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Foreword

These are the notes from a course of lectures given at The Institute for Advanced Study
in the fall of 1975. Following a suggestion of A. Borel, I have added a section (§2) with an
outline of the material and have discussed the applications to Artin L-functions in more
detail (§3), including some which were discovered only after the course was completed. I have
also made corrections and other improvements suggested to me by him, and by T. Callahan,
A. Knapp, and R. Kottwitz. But on the whole I have preferred to leave the notes in their
original, rude form, on the principle that bad ideas are best allowed to languish, and that a
good idea will make its own way in the world, eventually discovering that it had so many
fathers it could dispense with a mother.

R. P. Langlands
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CHAPTER 1

Introduction

The problem of base change or of lifting for automorphic representation can be introduced
in several ways. It emerges very quickly when one pursues the formal principles expounded
in the article [20] which can in fact be reduced to one, viz., the functoriality of automorphic
forms with respect to what is now referred to as the L-group. This is not the place to rehearse
in any generality the considerations which led to the principle, or its theoretical background,
for which it is best to consult [4]; but it is useful to review them briefly in the form which is
here pertinent.

Suppose that F is a non-archimedean local field and G is GL(2). If O is the ring of
integers of F the Hecke algebra H of compactly supported functions on the double cosets
ofG(F )//G(O) has a known structure. It is in particular isomorphic to the algebra of functions
on GL(2,C) obtained by taking linear combinations of characters of finite-dimensional analytic
representations. According to the definitions of [20], the L-group of G over F is the direct
product

LG = LG0 ×G(K/F ).

Here LG0, the connected component of LG, is GL(2,C), and K is simply a finite Galois
extension of F , large enough for all purposes at hand.

If K/F is unramified the Frobenius element Φ in G(K/F ) is defined and the Hecke
algebra H is also isomorphic to the algebra of functions on

LG0 × Φ ⊆ LG

obtained by restriction of linear combinations of characters of analytic representations of the
complex Lie group LG.

Suppose E is a finite separable extension of F . The group G obtained from G by restriction
of scalars from E to F is so defined that G(F ) = G(E). As a group over F it has an associated

L-group, whose connected component LG
0
is∏

G(K/E)\G(K/F )

GL(2,C).

The group G(K/F ) operates on LG
0
via its action on coordinates. The L-group G is a

semi-direct product
LG = LG

0 ×G(K/F ).

If E/F and K/F are unramified the Hecke algebra HE of G(E) with respect to G(OE) is
isomorphic to the algebra of functions on

LG
0 × Φ ⊆ LG

obtained by the restriction of linear combinations of characters of finite-dimensional analytic
representations of LG.
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2 1. INTRODUCTION

At first this is a little baffling for Hecke algebras on G(E) and G(F ) are the same, while
the first is isomorphic to the representation ring of GL(2,C) and the second to an algebra of

functions on LG
0 × Φ. If f∨ and f

∨
represent the same element of the Hecke algebra then

(1.1) f
∨(
(g1, . . . , gℓ)× Φ

)
= f∨(gℓ · · · g2g1) ℓ = [E : F ].

The homomorphism
φ : (g × τ) → (g, . . . , g)× τ

of LG to LG takes LG0×Φ to LG
0×Φ. It allows us to pull back functions from LG

0×Φ to LG0×
Φ, and yields especially a homomorphism φ∗ : HE → H. To give an irreducible admissible
representation π of G(F ) which contains the trivial representation of G(O) is tantamount to
giving a homomorphism λ of H onto C, and to give an irreducible representation Π of G(E)
which contains the trivial representation of G(OE) is tantamount to giving a homomorphism
λ′ of HE onto C. We say that Π is a lifting of π if λ′ = λ ◦ φ∗.

The notion of lifting may also be introduced when E is simply a direct sum of finite
separable extensions. For example if E = F ⊕ · · · ⊕ F then

G(F ) = G(E) = G(F )× · · · ×G(F )

and LG is the direct product

GL(2,C)× · · · ×GL(2,C)×G(K/F ).

We may define φ as before. The algebra HE is H ⊗ · · · ⊗ H. It is easily verified that if
f1 ⊗ · · · ⊗ fℓ lies in HE then φ∗(f1 ⊗ · · · ⊗ fℓ) is the convolution f1 ∗ · · · ∗ fℓ, and so the lifting
of π, defined by the same formal properties as before, turns out to be nothing but π⊗ · · · ⊗ π.

Thus when E is a direct sum of several copies of F , the concept of a lifting is very simple,
and can be extended immediately to all irreducible, admissible representations. However
when E is a field, it is not at all clear how to extend the notion to cover ramified π. None
the less class field theory suggests not only that this might be possible but also that it might
be possible to introduce the notion of a lifting over a global field.

The principal constraint on these notions will be the compatibility between the local and
the global liftings. If F is a global field and E is a finite separable extension of F then for
each place v of F we define Ev to be E⊗F Fv. If π =

⊗
v πv is an automorphic representation

of G(A) ([3]), where A is the adèle ring of F , then the automorphic representation Π of
G(AE) will be a lifting of π if and only if Πv is a lifting of πv for all v. Since πv is unramified
for almost all v and the strong form of the multiplicity one theorem implies that, in general,
Π is determined when almost all Πv are given, this is a strong constraint.

Proceeding more formally, we may define the L-groups LG and LG over a global field F
too.

LG = GL(2,A)×G(K/F )

and

LG =

 ∏
G(K/E)\G(K/F )

GL(2,A)

⋊G(K/F ).

We also introduce
φ : (g, τ) → (g, . . . , g)× τ
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once again. If v is a place of F we may extend it to a place of K. The imbedding
G(Kv/Fv) ↪→ G(K/F ) yields imbeddings of the local L-groups

LGv = GL(2,C)×G(Kv/Fv) ↪→ LG and LGv ↪→ LG.

The restriction φv of φ to LGv carries it to LGv and is the homomorphism we met before.
If Π(G/F ) is the set of automorphic representations of G(A) and Π(G/F ) is the same set
for G(A) = G(AE), the global form of the principle of functoriality in the associate group
should associate to φ a map

Π(φ) : Π(G/F ) → Π(G/F ).

The lifting Π of π would be the image of π under Π(φ). Since the principle, although unproved,
is supported by all available evidence we expect Π to exist.

The local form of the principle should associate to φv a map Π(φv) from Π(G/Fv), the set
of classes of irreducible admissible representations of G(Fv), to Π(G/Fv) and hence should give
a local lifting. Whatever other properties this local lifting may have it should be compatible
with that defined above when Ev/Fv is unramified and πv contains the trivial representation
of G(O). Moreover, as observed already, local and global lifting should be compatible so that
if π =

⊗
πv lifts to Π =

⊗
Πv, then Πv should be a lifting of π for each v.

The main purpose of these notes is to establish the existence of a lifting when E/F is
cyclic of prime degree. It is worthwhile, before stating the results, to describe some other
paths to the lifting problem. If H is the group consisting of a single element then the associate
group LH is just G(K/F ) and a homomorphism

φ : LH → LG

compatible with the projections of the two groups on G(K/F ) is simply a two-dimensional
representation ρ of G(K/F ). Since Π(H/F ) consists of a single element, all Π(φ) should do
now is select a particular automorphic representation π = π(ρ) in Π(G/F ).

The local functoriality should associate to φv a representation πv = π(ρv), where ρv is
the restriction of ρ to the decomposition group G(Kv/Fv). We let Φv be the Frobenius at a
place v at which Kv is unramified and suppose

φv : Φv → tv × Φv.

The associated homomorphism φ∗
v of the Hecke algebra Hv of G at v into that of H at v,

namely, to C is obtained by identifying Hv with the representation ring of GL(2,C) and
evaluating at tv. For such a v, πv = π(ρv) is defined as the representation corresponding to
this homomorphism. We may define π = π(ρ) globally by demanding that π =

⊗
πv with

πv = π(ρv) for almost all v. This of course does not prove that it exists. It is also possible to
characterize π(ρv) for all v (§12 of [14]), although not in a truly satisfactory manner. None
the less π(ρv) can now be shown to exist ([17]), but by purely local methods quite different
from those of these notes, where the emphasis is on the existence of π(ρ) globally.

These considerations can be generalized. If ρ is a continuous two-dimensional representa-
tion of the Weil group WK/F by semi-simple matrices we may define ρv as the restriction of ρ
to WKv/Fv . For almost all v, ρv factors through

WKv/Fv Z GL(2,C) .

If tv is the image of a Frobenius element, that is, of 1 ∈ Z, and πv the representation of
G(Fv) which contains the trivial representation of G(Ov) and yields the homomorphism of Hv
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into C defined by evaluation at tv, we say that π(ρv) = πv. We may, at least for irreducible
ρ, define π = π(ρ) globally by the demand that π =

⊗
πv and πv = π(ρv) for almost all v. If

π(ρ) exists its local factors πv can be characterized in terms of ρv.
If ρ is reducible the existence of π(ρ) is proved in the theory of Eisenstein series. If ρ is

dihedral, by which I shall mean, in spite of justified reproofs, induced from a quasi-character
of the Weil group of a quadratic extension, the existence of π(ρ) is implicit in the work of
Hecke and of Maass. But nothing more was known when, late in 1966 or early in 1967, the
principle of functoriality, and hence the existence of π(ρ), was first suggested by the general
theory of Eisenstein series. It was desirable to test a principle with so many consequences—
for example, the existence of π(ρ) implies the Artin conjecture for the Artin L-function
L(s, ρ)—as thoroughly as possible. Weil’s elaboration of the Hecke theory, which had been
completed not long before, together with a careful analysis ([21]) of the factors appearing
in the functional equation of the Artin L-functions, enabled one to show that the existence
of π(ρ) was implied by Weil’s form of the Artin conjecture ([14]), and to obtain at the same
time a much better understanding of the local maps ρv → π(ρv).

In retrospect it was clear that one could argue for the existence of π(ρ) by comparing
the form of the functional equation for the Artin L-functions on one hand and of the Euler
products associated by Hecke and Maass to automorphic forms on the other. This is especially
so when F = Q and ρ∞ factors through

WC/R G(C/R) GL(2,C)
ρ0∞

with the second homomorphism taking complex conjugation to(
1 0
0 −1

)
.

This argument is simple, can be formulated in classical terms, and resembles closely the
argument which led Weil to his conjecture relating elliptic curves and automorphic forms,
and thus has the sanction of both tradition and authority, and that is a comfort to many.
The emphasis on holomorphic forms of weight one is misleading, but the connection with
elliptic curves is not, for, as Weil himself has pointed out ([32]), the consequent pursuit of his
conjecture leads ineluctably to the supposition that π(ρ) exists, at least when F is a function
field.

Once the conjecture that π(ρ) existed began to be accepted, the question of characterizing
those automorphic representations π which equal π(ρ) for some two-dimensional representation
of the Galois group arose. It seems to have been generally suspected, for reasons which are
no longer clear to me, that if F is a number field then π is a π(ρ) if and only if, for each
archimedean place v, πv = π(ρv), where ρv is a representation of G(F v/Fv); but there was no
cogent argument for giving any credence to this suspicion before the work of Deligne and
Serre ([6]) who established that it is correct if F = Q and π∞ = π(ρ0∞).

This aside, it was clear that one of the impediments to proving the existence of π(ρ)
was the absence of a process analogous to composition with the norm, which in class field
theory enables one to pass from a field to an extension, that is, to effect a lifting or a base
change. The expectation that there will be a close relation between automorphic L-functions
on one hand and motivic L-functions on the other entails the existence of such a process, for
it implies that to any operation on motives there must correspond an analogous operation
on automorphic representations, and one of the simplest operations on motives is to pass
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to a larger field of definition, or, as one says, to change the base. For motives defined by a
representation of a Galois group or a Weil group over F , base change is simply restriction to
the Galois or Weil group over E.

If F is a local field and ρ : WK/F → GL(2,C) an unramified two-dimensional representation
of the local Weil group, we have already defined π(ρ). It must be observed that if E/F is
unramified and σ the restriction of ρ to WK/E then π(σ) is the lifting of π. Otherwise, base
change for automorphic forms would be incompatible with base change for motives. That
π(σ) is the lifting of π follows from formula (1.1) and the definition of π(σ) and π(ρ).

Although the lifting problem emerges from the general principle of functoriality in the
L-group, some of its historical roots and most of the sources of progress lie elsewhere. The
initial steps were taken for F = Q and E quadratic by Doi and Naganuma. It is instructive to
review their early work ([7, 8]). We first recall the relevant facts about L-functions associated
to automorphic forms.

If ρ is any analytic representation of LG and π an automorphic representation it is possible
([20]) to introduce an Euler product

L(s, π, ρ) =
∏
v

L(s, πv, ρ).

To be frank it is at the moment only possible to define almost all of the factors on the right.
For a few ρ it is possible to define them all; for example, if ρ is the projection ρ0 of LG on its
first factor GL(2,C) then L(s, π, ρ) is the Hecke function L(s, π) studied in [14]. One basic
property of these Euler products is that

L(s, π, ρ1 ⊕ ρ2) = L(s, π, ρ1)L(s, π, ρ2).

If ρ is a representation of LG and Π an automorphic representation of G(A) we may also
introduce L(s,Π, ρ) ([20]). These functions are so defined that if φ : LG→ LG is defined as
above and Π is the lifting of π then

L(s,Π, ρ) = L(s, π, ρ ◦ φ).
If ρ ◦ φ is reducible the function on the right is a product. An automorphic representation
for G(A) is also one for G(AE), because the two groups are the same. However, LGE, the
associate group of GL(2) over E, is GL(2,C)×G(K/E). Given a representation ρE of LGE

we may define a representation ρ of LG so that

L(s,Π, ρ) = L(s,Π, ρE).

Choose a set of representations τ1, . . . , τℓ for G(K/E)\G(K/F ) and let τiτ = σi(τ)τj(i), with
σi(τ) ∈ G(K/E). Set

ρ(g1, . . . , gℓ) = ρE(g1)⊕ · · · ⊕ ρE(gℓ)

and let
ρ(τ) :

⊕
vi →

⊕
ρE
(
σi(τ)

)
vj(i) τ ∈ G(K/F ).

The role played by passage from ρ to ρ is analogous to, and in fact an amplification of,
that played by induction in the study of Artin L-functions. Suppose for example that ρ = ρ0E
is the standard two-dimensional representation of LGE, obtained by projection on the first
factor, and Π is the lifting of π. If E/F is cyclic of prime degree, let ω be a non-trivial
character of G(E/F ) and hence of G(K/F ) and let ρi be the representation of LG defined by

ρi(g × τ) = ωi(τ)ρ0(g).



6 1. INTRODUCTION

Then

ρ ◦ φ =
ℓ−1⊕
i=0

ρi

and
L(s,Π, ρ0E) = L(s,Π, ρ) = L(s, π, ρ ◦ φ) =

∏
L(s, π, ρi).

However, ω may also be regarded as a character of F×\IF and

L(s, π, ρi) = L(s, ωi ⊗ π).

Take F to be Q and E to be a real quadratic field. Suppose G1 is the multiplicative group
of a quaternion algebra over E which splits at only one of its two infinite places. The L-groups
of G1 and G over E are the same. There is also associated to G1 a family of algebraic curves S
which are defined over E and called Shimura curves. The Hasse-Weil zeta function of S can
be written as a quotient of products of the L-functions L(s,Π1) = L(s,Π1, ρ

0
E) corresponding

to automorphic representations of G1(AE). It can happen that S not only is connected and
elliptic, so that the non-trivial part of its zeta-function is exactly L(s,Π1) for a certain Π1,
but also has a model defined over Q ([7]). Then the conjecture of Taniyama as refined by
Shimura and Weil ([32]) affirms that there is an automorphic representation π of G(AQ)
such that the interesting part of the zeta-function of the model is L(s, π). Hence

L(s,Π1) = L(s, π)L(s, ω ⊗ π)

if ω is the character of Q×\IQ defined by E. This equation is tantamount to the assertion
that Π1 is a lifting of π; and the problem of lifting as posed by Doi and Naganuma was not
from π to Π but from π to Π1, where G1 was some quaternion algebra over E. However, if
Π1 is any automorphic representation of G1(AE) there is always (cf. [14], and especially the
references therein to the work of Shimizu) an automorphic representation Π of G(AE) such
that

L(s,Π) = L(s,Π1)

and the problem of lifting from π to Π1 becomes the problem of lifting from π to Π.
Following a suggestion of Shimura they were able to establish the existence of Π for a large

number of π by combining an idea of Rankin with the theory of Hecke ([8]), at least when
F = Q and E is a real quadratic field. Their idea was pursued by Jacquet ([13]) who removed
the restriction on F as well as the restrictions on π which are inevitable when working in the
context of holomorphic automorphic forms. However, the method was limited to quadratic
extensions and could establish the existence of a lifting, but could not characterize those Π
which were liftings.

The next step was taken by Saito ([27]), who applied what one can refer to as the twisted
trace formula to establish the existence of a lifting and to characterize them when E/F is
cyclic of prime degree. This is in fact not what he did, for he worked with holomorphic forms
in the customary sense, without any knowledge of representation theory; and the language of
holomorphic forms seems to be inadequate to the statement of a theorem of any generality
much less to its proof. It is not simply that one can only deal with π =

⊗
πv for which

πv belongs to the discrete series at each infinite place, although this alone precludes the
applications of these lectures, but rather that one is in addition confined to forms of low level.
But Saito certainly does establish the usefulness of the twisted trace formula, the application
of which may have been suggested by some computations of Busam and Hirzebruch.
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To carry over an idea in the theory of automorphic forms from a function-theoretic to a
presentation-theoretic context is seldom straightforward and usually demands new insight.
What was needed to give suppleness and power to the idea of Saito was the correct notion of
a local lifting. This was supplied by Shintani, who sketched his ideas during the U.S.-Japan
seminar on number theory held at Ann Arbor in 1975, and has now published them in more
detail in [30]. It was Shintani who fired my interest in the twisted trace formula. It soon
became clear1 that his ideas, coupled with those of Saito, could, when pursued along lines
which he had perhaps foreseen, be applied in a striking, but after this lengthy introduction no
longer surprising, fashion to the study of Artin L-functions. Before giving the applications, I
describe the results on lifting yielded by a fully developed—but only for GL(2) and only for
cyclic extensions of prime degree!—theory. Moreover, only fields of characteristic zero will be
considered. This is largely a result of indolence.

1when reflecting upon these matters not long after the seminar at our cabin in the Laurentians





CHAPTER 2

Properties of base change

So far all applications of the trace formula to the comparison of automorphic represen-
tations of two different groups have been accompanied by local comparison theorems for
characters, the typical example being provided by twisted forms of GL(2) ([14]). Base change
for cyclic extensions is no exception, and, following Shintani, local liftings can be defined by
character relations.

Suppose F is a local field, and E a cyclic extension of prime degree ℓ. The Galois group
G = G(E/F ) acts on G(E), and we introduce the semi-direct product

G′(E) = G(E)×G.

The group G operates on irreducible admissible representations of G(E), or rather on their
classes,

Πτ : g → Π
(
τ(g)

)
and Π can be extended to a representation Π′ of G′(E) on the same space if and only if
Πτ ∼ Π for all τ . Fix a generator σ of G. Then Πτ ∼ Π for all τ if and only if Πσ ∼ Π. The
representation Π′ is not unique, but any other extension is of the form ω ⊗ Π′, where ω is a
character of G. There are ℓ choices for ω. It will be shown in §7 that the character of Π′

exists as a locally integrable function.
If g lies in G(E), we form

Ng = gσ(g) · · ·σℓ−1(g).

This operation, introduced by Saito, is easy to study. Its properties are described in §4. It is
not the element Ng which is important, but rather its conjugacy class in G(E), and indeed
the intersection of that conjugacy class with G(F ), which is then a conjugacy class in G(F ).
We also denote an element of that class by Ng. The class of Ng in G(F ) depends only on
the class of g × σ in G′(E).

The representation Π of G(E) is said to be a lifting of the representation π of G(F ) if
one of the following two conditions is satisfied:

(i) Π is π(µ′, ν ′), π is π(µ, ν), and µ′(x) = µ(NE/Fx), ν
′(x) = ν(NE/Fx) for x ∈ E×.

(ii) Π is fixed by G and for some choice of Π′ the equality

χΠ′(g × σ) = χπ(h)

is valid whenever h = Ng has distinct eigenvalues.

The representation π(µ, ν) associated to two characters of F× is defined on p. 103 of [14].
The characters χπ, χΠ′ of π and Π′ are well-defined functions whereNg has distinct eigenvalues,
so that the equality of (ii) is meaningful. It should perhaps be underlined that it is understood
that π and Π are irreducible and admissible, and that they are sometimes representations,
and sometimes classes of equivalent representations. It is at first sight dismaying that liftings
cannot be universally characterized by character identities, but it is so, and we are meeting
here a particular manifestation of a widespread phenomenon.

9
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We shall prove the following results on local lifting for fields of characteristic zero.

a) Every π has a unique lifting.
b) Π is a lifting if and only if Πτ ≃ Π for all τ ∈ G.
c) Suppose Π is a lifting of π and of π′. If π = π(µ, ν) then π′ = π(µ′, ν ′) where µ−1µ′

and ν−1ν ′ are characters of NE×\F×. Otherwise π′ ≃ ω ⊗ π where ω is a character
of NE×\F×. If ω is non-trivial then π ≃ ω ⊗ π if and only if ℓ is 2 and there is a
quasi-character θ of E× such that π = π(τ) with

τ = Ind(WE/F ,WE/E, θ).

d) If k ⊂ F ⊂ E and E/k, F/k are Galois and τ ∈ G(E/k) then the lifting of πτ is Πτ

if the lifting of π is Π.
e) If ρ is reducible or dihedral and π = π(ρ) then the lifting of π is π(P ) if P is the

restriction of ρ to WK/E.
f) If Π is the lifting of π and if Π and π have central characters ωΠ and ωπ, respectively,

then ωΠ(z) = ωπ(NE/F z).
g) The notion of local lifting is independent of the choice of σ.

The assertion (e) cries out for improvement. One can, without difficulty, use the results
of §3 to extend it to tetrahedral ρ, but it is not clear that the methods of these notes can,
unaided, establish it for octahedral ρ. I have not pursued the question.

Many of the properties of local liftings will be proved by global means, namely, the trace
formula. For this it is important that the map on characters χπ → χΠ′ which appears in the
definition of local liftings is dual to a map ϕ → f of functions. It is only the values of χΠ′

on G(E) × σ which matter, and thus ϕ will be a function on G(E) × σ, or, more simply,
a function on G(E). Since the χπ are class functions, it is not necessary—or possible—to
specify f uniquely. It is only its orbital integrals which are relevant, and these must be
specified by the orbital integrals of ϕ. But these will be integrals over conjugacy classes on
G(E)× σ, a subset of G′(E). As a step preliminary to the introduction of the trace formula,
the map ϕ→ f will be defined and introduced in §6. Objections can be made to the arrow,
because the map is in fact only a correspondence, but the notation is convenient, and not
lightly to be abandoned.

There are other local problems to be treated before broaching the trace formula, but
before describing them it will be best to recall the function of the trace formula. Let F be for
now a global field and E a cyclic extension of prime degree ℓ. Let Z be the group of scalar
matrices, and set

ZE(A) = Z(F )NE/FZ(AE).

Let ξ be a unitary character of ZE(A) trivial on Z(F ).
We introduce the space Ls(ξ) of measurable functions φ on G(F )\G(A) which satisfy

φ(zg) = ξ(z)φ(g) for all z ∈ ZE(A)(a) ∫
ZE(A)G(F )\G(A)

∣∣φ(g)∣∣2 dg <∞.(b)

G(A) acts on Ls(ξ) by left translations. The space Ls(ξ) is the direct sum of two mutually
orthogonal invariant subspaces: Lsp(ξ), the space of square-integrable cusp forms; and Lse(ξ),
its orthogonal complement. The theory of Eisenstein series decomposes Lse(ξ) further, into
the sum of L0

se(ξ), the span of the one-dimensional invariant subspaces of Ls(ξ), and L
1
se(ξ).

We denote by r the representation of G(A) on the sum of Lsp(ξ) and L
0
se(ξ).
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Suppose we have a collection of functions fv, one for each place v of F , satisfying the
following conditions.

i) fv is a function on G(Fv), smooth and compactly supported modulo Z(Fv).
ii) fv(zg) = ξ−1(z)fv(g) for z ∈ NEv/FvZ(Ev).
iii) For almost all v, fv is invariant under G(OFv), is supported on the product

G(OFv)NEv/FvZ(Ev),

and satisfies ∫
NEv/FvZ(Ev)\G(OFv )NEv/FvZ(Ev)

fv(g) dg = 1.

Then we may define a function f on G(A) by

f(g) =
∏
v

fv(gv),

where g = (gv). The operator

r(f) =

∫
NE/FZ(AE)\G(A)

f(g)r(g) dg

is defined and of trace class.
Let ξE be the character z → ξ(NE/F z) of Z(AE). We may also introduce the space Ls(ξE)

of measurable functions φ on G(E)\G(AE) satisfying

φ(zg) = ξE(z)φ(g) for all z ∈ Z(AE)(a) ∫
Z(AE)\G(AE)

∣∣φ(g)∣∣2 dg <∞.(b)

Once again we have a representation r of G(AE) on the sum of Lsp(ξE) and L
0
se(ξE). But r

now extends to a representation of the semi-direct product

G′(AE) = G(AE)×G.

An element τ of G sends φ to φ′ with

φ′(h) = φ
(
τ−1(h)

)
.

We will consider functions ϕ on G(AE) defined by a collection ϕv, one for each place of F ,
satisfying

i) ϕv is a function on G(Ev), smooth and compactly supported modulo Z(Ev).
ii) ϕv(zg) = ξ−1

E (z)fv(g) for z ∈ Z(Ev).
iii) For almost all v, ϕv is invariant under G(OEv), is supported on Z(Ev)G(OEv), and

satisfies ∫
Z(Ev)\Z(Ev)G(OEv )

ϕ(g) dg = 1.

Then ϕ(g) =
∏

v ϕv(gv), and

r(ϕ) =

∫
Z(AE)\G(AE)

ϕ(g)r(g) dg

is defined and of trace class.
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We now introduce another representation, R, of G′(AE). If ℓ is odd, then R is the direct
sum of ℓ copies of r. The definition of R for ℓ even is best postponed to §11. The function of
the trace formula is to show that, for compatible choices of ϕ and f ,

(2.1) traceR(ϕ)R(σ) = trace r(f).

Here σ is the fixed generator of G(E/F ). The trace formula for the left side is somewhat
different than the usual trace formula, and is usually referred to as the twisted trace formula.
It will be reviewed in §10.

The condition of compatibility means that ϕv → fv for all v. As we observed, the meaning
of the arrow will be explained in §6 for those v which remain prime in E. Its meaning for v
which split will be explained later, in the very brief §8. It is very important that when v
does not ramify in E, ϕv lies in HEv , and fv is its image in HFv under the homomorphism
introduced in §1, then the relation ϕv → fv is satisfied. This was verified by Saito [27],
who had no occasion to mention that the homomorphism from HEv to HFv was just one of
many provided by the general theory of spherical functions and the formalism of the L-group.
In §5 another verification is given; it exploits the simplest of the buildings introduced by
Bruhat-Tits.

The definition of the arrow ϕv → fv and the structure of the trace formula together imply
immediately that the two sides of (2.1) are almost equal. The difference is made up of terms
contributed to the trace formula by the cusps. There is a place for insight and elegance in the
proof that it is indeed zero, but in these notes the proof is regarded as a technical difficulty
to be bashed through somehow or other. The local information accumulated in §5 and in §9,
which is primarily technical and of interest only to specialists, allows us to put the difference
of the two sides of (2.1) in a form sufficiently tractable that we can exploit the fact that we
are dealing with a difference of two traces to establish equality.

This is the first step taken in §11. The equality (2.1) available, one chooses a finite set of
places, V , including the infinite places and the places ramifying in E, and for each v /∈ V an
unramified representation Πv of G(Ev) such that Πσ

v ∼ Πv. Let A be the set of irreducible
constituents Π of R, counted with multiplicity, such that Πv is the given Πv outside of V . By
the strong form of multiplicity one, A is either empty or consists of a single repeated element,
and if Π ∈ A then Πσ ∼ Π. If Πσ ∼ Π then G′(AE) leaves the space of Π invariant, and so
we obtain a representation Π′ of G′(AE), as well as local representations Π

′
v. Set

A =
∑
Π∈A

∏
v∈V

traceΠv(ϕv)Π
′
v(σ).

Let B be the set of constituents π =
⊗

v πv of r such that Πv is a lifting of πv for each v
outside of V . Set

B =
∑
π∈B

∏
v∈V

traceπv(fv).

Elementary functional analysis enables us to deduce from (2.1) that A = B. This equality is
local, although the set V may contain more than one element, and we have no control on the
size of B. None the less, when combined with some local harmonic analysis, it will yield the
asserted results on local lifting.

The necessary harmonic analysis is carried out in §7. Some of the results are simple;
none can surprise a specialist. They are proved because they are needed. The last part of
§7, from Lemma 7.17 on, contains material that was originally intended for inclusion in [18],
and found its way into these notes only because they were written first. It is joint work with
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J.-P. Labesse, and it was he who observed Lemma 7.17. Although [18] was written later, the
work was carried out earlier, and the methods are less developed than those of these notes.
At the time, one hesitated to strike out on a global expedition without providing in advance
for all foreseeable local needs. One could probably, reworking [18], dispense with some of the
computations of §7. But little would be gained.

A word might be in order to explain why the last part of §7 and the more elaborate
definition of R when ℓ = 2 are called for. When [E : F ] = 2 there are two-dimensional
representations ρ of the Weil group WF induced from characters of the Weil group WE. These
representations have several distinctive properties, which we must expect to be mirrored by
the π(ρ). For example, ρ can be irreducible but its restriction to WE will be reducible. If F
is global this means that the cuspidal representation π(ρ) becomes Eisensteinian upon lifting,
and this complicates the proofs.

In the course of proving the results on local lifting, we also obtain the existence of global
liftings, at least for a cyclic extension of prime degree ℓ. If Π is an automorphic representation
of G(AE) then, for each place v of F , Π determines a representation Πv of G(Ev), and Π is
said to be a lifting of π if Πv is a lifting of πv for each v. The first properties of global liftings
are:

A) Every π has a unique lifting.
B) If Π is isobaric in the sense of [24], in particular cuspidal, then Π is a lifting if and

only if Πτ ∼ Π for all τ ∈ G(E/F ).
C) Suppose π lifts to Π. If π = π(µ, ν) with two characters of the idèle class group

([14]), then the only other automorphic representations lifting to Π are π(µ1µ, ν1ν),
where µ1, ν1 are characters of F×NE/F IE\IF . If π is cuspidal then π′ lifts to Π if
and only if π′ = ω ⊗ π where ω is again a character of F×NE/F IE. The number of
such π′ is ℓ unless ℓ = 2 and π = π(τ) where τ is a two-dimensional representation
of WE/F induced by a character of E×\IE, when it is one, for π ∼ ω⊗ π in this case.

D) Suppose k ⊂ F ⊂ E and F/k, E/k are Galois. If τ ∈ G(E/k) and Π is a lifting of π
then Πτ is a lifting of πτ .

E) The central character ωπ of π is defined by π(z) = ωπ(z)I, z ∈ Z(A) = IF , and ωΠ

is defined in a similar fashion. If Π is a lifting of π then

ωΠ(z) = ωπ(NE/F z).

If Π is cuspidal then Π is said to be a quasi-lifting of π if Πv is a lifting of πv
for almost all v. A property of global liftings that has considerable influence on the
structure of the proofs is:

F) A quasi-lifting is a lifting.

It is worthwhile to remark, and easy to verify, that the first five of these properties have
analogues for two-dimensional representations of the Weil group WF of F if lifting is replaced
by restriction to WE. The central character is replaced by the determinant.





CHAPTER 3

Applications to Artin L-functions

Suppose F is a global field and ρ is a two-dimensional representation of the Weil
group WK/F , K being some large Galois extension. There are two possible definitions
of π(ρ). If π(ρv) is characterized as in §12 of [14], we could say that π = π(ρ) if π =

⊗
πv

and πv = π(ρv) for all v. On the other hand we could say that π = π(ρ) if π is isobaric, in
the sense of [24], and πv = π(ρv) for almost all v. The second definition is easier to work
with, for it does not presuppose any elaborate local theory, while for the first the relation

L(s, π) = L(s, ρ)

is clear. It will be useful to know that they are equivalent. The first condition is easily seen
to imply the second. To show that the second implies the first, we use improved forms of
results of [5] and [14] which were communicated to me by T. Callahan.

He also provided a proof of the following strong form of the multiplicity one theorem.

Lemma 3.1. Suppose π and π′ are two isobaric automorphic representations of GL(2,A).
If πv ∼ π′

v for almost all v, then π ∼ π′.

If π is isobaric and not cuspidal then π = π(µ, ν), where µ, ν are two idèle class characters.
An examination of the associated L-functions L(s, ω ⊗ π) and L(s, ω ⊗ π′) shows easily that
if πv ∼ π′

v for almost all v and π = π(µ, ν) then π′ = π(µ′, ν ′). Thus the lemma is quickly
reduced to the case that π and π′ are cuspidal. It is stronger than the theorem of Casselman
([5]) because it does not assume that πv ∼ π′

v for archimedean v, but the proof is similar.
One has to observe that if v is archimedean and if for every character ωv of F×

v and some
fixed non-trivial character ψv of Fv the function of s given by

ϵ′(s, ωv ⊗ πv, ψv) =
L(1− s, ω−1

v ⊗ πv)ϵ(s, ωv ⊗ πv, ψv)

L(s, ωv ⊗ πv)

is a constant multiple of ϵ′(s, ωv ⊗ π′
v, ψv), then πv ∼ π′

v. This is an archimedean analogue of
Corollary 2.19 of [14], and is a result of the formulae for ϵ′(s, ωv ⊗ πv, ψv) given in the proofs
of Lemma 5.18 and Corollary 6.6 of [14].

One needs in addition the following variant of Lemma 12.5 of [14].

Lemma 3.2. Suppose that we are given at each infinite place v of F a character χv of F×
v

and, in addition, an integral ideal A of F . Then there exists an idèle class character ω which
is such that ωv is close to χv for each archimedean v and whose conductor is divisible by A.

This lemma, whose proof will not be given, can also be used, in conjunction with the
methods of §12 of [14], to show that the second definition of π(ρ) implies the first. Again, if
π(ρ) is not cuspidal then it is π(µ, ν) and ρ must be the direct sum of the one-dimensional
representations µ and ν.

There is one further property of liftings which is now clear.

15
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G) If E/F is cyclic of prime degree, if π = π(ρ), Π is the lifting of π, and P the
restriction of ρ to the Weil group over E, then Π = π(P ).

Of course the definition of π(ρ) does not imply that it always exists. If ρ is irreducible
and π = π(ρ) then π is necessarily cuspidal and, since L(s, π) = L(s, ρ), the Artin L-function
attached to ρ is entire, as it should be. In this paragraph we take the results of global liftings
announced in the previous paragraph for granted, and see what can be deduced about the
existence of π(ρ). The representation ρ is of course to be two-dimensional, and we may as
well assume that it is neither reducible nor dihedral. If ρ is a representation of WK/F the
image of K×\IK will then consist of scalar matrices, and passing to PGL(2,C) ≃ SO(3,C)
we obtain a finite group which will be tetrahedral, octahedral, or icosahedral. About the last
I can say nothing. I consider the other two in turn.

i) Tetrahedral type.

There are three pairs of opposite edges so that we obtain a map of G(K/F ) into S3. Since
we only obtain proper motions of the tetrahedron the image must in fact be A3 ≃ Z3. The
kernel defines a cyclic extension E of degree 3. The restriction P of ρ to WK/E must be
dihedral, and so Π = π(P ) exists as an automorphic representation of G(AE). If τ ∈ G(E/F )
has a representative u in WK/F then Πτ is clearly π(P τ ) if P τ is the representation, or rather
the class of representations, defined by

P τ (w) = P (uwu−1).

However, P and P τ are equivalent so Πτ ≃ Π and Π is a lifting of an automorphic repre-
sentation π of G(A). If ωρ = det ρ then ωρ and ωπ pull back to the same quasi-character
of E×\IE. Thus there is a character ω of F×NIE\IF such that ωρ = ω2ωπ. Replacing π by
ω ⊗ π, we can arrange that ωρ = ωπ and that π lifts to π(P ). This determines π uniquely.
We write π = πps(ρ), which is to be read πpseudo(ρ).

It follows from (C) and (G) that if π(ρ) exists then it must be πps(ρ), but at the moment
all we have in our hands is πps(ρ), and the problem is to show that it is in fact π(ρ). This
will be deduced from results of Gelbart, Jacquet, Piatetskii-Shapiro, and Shalika (cf. [11]).

(D.1)

PGL(2,C)

GL(2,C) SL(3,C)

GL(3,C)

φ

Consider the commutative diagram (D.1) in which the skewed arrow on the right is given
by the adjoint representation. Taking the product with G(K/F ), we obtain a diagram of
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L-groups with G1 = SL(2), H1 = PGL(3), H = GL(3).

(D.2)

LG1

LG LH1

LH

φ

The representation σ = φ ◦ ρ is a representation of G(K/F ). Each of the one-dimensional
subspaces defined by an axis passing through opposite edges of the tetrahedron is fixed
by G(K/E) and thus defines a character θ of G(K/E). It is easy to see that

σ = Ind
(
G(K/F ),G(K/E), θ

)
.

For each finite place v at which σv is unramified one attaches a conjugacy class in GL(3,C)
to σv, namely that of σv(Φ) if Φ is the Frobenius at v. Moreover one also attaches a conjugacy
class

{
A(π1

v)
}
in GL(3,C) to each unramified representation π1

v of GL(3, Fv) (cf. [3, 20, 26]).
The representation is determined by the conjugacy class, and one says that π1

v = π(σv)
if
{
A(π1

v)
}
=
{
σv(Φ)

}
. The following instance of the principle of functoriality is due to

Piatetskii-Shapiro ([16]):

1 ) There is a cuspidal representation π1 of GL(3,A) such that π1
v = π(σv) for almost

all v.

There is another instance of the principle due to Gelbart-Jacquet ([12]):

2 ) Let π = πps(ρ). Then there is a cuspidal representation π2 of GL(3,A) such that{
A(π2

v)
}
=
{
φ
(
A(πv)

)}
.

Recall that evaluation at the class
{
A(πv)

}
defines the homomorphism of the Hecke algebra

into C associated to πv.
It is to be expected that π1 and π2 are equivalent, and this can indeed be established,

using a criterion of Jacquet-Shalika ([15]). Let π̃1 be the contragredient of π1. All that need
be verified is, in the notation of [15], that

L(s, π1
v × π̃1

v) = L(s, π2
v × π̃1

v)

for almost all v. The left side is

(3.1) det−1
(
1− |ϖv|sA(π1

v)⊗ tA
−1
(π1

v)
)
,

and the right side is

(3.2) det−1
(
1− |ϖv|sA(π2

v)⊗ tA
−1
(π1

v)
)
.

