and right invariant and under an
arbitrary isomorphism it is either fixed or changes sign. Suppose moreover that for every o
in &(K/F) the automorphism o(¢)¢ ™! of G is inner. Then

o(w) = o(p)uow = o (p)uw = pu(0(P)e™") w = puw = o'
and ' is also defined over F. If £ is another such isomorphism of G’ with G then

£u(w) = pul(p™ e = Fpuw = +0
and the measures associated to ¢,w and &,w are the same. Thus a Tamagawa measure on

Gr determines one on G’.
We apply this method to the simple case under consideration. If

()

w=daNdbNdcAdd

is a differential form invariant under translations and the associated measure is self-dual
with respect to ¢y, If w = (det ) ?u then w is an invariant form on G and the associated
measure is d*x.

If K is any separable quadratic extension of F' we may imbed K in both M and M’.
Let o be the non-trivial element of (K /F). There is a u in M and a v’ in M’ such that
M = K+ Ku and M’ = K + K« while uzu™! = 27 and «/zv/~' = 27 for all z in K.
Moreover u? is a square in F* and w/> = ~ is an element of F* which is not the norm of
any element of K. We may suppose that u> = 1. If we let K act to the right the algebra
L = K ®p K is an algebra over K. The automorphism o acts on L through its action on the
first factor. There is an isomorphism L — K @& K which transforms ¢ into the involution
(x,y) — (y,x). In particular every element of K ® 1 is of the form §§7 with ¢ in L. Choose §
so that v = 007, If

is a typical element of M then

My =M @ K=L® Lu
and
let ¢ be the linear map from M} to My which sends z 4+ yu' to x + ydu. The map ¢ is easily
seen to be an isomorphism of M} and My as algebras over K. Moreover o(p)p~" takes
T+ yu to

x4+ ys70 u =6z +yu)d
and is therefore inner. Thus ¢ determines an isomorphism of G’ the multiplicative group of
M’ with G the multiplicative group of M. The isomorphism ¢ is defined over K and o ()¢ !
is inner. Let |w’| be the Haar measure on G’ associated to the Haar measure |w| = d*z on
Gr. We want to show that |w’| is just d*z’.
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Let # be an invariant form on K. The obvious projections of M = K @& Ku on K define
differential forms #; and 6, on M. Let 6; A 5 = cu. In the same way the projections of
M' = K & Ku' on K define differential forms 6] and 0, on M’. If we extend the scalars from
F to K we can consider the map x — xd of L into itself. We can also regard 6 as a form on
L and then its inverse image is N(0)0 = ~6. Thus

Thus if 1/ = . (1)
cu' = ~07 N 65
Suppose ¢;|6] is self-dual with respect to the character 1k (z) = ¢ (7(x)) on K. Then

J{ [ otatrctes + eyl o) ot o) = i or0.0
and
ol [{ [ #labiintar + s fpcalom] oo = o '20.0,
If x + yu belongs to M with = and y in K then, since 7(u) = 0,
T(x +yu) = 7(x) = Trx/p(x).
In the same way
7(z +yu') = Trg/r(z).
Thus

U (@ + yu)(a + bu)) = Yx(za+ yb7)
U (@ + yu') (a4 b)) = Y (za + yb7y).

Thus ¢3]0; A ] is self-dual with respect to ¥y, and c¢i|y|#|0] A 4] is self-dual with respect to
Y. Since ¢ = |c|r the measure |1//] is self-dual with respect to 1y, Finally o' = v(z') 2 da’
so that |w'| is just d*z’. Thus the two normalizations lead to the same result.

If bis in M or M’ the eigenvalues of b are the roots a; and «s of the equation

X% —7(b)X +v(b) = 0.

If bis in G or G’ it is said to be regular if a; and s are distinct; otherwise it is singular.

We set
(n — a2)2

058

o(b) =

The set of singular elements is of measure 0. If b is regular the subalgebra of M or M’
generated by b is a separable quadratic extension FE of F' and the multiplicative group of
E is a Cartan subgroup of G or G’%. To obtain a set of representatives for the conjugacy
classes of Cartan subgroups of G or G we choose once and for all a set S’ of representatives
for the classes of separable quadratic extensions of F.. We also choose for each E in S’ an
imbedding of F in M and in M’. The multiplicative group of E' may be regarded as a Cartan
subgroup By of either Gp or G». The symbol S’ will also stand for the collection of Cartan
subgroups obtained in this way. It is a complete set of representatives for the conjugacy
classes of Cartan subgroups of G%. If S is the result of adjoining to S’ the group Ap of
diagonal matrices then S is a complete set of representatives for the conjugacy classes of
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Cartan subgroups of Gp. If Br is in S” we choose the Tamagawa measure g on Bp as in
the seventh paragraph. The analogue for G’ of the formula ([7.2.2) is

1 _
| feso=%5 5@{/ f@l@wam}&wy
Zp\Gp 5 Zp\BF Br\G%
Let B r be the set of regular elements in Br and let
S/

We may regard C' as the discrete union of the spaces Z F\§ . We introduce on C' the measure
u(c) defined by

Lm0 = 33 ez g, (OO0

Sl

Lemma 15.3. Let n be a quasi-character of F* and let ' (n) be the set of equivalence classes
of irreducible representations w of G’ such that w(a) = n(a) for a in Zj, which we identify
with F*. If m and m belong to V'(n) and

F(9) = xm (9)x7(9)
where x(g) = Trn(g) then

Af@wd=0

if M and my are not equivalent and

Af@M@Zl

if they are.

Since Z5:\G'% is compact we may apply the Schur orthogonality relations for characters

to see that .

/
o [ i)
measure Zp\Gp Jz1\a,
is 0 if 7; and 7y are not equivalent and is 1 if they are. According to the integration formula
remarked above this expression is equal to

1 1/Z . f(b)(S(b)(measureBF\G,F)Mg(b)-

/ / 5
measure Z,\G > 2

Since
measure Z\Gx = (measure Zp\ Br)(measure Br\G7)

the lemma follows. Observe that Zr and Z} tend to be confounded.
There is form of this lemma which is valid for G.

Lemma 15.4. Let n be a quasi-character of F*. Let Qo(n) be the set of equivalence classes of
irreducible admissible representations w of Gr which are either special or absolutely cuspidal
and satisfy w(a) = n(a) for all a in Zp. Suppose m and my belong to Qo(n). Let f = fr, x, be

the function
F(0) = X, (b)X7, (D)
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on C. Then f is integrable and

/C F(©u(e)

1s 1 if m1 and my are equivalent and O otherwise.

It is enough to prove the lemma when 7 is a character. Then xz is the complex conjugate
of x» and f; » is positive. If the functions f; . are integrable then by the Schwarz inequality
all the functions f;, , are integrable.

Let ©(n) be the set of irreducible admissible representations 7 of G such that m(a) = n(a)
for a in Zp. If ¢ is a locally constant function on Gy such that

p(ag) =n""(a)p(g)
for a in Zr and such that the projection of the support of ¢ on Zp\GF is compact then we
define 7(p), if 7 is in Q(n), by

m(p) = /Z . e(9)m(g9)w’(g).

It is easily seen that m () is an operator of finite rank and that the trace of 7 () is given by
the convergent integral

/Z y ©(9)x=(9)w°(9).

In fact this follows from the observation that there is a ¢ in Hp such that

o1(g) = / o1 (ag)(a)iz(a)

and the results of the seventh paragraph.
Suppose m; is absolutely cuspidal and unitary and acts on the space Vi. Suppose also
that m1(a) = n(a) for a in Zp. Choose a unit vector u; and V; and set

w(g) = d(m) (w1, m1(g)us).
Since 7y is integrable it follows from the Schur orthogonality relations that my(p) = 0 if 75 in
Q(n) is not equivalent to m; but that m(p) is the orthogonal projection on Cuy if w9 = 7.

In the first case Trma(¢) = 0 and in the second Trmy(p) = 1.
On the other hand

Trmo(i) = / o Aml0)e0)010)

We apply formula ((7.2.2)) to the right side to obtain

1
a ﬂQb(Sb 71[) wp % .
YA ”“{/BF\GF“”(Q 9 (g)}u (9

If Br belongs to S’ the inner integral is equal to

! d(m) / (ol b))

measure Zr\ Bp

which by Proposition 7.5 is equal to
1
measure Zp\ Br

X7 (D).
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If Br is Ap the group of diagonal matrices the inner integral is, apart from a constant relating
Haar measures, the product of d(7;) and the integral over GL(2, Or) of

/F m((é ?)b(é f))mk)ul,m(k;)ul da.

If

this is

‘ .

1/F Wl(b)ﬂl((é f))”l(k’)ul,m(k)ul dr

which we know is 0. Collecting these facts together we see that f = f, , is integrable on C

if 7m; is absolutely cuspidal and that its integral has the required value.

To complete the proof all we need do is show that if 7 = a(x(l/f , X;}/ 2) is a special

representation then f = f; ; is integrable on C' and

/C F(ule) = 1.

If 7' is the one-dimensional representation g — x(v(g)) of G/ then m = m(w’). To prove the

~

existence of y, we had to show in effect that if Br was in S” and b was in By then

Xr (D) = =X (D).
Thus frr = fr~ and the assertion in this case follows from the previous lemma.
The relation just used does not seem to be accidental.