In general, if π1
v = π(σv) and σv is unramified then

det
(
1− |ϖv|sB ⊗ tA

−1
(π1

v)
)
=
∏
w|v

det
(
1− |ϖv|n(w)sBn(w)

)
if n(w) is the degree [Ew : Fv].
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If v splits completely in E then ρv(Φ) is conjugate to A(πv). Since{
A(π1

v)
}
=
{
φ
(
ρv(Φ)

)}
and {

A(π2
v)
}
=
{
φ
(
A(πv)

)}
the equality of (3.1) and (3.2) is clear. If v does not split in E then n(w) = 3, and, by
definition, {

A3(πv)
}
=
{
ρ3v(Φ)

}
.

The equality is again clear.
To show that πps(ρ) is π(ρ), we have to show that{

A(πv)
}
=
{
ρv(Φ)

}
even when v does not split in E. We have so chosen π that both sides have the same
determinant. Thus we may suppose that{

ρv(Φ)
}
=

{(
a 0
0 b

)}
and that {

A(πv)
}
=

{(
ξa 0
0 ξ2b

)}
with ξ3 = 1. We need to show that ξ may be taken to be 1. Since π1 and π2 are equivalent,φ

((
a 0
0 b

)) =

φ
((

ξa 0
0 ξ2b

))
in GL(3,C). This implies either that ξ = 1, and then we are finished, or that

a2 = ξb2.

From this equation we conclude that either a = ξ2b, which also leads to the desired conclusion,
or a = −ξ2b, which implies that φ

(
ρv(Φ)

)
has order 6 if ξ is not 1. Since the tetrahedral

group contains no element of order 6, the last possibility is precluded.
We have proved the following theorem.

Theorem 3.3. If F is a number field and ρ a two-dimensional representation of the Weil
group of F of tetrahedral type, then the L-function L(s, ρ) is entire.

ii) Octahedral type. Rather than an octahedron I draw a cube in which I inscribe
a tetrahedron. The subgroup of G(K/F ) which takes the tetrahedron to itself defines a
quadratic extension E of F .
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The restriction P of ρ to WK/E is of tetrahedral type; so Π = π(P ) exists. If τ ∈ G(E/F )
then Πτ = π(P τ ). Since P τ ≃ P we conclude that Πτ ≃ Π. Hence Π is the lifting of exactly
two automorphic representations π, π′ of G(A), one of which can be obtained from the other
by tensoring with the non-trivial character ω of F×NIE\IF . We are no longer able to define
πps(ρ) uniquely; we take it to be either of the two representations π, π′.

We are only able to show that one of the πps(ρ) is in fact π(ρ) in very special cases. We
will exploit a result of Deligne-Serre. There is a general observation to be made first. Suppose
E is a cyclic extension of arbitrary prime degree ℓ and ρ a two-dimensional representation
of the Weil group of F . Suppose in addition that the restriction P of ρ to the Weil group
of E is irreducible and that Π = π(P ) exists. Let π lift to Π, and suppose that π is π(ρ′) for
some ρ′, perhaps different from ρ.

If P ′ is the restriction of ρ′ to the Weil group of E then P ′
w = Pw for almost all places

of E and thus (see, for example, Lemma 12.3 of [14]) P ′ = P . Consequently, ρ = ω ⊗ ρ′ and
π(ρ) = ω ⊗ π exists, so that L(s, ρ) is entire. Here ω is a characer of F×NE/F IE\IF .

Thus, for ρ of tetrahedral type and E the associated quadratic extension, we can conclude
that one of π or π′ is π(ρ) if we can show that π is π(ρ′) for some ρ′. By the result of
Deligne-Serre ([6]), this will be so if F = Q and the infinite component π∞ of π is π(ρ′∞)
where ρ′∞ = µ⊕ ν, µ, ν being two characters of R× with

µ(x) = ν(x) sgnx.

This is the condition that guarantees that the tensor product of π with some idèle class
character is the automorphic representation defined by a holomorphic form of weight one.
We will not be able to show that π∞ has this form unless we assume that ρ∞, the infinite
component of ρ, has the same form as ρ′∞. Interpreted concretely this means that the image
of complex conjugation in the octahedral group is rotation through an angle of 180◦ about
some axis.

This axis passes either through the center of a face of the cube or through the center of
an edge. If it passes through the center of a face then complex conjugation fixes E, which is
therefore a real quadratic field. If v is either of the infinite places of E, then π∞ is equivalent
to Πv and Πv = π(Pv). Since Pv = ρ∞, the representation π∞ satisfies the condition which
allows us to apply the theorem of Deligne-Serre.

Theorem 3.4. Suppose ρ is a two-dimensional representation of the Weil group of Q which
is of octahedral type. If the image of complex conjugation is rotation through an angle of 180◦

about an axis passing through a vertex of the octahedron or, what is the same, the center of a
face of the dual cube, then L(s, ρ) is entire.
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There is one other condition which allows us to conclude that π∞ is of the desired type.
We continue to suppose that the image of complex conjugation is rotation through an angle
of 180◦. If ωπ is the central character of π and ωρ the determinant of ρ then η = ωπω

−1
ρ is of

order two. Since its local component is trivial at all places which split in E, it is either trivial
itself or the quadratic character associated to the extension E. π∞ has the desired form if
and only if η∞ is trivial. If E is a real quadratic field then η∞ is necessarily trivial, and so
we obtain the previous theorem. If E is an imaginary quadratic field then η∞ is trivial if and
only if η is; and η is trivial if and only if ηv is trivial for some place of F which does not split
in E.

Theorem 3.5. Suppose ρ is a two-dimensional representation of the Weil group of Q which
is of octahedral type. Suppose the image of complex conjugation is rotation through 180◦ about
an axis passing through the center of an edge. If, for some place v which does not split in E,
the quadratic field defined by the tetrahedral subgroup, the local representation ρv is dihedral,
then L(s, ρ) is entire.

It is clear that ηv = ωπvω
−1
π(ρv)

. However πv and π(ρv) have the same lifting to G(Ev).

Thus, by property (c) of local liftings,

π(ρv) = ω ⊗ πv

with ω of order two. We conclude that ωπ(ρv) = ωπv .



CHAPTER 4

σ-conjugacy

Suppose F is a field and E is a cyclic extension of prime degree ℓ. Fix a generator σ
of G = G(E/F ). If x and y belong to G(E) we say that they are σ-conjugate if for some
h ∈ G(E)

y = h−1xσ(h).

Then
yσ(y) · · ·σℓ−1(y) = h−1xσ(x) · · ·σℓ−1(x)h.

We set
Nx = xσ(x) · · ·σℓ−1(x).

If u = Nx and v = h−1uh then v = Ny.

Lemma 4.1. If u = Nx then u is conjugate in G(E) to an element of G(F ).

Let F be an algebraic closure of F containing E. It is sufficient to verify that the set
of eigenvalues of Nx, with multiplicities, is invariant under G(F/F ), or even under those
σ′ ∈ G(F/F ) with image σ in G. Acting on the set with σ′ we obtain the eigenvalues of σ(u),
and

σ(u) = x−1ux.

The invariance follows.
Suppose u = Nx lies in G(F ). Let Gu be the centralizer of u and let Gσ

x(E) be the set of
all g in G(E) for which

x = g−1xσ(g).

The matrix x belongs to Gu(E) and y → xσ(y)x−1 is an automorphism of Gu(E) of order ℓ.
It therefore defines a twisted form Gσ

u of Gu. Clearly

Gσ
u(F ) = Gσ

x(E).

If M is the algebra of 2× 2 matrices and Mu the centralizer of u, we may also introduce the
twisted form Mσ

u of Mu. Then G
σ
u is the group of invertible elements in Mσ

u , and it follows
readily from the exercise on p. 160 of [28] that

H1
(
G, Gσ

u(E)
)
= {1}.

Lemma 4.2. If Nx and Ny are conjugate then x and y are σ-conjugate.

We reduce ourselves immediately to the case that u = Nx lies in G(F ) and Nx = Ny. If
τ = σr belongs to G set

cτ = yσ(y) · · ·σr−1(y)σr−1(x)−1 · · ·σ(x)−1x−1.

Since Nx = Ny, cτ is well-defined and

cσxσ(cτ )x
−1 = cστ .

21
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In other words τ → cτ defines a cocycle of G with values in Gσ
u(E). Therefore there is an h

satisfying
yx−1 = cσ = h−1xσ(h)x−1

and
y = h−1xσ(h).

Occasionally in later paragraphs Nx will simply stand for an element of G(F ) which is
conjugate to xσ(x) · · ·σℓ−1(x), but for now it is best to retain the convention that

Nx = xσ(x) · · ·σℓ−1(x).

Lemma 4.3. Suppose

u =

(
a av
0 a

)
with v ̸= 0. Then u = Nx for some x in G(E) if and only if a ∈ NE×. If u = Nx and
h ∈ G(E) then h−1xσ(h) is upper triangular if and only if h itself is.

If u = Nx then x ∈ Gu(E) and has the form(
b by
0 b

)
.

Consequently

Nx = Nb

(
1 trace y
0 1

)
.

The first assertion follows. To obtain the second we observe that if h−1xσ(h) is upper
triangular, then h−1uh is also.

Lemma 4.4. Suppose

u =

(
a1 0
0 a2

)
with a1 = a2. Then u = Nx if and only if a1 and a2 lie in NE×. If y is upper triangular
then Ny is of the form (

a1 v
0 a2

)
if and only if y = h−1xσ(h) with an upper triangular h. If h−1xσ(h) is diagonal then h is of
one of the two forms (

α 0
0 β

)
or

(
0 α
β 0

)
.

Since Gu is the group of diagonal matrices the first and last assertions are clear. Suppose
y is upper triangular and

Ny =

(
a1 v
0 a2

)
.

Replacing y by g−1yσ(g) with g diagonal we may suppose that

y = x

(
1 v
0 1

)
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perhaps with a different v. If

x =

(
b1 0
0 b2

)
then (

1 −w
0 1

)
x

(
1 σ(w)
0 1

)
= x

(
1 σ(w)− b−1

1 b2w
0 1

)
.

To complete the proof we need only verify the following supplementary lemma.

Lemma 4.5. If b ∈ E regard w → σ(w)− bw as a linear transformation of the vector space
E over F . The determinant of this linear transformation is (−1)ℓ(Nb− 1).

To compute the determinant we may extend scalars to E. Since

E ⊗F E ≃ (E ⊕ · · · ⊕ E)

and the linear transformation becomes

(x1, . . . , xℓ) →
(
x2 − bx1, x3 − σ(b)x2, . . . , x1 − σℓ−1(b)xℓ

)
,

we are reduced to calculating∣∣∣∣∣∣∣∣∣∣∣

−b 1
−σ(b) 1

−σℓ−2(b) 1

1 −σℓ−1(b)

∣∣∣∣∣∣∣∣∣∣∣
.

Elementary row and column operations yield the desired result.

Lemma 4.6. Suppose u ∈ G(F ) has distinct eigenvalues which do not lie in F . Let E ′ = F (u)
be the centralizer of u in M(F ).

(a) If E ′ is isomorphic to E over F then u = Nx has a solution.
(b) If E ′ is not isomorphic to E over F and L = E ′ ⊗F E then u = Nx has a solution

if and only if u ∈ NL/E′L×.

If T is the Cartan subgroup in which u lies and u = Nx then x ∈ T (E) = L×. The second
statement is therefore clear. If E ′ is isomorphic to E then E ′ ⊗F E is isomorphic to E ′ ⊕ E ′

with E ′ imbedded as
{
(y, y)

}
. Since σ acts as (y1, y2) → (y2, y1) every invariant is a norm.

Corollary 4.7. If F is a local field and u ∈ G(F ) has distinct eigenvalues which do not lie
in F then u = Nx has a solution if and only if detu ∈ NE/FE

×.

This follows from the previous lemma and local class field theory.

Lemma 4.8. Suppose u ∈ Z(F ) = F×. If ℓ is odd then u = Nx, x ∈ G(E), if and only if
u ∈ NE×. If ℓ = 2 then u = Nx always has a solution.

If u = Nx then u2 = detu ∈ NE×. This makes the first statement clear. If ℓ = 2 we may
imbed E in M(F ); so the second statement follows from the proof of Lemma 4.6.

If F is a global field and v a place of it we set Ev = E ⊗F Fv. G acts on Ev. Either Ev is
a field and G = G(Ev/Fv) or Ev is isomorphic to a direct sum of ℓ copies of Fv and σ acts as

(x1, . . . , xℓ) → (x2, . . . , xℓ, x1).



24 4. σ-CONJUGACY

Then
G(Ev) = G(Fv)× · · · ×G(Fv).

If u = (u, . . . , u) lies in G(Fv) ⊆ G(Ev) and x = (u, 1, . . . , 1) then u = NX; so at a place
which splits in E every element is a norm.

Lemma 4.9. Suppose F is a global field and u ∈ G(F ). Then u = Nx has a solution in
G(E) if and only if it has a solution in G(Ev) for each place v.

It is enough to show that the equation u = Nx can be solved globally if it can be solved
locally. We know that a ∈ F× lies in NE× if and only if it lies in NE×

v for all v. If u is
conjugate to an upper triangular matrix the desired result follows from this and Lemmas 4.3,
4.4 and 4.8. Otherwise we apply Lemma 4.6.

Observe that if u ∈ F× then the number of places v for which u /∈ NE×
v is finite and

even.
We close this paragraph with a simple lemma which will be used frequently below. Suppose

S is an abelian algebraic group over F , either a torus or the additive group Ga, and ω an
invariant form of maximum degree on it. Let T be the group over F obtained from S over E
by restriction of scalars and let ν be an invariant form of maximal degree on T . The two
forms ω and ν and the exact sequences

(4.1) 1 T 1−σ T S 1N

(4.2) 1 S T T 1−σ 1
1−σ

yield forms µ1 and µ2 on T 1−σ.

Lemma 4.10. The forms µ1 and µ2 are equal, except perhaps for sign.

The lemma need only be verified over the algebraic closure F of F . So we may assume S
is either Ga or Gm and T is either Ga × · · · ×Ga or Gm × · · · ×Gm. Suppose first that S is
Ga. Then

T 1−σ =
{
(x1, . . . , xℓ)

∣∣∣ ∑ xi = 0
}
.

We may suppose ω is dx and ν is dx1 ∧ · · · ∧ dxℓ. The pullback of dx to T is
∑
dxi and the

restriction of dx1 from T to S is dx. We may take x1, . . . , xℓ−1 as coordinates on T 1−σ. Then

µ1 = dx1 ∧ · · · ∧ dxℓ−1.

Pulling back µ1 from T 1−σ to T we obtain

d(x1 − x2) ∧ d(x2 − x3) ∧ · · · ∧ d(xℓ−1 − xℓ).

Multiplying by dx1 we obtain
(−1)ℓ−1dx1 ∧ · · · ∧ dxℓ

so µ2 = (−1)ℓ−1µ1. A similar computation can be made for Gm.



CHAPTER 5

Spherical functions

In this paragraph F is a non-archimedean local field and O = OF is the ring of integers
in F . We want to study the algebra H of compactly supported functions on G(F ) spherical
with respect to G(O). A is the group of diagonal matrices and X∗, which is isomorphic to Z2,
its lattice of rational characters. Set

X∗ = Hom(X∗,Z).

If ϖ is a generator of the prime ideal of O then the map γ → λ(γ), where λ(γ) ∈ X∗ is
defined by

|γ| = |ϖ|⟨λ,λ(γ)⟩

establishes an isomorphism of A(O)\A(F ) with X∗.
If

γ =

(
a 0
0 b

)
set

∆(γ) =

∣∣∣∣∣(a− b)2

ab

∣∣∣∣∣
1/2

and, if ∆(γ) = 0, let

Ff (γ) = ∆(γ)

∫
A(F )\G(F )

f(g−1γg) dg.

If f ∈ H then Ff (γ) depends only on λ(γ); so we write Ff (λ). This function is invariant under
permutation of the two coordinates of λ, and f → measA(O)Ff (λ) defines an isomorphism
of H with the subalgebra of the group ring of X∗ over C, formed by the invariant elements.
We may look at this in a slightly different way. X∗ may also be regarded as the lattice of
rational characters of the diagonal matrices A(C) in GL(2,C), and every element

∑
a(λ)λ

of the group ring defines a function

t→
∑

a(λ)λ(t)

on A(C). The symmetric elements are precisely the functions obtained by restricting the
elements of the representation ring of GL(2,C) to A(C). Thus H is isomorphic to an algebra
of functions on A(C). Let f∨ be the function corresponding to f .

There are a number of distributions, which will arise in the trace formula, whose value on
f we shall have to be able to express in terms of f∨. We begin this paragraph by verifying
the necessary formulae. Our method of verification will be simply to check that both sides
are equal for f = fλ, the characteristic function of a double coset G(O)γG(O) with λ(γ) = λ.
It is easy to verify that m(λ), the measure of G(O)γG(O), is measG(O) if λ = (k, k) and is

q⟨α,λ⟩
(
1 +

1

q

)
measG(O)

25



26 5. SPHERICAL FUNCTIONS

if λ = (k′, k), k′ > k. q is the number of elements in the residue field of O and α is the root
for which ⟨α, λ⟩ > 0, that is ⟨α, λ⟩ = k′ − k.

Lemma 5.1. If ⟨α, λ⟩ ⩾ 0, then f∨
λ (t) is given by

m(λ) · q
− ⟨α,λ⟩

2

1 + 1
q

{
1− q−1α−1(t)

1− α−1(t)
λ(t) +

1− q−1α(t)

1− α(t)
λ̃(t)

}
.

Here λ̃ is obtained from λ by permuting its two coordinates.

Taking
∣∣α(t)∣∣ < 1 and expanding the denominators in a Laurent expansion we find that

this expression is equal to

measG(O)λ(t) ⟨α, λ⟩ = 0

measG(O)q
⟨α,λ⟩

2

(
λ(t) + λ̃(t)

)
⟨α, λ⟩ = 1

measG(O)q
⟨α,λ⟩

2

{∑⟨α,λ⟩
j=0 λ(t)α−j(t)− 1

q

∑⟨α,λ⟩−1
j=1 λ(t)α−j(t)

}
⟨α, λ⟩ ⩾ 2.

To verify the lemma we have only to calculate Ffλ(µ) explicitly.
Let λ(γ) = µ and choose δ in A(F ) with λ(δ) = λ. To make the calculation we use the

building associated by Bruhat and Tits to SL(2, F ). This building is a tree X, the vertices of
which are equivalence classes of lattices in F 2, two lattices being equivalent if one is a scalar
multiple of the other. The vertices defined by lattices M1, M2 are joined by an edge if there
are scalars α and β such that

αM1 ⫌ βM2 ⫌ ϖαM1.

If M0 is the lattice of integral vectors let p0 be the corresponding vertex. The action of G(F )
on lattices induces an action on X. Every vertex of X lies on q + 1 edges. We associate to A
an apartment A. This is a subtree whose vertices are the points tp0, t ∈ A(F ), and whose
edges are the edges joining two such points. The apartment A is a line; every vertex lies
on two edges. If p1, p2 are two points in X there is a g in G(F ) and a t in A(F ) such that
p1 = gtp0, p2 = gp0. If λ(t) = (k′, k) then |k′ − k| is uniquely determined, and is just the
distance from p2 to p1.

We may also associate a simplicial complex X′ to GL(2, F ) = G(F ). The points are lattices,
two lattices M1 and M2 being joined by an edge if M1 ⫌ M2 ⫌ ϖM1 or M2 ⫌ M1 ⫌ ϖM2.
We may define an apartment A′ and the type of an ordered pair (p′1, p

′
2). It is a λ = (k′, k),

the pair, not the ordered pair, (k′, k) being uniquely determined, so that the type is in fact a
double coset. There is an obvious map p′ → p of X′ to X.

The type of (γp′, p′) depends only on the orbit under A(F ) to which p′ belongs. If τ(p1, p2)
denotes the type of (p1, p2) the integral∫

A(F )\G(F )

fλ(g
−1γg) dg

is a sum over representatives of the orbits of A(F ) in X ′∑
τ(γp′,p′)=λ

measGp′ ∩ A(F )\Gp′ .

Here Gp′ is the stablizer of p′. We may choose the representatives p′ so that the closest point
to p in A is p0. If p′0 is the vertex of X′ determined by the lattice of integral vectors and



5. SPHERICAL FUNCTIONS 27

p′ = gp′0, let d(p
′) be defined by

|det g| = |ϖ|d(p′).
Any point p lifts uniquely to a p′ with d(p′) = dist(p, p0). We may also demand that the
representatives p′ be chosen so that d(p′) = dist(p, p0). Then A(F )∩Gp′ will lie in A(O). The
number of choices for representatives satisfying the two conditions is

[
A(O) : A(O) ∩Gp′

]
.

Since
measGp = measG(O)

the integral is equal to

(5.1)
measG(O)

measA(O)

∑
τ(γp′,p)=λ

1.

The sum is over all p′ for which, in addition to the condition τ(γp′, p′) = λ on the type of
γp′, p′,

d(p′) = dist(p, p0) = dist(p,A).

This type of reduction will be used repeatedly, but without further comment, in the present
paragraph.

We may suppose ⟨α, µ⟩ ⩾ 0 and ⟨α, λ⟩ ⩾ 0. We have to show that ∆(γ) times the sum

appearing in (5.1) is q
⟨α,λ⟩

2 if λ = µ, q
⟨α,λ⟩

2

(
1− 1

q

)
if λ = µ+ nα, n > 0, and 0 otherwise.

There are two possibilities which have to be treated in different fashions. Suppose
∣∣∣ ba∣∣∣ ≠ 1.

Then we have the following picture

p0 γp0
A

p γp

The distance between p0 and γp0 is m′ −m if µ = (m′,m). If the distance of p from p0 is k
then the type of γp, p is 2k +m′ −m, provided d(p, p0) = d(p,A), and the type of (γp′, p′) is

(m′ + k,m− k). If k = 0 there is one choice for p and if k > 0 there are qk
(
1− 1

q

)
. Since

∆(γ) =

∣∣∣∣ ba
∣∣∣∣1/2∣∣∣∣1− a

b

∣∣∣∣ = ∣∣∣∣ ba
∣∣∣∣1/2 = q

m′−m
2

and

q
⟨α,λ⟩

2 = qk+
m′−m

2

if λ = (m′ + k,m− k) the required equality follows.
Before treating the second possibility we establish another lemma.

Lemma 5.2. Suppose
∣∣a
b

∣∣ = 1 and
∣∣1− a

b

∣∣ = q−r. Then the points of X fixed by γ are
precisely those at a distance less than or equal to r from A.
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Since G(F ) = A(F )N(F )K, with K = G(O) and

N(F ) =

{(
1 x
0 1

) ∣∣∣∣∣ x ∈ F

}
any point of X is of the form tnp0, t ∈ A(F ), n ∈ N(F ). Moreover γ fixes tnp0 if and only if
it fixes np0; and dist(tnp0,A) = dist(np0,A).

We may index the vertices of A by Z, the integer z corresponding to the vertex

pz =

(
1 0
0 ϖz

)
p0.

This vertex is fixed by n = ( 1 x
0 1 ) if and only if ϖzx ∈ O. If z is the smallest integer for which

ϖzx ∈ O then np0 = p0 for z ⩽ 0. Otherwise

dist(np0,A) = dist(np0, pz) = dist(np0, npz) = z.

Pictorially,

p0 pz

np0

Certainly γ fixes np0 if and only if n−1γn or γ−1n−1γn belongs to K. Since

γ−1n−1γn =

1 x
(
1− b

a

)
0 1


the lemma follows.

To complete the proof of the first lemma, we have still to treat the case that
∣∣∣ ba ∣∣∣ = 1. Let∣∣1− a

b

∣∣ = r so that ∆(γ) = q−r

p0

p γp

A

If the distance of p from p0 is k + r with k > 0 then the type of (γp′, p′) is (m′ + k,m− k),

with m′ now equal to m. There are qk+r
(
1− 1

q

)
possible such points. If the distance of p

from p0 is less than or equal to r the type of (γp′, p′) is (m′,m). There are

1 +
r∑

j=1

qj
(
1− 1

q

)
= qr
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such points. This gives the desired equality once again.
The group A0(C) of elements in A(C) whose eigenvalues have absolute value 1 is compact.

We introduce an inner product in the group ring of X∗ by setting

⟨f1, f2⟩ =
∫
A0(C)

f1(t)f 2(t).

The total measure of the group is taken to be one.

Lemma 5.3. Suppose γ lies in Z(F ) and µ = λ(γ). If f belongs to H and

φγ(t) =
1 + 1

q

2measG(O)

1− α(t)

1− q−1α(t)

1− α−1(t)

1− q−1α−1(t)
λ∨(t)

then
f(γ) = ⟨f∨, φγ⟩.

We verify this for f = fλ. If λ = (k′, k), k′ ⩾ k and µ = (m,m) then both sides are
0 unless k′ + k = 2m. If this condition is satisfied f∨(t)φγ(t) is constant with respect to
elements (

u 0
0 u

)
so that the integration may be taken with respect to{(

z 0
0 1

)}
.

This gives

m(λ)

measG(O)

q
k−k′

2

2
times

1

2πi

∫
|z|=1

{
1− z

1− q−1z
zk

′−m +
1− z−1

1− q−1z−1
zk−m

}
dz

z
.

Since k′ ⩾ m ⩾ k this integral is seen by inspection to be 0 unless k′ = m = k when it is 2.
These are the required values.

Corollary 5.4. If f1 and f2 belong to H then∫
G(F )

f1(g)f 2(g) dg =
1 + 1

q

2measG(O)

∫
A∨

0 (C)

f∨
1 (t)f

∨
2 (t)

1− α(t)

1− q−1α(t)
· 1− α−1(t)

1− q−1α−1(t)
.

Apply the previous formula for f = f1 ∗ f ∗
2 and γ = 1 with f ∗

2 (g) = f 2(g
−1).

Let

ν(t) =
1 + 1

q

2
· 1− α(t)

1− q−1α(t)
· 1− α−1(t)

1− q−1α−1(t)
.

Then the family of functions f∨
λ is orthogonal with respect to ν(t) and∫

A0(C)

∣∣f∨
λ (t)

∣∣2ν(t) = m(λ)measG(O).

Let

n0 =

(
1 1
0 1

)
.
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Lemma 5.5. If a ∈ F×, n = an0, and µ = λ
(
( a 0
0 a )
)
, then∫

Gn(F )\G(F )

f(g−1ng) dg

is equal to
1

measGn(O)

⟨f∨, µ⟩
1− 1

q

.

Since
{
p′ ∈ A′

∣∣ d(p′) = dist(p, p0)
}
is a set of representatives for the orbits of Gn(F )

in X′, the integral is equal to

measG(O) ·
∑
p′∈A′

d(p′)=dist(p,p0)
τ(np′,p′)=λ

1

measGn(F ) ∩Gp′

when f = fλ. If µ = (m,m) this expression is 0 unless λ = (m+ k,m− k), k ⩾ 0. If k = 0
the sum is

1

measGn(O)

∞∑
z=0

1

qz
=

1

measGn(O)
· 1

1− 1
q

.

If k > 0 there is only one term in the sum and it equals

qk

measGn(O)
.

Comparing with the explicit expansion of f∨
λ we obtain the lemma. For these calculations we

of course rely on the diagram

p p0

np

If γ is any semi-simple element in G(F ) with eigenvalues a and b we may set

∆(γ) =

∣∣∣∣∣(a− b)2

ab

∣∣∣∣∣
1/2

and

Ff (γ) = ∆(γ)

∫
T (F )\G(F )

f(g−1γg) dg

if T is the Cartan subgroup containing γ.

Lemma 5.6. If f belongs to H and T splits over the unramified quadratic extension F ′ then

Ff (γ) =

(
1 +

1

q

)
· measGn(O)

measT (O)

∫
Gn(F )\G(F )

f(g−1ng) dg − 2
∆(γ)

q − 1

measG(O)

measT (O)
f(z).

Here z ∈ F is determined by |z| = |a| = |b|, and
n = zn0.

The group T (O) consists of all matrices in T (F ) whose eigenvalues are units.
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The Bruhat-Tits buildings X and X′ over F may be regarded as subtrees of the buildings
X(F ′) and X′(F ′) over F ′. The torus T splits over F ′ and we may introduce the associated
apartments AT (F

′) and A′
T (F

′). They consist of all vertices fixed by T (O′) and the edges
joining them. G(F ′/F ) operates on these buildings and, because H1

(
G(F ′/F ), G(O′)

)
is

trivial, X and X′ are formed by the fixed points of G(F ′/F ). The intersection X ∩ AT (F
′)

consists of p0 alone and X′ ∩ A′
T (F

′) is formed by the points lying over p0.

p

p0

γp

AT (F )

The integral defining Ffλ(γ) is equal to

measG(O)

measT (O)

∑
τ(γp′,p′)=λ

1

where p′ runs over those points for which not only τ(γp′, p′) = λ but also d(p′) = dist(p, p0).
Since the closest point to p in AT (F

′) is p0 and since the shortest path joining p to p0 must

lie completely in X there are qr+m
(
1 + 1

q

)
such points if ξ = λ(z) + (m,−m), m > 0, and

∆(γ) = q−r, and there are

1 + (q + 1)
r−1∑
k=0

qk = qr · q + 1

q − 1
− 2

q − 1

if λ = λ(z), but none otherwise. The lemma follows upon comparison with the calculations
for the proof of Lemma 5.5.

Suppose the torus T splits over a ramified quadratic extension F ′. It is no longer X
and X′ but their first barycentric subdivisions X1 and X′

1 which are subcomplexes of X(F ′)
and X(F ′). We may again introduce AT (F

′) and A′
T (F

′) as well as the action of G(F ′/F ).
There is exactly one point pT of AT (F

′) fixed by G(F ′/F ) and it is a vertex. If p is a vertex
of X the closest point to it on AT (F

′) is pT . There can be at most two points on X at a
minimal distance from AT (F

′) and these two points must be a distance 1 apart in X, for
every second point on the path of shortest length joining them lies in X.

pT

p3

p1 p2

AT (F
′)

There must be at least two such points p1, p2, for the set of them is fixed by T (F ), and T (F )
contains an element whose determinant has order 1, and which, as a consequence, fixes no
point of X. Let δ be the distance of p3 from pT in X(F ′).
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Lemma 5.7. Suppose |det γ| = |ϖ|2m+1 and set µ = (m+ 1,m). If

φγ(t) =
q

−δ−1
2

2measT (O)

{
µ(t)

1− q−1α(t)
+

µ̃(t)

1− q−1α−1(t)

}
then

Ff (γ) = ⟨f∨, φγ⟩
for f∨ in H. Here T (O) is the stabilizer of p′T in T (F ).

Observe that, by Lemma 5.2,
∆(γ) = q−δ/2

for γ must certainly interchange p1 and p2 and therefore p3 is a fixed point of γ at maximal
distance from AT (F

′). Arguing from a diagram

pT

p1 p2

p γp

as usual we see that Ffλ(γ) is 0 unless λ = (m+ 1 + r,m− r), r ⩾ 0 when it is

∆(γ)
measG(O)

measT (O)
qr.

Moreover ⟨f∨
λ , φγ⟩ is 0 unless λ = (m+ 1 + r,m− r) when it is

measG(O)

2measT (O)
qr−

δ
2

times

1

2πi

∫
|z|=1

{
zr

1− z−1
+

(1− q−1z−1)

(1− z−1)(1− q−1z)
zr+1 +

(1− q−1z)

(1− z)(1− q−1z−1)
z−r−1 +

z−r

1− z

}
dz

z
.

This contour integral can be evaluated by shrinking the path a little and then integrating
term by term. The first two terms have no poles inside the contour of integration and yield 0;
the last two integrals are evaluated by moving the path to ∞, and each yields the residue 1
at z = 1. The lemma follows.

If |det γ| = |ϖ|2m we may choose z ∈ F so that |z|F ′ = |a|F ′ = |b|F ′ .

Lemma 5.8. If |det γ| = |ϖ|2m then

Ff (γ) = q
−δ−1

2
measGn(O)

measT (O)

∫
Gn(F )\G(F )

f(g−1ng) dg − ∆(γ)

q − 1

measG(O)

measT (O)
f(z)

with
n = zn0.
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If ∆(γ) = q−α then α ⩾ 0, 2α− δ− 1 is even, and γ fixes all points in X(F ′) at a distance
less than or equal to 2α from AT (F

′). If j − δ − 1 is even and non-negative there are

2q
j−δ−1

2

points in X whose distance from AT (F
′) is j. Certainly Ffλ(γ) is 0 unless λ = (m+ r,m− r),

r ⩾ 0. If r > 0 it is equal to
measG(O)

measT (O)
qr+

−δ−1
2

and if r = 0 it equals

measG(O)

measT (O)

2α−δ−1
2∑

j=0

qj =
measG(O)

measT (O)

q
−δ+1

2 − q−α

q − 1
.

pT

p1
p2

p

γp

AT (F
′)

The factor 2 disappears because the orbits under T (F ) are twice as large as the orbits
under T (O). The lemma follows upon comparison with the proof of Lemma 5.5.

If

g = t

(
1 x
0 1

)
k

with t in A(F ) and k in G(O), we set λ(g) = 1 if x ∈ O and λ(g) = |x|−2 otherwise. Then
lnλ(g) is 2 ln|ϖ| times the distance of gp0 from A. If ∆(γ) ̸= 0 set

A1(γ, f) = ∆(γ)

∫
A(F )\G(F )

f(g−1γg) lnλ(g) dg.

If

t =

(
t1 0
0 t2

)
lies in A(C) and f belongs to H we write

f∨(t) =
∑
j′,j

af (j
′, j)tj

′

1 t
j
2.

Lemma 5.9. Let

γ =

(
a 0
0 b

)
and let λ(γ) = (m′,m) or (m,m′), m′ ⩾ m. If m′ > m then

A1(γ, f) =
ln|ϖ|

measA(O)

∑
j′+j=m′+m
|j′−j|>m′−m

(
1− 1

qs

)
af (j

′, j)
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with 2s = |j′ − j| − (m′ −m). If m′ = m then A1(γ, f) is equal to the sum of three terms:

ln|ϖ|
measA(O)

∑
j′+j=m′+m
|j′−j|>0

(
1− 1

qs

)
af (j

′, j)

and (
1− 1

q

)
ln∆(γ)

measA(O)

2af (m
′,m) +

∑
j′+j=m′+m
|j′−j|>0

1

qs+1
af (j

′, j)


and, if ∆(γ) = q−α and z ∈ F× satisfies |z| = |ϖ|m,

2 ln|ϖ|measG(O)

measA(O)

α−1∑
j=0

jqj−2

(
1− 1

q

)
f(z).

It is enough to verify these formulae for f = fλ. Suppose first that m′ > m. The integral

appearing in the definition of A1(γ, f) is equal to
measG(O)
measA(O)

times the sum over all p′ for which

τ(γp′, p′) = λ and d(p′) = dist(p, p0) = dist(p,A) of 2 ln|ϖ| dist(p,A).

p0γp0

pγp

The sum is empty unless λ = (m′ + r,m− r), r ⩾ 0. However if this condition is satisfied it
equals

2r

(
1− 1

q

)
qr ln|ω|.

The sum appearing in the formula claimed for A1(γ, f) is also 0 unless λ has this form when,
by the explicit expansion of f∨(t), it equals

2

{(
1− 1

q

)
+

(
1− 1

q

)(
1 +

1

q

)
+ · · ·+

(
1− 1

q

)(
1 +

1

q
+ · · ·+ 1

qr−2

)

+

(
1 +

1

q
+ · · ·+ 1

qr−1

)}
qr measG(O)

which is easily shown by induction to be

2rqr measG(O).

If m′ = m we base our calculation on the diagram
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α

A1(γ, fλ) is certainly 0 unless λ = (m+ r,m− r), r ⩾ 0. If this condition is satisfied it equals

2 ln|ϖ|(r + α)qr
(
1− 1

q

)
measG(O)

measA(O)
, r > 0,

or

2q−α ln|ϖ| measG(O)

measA(O)

α∑
j=0

jqj
(
1− 1

q

)
, r = 0.

The contribution

2 ln|ϖ| measG(O)

measA(O)
rqr
(
1− 1

q

)
is accounted for by the first of the three summands in the lemma. The contribution

2 ln|ϖ| measG(O)

measA(O)
αqr
(
1− 1

q

)
by the second, and the remainder, which is 0 for r > 0 and

2 ln|ϖ| measG(O)

measA(O)

α−1∑
j=0

jqj−α

(
1− 1

q

)
for r = 0, by the third.

The purpose of this paragraph is not simply to consider the algebra H by itself, but rather
to compare it with the algebra HE of spherical functions on G(E), where E is an unramified
extension of F of degree ℓ. The comparison can be motivated by the point of view exposed
in [20].

We have already seen that H is isomorphic to the representation ring of GL(2,C). With
G = G(E/F ) we form the direct product

LG = GL(2,C)×G

which is the L-group of G. Let Φ be the Frobenius element in G. The representation ring of
GL(2,C) is isomorphic, by means of the map g → g×Φ from GL(2,C) to GL(2,C)×Φ ⊆ LG,
to the algebra H obtained by restricting to GL(2,C)×Φ the representation ring of LG, which
is the algebra of functions on LG formed by linear combinations of characters of finite-
dimensional complex analytic representations of LG. It is the isomorphism of H with H which
is now important.

We may regard G(E) as GE(F ) where GE is obtained from G by restriction of scalars.
Its L-group is formed by setting

LG0
E =

∏
G

GL(2,C),
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on which we let G act by right translations on the coordinates, and then taking the semi-direct
product

LGE = LG0
E ×G.

For simplicity index the coordinate g ∈ LG0
E corresponding to Φj by j. Then

(h1, . . . , hℓ)
−1 · (g1, . . . , gℓ)× Φ · (h1, . . . , hℓ)

is equal to
(h−1

1 g1h2, h
−1
2 g2h3, . . . , h

−1
ℓ gℓh1)× Φ.

Taking h2 = g2h3, h3 = g3h4, . . . , hℓ = gℓh1, and h1 = h we obtain

(h−1g1g2 · · · gℓh, 1, . . . , 1)× Φ.

Thus conjugacy classes in LGE which project to Φ stand in a bijective correspondence with
conjugacy classes in GL(2,C). It follows easily that HE is isomorphic to the algebra of
functions HE obtained by restricting the representation ring of LGE to LG0

E × Φ.
The map of LG to LGE given by

g × τ → (g, . . . , g)× τ

yields a homomorphism HE → H and hence a homomorphism HE → H. It is this homomor-
phism which must be studied. If ϕ in HE has Fourier transform ϕ∨, then maps to f , which is
defined by

f∨(t) = ϕ∨(tℓ).

Fix σ ∈ G, σ ̸= 1. We have observed that if γ ∈ G(F ), δ ∈ G(E), and γ = Nδ then
Gσ

δ (E) equals Gσ
γ(F ), where G

σ
γ is a twisted form of Gγ . We may therefore use the convention

of [14] to transport Tamagawa measures from Gγ(F ) to G
σ
γ(E).

Lemma 5.10. Suppose ϕ in HE maps to f in H. If γ = Nδ then∫
Gσ

δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg = ξ(γ)

∫
Gγ(F )\G(F )

f(g−1γg) dg.

Here ξ(γ) is 1 unless γ is central and δ is not σ-conjugate to a central element when it is −1.
Moreover if γ in G(F ) is the norm of no element in G(E) then∫

Gγ(F )\G(F )

f(g−1γg) dg = 0.