Proposition 15.5. Suppose 7’ is an irreducible admissible representation of G and m = w(n’)
the corresponding representation of Gr. If Br is in S’ and b is in Bp

X! (b) = _XW<b)‘

We may suppose that 7’ is not one-dimensional and that 7 is absolutely cuspidal. We
may also suppose that they are both unitary. We take 7 in Kirillov form with respect to
some additive character ¢. If ¢ is in S(F*) the function

e 01
=l o) )¥
is also.

Since the measures p and p’ are self-dual with respect to the characters vy, and ¥y
Lemma 13.1.1 and Proposition 4.5 show us that for any A in F'*

(15.5.1) / (det g) (m(g™ )1, u) |det gleoar(Ag)e(g)

is equal to
@' (N NN
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and that

(15.5.2) | etdetg) (gt ) det glias (hg)e )
G

F
is equal to
=" (A TN
Here u is a unit vector in the space of m and u/ a unit vector in the space n’. In any case

(15.5.1)) is just the negative of (15.5.2)).
If we use formula ([7.2.1)) to express the integral (15.5.1]) as a sum over S we obtain

30 e 7y, Pdetbldert X’j(f;) ) 50)r (M 0)
S’ Br

The contribution from Ap vanishes as in the previous lemma. The other integrals have been
simplified by means of Proposition 7.5. There is of course an obvious analogue for the group

"> of the formula ((7.2.1)). If we apply it we see that (15.5.2) is equal to

1 1 Xn’(bil)
5 § det b b o(b (b b
245 measure Zp\Bp /BF o(de >‘V< )| (') (0)Ynr (AD) i (D)

if v(b) is the reduced norm. Of course on Bp the functions v(b) and detb are the same.
Choose BY% in S’ and by in BY%. We shall show that

Xw’(b(;l) _ —Xn(bEI)
d(7’) d(m)
The orthogonality relations of the previous two lemmas will show that d(7) = d(7’) and we
will conclude that

Xﬂ’(bal) = _Xﬂ<bal)'

The norm and the trace of by are the same whether it is regarded as an element of M
or of M’'. In fact if B\% is the multiplicative group of E in S’ the norm and the trace are in
both cases the norm and the trace of by as an element of E. Since by and its conjugate in F
are conjugate in Gp and G we can choose an open set U in E* containing both by and its

conjugate so that

| (0) [ xw (571)3(b) = |v(bo) | xw (b )8 (Do)
it bis in U. Lemma 7.4.2 shows that x, is locally constant in E% Thus we can also suppose
that

[det blxx(b7")3(b) = |det bo|xx(by )3 (bo)
if bis in U. Suppose g and [, are the trace and norm of by. We can choose a positive integer
m so that if & — ap and 8 — By belong to p’i the roots of

X2 —aX+b

belong to £ and in fact lie in U.
Let £(A) be the expression ((15.5.1)) regarded as a function of A. Keeping in mind the fact
that

Uar(Ab) = Y (Ab) = (Atrb),
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we compute

(15.5.3) — /mn E(AN)(=Aa) dA

measure p

where p" is the largest ideal on which ¢ is trivial. Since

! — /p_m_n w()\(tr b— ao)) d\

measure p -
is 0, unless trb — a belongs to p7 when it is 1, the integral (15.5.3)) is equal to

1 1 (™)
§;measureZF\BF /V(BF)QO(detb)|detb| ) 5(b)pup(b)

if
V(Bp)={be€ Bp|trb—ay € pp}.
If we take ¢ to be the characteristic function of

{BeF|B—0Fepi}

the summation disappears and we are left with

1 L |detb|X”(bal>5(b> / (det b)pp(b)
2 measure Zp\Bp ’ d(m) ’ V(B?m)(p e

If we replace £(A) by the expression ((15.5.2)) the final result will be

1 1 X (g ) /

— - v(b o(b detd b).
2 measure ZF\BF‘ (bo)| d(m) (bo) V(BY) # iz ()

Since these differ only in sign the proposition follows.

We are now in a position to prove Theorem 15.1. The orthogonality relations and the
previous lemma show that the map 7/ — 7 is injective because the map takes Q'(n) into
Qo(n). Tt is enough to verify that V is surjective when 7 is unitary. Let £%(n) be the space of
all measurable functions f on

UBr
P

such that f(ab) = n(a)f(b) if a is in Zr and
[1#@Pue)
c

is finite. By the Peter-Weyl theorem the set of functions x,-, 7" € /(n), form an orthonormal
basis of £2(n). The family x., ™ € Qy(n), is an orthonormal family in £2(n). By the previous
proposition the image of €'(n) in Q(n) is actually an orthonormal basis and must therefore
be the whole family.

We observe that it would be surprising if the relation d(7) = d(n’) were not also true
when 7’ is one-dimensional. The facts just discussed are also valid when F' is the field of real
numbers. They follow immediately from the classification and the remarks at the end of the
seventh paragraph.
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We conclude this paragraph with some miscellaneous facts which will be used elsewhere.
The field F is again a non-archimedean field. Let K = GL(2, Or) and let K, be the set of all

matrices
a b
c d

in K for which ¢ =0 (mod pp). Suppose 7 is an irreducible admissible representation of G
in the space V. We are interested in the existence of a non-zero vector v in V' such that

W((i Z))U — wn(@)ws(d)
W((g 3))v:wov

wp is a constant and w; and wy two characters of Ur. The coefficient w is a generator of pp.

Since
0 @wN(fa b\(1 1\ [(d wle
1 0 c d/\w 0) \wbd a

such a vector can exist only if w; = wy = w.

for all matrices in K, while

Lemma 15.6. Suppose w and wy are given. Let m be p(p1, p2) which may not be irreducible.
There is a non-zero vector ¢ in B(py, pe) satisfying the above conditions if and only if the
restrictions of py and py to Ug, the group of units of Op, are equal to w and

Wg = i (—m@)pa(—w)

Moreover o if it exists is unique apart from a scalar factor.

It is easily seen that K is the disjoint union of K and

01
KO(—l O)Ko—KOwKO

Let ¢y be the function which is 0 on KqwKj and on K| is given by

wl((i 2)) = w(ad).

Let ¢9 be the function which is 0 on Kj and takes the value w(d'd’ad) at
a v 0 1\[/a b
d d)J\-1 0)\c d)
a b
W((C d))so = w(ad)y

for all matrices in K then the restrictions of ¢ to K must be a linear combination of ¢; and
9. This already implies that w is the restriction of p; and ps to Up. Suppose ¢ = ap; + bps.

If ¢ in B(p1, po) satisfies
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w<(§ é))m = o s~

while p1(—1) = po(—1) = w(—1), we have

and

wob = |@|" i (~w)a
and

woa = |w| Y2y (—w)b
Apart from scalar factors there is at most one solution of this equation. There is one
non-trivial solution if and only if wZ = py(—w@)pua(—w@).
Lemma 15.7. Suppose m = o(u1, pe) is the special representation corresponding to the

, —1/2 1/2 , ,

quasi-characters p; = xap '~ and po = xog: . There is a non-zero vector v in the space of w

such that
ﬂ((i 2))1} — w(ad)v
W((g g)))v o

if and only if w is the restriction of x to Up and wg = —x(—w). If v exists it is unique apart
from a scalar.

for all matrices in Ky while

We first let m act on Bs(pg, i11) a subspace of B(us, p1). The condition on w follows from
the previous lemma which also shows that wy must be £y (—w). If we take the plus sign we
see that v must correspond to the function whose restriction to K is constant. Since this
function does not lie in By(fu9, 111) only the minus sign is possible. To see the existence we let
T act on

By (p1, p2) = B, p2) /By (pa, p2)
In B(p1, o) there are two functions satisfying the conditions of the lemma. One with
wp = —x(—w) and one with wy = x(—w). One of the two, and we know which, must have a
non-zero projection on B(fu1, ).

The above lemmas together with the next one sometimes allow us to decide whether or
not a given representation is special.

Lemma 15.8. If the absolutely cuspidal representation m acts on V there is no non-zero

vector v in V' such that
0 1 B
™o o) |V =wov

w<(‘c‘ 2)>v = w(ad)v

and

for all matrices in K.
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We may suppose that 7 is the Kirillov form with respect to an additive character 1 such
that Op is the largest ideal on which ¢ is trivial. Then v is a function ¢ in S(F*). If a is in
Ur and b is in F* we must have ¢(ab) = w(a)p(b). Moreover if b is in F* and z is in Op
then ¢(b) = ¥ (xb)p(b). Thus p(b) = 0 if b is not in Or. Consequently p(v, ) is 0 if v # w™?
but p(wt,t) is a polynomial of the form

apt™ 4 -+ at”
with a,a, # 0. If ¢1(b) = o(—wb) then

B =2

W((S 2)) — n(a)l

and let 1y be the restriction of n to Up while zy = n(w@). The character vy will have to be
equal to w?. The relation

T (GD) = (E )

woP(w ™) = Clw™ Hw(=1)zotP(w™", 25 t7").
By Proposition 2.23, C(w™!,t) is of the form ¢t~ with ¢ > 2. Thus the right side has a pole
at 0 not shared by the left. This is a contradiction.

Pw0).

implies that
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§16. An application of the Selberg trace formula

In the fourteenth paragraph we saw that if 7’ = @, 7}, is a constituent of A" and 7’ is
not of the form g — x(v(g)) where x is a quasi-character of F*\I then 7 = @, m,, with
7y = m(m,), is a constituent of Ay. Let S be the set of places at which the quaternion algebra
M’ does not split. Given the results of the previous paragraph it is tempting to conjecture

that the following theorem is valid.

Theorem 16.1. Suppose m = Q) 7, is a constituent of Ay. If for every v in S the represen-
tation m, is special or absolutely cuspidal then for every v there is a representation , such

that m, = w(w)) and 7’ = Q) 7, is a constituent of A'.

The existence of 7 has been shown. What is not clear is that 7’ is a constituent of A’". It
seems to be possible to prove this by means of the Selberg trace formula. Unfortunately a
large number of analytical facts need to be verified. We have not yet verified them. However
the theorem and its proof seem very beautiful to us; so we decided to include a sketch of the
proof with a promise to work out the analytical details and publish them later. We must
stress that the sketch is merely a formal argument so that the theorem must remain, for the
moment, conjectural.

We first review some general facts about traces and group representations. Suppose G is
a locally compact unimodular group and Z is a closed subgroup of the centre of G. Let ) be
a character of Z. We introduce the space L!(n) of all measurable functions f on G which
satisfy f(ag) =n '(a)f(g) for all @ in Z and whose absolute values are integrable on Z\G.
If fi and f; belong to L'(n) so does their product f; * f» which is defined by

fix falg) = fi(gh™") fa(h) dh

2\G

If f belongs to L'(n) let f* be the function f*(g) = f(¢~'). It also belongs to L'(n). A
subalgebra B of L'(n) will be called ample if it is dense and closed under the operation
f—= 1

Let m be a unitary representation of G on the Hilbert space H such that 7(a) = n(a)I for
all @ in Z. We do not suppose that 7 is irreducible. If f belongs to L!(n) we set

m(f) = flg)m(g) dg
2\G
If w(f) is compact for all f in some ample subalgebra B then m decomposes into the direct

sum of irreducible representations no one of which occurs more than a finite number of times.

Lemma 16.1.1. Suppose m; and my are two unitary representations of G such that m (a) =
n(a)l and my(a) = n(a)l for all a in Z. Suppose there is an ample subalgebra B of L'(n)
such that w1 (f) and mo(f) are of Hilbert-Schmidt class for all f in B.

(i) If for every f in B
trace i (f)mi(f*) = trace mo(f)ma(f*)

then my 1s equivalent to a subrepresentation of .
(ii) If for every f in B

trace my (f)mi(f*) = trace mo(f)m2(f*)

then my is equivalent to .
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Let m; act on H; and let my act on Hy. A simple application of Zorn’s lemma shows that
we can choose a pair of closed invariant subspaces M; and M, of H; and H, respectively,
such that the restrictions of 7 to M; and my to M, are equivalent and such that the pair
My, M, is maximal with respect to this property. Replacing H; and Hs by the orthogonal
complements of M; and M, we may suppose that M; = 0 and that M; = 0. To prove the
first assertion of the lemma we have to show that with this assumption Hy = 0. If the second
condition is satisfied we can reverse the roles of m; and 9 to see that H; is also 0.

Before beginning the proof we make a simple remark. Suppose ¢ is an irreducible unitary
representation of G on L and o,, a € A, is an irreducible unitary representation of G on L,,.
Suppose that o(a) = n(a)l for all a in Z and o,(a) = n(a)l for all @ in Z and all « in A.
Suppose that o is equivalent to none of the o, and that a non-zero vector x in L and vectors
Zo in L, are given. Finally suppose that

2
P AN
is finite for every f in B. Then if € is any positive number there is an f in B such that

D _lloa(Hall” < ello(F)all"

Suppose the contrary and let L’ be the closure in ), L, of

{®aa(f)xa fe B}

L' is invariant under G and the map

PDou(f)wa = o(f)z

may be extended to a continuous G-invariant map A’ of L’ into L. If A" were 0 then o(f)x =0
for all f in B which is impossible. Let A be the linear transformation from € L,, to L which
is A" on L' and 0 on its orthogonal complement. The transformation A commutes with G
and is not 0. Let A, be the restriction of A to L,. The transformation A, is a G-invariant
map of L, into L and is therefore 0. Thus A is 0. This is a contradiction.

Suppose Hj is not 0. There is an h in B such that 7 (h) = 0. If f = h*x h* then mo(f)
is positive semi-definite and of trace class. It has a positive eigenvalue and with no loss of
generality we may suppose that its largest eigenvalue is 1. Let m = X) 7r§ , where Wzﬂ acts on
Héa , be a decomposition of 7y into irreducible representations. There is a 3y and a unit vector
z in HY such that my(f)z = z. Let m; = @ 7@, where 7% acts on H?, be a decomposition
of m into irreducible representations. Choose an orthogonal basis {27 |y € ', } of HY
consisting of eigenvectors of m(f). Since

trace my (f) > trace ma(f)

the largest eigenvalue of m(f) is positive. Let it be A.

If f; belongs to B,
2
> = ts|
a v

is the Hilbert-Schmidt norm of 7 (f1) and is therefore finite. By assumption 7,° is not
equivalent to any of the representations 7{* so that we can apply our earlier remark to the
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vector z and the family of representations ;"7 = 7% together with the family of vectors x®”?

to infer the existence of an f; in B such that

S Sl e < ol

Then
trace i (f1f)mi (fif) = trace my (f1.f)mi(fif)

is equal to

S (f)m (NP < A fm ()|

The right side is less than
1 2 1 2
ratel? = St
which is at most ]
5 trace mo(f1.f)ms (f1f)-

This is a contradiction.
The next lemma is a consequence of the results of [35].

Lemma 16.1.2. Suppose n is trivial so that L'(n) = LY(Z\G). Suppose that B is an ample
subalgebra of L'(n) which is contained in L*(Z\G). If there is a positive constant v and a
unitary representation w of Z\G such that 7(f) is of Hilbert-Schmidt class for all f in B and

trace w(f)m(f*) = 7/ }f(9)|2d9

20G
then Z\G is compact.

In proving the theorem it is better to deal with representations in the adele groups than
to deal with representations of the global Hecke algebras. We have to assume that the reader
is sufficiently well acquainted with the theory of group representations to pass back and forth
unaided between the two viewpoints.

If F'is a global field, A is the adele ring of F', G = GL(2), and 7 is a character of the
idele class group F*\I the space A(n) of all measurable functions ¢ on Gr\Ga that satisfy

w((g 2)9) = n(a)p(9)

for all @ in I and whose absolute values are square-integrable on GrZa\Ga is a Hilbert space.

If ¢ belongs to this space
/ p(ng) dn
Np\Na

is defined for almost all g. If it is O for almost all g the function ¢ is said to be a cusp form. The
space Ap(n) of all such cusp forms is closed and invariant under G4. It is in fact the closure
of Ag(n). It decomposes in the same way but now into a direct sum of closed orthogonal
subspaces V' on which Ga acts according to an irreducible representation © = ) m,. Thus V'
is now isomorphic to a tensor product of Hilbert spaces. Of course the same representations
occur now as occurred before. Similar remarks apply to the multiplicative group G’ of a
quaternion algebra M’ over F.
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It will be enough to prove the theorem when 7 is a constituent of some Ag(n) or Ag(n)
and 7 is a character because we can always take the tensor product of © with a suitable
quasi-character. Suppose 7 is given. Let S be the set of places at which M’ does not split.
Suppose that for each v in S we are given an irreducible unitary representation o, of G%. = G|,
such that

oy(a) = ny(a)l
for all @ in F; which we identify with Z] = Z}, . Let o, = m(0;) be the representation of
G, corresponding to 0. We may take o, unitary. Let o, act on U, and let o] act on U}.
Fix a unit vector u, in U, and a unit vector u, in U, which is K,-finite. The vector u. is
automatically K-finite.

Write Ag(n) as the direct sum, in the Hilbert space sense, of mutually orthogonal invariant
irreducible subspaces V1, V2, .... Let the factorization of the representation 7* on V* be
@ 7. Let 7! act on V. For simplicity of notation we identify V* with @ V. We also
suppose that if v is in S and 7¢ is equivalent to o, then U, = V! and 7! = 5,. Let X be the
set of all i such that 7! = o, for all v in S and if 7 belongs to X let

v @u el @V

veES veES

M is invariant and irreducible under the action of
@g:{g:(gv) }gvzlforallvinS}.

M:@Mi.

€eX

Let

M is a Hilbert space and @5 acts on M. If at least one of the representations o/, v € 5, is
not one-dimensional set N = M. If they are all one-dimensional, let N be the subspace of
Ap(n) spanned, in the Hilbert space sense, by M and the functions g — x(det g) where x is
a character of F*\I such that x* =7 and o/,(g) = x,(v(g)) for all g in G, if visin S. If v
is non-archimedean this last condition determines x, uniquely. If v is real it only determines
it on the positive numbers.