We check this when ϕ = ϕλ, the characteristic function of the double cosetG(OE)tG(OE) =
KEtKE, where λ(t) = λ. X(E) and X′(E) are the Bruhat-Tits buildings over E. To prove the
lemma we are unfortunately, but probably inevitably, reduced to considering cases. Suppose
first that δ is a scalar so that Gσ

δ (E) = G(F ).
Then ∫

Gσ
δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg

is equal to the sum over representatives p′ = gp′0 of the orbits of G(F ) in X(E) for which the
type of the pair

(
δσ(p′), p′

)
is λ of

measG(OE)

measG(F ) ∩ gG(OE)g−1
.
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We choose representatives p′ so that d(p′) = dist(p, p0) and so that dist(p, p0) = dist(p,X).
The reduction used repeatedly before shows that the integral is equal to

measG(OE)

measG(O)

∑
d(p′)=dist(p,p0)=dist(p,X)

τ(δσ(p′),p′)=λ

1.

If λ(δ) = (m,m), this is 0 unless λ = (m+r,m−r), r ⩾ 0. Since δp = p, the type τ
(
δσ(p′), p′

)
is λ = (m+ r,m− r) if and only if dist

(
σ(p), p

)
= 2r.

p0

σ(p)p

X

Since X is the set of fixed points of σ in X(E), the paths from p0 to p and from p0 to σ(p)
must start off in different directions. In other words the initial edge of the path from p0 to p
does not lie in X. This shows that there are

qℓr(1− q1−ℓ)

possibilities for the p′ or, what is the same, the p occurring in the above sum if r > 0 and
just 1 if r = 0.

To complete the verification in this case we have to evaluate∫
A0(C)

ϕλ(t
ℓ)φγ(t)

with φγ defined as in Lemma 5.3. Since λ(γ) = ℓλ(δ), the integral is certainly 0 unless
λ = (m+ r,m− r). If this condition is satisfied it equals

mE(λ)

2measG(O)

1 + q−1

1 + q−ℓ
q−rℓ

times

1

2πi

∫
|z|=1

{
1− q−ℓz−ℓ

1− z−ℓ
· 1− z−1

1− q−1z−1
· 1− z

1− q−1z
zℓr

+
1− q−ℓzℓ

1− zℓ
· 1− z−1

1− q−1z−1
· 1− z

1− q−1z
z−ℓr

}
dz

z
.

We have to show that this integral is

2
1− q1−ℓ

1 + q−1

if r > 0 and

2
1 + q−ℓ

1 + q−1

if r = 0.
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Once we shrink the circle of integration a little, we may integrate term by term. The first
term will have only one pole inside the new circle, that at 0, where the residue is 0 if r > 0
and q1−ℓ if r = 0. The second term we write as

1

1− zℓ
· 1− z

1− q−1z
· 1− z−1

1− q−1z−1

1

z


(
1− zℓ

qℓ

)
z−ℓr −

(
1− 1

qℓ

)
+

1− q−ℓ

1− zℓ
· 1− z

1− q−1z
· 1− z−1

1− q−1z−1
· 1
z
.

The first summand is integratd by moving the path out. The residues are at q and ∞ and
yield

1

1− qℓ
· q − 1 · 1− q−1

1− q−2

(
1− 1

qℓ

)
+

{
0 r > 0
1

qℓ−1 r = 0
.

The second is integrated by moving in; the residues are at 0 and 1/q. They yield

1− 1

qℓ
· 1

1− q−ℓ
· 1− q−1

1− q−2
· q

−1 − 1

q−1
+

(
1− 1

qℓ

)
q.

If everything is put together the result follows.
Now suppose that γ is central but δ is not σ-conjugate to a central element. Then as we

observed in the previous paragraph ℓ = 2. Moreover since E is unramified

|det δ| = |ϖ|2m+1

for some integer m. Let Σ be the map p → δσ(p) of X(E) to itself. Then Σ has no fixed
points, for Σ : gp0 →

(
δσ(g)g−1

)
gp0 and∣∣∣det(δσ(g)g−1

)∣∣∣ = |ϖ|2m+1.

Suppose p1 is a point for which dist(p1,Σp1) is a minimum. Since Σ2 is the identity, Σ defines
an inversion of the path of shortest length joining p1 to Σp1. It follows immediately that
dist(p1,Σp1) = 1. I claim that if dist(p2,Σp2) = 1 then p2 ∈ {p1,Σp1}. If not take the path
of shortest length joining p2 to this set. Replacing p2 by Σp2 if necessary we may suppose
the path runs from p2 to p1. Then Σ applied to the path joins Σp2 to Σp1, and we obtain a
non-trivial cycle

Σp1p1

p2 Σp2
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This is a contradiction.
The integral ∫

Gσ
δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg

is equal to

measG(OE)

measGσ
δ (E) ∩Gp′1


∑

d(p′)−d(p′1)=dist(p,p1)<dist(p,Σp1)
τ(p′,Σp′)=λ

1

.
Here p′1 is any fixed lifting of p1 to X(E). The sum is empty unless λ = (m+ 1 + r,m− r),
r ⩾ 0, when it is equal

p1 Σp1

p Σp

to qℓr. Since Gσ
δ (E) ∩ Gp′1

is a maximal compact subgroup of Gσ
δ (E), we can easily verify

that (cf. p. 475 of [14])

measGσ
δ (E) ∩Gp′1

=
measG(O)

q − 1
.

Since λ(γ) must be (2m+ 1, 2m+ 1), the integral∫
A0(C)

ϕλ(t
ℓ)φγ(t) (ℓ = 2)

is 0 unless λ = (m+ 1 + r,m− r). If this condition is satisfied this inner product is

mE(λ)

2measG(O)
· 1 + q−1

1 + q−ℓ
q−(r+

1
2)ℓ =

measG(OE)

2measG(O)
·
(
1 +

1

q

)
q−(r+

1
2)ℓ

times

1

2πi

∫
|z|=1

{
1− q−ℓz−ℓ

1− z−ℓ
· 1− z−1

1− q−1z−1
· 1− z

1− q−1z
zℓr+ℓ

+
1− q−ℓzℓ

1− zℓ
· 1− z−1

1− q−1z−1
· 1− z

1− q−1z
z−ℓr−ℓ

}
dz

z
(ℓ = 2).

This integral has to be shown to equal

−2
q − 1

q + 1
.
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This can be done much as before. Once the contour of integration is shrunk a little, the
integral of the first term becomes 0. The second term is written as

1

1− zℓ
· 1− z−1

1− q−1z−1
· 1− z

1− q−1z


(
1− zℓ

qℓ

)
z−ℓ(r+1) −

(
1− 1

qℓ

)
+

1− q−ℓ

1− zℓ
1− z−1

1− q−1z−1
· 1− z

1− q−1z
.

To integrate the first summand we move the path out. There is a residue at q which yields

1

1− qℓ
· 1− q−1

1− q−2
· q(q − 1) ·

(
1− 1

qℓ

)
= −q − 1

q + 1
(ℓ = 2).

For the second we move the path in; the residue at 1/q is(
1

q
− 1

)
· 1− q−1

1− q−2
= −q − 1

q + 1
.

If γ is central but is not a norm then ℓ is odd and λ(γ) = (m,m) with m prime to ℓ. It
follows immediately that λ(tℓ) is always orthogonal to φγ , so that f∨(γ) = 0 if f is the image
of ϕ.

We next suppose that

γ = an0 = a

(
1 1
0 1

)
.

Then

µ = λ

((
a 0
0 a

))
0 = (m,m)

and γ is a norm if and only if ℓ divides m. It is clear that ⟨f∨, µ⟩ = 0 if ℓ does not divide m.
Suppose then γ = Nδ. We may write

δ = b

(
1 v
0 1

)
.

Then Gσ
δ (E) = Gγ(F ). We may choose as a set of representatives for the orbits of Gγ(F ) in

X(E) the collection {p′ = np′z}, where z ∈ Z, where p′z is defined to be that element of A′

which projects to pz in A and satisfies d(p′z) = dist(pz, p0), and where

n =

(
1 x
0 1

)
with x running over E/F +ϖ−zOE. Observe that

measGp′

measGp′ ∩Gγ(F )
= q−zmeasG(OE)

measGγ(O)
.

Moreover τ(Σp′, p′) is (k + r, k − r), k = m
ℓ
, with r equal to 0 if

order
(
σ(x)− x− v

)
⩾ −z

and equal to
− order

(
σ(x)− x− v

)
− z

otherwise.
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Thus ∫
Gσ

δ (E)\G(E)

ϕλ

(
g−1δσ(g)

)
dg

is equal to 0 unless λ = (k+r, k−r). Since trace
(
σ(x)− x− v

)
= 1, the order of σ(x)−x−v

is always less than or equal to 0. If we assume, as we may, that order v = 0, then
ord
(
σ(x)− x− v

)
is ord

(
σ(x)− x

)
if this is negative and is 0 otherwise. If λ = (k, k) then

the integral equals

measG(OE)

measGγ(O)

∞∑
z=0

q−z =
measG(OE)

measGγ(O)
· 1

1− q−1
.

If λ = (k + r, k − r) with r > 0 then the integral is

measG(OE)

measGγ(O)

q(ℓ−1)r · qr +
∞∑

z=−r+1

q−zq(ℓ−1)r(1− q1−ℓ)


which equals

measG(OE)

measGγ(O)

1− q−ℓ

1− q−1
· qℓr.

Since we can easily compute ∫
A0(C)

ϕ∨
λ(t

ℓ)µ(t)

by using the explicit expansion of ϕ∨
λ , the required equality follows from Lemma 5.5.

We have still to treat the case that γ is regular and semi-simple. Let T be the Cartan
subgroup containing γ. If γ = Nδ then δ also belongs to T . If T is A then γ is a norm if and
only if µ = λ(γ) = (m′,m) with both m′ and m divisible by ℓ. Since∫

A(F )\G(F )

f(g−1γg) dg = ∆(γ)−1Ff (γ)

this integral is certainly 0 if m′ and m are not both divisible by ℓ. However if ℓ divides m′

and m and ϕ = ϕλ, with λ = (k′, k), the integral equals

measG(O)

measA(O)
∆(γ)−1q

ℓ
2
(k′−k) m′ = ℓk′, m = ℓk

and
measG(O)

measA(O)
∆(γ)−1q

ℓ
2
(k′−k)(1− q−ℓ) m′ = ℓk′ − ℓr ⩾ m = ℓk + ℓr, r > 0

but 0 otherwise.
The integral

(5.2)

∫
A(F )\G(E)

ϕλ

(
g−1δσ(g)

)
dg

is equal to
measG(O)

measA(O)

∑
d(p′)=dist(p,p0)=d(p,A)

τ(Σp′,p′)=λ

1.

If m′ ̸= m then ∆(γ) = q
m′−m

2 and the relevant diagram is
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p σ(p)

Σ(p)

If d(p, p0) = r then the type of (Σp′, p′) is (m′ + r,m− r). For a given r, there are

qℓr(1− q−ℓ) r > 0

or

1 r = 0

possibilities for p or p′. The equality follows.
Suppose m′ = m and ∆(γ) = q−α, α ⩾ 0. Then γ fixes all points in X(E) which are at a

distance at most α from A, but no other points. We so choose δ that Nδ lies in G(F ) and
take γ = Nδ. If, as usual, Σ : p → δσ(p) then Σℓp = γp so that Σ fixes p only if γ does.
Suppose Σ fixes p and dist(p,A) < α. Then γ fixes all points which can be joined by p by an
edge. If p = gp0 these are the points gkp1, k ∈ KE = G(OE), p1 being one of the points in
the apartment A adjacent to p0. Thus g

−1γg ∈ G(OE) and has trivial image in G(κE), if κE
is the residue field of OE. Moreover

p0 = g−1p = g−1Σp = g−1δσ(g)p0;

so g−1δσ(g) ∈ KE. Since(
g−1δσ(g)

)
σ
(
g−1δσ(g)

)
· · · σℓ−1

(
g−1δσ(g)

)
= g−1γg,

we conclude that g−1δσ(g) defines a cocycle of G in G(κE). But all such cocycles are trivial;
so we may suppose, upon replacing g by gk, that the image of g−1δσ(g) in G(κE) is 1. Then

Σ(gkp1) = g
(
g−1δσ(g)σ(k)

)
p1 = gσ(k)p1.

This is equal to gkp1 if and only if k−1σ(k)p1 = p1. It follows that the number of points
in X(E) which can be joined to p by an edge and are fixed by Σ is the same as the number
of points in X which can be joined to p0 by an edge, namely q + 1.

The relevant diagram is now

p Σ(p)

p0
A

The integral is certainly 0 unless λ =
(
m
ℓ
+ r, m

ℓ
− r
)
, r ⩾ 0. If λ has this form and r > 0 the

value of the integral is

measG(OE)

measA(O)

{
qα−1qℓr(1− q1−ℓ) + qα

(
1− 1

q

)
qℓr

}
=

measG(OE)

measA(O)
qα+ℓr(1− q−ℓr)

and if r = 0 it is
measG(OE)

measA(O)
qα.

This again yields the correct result.
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We suppose next that T is not split over F but that it splits over E. Then ℓ = 2 and the
equation γ = Nδ can always be solved. If the eigenvalues of δ are a, b those of γ are aσ(b),
bσ(a). Σ has exactly one fixed point in AT (E) and this point is a vertex or not according as
the order of the eigenvalues of γ is even or odd. If it is odd, say 2m+ 1, then the diagram to
be used is

p1 Σp1

p Σp

AT (E)

The integral (5.2) (with A replaced by T ), is 0, unless λ = (m+1+ r,m− r), r ⩾ 0 when it is

(5.3)
measG(OE)

measT (O)
2qℓr

for the only forbidden initial direction for the path from p1 to p is the edge joining p1 and Σp1.
Define z ∈ F× = Z(F ) by |z| =

∣∣aσ(b)∣∣ = ∣∣bσ(a)∣∣ and set

n = zn0.

If we appeal, as we shall now constantly have occasion to do, to the calculations made for γ
a scalar or a scalar times a unipotent we see that (5.3) equals ∆(γ)−1 times(

1 +
1

q

)
measGn(O)

measT (O)

∫
Gn(F )\G(F )

f(g−1ng) dg − 2∆(γ)

q − 1

measG(O)

measT (O)
f(z)

if f is the image of ϕλ. Observe in particular that the integral appearing here is 0 because
the order of z is odd. In any case the desired equality follows from Lemma 5.6.

If the order of the eigenvalues is even, say 2m, then the diagram to be brought into play
is:

AT (E)

Σpp

Thus (5.2) is 0 unless λ = (m+ r,m− r), r ⩾ 0. If ∆(γ) = q−α and λ is of this form then it
equals

(5.4)
measG(OE)

measT (O)

(1− q1−ℓ)qℓr

1 + (q + 1)
α−1∑
j=0

qj

+ qℓr(q + 1)qα−ℓ


or

(5.5)
measG(OE)

measT (O)

{
qα+ℓr · q + 1

q − 1
· (1− q−ℓ)− 2qℓr(1− q1−ℓ)

q − 1

}
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if r > 0, and

(5.6)
measG(OE)

measT (O)

1 + (q + 1)
α−1∑
j=0

qj

 =
measG(OE)

measT (O)

{
−2

q − 1
+ qα · q + 1

q − 1

}
if r = 0. Our previous calculations show once again that this is equal to (5.4), so that we
have only to appeal to Lemma 5.6.

Suppose that T does not split over E but that it does split over an unramified extension.
Then ℓ is odd. If the order of the eigenvalues of γ is m then γ is a norm if and only if ℓ
divides m. It is clear from Lemma 5.6 and the cases previously discussed that

(5.7)

∫
T (F )\G(F )

f(g−1γg) dg = 0

when f is the image of ϕλ, if ℓ does not divide m.
Suppose ℓ divides m. Let E ′ be the quadratic extension over which T splits and let

∆(γ) = q−α. There is one point, denoted p1, in AT (EE
′) ∩ X(E)

p1
AT (EE

′)

Σpp

We can analyze the fixed points in Σ in X(E) and evaluate (5.2) as before. It is 0 unless
λ =

(
m
ℓ
+ r, m

ℓ
− r
)
, r ⩾ 0, when it is given by (5.5) and (5.6).

It remains to treat the case that T splits over a ramified quadratic extension E ′. We
shall appeal to Lemmas 5.7 and 5.8 as well as to some of our previous calculations. We know
that γ is a norm if and only if det γ ∈ NE/FE

×, that is, if and only if the order of det γ is
divisible by ℓ.

The apartments AT (E
′) and AT (EE

′) are the same. Since this apartment is fixed
by G(EE ′/F ), the vertices in X(E) closest to it lie in X. Let them be p1, p2 as before

pT
AT (E

′)

p2p1

We have all the information needed to calculate (5.2) (with T replacing A) at our disposal.
If the order of det γ is odd, say 2m+ 1, then Σ interchanges p1 and p2, and (5.2) is 0 unless
λ = (m+ 1 + r,m− r), r ⩾ 0, when it is

measG(OE)

measT (O)
qℓr.

If ℓ = 2 this is
−1

q − 1

measG(O)

measT (O)
f(z)
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if z ∈ F× and order z = 2m+ 1. Since the order of z is odd∫
Gn(F )\G(F )

f(g−1ng) dg = 0

for n = zn0; so we may conclude by an appeal to Lemma 5.8. If ℓ is odd we have to appeal
to Lemma 5.7. This forces us to evaluate

(5.8)
⟨f∨, φγ⟩
∆(γ)

.

If the order of det γ is 2m′ + 1 the inner product is certainly 0 unless λ = (k′, k) with
ℓ(k′+k) = 2m′+1, and this implies in particular that it is always 0 unless ℓ divides 2m′+1. If

ℓ divides 2m′+1, so that we can solve γ = Nδ, then ℓ(2m+1) = 2m′+1 and m′ = ℓm+ (ℓ−1)
2

.
When these necessary relations between k′, k and m′ are satisfied the expression (5.8) is
equal to

qℓr+
ℓ−1
2

2

measG(OE)

measT (O)
times

1

2πi

∫
|z|=1

{
1− q−ℓz−ℓ

1− z−ℓ

zℓr+
ℓ−1
2

1− q−1z−1
+

1− qℓz−ℓ

1− z−ℓ

zℓr+
ℓ+1
2

1− q−1z

+
1− q−ℓzℓ

1− zℓ
z−ℓr− ℓ+1

2

1− q−1z−1
+

1− q−ℓzℓ

1− zℓ
z−ℓr− (ℓ−1)

2

1− q−1z

dzz .
We again shrink the contour a little and then integrate term by term. The first two integrals
are 0. For the last two we push the contours out to infinity. The only residues are at zℓ = 1
and they are independent of r ⩾ 0. We may therefore evaluate the last two integrals by
setting r = 0 and shrinking the contour to 0. The third integral then has residues at 1/q and
0, which yield altogether

1− q−2ℓ

1− q−ℓ
q

ℓ+1
2 − q

ℓ+1
2 = q−

ℓ−1
2 .

The residue at 0 is easy to calculate because ℓ −
(

ℓ+1
2

)
= ℓ−1

2
is positive, so that it is the

same as the residue of
z−

ℓ+1
2

z − q−1
.

The fourth has a residue only at 0 and there it is q−(
ℓ−1
2 ). The desired equality follows.

pT

p2p1

p

Σp
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If the order of det γ is even, 2m′, but not divisible by ℓ then Lemma 5.8 together with some
of the previous calculations show that (5.7) is 0. Suppose γ = Nδ and order(det δ) = 2m.
Then Σ fixes p1 and p2 and the integral (5.2) is 0 unless λ = (m + r,m − r), r ⩾ 0. Let

∆(γ) = q−
δ−1
2

−α. Here α is necessarily integral. If λ = (m + r,m − r) with r > 0 the

integral (5.2) equals measG(OE)
measT (O)

times

qℓr
(
1− 1

qℓ−1

)α=1∑
j=0

qj

+ qℓr · qα = qℓr · qα · 1− q−ℓ

1− q−1
− qℓr

q − 1
· (1− q1−ℓ).

If r = 0 it equals measG(OE)
measT (O)

times

α∑
j=0

qj =
qα

1− q−1
− 1

q − 1
.

Our previous calculations show that these expressions equal

q
−δ−1

2

∆(γ)

measGn(O)

measT (O)

∫
Gn(F )\G(F )

f(g−1ng) dg − 1

q − 1

measG(O)

measT (O)
f(z)

if z ∈ F× and order z = m′. We have now merely to appeal to Lemma 5.8.
Lemma 5.10 is now completely proved but the tedious sequence of calculations is not

quite finished. There is one more lemma to be proved, but its proof will be briefer.
The function λ(g) was defined in the preamble to Lemma 5.9. If δ ∈ A(E) and Gσ

δ (E) ⊆
A(E) we set

A1(δ, ϕ) = ∆(γ)

∫
A(F )\G(E)

ϕ
(
g−1δσ(g)λ(g)

)
dg

with γ = Nδ.

Lemma 5.11. Suppose ϕ maps to f . Then

ℓA1(γ, f) = A1(δ, ϕ).

Let

δ =

(
a 0
0 b

)
and let |a| = |ϖ|m′

, |b| = |ϖ|m. Suppose first that m′ > m. The relevant diagram is

p0 Σp0

p Σp

If ϕ = ϕλ then A1(δ, ϕ) is 0 unless λ = (m′ + r,m− r), r ⩾ 0, when it is

2r∆(γ) ln|ϖ|ℓmeasG(OE)

measA(O)
qℓr
(
1− 1

qℓ

)
.
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A1(γ, f) may be computed by combining the formula of Lemma 5.9 with the explicit expansion
of ϕ∨

λ . This yields

2∆(γ) ln|ϖ|measG(OE)

measA(O)
qℓr

∑
j+j′=m′+m
j′−j>m′−m

(
1− 1

qℓs

)
aϕ(j, j

′)

if measG(OE)aϕ(j, j
′) = aϕ(j, j

′), for

∆(γ) = q
ℓ

(
m′−m

2

)
.

The above sum is(
1− 1

qℓ

)(
1− 1

qℓ

)
+ · · ·+

(
1− 1

qℓ

)(
1− 1

qℓ(r−1)

)
+

(
1− 1

qℓr

)
= r

(
1− 1

qℓ

)
as required.

Now take m′ = m. Let ∆(γ) = q−a

Σpp

A1(δ, ϕλ) is 0 unless λ = (m+ r,m− r), r ⩾ 0, when it is

(5.9) 2q−α ln|ϖ|ℓmeasG(OE)

measA(O)

·

rqℓr
(
1− 1

qℓ−1

)
+

α−1∑
j=1

(j + r)qℓr
(
1− 1

qℓ−1

)
qj
(
1− 1

q

)
+ (α + r)qℓr+α

(
1− 1

q

)
if r > 0 and

(5.10) 2q−α ln|ϖ|ℓmeasG(OE)

measA(O)

α∑
j=0

jqj
(
1− 1

q

)
if r = 0. We sort this out and compare with the formula for A1(γ, f) given by Lemma 5.9.

rqℓr


(
1− 1

qℓ−1

)
+

(
1− 1

qℓ−1

) α−1∑
j=1

qj
(
1− 1

q

)
+ qα

(
1− 1

q

) = rqℓr+α

(
1− 1

qℓ

)
.

This yields the part corresponding to the first summand of the lemma.
The second summand of the lemma equals(

1− 1

q

)
α ln|ϖ|measG(OE)

measA(O)

times

2qℓr


r−1∑
s=0

1

qℓs

(
1− 1

qℓ

)
+

1

qℓr

 = 2qℓr
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and is therefore given by the term

αqℓr+α

(
1− 1

q

)
in the parentheses of (5.9) or by the last term of (5.10).

This leaves from (5.9)

2 ln|ϖ|ℓmeasG(OE)

measA(O)
qℓr
(
1− 1

qℓ−1

) α−1∑
j=0

jqj−α

(
1− 1

q

)
and from (5.10)

2 ln|ϖ|ℓmeasG(OE)

measA(O)

α−1∑
j=1

jqj−α

(
1− 1

q

)
.

We know from the calculations made in the proof of Lemma 5.10 that these two expressions
are equal to the last summand of Lemma 5.9.

We now have all the formulae for spherical functions that we need, but unfortunately for
the wrong spherical functions. Suppose ξ is an unramified character of NE/FZ(E) and H′ is
the algebra of functions f ′ on G(F ) which are bi-invariant with respect to G(O), of compact
support modulo NE/FZ(E), and satisfy

f ′(zg) = ξ−1(z)f ′(g) z ∈ NE/FZ(E).

Multiplication is defined by ∫
NE/FZ(E)\G(F )

f ′
1(gh

−1)f ′
2(h) dh.

The map f → f ′ with

f ′(g) =

∫
NE/FZ(E)

f(zg) ξ(z) dz

is a surjective homomorphism from H to H′. There is a simple and obvious relation between
the orbital integrals of f and f ′ as well as between A1(γ, f) and A1(γ, f

′). For example

A1(γ, f
′) =

∫
NE/FZ(E)

A1(zγ, f) ξ(z) dz.

If ξE is the composite of ξ with the norm, we may define H′
E in a similar manner. If

ϕ′ ∈ H′
E then ϕ′(zg) = ξ−1

E (z)ϕ′(g) for z ∈ Z(E). Moreover ϕ→ ϕ′ with

ϕ′(g) =

∫
Z(E)

ϕ(zg) ξE(z) dz.

There is also a commutative diagram

H′ H′
E

H HE
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If ϕ′ → f ′ then an analogue of Lemma 5.10 is valid.∫
Z(E)Gσ

δ (E)\G(E)

ϕ′(g−1δσ(g)
)
dg =

∫
Gγ(F )\G(F )

f ′(g−1γg) dg.

To verify this we begin with∫
Z(E)Gσ

δ (E)\G(E)

∫
Z(F )\Z(E)

ϕ
(
z−1g−1δσ(g)σ(z)

)
dz dg =

∫
Gγ(F )\G(F )

f(g−1γg) dg.

Replace δ by δv, v ∈ Z(E) and hence γ by δNv. Both sides are then functions on
Z1−σ(E)\Z(E). Multiply by ξ−1(z) and integrate. The right side becomes∫

Gγ(F )\G(F )

f ′(g−1γg) dg.

Because of Lemma 5.10, the left side is∫
Z(E)Gσ

δ (E)\G(E)

ϕ′(g−1δσ(g)
)
dg.

In order that the analogue of Lemma 5.11 be valid, we must set

A1(δ, ϕ
′) = ∆(γ)

∫
Z(E)A(F )\G(E)

ϕ
(
g−1δσ(g)

)
λ(g) dg.

It is not difficult to see that H′ is isomorphic to the algebra of functions on{(
α 0
0 β

)
∈ A(C)

∣∣∣∣∣ (αβ)ℓ = ξ(ϖ)ℓ

}
obtained by restriction from some f∨, f ∈ H. This enables us to speak of (f ′)∨. Every
homomorphism H′ → C is of the form

f ′ → (f ′)∨

((
α 0
0 β

))
(αβ)ℓ = ξ(ϖℓ).

We may also speak of (ϕ′)∨.





CHAPTER 6

Orbital integrals

The study of orbital integrals was initiated by Harish-Chandra in his papers on harmonic
analysis on semi-simple Lie groups; the same integrals on p-adic groups were afterwards
studied by Shalika. Some basic questions remain, however, unanswered. If they had been
answered, much of this paragraph, which provides the information about orbital integrals,
and twisted orbital integrals, to be used later, would be superfluous. But they are not and
stop-gaps must be provided. No elegance will be attempted here; I shall simply knock together
proofs out of the material nearest at hand.

Let F be a local field of characteristic 0. If f is a smooth function with compact support
on G(F ), T is a Cartan subgroup of G over F , and γ is a regular element in T (F ) then we set

Φf (γ, T ) =

∫
T (F )\G(F )

f(g−1γg) dg.

The integral depends on the choice of measures on G(F ) and T (F ), measures which we
always take to be defined by invariant forms ωT and ωG. When it is useful to be explicit we
write Φf (γ, T ;ωT , ωG). Since they complicate the formulae we do not use the local Tamagawa
measures associated to forms ω as on p. 70 of [23] but simply the measures |ω|, which could
be termed the unnormalized Tamagawa measures.

It was observed on p. 77 of [23] that the map γ → Ch(γ) = (trace γ, det γ) of G to the
affine plane X is smooth except at the scalar matrices. If a ∈ X is given then a two form µ
on X which is regular and does not vanish in some neighborhood of a may be used to define
an invariant form µ′ on Gγ\G if γ is regular and Ch(γ) is close to a. Set

Φf (γ, µ) =

∫
Gγ(F )\G(F )

f(g−1γg) |dµ′|.

If γ ∈ T is regular there is a form ωT (µ) such that

Φf (γ, µ) = Φf

(
T, γ;ωT (µ), ωG

)
.

ωT (µ) depends on γ.
We shall call a function γ, T → Φ(γ, T ) = Φ(γ, T ;ωT , ωG) an HCS family if it satisfies

the following conditions.

(i) If ω′
T = αωT and ω′

G = βωG with α, β ∈ F× then

Φ(γ, T ;ω′
T , ω

′
G) =

∣∣∣∣βα
∣∣∣∣Φ(γ, T ;ωT , ωG).

(ii) If h ∈ G(F ), T ′ = h−1Th, γ′ = h−1γh, and if ωT ′ is obtained from ωT by transport
of structure then

Φ(γ′, T ′;ωT ′ , ωG) = Φ(γ, T ;ωT , ωG).

51
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(iii) For each T , γ → Φ(γ, T ) is a smooth function on the set of regular elements in T (F )
and its support is relatively compact in T (F ).

(iv) Suppose z ∈ Z(F ) and a = Ch(z). Suppose µ is a two-form on X which is regular
and non-zero in a neighborhood of a. There is a neighborhood U of a and for each
T two smooth functions Φ′(γ, T ;µ) and Φ′′(γ, T ;µ) on

TU(F ) =
{
γ ∈ T (F )

∣∣ Ch(γ) ∈ U
}

such that

Φ
(
γ, T ;ωT (µ), ωG

)
= Φ′(γ, T, µ)−meas

(
T (F )\G′(F )

)
Φ′′(γ, T ;µ).

Here G′ is the multiplicative group of the quaternion algebra over F . In the exceptional case
that T is split, when G′ may not exist, the function Φ′′(γ, T ;µ) is not defined and we take

meas
(
T (F )\G′(F )

)
= 0.

Otherwise we regard T as a subgroup of G′. The measure on T is to be
∣∣ωT (µ)

∣∣ and that
on G′ is given by the conventions on pp. 475–478 of [14]. If F is archimedean, X belongs
to the center of the universal enveloping algebra and XT is its image under the canonical
isomorphism of Harish-Chandra [25], then the restriction of XTΦ

′(γ, T, µ) to Z(F ) must be
independent of T .

Lemma 6.1. The collection
{
Φ(γ, T )

}
is an HCS family if and only if there is a smooth

function f with compact support such that

Φ(γ, T ) = Φf (γ, T )

for all T and γ. Then for z ∈ F× = Z(F )

Φ′(z, T, µ) = Φf (n, µ)

with

n = z

(
1 1
0 1

)
and, if T is not split,

Φ′′(z, T, µ) = f(z).

If F is archimedean, X belongs to the center of the universal enveloping algebra of the Lie
algebra of T and XT is its image under the canonical isomorphism of Harish-Chandra, then

XTΦ
′(z, T ;µ) = ΦXf (n, µ)

and
XTΦ

′′(z, T ;µ) = Xf(z).

If F is non-archimedean this is simply Lemma 6.2 of [23]. I observe however that in the
formula for aT (γ) on p. 81 of [23] the function ξ(z) should be replaced by

ξ(z)

|det γ|1/2p

.

In addition the discussion there is complicated by an infelicitous choice of measures.
That the family

{
Φf (γ, T )

}
satisfies conditions (i)–(iv) when F is archimedean is also

well known but condition (iv) is usually formulated somewhat differently when T is not split.
To reduce (iv) to the form usual for a T which is not split we remark first that if it is valid
for one choice of µ then it is valid for all. Choose µ to be the standard translation invariant
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form dx1 dx2 on X. A simple calculation shows that ωT (µ) is, apart perhaps from sign, the
form ηγ on p. 79 of [23]. Thus if

T =

{(
a b
−b a

)}
and

ωT =
da db

a2 + b2

then
Φ
(
γ, T ;ωT (µ), ωG

)
= 2|β|Φ(γ, T ;ωT , ωG)

for

γ =

(
α β
−β α

)
.

Moreover if we take measures with respect to ωT rather than ωT (µ) then meas
(
T (F )\G′(F )

)
must be replaced by

2|β|meas
(
T (F )\G′(F )

)
.

The measure is now a constant.
Condition (iv) says simply that for any integer n ⩾ 0

2|β|Φ(γ, T ;ω′
T , ωG) =

n−1∑
k=0

φk(α) · βk +
n−1∑
k=1

ψk(α)|β|k +O
(
|β|n

)
near β = 0. The coefficients are smooth functions of α. Since the left side is in any case an
even function of β, this relation says simply that its derivatives of even order with respect
to β are continuous and that its derivatives of odd order are continuous except for a jump at
β = 0 which is continuous in α. All this is well known [31] as are the additional properties of
the family

{
Φf (γ, T )

}
.

If F is C and

T (C) =

{(
ez1+z2 0
0 ez1−z2

) ∣∣∣∣∣ z1, z2 ∈ C

}
then the image of the center of the universal enveloping under the canonical isomorphism is
generated by ∂

∂z1
, ∂

∂z1
, ∂2

∂z22
, ∂2

∂z22
. Moreover there is a function c(α) on Z(C) such that

f(α) = c(α)
∂2

∂z2∂z2
Φ′(α, T ;µ) α ∈ Z(C).

We must still verify that if
{
Φ(γ, T )

}
is an HCS family then there is a smooth function

f with compact support such that
{
Φ(γ, T )

}
=
{
Φf (γ, T )

}
. The field F may be supposed

archimedean. If on each T the function γ → Φ(γ, T ) is 0 near Z(F ) we may proceed as in
the proof of Lemma 6.2 of [23] to establish the existence of f . We must reduce the general
problem to that case.
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It is simpler to treat the real and complex fields separately. Suppose F = R and

A =

{(
α 0
0 β

) ∣∣∣∣∣ α, β ∈ R×

}

B =

{(
α β
−β α

) ∣∣∣∣∣ α, β ∈ R, α2 + β2 ̸= 0

}
.

If φA and φB are functions on A and B which satisfty φA(t̃) = φA(t), φB(t̃) = φB(t), and
φA(z) = φB(z) for z ∈ Z(R) there is a function ψ on X

(6.1) φA(t) = ψ(Ch t) φB(t) = ψ(Ch t).

If

t = α

(
eu 0
0 e−u

)
then

Ch t = (α2, 2α coshu)

and if

t = α

(
cos θ sin θ

− sin θ cos θ

)
then

Ch t = (α2, 2α cos θ).

Thus ψ is smooth on
{
(x1, x2)

∣∣ x1 ̸= 0
}
if and only if φA and φB are smooth and

d2n

dθ2n
φB(z) = (−1)n

d2n

du2n
φA(z) z ∈ Z(R).

If

φA(t) = Φ
(
t, T ;ωT (µ), ωG

)
A = T (R)(6.2)

φB(t) = Φ
(
t, T ;ωT (µ), ωG

)
B = T (R)(6.3)

and
{
Φ(γ, T )

}
is an HCS family, this is so if and only if XTΦ

′′(γ, T ;µ) vanishes on Z(R) for
all X in the center of the universal enveloping algebra.

Since the map t→ Ch t is smooth away from Z a simple argument involving a partition
of unity establishes that if XTΦ

′′(γ, T, µ) vanishes on Z(R) for all X, so that the function
ψ defined by (6.1) is smooth, then there is a smooth compactly supported f such that{
Φ(γ, T )

}
=
{
Φf (γ, T )

}
.

This granted we argue as follows. Given an HCS family
{
Φ(γ, T )

}
there is ([29]) an f in

the Schwartz space such that {
Φ(γ, T )

}
=
{
Φf (γ, T )

}
.

We may suppose that{
x ∈ R× ∣∣ x = det g for some g with f(g) ̸= 0

}
is relatively compact in R×. We write f = f1 + f2 where f1 is compactly supported and f2
vanishes near Z(R). Replacing Φ(γ, T ) by Φ(γ, T )− Φf1(γ, T ), we obtain a family to which
the argument above can be applied.
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If F is C let

A =

{(
α 0
0 β

) ∣∣∣∣∣ α, β ∈ C×

}
.

Then

Ch : α

(
ez 0
0 e−z

)
→ (α2, 2α cosh z).

Here z = x+ iy lies in C. If φ is a smooth function on A satisfying φ(t̃) = φ(t) we define ψ
by

(6.4) ψ(Ch t) = φ(t)

ψ is smooth if and only if the formal Taylor expansion of φ about z = 0 has the form
∞∑
n=0

Pn(x
2 − y2, xy;α)

where Pn(x
2 − y2, xy;α) is a polynomial of degree n in x2 − y2, xy whose coefficients are

smooth functions of α. We may also write

Pn(x
2 − y2, xy;α) = Qn(z

2, z 2;α).

It is easily seen that the expansion of y has this form if and only if

∂2

∂z ∂z

∂2m

∂z2m
∂2n

∂z2n
φ

vanishes on Z(C) for every choice of m and n.
This allows us to proceed as before. We choose f in the Schwartz space of G(C) so that{

Φ(γ, T )
}
=
{
Φf (γ, T )

}
([29]), then write f = f1 + f2, where f1 has compact support and

f2 vanishes near Z(C), and replace Φ(γ, T ) by Φ(γ, T )− Φf1(γ, T ). If T (C) = A and

φ(t) = Φ
(
t, T ;ωT (µ), ωG

)
then the function ψ defined by (6.4) is smooth; so we may exploit the smoothness of t→ Ch t
away from Z(C) once again.

The purpose of this paragraph is however not the study of orbital integrals by themselves
but the comparison of orbital integrals with twisted orbital integrals. Let E by a cyclic
extension of prime degree ℓ and σ a fixed generator of G(E/F ). If ϕ is a smooth, compactly
supported function in G(E) and δ lies in G(E) we consider∫

Gσ
δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg.

That these integrals converge will be manifest shortly.
It is clear that, sufficient care being taken with regard to measures, the integral depends

only on Nδ. If γ = Nδ lies in G(F ) then Gσ
δ (E) = Gσ

γ(F ) and the principles of §15 of [14]
may be used to carry measures from Gγ(F ) to G

σ
δ (E). Such a transfer is implicit in some of

the formulae below.
We define a Shintani family

{
Ψϕ(γ, T )

}
associated to ϕ. For this we have to fix for

comparison a form ω0
G on G over F as well as a form ωE

G on G over E, and we define
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Ψϕ(γ, T ;ωT , ωG) at first only for this one choice. We extend the definition to other forms by
Property (i) of an HCS family. If γ in T (F ) is regular we set

Ψϕ(γ, T ;ωT , ω
0
G) = 0

if γ = Nδ has no solution. If it does we set

Ψϕ(γ, T ;ωT , ω
0
G) =

∫
Gσ

δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg.

Since Gσ
δ (E) = T (F ), we may take the measure on it to be that defined by ωT . The measure

on G(E) is that defined by ωE
G .

If G′ is the group over F obtained from G over E by restriction of scalars then g → Ch(Ng)
may be regarded as a morphism from G′ to X over F . Indeed over F

G′ ≃ G× · · · ×G

and
N(g1, . . . , gℓ) = (g1g2 · · · gℓ, g2 · · · gℓg1, . . . , gℓg1 · · · gℓ−1).