Let A’(n) be the space of all measurable functions ¢ on G%\G'y that satisfy p(ag) =
n(a)e(g) for all a in I and whose absolute values are square integrable on GHZ\\G's.
Replacing o, by o/ and u, by u, we define N’ in the same way as we defined M. If at least
one of the representations o/, v € S, is not one-dimensional we set M’ = N'. However if they
are all one-dimensional and y is a character of F*\I such that x* =7 and o/,(g) = x(v(9))
for all G in G, if v is in S then the function g — X(I/(g)) belongs to N’. We let M’ be the
orthogonal complement in N’of the set of such functions. The group @’5 acts on M’ and
N’. However by means of the local isomorphisms 6, we can define an isomorphism of G g
and CA}fg Thus @5 acts on M and M’. To prove the theorem we need only show that the
representations on these two spaces are equivalent. To do this we combine Lemma 16.1.1
with the Selberg trace formula.
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To apply Lemma 16.1.1 we. have to introduce an algebra B. It will be the linear span of
By, the set of functions f on Gg of the form

f(g) = va(gv>

vgS
where the functions f, satisfy the following conditions.
(i) If a, belongs to F* then

fv(avgv> = nvil(av)fv(gv»

(ii) The function f, is K,-finite on both sides and the projection of the support of f, on
Z,\G, is compact.

(iii) If v is archimedean, f, is infinitely differentiable.

(iv) If v is non-archimedean, f, is locally constant.

(v) For almost all non-archimedean v the function f, is 0 outside of Z, K, but on Z,K,
is given by

fuolg) = w, " (det g)

where w, is unramified and satisfies w? = 7,.

We introduce B’ in the same way. We may identify B and B’ and to verify the conditions of
the lemma we need only show that if f = f; x fo with f; and f5 in By then

trace o(f) = trace o’ (f)

if o is the representation on M and o’ that on M’. Let 7 be the representation on N and 7’
that on N’. Since

tracer(f) = traceo(f) + Y [ x(o)fl)dy
Zs\Gs
and
trace(f) = tracec’(1) + Y [ \()f(9)dg
Zs\Gs
we need only show that
trace 7(f) = trace 7'(f).

Before beginning the proof we had better describe the relation between the Haar measures
on the groups Za\Ga and Z) \G’,. Choose a non-trivial character ¢ of F\A. If wy is any
invariant form of maximal degree on Z\G defined over F' and therefore over each F, we can
associate to wy and ¢, a Haar measure wy(v) on Z,\G,. Then [], ;g wo(v) determines a Haar
measure wyp on 23\@5 and [], wo(v) determines a Haar measure wy on Zo\Ga. The measure
on Za\Ga is independent of ¢ and is called the Tamagawa measure. As in the previous
paragraph we can associate to wy(v) a measure wy(v) on Z/\G! and therefore to wy a measure
wh on Z\Gly or Z\\Gy.

We first take f = f1 % fo in B’ and find a formula for trace 7'(f). Let d(o)) be the formal
degree of o with respect to the measure w((v) and let £ be the function

&(g) = d(o)) (o7 (g)uy, )
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on Gi,. Let " = @’ be the function

' (g) =S [[ ¢ (9) ¢ F(@s)

veSs

on G'y. Here gg is the projection of g on CA;’S If p’ is the representation of G’ on A'(n) the
restriction of p/(®’) to N’ is 7/(f) and p/(®) annihilates the orthogonal complement of N’.
Thus

trace p/(®') = trace 7'(f).
If v isin A'(n) then p'(®")p(g) is equal to

/ o (gh)®' () (h) = / (1) (g~ By ().
ZA\Gp Z\Gy

The integration on the right can be performed by first summing over Z,\G% and then
integrating over ZaoG\G/y. If

'(g,h) = Y ¥(g'vh)
Zp\G
the result is

/ S(h)¥ (g, h)wh(h).
Z Gp\G')

Thus the trace of p/(®) is equal to

/ P'(g, g) dg.
Z, G \GYy

If we write out the integrand and perform the usual manipulations (cf [29]) we see that
this integral is

(16.1.3) Zmeasure(ZAG’F(’y)\Gk(’y)) / (g7 yg).
) G (M\Gy

The sum is over a set of representatives of the conjugacy classes in G%. Here G', () is the
centralizer of v in Gy and G’»(7) is its centralizer in G'.

Let @' be a set of representatives for the equivalence classes of quadratic extensions E
of F' such that ' ®p F, is a field for all v in S. For each E in @)’ fix an imbedding of F in
the quaternion algebra M’. Let Br = Bpr(FE) be the multiplicative group of E, considered as
a subalgebra of M’, or what is the same the centralizer of E in G. Let Ba = Ba(F) be
the centralizer of E' in Gy. Let @} be the separable extensions in Q" and @)} the inseparable
ones if they exist. Then (|16.1.3]) is the sum of

(16.1.4) measure(Z G\G'y )P’ (e),
if e is the identity,

(16.1.5) %Z Z measure(ZgBF\BA)/ (g vg)ws(g)

Qi veZp\Br BarGa
1¢25
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and
(16.1.6) Z Z measure(ZABF\BA)/ ' (g vg)ws(g).
Qy 7€Z}\Br Pa\Gia
V¢Zr

The last sum is deceptive because @) has at most one element. The measure wgp is the
quotient of the measure on Z, \G’, by that on Z, \ Ba. The choice of the measure on Z), \ Ba
is not too important. We do suppose that it is a product measureﬂ

The expression ((16.1.4)) is equal to

measure(Zy G\G'y) Hd(a;) f(e).

veES

The integrals of (|16.1.5)) and ((16.1.6)) are equal to the product

X!, (’7_ )
H measure(Z/\B,)

vES

/A ~ flg vg)ws.
Bg\G'y

Now regard f = f1 x fo as an element of B. We can still introduce for each v in S the
function

and

&o(g) = d(oy) (%(g)uv, Uv)
on G,. The factor d(o,) is the formal degree of o, with respect to the measure wy(v). If o] is
not one-dimensional &, is integrable and we can use it to define a function ® to which we
can hope to apply the trace formula. When o/ is one-dimensional the function &, is not even
integrable so it is of no use to us. However in this case we can find an integrable function ¢,

with the following properties:
a O o1
G ((o a) g) =1, (a)G(9):

(i) For all a in F,
(ii) For a suitable choice of u, the operator ¢,((,) is the orthogonal projection on the
space Cu,,.
(iii) If x, is a character of F)* such that 2 = 7, then

/ Yoldet 9)C, (9)wro(v)
Zuw\Go

is =1 if o} (h) = x»(v(h)) for all h in G/, and is 0 otherwise.
(iv) If m, is a unitary infinite-dimensional irreducible admissible representation of G,
which is not equivalent to o, but satisfies

m((g 2)) = ny(a)l

’In (16.1.5) the factor % is not quite correct. If we want to leave it in, both v and its conjugate must be
counted, even if they differ only by an element of F'.
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for all a in F then
trace m,(¢,) = 0.

If v is real we cannot describe (, without a great deal more explanation than is desirable at
present. However after a few preliminary remarks we will be able to describe it when v is
non-archimedean.

Suppose d!(g9) = X (V(g)) for g in G/, and 7, is a representation of G, such that

m((g 2)) = n,(a)l

for all @ in FX. Applying Lemma 3.9 to ;! ® 7, we see that the restriction of 7, to K,
contains the representation k — x,(det k) if and only if 7, = 7(p, vy), fo¥y = My, and the
restrictions of u, and v, to U,, the group of units of F),, are both equal to the restriction of
Xv- Let ¢} be the function on G, which is 0 outside of Z,K, but on K, is equal to

1
measure(Z,\ Z, K,)
Let H, be the group generated by Z,, the matrices

(¢ 3
(2 3)

Let w, be the character w,(a) = (—=1)"x,(a) if |a| = |@,|". According to the concluding
lemmas of the previous paragraph there is a non-zero vector u in the space of m, such that

X, '(det g).

in K, for which ¢ =0 (mod p,), and

‘ n

To(9)u = wy(det g)u

for all g in H, if and only if 7, is equivalent to o,, m, = 7(iy, ) is infinite-dimensional,
[V = 1y, and the restrictions of u, and v, to U, are equal to the restriction of x,, or 7, is
the one-dimensional representation

g — wy(det g).
Let ¢, be the function which is 0 outside of H, and equal to

1 1
“(det
measure Zv\va” (det g)

on H,. We may take
<— — gl/ . C/
There are some consequences of the four conditions on (, which we shall need. If u, and
v, are two characters of F,* such that p,v, = n,, the trace of p({,, fi, V) is a multiple of

1/2
/ o ()1 (B) {/ Co(ktank) dn dk} da
Zy\ Ay v J Ky

a:(g g).

@
s
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Since this is 0 for all possible choice of u, and v,
/ Co(ktank) dk dn =0
v K'U

for all a. We also observe that if o/ is not one-dimensional then

/ & (kK tank) dk dn =0
v KU

for all a.
If , is special or absolutely cuspidal trace m,((,) is therefore equal to

1 y 0
5%;L@{Lwﬁ@ @%W}M@WMMW

Since trace m,((,) is 1 if m, is equivalent to o, and 0 otherwise the orthogonality relations
imply that
-1

measure Z,\ B,

mew@ww: Youlb)

for all regular b and therefore, by continuity, for all b whose eigenvalues do not lie in F,,.
It probably also follows from the Plancherel theorem that (,(e) = d(o,). We do not need
this but we shall eventually need to know that (,(e) = d(o). For the moment we content
ourselves with observing that if w, is a character of F,* and o/ is replaced by w, ® o/ the
formal degree does not change and ¢, is replaced by the function g — w,*(det g)(,(g) so that
(y(€e) does not change. Thus the relation ¢,(e) = d(o!) need only be proved when o, is trivial.

Let Sy be the subset of v in S for which ¢/, is one-dimensional and let Sy be the complement
of S1in S. Given f = fi; x fo in B we set

(I)(g) = H Cv(gv) H gv(gv) f(/g\S)

vEST vESy

Let pg be the representation of G4 on AJ (1) the sum, in the Hilbert space sense, of Ay(n)
and the functions y : g — x(det g) where  is a character of F*\I such that x*> = n and let p
be the representation on A(n). If at least one of the representations p/, is not one-dimensional
pd (@) annihilates the orthogonal complement of Ay(n). If they are all one-dimensional we
apply the third condition on the functions (, together with the fact that the number of places
in S is even to see that pg (®)x = 0 unless o/,(h) = x,(v(h)) for all A in G/, and all v in S
but that if this is so
po (@)x = 7(f)x-

Recall that Ay(n) is the direct sum of spaces V' on which G 5 acts according to representations
7t = @i, If at least one of the representations ¢’ is not one-dimensional pg (®) is equal
to o(f) on M and annihilates the orthogonal complement of M in Ay(n). Suppose they are
all one-dimensional. If 7 belongs to X the restrictions of pf (®) and o(f) or 7(f) to M are
equal and pg (®) annihilates the orthogonal complement of M* in V. If i is not in X the
trace of the restriction of pf (®) to V7 is

H trace 7 ((,) {trace Ts(f) }

veS
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if 75 = @,¢5 T Since 7, v € S, are all infinite-dimensional and for at least one such v the
representation 7' is not equivalent to o,

H trace 7 (¢,) = 0

We conclude that
trace pg (®) = trace 7(f).

To show that
trace 7(f) = trace 7'(f)

we have to apply the trace formula to find a suitable expression for trace pg (®). In order to
describe the formula we need to state some results in the theory of Eisenstein series.

Consider the collection of pairs of characters u, v of F*\I such that yr =n. Two such
pairs, u, v and ', v’ are said to be equivalent if there is a complex number r such that
= pafp and V' = vag". If a belongs to I then af(a) = |a|”. Let P be a set of representatives
for these equivalence classes.

Suppose (u,v) belongs to P. If s is a complex number the space B(uozF/2, I/OCFS/2) of
functions on Na\G4 is defined as in the tenth paragraph. Since the functions in this space
are determined by their restrictions to A we may think of it as a space of functions on K in

which case it is independent of s. Thus we have isomorphisms
T, : B(ue? vay™?) = B(u, v).

The theory of Eisenstein series provides us with a function (¢, s) = E(p, s) from B(u, v) x
C to A(n). Let E(g, ¢, s) be the value of E(p,s) at g. For a given ¢ the function E(g, ¢, s)
is continuous in ¢ and meromorphic in s. Moreover there is a discrete set of points in C such
that outside of this set it is holomorphic in s for all g and ¢. If s is not in this set the map
o — E(Tsp,s) of B(,uaF ,uan/2) into A(n) commutes with the action of H.

If the total measure of Nr\ Ny is taken to be 1 the integral

| B Tp.s)dn
Np\Na

is equal to

o(9) + (M(s)¢)(9),

where M(s) is a linear transformation from B(pozF/Q,l/an/Q) to B(VaF/ ,ua;ﬂ) which

commutes with the action of H. It is meromorphic in the sense that
(M($)T o1, T N pa)

is meromorphic if ¢ belongs to B(p, v) and ¢, belongs to B(v~1, u~'). The quotient of M(s)
by

L(1—s,vu") )Ll

L(1+ s, pv=t) L(1+ s, pv=1)
is holomorphic for Re s > 0. Since the analytic behaviour of E(g, ¢, s) is controlled by that
of M(s) it should be possible, as we observed before, to use the Eisenstein series to show

=e(l—s,vu!

that a constituent of B(po F/ ? vag *2) is also a constituent of A(n).
To indicate the dependence of M(s) on p and v we write M (i, v, s). Then

M(p,v,s)M (v, p,—s) = 1.
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If s is purely imaginary we can introduce the inner product
(1, p2) = / e1(k)py (k) dk
K

on B(uaF N7 /2) Let B(/LO[F/2, va, ) be its completion with respect to this inner product.
We may think of B(,uaF/ 2, Vo o/ %) as a function space on G5 on which G4 acts by right

translations. The representation of G on B(u« F/ 2, vag s/2 ) is unitary. Let g correspond to

the operator p(g, i, v, s) and if f isin L'(n) let

p(f,u,w):/z . f(9)p(g, i, v, s)wo(g)

The isomorphism Ty extends to an isometry, from B(,uaF/Q, Vo o/2 ) to B(p,v) and M(u,v,s)

extends to an isometry from B(ual?, vay"?) to B(vay™?, pail?). In particular
M*(u,v,s) = M(v, u, —s).

Suppose (p, ) is in P and, for some r, v = pal and p = vay". Replacing p by ,uarF/z

and v by Va;f/ 2 if necessary we may suppose that g = . We may also suppose that if (u, v)
is in P and is not equivalent to (v, u) then (v, i) is also in P. Let L be the Hilbert space sum

@B(,u,y
@B(,u,z/

EB B(pa? vay™"?)

and let £ be the algebraic sum

If we define L(s) to be

and L(s) to be

@B (ne?, vaz™?)

P
we can again introduce the map
Ts: L(s) — L.

The representation g — p(g, s) is the representation

9= P olg, v, s)
on L(s). M(s) will be the operator on L(s) which takes @ ¢(u,v) to @ ¢1(u, v) with

pr(v, ) = M(p, v, 8)o(p, v).

It is unitary.

If F' has characteristic 0 let H be the space of all square integrable functions ¢ from the
imaginary axis to L such that

Tep(=s) = M(s)Tp(s)

c 100 9
= O

with the norm
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where c is a positive constant relating various Haar measures. It will be defined more precisely
later. If F' is a function field with field of constants F, the functions in H are to be periodic
of period logq@ and the norm is to be

27

B[ ot Pl
0

T

On the whole we shall proceed as though F' had characteristic 0 merely remarking from time
to time the changes to be made when the characteristic is positive.

If o =P e(p,v) is in L we set

E(g,¢,5) =Y E(g,90(1v),s).

If ¢ in H takes values in £

fin o [ E(g.o().5) dis| = 3lo)

T—o00 2T T

exists in A(n). The map ¢ — @ extends to an isometry of H with a subspace A;(n) of A(n).
If g isin G and ¢’ is defined by

¢'(s) = Tup(g, $)T, " o(s)

then ¢ is p(g).

The orthogonal complement of A;(n) is Ag(n). Thus if F is the orthogonal projection
of A(n) on A;(n) the trace of pf (®) is the trace of p(®) — Ep(®) which, according to the
Selberg trace formula, is the sum of the following expressions which we first write out and
then explain.

(1)
(i)

measure(ZaGr\Ga)®(e).

1
52 Z measure(ZABF\BA)/ ®(g 'vg)ws(g).
Qi v€Zp\Br Ba\Ga
Y¢ZF

Z Z measure(ZABF\BA)/ ®(g~"vg)ws(9).

Q2 YEZp\BFr Ba\Ga
YEZF

ZE: EE: I]:W(Vaf@) aﬁ(WajL)

yeZp\Ap v w#v
v¢Zp

[ ]]000, ) + A Ze’o £ [T 000, fu)

wH#vY
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(vi) If F'is a number field
1
~71 trace M (0)p(P,0),

log q T s
——t M P t M d
1 { race M (0)p(®,0) + trace (logq>p< , logq) }

if F'is a function field.
(vii) If F'is a number field

1 100

4r

but

tracem ™" (s)m/(s)p(®, 5) d|s],

but

27

1 Togg
qu/1 tracem ™ (s)m/(s)p(®, s) d|s|
a7 Jo

if F'is a function field.
(viii) The sum over (u,v) and v of

100

1 _

E ' tr{R 1(#1}7”1)7S)R,(Nmyvas)p(ﬁ :uUaVlMS)} H trp(fwa:uw7yw78> d|8|
—i00 wWHV

if F'is a number field and of

log q
47

T
/ tr{R_l(:ulMVUJS)R,(:uv7Vvas)p(fnulnylns)} Htrp(fw,,uw,uw,s) d|8’
0 wWHV
if F'is a function field.
The function @ is of the form

(I)(g) = H fv(gv)'

Let () be a set of representatives for the equivalence classes of quadratic extensions of F'. For
each E in @ fix an imbedding of F in the matrix algebra M = M (2, F'). Let Br = Br(E) be
the multiplicative group of E, considered as a subalgebra of M. It is the centralizer of F in
Gp. Let Bo = Ba(F) be the centralizer of F in Ga. Let ()7 be the collection of separable
extensions in ) and ()5 the collection of inseparable extensions. Let, moreover, Ar be the
group of diagonal matrices in Gp.