Hence
Ch(Ng) = Ch(g1 · · · gℓ).

It is clear that this morphism is smooth off the locus Ng ∈ Z. Thus if δ ∈ G(E) and
Nδ /∈ Z(F ) we may associate to a two-form µ on X which is regular and non-zero in a
neighborhood of Ch(Nδ) a measure on Gσ

δ (E)\G(E) and hence

Φϕ(δ, µ) =

∫
Gσ

δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
.

We introduced earlier the form ωT (µ) on T . It is independent of ωG. If φ is the restriction
of Ch to T then at γ

ωT (µ) =
φ∗µ

det
(
(1− Ad γ−1)t\g

)
because under the map (t, g) → (g−1tg) of T × T\G to G the vector (X, Y ) in t × t\g, a
tangent vector at (t, 1), is sent to

X + (1− Ad γ−1)Y.

If E is any finite extension of F and ψ the character on F used to define measures we
may define ψE on E by

ψE(x) = ψ(traceE/F x).

If Y is a non-singular variety over E, y1, . . . , ym local coordinates on Y , and a1, . . . , aℓ a basis
of E over F then we may introduce local coordinates yij on Y

′, the variety over F obtained
from Y by restriction of scalars, by the partially symbolic equations

yi =
∑
j

yijaj.

If ωE is a form of maximal degree on Y given locally by

ωE = e(y1, . . . , ym) dy1 ∧ · · · ∧ dym
we define ω′ on Y ′ by

ω′ = NE/F e(y1, . . . , ym)(det a
λj

i )m dy11 ∧ · · · ∧ dy1ℓ ∧ dy21 ∧ · · · .
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Here {λj} are the imbeddings of E into F and the norm is defined in an algebro-geometrical
sense. ω′ is not necessarily defined over F . But it is invariant up to sign under G(F/F )
and hence the associated measure |ω′| on Y ′(F ) = Y (E) is well-defined. It is equal to that
associated to ωE.

These remarks apply in particular to our cyclic extension E and ωE
G. The form ω′

G

obtained from it, the form µ, and the morphism Ch(Ng) together define, for each δ in T (E)
with γ = Nδ regular, a form ω′

T (µ) on T satisfying

Ψϕ

(
γ, T, ω′

T (µ), ω
0
G

)
= Φϕ(δ, µ).

This elaborate introduction of ω′
T (µ) is pretty much in vain because ω′

T (µ) is independent of
ωE
G or ω′

G and equals ωT (µ), except perhaps for sign.
To see this begin by choosing a section of G′ → T\G′ so that the Lie algebra g′ becomes

t⊕ t\g′. We may also write
t\g′ = t\t′ ⊕m

with m ≃ t′\g′. The quotient t\t′ may be identified with t′1−σ. We write

ω′
G = ω1 ∧ ω2 ∧ ω3

where ω1 is a form on t, ω2 a form on t′1−σ, and ω3 a form on m. If s is a section of

T ′ T
N

which takes γ to δ, then the map of T × T\G′ to G′ given by (t, g) → g−1s(t)σ(g) has the
following effect on the tangent space t⊕ t\g′ = t⊕ t′1−σ ⊕m at (δ, 1). If m is chosen to be
invariant under the adjoint action of T ′ the vector (x, y, z) is sent to(

x, y, z − Ad δ−1σ−1(z)
)
.

The section s is not rational, but analytic or formal, according to one’s predilections.
The form ω1 ∧ ω2 is constructed from ω1, ω2 and the sequence

1 T T ′ T ′1−σ 1
1−σ

.

By Lemma 4.10 we may also construct it starting from

1 T ′1−σ T ′ T 1N .

Therefore pulling ω1 ∧ ω2 ∧ ω3 back to T × T\G′ we obtain

det
(
(1− Ad γ−1)t\g

)
ω1 ∧ ω2 ∧ ω3.

We conclude that if
φ∗(µ) = λω1

at γ then
det
(
(1− Ad γ−1)t\g

)
ω′
T (µ) = λω1

there as well. Our assertion follows.
These cumbersome remarks out of the way, we may state the principal lemma of the

paragraph.
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Lemma 6.2. A Shintani family is an HCS family. An HCS family
{
Φ(γ, T )

}
is a Shintani

family if and only if Φ(γ, T ) = 0 whenever the equation γ = Nδ has no solution. Moreover if{
Φ(γ, T )

}
=
{
Ψϕ(γ, T )

}
then the function Φ′(γ, T, µ) satisfies

Φ′(z, T, µ) =


0 z /∈ NS(E),

Φϕ(δ, µ) z

(
1 1

0 1

)
= Nδ

for z ∈ F× = Z(F ). If T is not split, the value of Φ′′(z, T, µ) is 0 if the equation z = Nδ has
no solution. Otherwise it is

ξ(γ)

∫
Gσ

δ (E)\G(E)

ϕ
(
g−1δσ(g)

)
dg.

Here ξ(γ) is 1 if δ is σ-conjugate to a scalar and −1 if it is not.

We begin by establishing the asserted properties of a Shintani family. They have only to
be established when ϕ has small support about a given δ. If Nδ is not central there is no
problem for g → Ch(Ng) is then smooth at δ. Suppose Nδ is central.

It is convenient to treat two cases separately, that for which δ is σ-conjugate to a
central element and that for which it is not. When treating the first, one may suppose
that δ itself is central and then, translating if necessary, that it is 1. Choose an analytic
section s of G′(F ) → G(F )\G′(F ). The map of G(F ) × G(F )\G′(F ) to G′(F ) given by
(g, w) → s(w)−1gσ

(
s(w)

)
yields an analytic isomorphism in a neighborhood of the identity.

If ϕ has support in such a neighborhood and δ lies in its intersection with G(F ) then

Ψϕ(Nδ, T ) = Φf (δ, T )

if

f(δ) =

∫
ϕ
(
s(w)−1δσ

(
s(w)

))
,

the integral being taken over a small neighborhood of the trivial coset, G(F ) itself. It is
therefore manifest that

{
Φϕ(γ, T )

}
is an HCS family. If z ∈ Z(F ) lies close to 1 then

f(z) =

∫
G(F )\G′(F )

ϕ
(
g−1zσ(g)

)
dg

and if

ϵ = z

(
1 1
0 1

)
then

Ψϕ(ϵ
ℓ, µ) = Φf (ϵ, µ)

and Nϵ = ϵℓ. The asserted formulae for Φ′(z, T, µ) and for Φ′′(z, T, µ) follow.
Before we discuss the case that δ is not σ-conjugate to a scalar we comment on the manner

in which one shows that an HCS family
{
Φ(γ, T )

}
for which Φ(γ, T ) = 0 when γ /∈ NT (E)

is a Shintani family. One can localize the problem and, once again, the only difficulty occurs
for a family which is supported in a small neighborhood of a point in Z(F ). If this point lies
in NZ(E) we may suppose it is 1. If

Φ′(γ, T ) = Φ(γℓ, T )
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then
{
Φ′(γ, T )

}
is again an HCS family and hence there is an f such that

Φ′(γ, T ) = Φf (γ, T ).

We may suppose that the support of f consists of elements whose conjugacy class passes
close to 1. Employing a partition of unity and then conjugating we may even suppose that
f itself is upported in a small neighborhood of 1. Suppose a is a function on G(F )\G′(F )
satisfying ∫

G(F )\G′(F )

α(w) dw = 1.

If w ∈ G(F )\G′(F ) and h ∈ G(F ) set

ϕ
(
s(w)−1hσ

(
s(w)

))
= α(w)f(h).

Then
Ψϕ(δ

ℓ, T ) = Φ(δℓ, T )

for δ close to 1. Since extraction of ℓth roots in a neighborhood of 1 is a well-defined operation,
we conclude that

Ψϕ(γ, T ) = Φ(γ, T )

for all γ.
Suppose now that z = Nδ is central but that δ is not σ-conjugate to a central element.

Then ℓ = 2 and
Gσ

δ (E) =
{
y
∣∣ δσ(y)δ−1 = y

}
is the multiplicative group of a quaternion algebra. If u ∈ Gσ

δ (E) then

N(uδ) = uδσ(u)σ(δ) = u2z.

It follows that if u is close to 1 then

Gσ
uδ(E) ⊆ Gu(E)

if Gu is the centralizer of u. Since

Gσ
uδ(E) =

{
y
∣∣ uδσ(y)δ−1u−1 = y

}
we conclude that

Gσ
uδ(E) ⊆ Gσ

δ (E).

This time we take s to be a section of G′(F ) → Gσ
δ (E)\G′(F ) and set

f(h) =

∫
ϕ
(
s(w)−1hσ

(
s(w)

))
, h ∈ Gσ

δ (E),

so that
Ψϕ(zu

2, T ) = Φf (u, T ).

The family
{
Φf (δ, T )

}
is an HCS family not for G(F ) but for Gσ

δ (E) = Gσ
z (F ). Since this

group is the multiplicative group of a quaternion algebra the properties of HCS families for it
are trivial to establish. The principal points to observe are that there is no longer a split
Cartan subgroup, that Φ′(γ, T, µ) does not occur, and that

Φ
(
γ, T ;ωT (µ), ωG′

)
= meas

(
T (F )\G′(F )

)
Φ′′(γ, T ;µ).

This said, one proceeds as before, and completes the proof of the lemma.
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Lemma 6.2 allows us to associate to any smooth compactly supported ϕ on G(E) a
smooth compactly supported f on G(F ) for which{

Φf (γ, T )
}
=
{
Ψϕ(γ, T )

}
.

The function f is not uniquely determined but its orbital integrals are, and this is enough
for our purposes. The correspondence ϕ→ f , which was introduced by Shintani, plays an
important role in these notes. It is however essential to observe that if E is unramified and
ϕ is spherical then f may be taken to be the image of ϕ under the homomorphism of the
previous paragraph. In particular if ϕ is the characteristic function of G(OE) divided by
its measure then f may be taken to be the characteristic function of G(O) divided by its
measure.

It should come as a surprise to no one when I now confess that the map ϕ→ f has been
defined for the wrong class of functions. If ξ is a given character of NZ(E) we shall want ϕ
to satisfy

ϕ(zg) = ξ(Nz)−1ϕ(g) z ∈ Z(E)

and f to satisfy
f(zg) = ξ(z)−1f(g) z ∈ NZ(E).

All we need do is start from the original ϕ and f and replace them with

ϕ′(g) =

∫
Z(E)

ϕ(zg)ξ(Nz) dz

and

f ′(g) =

∫
NZ(E)

f(zg)ξ(z) dz.

The calculations at the end of the preceding paragraph show that if
{
Φϕ′(γ, T )

}
and{

ϕf ′(γ, T )
}
are defined in the obvious way then

Φϕ′(γ, T ) = Φf ′(γ, T ).

This and the other relations between orbital integrals of f ′ and ϕ′ which are deducible from
Lemma 6.2 will play a central role in the comparison of Paragraph 11.



CHAPTER 7

Characters and local lifting

F is again a local field and E a cyclic extension of degree ℓ. σ is a fixed generator of G.
If Π is an irreducible admissible representation of G(E) then Π may or may not be equivalent
to Πσ : g → Π

(
σ(g)

)
. We shall be concerned only with those Π for which Πσ ≃ Π. Then

Π extends to a representation Π′ of G′(E) = G(E) × G. Π′ is not unique, but any other
extension is of the form ω ⊗ Π′, where ω is a character of G.

We may introduce the character of Π′ along the lines of §7 of [14]. It is a distribution.
We shall not be able to prove completely the following proposition until we have some of the
results of Paragraph 11. If we had not thrown methodological purity to the winds, we would
be bound to find a purely local proof for it.

Proposition 7.1. The character of Π′ exists as a locally integrable function.

A good deal of this paragraph will be taken up with the proof of this proposition, although
one case will be postponed until §11, appearing there as Lemma 11.2. In addition, we will
begin the study of local base change, especially for the representations π(µ, ν) and the special
representations σ(µ, ν). They are, of course, both rather easy to handle. The last part of
the paragraph is devoted to a computational proof of Lemma 7.17, which yields part of
assertion (c) of §2.

Since the character of Π is a function and since σ is an arbitrary generator of G, it is
enough to show that the character is a function on G(E)× σ.

Let η = (µ, ν) be the quasi-character of the group A(E) of diagonal matrices and consider
the representation ρ(η) = ρ(µ, ν) introduced in Chapter 1 of [14]. If µσ = µ, νσ = ν then
ρ(η) may be extended to a representation of G′(E), which we still denote ρ(η), by setting

ρ(σ, η)φ(g) = φ
(
σ−1(g)

)
φ ∈ B(η).

B(η) is introduced on p. 92 of [14].
For our purposes it is best to suppose that µν = ξE on E×. If σ is smooth, satisfies

ϕ(zg) = ξ−1
E (z)σ(g), z ∈ E× = Z(E), and has compact support modulo Z(E), we may set

ρ(ϕ, η) =

∫
Z(E)\G(E)

ϕ(g)ρ(g, η) dg.

We may choose the Haar measure on K so that∫
Z(E)\G(E)

h(g) dg =

∫
K

∫
N(E)

∫
Z(E)\A(E)

h(tnk) dt dn dk.

Then the kernel of ρ(ϕ, η)ρ(σ, η), which is a function on K ×K, is equal to∫
Z(E)\A(E)

∫
N(E)

ϕ
(
k−1
1 tnσ(k2)

)
η(t)

∣∣∣∣αβ
∣∣∣∣1/2 dt dn

61
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if

t =

(
α 0
0 β

)
.

The trace of ρ(ϕ, η)ρ(σ, η) is obtained by integrating over the diagonal.
If γ ∈ G(F ) has distinct eigenvalues a, b we set

∆(γ) =

∣∣∣∣∣(a− b)2

ab

∣∣∣∣∣
1/2

F

.

It is easily seen that if δ ∈ A(E), γ = Nδ, and ∆(γ) ̸= 0 then

∆(γ)

∫
Z(E)A(F )\G(E)

ϕ
(
g−1δσ(g)

)
dg =∣∣∣∣ab
∣∣∣∣1/2 ∫

K

∫
Z(E)A(F )\A(E)

∫
N(E)

ϕ
(
k−1t−1δσ(t)nσ(k)

)
dn dt dk.

Thus if we denote the left hand side by Fϕ(δ),

trace ρ(ϕ)ρ(σ) =

∫
Z(E)A1−σ(E)\A(E)

η(t)Fϕ(t) dt.

Since Fϕ(t) = Fϕ(t̃) if

t̃ =

(
β 0
0 α

)
this may be written ∫

Z(E)A1−σ(E)\A(E)

η(t) + η̃(t)

2
Fϕ(t) dt.

We may extend the definition of Fϕ to other tori, and there is an obvious, and easily
verified, analogue of the Weyl integration formula:∫

Z(E)\G(E)

ϕ(g) dg =
1

2

∑∫
Z(E)T 1−σ(E)\T (E)

{∫
Z(E)T (F )\G(E)

ϕ
(
g−1tσ(g)

)
dg

}
∆(Nt)2 dt

=
1

2

∑∫
Z(E)T 1−σ(E)\T (E)

Fϕ(t)∆(Nt) dt.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups over F .
We deduce the following lemma.

Lemma 7.2. The character χρ(η) of ρ(η) is a function on G(E)× σ. If γ = Nδ is regular
but not conjugate to an element of A(F ) then χρ(η)(δ × σ) = 0. If δ is σ-conjugate to t and
γ = Nδ is regular then

χρ(η)(δ × σ) =
η(t) + η̃(t)

∆(γ)
.

If η = ησ then there exist µ′, ν ′ such that µ(x) = µ′(Nx), ν(x) = ν ′(Nx). If ϕ → f is
defined as in the previous paragraph, the following corollary is clear.
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Corollary 7.3. If η′(µ′, ν ′) then

trace ρ(ϕ, η)ρ(σ, η) = trace ρ(f, η′)

and
χρ(η)(δ × σ) = χρ(η′)(γ)

if γ = Nδ.

If Π = π(µ, ν) with µ(x) = µ′(Nx), ν(x) = ν ′(Nx) then Πσ ≃ Π. We take Π′ = π′(µ, ν)
to be the restriction of ρ(η) to the subquotient of B(η) on which π(µ, ν) acts. We see that if
ρ(µ, ν) is irreducible, then it is a lifting of ρ(µ′, ν ′) according to either of the criteria of §2.
Notice that there are ℓ2 choices for µ′, ν ′.

Lemma 7.4. Suppose F is non-archimedean.

(a) If µν−1(x) ̸≡ |x| and µν−1(x) ̸≡ |x|−1 then

traceπ′(ϕ;µ, ν)π′(σ;µ, ν) = trace π(f ;µ′, ν ′)

and, if γ = Nδ is regular,

χπ′(µ,ν)(δ × σ) = χπ(µ′,ν′)(γ).

(b) If µν−1(x) ≡ |x|−1 and µ′ν ′−1(x) ≡ |x|−1 the same equalities are valid.

The only cases not covered by the lemma are those for which π(µ, ν) is finite-dimensional
while π(µ′, ν ′) is infinite-dimensional, when the equalities no longer hold. This is the reason
that we have also had to introduce the criterion (i) of §2 for a local lifting. Observe that
π(µ′, ν ′) then ceases to be unitary. The first part of the lemma is clear for, with the
assumptions imposed there, π(µ, ν) = ρ(µ, ν), π(µ′, ν ′) = ρ(µ′, ν ′).

If the conditions of the second hold, then

π(g;µ, ν) = µ(det g)|det g|1/2E , g ∈ G(E),

π(σ;µ, ν) = 1,

π(g;µ′, ν ′) = µ′(det g)|det g|1/2F , g ∈ G(F ).

The first of the desired equalities is clear; the other follows from the Weyl integration formulae.
It is by the way implicit in the lemma that the characters appearing there are functions.

Lemma 7.5. Suppose F is archimedean. If π(µ, ν) and π(µ′, ν ′) are both infinite-dimensional
or both finite-dimensional then the equalities of the previous lemma are again valid.

This again follows from the corollary if both representations are infinite-dimensional.
To check the remaining case we observe that F will be R and E will be C. There is a
finite-dimensional analytic representation ρ of G(C) on a space V and a character χ of C×

such that
π(g;µ, ν) ≃ χ(det g)ρ

(
σ(g)

)
⊗ ρ(g).

Since χ(z) = χ
(
σ(z)

)
there is no harm in supposing it is 1. If λ−1 is the highest weight of

the contragredient to ρ and w a highest weight vector then

uσ ⊗ v →
(
σ(w)⊗ w

)(
ρ
(
σ(g)

)
σ(u)⊗ ρ(g)v

)
maps V into B(µ, ν) if, as we may assume µ(x)|x|1/2 = λ

(
xσ(x)

)
ν(x)|x|−1/2 = λ

(
xσ(x)

)
.

The absolute value is taken in the number-theoretical sense. Then π′(σ;µ, ν) corresponds to
σ(u)⊗ v → σ(v)⊗ u.
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If ρ(g) =
(
ρij(g)

)
then a matrix form of π′(g × σ;µ, ν) is

ρi′,j
(
σ(g)

)
⊗ ρi,j′(g).

Setting i = j, i′ = j′ and summing we conclude that

traceπ′(g × σ;µ, ν) = trace ρ
(
gσ(g)

)
.

Since π(g, µ′, ν ′) is either ρ(g) or sign(det g)ρ(g) the lemma follows.
The next lemma is an immediate consequence of Corollary 7.3 and Lemma 7.4.

Lemma 7.6. Suppose F is non-archimedean and σ(µ, ν) is a special representation. Let
µν−1(x) = |x|E. Define σ′(σ;µ, ν) to be the restriction of ρ(σ;µ, ν) to the subspace of B(µ, ν)
on which σ(µ, ν) acts. If µ′ν ′−1(x) = |x|F then

traceσ′(ϕ;µ, ν)σ′(σ;µ, ν) = trace σ(f, µ′, ν ′)

and if γ = Nδ is regular
χσ′(µ,ν)(δ × σ) = χσ(µ′,ν′)(γ).

We see that σ(µ, ν) is a lifting of σ(µ′, ν ′). There are now only ℓ choices for the pair (µ′, ν ′).
If Π = σ(µ, ν) then Πσ ≃ Π only if µσ = µ, νσ = ν. However if Π = π(µ, ν) then Πσ is

also equivalent to Π if µσ = ν, νσ = µ, that is if η̃ = ησ. If ησ ̸= η this can only happen for
ℓ = [E : F ] = 2, as we now suppose. If ησ = η̃ we can define an operator R(η) : B(η) → B(ησ)
as on p. 521 of [14]. Formally (and with a better choice of the ϵ-factor than in [14])

R(η)φ(g) = ϵ(0, µν−1, ψE)
L(1, µν−1)

L(0, µν−1)

∫
E

φ

((
0 1

−1 0

)(
1 x
0 1

)
g

)
dx.

ψE is a non-trivial additive character of E of the form x→ ψF (tracex) and dx is the Haar
measure self-dual with respect to ψE. If ψF is replaced by ψF (ax), a ∈ F×, then ϵ(0, µν−1, ψE)
is multiplied by

|a|−1/2
E

µ(a)

ν(a)
= |a|−1/2.

Since dx is replaced by |a|1/2 dx, the expression as a whole is unchanged and R(η) is well-
defined.

Lemma 7.7.

(a) If η = ησ = η̃ then R(η) is the identity.
(b) If ησ = η̃ and ρ(σ, ησ) : B(ησ) → B(η) replaces φ(g) by φ

(
σ−1(g)

)
then ρ(σ, ησ)R(η),

which takes B(η) to itself, is of order two.

Since
ρ(σ, ησ)R(η)ρ(σ, ησ)R(η) = ρ(σ, ησ)ρ(σ, η)R(ησ)R(η)

and
ρ(σ, ησ)ρ(σ, η) = 1

the assertion (b) is implied by the following lemma.

Lemma 7.8. Let E be an arbitrary local field. Suppose η = (µ, ν) and

|ϖE| <
∣∣µ(ϖE)ν

−1(ϖE)
∣∣ < |ϖE|−1

then R(η̃) and R(η) are defined and

R(η̃)R(η) = 1.
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If ω is a quasi-character of E×, the map φ→ φ′ with φ′(g) = ω(det g)φ(g) takes B(µ, ν)
to B(ωµ, ων). It sends R(η)φ to R(ωη)φ′; so for the purposes of the lemma we may suppose
ν = 1. I also observe that if ψE is replaced by x → ψE(ax), a ∈ E× then ϵ(0, µν−1, ψE) is
multiplied by

|a|−1/2
E

µ(a)

ν(a)

and ϵ(0, νµ−1, ψE) is multiplied by

|a|−1/2
E

ν(a)

µ(a)
.

Thus R(η̃)R(η) is not affected and if η = η̃, neither is R(η).
First take E to be non-archimedean and µ to be unramified. Suppose µ(ϖE) = |ϖE|s,

Re s > 0. Let φ0 be defined by

φ0

((
1 x
0 1

)(
α 0
0 β

)
k

)
= µ(α)

∣∣∣∣αβ
∣∣∣∣1/2.

The factor ϵ(0, µ, ψE) is, almost by definition, equal to

|a|s+1/2

if a−1OE is the largest ideal on which ψE is trivial. Then∫
OE

dx = |a|−1/2.

The integrand of ∫
E

φ0

((
0 1

−1 0

)(
1 x
0 1

))
dx

is 1 if x ∈ OE. Otherwise(
0 1

−1 0

)(
1 x
0 1

)
=

(
x−1 0
0 x

)(
1 −x
0 1

)(
−1 0

− 1
x

−1

)
and the integrand equals |x|−1−s. The integral equals

|a|−1/2

{
1 +

∞∑
n=1

q−s

(
1− 1

q

)}
= |a|−1/2 L(s, 1E)

L(1 + s, 1E)
= |a|−1/2L(0, µ)

L(1, µ)
.

Consequently
R(η)φ0(1) = |a|sφ0(1) = |a|s.

This relation may be analytically continued.
Any function φ is equal to (

φ− φ(1)φ0

)
+ φ(1)φ0.

Thus to check that R(η)φ(1) can be analytically continued for all φ, we need only check it
when φ(1) = 0. The factor

ϵ(0, µ, ψE)
L(1, µ)

L(0, µ)
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is certainly well-defined if
∣∣µ(ϖE)

∣∣ < |ϖE|−1. Moreover if φ(1) = 0 there is an N such that

φ

(
−1 0

− 1
x

−1

)
= 0

for |x| > N and∫
φ

((
0 1

−1 0

)(
1 x
0 1

))
dx =

∫
|x|⩽N

φ

((
0 1

−1 0

)(
1 x
0 1

))
dx.

The right side is well-defined for any µ. We conclude that R(η) is indeed defined for Re s > −1.
It is clear that R(η)φ0 is a multiple of φ0, for φ0 is, up to a constant factor, the only

function invariant under KE. Therefore R(η)φ0 = |a|sφ0. If µ = 1, then s = 0 and
R(η)φ0 = φ0. Since R(η) then intertwines B(η) with itself and B(η) is irreducible, R(η) = 1.
This is the first part of the lemma. If Re s < 1 then R(η̃) is also defined and R(η̃)R(η) which
again intertwines B(η) with itself is a scalar. Since

R(η̃)R(η)φ0 = φ0

the scalar is 1.
Now suppose µ is ramified. The factor

ϵ(0, µ, ψE)
L(1, µ)

L(0, µ)
= ϵ(0, µ, ψE)

is well-defined for all such µ. If

φ

(
−1 0

− 1
x

−1

)
= φ(−1)

for|x| > N , then∫
φ

((
0 1

−1 0

)(
1 x
0 1

))
dx =

∫
|x|⩽N

φ

((
0 1

−1 0

)(
1 x
0 1

))
dx.

The right side is meaningful for all values of
∣∣µ(ϖE)

∣∣. For this µ we only wish to prove the
second part of the lemma. For the sake of symmetry we put ν back in. We may also suppose
that OE is the largest ideal on which ψE is trivial.

If |ϖE| <
∣∣µ(ϖE)ν

−1(ϖE)
∣∣ < |ϖE|−1 then Propositions 3.2 and 3.4 of [14] give us two

isomorphisms

A : W (µ, ν;ψE)
∼−→ B(µ, ν)

B : W (µ, ν;ψE) = W (ν, µ;ψE)
∼−→ B(ν, µ).

Suppose W ∈ W (µ, ν;ψE) and AW = φ, BW = φ′. We shall show that

(7.1) W

((
a 0
0 1

))
∼ |a|1/2µν(−1)

{
ϵ(0, µν−1, ψE)µ(a)φ(1) + ϵ(0, νµ−1, ψE)ν(a)R(η)φ(a)

}
as a→ 0. Interchanging ν and µ we can also infer that

W

((
a 0
0 1

))
∼ |a|1/2µν(−1)

{
ϵ(0, νµ−1, ψE)ν(a)φ

′(1) + ϵ(0, µν−1, ψE)µ(a)R(η̃)φ
′(1)
}



7. CHARACTERS AND LOCAL LIFTING 67

as a→ 0. We conclude that
R(η)φ = φ′

and that
φ = R(η̃)R(η)φ.

Hence
R(η̃)R(η) = 1.

To verify (7.1) we take W = WΦ as on p. 94 of [14]. (There is a misprint there. The
measure used to define θ(µ1, µ2; Φ) should be d×t rather than dt.) We may suppose that

Φ(αx, α−1y) = µ−1ν(α)Φ(x, y)

if |α| = 1. Then Φ(0, 0) = 0 and Φ(x, y) is 0 for x, y close to 0. If N is sufficiently large
WΦ

(
( a 0
0 1 )
)
is equal to

|a|1/2µ(a)
∫

1
N
⩽|t|⩽N

µν−1(t)Φ(at, t−1) d×t+ |a|1/2µ(a)
∫
|t|>N

µν−1(t)Φ(at, t−1) d×t

for all a. Fix N . When |a| is small this expression equals

(7.2) |a|1/2µ(a)
∫
E×

νµ−1(t)Φ(0, t) d×t+ |a|1/2ν(a)
∫
E×

Φ(t, 0) d×t.

According to the definition of A, φ is equal to fΦ∼ with

fΦ∼(1) =

∫
Φ∼(0, t)µν−1(t)|t| d×t =

∞∑
n=−∞

Φ∼(0, ϖn
E)|ϖE|nµν−1(ϖn

E).

However, by the definition on p. 94 of [14]

Φ∼(0, ϖn
E) =

∫
Φ(0, y)ψE(yϖ

n
E) dy

=
∞∑

m=−∞

(
1− |ϖE|

)
|ϖE|mΦ(0, ϖm)

∫
|t|=1

µν−1(t)ψE(tϖ
m+n
E ) d×t.

If r is the order of the conductor of µν−1 the integral appearing here is 0 unless m+ n = −r
when it equals

ϵ(0, νµ−1, ψE)
µν−1(ϖr)|ϖ|r

1− |ϖ|
.

Thus
Φ∼(0, ϖn

E) = ϵ(0, νµ−1, ψE)|ϖE|−nΦ(0, ϖ−n−r)µν−1(ϖr)

and

fΦ∼(1) = ϵ(0, νµ−1, ψE)
∑
n

µν−1(ϖn)Φ(0, ϖ−n)

= ϵ(0, νµ−1, ψE)

∫
E×

νµ−1(t)Φ(0, t) d×t.

Since, under the conditions imposed on ψE,

ϵ(0, νµ−1, ψE)ϵ(0, µν
−1, ψE) = µν−1(−1)

we may substitute in the first term of (7.2) to obtain the first term of (7.1).
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Lemma 3.2.1 of [14] gives

µν(−1)ϵ(0, νµ−1, ψE)R(η)φ(1)

as

lim
N→∞

∫
|x|⩽N


∫
WΦ

((
a 0
0 1

))
ν−1(a)|a|−1/2ψE(ax) da

dx.
Interchanging the order of integration we see from (7.2) that this equals∫

E×
Φ(t, 0) dt.

In other words, the second term of (7.2) is equal to the second term of (7.1) as required.
As a convenient, but in the long run unsatisfactory, expedient, we prove Lemma 7.8 for

archimedean fields by appealing to the theory of Eisenstein series. E will be momentarily a
global field, either Q or an imaginary quadratic field. If µ∞, ν∞ are arbitrary characters of
E×

∞, there are characters µ, ν of E×\IE such that µ, ν restricted to E×
∞ are µ∞, ν∞. Here IE

is the group of idèles. We introduce M(η) =M(µ, ν; 0) as on p. 513 of [14]

M(η) =
L(1, νµ−1)

L(1, µν−1)
⊗v R(ηv).

Here
L(1, νµ−1)

L(1, µν−1)
= lim

s→0

L(1 + s, νµ−1)

L(1− s, µν−1)
.

From the theory of Eisenstein series

M(η̃)M(η) = 1.

Since the map η → η̃ interchanges µ and ν and

L(1, µν−1)

L(1, νµ−1)

L(1, νµ−1)

L(1, µν−1)
= 1

we conclude that ⊗
v

R(η̃v)R(ηv) = 1.

Applying our result for non-archimedean fields we conclude that

R(η̃∞)R(η∞) = 1.

The first part of Lemma 7.1 must unfortunately still be proved directly. We revert to
our earlier notation. We also suppose once again that ν = 1. Since we are dealing with the
first part of the lemma, µ will also be 1. More generally let µ(x) = |x|s, Re s > 0. We may
suppose that

ψE(x) = e2πix, E = R

ψE(x) = e2πiRex, E = C.

Then dx is the usual Haar measure on E. Define φ0 by

φ0

((
1 x
0 1

)(
α 0
0 β

)
k

)
= µ(α)

∣∣∣∣αβ
∣∣∣∣1/2.
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Once again we need only show that

R(η)φ0(1) = 1.

If F = R, then, taking the definition of the L-functions and ϵ-factors into account [21],

R(η)φ0(1) =
Γ
(
1+s
2

)
π1/2Γ

(
s
2

) ∫ ∞

−∞
(1 + x2)

(s+1)
2 dx = 1

and if F = C,

R(η)φ0(1) =
1

π

Γ(1 + s)

Γ(s)

∫∫
(1 + x2 + y2)−s−1 dx dy = 1.

We conclude from the second part of Lemma 7.7 that if ησ = η̃ then Π = π(µ, ν) may be
extended to a representation Π′ of G′(E), a representation we shall sometimes denote τ(η),
by setting

Π′(σ) = τ(σ, η) = ρ(σ, ησ)R(η).

Appealing to the first part of the lemma we see that this is consistent with our previous choice
of Π′ if ησ = η. Observe also that if η is unramified and ησ = η̃ then η = η̃. The following
assertion is the part of Lemma 7.1 which will not be verified until §11, as Lemma 11.2.

(1 ) The character of τ(η) is a locally integrable function.

The following assertion is also part of that lemma.

(2 ) If η = (µ, µσ) and if r = Ind(WE/F ,WE/E, µ) then ρ(η) is a lifting of π(τ).

The only representations of G(E) we have not yet considered are the absolutely cuspidal
Π. Choose such a Π for which Πσ ≃ Π and extend Π in any way to Π′.

Lemma 7.9. If Π is absolutely cuspidal then the character χΠ′ exists as a locally integrable
function and is smooth on

{
g ∈ G(E)

∣∣ Ng is regular and semi-simple
}
.

Moreover if Π is unitary

1

2

∑′ 1

measNZ(E)\T (F )

∫
Z(E)T 1−σ(E)\T (E)

∣∣χΠ′(t× σ)
∣∣2∆(Nt)2 dt =

1

ℓ
.

The sum is over a set of representatives of the conjugacy classes of non-split Cartan subgroups
over F .

We shall imitate the proofs of Proposition 7.4 and Lemma 15.4 of [14]. In particular,
it suffices to consider unitary Π. Then Π′ is also unitary. Suppose f is a locally constant
function on G′(E) = G(E)×G with compact support. Set

Π′(f) =

∫
G′(E)

f(g)Π′(g) dg.

Since Π′ is a square-integrable representation of G′(E) we may apply Lemma 7.4.1 of [14] to
conclude that

traceΠ′(f) = d(Π′)

∫
Z(E)\G′(E)

{∫
G′(E)

f(g)
(
Π′(g−1hg)u, u

)
dh

}
dg.

Here u is a unit vector in the space of Π′ and d(Π′) the formal degree.
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We introduce a subset Ĝ′(E) of G′(E) whose complement has measure 0 and a function ξ(g)

on it. If g ∈ G(E) then g ∈ Ĝ′(E) if and only if g has distinct eigenvalues a, b. We set

∆E(g) =

∣∣∣∣∣(a− b)2

ab

∣∣∣∣∣
1/2

E

and let ξ(g) = ∆E(g)
−1. If τ ∈ G, τ ̸= 1, and g ∈ G(E) then g × τ ∈ Ĝ′(E) if and only if

gτ(g) · · · τ ℓ−1(g) has distinct eigenvalues. If gτ(g) · · · τ ℓ−1(g) is conjugate to h in G(F ) we

set ξ(g) = ∆(h)−1. We define ξ(g) to be 0 on the complement of Ĝ′(E) in G′(E).

Lemma 7.10. The function ξ(g) is locally integrable on G′(E).

That it is locally integrable on G(E) follows from Lemma 7.3 of [14]. It suffices then
to show that it is locally-integrable on G(E) × σ. Since any compactly supported locally
constant function ϕ is dominated by a spherical function, it follows from the results on
Paragraph 3 that ∑∫

T 1−σ(E)\T (E)

∣∣Fϕ(t)
∣∣ dt <∞

if

Fϕ(δ) = ∆(Nδ)

∫
T (F )\G(E)

ϕ(g−σδg) dg.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups of G
over F .

Take ϕ to be the characteristic function of a compact open set. By the Weyl integration
formula, or rather the variant appropriate when Z(E)\G(E) is replaced by G(E),∫

G(E)×σ

ξ(g × σ)ϕ(g) dg

is equal to
1

2

∑∫
T 1−σ(E)\T (E)

Fϕ(t) dt

and is therefore finite.
Define T ′

r as on p. 254 of [14], except that F is to be replaced by E. We have only to
show that

lim
r→∞

∫
T ′
r×g

(
Π′(g−1hg)u, u

)
dg

converges on Ĝ′(E) and that the convergence is dominated by a constant times ξ(h). It is
easily seen that

ξ
(
τ(h)

)
= ξ(h)

for all τ ∈ g. It is therefore enough to verify the assertion for the sequence∫
T ′
r

(
Π′(g−1hg)u, u

)
dg.

For h in G(E), where Π′ is Π, this has been done in [14]; so we replace h by h× σ, with the
new h in G(E), and the first u by v = Π′(σ)u and consider

(7.3) φr(h) =

∫
T ′
r

(
Π
(
g−1hσ(g)

)
v, u
)
dg.
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Let G̃σ(E) be the set of all h in G(E) for which the eigenvalues of Nh do not lie in F .
We need the following analogue of Lemma 7.4.2 of [14].

Lemma 7.11. Let C ′
1 be a compact subset of G̃σ(E) and let C ′

2 be a compact subset of G(E).
The image in Z(E)\G(E) of

X =
{
g ∈ G(E)

∣∣ g−1C ′
1σ(g) ∩ Z(E)C ′

2 ̸= ∅
}

is compact.

Let

C1 =
{
Nh

∣∣ h ∈ C ′
1

}
C2 =

{
Nh

∣∣ h ∈ C ′
2

}
.

If g ∈ X then
g−1C1g ∩ Z(E)C2 ̸= ∅.

Since C1 and C2 are compact we have only to apply Lemma 7.4.2.
We may choose C ′

2 so that
(
Π(g)v, u

)
is supported by Z(E)C ′

2. Then for h in C ′
1∫

T ′
r

(
Π
(
g−1hσ(g)

)
v, u
)
dg

becomes constant as soon as r is so large that T ′
r contains Z(E)\X. Moreover∣∣∣∣∣

∫
T ′
r

(
Π
(
g−1hσ(g)

)
v, u
)
dg

∣∣∣∣∣ ⩽
∫
Z(E)\G(E)

∣∣∣∣(Π(g−1hσ(g)
)
v, u
)∣∣∣∣ dg

and the right side is equal to

(7.4) meas
(
Z(E)\Z(E)Gσ

h(E)
) ∫

Z(E)Gσ
h\G(E)

∣∣∣∣(Π(g−1hσ(g)
)
v, u
)∣∣∣∣ dg.

To estimate this we may replace the integrand by a positive spherical function ϕ, invariant
under Z(E), which dominates it, and h by any σ-conjugate element. Thus we may suppose
h lies in T (E), where T is one of the representatives for the conjugacy classes of Cartan
subgroups of G over F . It follows from the lemmas of Paragraph 5 that (7.4) is bounded by

c(ϕ)ξ(h× σ) for all h ∈ G̃σ(E).
It remains to consider the behaviour of the sequence (7.3) on the set of h for which Nh

has distinct eigenvalues in F . If k ∈ G(OE) then

φr

(
k−1hσ(k)

)
= φr(h)

so we need only consider h of the form

(7.5)

(
α 0
0 β

)(
1 x
0 1

)
.