Choose on N that Haar measure which makes the measure of Np\Na equal to 1. Choose
on K the normalized Haar measure. On the compact group H obtained by taking the quotient

' {(3‘ 5) < s |oz|=|ﬁ|}

by ZaAr choose the normalized Haar measure. This group H is the kernel of the map
1/2
a 0 loo| &
(0 6) (B
of ApZa\Aa onto R or loggZ. On R one has the standard measure dz and on log ¢Z one
has the standard measure which assigns the measure 1 to each point. The measures on H and
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on H\(ArZa\Aa) together with the measure on Zx\ArZ which assigns the measure 1 to
each point serve to define a measure da on Zp\Aa. The constant ¢ is defined by demanding

that
/Z o f(g)wo(g)

c/ / /f(ank) da dn dk
ZA\AA Y Na JK

if f is an integrable function on Zx\Ga. We may suppose that the measures on Zx\Aa,
Na, and K are given as product measures and in particular that

/ dk, =1

[ xtn)dn, =1

v

be equal to

and

for almost all v if y is the characteristic function of

{(g ‘) }

The factors w(, f,) and w; (7, f,) appearing in the fourth expression are defined by

w(y, fo) = / folky 'n, Yyn,k,) dn, dk,
v K’U

and
w1 (7, fv):/ fv(kglnqjlfynvkv)log)\(nv)dnvdk’v.
v KU
If /
01\ (o' 0\,
(1 o)=(5 5)
then )
«
A(n) = Zﬁ .

Set (s, f,) equal to

1 Qyy

—— vkv_la;ln ayky)|—
L(1+s,1,) /ZU\AU va( 0 )ﬁv
(o, O
“@=\o g,
(11
Ng = 0 1

—1-—s

da, dk,

where

and
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We take 1, to be the trivial character of F*. Then 6(s, f,) is analytic at least for Res > —1.
Its derivative at 0 is 6/(0, f,). I

L(1+s,1p) = HL 1+s,1,)

the Laurent expansion of L(1+ s,1g) about s =0 is

Xt
S

The operator m(s) is the operator on L(s) which for each (u, ) multiplies every element
of B(ual? vay*?) by
L(1—s,vu™)
L(1+ s,uv=1)’

as

® B Nvaip’ VUQFS/Q)

when s is purely imaginary. If Res > 0 let R(u,, vy, $) be the operator from B(uvaFm, Vvan/z)

We may represent B(uo F/ ’ va Fs/ %)

to B(Vvan/zuvaF ) defined by setting
R(pio, v, $)p(9)

_ L(1+ s, pyvy,* 0 1
6(1 —37#U1Vv7¢v> (L<S 1 yil) )/N SO((_l 0)719) dn.

These operators can be defined for s purely imaginary by analytic continuation. They are
then scalar multiples of unitary operators and for a given u, v are in fact unitary for almost

all v. Thus R(p, v, s) can be defined as an operator B(,quzF/2, VoQp /2)

imaginary and
B L1 —s,vut)
- @t EG S

(uv) LU v

equal to

when s is purely

Set
N(s)=TsM(s)Tg"
and if N'(s) is the derivative of N(s) set
M'(s) = T, 'N'(s)T,
Define R'(fiy, 1, ) in a similar fashion. Then
trace M~ (s)M'(s)p(®, s)
is the sum of
tracem ™' (s)m’(s)p(®, 5)
and

Z Z{tr R_l(Uva Vo, S)R/(/va Vu, 8)P(fos o, Vo, S)} H tr p(fuws s Vaos 8) ¢

w#v
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where p(f,, ty, Vs, S) is the restriction of p(f,) to B(/LUO(F/ ,uvaFS/Q).

If E(u,v,s) is the projection of L(s) on B(,uozF , VOl /2) we can write

m(s) = a(u,v,s)E(u,v,5)
where the a(u, v, s) are scalars. Thus
tracem ™ (s)m/(s)p(®, 5)

is equal to

Z M{Htraeep fv,,uvyl/va )}

(ks v, 8)
We can also write
M(0) = a(u,v)E(p, v,0)
so that
trace M (0)p(®,0)

is equal to

Z a(:“? V){H trace p(fva Moy Vo 0)}

; (10gQ> 2. Bly) ( 107grq)

(16.1.7) / fo(k~rank) dndk = 0
v NU

for all a in A, = Ap, then w(vy, f,) =0 for all v, (0, f,) =0, and

trace p( fy, fro, Vo, 8) = 0

for all u,, v, and s. In particular if ((16.1.7) is satisfied for at least two v the expressions (iv)
to (viil) vanish and the trace formula simplifies considerably.
We now apply this formula to the function

If F is a function field

(I)<g) = H Cv(gv) H gv gv gS

v€ES] vES?
where f = f; * fo with f; and f; in B is of the form
3s) =[] fulge)-
v¢S

Since S has at least two elements and the functions (, and &, satisfy (16.1.7)), only the
expressions (i) to (iii) do not vanish identically. The expression (i) is now equal to

11 o) o3 11 dlon) pfle)

vES] vES2

We recall that d(o,) = d(o]) if v is in 5.
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We may suppose that @), is equal to @), and that @ is a subset of @;. If E is in ¢; or
Q2 and v is in Br = Bp(E) but not in Zp

/B \G (g 'vg)wr(g)

is equal to the product of

11 / . o(9, 1790 )ws(v)

vEST

11 / o(9, 1 790)ws(v)

vesy 7 Bu\G

/A ~ flgTvg)ws
Bs\Gs

If visin S and F ®p F, is not a field so that B, is conjugate to A,, the corresponding factor
in the first of these two expressions vanishes. Thus the sum in (ii) need only be taken over
Q). If Eisin Q] or @ the first of these two expressions is equal to

H XU'U (771)
measure Z,\ B,
vES
Thus, in the special case under consideration, (ii) is equal to ((16.1.5)) and (iii) is equal to

so that
trace 7(f) — H Co(e) H d(o,) p measure(ZoGr\Ga)f(e)

vES] VES2

and

is equal to

trace 7' (f) — H d(ol) » measure(Z, G%\G'y) f(e).
veS
We may take n to be trivial and apply Lemmas 16.1.1 and 16.1.2 to see that, in this case,
trace 7(f) = trace 7'(f)
and
Hd(a;) measure(Z, G \G')
vES

is equal to

H Cole) H d(o,) p measure(ZaGr\Ga).

vEST VES2
Still taking 7 trivial we choose the o/, so that none of them are one-dimensional and conclude
that
(16.1.8) measure(Z, Gx\G'y) = measure(ZaoGr\Ga).
Then we take exactly one of them to be one-dimensional and conclude that (,(e) = d(o),).
Thus (,(e) = d(o!) and
trace 7(f) = trace 7'(f)
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in general.

The relation is well-known. One can hope however that the proof of it just given
can eventually be used to show that the Tamagawa numbers of two groups which differ only
by an inner twisting are the same or at least differ only by an explicitly given factor. Since
the method of [33] can probably be used to evaluate the Tamagawa numbers of quasi-split
groups the problem of evaluating the Tamagawa numbers of reductive groups would then be
solved. However a great deal of work on the representation theory of groups over local fields
remains to be done before this suggestion can be carried out.

To complete our formal argument we need to sketch a proof of the trace formula itself.
One must use a bootstrap method. The first step, which is all we shall discuss, is to prove it
for some simple class of functions ®. We take ® of the form ® = f' x f” with

) =1][ (o)

and

f"(9)=11,/(9)

where f} and f! satisfy the five conditions on page 265 The function f, is f}  f.
Suppose ¢ is a K-finite compactly supported function in A(n). For each purely imaginary
s define ¢(s) in £ by demanding that
1 _

2¢ 0(9)E(g, ¢, s)wo(9) = (P(s),¢')
GrZa\Ga

be valid for all ¢ in £. The map ¢ — ©(s) extends to a continuous map of A(n) onto H,
©(s) being the function in H corresponding to Ey in Ai(n).

For each (p1,v) in P choose an orthonormal basis {¢;(p, v)} of B(u,v). We may suppose
that any elementary idempotent in H annihilates all but finitely many elements of this basis.

If
B(s) =D ailp, v, s)pi(pv)
() 3

1
2c

then

ailji, v, ) = /G o PO 2i00). ol

Let
10(@7 S)TSTI%(M V) = Z :0]2(@7 v, S)Ts_l@j(l% V)'
J
For all but finitely many p, v, ¢ and j the functions p;;(®, u1, v, s) vanish identically. Ep(®)¢p
is equal to

‘ 1 il
Jim Z yo /_iT pis(®, 11, v, 8)a; (1, v, 8)E (g, i(n,v), 5) d]s].
pv i
A typical one of these integrals is equal to the integral over GrZa\Ga of the product of ¢(g)
and
T .
/ plj(q)7 v, S)E(ga SO’L(/'Lv V)? S)E(h7 QOJ(,LL, V)? S) d|S|

—iT
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Thus the kernel of Ep(®) is the sum over (u,v) and ¢, j of
1 100

m . pij(q)a,u7ya S)E(g7gpl(/’b7 V)a S)E(h790j(:l}“7 V)a 3) d’S‘

The kernel of p(®) is
O(g,h) = Y ®(g 'h).
Zp\GF
To compute the trace of p(®) — Ep(P) we integrate the difference of these two kernels over

the diagonal.
The function ®(g, g) may be written as the sum of

(16.2.1) d D> a9 ey,

6€PF\GF ’YENF
Y€

where Pr is the group of super-triangular matrices in Gp,

1 e
(16.2.2) 5 2 > D(g7'6dg),
’YGZF\AF 5€AF\GF
Y¢ZF

where Ar is the group of diagonal matrices in G,

(16.2.3) %Z Y. D, g6 )

Q1 ’YGZF\BF 5EBF\GF
VY¢ZF

and

(16.2.4) YY) gl ydy)

Q2 v€Zp\Br 66 Bp\Gr
Y¢Zr

together with
(16.2.5) d(e).

The constant ®(e) can be integrated over GpZa \G 4 immediately to give the first term of
the trace formula. The standard manipulations convert (16.2.3)) and ((16.2.4]) into the second
and third terms of the trace formula.

The expressions ((16.2.1]) and (16.2.2)) have to be treated in a more subtle fashion. We
can choose a constant e; > 0 so that if

=0 1) B

with x in A, o and S in I such that > ¢, and k in K, and if

a
B

_1x’a’0k,
W=\o 1)\o p)"
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with v in Gp, 2’ in A, o’ and " in I such that
Let x be the characteristic function of

> ¢1, and k' in K, then 7 belongs to Pp.
1 z\/a O
{GHIGHL

Z }
The expression is the sum of
1
500 > @l ydg) (x(39) + x(e(1)dg))

5€PF\GF ’YEZF\PF
Y¢ZrNF

al
B’

(67

g

and

1
5 >y <I>(g’15’1759)<1—x(5g)—X(E(v)ég))-
0€Pr\GF Y€EZp\Pr
Y¢ZrNF

Here €(7y) is any element of G not in Pr such that
e()ve " (7) € Pr.

There is always at least one such €(y). The integral of the second sum over GrZa\Ga
converges. It is equal to

%/Z > 0lg7v9) (1= x(9) = x(e()9) ) wolo).

PrAGa yezp\ Py
Y¢ZrNp

Every 7 occurring in the sum can be written as 67,0 with vy in Ar and § in Pp. Then

(57" e(70)9) (67 "708) (8 e(0)8) " = 67" (e(10)0¢ " (7)),
so that we can take e(v) = d 'e(y0)d. We take

() =w = (_(1) (1)>

x(0"'wég) = x(wdg)

Since x(dg) = x(g) and

the integrand is

S > (g6 yeg) (1 — x(dg) — x(wdg)).

’YEZF\AF 5EAF\PF
V¢ ZR

The integral itself is equal to

% > /Z (g vg9) (1 = x(g) — x(wg))wo(g).-

YEZF\AF AAF\Ga
Y¢ZF

All but a finite number of the integrals in this sum are 0.
It is convenient to write each of them in another form. If

i Y
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then x(g) is 1 if %’ z ¢ andis 0 0f (5| <cp. If
/
wn = (% g,) n'k'
and A\(n) is ‘g—: then x(wg) is 1if |§| < %1) and is 0 if %‘ > %1) It is easily seen that

A(n) < 1. Thus if ¢; > 1, as we may suppose, one of x(¢g) and x(wg) is always 0. The integral

/ (97" v9) (1 — x(9) — x(wg))wo(9)
ZAAFR\GA
is equal to
c/ / (k™ 'n"'ynk)(2log c; — log AM(n)) dn dk
Na JK

which we write as the sum of
(16.2.6) 2clog g / / ®(k~'n"'ynk) dn dk
Na JK

and
> ¢ / / (k™ 'n"tynk) log AN(ny) dn dk.
" Na JK

If we express each of the integrals in the second expression as a product of local integrals we
obtain the fourth term of the trace formula. All but a finite number of the integrals are 0 so
that the sum is really finite. We will return to later. If F' is a function field over F,,
it is best to take c¢; to be a power of ¢" of ¢. Then 2logc; is replaced by 2n — 1.

The expression ((16.2.1)) is the sum of
> @976 dg)x(d9)

0ePr\Gr YENF
#e

> o976 dg) (1 - x(6g)).

5€Pr\GF YENF
Y€

The integral of the second expression over GrZa\Ga converges. It is equal to

/p Za\G > (g7 9) (1= x(9))wo(9)-

YENF

7€
11
=10 1

> (g0 nedg) (1 — x(3g)),

NpZp\Pr

and

It

the integrand is equal to

so that the integral itself is equal to

/ (g 'nog) (1 — x(9))wo(g)
NrpZa\Ga
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which is

1
da dk

c /Z . /K @(k_la_lnoak)(l—x(a))‘%

a:<g g).

The integrand vanishes outside of a compact set. Thus the integral is the limit as s approaches

0 from above of
c/ / (k™ 'a " 'noak) (1 — X(ot))‘g
Za\Aa JK B

which is the difference of

c/ /Cb(klalnoak)’g
Za\Aa JK B

—1-s

c/ /<I>(lc1alnoak)‘g x(a) da dk.
Za\Aa JK B

The first of these two expressions is equal to
a —1-s
5“ da, dk, }

c fo kv_lagln aypky)|—
{];[/v\Av Ky ( 0 ) v

—1—

da dk,

_1—

da dk

and

which is
(16.2.7) cL(1+ s, 1F){H 0(s, fv)}.

Observe that if v is non-archimedean and f, is 0 outside of Z,K, and is 1 on the elements of
Z, K, of determinant 1 then

/Z ot fo(k; ta, 'ngayk,) g—
is the product of the measure of

{ (5 5) €2 |lal =1 }

D ol@n = L1 +s,1,),
n=0

—1—

da, dk,

and

so that

116G, 1) = 0(s, )

is analytic for Res > —1 and its derivative at 0 is

Z 0/(37 fv) H (s, fu)

wWHv
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The function (16.2.7) has a simple pole at s = 0. The constant term in its Laurent expansion
is

c A0H0(07f’0) +)‘—1 ZQ’(O’ fv) H0(07fw) ;

wH#v
which is the fifth term of the trace formula.

The expression
c/ /@(klalnoak)’g x(a) da dk
Za\Aa JK B

c Ok ra  yak a
/ZAAF\AA/I; Z ( ) 5

YENF
7€

Choose a non-trivial character ¢ of F\ A and let

‘P(y,g)z/A<1><gl (é gf)g)z/z(xy)dx.
¥(ya5) = |2

-1
o
Vi v, g>-
(ﬁ
Moreover by the Poisson summation formula

Z O(kta tyak)

is equal to

Then

YENF
y7#e
is equal to
~1 -1
3 h \If(gy,k;) + ‘E W(0, k) — d(e).
Q I} Q
y70
The integral
c/ / 4 () Z\If(gy, k) da dk
ZAAF\AA K 6 y40 5

is a holomorphic function of s and its value at s = 0 approaches 0 as ¢; approaches co. Since
we shall eventually let ¢; approach oo it contributes nothing to the trace formula. If F'is a
o
g

number field
c / / B(e)
ZAAF\Aa JK
1 1

1+s c%“
which is defined at s = 0. Its value there approaches 0 as ¢; approaches co. Finally

c/ /\II(O,k)
ZaAp\Aa JK

—1—s

x(a) da dk

is a multiple of

—S

x(a) da dk

@
B
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is equal to

= [ w(0, k) dk.

The pole of this function at s = 0 must cancel that of ((16.2.7). Consequently

/ U (0,k)dk = A_160(0, D).
The constant term in its Laurent [efxpansion about 0 is
—clog cl/ U(0, k) dk.
Not this expression but its negative 3
(16.2.8) clog ¢ /K v(0,k)dk

enters into the integral of the kernel of p(®) — Ep(®) over the diagonal. If F' is a function
field % is to be replaced by

S
scy

and logcy by n — %

The Poisson summation formula can be used to simplify the remaining part of ((16.2.1)).

We recall that it is
D) B(go T ag)x(59).

(SEPF\GF YENE
y#e

> 0(0,69)x(dg)

5€PF\GF

to obtain the difference between
> D Uy, d9)x(59)
S€Pr\GF y#0

We subtract from this

and
> @(e)x(dg).
5ePp\Gp
The integrals of both these functions over Z5 G \G a converge and approach 0 as ¢; approaches
o0o. They may be ignored.

The remaining part of (|16.2.2)) is the sum of
1 e
3 YooY gl ag)x(dg)

6€PF\GF ’YEZF\PF
Y¢ZrNF

% Yo D (g0 eg)x(e(7)dg).

0ePr\GF Y€Zp\Pr
Y¢ZrNp

and
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These two sums may be written as

oD a9l dg)x(d9)

Y€Zr\Ar Ap\GFr
Y¢ZF

oY a9l dg)x(wdg).

’}’GZF\AF AF\GF
Y¢ZF

Replacing 6 by w™1¢ in the second sum we see that the two expressions are equal. Their sum
is equal to twice the first which we write as

Z Z Z (g6 y17v209)x(dg).

NMEZp\Ap 0€Pr\GF 72€NF
N¢Zr

For a given ® all but finitely many of the sums

(16.2.9) Yo D g0 red9)x(d9)

0ePr\GF 72€ENF

\If(y,%g)zfAcD(gl% ((1) f)g)w(azy)dw.