If h is constrained to lie within a compact subset C3 of G(E) then α, β are constrained to

lie in a compact subset of E× and x in a compact subset of E. If C3 lies in G̃σ(E) then in
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addition

∣∣∣∣1−N
(

β
α

)∣∣∣∣ remains bounded away from 0. We are going to show that there is a

constant c such that ∣∣φr(h)
∣∣ ⩽ c

∣∣∣∣∣1−N

(
β

α

)∣∣∣∣∣
−1

= cξ(h× σ)

for all h in C3 of the form (7.5) and that if C3 ⊂ G̃σ(E) then
{
φr(h)

}
converges uniformly

on C3 to a locally constant function. Lemma 7.9 will follow.
As on p. 269 of [14], we are immediately led to the consideration of auxiliary sequences

φi
r(h) =

∫ Π

(γ y
0 1

)−1

hσ

((
γ y
0 1

))
vi, ui


|γ|−1

E d×γ dy.

The integral is taken over those γ and y for which

(7.6)

(
γ y
0 1

)
lies in Tr.

The product (
γ y
0 1

)−1

hσ

((
γ y
0 1

))
is equal to (

γ−1σ(γ)α 0
0 β

)(
1 σ(γ)−1

(
x+ σ(y)− α−1βy

)
0 1

)
.

We set

u′i = Π

(1 −σ(γ)−1x
0 1

)(
α−1σ(γ)−1γ 0

0 β−1

)ui,
so that the integrand becomes

(7.7)

Π

(
1 σ(γ)−1

(
σ(y)− α−1βy

)
0 1

)
vi, u

′
i

|γ|−1
E .

We shall first integrate with respect to y. To do this we must find those values of γ and
y for which the matrix (7.6) is in Tr. Let |γ| = |ϖE|m, |y| = |ϖE|n, and let the elementary
divisors of (7.6) be ϖj

E, ϖ
k
E, j ⩽ k. We list the possible values of j and k below, together

with the condition that the matrix belongs to Tr.

(i) m ⩾ n, n ⩾ 0 then j = 0, k = m, 0 ⩽ m ⩽ r
(ii) m ⩾ 0, n ⩽ 0 then j = n, k = m− n, 0 ⩽ m− 2n ⩽ r
(iii) m ⩽ 0, n ⩽ m then j = n, k = m− n, 0 ⩽ m− 2n ⩽ r
(iv) m ⩽ 0, n ⩾ m then j = m, k = 0, −r ⩽ m ⩽ 0

Thus the matrix belong to Tr if and only if −r ⩽ m ⩽ r and m− r ⩽ 2n.
To evaluate the integral of (7.7) with respect to y, we take Π in the Kirillov form. Then

ui is a locally constant function on E× with compact support; so is v′i and it is bounded by a
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constant which does not depend on α, β, γ, or x. The inner product appearing in (7.7) is
equal to ∫

E×
ψE

(
a

σ(γ)

(
σ(y)− α−1βy

))
vi(a)u′i(a) d

×a.

Let b′ be the smallest integer greater than or equal to m−r
2

. The integral with respect to y is
equal to

(7.8) |ϖE|b
′
∫
{
a
∣∣∣ |ρ(a)− β

α
a|⩽|ϖE |−b

} vi(aσ(γ))u′i(aσ(γ)) d×a ρ = σ−1.

Here b is equal to b′ if the largest ideal on which ψE is trivial is OE. If this ideal is (ϖ
s
E) then

b′ − b = s.
Let ϵ be a small positive number. Since α and β are constrained to vary in a compact set

there is an integer e such that

(7.9)

∣∣∣∣∣1−N

(
β

α

)∣∣∣∣∣ ⩾ ϵ

and ∣∣∣∣ρ(a)− β

α
a

∣∣∣∣ ⩽ |ϖE|−b

implies
|a| ⩽ |ϖE|−e−b.

Choose an integer d so that the support of each ui is contained in

|ϖE|−d ⩾ |a| ⩾ |ϖE|d.
The integral (7.8) is certainly 0 unless −e− b ⩽ d−m or m− b ⩽ d+ c. Then

m+ r

2
⩽ d+ e+ 1.

Since m+ r ⩾ 0 this gives a bound on the number of possibilities for m which is independent
of r. Since the integral appearing in (7.8) is clearly bounded by{

sup
∣∣ui(a)∣∣}{sup∣∣v′i(a)∣∣} ∫

|ϖE |−d⩾|a|⩾|ϖE |d
d×a

and
|ϖE|b|γ|−1

E = O
(
|ϖE|−

m+r
2

)
there is no difficulty bounding

∣∣φr(h)
∣∣ on the set of h in C3 for which (7.9) is satisfied. To

show that the limit exists and yields a locally constant function we replace γ by γϖ−r
E so that

m now satisfies 0 ⩽ m ⩽ 2(d+ c+1). Then |γ|−1
E |ϖE|b is replaced by |γ|−1/2

E if m is even and

by |γ|−1/2
E |ϖE|1/2 if m is odd. The integration with respect to γ becomes an integration over

a compact set which does not depend on r. The integral of (7.8) appears in the integrand.
Replacing a by a

σ(γ)
in it, we obtain∫

{
a

∣∣∣∣ ∣∣∣ρ(a)− β
α

γ
σ(γ)

a
∣∣∣⩽|γ|1/2E |ϖE |−s

} vi(a)u′i(a) da
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where s is 0 or 1/2 according as m is even or odd. Mutliplying by |γ|−1/2
E |ϖE|s and then

integrating with respect to γ, we obtain a locally constant function of h.

We have still to estimate φr(h) when N
(

β
α

)
is close to 1. We may write

β

α
= λ

ζ

σ(ζ)

with λ ∈ F×. Let |ζ| = |ϖE|c. We may so choose ζ and λ that c remains uniformly bounded.
We also choose λ close to 1. Change variables in the integral of (7.8) so that it becomes

(7.10)

∫
|ρ(a)−λa|⩽|ϖE |−b−c

vi

(
aσ
(
ζ(γ)

))
u′i
(
aσ(ζγ)

)
d×a.

Write a = a1+a2 with a1 ∈ F , trace a2 = 0. Since λ varies in a neighborhood of 1 there is
an integer f ⩽ 0 such that |1−λ|E = |ϖE|e, with some integer e, and

∣∣ρ(a)− λa
∣∣ ⩽ |ϖE|−b−c

together imply

(i) |a1| ⩽ |ϖE|−b−c−e+f

(ii) |a2| ⩽ |ϖE|−b−c+f .

The integral (7.10) may be estimated by a constant times the measure of the intersection of
the set defined by (i), (ii), and

(iii) |ϖE|d−m−c ⩽ |a| ⩽ |ϖE|−d−m−c.

If |ϖF |E = |ϖE|g, where g is 1 or ℓ, this measure is not affected if I replace m by m − zg,
and r by r + zg, z ∈ Z. Thus I may work with a finite set of m—but at the cost of letting r
vary. What I want is that d−m− c should be, for all practical purposes, constant. Then,
for purposes of estimation, the multiplicative Haar measure may be replaced by an additive
one. Moreover b now differs from −m+r

2
, which does not change, by a bounded constant.

The set is clearly empty unless

−b− c− e+ f ⩽ d−m− c

or
m− b ⩽ e− f + d.

Taking the relations between m, r, b′, b and s into account, we conclude that

0 ⩽ m+ r ⩽ 2(e− f + d+ s+ 1).

Because of (iii) the absolute value |a1| remains bounded, independent of r, and, because

of (ii), the absolute value |a2| is now bounded by a constant times |ϖE|
m+r

2 . Thus the measure

of the set may be estimated by a constant times |ϖE|
(m+r)(ℓ−1)

2ℓ .

Since |γ|−1
E |ϖE|b, with the original b, is bounded by a constant times |ϖE|−

(m+r)
2 , the

absolute value of φr(h) is bounded by a constant times∑
0⩽k⩽2(e−f+d+s+1)

|ϖE|−
k
2ℓ = O

(
|1− λ|1/ℓE

)
Since

|1− λ|1/ℓE = |1− λ|F
and

1−N

(
β

α

)
= 1− λℓ
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while, because λ is close to 1,
|1− λℓ|F =

∣∣ℓ(1− λ)
∣∣
F

the proof of the first assertion of Lemma 7.9 is completed.
The proof of the second will be briefer. Let ζ be a primitive ℓth root of unity and let ω be

the character of G′(E) which is 1 on G(E) and takes σ to ζ. The representations Π′
i = ωi⊗Π′,

0 ⩽ i < ℓ, are inequivalent. If u is a unit vector,

ϕ(g) = d(Π′)
(
Π′(g)u, u

)
and

Π′
i(ϕ) =

∫
Z(E)\G′(E)

ϕ(g)Π′
i(g) dg

then

traceΠ′
i(ϕ) =

{
1 i = 0,

0 1 ⩽ i < ℓ
.

Thus

1 =
ℓ−1∑
i=0

ζ−i traceΠ′
i(ϕ) = ℓ

∫
Z(E)\G(E)×σ

ϕ(g)χΠ′(g) dg.

By the Weyl integration formula the right-hand side is equal to

1

2

∑
T

∫
Z(E)T 1−σ(E)\T (E)

χΠ′(t× σ)

{∫
Z(E)T (F )\G(E)

ϕ
(
g−1tσ(g)

)
dg

}
∆(Nt)2 dt.

The sum is over a set of representatives for the conjugacy classes of Cartan subgroups of G
over F . If T is non-split the inner integral equals

1

measZ(F )\T (F )

∫
Z(E)\G(E)

ϕ
(
g−1tσ(g)

)
dg.

Since ∫
Z(E)\G(E)

ϕ
(
g−1tσ(g)

)
dg =

∫
Z(E)\G(E)

ϕ
(
g−1τ(t)σ(g)

)
dg

for all τ ∈ g this expression equals

1

ℓmeasZ(F )\T (F )

∫
Z(E)\G′(E)

ϕ
(
g−1(t× σ)g

)
dg

or
1

measNZ(E)\T (F )

∫
Z(E)\G′(E)

ϕ
(
g−1(t× σ)g

)
dg

and the proof of the first part of the lemma has shown us that the integral appearing here is
equal to χΠ′(σ × t).

If T is split the inner integral is equal to∫
KE

∫
Z(E)T (F )\T (E)

∫
N(E)

ϕ
(
k−1n−1s−1tσ(nsk)× σ

)∣∣∣∣αβ
∣∣∣∣−1

dn ds dk.

Here

s =

(
α 0
0 β

)
.
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Setting
n1 = n−1t(σn)σ(t)−1

and changing variables in the usual way, we deduce from Proposition 2.22 of [14] that the
integral is 0. The assertion of the lemma follows.

We shall also need a relation of orthogonality.

Lemma 7.12. Suppose Π1, Π2 satisfy

Πi(z) = ξ(z) z ∈ Z(E)

and
Πσ

i ≃ Πi.

Extend Πi to Π′
i, a representation of G′(E) = G(E) × G. Suppose moreover that Π2 is

absolutely cuspidal, that Π1 is unitary, and that χΠ′
1
exists as a locally integrable function.

Then
1

2

∑′ 1

measNZ(E)\T (F )

∫
Z(E)T 1−σ(E)\T (E)

χΠ′
1
(t× σ)χΠ′

2
(t× σ)∆(Nt)2 dt

is equal to 0 if Π1 is not equivalent to Π2.

Just as above we take

ϕ(g) = d(Π′
2)
(
Π′

2(g)u, u
)

g ∈ G′(E)

with a unit vector u. Since the proof of Proposition 5.21 of [14], and therefore the proposition
itself, is valid in the present situation

(ωi ⊗ Π′
1)(ϕ) = 0

for each i. Therefore
1

ℓ

ℓ−1∑
i=0

ζ−i trace(ωi ⊗ Π′
1)(ϕ) = 0.

The left-hand side is equal to ∫
G(E)×σ

χΠ′
1
(g)ϕ(g) dg.

Applying the Weyl integration formula and proceeding as before, we obtain the lemma.
We are not yet in a position to show that Π is the lifting of a π. However, there are

some further lemmas toward that end which we can prove now. The map t → Nt imbeds
Z(E)T 1−σ(E)\T (E) into NE/FZ(E)\T (F ) and is measure-preserving. Let ω be a non-trivial
character of NE/FE

×\F×.

Lemma 7.13. If π is square-integrable then

1

2

∑′ 1

measNZ(E)\T (F )

∫
Z(E)T 1−σ(E)\T (E)

∣∣χπ(Nt)
∣∣2∆(Nt)2 dt =

{
1 π ≃ ω ⊗ π
1
ℓ

π ̸≃ ω ⊗ π
.

The sum is again over a set of representatives for the conjugacy classes of non-split Cartan
subgroups over F .



7. CHARACTERS AND LOCAL LIFTING 77

If T is anisotropic then{
Nt
∣∣ t ∈ T (E)

}
=
{
s ∈ T (F )

∣∣ ω(det s) = 1
}
.

Thus, if πi = ωi ⊗ π,

1

ℓ

ℓ−1∑
i=0

χπi
(s)

is 0 outside of this set and equal to χπ(s) on it. Applying the orthogonality relations for
characters of G(F ) (Proposition 15.4 of [14]) to this function, we obtain the lemma.

The same argument shows that if π1 and π2 are square-integrable and π1 ≃ ωi ⊗ π2 for
no i then

1

2

∑′ 1

measNZ(E)\T (F )

∫
Z(E)T 1−σ(E)\T (E)

χπ1(Nt)χπ2(Nt)∆(Nt)2 dt = 0.

Now we take a set of representatives T for the conjugacy classes of all Cartan subgroups
of G over F . We want to introduce a collection S of functions on

X =
⋃
T

NT (E)

or rather on the regular elements therein. We introduce, for the sole purpose of defining
this collection, an equivalence relation ∼ on the set of classes of irreducible admissible
representations of G(F ). We write π(µ, ν) ∼ π(µ′, ν ′) if for some i and j, µ′ = ωiµ, ν ′ = ωjν
and if π(µ, ν), π(µ′, ν ′) are both infinite-dimensional or both finite-dimensional. If π is square
integrable we write π ∼ π′ if π′ = ωi ⊗ π for some i. It is clear that χπ and χπ′ agree on X if
π ∼ π′. S will be the collection of χπ, with π varying over the equivalence classes.

If π(µ, ν) is finite-dimensional let σ(µ, ν) be the representation complementary to π(µ, ν)
in ρ(µ, ν). The representation π(µ, ων) is infinite-dimensional and

(7.11) χπ(µ,ν) + χσ(µ,ν) = χπ(µ,ων)

on X.

Lemma 7.14. Every linear relation amongst the functions in S is a consequence of the
relations (7.11).

If this were not so there would be a relation which did not involve the χπ, π finite-
dimensional. The orthogonality relations then show that it involves no χπ, π square-integrable.
Therefore it involves only the χπ(µ,ν), π(µ, ν) infinite-dimensional, and the explicit expression
for χπ(µ,ν) in terms of µ, ν shows that the relation must be trivial.

There is one simple point which needs to be observed.

Lemma 7.15. If π(µ, ν) is finite-dimensional then π(µ, ων) is not unitary.

First take R = R. By Lemma 5.11 of [14]

µν−1ω−1 : t→ tp

where p is a non-zero integer. Therefore

µ−1νω−1 : t→ t−p

and π(µ, ων) can be unitary only if µ−1 = ων, ων −1 = µ. Then

µµ : t→ tp
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and p is even. The space of π = π(µ, ων) then contains a vector v invariant under SO(2,R).
Standard formulae for spherical functions [31] show that the matrix coefficient

(
π(g)u, u

)
must be unbounded. This is incompatible with unitarity.

Now take F to be non-archimedean. Then

µν−1ω−1 : x→ |x|±1ω−1(x)

and
µ−1νω−1 : x→ |x|∓1ω−1(x).

Consequently π(µ, ων) can be unitary only if µ−1 = µν, ων −1 = µ. Then

µµ : x→ |x|±1ω−1(x).

This, fortunately, is a patent impossibility.

Lemma 7.16. Choose for each representation Π of G(E) invariant under G an extension Π′

to G′(E). Then the restrictions of the characters χΠ′ to G(E)×G are linearly independent.

Copying the proof of Lemma 7.1 of [14], one shows that the characters of the irreducible
admissible representations of G′(E) are linearly independent. If Π′

i = ω′ ⊗ Π′ as before then

1

ℓ

∑
i

ω−i(σ)χΠ′
i
(g)

is 0 except for g ∈ G(E)× σ, when it equals χΠ′(g).
The most important fact about local lifting which remains to be proved is

(3 ) If π is an absolutely cuspidal representation of G(F ) then π has a lifting in the sense
of criterion (ii) of §2. It is independent of σ.

This will be proved in §11. See especially Proposition 11.5. I observe now that the results
of this paragraph, including Lemma 7.17, which is to follow, imply, when taken together with
the assertions (1), (2), and (3), the results (a)–(g) of §2, except for (e), which appears as
Lemma 11.8.

It follows from (3) and Lemma 7.6 that every representation π has a lifting. Moreover it
follows from Lemma 7.16 that it only has one lifting that satisfies (ii). Thus the unicity of
the lifting could fail only if π had one lifting in the sense (i) and another in the sense (ii).
By Corollary 7.3 and Lemmas 7.4 and 7.5 this could only happen if π = π(µ, ων) with
µν−1(x) ≡ |x|±1. Since π is a principal series representation and its lifting in the sense (i)
is special, this lifting cannot also be a lifting in the sense (ii). It follows from Lemmas 7.4
and 7.9 that a lifting in the sense (ii) cannot be cuspidal, and from Lemma 7.14 that it cannot
be a π(µ′, ν ′). So π has no lifting in the sense (ii), and the unicity is established.

By definition Π can be a lifting only if Πτ ∼ Π for all τ ∈ g. If this condition is satisfied
then, by Corollary 7.3 and Lemmas 7.4 and 7.5, Π is a lifting except perhaps when it is
cuspidal. That it is a lifting when it is cuspidal follows from (3), Lemmas 7.9 and 7.12, and the
completeness of the characters of square-integrable representations of G(F ), a consequence
of Lemma 15.1 of [14]. The property (c) follows from Lemma 7.14 and 7.17; and (d) is a
formality, as is (f). In so far as (g) is not an immediate consequence of the definitions and
the unicity, it is a consequence of (3) and Lemma 7.6.

In our scheme for proving the results of these notes, the following lemma plays a critical
role. It is a shame that our proof is so uninspired.
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Lemma 7.17. Suppose π is an irreducible, admissible representation of G(F ) and π ≃ ω⊗π.
Then ℓ = 2 and there is a quasi-character θ of E× such that π = π(τ) with

τ = Ind(WE/F ,WE/E, θ).

Moreover if π = π(τ) then π ≃ ω ⊗ π.

Suppose π = π(µ, ν). Then ω ⊗ π = π(ωµ, µν). Thus π ≃ ω ⊗ π if and only if µ = ων,
ν = ωµ; so ω2 = 1 and ℓ = 2. If ℓ = 2 and θ(x) = µ(Nx), then π(τ) = π(µ, ωµ) ([14,
Theorem 4.6 together with the remarks on p. 180]1). If F is non-archimedean and π = σ(µ, ν)
then π ̸≃ ω ⊗ π. (This follows readily from Proposition 3.6 of [14]). If F is R every square-
integrable representation is a π(τ) for some τ , and it follows from Theorem 5.11 of [14] that
π(τ) ≃ ω ⊗ π(τ).

Suppose finally that F is non-archimedean and π is absolutely cuspidal. We may as well
suppose also that π is unitary. Let

G+(F ) =
{
g ∈ G(F )

∣∣ ω(det g) = 1
}
.

We begin by remarking that if π ≃ ω ⊗ π then the restriction of π to G+(F ) is reducible.
Indeed suppose the restriction were irreducible. There is an operator A on the space of π
such that

Aπ(g)A−1 = ω(det g)π(g) g ∈ G(F ).

The irreducibility and the admissibility of the restriction of π to G+(F ) together imply that
A is a scalar. We deduce a contradiction, viz.,

Aπ(g)A−1 = π(g) g ∈ G(F ).

We also see immediately that ℓ must be 2, for if ℓ is odd ω is not trivial on Z(F ).
Take ℓ = 2 and let π+ be one of the irreducible components of the restriction of π to G+(F ).

Let π act on V . Define a G(F )-invariant map from the space of r = Ind
(
G(F ), G+(F ), π

+
)

to V by

φ→
∑

G+(F )\G(F )

π(g−1)ϕ(g).

If π+ extended to a representation π′ of G(F ) then π′ ̸≃ ω ⊗ π′,

r = π′ ⊕ (ω ⊗ π′)

and π ≃ π′ or π ≃ ω ⊗ π′. This is impossible if π ≃ ω ⊗ π.
Choose h in G(F ) with ω(deth) = −1 and set π−(g) = π+(h−1gh). We conclude that if

π ≃ ω ⊗ π then π+ ̸≃ π− and the restriction of π to G(F ) is π+ ⊕ π−. A straightforward
imitation of the proof of Proposition 7.4 of [14] shows that the characters of π+ and π−

exist as locally-integrable functions on G+(F ). For a t in G+(F ) with distinct eigenvalues we
define

χ+
π (t) = χπ+(t)− χπ−(t).

Let T be the Cartan subgroup to which t belongs. If T is split or the quadratic extension
determined by T is not isomorphic to E there is an s ∈ T (F ) with ω(det s) = −1. Then

χπ−(t) = χπ+(s−1ts) = χπ+(t)

and
χ+
π (t) = 0.

1Ed.: P. 180 of the published version of [14].
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I observe that the function χ+
π can be defined for any π for which π ≃ ω ⊗ π, provided that

χπ+ , χπ− are known, for some reason or another, to exist as functions. It is only determined
up to sign.

Choose a Cartan subgroup T so that the corresponding quadratic extension is isomorphic
to E. The orthogonality relations for G+(F ) yield the following lemma.

Lemma 7.18. Suppose π is unitary and absolutely cuspidal and the function χ+
π′ is defined.

Suppose also that the restrictions of π and π′ to Z(F ) are the same. If π is not equivalent to
π′ then ∫

Z(F )\T (F )

χ+
π′(t)χ+

π (t)∆(t)2 dt = 0.

If w lies in the normalizer of T in G(F ) but not in T (F ) then

χ+
π (wtw

−1) = ω(detw)χ+
π (t)

and the standard theory of crossed products shows that ω(detw) = ω(−1). Fix a regular t0
in T (F ) with eigenvalues a0, b0. The ordering a0, b0 determines an order of the eigenvalues a,
b of any t in T (F ). If θ is a quasi-character of E, which we identify with T (F ), we set

χθ(t) = λ(E/F, ψ)ω

(
a− b

a0 − b0

)
θ(t) + θ(wtw−1)

∆(t)
.

Here ψ is a fixed non-trivial character of F and λ(E/F, ψ) is defined as in [21]. We extend
χθ to a locally integrable function on G(F ) by setting χθ(g) = 0 unless g = h−1th with t
regular in T (F ) when we set

χθ(g) = ω(deth)χθ(t).

Lemma 7.17 is now a consequence of the completeness theorem for characters of Z(F )\T (F )
and the following lemma.

Lemma 7.19. Suppose
τ = Ind(WE/F ,WE/E, θ)

and π ≃ π(τ). Then π ≃ ω ⊗ π, and χ+
π exists as a function and is equal to ±χθ.

This is the lemma with the embarrassing proof. For F = R satisfactory proofs are
available; but they are not elementary. A quick proof which is neither satisfactory nor
elementary can be obtained along the following lines. It follows from the results of §5 of
[14] that if π = π(τ) then π ≃ ω ⊗ π, and it follows from general results of Harish-Chandra
that χ+

π is defined as a function. To compute it one has to find χπ+ and χπ− on the regular
elements of the non-split Cartan subgroup. For this it is enough to know the K-type of π+

and π− and that is given in §5 of [14]. No more need be said.
For non-archimedean fields it is possible to deduce the lemma from known formulae for

the characters. Since it is harder to prove these formulae than to prove the lemma, and since
no satisfactory proof of it, elementary or otherwise, is available, it is perhaps not entirely
profitless to run through a verification by computation.

According to Theorem 4.6 of [14], in which the quasi-character θ is denoted ω and π(τ) is
denoted π(ω), the representation π(τ) restricted to G+(F ) is reducible, and so π(τ) ≃ ω⊗π(τ).
We may take π+ to be the representation π(θ, ψ) of that theorem. To show that χπ+ and
χπ− exist as functions, all we need do is show that the distribution χπ+ − χπ− is a function,
for this is already known to be true for χπ. I observe that the proof of the lemma which will
now be given is also valid for completions of function fields.
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As in [14] we realize π+ = π(θ, ψ) on a space V+ of functions on F+. We need a
representation of π+(g) as an integral operator when g is(

a b
c d

)
and c ̸= 0. We may write(

a b
c d

)
=

(
1 a

c

0 1

)(
0 1

−1 0

)(−c −d
0 b− ad

c

)
.

This allows us to effect the transformation φ→ π+(g)φ in three steps. The first is to replace
the function φ by

u→ ωθ

(
ad− bc

−c

)
ψ

(
cdu

ad− bc

)
φ

(
c2u

ad− bc

)
.

In general the transformation

π+

((
0 1

−1 0

))
sends φ to φ′ with

φ′(u) = λ(E/F, ψ)θ(x)|x|1/2E

∫
E

ψE(xy)θ
−1(y)|y|−1/2

E φ(Ny) dy.

Here Nx = u,
ψE(w) = ψ(traceE/F w), w ∈ E,

and the bar denotes the non-trivial automorphism of E over F . The measure on E is also to
be self-dual with respect to ψE.

The map y → Ny together with the measures on E and F self-dual with respect to ψE

and ψ yields a measure on
{ y | Ny = u }.

We set

J(u, v) = λ(E/F, ψ)θ(u)|u|F
∫
Ny=uv

ψE(y)θ
−1(y)|y|−1/2

E

and then

φ′(u) =

∫
F+

J(u, v)ϕ(v) dv.

Observe that ∫
Ny=uNx

f(y) =

∫
Ny=u

f(xy).

Thus the second step takes us to the function

u→ ωθ

(
ad− bc

−c

)∫
F+

J(u, v)ψ

(
cdv

ad− bc

)
φ

(
c2v

ad− bc

)
dv

and the third to the function

u→ ωθ

(
ad− bc

−c

)
ψ

(
au

c

)∫
F+

J(u, v)ψ

(
cdv

ad− bc

)
φ

(
c2v

ad− bc

)
dv.
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Changing variables we see that π+(g) is an integral operator with kernel∣∣∣∣ad− bc

c2

∣∣∣∣ωθ(ad− bc

−c

)
ψ

(
au

c

)
ψ

(
dv

c

)
J

(
u,
ad− bc

c2
v

)
.

If f is a locally constant function on G+(F ) with a support which is compact and does
not meet the group of triangular matrices then

π+(f) =

∫
G+(F )

f(g)π+(g) dg

is an operator of trace class and is defined by a kernel

F (u, v) =

∫
G+(F )

∣∣∣∣ad− bc

c2

∣∣∣∣ωθ(ad− bc

−c

)
ψ

(
au+ dv

c

)
J

(
u,
ad− bc

c2
v

)
f(g) dg.

At the cost of multiplying π by a one-dimensional representation, I may suppose that θ is a
character. Then there is an inner product on V+ with respect to which the operators π+(g)
are unitary. On S(F+) this must be the inner product of Proposition 2.21.2 of [14]. If φ is
orthogonal to S(F+) then π+

((
1 x
0 1

))
ψ − ψ, φ

 = 0

for all ψ and all x. As a consequence

π+

((
1 x
0 1

))
φ = φ

for all x. This we know to be impossible. We conclude that if EN is the orthogonal projection
on the space of functions supported by{

x ∈ F+

∣∣∣∣ 1

N
⩽ |x| ⩽ N

}
then ENφ is equal to φ on this set and to 0 off it, and

traceπ+(f) = lim
N→∞

traceENπ
+(f)EN .

The kernel of ENπ
+(f)EN is F (u, v) if 1

N
⩽ |u|, |v| ⩽ N and 0 otherwise. The trace is

obtained by integrating the kernel along the diagonal.
The trace of ENπ

+(f)EN is obtained by taking the integral over G+(F ) of the product of
the expression λ(E/F, ψ)f(g) with∣∣∣∣ad− bc

c2

∣∣∣∣ωθ(ad− bc

−c

)
·
∫

1
N
⩽|u|⩽N

ψ

(
u(a+ d)

c

)
θ(u)|u|F

{∫
Ny=

(ad−bc)u2

c2

ψE(y)θ
−1(y)|y|−1/2

E

}
du.

If α = det g and β = trace g this may be written

λ(E/F, ψ)|α| θ(α)
ω(−c)

∫
1

N|c|⩽|u|⩽ N
|c|

ψ(−βu)θ(u)|u|F

{∫
Ny=αu2

ψE(y)θ
−1(y)|y|−1/2

E

}
du.
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It is understood that, in addition to the constraints explicitly given,

ω(−cu) = 1.

The representation π− is π(θ, ψ′) where ψ′(x) = ψ(ex) with ω(e) = −1. It follows readily
that

χπ+(f)− χπ−(f)

is equal to the limit as N approaches infinity of the integral over G+(F ) of the product
of f(g) with

λ(E/F, ψ)|α| θ(α)
ω(−c)

∫
1

N|c|⩽|u|⩽ N
|c|

ψ(−βu)θ(u)|u|F

{∫
Ny=αu2

ψE(y)θ
−1(y)|y|−1/2

E

}
du.

There is now no constraint on the value of ω(−cu).
Since we may confine the integration with respect to g to a region in which |c| is bounded

below by a positive constant and since f has compact support, the lower limit in the
integration with respect to u may be taken to be 0. A change of variables in the inner integral
yields

λ(E/F, ψ)
|α|θ(α)
ω(−c)

∫
Ny=α


∫
|u|⩽ N

|c|

ψ
(
u(trace y − β)

)
du

θ−1(y)|y|−1/2
E = λN(g).

We may suppose that N is approaching infinity through powers of |ϖ|, where ϖ is a

uniformizing parameter. The inner integral is 0 if |trace y − β| > |c||ϖ|−n

N
and

N

|c|
|ϖ|n/2

otherwise. Here ϖ−nOF is the largest ideal on which ψ is trivial.
Let E = F (δ) and let y = a+ bδ. If r = trace y, s = Ny then∣∣∣∣∣ ∂r∂a ∂r

∂b
∂s
∂a

∂s
∂b

∣∣∣∣∣ = −b(δ − δ)2.

We may as well suppose that the largest ideal on which ψ is trivial is simply OF . The self-dual

measure on E is
∣∣∣(δ − δ)2

∣∣∣1/2
F
da db which equals

dr ds∣∣(y − y)2
∣∣1/2
F

.

If the support of f does not meet the set of matrices with equal eigenvalues, that is, the set
where β2 = 4α, then for N large and |c| bounded the relations

Ny = α, |trace y − β| ⩽ |c|
N
, f(g) ̸= 0, y ∈ E,

imply ∣∣(y − y)2
∣∣
F
=
∣∣(trace y)2 − 4Ny

∣∣
F
=
∣∣(trace y)2 − β2 + β2 − 4α

∣∣ = |β2 − 4α|.
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We conclude that λN(g) remains bounded on the support of f . If the Cartan subgroup in
which g lies is not conjugate to T then λN(g) is 0 for large N . Otherwise it is

(7.12)
λ(E/F, ψ)θ(α)

ω(−c)∆(g)

{
θ−1(y) + θ−1(y)

}
if g is conjugate to y, because

|α|1/2 = |y|−1/2
E

and

∆(g) =
|β2 − 4α|1/2

|α|1/2
.

Notice that
θ(α)θ−1(y) = θ(y) θ(α)θ−1(y) = θ(y).

Suppose g = t lies in T (F ). We have identified T (F ) with E×; but how, for the
identification is not canonical? It does not matter for only the sign of χθ(t) is affected. We
may for example send a+ bδ to (

a ub
b a+ bv

)
if δ2 = u+ vδ. If g corresponds to y = a+ bδ the lower left-hand entry c of g is b and

−b = y − y

δ − δ
.

Thus if we choose t0 to correspond to δ then (7.12) is equal to χθ(t).
If θ does not factor through the norm map then π is absolutely cuspidal and χπ+ , χπ−

are known to exist as functions; so the lemma is proved for such a θ. For a θ which factors
through the norm we choose a θ1 which agrees with it on F× but does not so factor. To
distinguish the two possibilities we write λN(g, θ) and λN(g, θ1).

If we can show that there is a locally integrable function λ(g) such that

lim
N→∞

∫
G+(F )

f(g)λN(g, θ) dg =

∫
G+(F )

f(g)λ(g) dg

when the support of f does not meet the group of triangular matrices we can conclude that
λ(g) = χθ(g) (provided the imbedding and t0 are chosen as above) and that χπ+ − χπ− is a
function outside the set of scalar matrices, and equals χθ there. Since we know that

lim
N→∞

∫
G+(F )

f(g)λN(g, θ1) dg =

∫
G+(F )

f(g)χθ1(g) dg

it is enough to establish the existence of a locally integrable η for which

lim

∫
G+(F )

f(g)
(
λN(g, θ)− λN(g, θ1)

)
dg =

∫
G+(F )

f(g)η(g) dg.

For this it is sufficient to show that

(7.13) N

∫
Ny=α

χN(trace y − β)
∣∣θ−1(y)− θ−1

1 (y)
∣∣|y|−1/2

E

remains bounded as α varies in a compact subset C of F× and β in a compact subset of F .
Here χN is the characteristic function of{

u
∣∣ |u| ⩽ N

}
.
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Clearly there is a constant ϵ ∈ 0 such that

Ny ∈ C θ−1(y)− θ−1
1 (y) ̸= 0,

imply ∣∣(y − y)2
∣∣1/2
F

⩾ ϵ.

It follows that the expression (7.13) is at most 2/ϵ for α ∈ C.
We can now assert that the difference between the distribution χ+

π = χπ+ − χπ− and the
distribution defined by the function χθ is concentrated on the scalar matrices. Therefore it is
of the form

f → a

∫
Z(F )

ξ(z)f(z) dz

if
π(z) = ξ(z), z ∈ Z(F ).

Here a is a constant. Since the distribution χπ = χπ+ + χπ− exists as a function, we infer
that a locally integrable function ζ satisfying

traceπ+(f) =
a

2

∫
Z(F )

ξ(z)f(z) dz +

∫
G+(F )

f(g)ζ(g) dg

exists. Let

Kn =

{(
a b
c d

)
∈ G(O)

∣∣∣∣∣ a− 1 ≡ d− 1 ≡ b ≡ c (mod ωn)

}
.

and let fn(g) be 0 unless g = zk, z ∈ Z(O), k ∈ Kn when fn(g) = ξ−1(z). The function fn is
well-defined for n large, and, since χπ exists as a locally integrable function

lim
n→∞

traceπ(fn) = 0.

However
traceπ(fn) ⩾ traceπ+(fn) ⩾ 0

and

lim
n→∞

traceπ+(fn) =
a

2

∫
Z(O)

dz.

It follows that a is 0.





CHAPTER 8

Convolution

Suppose F is a local field and E is a direct sum of ℓ copies of F on which the group G of
order ℓ acts by cyclic permutation. The correct notion of the lifting of an irreducible admissible
representation of G(F ) to G(E) = G(F )× · · · ×G(F ) is patent: the representation π lifts to
Π = π ⊗ · · · ⊗ π. But there are some auxiliary constructions to be clarified.

The associate group LG of G× · · · ×G is a direct product

GL(2,C)× · · · ×GL(2,C)×G(K/F ).

There is an obvious homomorphism of LG to LG

φ : g × τ → (g, . . . , g)× τ.

The corresponding homomorphism of Hecke algebras takes a function ϕ of the form

ϕ(g1, . . . , gℓ) = f1(g1)f2(g2) · · · fℓ(gℓ)
to the convolution

f = f1 ∗ · · · ∗ fℓ.
For our purposes it is simplest to consider only functions, spherical or not, of the form

ϕ : (g1, . . . , gℓ) → f1(g1) · · · fℓ(gℓ)
and to define the map ϕ→ f , which will play the same role as those introduced in Paragraphs
5 and 6, by the convolution product

f = f1 ∗ · · · ∗ fℓ.
It is implicit that the factors of G have been ordered. The order is not important provided
that σ : (g1, . . . , gℓ) → (g2, . . . , gℓ, g1) is a generator of G.

If
δ = (δ1, . . . , δℓ)

then
Nδ = (δ1 · · · δℓ, δ2 · · · δℓδ1, . . . , δℓδ1 · · · δℓ−1)

is conjugate to
Nδ = (δ1 · · · δℓ, δ1 · · · δℓ, . . . , δ1 · · · δℓ) = (γ, . . . , γ)

which lies in G(F ), if G(F ) is identified with the set of fixed points of G in G(E).
The integral ∫

Gσ
δ (E)\G(E)

ϕ
(
h−1δσ(h)

)
dh

when written out in full becomes∫
Gσ

δ (E)\G(E)

f1(h
−1
1 δ1h2) · · · fℓ−1(h

−1
ℓ−1δℓ−1hℓ)fℓ(h

−1
ℓ δℓh1) dh.

87



88 8. CONVOLUTION

We introduce new variables by

g1 = h1,

g2 = h−1
2 δ2 · · · δℓh1,

...

gℓ−1 = h−1
ℓ−1δℓ−1δℓh1,

gℓ = h−1
ℓ δℓh1.

Then Gσ
δ (E) becomes {

(g, 1, . . . , 1)
∣∣ g ∈ Gγ(F )

}
and the integral itself becomes∫

Gγ(F )\G(F )×G(F )×···×G(F )

f1(g
−1
1 γg1g

−1
2 )f2(g2g

−1
3 ) · · · fℓ(gℓ) dg1 · · · dgℓ

which is ∫
Gγ(F )\G(F )

f(g−1γg) dg.

Suppose π is an irreducible admissible representation of G(F ) on V and let Π = π⊗· · ·⊗π.
We extend Π to a representation Π′ of G(E)×G by letting

Π′(σ) : v1 ⊗ · · · ⊗ vℓ → v2 ⊗ v3 ⊗ · · · ⊗ vℓ ⊗ v1.

We choose a basis {vi} for V so that

traceπ(f) =
∑

πii(f)

if f is a compactly supported smooth function on G(F ). The matrix of

Π(ϕ)Π′(σ) =
(
π(f1)⊗ · · · ⊗ π(fℓ)

)
Π′(σ)

with respect to the basis {vi1 ⊗ · · · ⊗ viℓ} is

πi1j2(f1)πi2j3(f3) · · · πiℓj1(fℓ)
and its trace is∑

πi1i2(f1)πi2,i3(f3) · · · πiℓi1(fℓ) = trace π(f1 ∗ · · · ∗ fℓ) = trace π(f).

Here f is the image of ϕ.
Since the character of π is a locally integrable function χπ, the trace of Π(σ)Π

′(σ) is equal
to ∫

G(F )

f1(g1g
−1
2 )f2(g2g

−1
3 ) · · · fℓ(gℓ) dg1 · · · dgℓ.

If we change variables this integral becomes∫
G(F )

ϕ(g1, . . . , gℓ)χπ(g1 · · · gℓ) dg.

Thus χΠ′ is a locally integrable function on G(E)× σ and χΠ′(g × σ) is χπ(h) if h is Ng and
has distinct eigenvalues.

It will be important to know the range of the map ϕ→ f . It is clear that it is surjective
if F is non-archimedean, that is, every smooth compactly supported f is the image of some
smooth compactly supported ϕ. If F is archimedean we can apparently obtain all smooth f if
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we only demand that ϕ be highly differentiable and in addition allow finite linear combinations
of the simple functions ϕ(g) = f1(g1) · · · fℓ(gℓ) ([8, 19]). This is adequate, for the twisted
trace formula will be valid for a function ϕ which is sufficiently differentiable. This will have
to be the meaning attached to smooth in Paragraphs 10 and 11.

If ξ is a character of F× or Z(F ), the observations of this paragraph are also valid for a
function ϕ = (f1, . . . , fℓ) with fi satisfying

fi(zg) = ξ−1(z)fi(g) z ∈ Z(F ).

One has merely to define convolution suitably.





CHAPTER 9

The primitive state of our subject revealed

The derivation of the trace formula is such that it yields an expression for the trace, an
invariant distribution, as a sum of terms of which some are not invariant and are not well
understood. In many of the applications of the formula these terms have appeared with
coefficient 0 and could be ignored. In the application we now have in mind they are not so
easily suppressed. It is however possible to circumvent most of the difficulties they cause, but
not all. Our ruse succeeds only if accompanied by some insight or hard work. The former
failing we resort to the latter.

It is convenient to choose the forms defining the Tamagawa measures on N and Z\A to
be

dn = dx, n =

(
1 x
0 0

)
,

dt =
b

a
d

(
a

b

)
, t =

(
a 0
0 b

)
.

The maximal compact subgroup K of G(F ) will be chosen to be G(O) if F is non-archimedean
and to be the standard orthogonal or unitary group if F is archimedean. We choose the
measure dk on K so that∫

Z(F )\G(F )

h(g) dg =

∫
Z(F )\A(F )

∫
N(F )

∫
K

h(ank) da dn dk.

Let λ(g) be the function on A(F )\G(F ) obtained by writing g = ank, a ∈ A(F ),
n ∈ N(F ), k ∈ K and setting λ(g) = λ(n), with λ(n) defined as on p. 519 of [14]. If
γ ∈ A(F ) and ∆(γ) ̸= 0 set

A1(γ, f) = ∆(γ)

∫
A(F )\G(F )

f(g−1γg) lnλ(g) dg.

We are interested in f which are smooth, satisfy

f(zg) = ξ−1(z)f(g), z ∈ NE/FZ(E),

and have compact support modulo NE/FZ(E). We shall write A1(γ,f)
2

as the sum of A2(γ, f)
and A3(γ, f) where f → A2(γ, f) is an invariant distribution and where A3(γ, f) extends, for
each f , to a continuous function on A(F ) whose support is compact modulo NE/FZ(E).

If

γ =

(
a 0
0 b

)
then

A1(γ, f)

2
= −∆(γ)

∫
K

∫
|x|>1

f

k−1γ

1
(
1− b

a
x
)

0 1

k
 ln|x| dx dk

91
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which in turn equals

−
∣∣∣∣ab
∣∣∣∣1/2 ∫

K

∫
|x|>|1− b

a |
f

(
k−1γ

(
1 x
0 1

)
k

)(
ln|x| − ln

∣∣∣∣1− b

a

∣∣∣∣
)
dx dk.

Suppose first that F is non-archimedean. If
∣∣∣1− b

a

∣∣∣ > 1 set b(γ, f) and c(γ, f) = 0.

Otherwise set

b(γ, f) =

∣∣∣∣ab
∣∣∣∣1/2f(a)∫

K

∫
|x|⩽|1− b

a |

(
ln|x| − ln

∣∣∣∣1− b

a

∣∣∣∣
)
dx dk

=

∣∣∣∣ab
∣∣∣∣1/2∣∣∣∣1− b

a

∣∣∣∣f(a)∫
K

∫
|x|⩽1

ln|x| dx dk

and

c(γ, f) = −
∣∣∣∣ab
∣∣∣∣1/2|ϖ| ln|ϖ|

∫
Gn(F )\G(F )

f(g−1ng) dg,

with

n = a

(
1 1
0 1

)
.

As usual, ϖ is a uniformizing parameter for F . Define ω(x, γ) by

ω(x, γ) =

− ln|x| |x| >
∣∣∣1− b

a

∣∣∣
− ln

∣∣∣1− b
a

∣∣∣ |x| ⩽
∣∣∣1− b

a

∣∣∣ ⩽ 1
.

We define A2(γ, f) to be

ln

∣∣∣∣1− b

a

∣∣∣∣F (γ, f) + b(γ, f) + c(γ, f).

It clearly yields an invariant distribution. Then A3(γ, f) must be∣∣∣∣ab
∣∣∣∣1/2 ∫

K

∫
F

f

(
k−1γ

(
1 x
0 1

)
k

)
ω(x, γ) dx dk − b(γ, f)− c(γ, f).

If f is given and if we then choose γ so that
∣∣∣1− b

a

∣∣∣ is very small, the value of A3(γ, f) is

−
∫
K

∫
F

f

(
k−1a

(
1 x
0 1

)
k

)
ln|x| dx dk − |ϖ| ln|ϖ|

1− |ϖ|

∫
K

∫
F

f

(
k−1a

(
1 x
0 1

)
k

)
dx dk

so that A3(γ, f) clearly extends to all of A(F ) as a smooth function. The factor 1 − |ϖ|
appears in the denominator because we use the Tamagawa measures of [12].

We let β(g) be the function on G(F ) defined by

β

((
1 x
0 1

)(
c 0
0 d

)
k

)
=

∣∣∣∣ cd
∣∣∣∣.
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Departing from the notation on p. 520 of [14], we define the function θ(a, s, f) to be

1

L(1 + s, 1F )

∫
Gn(F )\G(F )

f(g−1ng)β(g)−s dg

with

n = a

(
1 1
0 1

)
.

Then θ(a, s, f) is also equal to

1

L(1 + s, 1F )

∫
Z(F )\A(F )

∫
K

f(k−1t−1ntk)

∣∣∣∣ cd
∣∣∣∣−1−s

dt dk

if

t =

(
c 0
0 d

)
It is easy to check that the derivative of θ(a, s, f) at s = 0 is −A3(a, f).

Suppose that f is the function f 0, where f 0(g) = 0 unless g = zk, z ∈ NE/FZ(E), k ∈ K,
when it equals ξ−1(z). Of course f 0 exists only if ξ is unramified. All three terms in the

definition of A3(γ, f
0) are 0 unless

∣∣∣1− b
a

∣∣∣ ⩽ 1. If this condition is satisfied the difference

between the first two terms is

−f 0(a)

∫
K

∫
|x|⩽1

ln|x| dx dk = −|ϖ| ln|ϖ|
1− |ϖ|

f 0(a)

∫
K

∫
|x|⩽1

dx dk.

Moreover

c(γ, f) = −|ϖ| ln|ϖ|
1− |ϖ|

f 0(a)

∫
K

∫
|x|⩽1

dx dk.

Thus A3(γ, f
0) is always 0.

If F is archimedean then

A1(γ, f)

2
= −∆(γ)

2

∫
K

∫
F

f

k−1γ

1
(
1− b

a

)
x

0 1

k
 ln

(
1 + |x|2

)
dx dk

= −1

2

∣∣∣∣ab
∣∣∣∣1/2 ∫

K

∫
F

f

(
k−1γ

(
1 x
0 1

)
k

)ln

(∣∣∣∣1− b

a

∣∣∣∣2 + |x|2
)

− ln

∣∣∣∣1− b

a

∣∣∣∣2
 dx dk.

We may define

c(γ, f) = −L′(1, 1F )

L(1, 1F )2

∫
Gn(F )\G(F )

f(g−1ng) dg.

This is just another form of the definition used before; we refrain here from writing out the
L-functions explicitly ([21]).

We set

A2(γ, f) = ln

∣∣∣∣1− b

a

∣∣∣∣F (γ, f) + c(γ, f)

and

A3(γ, f) = −1

2

∣∣∣∣ab
∣∣∣∣1/2 ∫

K

∫
F

f

(
k−1γ

(
1 x
0 1

)
k

)
ln

(∣∣∣∣1− b

a

∣∣∣∣2 + |x|2
)
dx dk − c(γ, f).
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The desired properties are immediate. It is also clear that

θ′(a, 0, f) = −A3(a, f)

once again.
Continuity of A3(γ, f) as a function on A(F ) is, however, not enough because we will

want to apply a form of Poisson summation, for which we need to know at least that the
Fourier-Mellin transform of A3(γ, f) is integrable. If we verify that the second derivatives of
A3(γ, f) are measures when F = R and that the third derivatives are when F = C, we will
have adequate control on the Fourier-Mellin transform.1

A moment’s thought and we are reduced to considering

φ(t) =

∫
F

h(x) ln
(
|t|2 + |x|2

)
dx

at t = 0. Here h is a smooth function with compact support on F . If F = R the first
derivative of φ is

φ′(t) = sgn t

∫
F

2h(tx)

1 + x2
dx.

Since φ′ is continuous except at 0 where it has a jump, the second derivative is a measure. If
F = C a further reduction leads to

φ1(t) =

∫ 1

0

h1(x) ln
(
x2 + |t|2

)
d(x2).

A direct calculation shows that∫ 1

0

ln
(
x2 + |t|2

)
d(x2) =

(
1 + |t|2

)
ln
(
1 + |t|2

)
− |t|2 ln|t|2 − 1

has third derivatives which are measures. We may therefore suppose that h1(0) = 0 and that
h1(x) = O(x) as x ↘ 0. Computing the first, second, and third derivatives of ln

(
x2 + |t|2

)
with respect to the two components of t, one finds that after multiplication by x2 they are
O
(
1/|t|

)
as |t| → 0 and that the first and second remain bounded. It follows that the third

derivatives of φ1(t) are measures.
This is all we need for the ordinary trace formula, but we must prepare ourselves for the

twisted formula as well. Suppose E is either a cyclic extension of F of degree ℓ or the direct
sum of ℓ copies of F and σ is a fixed non-trivial element in G(E/F ). If δ ∈ A(E), γ = Nδ,
and ∆(γ) ̸= 0 we set

A1(δ, ϕ) = ∆(γ)

∫
Z(E)A(F )\G(E)

ϕ
(
g−1δσ(g)

)
lnλ(g) dg.

We are of course supposing that ϕ(zg) = ξ−1
E (z)ϕ(g), z ∈ Z(E). If E is a field then λ is

defined as before except that E replaces F . If E is not a field and g has components g1, . . . , gℓ
then λ(g) = Πλ(gi).

We are going to write A1(δ,ϕ)
2

as the sum of A2(δ, ϕ) and A3(δ, ϕ). The latter will extend to
a continuous function on A1−σ(E)\A(E) whose support is compact modulo Z(E). Moreover
if ϕ and f are related as in Paragraphs 6 or 8 then

A2(δ, ϕ) = ℓA2(γ, f).

1I am grateful to J. Arthur for drawing to my attention that A3(γ, f) is not smooth.
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Therefore if ϕ is a spherical function and f is related to it as in Paragraph 5, we will also have

A3(δ, ϕ) = ℓA3(γ, f).

We suppose first that F is non-archimedean. We set

F (δ, ϕ) = ∆(γ)

∫
Z(E)A(F )\G(E)

ϕ
(
g−1δσ(g)

)
dg.

If

γ =

(
a 0
0 b

)
we set b(δ, ϕ) = c(δ, ϕ) = 0 unless

∣∣∣1− b
a

∣∣∣ ⩽ 1. If this condition is satisfied and

δ =

(
c 0
0 d

)
we set b(δ, ϕ) equal to

ℓ

∣∣∣∣ab
∣∣∣∣1/2
{∫

Z(E)G(F )\G(E)

ϕ
(
g−1cσ(g)

)
dg

}{∣∣∣∣1− b

a

∣∣∣∣ ∫
K

∫
{x∈F | |x|⩽1}

ln|x| dx dk

}
.

Moreover we choose z0 with trace z0 = 1 and set

n0 =

(
1 z0
0 1

)
and

n = cn0

and

c(δ, ϕ) = −ℓ
∣∣∣∣ab
∣∣∣∣1/2|ϖ| ln|ϖ|

∫
Gσ

n(E)Z(E)\G(E)

f
(
g−1nσ(g)

)
dg.

Finally

A2(δ, ϕ) = ln

∣∣∣∣1− b

a

∣∣∣∣ℓF (δ, ϕ) + b(δ, ϕ) + c(δ, ϕ)

and

A3(δ, ϕ) =
A1(δ, ϕ)

2
− A2(δ, ϕ).

The only difficulty is to analyze the behavior of A3(δ, ϕ) as
∣∣∣1− b

a

∣∣∣ approaches 0. It

is clear that c(δ, ϕ) extends to a smooth function on A1−σ(E)\A(E). Moreover c(δ, ϕ) is
independent of the choice of z0. Since we are working with fields of characteristic 0 we may
take z0 = 1/ℓ ∈ F . We must consider

A1(δ, ϕ)

2
− b(δ, ϕ)− ln

∣∣∣∣1− b

a

∣∣∣∣ℓF (δ, ϕ).
We are free to multiply δ by any element of Z(E)A1−σ(E). Since

∣∣∣1− b
a

∣∣∣ is taken small we

may suppose that c and d belong to F .
We first treat the case that F is non-archimedean and E is a field. We must be careful

to distinguish between absolute values in F and absolute values in E; so for the present
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discussion alone we denote absolute values in E by double bars. Observe that we may take
c/d close to 1 and write it as 1 + u with |u| small. Then∣∣∣∣1− b

a

∣∣∣∣ =
∣∣∣∣∣1− dℓ

cℓ

∣∣∣∣∣ = |ℓu|.

Denote G(OE) by KE. We may rewrite the expression defining A1(δ,ϕ)
2

as

−∆(γ)

∫
KE

∫
Z(E)A(F )\A(E)

∫
∥x∥⩾1

ϕ
(
k−1n−1t−1δσ(tnk)

)
ln∥x∥ dn dt dk.

Here

n = n(x) =

(
1 x
0 1

)
.

If

t =

(
α 0
0 β

)
we rewrite this once again as

−∆(γ)

∫
KE

∫∫
∥x∥⩾

∥∥∥α
β

∥∥∥ ϕ
(
k−1t−1n−1δσ(ntk)

)(
ln∥x∥ − ln

∣∣∣∣αβ
∣∣∣∣
)∥∥∥∥αβ

∥∥∥∥−1

dx dt dk.

The second integral is taken over Z(E)A(F )\A(E).
The integral with respect to x ∈ E may be replaced by a double integral, for we may first

integrate over F and then over F\E. To be more precise we replace the variable x by x+ y
ℓ

and integrate first with respect to y. This forces us, if we use the usual normalizations of
measures, to divide by |ℓ|. The new x which appears is only determined modulo F and we

choose it so that
∥∥x+ y

ℓ

∥∥ ⩾ ∥x∥ for all y ∈ F . Then A1(δ,ϕ)
2

becomes

−∆(γ)

|ℓ|

∫
KE

∫∫∫
ϕ

(
k−1t−1n(−x)δn

(
uy

ℓ

)
n
(
σ(x)

)
σ(tk)

)(
ln

∣∣∣∣x+ y

ℓ

∣∣∣∣− ln

∣∣∣∣αβ
∣∣∣∣
)∥∥∥∥αβ

∥∥∥∥−1

.

The inner integral is over the region
∥∥x+ y

ℓ

∥∥ ⩾
∥∥∥α

β

∥∥∥.
The region of integration may be decomposed into two parts, defined by the inequalities∥∥y

ℓ

∥∥ ⩽ ∥x∥ and ∥x∥ <
∥∥y

ℓ

∥∥. Since ∆(γ) = |ℓu|, the integral over the second region yields

−
∫∫∫∫

ϕ

(
k−1t−1n(−x)δn

(
y

ℓ

)
n
(
σ(x)

)
σ(tk)

)(
ln∥y∥ − ln

∣∣∣∣αβ
∣∣∣∣− ln∥ℓu∥

)∥∥∥∥αβ
∥∥∥∥−1

.

The inner integral is now over the region ∥y∥ ⩾ ∥ℓux∥, ∥y∥ ⩾
∥∥∥ℓuα

β

∥∥∥. Since ∥ℓu∥ = |ℓu|ℓ =∣∣∣1− b
a

∣∣∣ℓ, this is the sum of

ln

∣∣∣∣1− b

a

∣∣∣∣ℓF (δ, ϕ)
and

(9.1) −
∫∫∫∫

ϕ

(
k−1t−1n(−x)δn

(
y

ℓ

)
n
(
σ(x)

)
σ(tk)

)(
ln∥y∥ − ln

∣∣∣∣αβ
∣∣∣∣
)∥∥∥∥αβ

∥∥∥∥−1
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and

(9.2)

∫∫∫∫
ϕ

(
k−1t−1n(−x)δn

(
y

ℓ

)
n
(
σ(x)

)
σ(tk)

)(
ln∥y∥ − ln

∣∣∣∣αβ
∣∣∣∣− ln∥ℓu∥

)∥∥∥∥αβ
∥∥∥∥−1

,

and the integral being over ∥y∥ ⩽ ∥ℓux∥, ∥y∥ ⩾
∥∥∥ℓuα

β

∥∥∥, and
(9.3)

∫∫∫∫
ϕ

(
k−1t−1n(−x)δn

(
y

ℓ

)
n
(
σ(x)

)
σ(tk)

)(
ln∥y∥ − ln

∣∣∣∣αβ
∣∣∣∣− ln∥ℓu∥

)∥∥∥∥αβ
∥∥∥∥−1

,

the integral now being taken over ∥y∥ ⩽
∥∥∥ℓuα

β

∥∥∥. In all of these integrals we may replace δ

by c.
The integral (9.1) clearly extends to a smooth function on A(E). Letting s in A(F ) be(

α1 0
0 β1

)
and representing y as β1/α1 we may change variables in (9.1) to obtain

(9.4)
(
1− |ϖ|

) ∫∫∫
ϕ
(
k−1t−1n(−x)cn0n

(
σ(x)

)
σ(tk)

)∥∥∥∥αβ
∥∥∥∥−1

ln

∣∣∣∣αβ
∣∣∣∣dx dt dk.

The integrals are over KE, Z(E)\A(E), and N(F )\N(E).
In the first region

∥∥y
ℓ

∥∥ ⩽ ∥x∥. Since ϕ is 0 where ∥x∥ is large and ∥u∥ is small we may
replace y by 0 and δ by c in the integral over the first region, as well as in (9.2) and (9.3).
The sum of the integral over the first region with (9.2) and (9.3) is equal to

(9.5)

∫
KE

∫
Z(E)A(F )\A(E)

∫
N(F )\N(E)

ϕ
(
k−1t−1n(−x)cn

(
σ(x)

)
σ(tk)

)
ψ(x, t) dx dt dk

where ψ(x, t) is
∥∥∥α

β

∥∥∥−1

times∫
∥y∥⩽∥ℓux∥
∥y∥>

∥∥∥ℓuα
β

∥∥∥
+

∫
∥y∥⩽

∥∥∥ℓuα
β

∥∥∥
(
ln∥y∥ − ln

∣∣∣∣αβ
∣∣∣∣− ln∥ℓu∥

)
minus

|u|
∫

∥y∥⩽∥ℓx∥
∥x+ y

ℓ∥⩾
∥∥∥α

β

∥∥∥
ln

∣∣∣∣x+ y

ℓ

∣∣∣∣− ln

∣∣∣∣αβ
∣∣∣∣.

We have to convince ourselves that the result in b(δ, ϕ).
Although the principle to be invoked will be the same in both cases, it is simpler at this

point to treat ramified and unramified E separately. If E is unramified then the tree X is a
subtree of X(E) and every double coset in Z(E)G(F )\G(E)/KE has a representative g for
which

d(gp′0) = dist(gp0, p0) = dist(gp0,X).

Two such representatives lie in the same double coset of K\G(E)/KE. Thus each double
coset in Z(E)G(F )\G(E)/KE is represented by a double coset in K\G(E)/KE. Moreover∫

Z(E)G(F )\G(E)

ϕ
(
g−1cσ(g)

)
dg
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is equal to the sum over those p′ in X′(E) for which d(p′) = dist(p, p0) = dist(p,X) of

1

measZ(O)\K

∫
gp′0=p′

ϕ
(
g−1cσ(g)

)
dg.

On the other hand every double coset has a representative

g =

(
1 x
0 1

)(
α 0
0 β

)
where ∥x∥ = 1 and ∥x + y∥ ⩾ ∥x∥ for all y ∈ F . If ∥x∥ >

∥∥∥α
β

∥∥∥ and ∥β∥ = 1 it is a

representative of the type just described.

gp0 = ( 1 x
0 1 )p−k

p−k p0

∥∥∥α
β

∥∥∥ = ∥ϖ∥k

Two such g, say g1 and g2 lie in the same right coset of G(E)/KE if and only if ∥α1∥ = ∥α2∥
and x1 ≡ x2 (mod α1OE). On the other hand, no matter what the absolute value of x is, if

∥x∥ ⩽
∥∥∥α

β

∥∥∥ then (
1 x
0 1

)(
α 0
0 β

)
lies in Z(E)G(F )K.

We first examine that part of (9.5) for which n(x)t lies in the trivial double coset. Then

∥ℓux∥ <
∥∥∥ℓuα

β

∥∥∥. Moreover ∥ℓx∥ ⩾ ∥y∥ implies
∥∥x+ y

ℓ

∥∥ = ∥x∥; so
∥∥x+ y

ℓ

∥∥ ⩽
∥∥∥α

β

∥∥∥. Thus
ψ(x, t) =

∥∥∥∥αβ
∥∥∥∥−1 ∫

∥y∥⩽
∥∥∥ℓuα

β

∥∥∥ ln
∣∣∣∣ yβℓuα

∣∣∣∣ dy
= ℓ

∥∥∥∥αβ
∥∥∥∥−

(ℓ−1)
ℓ

|ℓu|
∫
|y|⩽1

ln|y| dy.

We first integrate with respect to k. This allows us to replace n(x)tk by k and yields, since

|ℓu| =
∣∣∣1− b

a

∣∣∣, a product, labelled (9.6), of

ℓ

∣∣∣∣1− b

a

∣∣∣∣measOE

measO

measZ(OE)\A(OE)

measZ(O)\A(O)
and {∫

KE

ϕ
(
k−1cσ(k)

)
dk

}{∫
|y|⩽1

ln|y| dy

}
.

There are however two Haar measures on KE, dk and dg, the restriction of the Tamagawa
measure of G, and

measOE measZ(OE)\A(OE)

∫
KE

dk =

∫
Z(OE)\KE

dg.
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A similar observation applies to K. Thus (9.6) equals

ℓ
∣∣∣1− b

a

∣∣∣
measZ(O)\K

{∫
KE

ϕ
(
g−1cσ(g)

)
dg

}{∫
K

∫
|y|⩽1

ln|y| dy dk

}
which is the contribution to b(δ, ϕ) it is supposed to yield. If ∥x∥ >

∥∥∥α
β

∥∥∥ then since ∥y∥ ⩽ ∥ℓx∥
implies

∥∥x+ y
ℓ

∥∥ = ∥x∥,

ψ(x, t) =

∥∥∥∥αβ
∥∥∥∥−1
{∫

∥y∥⩽∥ℓux∥
ln

∣∣∣∣ yβℓuα
∣∣∣∣− |ℓu|

∫
∥y∥⩽∥x∥

ln

∣∣∣∣xβα
∣∣∣∣
}

= ℓ

∥∥∥∥ αxβ
∥∥∥∥−1

|ℓu|
∫
|y|⩽1

ln|y| dy.

Once again we integrate with respect to K and then with respect to x and t, keeping n(x)t
in a fixed right coset of G(E)/KE. Thus, for example, x varies over x0 +

α0

β0
OE modulo F .

The result is, as before,

ℓ

∣∣∣∣1− b

a

∣∣∣∣∣∣∣∣ α0

x0β0

∣∣∣∣−1/ℓ
{∫

g0KE

ϕ
(
g−1cσ(g)

)
dg

}{∫
K

∫
|y|⩽1

ln|y| dy dk

}
if

g0 = n(x0)t0.

The expression is not changed if x0 is replaced by α1

β1
x0, and α0, β0 by α1α0, β1β0 with α1,

β1 in F×. Thus we may always normalize so that |x0| = 1 and β0 = 1. Then t is determined
modulo A(OE). As we let x0 and t0 vary can we obtain all right cosets of KE within a given
double coset of K\G(E)/KE? No!—because x0 is taken modulo F so that if the right coset
represented by n(x0)t0 occurs then that represented by n(x0 + y)t0, y ∈ O, y /∈ α0

β0
OE, does

not. This means that a single right coset must stand for
∥∥∥α0

β0

∥∥∥−1/ℓ

=
∥∥∥ α0

x0β0

∥∥∥−1/ℓ

altogether.

Since this factor occurs in front of our integrals we may remove it, and then have a sum
over all right cosets in the double coset of K\G(E)/KE representing a double coset of
G(F )Z(E)\G(E)/KE. We conclude that (9.5) is indeed b(δ, ϕ).

If E is ramified then the set X may still be regarded as contained in X(E), but to obtain
a subtree we have to subdivide each edge of X into ℓ equal parts. The subdivision performed
we may choose as representations p′ for the orbits of Z(E)G(F ) in X′(E) those points p′ for
which d(p′) = dist(p, p0) for which the closest point to p in X is pz in A(E) with 0 ⩽ z ⩽ ℓ

2
.

If z = 0 let K0 be Z(O)K. If 0 < z < ℓ
2
let

K0 =

{(
a b
c d

)
∈ Z(O)K

∣∣∣∣∣ c ≡ 0 (mod ϖ)

}
.

If z = ℓ
2
let it be the group generated by the previous group and

ϖ−1
E

(
0 1
ϖ 0

)
where ϖE is a uniformizing parameter for E. Notice that if z = ℓ

2
then ℓ = 2. If p′1 and

p′2 are two possible choices for representatives of an orbit then z1 = z2 and p′2 = kp′1 with
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k ∈ K0. Thus each double coset Z(E)G(F )hKE is represented by a double coset K0uKE. If
ρ is 1 for z = 0, q+1

2
for z = ℓ

2
, and q + 1 for 0 < z < ℓ

2
then∫

Z(E)G(F )\Z(E)G(F )hKE

ϕ
(
g−1cσ(g)

)
dg

is equal to
ρ

measK

∫
KE

ϕ
(
g−1u−1cσ(ug)

)
dg

because
measZ(O)K

measK
= ρ.

If p′ → p and the closest point to p in X is pz with ℓ
2
< z ⩽ ℓ then p′ lies in the orbit

represented by p′ where the closest point to p is pℓ−z. Every double coset has a representative

g =

(
1 x
0 1

)(
α 0
0 β

)
where x is such that ∥x + y∥ ⩾ ∥x∥ for all y ∈ F . Let ∥x∥ = ∥ϖ∥−z/ℓ and

∥∥∥α
β

∥∥∥ = ∥ϖ∥k/ℓ.
Here ϖ is a uniformizing parameter for F . Let j be the smallest integer greater than or

equal to k/ℓ. If ∥x∥ ⩽
∥∥∥α

β

∥∥∥ then gp′0 lies in the orbit of Z(E)G(F ) whose projection to X(E)

contains pz with z = ℓj − k if ℓj − k ⩽ ℓ
2
and z = ℓ− (ℓj − k) if ℓj − k ⩽ ℓ

2
.

p−k =
gp

0

pz

If ∥x∥ >
∥∥∥α

β

∥∥∥ then, multiplying by an element of A(F ), we may suppose that 0 ⩽ z < ℓ.

Observe that pz is the closest point to gp0 in X.
gp0

p−k pz

We first examine that part of (9.5) for which n(x)t lies in a double coset corresponding to an

orbit which meet X, that is, for which ∥x∥ ⩽
∥∥∥α

β

∥∥∥. Then
ψ(x, t) =

∣∣∣∣1− b

a

∣∣∣∣∥∥∥∥αβ
∥∥∥∥−1 ∫

∥y∥⩽
∥∥∥α

β

∥∥∥ ln
∣∣∣∣yβa

∣∣∣∣ dy.
In particular it is independent of x. We first integrate over KE to obtain a factor∫

KE

ϕ
(
k−1cσ(k)

)
dk



9. THE PRIMITIVE STATE OF OUR SUBJECT REVEALED 101

and then with respect to x over α
β
OE modulo F . This yields a factor

measOE

measO

∣∣∣∣αβ
∣∣∣∣|ϖ|−j.

Multiplying by ψ(x, t) and ignoring the terms which do not depend on x we are left with an
integrand

|ϖ|−j

∫
∥y∥⩽

∥∥∥α
β

∥∥∥ ln
∣∣∣∣yβα

∣∣∣∣ dy =

∫
∥y∥⩽1

ln

∥∥∥∥∥yϖjβ

α

∥∥∥∥∥ dy.
Since ∫

|y|⩽1

ln|y| dy =
|ϖ| ln|ϖ|
1− |ϖ|

∫
|y|⩽1

dy

the right-hand side equals

(9.7) ℓ

{
1 +

(
|ϖ|−1 − 1

)(
j − k

ℓ

)}{∫
|y|⩽1

ln|y| dy

}
.

If we are interested in the double coset represented by the orbit whose projection on X(E)
contains pz, 0 ⩽ z ⩽ ℓ

2
we must take j − k

ℓ
to be z/ℓ or 1 − z

ℓ
. Integrating (9.7) over the

relevant part of Z(E)A(F )\A(E) we obtain

ρℓ
measA(OE)

measA(O)

∫
|y|⩽1

ln|y| dy

where ρ is 1 if z = 0, q+1
2

if z = ℓ
2
, and q + 1 if 0 < z < ℓ

2
. Gathering everything together we

obtain ρ times (9.6), which is exactly what we need.
We next consider a double coset whose projection on X(E) does not meet X. The product

n(x)t can lie in such a double coset only if ∥x∥ >
∥∥∥α

β

∥∥∥, and then

ψ(x, t) =

∣∣∣∣1− b

a

∣∣∣∣∥∥∥∥αβ
∥∥∥∥−1 ∫

∥y∥⩽∥x∥
ln

∣∣∣∣yx
∣∣∣∣ dy.

As before we first integrate with respect to k to obtain a factor∫
KE

ϕ
(
k−1g−1cσ(gk)

)
dk

if g is some fixed representative of the right coset in which n(x)t is constrained to lie. Take

g =

(
1 x0
0 1

)(
α0 0
0 β0

)
.

The integration over x0 +
α
β
OE, on which ∥x∥ = ∥x0∥ is a constant, yields a new factor

measOE

measO

∣∣∣∣αβ
∣∣∣∣|ϖ|−j

if
∥∥∥α

β

∥∥∥ = ∥ϖ∥k/ℓ and j is defined with respect to k/ℓ as above. If ∥x∥ = ∥ϖ∥−z/ℓ and i is the

smallest integer greater than or equal to −z/ℓ, the product of this with ψ(x0, t0) is∣∣∣∣1− b

a

∣∣∣∣measOE

measO



102 9. THE PRIMITIVE STATE OF OUR SUBJECT REVEALED

times

(9.8) |ϖ|−j−i

∫
∥y∥⩽1

ln

∣∣∣∣ y

ϖix

∣∣∣∣ dy.
At this point we are free so to normalize x0 and 0 ⩽ z < ℓ and i = 0 and β0 = 1. Then (9.8)
becomes, for z cannot be 0,

ℓ|ϖ|−j

{∫
|y|⩽1

ln|y| dy

}{
1 +

(
|ϖ|−1 − 1

)z
ℓ

}
.

The final integration with respect to t simply introduces a factor

measZ(OE)\A(OE)

measZ(O)\A(O)
.

We could now collect together the terms and find the contribution of the right coset
n(x0) to KE. However, we are interested in the total contribution from all the right cosets
which, with x0 and t0 normalized, lie in a given double coset K0uKE. As before, not all
possible right cosets appear, for x0 is taken modulo O. However, we may pretend that all
occur if we suppress the factor |ϖ|−j. We must also remember, since we are really interested
in double cosets with respect to Z(E)G(F ), KE, that we may obtain two double cosets in
K0\G(E)/KE which lie in the same double coset in Z(E)G(F )\G(E)/KE. To pass from one
to the other we must replace z by ℓ− z. Since(

1 +
(
|ϖ|−1 − 1

)z
ℓ

)
+

(
1 +

(
|ϖ|−1 − 1

)(
1− z

ℓ

))
= q + 1

and

1 +
(
|ϖ|−1 − 1

) ℓ
2ℓ

=
q + 1

2
we can finish simply by gathering together the pieces.

Before analyzing the behavior of A3(δ, ϕ) when E is not a field, we introduce another
expression for its value when Nδ is a scalar. If c belongs to E× and

n0 =

(
1 z0
0 1

)
, trace z0 = 1,

we introduce θ(c, s, ϕ) as L(1 + ℓs, 1F )
−1 times∫

Z(E)\A(E)

∫
N(F )\N(E)

∫
KE

ϕ
(
k−1t−1n−1cn0σ(ntk)

)∥∥∥∥ab
∥∥∥∥−1−s

dn dt dk,

It is clearly independent of the choice of z0; so we may take z0 =
1
ℓ
. The derivative of θ(c, s, ϕ)

at s = 0 is equal to the sum of

−1

L(1, 1F )

∫
Z(E)\A(E)

∫
N(F )\N(E)

∫
KE

ϕ
(
k−1t−1n−1cn0σ(ntk)

)∥∥∥∥ab
∥∥∥∥−1

ln

∣∣∣∣ab
∣∣∣∣ dn dt dk,

which is the negative of (9.4), and

−ℓ|ϖ| ln|ϖ|
∫
Z(E)\A(E)

∫
N(F )\N(E)

∫
KE

ϕ
(
k−1t−1n−1cn0σ(ntk)

)∥∥∥∥ab
∥∥∥∥−1

dn dt dk
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which is c(δ, ϕ). Thus
θ′(c, 0, f) = −A3(c, f).

If F is non-archimedean and E is not a field then, as in Paragraph 8, ϕ is just a collection
f1, . . . , fℓ of functions on G(F ) and if δ = (δ1, . . . , δℓ) then A1(δ, ϕ) is equal to

ℓ∑
i=1

∆(γ)

∫
Z(E)A(F )\G(E)

f1(h
−1
1 δ1h2) · · · fℓ−1(h

−1
ℓ−1δℓ−1hℓ)fℓ(h

−1
ℓ δℓh1) lnλ(hi).

We choose an i, 1 ⩽ i ⩽ ℓ, and consider the corresponding term. We introduce new variables
of integration by the equations

gi = hi,

gi+1 = h−1
i+1δi+1 · · · δℓδ1 · · · δi−1hi,

...

gℓ = h−1
ℓ δℓδ1 · · · δi−1hi,

...

gi−1 = h−1
i−1δi−1hi.

If f (i) is the convolution
fi ∗ fi+1 ∗ · · · ∗ fℓ ∗ f1 ∗ · · · ∗ fi−1

the term in which we are interested is simply

A1(γ, f
(i)).

Thus
A1(γ, ϕ) =

∑
i

A1(γ, f
(i)).

A similar change of variables shows us that

F (δ, ϕ) =
∑
i

F (γ, f (i)) = ℓF (γ, f)

and
c(δ, ϕ) =

∑
i

c(γ, f (i)) = ℓc(γ, f)

if f = f (1) = f1 ∗ · · · ∗ fℓ. We also see that

b(δ, ϕ) =
∑

b(γ, f (i)) = ℓb(γ, f).

The required property of A3(δ, ϕ) follows therefore from the similar property of A3(γ, f).
We may again introduce θ(c, s, ϕ) if c ∈ Z(E). If β(g) is the function on G(E) defined by

β

((
1 x
0 1

)(
α 0
0 β

)
k

)
=

∥∥∥∥αβ
∥∥∥∥

then

θ(c, s, ϕ) =
1

L(1 + ℓs, 1F )

∫
Gσ

n0
(E)Z(E)\G(E)

ϕ
(
g−1cn0σ(g)

)
β(g)−s dg.
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The derivative of θ(c, s, ϕ) at s = 0 is

−1

L(1, F )

∫
Gσ

n0
(E)Z(E)\G(E)

ϕ
(
g−1cn0σ(g)

)
ln β(g) dg

plus

−ℓ|ϖ| ln|ϖ|
∫
Gσ

n0
(E)Z(E)\G(E)

ϕ
(
g−1cn0σ(g)

)
dg.

We may change variables as before to see that this equals

ℓθ′(a, 0, f)

if a = NE/F c. Therefore
θ′(c, 0, ϕ) = −A3(c, ϕ).

We must still discuss A2(δ, ϕ) and A3(δ, ϕ) for an archimedean field. We set

c(δ, ϕ) = −ℓL
′(1, 1F )

L(1, F )2

∫
Gσ

n0
(E)Z(E)\G(E)

ϕ
(
g−1cn0σ(g)

)
dg

and

A2(δ, ϕ) = ln

∣∣∣∣1− b

a

∣∣∣∣ℓF (δ, ϕ) + c(δ, ϕ)

while

A3(δ, ϕ) =
A1(δ, ϕ)

2
− A2(δ, ϕ).

If E is not a field we may proceed as in the non-archimedean case; so suppose E is a field.
Then

A1(δ, ϕ)

2
= −∆(γ)

∫
KE

∫
Z(E)A(F )\A(E)

∫
E

ϕ
(
k−1n−1t−1δσ(tnk)

)
ln
(
1 + |x|2

)
dx dt dk.

Here

n = n(x) =

(
1 x
0 1

)
.

Moreover the absolute value is that of an analyst and not of a number-theorist. To explain
the disappearance of the 2 from the denominator we observe that(

0 1
−1 0

)(
1 x
0 1

)
=

(
0 1

−1 −x

)
=

(
(1 + xx)−1/2

(1 + xx)1/2

)(
1 y
0 1

)
k′

and
λ(n) =

∥∥(1 + xx)−1
∥∥ =

(
1 + |x|2

)−2
.

If

t =

(
α 0
0 β

)
we first write this expression as

−∆(γ)

∫
KE

∫
Z(E)A(F )\A(E)

∫
E

ϕ
(
k−1t−1n−1δσ(ntk)

)
ln

(
1 +

∣∣∣∣βαx
∣∣∣∣2
)∣∣∣∣αβ

∣∣∣∣−2

dx dt dk.

Since we are again only interested in the behavior of this integral when γ is close to a scalar
we may assume that δ lies in A(F ). Indeed we can always do this; for F is R and E is C, so
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A(E) = A1−σ(E)A(F ). But when γ is close to a scalar we may in addition suppose that c/d
is close to 1 if

δ =

(
c 0
0 d

)
.

The function c(δ, ϕ) is clearly smooth on all of A(E) and

ln

∣∣∣∣1− b

a

∣∣∣∣ℓF (δ, ϕ)− ln

∣∣∣∣1− d

c

∣∣∣∣ℓF (δ, ϕ)
is smooth as long as we keep d/c close to 1, for then∣∣∣∣1− b

a

∣∣∣∣ = ∣∣∣∣1− d

c

∣∣∣∣∣∣∣∣1 + d

c

∣∣∣∣
and

ln

∣∣∣∣1 + d

c

∣∣∣∣
is smooth. Thus we have ony to investigate the behavior of

A1(δ, ϕ)

2
− ln

∣∣∣∣1− d

c

∣∣∣∣ℓF (δ, ϕ).
Note that ℓ = 2.