The expression (|16.2.9)) is the sum of
> Wy, m.9)x(69)

dePp\GF y#0

and

are zero. Set

and
> (0,71, 89)x(59)-
5€Pp\Gr
The first of these two expressions is integrable on GrZa\Ga and its integral approaches 0 as
c1 approaches oo.
Since ¥(0, g) = ¥(0, e, g) we have expressed <I>(g g) as the sum of

(16.2.10) S > w(0,7.59)x(d9)

d€Pr\GF YEZF\AF

and a function which can be integrated over GrZa\Ga to give the first five terms of the
trace formula, the sum of ([16.2.8) and one-half of the sum over 7 in Zg\ Ap but not in Zg of
(116.2.6|) which is

(16.2.11) clogc; Z / /@(klfynk)dndk,
vE€Zr\AF K

and an expression which goes to 0 as ¢; approaches oco.
Now we discuss the kernel of Ep(®) in the same way. Set H(g; i, v, 1, J,s) equal to

pij<q)7,uu V?‘S)E(ga %(%V)aS)E(Qa 90]‘(/17 V),S).
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On the diagonal the kernel of Ep(®) is equal to

224_71'0 By H(g; p,v,4, 5, s) d|s|

if F'is a number field and to

log q Teq o
> 1 H(g; p,v,4, 3,5)dls|
e

RN

if I is a function field. We set Ey(g, ¢, 3) equal to
> AT 0 (59) + M(s)T,  o(89) }x(59)
Pp\GFr
and let
E2(97 12 5) = E<97 ¥, S) - E1(97 ' 3)'
If, form=1,2,n=1,2 Hpu,(g; 1, v,1,7j,8) is
plj((I)7 ", v, S)Em(g7 Spl(/vbv V)7 S)En(ga ij(,ua V)? S)
and D,,,(g) is, at least when F is a number field,

ZZ47TC Hmng /,[,,V,Z,j, )d‘8|7

—1300

v ]
the kernel of Ep(®) is
n 2
3% ()
m=1 n=1
on the diagonal.
If mornis?2
[ tumlgals
GrZa\Ga
is equal to
(16.2.12) / Hypnn(9: 15 1,4, 5, 8)wo(g) ¢ dls|.
47TC —100 ; ; GFZA\GA

Take first m =n = 2. If F' is a number field a formula for the inner product

/ Es(g, 01, 9)Fa(g, 02, 8)wo(9)
GrZa\Ga

can be inferred from the formulae of [26] and [27]. The result is the sum of

.1 _
011\1‘]% g{c?(gpl, v2) — €] 2"/(N(t + )1, N(t + s)gpg) },
where N(t + s) = Ty M (t + s)T,;., and

.1 s
cl{‘rég{cf (gpl,N(t—i-s)goz) —cy (N(t+8)%017802)}
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The second expression is equal to
C S — 8
{d (e Ns)ga) — 7 (N(s)en20) |-

The first is the sum of

2clog 01(901> 902)

and
c

NN G w) + (91, NN (9)22) |
If F'is a function field over F, and ¢; = ¢" the inner product is the sum of
l—qs—i—q_s n—1)s 1_q—s+qs —2(n—1)s
clogq{l_—q_%(%,]\f(s)gog)q% Ds 4 1_—q28(N(3)901,902)q 2n=1)
and

(2n = 1)e(pr, ¢2)

and
c

NN G e) + (91, NN (9)22) |
Certainly

Z Z ,Oij(q)7 v, 3) ((102(“7 I/)a QOJ'(,U, V)) = trace p((I)v 8)
MoV 4]
which equals

s+1
Z / / / (kYank)p(a)v (B)‘— dn da dk
Na JZa\Aa g
or s+1
2
Zc/ / / 3 ek laynk)u(@)v(8)| S| dndadk.
8% Na ZAAF\AA NEZR \A ﬁ
Thus if H is the set of all
a 0
0 B
in ZpAp\Aa for which |a| = |5
1 100
(16.2.13) o trace p(®, s) d|s|
TC J—ico
is equal to
22, ) 2w
= Ok~ aynk)u(a)v(B) dn dk da
12 ), Jo R amkutan)
which is

1
—/ /@(klynk) dn dk.
2 Na JK

When multiplied by 2clog ¢; the effect of this is to cancel the term (16.2.11)). If F'is a function
field ((16.2.13) is said to be replaced by

27

1 e
;grg/o ’ trace p(®, s) d|s|

but the conclusion is the same.
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The expression

Zzpij(q)mua v, S)(Qoi(/% V)7 N(S)Spj(:ua V))

IR N
is equal to
trace M~ (s)p(®, s)

when s is purely imaginary and

Zzpij(q)nu7yv S)(N(S>QOZ(:LL7 V): ij(:ua V))

IR N
is equal to
trace M (s)p(®P, s).
Since M(0) = M~1(0)
1>
lim o / —{c}* trace M~ (s)p(®, s) — ¢ > trace M (s)p(®, s) } d|s|
c1—00 OTT —ico S

is equal to
1
1 trace M (0)p(®,0).

When multiplied by —1 this is the sixth term of the trace formula. For a function field it is
to be replaced by

log q s s
t M(0)p(P,0) + ¢t M| — o — | 5.
1 { race M (0)p(®,0) + trace (logq>p< ’logq>}

When s is purely imaginary
(NTH(s)N'(s)p1, 02) = (01, N7 (s)N'(s)¢2).

Moreover

DO (@ v ) (NN ()i, 1), 05(1, 1))

IR N}
is equal to

trace M~ (s)M'(s)p(®, s).
Thus ,
1 100
yo trace M~ (s)M'(s)p(®, s) d|s|
m

is to be added to the trace formula. It gives the seventh and eighth terms.
Next we consider (16.2.12) when m =2 and n = 1. If ¢}, = T 1y and ¢y = M (s)T; L,
the integral

(16.2.14) / Ex(g, ¢1,5)Er(g, @2, )wo(g)
GrZa\Ga
is the sum of
/ Ex(g, ¢1. 9)85(9)x(9)w0(9)
PrZa\Ga

and
/ Ex(g. 01, 5)75(9)x(9)w(9).
PrZa\Ga
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Since ¢, ¢ and x are all functions on Zx Na Pr\Ga while, as is known,
X(g)/ Ey(ng, ¢1,5)dn =0
Na

when ¢, is sufficiently large, the integral ((16.2.14)) is 0. Thus (16.2.12]) is 0 when m = 2 and

n =1 and also when m =1 and n = 2.
Set

F(g,¢.5) =T, p(g) + M(s)T, "¢(g)
and set Hy(g, i1, v, 1, j, $) equal to
pij(q)> w, v, S)F(g? (pz(/JH l/)v S)F(gv @j(:ua V)a 3)X(9)
If ¢y is so large that x(d19)x(d2g) = 0 when é; and J5 do not belong to the same coset of Pg
the function ®4;(g) is equal to

SN o[ e vl

oV 4] Pr\Gp —i0o
If ©l(g, p, ) is the value of T p;(u, v) at g then
> pis(@, 11, v, 8)@i(h, 1) B (g, 11, V)
4,J

is the kernel of p(®, u, v, s) which is

: p(a)v(B) dnda.

c/ / ® (g tanh) e
Na JZa\Aa p

If we set h = g, divide by 4mc, integrate from —ioo to ‘oo, and then sum over p and v we
obtain

1
YEZR\AF
If (g, p,v) is the value of M(s)T;  p;(1u,v) at g

> 0@, v, 8)@! (1 )F (g, 1. v)

is the kernel of

M(,uv v, S)P((I)7 u, v, S)M<V7 Ky _5) = /)(CI)7 v, i, _8)'
Thus ®41(g) is the sum of

(16.2.15) S > w(0,7.59)x(d9)

5€PF\GF ’YEZF\AF

(69)
IS = / {H\(dg, p,v,1,j,5) + Ha(3g, p, v, 1, j, 5) } d]s]

and

wv ij Pp\Gp dme
where Hy(g, i, v, 1,7, s) is
pij (P, 1, v, )09, 11, v)P; (g, 1, V)
and Hy(g, p,v,1,7,8) is
pij (P, 1, v, 5)¢7 (g, 11, V) B (g, 11, V).
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The expression ((16.2.15]) cancels ((16.2.10)). If g = nak with

(a0
a = 0 5 s
Hl(gnua]/?i;jvs) isequalto
s+1

o (5)v(2)|5] cwmo,

The functions p;;(®, u1, v, s) are infinitely differentiable on the imaginary axis. Thus

M
isO(% )as 3

averaged over Pr\GF the result is integrable on ZxGr\Ga and its integral approaches 0 as
c1 approaches oo. Thus it contributes nothing to the trace. Nor do the analogous integrals

for Hy(g, 1, 1,1, 7, S).

(07

1 100

Arc i 1(g7M7V7Z7]75> |8‘

— oo for any real M. Thus if this expression is multiplied by x(g) and
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The theory of Eisenstein series is discussed in [11], [13], [14], and [25] as well as in:
[26] Langlands, R. P., On the functional equations satisfied by Eisenstein series, Mimeographed notes.
[27] Langlands, R. P., Eisenstein series, in Algebraic Groups and Discontinuous Subgroups, Amer. Math. Soc.
(1966)
[28] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with
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[25] and [28] are of course the basic references for the Selberg trace formula. Some of its formal aspects
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Langlands, R. P., Dimension of spaces of automorphic forms, in Algebraic Groups and Discontinuous
Subgroups, Amer. Math. Soc. (1966)
The theorem of §16 can still be stated and proved if M is replaced by a quaternion algebra which splits
everywhere that M’ does. The proof is in fact rather easier. However these apparently more general
theorems are immediate consequences of the proof of the original theorem. Theorems very similar to
that of §16 and its extensions have been proved by Shimizu. Our methods differ little from his.
[30] Shimizu, H., On discontinuous groups operating on the product of the upper half planes, Ann. of Math.,
vol 77 (1963)
[31] Shimizu, H., On traces of Hecke operators, Jour. Fac. Sci. Univ. Tokyo, vol. 10 (1963)
[32] Shimizu, H., On zeta functions of quaternion algebras, Ann. of Math., vol 81 (1965)
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Orthogonality relations for the characters of non-compact groups first appeared in:
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