In the integral defining A1(δ,ϕ)
2

we write x as u
2
+ iv and integrate with respect to u and

then with respect to v. We start from

n(−x)δn
(
σ(x)

)
= n(−iv)δn

((
1− d

c

)
u

2

)
n(−iv)

and the change variables so that the 1− d
c
disappears. This replaces −∆(γ) by −

∣∣a
b

∣∣1/2 and

ln

(
1 +

∣∣∣βαx∣∣∣2) by

ln

∣∣∣∣1− d

c

∣∣∣∣2
(
1 +

∣∣∣∣βαv
∣∣∣∣2
)

+
|βu|2

2α

− ln

∣∣∣∣1− d

c

∣∣∣∣2.
If we subtract

ln

∣∣∣∣1− d

c

∣∣∣∣2F (δ, ϕ)
we are left with −

∣∣a
b

∣∣1/2 times∫∫∫
ϕ

(
k−1t−1n(−iv)δn

(
u

2

)
n(−iv)σ(tk)

)
ln

∣∣∣∣1− d

c

∣∣∣∣2
(
1 +

∣∣∣∣βαv
∣∣∣∣2
)

+

∣∣∣∣βu2α
∣∣∣∣2
∣∣∣∣αβ

∣∣∣∣−2

.

The two outer integrals are over KE and Z(E)A(F )\A(E). This is a continuous function of
δ for d/c close to 1.

As δ → c in E× the value of A3(δ, ϕ) approaches the sum of three terms:

−
∫
KE

∫
Z(E)A(F )\A(E)

∫
ϕ

(
k−1t−1n(−iv)cn

(
u

2

)
n(−iv)σ(tk)

)∣∣∣∣αβ
∣∣∣∣−2

ln

∣∣∣∣βu2α
∣∣∣∣2;
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and, since 1 + d
c
→ 2,

−2 ln 2

∫
KE

∫
Z(E)A(F )\A(E)

∫
ϕ

(
k−1t−1n(−iv)cn

(
u

2

)
n(−iv)σ(tk)

)∣∣∣∣αβ
∣∣∣∣−2

;

and
lim
δ→c

−c(δ, ϕ).

The first two terms together yield

−
∫
KE

∫
Z(E)A(F )\A(E)

∫
ϕ

(
k−1t−1n(−iv)cn

(
u

2

)
n(−iv)σ(tk)

)∣∣∣∣αβ
∣∣∣∣−1

ln

∣∣∣∣βuα
∣∣∣∣2.

Writing u = β1

α1
we see that this in turn equals

−1

L(1, 1F )

∫
KE

∫
Z(E)\A(E)

∫
N(F )\N(E)

ϕ
(
g−1t−1n−1cn0σ(ntk)

)∣∣∣∣αβ
∣∣∣∣−2

ln

∣∣∣∣βα
∣∣∣∣2.

We conclude once again that
A3(c, ϕ) = −θ′(c, 0, ϕ).

It is also easily shown that if A3(δ, ϕ) is regarded as a function on A1−σ(E)\A(E) then
its second derivatives are measures.



CHAPTER 10

The trace formula

The results on global lifting as well as the remaining results on local lifting are obtained
by combining the local analysis which we have carried out with a comparison of the trace
formula over F and the twisted trace formula over E. This is also the method exploited
by Saito and Shintani. The trace formula has been discussed extensively in recent years
([1, 9, 10, 14]) and we shall review it only briefly, stressing the modifications necessary for
the present purposes. Our discussion of the twisted trace formula, of which the usual formula
is a special case, will be only a little more extensive. Enough will be said that the reader
familiar with the usual formula will be convinced of the validity of the twisted form, but the
analytical aspects of the proof will be scamped. However, some calculations will be carried
out in more detail for the twisted case, and it may occasionally be useful to glance ahead.

We recall some of the notation introduced in §2. Set
ZE(A) = Z(F )NE/FZ(AE)

and let ξ be a unitary character of ZE(A) trivial on Z(F ). Ls(ξ) is the space of measurable
functions φ on G(F )\G(A) which satisfy

φ(zg) = ξ(z)φ(g) for all z ∈ ZE(A)(a) ∫
ZE(A)G(F )\G(A)

∣∣φ(g)∣∣2 dg <∞.(b)

G(A) acts on Ls(ξ) by right translations,

r(g)φ(h) = φ(hg).

The space Ls(ξ) is the direct sum of three mutually orthogonal subspaces, Lsp(ξ), L
0
se(ξ), and

L1
se(ξ), all defined in §2. The representation of G(A) on Lsp(ξ) + L0

se(ξ) is denoted r.
Let f be a function on G(A) defined by

f(g) =
∏
v

fv(gv),

where the fv satisfy the conditions (i), (ii), and (iii) imposed in §2. Recall that

r(f)φ(h) =

∫
NE/FZ(AE)\G(A)

φ(hg)f(g) dg

if φ ∈ Lsp(ξ) + L0
se(ξ). It is of trace class. We start from the formula for its trace given on

pages 516–517 of [14], taking account of the trivial modifications required by the substitution
of ZE(A) or NE/FZ(AE) for Z(A), and rewrite it in a form suited to our present needs.
In particular, we shall express the trace as a sum of invariant distributions, along lines
adumbrated in [23]. Unless the contrary is explicitly stated we shall use Tamagawa measures
locally and globally (§6 of [23]). This will remove some of the normalizing constants of [14].

107
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The first term of this sum, corresponding to (i) and (ii) of [14] together, is

(10.1)
∑
γ

ϵ(γ)meas
(
NE/FZ(AE)Gγ(F )\Gγ(A)

) ∫
Gγ(A)\G(A)

f(g−1γg) dg.

The sum is over conjugacy classes in G(F ) for which Gγ(F ) does not lie in a Borel subgroup
taken modulo NE/FZ(F ). ϵ(γ) is 1/2 or 1 according as the equation

δ−1γδ = zγ

can or cannot be solved for δ ∈ G(F ) and z ̸= 1 in NE/FZ(F ). Observe that the extension is
cyclic and that NE/FZ(E) is therefore

Z(F ) ∩NE/FZ(AE).

If A is the group of diagonal matrices the set D of all characters η = (µ, ν) of A(F )\A(A)
for which µν = ξ on ZE(A) may be turned into a Riemann surface by introducing as parameter

in the neighborhood
(
µ|α|s/2, ν|α|−s/2

)
, s ∈ C, of (µ, ν) the variable s. Differentiation with

respect to s is well-defined. We denote it by a prime. We may also introduce the measure |ds|
on the set D0 of unitary characters in D.

We write ρ(g, η) for the operator ρ(g, µ, ν, 0) introduced on p. 513 of [14] and set

ρ(f, η) =

∫
NE/FZ(AE)\G(A)

f(g)ρ(g, η) dg.

If ηv is the component of η at v we write R(ηv) for the operator R(µv, νv, 0) introduced on
p. 521 of [14], noting that the factor ϵ(1− s, µ−1

v νv, ψv) occurring in that definition should
be ϵ(s, µvν

−1
v , ψv), and set

M(η) =
L(1, νµ−1)

L(1, µν−1)
⊗v R(ηv).

We also let m(η) be the function

L(1, νµ−1)

L(1, µν−1)
.

The term (vi) of the trace formula of [14] may be written

(10.2) −1

4

∑
ν=(µ,µ)

traceM(η)ρ(f, η).

The term (vii) is

(10.3)
1

4π

∫
D0

m−1(η)m′(η) trace ρ(f, η) |ds|.

It appears at first sight that a factor ℓ should appear in the numerators because the integral
on line 4 of p. 540 of [14] is now over G(F )NE/FZ(A)\G(A) rather than G(F )Z(A)\G(A).
This is, however, compensated by a change in the measure on the dual D0.

Let 1F be the trivial character of the idèles of F and let λ0 be the constant term of the
Laurent expansion of L(1 + s, 1F ) at s = 0. Let

n =

(
1 1
0 1

)
.
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The first term of (v) becomes

(10.4)
∑

a∈NE/FZ(E)\Z(F )

ℓλ0
∏
v

L(1, 1Fv)
−1

∫
Gn(Fv)\G(Fv)

f(g−1ang) dg.

Those who follow the discussion on p. 532 of [14] will see that the ℓ occurs in the numerator
because we have replaced Z(A) by NE/FZ(AE) and[

Z(A) : Z(F )NE/FZ(AE)
]
= ℓ.

If

γ =

(
a 0
0 b

)
belongs to A(Qv) set

∆v(γ) =

∣∣∣∣∣(a− b)2

ab

∣∣∣∣∣
1/2

v

and let

F (γ, fv) = ∆v(γ)

∫
A(Qv)\G(Qv)

f(g−1γg) dg.

Let λ(g) be the function on A(Fv)\G(Fv) obtained by writing g = ank, a ∈ A(Fv), n ∈ N(Fv),
k ∈ Kv and setting λ(g) = λ(n) with λ(n) defined as on p. 519 of [14]. If γ ∈ A(Fv) set

A1(γ, fv) = ∆v(γ)

∫
A(Fv)\G(Fv)

f(g−1γg) lnλ(g) dg.

Because of the product formula the term (iv) becomes

−1

2
ℓλ−1

∑
v

∑
γ∈NE/FZ(E)\A(F )

γ /∈Z(F )

A1(γ, fv)
∏
w ̸=v

F (γ, fw).

λ−1, the residue of L(1 + s, 1F ) at s = 0, appears because we must pass to the normalized
global Tamagawa measure. As before, an ℓ appears in the numerator because[

Z(A) : Z(F )NE/FZ(AE)
]
= ℓ.

The results of the previous paragraph allow us to write the sum of (iv) and the second
half of (v) as the sum of

(10.5) −ℓλ−1

∑
v

∑
γ∈NE/FZ(E)\A(F )

γ /∈Z(F )

A2(γ, fv)
∏
w ̸=v

F (γ, fw)

and

(10.6) −ℓλ−1

∑
v

∑
γ∈NE/FZ(E)\A(F )

A3(γ, fv)
∏
w ̸=v

F (γ, fw).

We may apply the Poisson summation formula to (10.6) and the group NE/FZ(AE)\A(A).
However, departing a little from the usual convention, we apply it to a function, that of (10.6)
which transforms under NE/FZ(AE) according to ξ−1. Then the Fourier transform will be
concentrated on D0. We may compute the Fourier transform locally if we remember at the
end to divide by λ−1, for the global measure differs from the product of the local measures
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by this factor. The Fourier transform of F (γ, fv) is ρ(fv, ηv). Let B1(fv, ηv) be the Fourier
transform of A3(γ, fv). Since [

Z(A) : ZE(A)
]
= ℓ

the dual measure on D0 is
1

2πℓ
|ds|.

Let

B(fv, ηv) =
1

2
trace

(
R−1(ηv)R

′(ηv)ρ(fv, ηv)
)
−B1(fv, ηv).

Then (10.6) may be put together with (viii) of [14] to yield

(10.7)
1

2π

∫
D0

∑
v

B(fv, ηv)
∏
w ̸=v

trace ρ(fw, ηw) |ds|.

The trace in which we are interested is the sum of (10.1), (10.2), (10.3), (10.4), (10.5), and
(10.7). Since (10.7) occurs in a linear equality in which all other terms are invariant, it must
be invariant. It is not hard to deduce from this that fv → B(fv, ηv) is also invariant. Since
we do not need this fact we do not give its proof. The idea involved will come up later in
a different context. Observe that R(ηv) has been so defined that B(f 0

v , ηv) = 0 for all ηv,
if f 0

v is the unit of the Hecke algebra. Thus f 0
v is supported in G(OFv)NEv/FvZ(Ev) and is

invariant under G(OFv).
Let ξE be the character z → ξ(NE/F z) of Z(AE) and, as before, let Ls(ξE) be the space

of measurable functions φ on G(E)\G(AE) satisfying

φ(zg) = ξE(z)φ(g) for all z ∈ Z(AE)(a) ∫
Z(AE)G(E)\G(AE)

∣∣φ(g)∣∣2 dg <∞.(b)

The representation r of G(AE) on the sum of Lsp(ξE) and L
0
se(ξE) extends to a representation r

of G′(AE) = G(AE)×G if we let r(τ), τ ∈ G, send φ to φ′ with

φ′(h) = φ
(
τ−1(h)

)
.

If
ϕ(g) =

∏
v

ϕv(gv)

is a function on G(AE), where the ϕv satisfy the conditions of §2, then we defined r(ϕ) by

r(ϕ) =

∫
Z(AE)\G(AE)

ϕ(g)r(g) dg.

We can use the usual techniques to develop a formula for the trace of r(ϕ)r(σ).
The kernel of r(ϕ)r(σ) is ∑

Z(E)\G(E)

ϕ
(
g−1γσ(h)

)
.

Let P be the projection of Ls(ξE) on L
1
se(ξE). As on p. 538 of [14] we may find a formula

for the kernel of Pr(ϕ)r(σ) in terms of Eisenstein series. Let DE be the set of characters of
A(E)\A(AE) which equal ξE on Z(AE) and let D0

E consist of the unitary characters in DE.
We may introduce the parameter s on DE as before. If η = (µ, ν) lies in DE we introduce the
space B(η) = B(µ, ν), together with the representation ρ(η) of G(A) on it, as in Chap. 10
of [14]. Of course E is now to be substituted for F . As observed on p. 512 we may regard



10. THE TRACE FORMULA 111

the space B(η) as depending only on the connected component of DE in which η lies. In each
of these connected components we choose an orthonormal basis {φi} of B(η). Let

φσ
i (g) = φi

(
σ(g)

)
.

If E(g, φ, η) is the value of the Eisenstein series defined by φ at g and η then the kernel of
Pr(ϕ)r(σ) is

1

4π

∫
D0

E

∑
i,j

ρij(ϕ, η)E(g, φi, η)E(h, φ
σ
j , η

σ) |ds|.

It would be pointless to introduce the dependence of the basis on the connected component
into the notation. Observe that

ρ(ϕ, η) =

∫
Z(AE)\G(AE)

ϕ(g)ρ(g) dg.

We form the difference of the kernels and integrate along the diagonal. We begin by
separating from the integrand some terms whose integral converges and can easily be put in
the form we need. We take the sum ∑

ϕ
(
g−1γσ(g)

)
over those elements γ, taken modulo Z(E), which are not σ-conjugate to a triangular matrix
in G(E). We rewrite it as a sum over σ-conjugacy classes∑

{γ}

ϵ(γ)
∑

Z(E)Fσ
γ (E)\G(E)

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
.

Here ϵ(γ) is 1/2 or 1 according as the equation

δ−1γσ(δ) = zγ

can or cannot be solved for δ ∈ G(E) and z in Z(E) but not in Z(E)1−σ. Integrating we
obtain∑

{γ}

ϵ(γ)meas
(
Z(AE)G

σ
γ(E)\Z(AE)G

σ
γ(AE)

)∫
Z(AE)Gσ

γ (AE)\G(AE)

ϕ
(
g−1γσ(g)

)
dg

or

(10.8)
∑
{γ}

ϵ(γ)meas
(
Z(A)Gσ

γ(E)\Gσ
γ(AE)

)∫
Z(AE)Gσ

γ (AE)\G(AE)

ϕ
(
g−1γσ(g)

)
dg.

The convergence of the integral is a consequence of the basic properties of Siegel domains.
The next term we can break off has exactly the same form but the sum is over those γ

for which Nγ is central.

(10.9)
∑
{γ}

ϵ(γ)meas
(
Z(AE)G

σ
γ(E)\Gσ

γ(AE)
)∫

Z(AE)Gσ
γ (AE)\G(AE)

ϕ
(
g−1γσ(g)

)
dg.

For the γ appearing here, ϵ(γ) is easily shown to be 1. Moreover all but a finite number of
the terms in this sum are zero.
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We turn now to the analogues of (16.2.1) and (16.2.2) of [14]. If B is the group of
triangular matrices and N1, the group of triangular matrices with equal eigenvalues, the
analogue of (16.2.1) is ∑

B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ/∈Z(F )

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
and that of (16.2.2) is

1

2

∑
A(E)\G(E)

∑
γ∈Z(E)\A(E)

Nγ/∈Z(F )

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
.

We introduce the function χ as on p. 529 of [14] and consider

1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)
Nγ/∈N1(E)

ϕ
(
g−1δ−1γσ(δ)σ(g)

)(
1− χ(δg)− χ

(
ω(γ)δg

))
.

Here ω(γ) is some element of G(E) not in B(E) for which

ω(γ)γσ
(
ω(γ)−1

)
∈ B(E).

The integral of this sum over Z(AE)G(E)\G(AE) converges. It is equal to

1

2

∫
Z(AE)B(E)\G(AE)

∑
γ∈Z(E)\B(E)
Nγ/∈N(E)

ϕ
(
g−1γσ(g)

)(
1− γ(g)− χ

(
ω(γ)g

))
dg

which we may rewrite as

(10.10)
1

2

∑
γ∈A1−σ(E)Z(E)\A(E)

Nγ/∈Z(F )

∫
Z(AE)A(F )\G(AE)

ϕ
(
g−1γσ(g)

)(
1− χ(g)− χ(ωg)

)
dg

with

ω =

(
0 1

−1 0

)
.

If we choose a measure on KE, the standard maximal compact subgroup of G(AE), so that∫
Z(AE)\G(AE)

h(g) dg =

∫
Z(AE)\A(AE)

∫
N(AE)

∫
KE

h(ank) da dn dk

then, as on pages 530–531, the integral (10.10) is equal to the sum of

(10.11)
ln c1
ℓ

∑∫
Z(AE)A(A)\G(AE)

ϕ
(
g−1γσ(g)

)
dg

and

(10.12) − 1

2ℓ

∑
γ

∑
v

∫∫
N(AE)

∫
KE

ϕ
(
k−1n−1t−1γσ(tnk)

)
lnλ(nv) dt dn dk.

The outer integral is taken over Z(AE)A(A)\A(AE).
The factor ℓ appears in the denominator because χ is defined with respect to absolute

values on E. Moreover if Ev is not a field but a direct sum of fields, λ(nv) is the product of
the values of λ at the components of nv. We shall return to these expressions later.
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We treat the analogue of (16.2.1) as on p. 532 of [14], separating off∑
B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ/∈Z(F )

ϕ
(
g−1δ−1γσ(δ)σ(g)

)(
1− χ(δg)

)
.

The integral of this expression converges and is equal to∫
Z(AE)B(F )N(E)\G(AE)

∑
γ∈Z(E)\N1(E)

Nγ/∈Z(F )

ϕ
(
g−1γσ(g)

)(
1− χ(g)

)
dg.

If

n0 =

(
1 z0
0 1

)
trace z0 = 1

the sum of the integrand is∑
N(F )Z(E)\B(F )N1(E)

ϕ
(
g−1δ−1n0σ(δ)σ(g)

)(
1− χ(g)

)
.

Since χ(δg) = χ(g) the integral itself is equal to∫
Z(AE)N(F )\G(AE)

ϕ
(
g−1n0σ(g)

)(
1− χ(g)

)
dg.

If we write t in A(AE) as (
a 0
0 b

)
then this integral is the limit as s approaches 0 from above of∫

Z(AE)\A(AE)

∫
N(A)\N(AE)

∫
KE

ϕ
(
k−1t−1n−1n0σ(ntk)

)(
1− χ(t)

)∣∣∣∣ab
∣∣∣∣−1−s

dn dt dk.

If s is positive this integral is the difference of

(10.13)

∫
Z(AE)\A(AE)

∫
N(A)\N(AE)

∫
KE

ϕ
(
k−1t−1n−1n0σ(ntk)

)∣∣∣∣ab
∣∣∣∣−1−s

dn dt dk

and

(10.14)

∫
Z(AE)\A(AE)

∫
N(A)\N(AE)

∫
KE

ϕ
(
k−1t−1n−1n0σ(ntk)

)∣∣∣∣ab
∣∣∣∣−1−s

χ(t) dn dt dk.

We suppose ϕ(g) =
∏
ϕv(gv) and set θ(s, ϕv) equal to L(1 + ℓs, 1Fv)

−1 times∫
Z(Ev)\A(Ev)

∫
N(Fv)\N(Ev)

∫
KEv

ϕv

(
k−1t−1n−1n0σ(ntk)

)∣∣∣∣ab
∣∣∣∣−1−s

dn dt dk.

For almost all v, ϕv is ϕ0
v, whose value at gv is 0 unless gv = zk, z ∈ Z(Ev), k ∈ KEv , when

it is
ξ−1
Ev
(z)meas−1

(
Z(Ev) ∩KEv\KEv

)
.

If

n =

(
1 x
0 1

)
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and if we take b to be 1 then

ϕ0
v

(
k−1t−1n−1n0σ(ntk)

)
= ϕ0

v

(
t−1n−1n0σ(n)σ(t)

)
and

t−1n−1n0σ(n)σ(t) =

(
a−1σ(a) a−1

(
1− x+ σ(x)

)
0 1

)
.

For almost all v, this matrix can be in Kv only if a = αy where α−1 is integral in Fv, y is a
unit in Ev, and αx is integral in Ev modulo Fv. If dv is the product of the measures of the
image in Z(Ev)\A(Ev) of {(

y 0
0 1

) ∣∣∣∣∣ y a unit in Ev

}
,

of the image in N(Fv)\N(Ev) of{(
1 x
0 1

) ∣∣∣∣∣ x integral in Ev

}
,

and of Kv, divided by the measure of Z(Ev) ∩KEv\KEv , then

θ(s, ϕ0
v) = dv.

Since the product of the dv converges and since each θ(s, ϕv) is analytic for Re s > −1/ℓ the
product ∏

v

θ(s, ϕv) = θ(s, ϕ)

is analytic for Re s > −1/ℓ and its derivative at s = 0 is∑
v

θ′(0, ϕv)
∏
w ̸=v

θ(0, ϕv).

The expression (10.13) is equal to

L(1 + ℓs, 1F )θ(s, ϕ).

It has a simple pole at s = 0 and the constant term of its Laurent expansion is

(10.15) λ0θ(0, ϕ) +
λ−1

ℓ

∑
v

θ′(0, ϕv)
∏
w ̸=v

θ(0, ϕv).

This is one of the contributions to the twisted trace formula.
The pole of (10.13) at s = 0 will have to be cancelled by a pole of (10.14) and is thus

irrelevant. As on p. 534 of [14] we use the Poisson summation formula to treat (10.14). It
equals the difference of

(10.16)

∫
Z(AE)A(F )\A(AE)

∫∫
KE

∑
γ∈N(E)

ϕ
(
k−1t−1n−1γσ(ntk)

)∣∣∣∣ab
∣∣∣∣−1−s

χ(t) dn dt dk

and

(10.17)

∫∫∫
KE

ϕ
(
k−1t−1n−1σ(ntk)

)∣∣∣∣ab
∣∣∣∣−1−s

χ(t) dn dt dk.

The outer integrals are both over Z(AE)A(F )\A(AE) and the inner integrals in the two
expressions are over the different spaces N(A)N(E)\N(AE) and N(A)\N(AE).
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Let
N0(AE) =

{
n ∈ N(AE)

∣∣ Nn = 1
}
.

If g ∈ G(AE) and t ∈ A(A) then∫
N(A)\N(AE)

ϕ
(
g−1t−1n−1σ(ntg)

)
dn =

∣∣∣∣ab
∣∣∣∣ℓ−1

F

∫
N0(AE)

ϕ
(
g−1nσ(g)

)
dn.

Notice that an absolute value with respect to F intervenes in this formula; the other absolute
values have been taken with respect to E. Also if

t′ =

(
a′ 0
0 b′

)
lies in A(AE) then∫

Z(A)A(F )\A(A)

∣∣∣∣ab
∣∣∣∣ℓ−1

F

∣∣∣∣ab
∣∣∣∣−1−s

χ(tt′) dt =
1

1 + ℓs

(∣∣∣∣a′b′
∣∣∣∣c−1

1

) 1+ℓs
ℓ

.

Here c1 is the constant used to define χ. Thus (10.17) is equal to

1

1 + ℓs
· c−

1+ℓs
ℓ

1 ·
∫∫

N0(AE)

∫
KE

ϕ
(
k−1t−1nσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣ 1−ℓ

ℓ

dn dt dk.

The outer integral is taken over Z(AE)A(A)\A(AE), and the entire integral is finite. This
function is analytic at s = 0 and its value there approaches 0 as c1 approaches infinity. Since
our final step in the derivation of the trace formula is to let c1 pass to infinity, it can be
forgotten.

To treat (10.16) we choose a non-trivial character ψ of F\A. Write (10.16) as the integral
over Z(AE)A(F )\A(AE) of∑

N0(E)\N(E)

∫
KE

∫
N0(AE)

ϕ
(
k−1t−1γnσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1−s

χ(t) dn dk dt

and take the Fourier transform Ψ(γ, t), with respect to ψ, of the function∫
KE

∫
N0(AE)

ϕ
(
k−1t−1γnσ(t)σ(k)

)
dn dk

on N0(AE)\N(AE), which is isomorphic to N(A) or A. If t ∈ A(A) then

Ψ(γ, tt′) =

∣∣∣∣ab
∣∣∣∣ℓ−1

F

Ψ(tγt−1, t′).

Since γ → tγt−1 spreads apart lattice points when
∣∣a
b

∣∣ is large∫
Z(AE)A(F )\A(AE)

∑
γ ̸=0

Ψ(γ, t)

χ(t)

∣∣∣∣ab
∣∣∣∣−1−s

dt

is a holomorphic function of s and its value at s = 0 approaches 0 as c1 approaches ∞.
The remaining term is∫

Z(AE)A(F )\A(AE)

∫
KE

∫
N(AE)

ϕ
(
k−1t−1nσ(t)σ(k)

)
χ(t)

∣∣∣∣ab
∣∣∣∣−1−s

dn dt dk
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which equals

1

ℓs

1

cs1

∫
Z(AE)A(A)\A(AE)

∫
KE

∫
N(AE)

ϕ
(
k−1t−1nσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1

dn dt dk.

The pole of this at s = 0 cancels with a pole we have met before, but we must keep its
constant term with the opposite sign. This is

(10.19)
ln c1
ℓ

∫
Z(AE)A(A)\A(AE)

∫
KE

∫
N(AE)

ϕ
(
k−1t−1nσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1

dn dt dk.

The product formula together with a little measure-theoretic manipulation allows us to
put (10.11) in a form that can be combined with (10.19) to yield

(10.20)
ln c1
ℓ

∑∫∫
KE

∫
N(AE)

ϕ
(
k−1t−1γnσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1

dn dt dk.

The sum is over A1−σ(E)Z(E)\A(E); the outer integral over Z(AE)A(A)\A(AE).
We treat what remains of the analogues of (16.2.1) and (16.2.2) as on pages 536–538. For

the second we have the sum of
1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)
Nγ/∈N1(E)

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
χ(δg)

and
1

2

∑
B(E)\G(E)

∑
γ∈Z(E)\B(E)
Nγ∈N1(E)

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
χ
(
ω(γ)δg

)
.

If γ′ = δ−1γσ(δ) with δ ∈ B(E) then we may chose ω(γ′) = δ−1ω(γ)δ. It follows easily that
these two sums are equal and that together they yield∑

γ∈A1−σ(E)Z(E)\A(E)
Nγ/∈Z(F )

∑
Z(E)A(F )\G(E)

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
χ(δg)

which may also be written

(10.21)
∑

γ1∈A1−σ(E)Z(E)\A(E)
Nγ1 /∈Z(F )

{∑∑
ϕ
(
g−1δ−1γ1γ2σ(δ)σ(g)

)
χ(δg)

}
.

The inner sums are over δ in A(F )N1(E)\G(E) and γ in N(E). The expression in brackets
is 0 for all but finitely many γ1.

For given γ1 and g, ϕ
(
g−1γ1γ2σ(g)

)
may be regarded as a function on N(AE) or, what is

the same, on AE. We choose a non-trivial additive character ψE of E\AE and set

Ψ(y, γ1, g) =

∫
A

ϕ

(
g−1γ1

(
1 x
0 1

)
σ(g)

)
ψ(xy) dx.

We may apply Poisson summation to the innermost sum of (10.21). Now∫
Z(AE)G(E)\G(AE)

∑
γ1

∑
δ

∑
y ̸=0
y∈E

Ψ(y, γ1, δg)χ(δg) dg
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is equal to ∑
γ1

∫
Z(AE)A(F )N(E)\G(AE)

∑
y ̸=0

Ψ(y, γ1, g)χ(g) dg.

Taking the structure of Siegel domains as well as the compact support of ϕ into account one
sees that this integral is finite and that it approaches 0 as c1 approaches infinity. This leaves

(10.22)
∑

{ γ1 | Nγ1 /∈Z(F )}

∑
δ

Ψ(0, γ1, δg)χ(δg)

to be considered.
The analogue of (16.2.1) still yields∑

B(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ/∈Z(F )

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
χ(δg).

If we observe that every element of A(E) whose norm lies in Z(F ) is congruent modulo A1−σ(E)
to an element of Z(E), we see that we can apply Poisson summation to this expression to
obtain a term which together with (10.22) yields

(10.23)
∑

γ1∈A1−σ(E)Z(E)\A(E)

∑
δ∈A(F )N1(E)\G(E)

Ψ(0, γ1, δg)χ(δg)

as well as two remainder terms:

−
∑

A(F )N1(E)\G(E)

∑
γ∈Z(E)\N1(E)

Nγ∈Z(F )

ϕ
(
g−1δ−1γσ(δ)σ(g)

)
χ(δg);

and ∑
A(F )N1(E)\G(E)

∑
y ̸=0

Ψ(y, 1, δg)χ(δg).

The integrals over Z(AE)G(E)\G(AE) of both these functions converge and approach 0 as
c1 approaches ∞.

We now turn to the kernel of Pr(ϕ)r(σ) on the diagonal. We must separate from it a term
which cancels (10.23) and calculate the integral of the reminder. Set E1(g, φ, η) equal to∑

δ∈B(E)\G(E)

{
φ(δg) +M(η)φ(δg)

}
χ(δg)

and
E2(g, φ, η) = E(g, φ, η)− E1(g, φ, η).

In the sum it is implicit that φ lies in B(η), that is

φ

((
a 0
0 b

)
g

)
= µ(a)ν(b)φ(g)

and that M(η) takes B(η) to B(η̃) with η̃ = (ν, µ). If 1 ⩽ m, n ⩽ 2 set

Hmn(g, η; i, j) = ρij(ϕ, η)Em(g, φi, η)En(g, φ
σ
j , η

σ).
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The kernel of Pr(ϕ)r(σ) is

1

4π

∫
D0

E

2∑
m,n=1

∑
i,j

Hmn(g, η; i, j) |ds| =
2∑

m,n=1

Φmn(g).

If m or n is 2 the integral of Φmn(g) over Z(AE)G(E)\G(AE) turns out to be finite and
is equal to

1

4π

∫
D0

E

∑
i,j

{∫
Z(AE)G(E)\G(AE)

Hmn(g, η; i, j) dg

}
|ds|.

First take m = n = 2. A formula for the inner product∫
Z(AE)G(E)\G(AE)

E2(g, φi, η)E2(g, φ
σ
j , η

σ) dg

is given on p. 135 of [22], but in a different notation and not in adelic form. It is easy enough
to take these differences into account. Let

αt :

(
a 0
0 b

)
→
∣∣∣∣ab
∣∣∣∣t.

We may as well suppose η is a unitary character. If ηη−σ is trivial on

A0 =

{(
a 0
0 b

) ∣∣∣∣∣
∣∣∣∣ab
∣∣∣∣ = 1

}
set

ηη−σ = αs(η).

The inner product is the sum of two terms. The first is 0 if ηη−σ is not trivial on A0.
Otherwise it is

(10.24) lim
t↘0

1

s(η) + 2t

{
c
s(η)+2t
1 (φi, φ

σ
j )− c

−s(η)−2t
1

(
M(ηαt)φi,M(ησαt)φ

σ
j

)}
if

(φi, φ
σ
j ) =

∫
KE

φi(k)φ
σ
j (k) dk.

The second is 0 unless ηη̃−σ is trivial on A0, when it is

(10.25) lim
t↘0

1

t(η)

{
c
t(η)
1

(
φi,M(ησαt)φ

σ
j

)
− c

−t(η)
1

(
M(ηαt)φi, φ

σ
j

)}
if

ηη̃−σ = αt(η).

Observe that s(η) is constant on connected components of D0
E and that

t(ηαt) = t(η) + 2t.

The Riemann-Lebesgue lemma allows us to discard the integral of (10.24) over those
connected components on which s(η) is not 0. Those elements of D0

E for which s(η) = 0 are
all obtained from elements of D0 by composing with the norm, and ℓ2 different elements of
D0 give rise to each such η. If s(η) = 0 then (10.24) equals the sum of

(10.26) 2 ln c1(φi, φ
σ
j )
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and

(10.27) −1

2

{(
M(η)φi,M

′(η)φσ
j

)
+
(
M ′(η)φi,M(η)φσ

j

)}
= −

(
M−1(η)M ′(η)φi, φ

σ
j

)
.

If η = ησ then g → ρ(g, η) may be extended to a representation of G(AE)×G for φ→ φσ

takes B(η) to itself. The trace of ρ(ϕ, η)ρ(σ, η) is, on the one hand,∫
Z(AE)\A(AE)

∫
N(AE)

∫
KE

ϕ
(
k−1tnσ(k)

)
η(t)

∣∣∣∣ab
∣∣∣∣−1

dt dn dk

or ∫ {∫∫
N(AE)

∫
KE

ϕ
(
k−1t−1γnσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1

dt dn dk

}
η(γ)

∣∣∣∣a0b0
∣∣∣∣−1

dγ,

the two missing domains of integration being

Z(AE)A
1−σ(AE)\A(AE)

and
Z(AE)A(A)\A(AE),

and γ now being (
a0 0
0 b0

)
.

On the other hand it is ∑
i,j

ρij(ϕ, η)(φi, φ
σ
j ).

We apply Poisson summation to see that 1
2π

times the integral over those η for which s(η) = 0
of trace ρ(ϕ, η)ρ(σ, η) is the sum over γ in A1−σ(E)Z(E)\A(E) of

1

ℓ

{∫
Z(AE)A(A)\A(AE)

∫
N(AE)

∫
KE

ϕ
(
k−1t−1γnσ(t)σ(k)

)∣∣∣∣ab
∣∣∣∣−1

dt dn dk

}
.

The factor ℓ appears in the denominator because the image of A(AE) in A(A) is of index ℓ
modulo A(F ) and 1

2π
|ds| is the dual of the Tamagawa measure on Z(A)A(F )\A(A) pulled

back to characters of Z(AE)A(E)\A(AE). In any case the contribution of (10.26) cancels
(10.20).

We define

mE(η) =
LE(1, νµ

−1)

LE(1, µν−1)
with a subscript to stress that the L-functions are defined with respect to E. We also
introduce RE(ηv) so that

M(η) = mE(η)⊗v RE(ηv).

The contribution of (10.27) to the trace is the sum of

(10.28)
1

4π

∫
{ η∈D0

E | s(η)=0}
m−1

E (η)m′
E(η) trace ρ(ϕ, η)ρ(σ, η)

and

(10.29)
1

4π

∫ ∑
v

trace
(
ρ(ϕv, ηv)ρ(σ, ηv)R

−1
E (ηv)R

′
E(ηv)

)∏
w ̸=v

trace ρ(ϕw, ηw)ρ(σ, ηw) ds,
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the integral being over
{
η ∈ D0

E

∣∣ s(η) = 0
}
. The sum is over the places of F .

If ησ = η̃ then M(ησ) is the adjoint M∗(η) of M(η) and, as on p. 543 of [14], the
contribution of the integral of (10.25) to the trace formula is

(10.30) −1

4

∑
ησ=η̃

trace
(
ρ(ϕ, η)ρ(σ, ησ)M(η)

)
where

ρ(σ, ησ) : B(ησ) → B(η)
and

M(η) : B(η) → B(ησ).
As on pages 543–544 of [14]∫

Z(AE)G(E)\G(AE)

Hmn(g, η; i, j) dg

is 0 if m ̸= n and c1 is sufficiently large.
To handle that part of the kernel given by Φ1,1(g) we proceed as on p. 544 of [14]. If

F (g, φ, η) = φ(g) +M(η)φ(g)

where φ is here a function in B(η) then for c1 sufficiently large

H1 1(g, η; i, j) =
∑

B(E)\G(E)

ρij(ϕ, η)F (δg, φi, η)F (δg, φ
σ
j , η

σ)χ(δg).

The right side is the sum of four terms which we obtain by replacing F (g, φi, η) by φi and
M(η)φi, and F (g, φ

σ
j , η

σ) by φσ
j and M(ησ)φσ

j . Since η̃η
−σ and ηη̃−σ are not constant on the

connected components, the cross terms φi(g) ·M(ησ)φσ
j (g) and M(η)φi(g) · φσ

j (g) contribute
nothing to the trace, or at least only a term which approaches 0 as c1 approaches ∞.

Thus that part of Φ1,1(g) which we need to consider is the sum of∑
δ

1

4π

∫
D0

E

∑
i,j

ρij(ϕ, η)φi(δg)φσ
j (δg) |ds|χ(δg)

and ∑
δ

1

4π

∫
D0

E

∑
i,j

ρij(ϕ, η)M(η)φi(δg)M(ησ)φσ
j (δg) |ds|χ(dg).

The first integrand ∑
i,j

ρij(ϕ, η)φi(g)φσ
j (g)

is the kernel ρ(ϕ, η)ρ(σ, ησ) restricted to the diagonal. The second is the kernel of

M(η)ρ(ϕ, η)M∗(η)ρ(σ, ησ) = ρ(ϕ, η)ρ(σ, ησ).

The kernel is also ∫
Z(AE)\A(AE)

∫
N(AE)

ϕ
(
g−1ntσ(h)

)
η(t)

∣∣∣∣ab
∣∣∣∣−1

dt dn.

By Poisson summation our sum is∑
B(E)\G(E)

∑
Z(E)\A(E)

∫
N(AE)

ϕ
(
g−1δ−1γnσ(δ)σ(g)

)
dnχ(δg).
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This is easily seen to equal (10.23); so the two cancel each other.
The twisted trace formula is given by the sum of (10.8), (10.9), (10.12), (10.15), (10.28),

(10.29), and (10.30); but we must subject the expressions (10.12), (10.15), and (10.29) to
further torture. We first remove

(10.31) λ0θ(0, ϕ)

from (10.15). If we observe that

θ(s, ϕv) = θ(1, s, ϕv)

we may appeal to the results of Paragraph 9 and write the sum of (10.12) and the remaining
part of (10.15) as

(10.32)
−λ−1

ℓ

∑
γ∈A1−σ(E)Z(E)/A(E)

Nγ/∈Z(F )

∑
v

A2(γ, ϕv)
∏
w ̸=v

F (γ, ϕw)

and

(10.33)
−λ−1

ℓ

∑
γ∈A1−σ(E)Z(E)\A(E)

∑
v

A3(γ, ϕv)
∏
w ̸=v

F (γ, ϕw).

Poisson summation for the pair A1−σ(E)Z(E)\A(E), A1−σ(AE)Z(AE)\A(AE) may be
applied to the latter sum. If ηv agrees with ξEv on Z(Ev) we set

B1(ϕv, ηv) =

∫
A1−σ(Ev)Z(Ev)\A(Ev)

A3(t, ϕv)ηv(t) dt.

Since λ−1 is just the discrepancy between the global Tamagawa measure and the product of
the local Tamagawa measures, (10.33) is equal to

(10.34) − 1

2π

∫
{ η∈D0

E | s(η)=0}

∑
v

B1(ϕv, ηv)
∏
w ̸=v

trace
(
ρ(ϕw, ηw)ρ(σ, ηw)

)
|ds|

because, as observed in Paragraph 7,∫
A1−σ(Ev)Z(Ev)\A(Ev)

F (t, ϕv)ηv(t) dt = trace
(
ρ(ϕv, ηv)ρ(σ, ηv)

)
.

The ℓ has disappeared in (10.34) because the dual measure must be ℓ|ds|.
If we set

B(ϕv, ηv) =
1

2
trace ρ(ϕ, ηv)ρ(σ, ηv)R

−1
E (ηv)R

′
E(ηv)−B1(ϕv, ηv)

then (10.29) and (10.34) may be combined to yield

(10.35)
1

2π

∫
{ η∈D0

E | s(η)=0}

∑
v

B(ϕv, ηv)
∏
w ̸=v

trace
(
ρ(ϕw, ηw)ρ(σ, ηw)

)
|ds|.





CHAPTER 11

The comparison

As pointed out in §2, the function of the trace formula is to establish the equality

traceR(ϕ)R(σ) = trace r(f).

However we there defined the representation R only for ℓ odd, and we have now to complete
the definition.

Let S be the set of η in DE for which ησ ̸= η but ησ = η̃. If η ∈ S and η = (µ, ν) then
µσ = ν and νσ = µ but µσ ≠ µ and νσ ̸= ν. It follows, in particular, that ℓ = 2 if S is not
empty. If η ∈ S we may extend ρ(η) to a representation τ(η) of G(AE)×G by setting

τ(σ) = ρ(σ, ησ)M(η).

Indeed
τ(σ, η)τ(g, η) = τ(σ, η)ρ(g, η) = ρ(σ, ησ)M(η)ρ(g, η).

which, because M(η) intertwines ρ(η) and ρ(η̃) = ρ(ησ), is equal to

ρ(σ, ησ)ρ(g, ησ)M(η) = ρ
(
σ(g), η

)
ρ(σ, ησ)M(η) = τ

(
σ(g), η

)
τ(σ, η).

Moreover, by the theory of Eisenstein series M(ησ)M(η) =M(η̃)M(η) = 1; so

τ(σ, η)τ(σ, η) = ρ(σ, ησ)M(η)ρ(σ, ησ)M(η)

= ρ(σ, ησ)ρ(σ, η)M(ησ)M(η)

= 1.

The representations τ(η) and τ(η̃) are equivalent, for

M(η)ρ(g, η)M(η)−1 = ρ(g, η̃)

and
M(η)ρ(σ, ησ)M(η)M(η)−1 =M(η)ρ(σ, ησ) = ρ(σ, η)M(η̃).

Since the involution η → η̃ has no fixed points on S

τ =
1

2

⊕
S

τ(η)

is actually a well-defined—up to equivalence—representation of G(AE)×G. It is 0 if ℓ ̸= 2.
Let R be the representation of G(AE)×G which is the direct sum of τ and ℓ copies of the
representation r on Lsp(ξE)⊕L0

se(ξE). We now let r denote solely the representation of G(A)
on Lsp(ξ) + L0

se(ξ).
Suppose ϕ = Πϕv is a function satisfying the conditions of the previous paragraph.

Suppose moreover that if v splits in E then ϕv on G(Ev) ≃ G(Fv)× · · · ×G(Fv) is itself a
product of ℓ functions, one for each factor. Then we map ϕv → fv, as in Paragraph 5 if v is
unramified and ϕv is spherical, and as in Paragraph 6 or 8 otherwise.

123
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Theorem 11.1. The equality

traceR(ϕ)R(σ) = trace r(f)

is valid.

We will, as has been stressed, use the results of the previous paragraph to prove this
equality. If our knowledge of local harmonic analysis were adequate we could prove it with no
difficulty whatsoever; our ignorance however forces some rather inelegant gymnastics upon
us. We begin by deriving a formula for

traceR(ϕ)R(σ)− trace r(f).

We apply the trace formula, cancelling as much as possible.
We begin by observing that the contributions from (10.8) and (10.9) are cancelled by that

from (10.1). First of all, if γ is one of the indices in (10.1), the corresponding term is 0 unless
γ is a local norm everywhere, and hence a global norm. If γ = Nδ, then ϵ(γ) = ϵ(δ), for if

u−1γu = zγ, u ∈ G(F ),

with z = Nx, x ∈ Z(E), z ̸= 1 then

N(u−1δu) = N(xδ)

and
xδ = v−1u−1δuσ(v) = v−1u−1δσ(u)σ(v).

Moreover

meas
(
NE/FZ(AE)Gγ(F )\Gγ(A)

)
= ℓmeas

(
Z(A)Gγ(F )\Gγ(A)

)
and, by standard facts about Tamagawa numbers (formula 16.1.8 of [14]),

meas
(
Z(A)Gγ(F )\Gγ(A)

)
= meas

(
Z(A)Gσ

γ(F )\Gσ
δ (AE)

)
= meas

(
Z(AE)G

σ
γ(F )\Z(AE)G

σ
δ (AE)

)
.

Since R is so defined that (10.8) and (10.9) have to be multiplied by ℓ, the cancellation
follows from the definitions of Paragraphs 6 and 8, provided we recall from Paragraph 4 that
if γ is central then the number of places at which δ is not σ-conjugate to a central element is
even.

The term (10.4) is cancelled by (10.31), or rather ℓ times (10.31). To see this we have
only to appeal to the definitions of Paragraphs 6 and 8, and to observe in particular that
every term of (10.4) is 0 except the one indexed by a ∈ NE/FZ(E).

The terms (10.3) and (10.28) cancel each other. Observe first that there is a surjective
map η → ηE, with ηE(t) = η(Nt), of D0 to D0

E, D
0 and D0

E being the groups of unitary
characters of A(A) and A(AE) introduced in the previous paragraph; and that, as we deduce
from Paragraph 8,

trace ρ(ϕ, ηE)ρ(σ, ηE) = trace ρ(f, η).

The expression (10.3) is equal to

1

4π

∫
D0

E

∑
η→ηE

m−1(η)m′(η) trace
(
ρ(ϕ, ηE)ρ(σ, ηE)

) |ds|.
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Since ∑
η→ηE

m−1(η)m′(η) = ℓm−1
E (ηE)m

′
E(ηE)

the two can be cancelled—provided of course that we do not forget to multiply (10.28) by ℓ.
The results of Paragraph 9 allow us to cancel (10.5) and (10.32). We should perhaps

observe that the term of (10.5) indexed by γ and v is 0 unless γ is a norm everywhere except
perhaps at v. But if γ is a norm at all but one place it is a norm everywhere, and hence a
norm.

If we add the trace of τ(ϕ)τ(σ) to ℓ times (10.30) we obtain

− ℓ
4

∑
{ η∈D0

E | η=ησ=η̃}
M(η) trace

(
ρ(ϕ, η)ρ(σ, η)

)
.

We have placed M(η) outside the trace because it is now a scalar; it intertwines ρ(η) with
itself and ρ(η) is irreducible ([14, Chapter I]). If we subtract (10.2) from this we obtain

−1

4

∑
η


∑
η′=η̃′

η′→η

M(η′)− ℓM(η)

 trace
(
ρ(ϕ, η)ρ(σ, η)

)
.

However, as we shall see in a moment, M(η′) = M(η) = −1. Since there are ℓ different η′

mapping to a given η, this expression is 0.
It will be enough to show that M(η′) = −1, for M(η) is the same object, defined with

respect to a different field. First of all, since η′ = (µ′, µ′)

m(η′) = lim
t→0

m(ηαt) = lim
t→0

L(1− 2t, 1F )

L(1 + 2t, 1F )
= −1.

To conclude we have only to appeal to Lemma 7.7 which shows that each R(η′v) is the identity.
At this point only (10.7) and (10.35) are left. They yield the sum over v of

(11.1)
1

2π

∫ ℓB(ϕv, ηv)−
∑
η′→η

B(fv, η
′
v)

∏
w ̸=v

trace
(
ρ(ϕ, ηw)ρ(σ, ηw)

)
|ds|,

the integral being taken over
{
η ∈ D0

E

∣∣ s(η) = 0
}
. Suppose v is unramified and ϕv is

spherical. Then
B(ϕv, ηv) = −B1(ϕv, ηv)

and
B(fv, η

′
v) = −B1(fv, ηv).

If η′1 and η
′
2 both map to η and η′1 = (µ′

1, ν
′
1), η

′
2 = (µ′

2, ν
′
2), then

µ′
2

µ′
1
and

ν′2
ν′1

are both characters

of Z(F )NE/FZ(AE)\Z(A). Thus if v splits in E, η′v is the same for all η′ → η. Denote it
by η0v . Then ∑

η′→η

B1(fv, η
′
v) = ℓ2

∫
Z(Fv)\A(Fv)

A3(t, fv)η
0
v(t) dt.

Since
ℓA3(Nt, fv) = A3(t, ϕv)
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the right side equals

ℓ

∫
A1−σ(Ev)A(Ev)\A(Ev)

A3(t, ϕv)ηv(t) dt = ℓB1(ϕv, ηv).

If v remains prime in E, then∑
η′→η

B1(fv, η
′
v) = ℓ2

∫
NE/FZ(Ev)\NE/FA(Ev)

A3(t, fv)η
0
v(t) dt

if η0v is the restriction of the η′v to NE/FA(Ev). As before the right side equals ℓB1(ϕv, ηv).
We are led to suspect that

ℓB(ϕv, ηv) =
∑
η′→η

B(fv, η
′
v)

for all v; so (11.1) should vanish. This however we have yet to prove.
We now know only that

traceR(ϕ)R(σ)− trace r(f)

is equal to (11.1) above. We must show that this equality can hold only if both sides are 0.
The multiplicity one theorem is valid for the representation of G(AE) on Lsp(ξE)⊕L0

se(ξE)
(Proposition 11.1.1 of [14]). If Π, acting on VΠ, is an irreducible constituent then so is
Πσ : g → Π

(
σ(g)

)
. If Πσ is not equivalent to Π, that is, if VΠ ̸= VΠσ then the trace of

R(ϕ)R(σ) on
VΠ ⊕ VΠσ ⊕ · · · ⊕ V

Πσℓ−1

is 0. If VΠ = VΠσ then G(AE)×G acts on VΠ. We denote the extended representation by Π′.
The representation Π is a tensor product

⊗
v Πv where Πv is a representation of G(Ev).

If Πσ ≃ Π then Πσ
v ≃ Πv for each v, so Πv extends to a representation Π′

v of G(Ev)×G. Π′
v

is determined up to a character of G. We may suppose that Π′ =
⊗

Π′
v. Let V be a fixed

finite set of places containing all infinite places and all places ramified in E. Suppose Πv

belongs to the unramified principal series for v /∈ V ; then we may also demand that for such
v the operator Π′

v(σ) fixes the KEv invariant vector. If we consider only ϕ for which ϕv is
spherical outside of V , we have

traceΠ′
v(ϕv)Π

′
v(σ) = traceΠv(ϕv) = f∨

v

(
t(Πv)

)
for v /∈ V . Here

t(Πv) =

(
a(Πv) 0
0 b(Πv)

)
lies in A(C) and

a(Πv)b(Πv) = ξ(ϖv), v split,

a(Πv)
ℓb(Πv)

ℓ = ξ(ϖℓ
v), v not split,

if ϖv is a uniformizing parameter for Fv. Observe that it is really only the conjugacy class
of t(Πv), that is, the pair

(
a(Πv), b(Πv)

)
which matters. Some of the equalities which are

written below should be understood as equalities between conjugacy classes.
If we set

α(Π) =
∏
v∈V

traceΠ′
v(ϕv)Π

′
v(σ)
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then the trace of the operator R(ϕ)R(σ) on Lsp(ξE)⊕ L0
se(ξE) is∑

α(Π)
∏
v/∈V

f∨
v

(
t(Πv)

)
.

The sum is over those Π which are equivalent to Πσ and for which Πv belongs to the unramified
principal series outside of V .

We need a similar expression for the trace of τ(ϕ)τ(σ). If η ∈ S and η = (µ, ν) then

mE(η) =
L(1, νµ−1)

L(1, µν−1)
.

In general this has to be evaluated as a limit. However both numerator and denominator are
now finite and different from 0, for µ ̸= ν. Thus the quotient is meaningful as it stands and
equals

L(1, νµ−1)

L(1, νσµ−σ)
= 1

because
L(s, χ) = L(s, χσ)

for all characters of E×\IE.
It follows that

M(η) =
⊗

RE(ηv).

If ηv is unramified then RE(ηv) fixes the KEv -invariant vectors. If ϕv is spherical outside of V
then trace τ(ϕ, η)τ(σ, η) = 0 unless ηv is also unramified outside of v, when it equals

Πv trace ρ(ϕ, ηv)ρ(σ, η
σ
v )RE(ηv) = α(η)

∏
v/∈V

f∨
v

(
t(ηv)

)
,

with
α(η) =

∏
v∈V

trace ρ(ϕ, ηv)ρ(σ, η
σ
v )RE(ηv)

and

t(ηv) =

(
µ′
v(ϖv)

ν ′v(ϖv)

)
.

Here µv(x) = µ′
v(Nx), νv(x) = ν ′v(Nx).

The trace of R(ϕ)R(σ) is, when ϕv is spherical outside of V , given by

(11.2) ℓ
∑
Π

α(Π)
∏
v/∈V

f∨
v

(
t(Πv)

)
+

1

2

∑
η

α(η)
∏
v/∈V

f∨
v

(
t(ηv)

)
.

The indices Π and η are constrained as above. We may treat the trace of r(f) in a similar
fashion to obtain

(11.3)
∑
π

α(π)
∏
v/∈V

f∨
v

(
t(πv)

)
where

t(πv) =

(
a(πv) 0
0 b(πv)

)
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and

a(πv)b(πv) = ξ(ϖv), v split,

a(πv)
ℓb(πv)

ℓ = ξ(ϖℓ
v), v not split.

We write the difference of (11.2) and (11.3) as

(11.4)
∑
k

αk

∏
v/∈V

f∨
v (t

k
v)

with a family of distinct sequences
{
tkv
∣∣ v /∈ V

}
and with none of the αk equal to 0. Distinct

must be understood to mean that either tkv and tk
′

v are not conjugate for some v which splits
in E or (tkv)

ℓ and (tk
′

v )
ℓ are not conjugate for some v which does not split. We are trying to

show that this sum is empty.
If we set

β(η) =
∑
v∈V

ℓB(ϕv, ηv)−
∑
η′→η

B(fv, η
′
v)



∏
w∈V
w ̸=v

trace ρ(ϕ, ηw)ρ(σ, ηw)


and then (11.1) is equal to

(11.5)
1

2π

∫
β(η)

∏
v/∈V

f∨
v

(
t(ηv)

)
|ds|.

The integral is taken over those η ∈ D0
E for which ησ = η and which are unramified outside V .

Fix a v /∈ V . Suppose first that v splits in E. We choose a, b in C with |a| = |b| = 1 and
write any

t =

(
a(t) 0
0 b(t)

)
in A(C) with a(t)b(t) = ξ(ϖv) as

t =

(
az 0
0 bz−1

)
.

This allows us to regard any function in the Hecke algebra at v, H′
v, onto which H′

Ev
maps

surjectively, as a finite Laurent series in z. These Laurent series will be invariant under
z → b

a
z−1. Moreover the Hecke algebra yields all such series.

We may assume that for all the

tkv =

(
akv 0

0 bkv

)
occurring in (11.4), the inequality

|akv| ⩾ |bkv|
obtains. It follows from Lemma 3.10 of [14] that∣∣∣∣∣akvbkv

∣∣∣∣∣ ⩽ |ϖv|−1.
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If η ∈ D0
E, η is unramified outside of V , and v /∈ V , and

t(ηv) =

(
a(ηv)

b(ηv)

)
then ∣∣a(ηv)∣∣ = ∣∣b(ηv)∣∣ = 1.

Let riv, i = 1, 2, . . . be the distinct elements among the tkv for the given fixed v and set

ci =
∑
tkv=riv

αk

∏
w/∈V
w ̸=v

f∨
v (t

k
v).

We write (11.4) as

(11.6)
∑
i

cif
∨
v (r

i
v).

In a given connected component of D on which η = ησ and η is unramified outside V we may
choose η0 with

η0v =

(
a 0
0 b

)
.

If on each such component we choose an η0 and set

d(s) =
∑

β(η0αs)
∏
w/∈V
w ̸=v

fw
(
t(η0wαs)

)
then we may write (11.5) as

(11.7)
1

2π

∫ i∞

−i∞
d(s)f∨

v

((
a|ϖv|s 0

0 b|ϖv|−s

))
|ds|.

It will be recalled that

αs :

(
a1

b1

)
→
∣∣∣∣a1b1
∣∣∣∣s.

From the equality of (11.6) and (11.7) we want to deduce that all ci are 0. It will follow
that (11.7) is 0; so the theorem will be established, for given any ϕ we can always choose V
so that ϕv is spherical outside of V as well as a v outside of V which splits in E. It is implicit
in (11.6) and (11.7) that ϕw and fw are fixed for w ̸= v. However we are still free to vary ϕv

and hence fv.
Since the trace formula yields absolutely convergent sums and integrals and since, in

addition, we can make f∨
v = 1, ∑

|ci| =M1 <∞
and

1

2π

∫ i∞

−i∞

∣∣d(s)∣∣ |ds| =M2 <∞.

Moreover
1

2π
sup

−∞<s<∞

∣∣d(is)∣∣ =M3 <∞.
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We set

riv =

(
azi

bz−1
i

)
, |zi| ⩾ 1.

Since the Πv, the ρ(ηv), and the πv which contribute to (11.6) are all unitary

f∨
v (r

i
v) = f∨

v (s
i
v)

with

siv =

(
a−1z−1

i 0

0 b
−1
z−1
i

)
.

That is, either |zi| = 1 or zi =
b
a
zi. Since |ϖv|1/2 ⩽ |zi| ⩽ |ϖv|−1/2, the zi are constrained to

lie in the compact set X depicted below.

A finite Laurent series
φ(z) =

∑
λjz

j

is yielded by the Hecke algebra if and only if ajλ−j = bjλj. If λ∗j = λ−j this condition is

equivalent to ajλ∗−j = bjλ∗j ; so φ is yielded by the Hecke algebra if and only if

φ∗(z) =
∑

λ∗jz
j

is. Since

λ∗j =

(
a

b

)j

λj

the equality
φ∗(z) = φ(z)

is valid on X. We appeal to the Stone-Weierstrass theorem to conclude that any continuous
function φ on X satisfying

(11.8) φ(z) = φ

(
b

a
z−1

)
can be uniformly approximated by the functions associated to elements of the Hecke algebra.

Both (11.6) and (11.7) then extend to continuous linear functionals in the space of
continuous functions satisfying (11.8). It follows from the Riesz representation theorem
that they are both zero, for one is given by an atomic measure and the other by a measure
absolutely continuous with respect to the Lebesgue measure on the circle.

The theorem gives the equality easiest to state, but we shall work with a sharper form.
Observe first that we could have applied a similar argument if v were not split. The only
difference is that the Laurent series coming into play would only involve powers of zℓ. But
we would have to notice that it is then only the ℓth power (tkv)

ℓ of tkv which is relevant. It is
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clear that by repeatedly applying our argument we can show that if U is any finite set of
places disjoint from V then

(11.9)
∑

αk

∏
v/∈U∪V

f∨
v (t

k
v) = 0.

Here we choose rv, v ∈ U , and take the sum over those k for which

tkv = rv, v split,

(tkv)
ℓ = rℓv, v not split.

The equality is to be read as an equality of conjugacy classes. It simply means that the two
matrices have the same eigenvalues.

We show next that each αk is 0. Suppose for example that α0 ≠ 0. Choose an N such
that ∑

k⩾N

|αk| ⩽
|α0|
2
.

Then choose U disjoint from V so that if 1 ⩽ k < N then for some v ∈ U either i) v is split
and tkv ̸= t0v, or ii) v is not split and (tkv)

ℓ ̸= (t0v)
ℓ. Applying (11.9) with rv = t0v, v ∈ U , and

with all f∨
v equal to 1 we deduce a contradiction.

Before going on we review the facts now at our disposal. Let V be a finite set of places
containing all infinite places and all finite places ramified in E. Suppose that for each v /∈ V
we are given

rv =

(
av 0
0 bv

)
where avbv = ξ(ϖv) if v is split and (avbv)

ℓ = ξ(ϖℓ
v) if v is not split. Set

A1 =
∑∏

v∈V

trace
(
Πv(ϕv)Π

′
v(σ)

)
.

The sum is taken over all Π occurring in the representation of G(E) on Lsp(ξE)⊕ L0
se(ξE) for

which Πv is unramified outside of V and for which

traceΠv(ϕv) = f∨
v (rv)

for all v /∈ V and all spherical ϕv. Observe that by the strong form of the multiplicity one
theorem (Lemma 3.1), the sum is either empty or contains a single term.

We set
A2 =

∑∏
v∈V

trace τ(ϕv, ηv)τ(σ, ηv).

Since τ(η) ∼ τ(η̃) we take the sum over unordered pairs (η, η̃) for which i) ησ = η̃, ii) η ̸= η̃,
iii) η = (µ, ν) and µν = ξE, iv) ηv is unramified for v /∈ V , and v) if ϕv, v /∈ V , is spherical
then

trace τ(ϕv, ηv) = trace ρ(ϕv, ηv) = f∨
v (rv).

According to Lemma 12.3 of [14], η = η′ or η̃ = η′ if for almost all v either ηv = η′v or η̃v = η′v.
Thus the sum defining A2 is either empty or contains a single term. By examining the poles
of the L-functions L(s, χ⊗ Π) and L

(
s, χ⊗ ρ(η)

)
one sees readily that one of the two sums,

either that defining A1 or that defining A2, must always be empty. Set

A = ℓA1 + A2.
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Finally set

B =
∑∏

v∈V

traceπv(fv).

The sum is taken over all π occurring in the representation r for which πv is unramified
outside of V and for which

traceπv(fv) = f∨
v (rv)

if fv is the image of some spherical ϕv. We know that

A = B,

and it is this equality with which we shall work.
We begin by studying the representation τ(η), and hence suppose for the moment that E

is quadratic over F . Given η with ησ = η̃, η ̸= η̃ choose V and {rv} so that A2 is∏
v/∈V

trace τ(ϕ, ηv)τ(σ, ηv).

If η = (µ, µσ) and
ρ = Ind(WE/F ,WE/E, µ),

then π = π(ρ) (§12 of [14]) defines a term entering the sum B. I claim there is only this one
term.

If π′ also contributes to B then it must be cuspidal. To show that it must be π I apply a
theorem of Jacquet-Shalika ([15]), according to which it is enough to show that the function
L(s, π′ × π̃) employed by them has a pole at s = 1. Here π̃ is the contragredient of π.
According to them it suffices for this purpose to show that

L(s, π′
v × π̃v) = L(s, πv × π̃v)

for almost all v. We take v outside of V . If v splits in E then πv = π′
v and the equality is

certainly valid. Otherwise

L(s, π′
v × π̃v) = det−1

(
1− |ϖv|st(π′

v)⊗ ρ̃(Φv)
)

if ρ̃ is the contragredient of ρ and Φv the Frobenius at v. Since ρ is induced the right side is
equal to

det−1
(
1− |ϖv|2sµ(Φ2

v)t(π
′
v)

2
)
.

Since the analogous formula is valid for L(s, πv × π̃v), the asserted local equality is clear.
We conclude that

(11.10)
∏
v∈V

trace τ(ϕv, ηv)τ(σ, ηv) =
∏
v∈V

traceπ(fv)

if π = π(ρ). We want to deduce the equality

(11.11) trace τ(ϕv, ηv)τ(σ, ηv) = trace π(fv)

for all ϕv. We know from Paragraphs 7 and 8 that this equality is valid if v splits, or if
ηv = (µv, νv) is unramified for then µv = νv.

Given F and a non-archimedean v we may choose another quadratic extension E ′ so that
E ′

v = Ev and so that every infinite place of F splits in E ′. Given any character µv of E ′
v we

may extend it to a character µ of E ′×\IE, which is unramified outside of v. Take η = (µ, µσ)
and apply the equality (11.10) to E ′, η. Since we can always choose ϕ so that

trace τ(ϕw, ηw)τ(σ, ηw) ̸= 0 w ∈ V, w ̸= v
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we deduce (11.11). To prove (11.11) for Fv = R we take E to be an imaginary quadratic field
and F to be Q. Any character of E∞ extends to a character of E×\IE, and we can proceed
as before, since we now know that (11.11) is valid at all non-archimedean places. The next
lemma is an immediate consequence of the relation (11.11).

Lemma 11.2. Suppose F is a local field, E a quadratic extension, and η = (µ, µσ). Then
the character of τ(η) exists as a function and if

ρ = Ind(WE/F ,WE/E, µ)

then
χτ(η)(g × σ) = χπ(τ)(h)

if h in G(F ) is conjugate to Ng and h has distinct eigenvalues, and the representation π(µ, µσ)
is a lifting of π(ρ).

Actually we have only proved the lemma when µ is a unitary character, but the general
case reduces immediately to this. Observe that with this lemma, the proof of Proposition 5.1
is complete.

The first assertion of the next lemma is already proved. The others, in which the degree
of E over F is an arbitrary prime, will also be deduced from the equality A = B.

Lemma 11.3.

(a) If E is a quadratic extension of the global field F and ρ is the representation induced
from an idèle class character µ of E then π(µ, µσ) is a lifting of π(ρ).

(b) If π is a cuspidal automorphic representation and π is not a π(ρ) with ρ dihedral
and induced from an idèle class character of the given E then there is a cuspidal
automorphic representation Π of G(AE) which is a quasi-lifting of π.

(c) If Π is a cuspidal automorphic representation of G(AE) and Πσ ∼ Π then Π is a
quasi-lifting of some π.

To begin the proof, suppose Π is finite-dimensional and choose V , rv, v /∈ V so that A1 is
equal to ∏

v∈V

trace
(
Πv(ϕv)Π

′
v(σ)

)
.

If Π(g) = χ(det g) then χσ = χ and there exists a χ′ with χ(x) = χ′(Nx). Π′(σ) is the
identity; so we may take each Π′

v(σ) to be the identity. This means that the extension of Πv

to G(Ev)×G agrees with that of Paragraphs 7 and 8. If ω is again a non-trivial character
of F×NE/F IE\IE then the representations π(g) = ωiχ′(det g), 0 ⩽ i < ℓ, each contribute a
term to B. By Lemmas 7.4 and 7.5 and the results of Paragraph 8 the sum of these terms is
equal to A. If B′ denotes the sum over those π entering into B which are not of the form
g → ωiχ(det g) of ∏

v

traceπv(fv)

then B′ equals 0. We must show that this implies the sum defining B′ is empty.
If we knew that the sum contained only a finite number of terms, this would be an easy

application of Lemma 7.13. But we do not, and have to work a little harder. We have
a finite set of places V = (v1, . . . , vr), and a sequence

{
(πk

v1
, . . . , πk

vr)
∣∣ k ⩾ 0

}
, which may
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terminate or be empty, in which πk
vi
is an irreducible, admissible, infinite-dimensional, unitary

representation of G(Fvi). For each i

πvi(zg) = ξvi(z)πvi(g) z ∈ NEvi/Fvi
E×

vi
.

Moreover for every collection (fv1 , . . . , fvr) where fvi is the image of some ϕvi on G(Evi) the
series

(11.12)
∑
k

r∏
i=1

traceπk
vi
(fvi)

is absolutely convergent and its sum is 0. We show by induction on r that this implies the
sequence is empty.

Take a square-intergrable representation π0 of G(Fvr) satisfying

(11.13) π0(zg) = ξvr(z)π
0(g), z ∈ NEvr\Fvr

E×
vr ,

and let f 0
vr be such that

traceπ(f 0
vr) = 0

for infinite-dimensional π unless π ≃ ωi
v ⊗ π0 for some i, ωv being the character of F×

v

associated to the extension Ev. Then the trace is to be 1/ℓ if π0 ̸≃ ω⊗π0 and 1 if π0 ≃ ω⊗π0.
Notice that π(f 0

vr) is defined only if π too satisfies (11.13). The function f 0
vr is defined by

(11.14)

∫
A(Fvr )\G(Fvr )

f 0
vr(g

−1γg) dg = 0

for regular γ in the group A(Fvr) of diagonal matrices, and

(11.15)

∫
T (Fvr )\G(Fvr )

f 0
vr(g

−1γg) dg =

{(
measZ(Fvr)\T (Fvr)

)−1
χπ0(γ) γ ∈ NT (E),

0 γ /∈ NT (E)

Here of course γ must in addition be regular, T is a non-split Cartan subgroup, and χπ0 is
the character of π0.

Substituting f 0
vr for fvr in (11.12) and applying the induction assumption, we see that

πk
vr is never square-integrable. As a consequence (11.12) is not affected by the values of the

orbital integrals of fvr on the non-split Cartan subgroups.
Choose a character η0 = (µ0, ν0) of A(Fvr) such that µ0ν0 = ξvr on NE×

vr . For simplicity
choose η0 so that if, for some s,

µ0(x) = ν0(x)|x|s, for x ∈ NE×
vr ,

then µ0 = ν0. This can always be arranged by replacing µ0 by x→ µ0(x)|x|−s/2 and ν0 by
x→ ν0(x)|x|s/2ωj

vr(x). Let

A0(Fvr) =

{
t =

(
α 0
0 β

)
∈ NA(Evr)

∣∣∣∣∣ |α| = |β|

}
.

If φ is a smooth function on NA(Evr) compactly supported modulo NZ(Evr) and satisfying

φ(zt) = η0(z)−1φ(t), z ∈ A0(Fvr),

there is an fvr such that

Ffvr (t) =

{
φ(t) + φ(t̃) t ∈ NA(Evr),

0 t ∈ A(Fvr), t /∈ NA(Evr).
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We set

φ∨(s) =

∫
NZ(Evr )\NA(Avr )

φ(t)η0(t)

∣∣∣∣αβ
∣∣∣∣sdt.

If π = π(µ, ν) is infinite-dimensional and µν = ξvr on NE×
vr then

traceπ(fvr) = 0

unless there is an s such that µ(x) = µ0(x)|x|s, ν(x) = ν0(x)|x|−s for x ∈ NE×
vr and then

traceπ(fvr) =

{
φ∨(s) η̃ 0 ̸= η0,

φ∨(s) + φ∨(−s) η̃ 0 = η0.

Since the collection of functions φ(t) is closed under convolution and, if η0 = η̃ 0, also
under φ → φ̃ with φ̃(t) = φ(t̃), the collection φ∨(s) or φ∨(s) + φ∨(−s) is closed under
multiplication.

Suppose π = π(µ, ν) is unitary. Then either µ = µ−1, ν = ν −1 and then s may be taken
purely imaginary or ν = ωµ and µ−1 = ωµ, ω−1µ−1 = µ. Then ω = (µµ)−1 : x→ |x|u with
u positive. This implies in particular that η0 = η̃ 0.

Thus if η0 ̸= η̃ 0 it is only the values of φ∨(s) for purely imaginary s which matter.
Applying the Stone-Weierstrass Theorem we see that if v is non-archimedean any continuous
function on the imaginary axis which is periodic of period 2πi

ln|ϖvr |
or 2πi

ln|ϖℓ
vr

| , the latter only if

vr is unramified and does not split, may be uniformly approximated by the functions φ∨(s)
and that if vr is archimedean then any continuous function on the imaginary axis which
approaches 0 at infinity may be uniformly approximated by these functions.

If η0 = η̃ 0, µ(x) = µ0(x)|x|s, ν(x) = µ0(x)|x|−s, and µν−1(x) = |x|−u with u real, then
s is real if vr is archimedean and of the form aπi

ln|ϖvr |
+ b, a ∈ Z or Z/ℓ, b ∈ R if vr is

non-archimedean. As we observed before, an examination of the asymptotic behavior of
the spherical functions shows that π(µ, ν) cannot be unitary unless −1

2
⩽ s ⩽ 1

2
. The

Stone-Weierstrass Theorem shows that the φ∨(s)+φ∨(−s) uniformly approximate continuous
symmetric functions on the set

0
−1

2
1
2

−πi
ln|ϖvr |

πi
ln|ϖvr |

2πi
ln|ϖvr |

if vr is non-archimedean, and continuous symmetric functions on the set



136 11. THE COMPARISON

0
−1

2
1
2

which go to zero at infinity if vr is archimedean. In the first diagram ϖvr is to be replaced by
ϖℓ

vr if the extension is unramified.
Suppose π0

vr in (11.12) is π(µ, ν) with µ(x) = µ0(x)|x|s0 , ν(x) = ν0(x)|x|−s0 for x ∈ NE×
vr .

Choose φ1 so that

1 =

{
φ∨
1 (s0) η0 ̸= η̃ 0,

φ∨
1 (s0) + φ∨

1 (−s0) η0 = η̃ 0.

Let s0, s1, . . . be the collection of s for which there is a k such that

πk
vr = π(µ′, ν ′)

with µ′(x) = µ0(x)|x|s, ν ′(x) = ν0(x)|x|−s for x ∈ NE×
vr . We suppose that the pairs {µ′, ν ′}

of characters of NE×
vr which arise from distinct sj are distinct. Let µj(x) = µ0(x)|x|sj ,

νj(x) = ν0(x)|x|−sj and set

αj =
∑ r−1∏

i=1

traceπk
vi
(fi).

The sum is over those πk
vr which have the same lifting as π(µj, νj). Then∑

j

αjφ
∨
1 (sj)

or ∑
j

αj

(
φ∨
1 (sj) + φ∨

1 (−sj)
)

is absolutely convergent. If we choose any φ2∑
j

αjφ
∨
1 (sj)φ

∨
2 (sj)∑

j

αj

(
φ∨
1 (sj) + φ∨

1 (−sj)
)(
φ∨
2 (sj) + φ∨

2 (−sj)
)

is equal to 0. The argument used to prove the quality of Theorem 11.1 allows us to conclude
that α0 = 0. From this and the induction hypothesis we immediately derive a contradiction.

We can infer not only that if the Π defining A is finite-dimensional then all the π
contribution to B are finite-dimensional but also that if the sum defining A is empty then so
is the sum defining B. It is clear that the sum A is empty whenever the sum B is. Parts (b)
and (c) of Lemma 11.3 follow immediately from these facts.

As our last piece of serious work we verify the assertion (F) of §2.

Proposition 11.4. A quasi-lifting is a lifting.
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Once again we exploit the quality A = B. Choose a Π occurring in the space of cusp
forms and then a V and a collection {rv} so that

A = ℓ
∏
v∈V

trace
(
Πv(ϕv)Π

′
v(σ)

)
.

Let
B =

∑
k

∏
v∈V

traceπk
v (fv).

The proof of Proposition 11.4 proceeds as follows:

(1) We show that if for some v ∈ V the representation Πv is the lifting of a πv then for
all k it is the lifting of πk

v .
(2) We let V ′ be the set of v ∈ V for which Πv is not a lifting. We show that if V ′ is not

empty then it contains more than one element.
(3) From (2) we deduce the following proposition, which in conjunction with (1) in turn

implies Proposition 11.4.

Proposition 11.5. Suppose F is a local field and E a cyclic extension of prime degree ℓ. Fix
a generator σ of G(E/F ). Every absolutely cuspidal representation π of G(F ) has a lifting in
the sense of criterion (ii) of §2. Moreover every representation Π of G(E) for which Πσ ∼ Π
is a lifting.

We begin with (1). Observe that Πv is not finite-dimensional. If

α =
∏
w∈V
w ̸=v

trace
(
Πw(ϕw)Π

′
w(σ)

)
there is an integer i such that

A = ζ iα traceπv(fv).

The power ζ occurs because the Π′
v occurring in the definition of A may not be the Π′

v which
satisfies the local lifting condition. The equality A = B becomes

(11.16) ℓζ iα traceπv(fv) =
∑
k

βk traceπ
k
v (fv)

with
βk =

∏
w∈V
v ̸=w

traceπk
w(fw).

Let π′
v be square-integrable and choose fv so that for infinite-dimensional π′′

v with π′′
v (z) =

ξ(z), z ∈ NE×
v ,

(11.17) trace π′′
v (fv) =


0 π′′

v ̸≃ ωj
v ⊗ π′

v,

1 π′′
v ≃ ωj

v ⊗ π′
v, π

′
v ≃ ωv ⊗ π′

v,
1
ℓ

π′′
v ≃ ωj

v ⊗ π′
v, π

′
v ̸≃ ωv ⊗ π′

v.

Here ωv is, as usual, a character of F×
v associated to the extension Ev. If πv is not of the

form ωj
v ⊗ π′

v then substitution in (11.16) yields

0 =
∑

πk
v≃ωj

v⊗π′
v

βk,
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all possible j being allowed. The arguments used in the proof of Lemma 11.3 show that the
sum is empty. If however πv is equivalent to some ωj

v ⊗ π′
v, then

(11.18) ℓζ iα =
∑

πk
v≃ωj

v⊗πv

βk.

In conjunction with (11.16) this equality yields

0 =
∑

πk
v ̸≃ωj

v⊗πk
v

βk.

The sum on the right must once again be empty.
We have shown that if Πv is the lifting of a square-integrable πv then it is the lifting of

each πk
v . Suppose it is the lifting of a πv which is not square-integrable. Then we have shown

that no πk
v is square-integrable. We may introduce the functions φv(s) as before and show in

the same way that every πk
v has the same lifting as πv.

Now suppose that there is a single v in V for which Πv is not a lifting. It is necessarily
non-archimedean. The equality A = B becomes

(11.19) traceΠv(ϕv)Π
′
v(σ) =

∑
k

traceπk
v (fv).

By Lemma 7.9 there is a function χv on the union of NT (Ev), where T runs over a set of
representatives for the conjugacy classes of Cartan subgroups of G over Fv, such that

traceΠv(ϕ)Π
′
v(σ) =

1

2

∑∫
NZ(Ev)\NT (Ev)

χv(t)Ffv(t)∆(t) dt.

Moreover
1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫
NZ(Ev)\NT (Ev)

∣∣χv(t)
∣∣2∆(t)2 dt =

1

ℓ
.

By the completeness of the characters of the square-integrable representations of G(Fv),
which is a consequence of Theorem 15.1 of [14], there is a square-integrable πv such that

1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫
NZ(Ev)\NT (Ev)

χv(t)χπv(t)∆(t)2 dt = αv ̸= 0.

It follows from Lemmas 7.6, 7.12, and 11.2 that πv is absolutely cuspidal and not π(ρv) for
any dihedral ρv associated to ρv. By Lemma 7.17, πv ̸≃ ωv ⊗ π and then, by Lemma 7.13,

1

2

∑′ 1

measNZ(Ev)\T (Fv)

∫
NZ(Ev)\NT (Ev)

∣∣χπv(t)
∣∣2∆(t)2 dt =

1

ℓ
.

Here ω is a non-trivial character of F×NIE\IF and ωv is its component at v. We conclude
that

|αv| ⩽
1

ℓ
with equality only if χv = ℓαvχπv on NT (Ev) whenever T is not split. Choose fv so that it
satisfies (11.17). Taking first π′

v = πv, we deduce from (11.19) that

(11.20) ℓ
∏
v∈V ′

αv =
1

ℓ

{∑
1
}
.
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The sum is over those k such that πk
v ≃ ωj

v ⊗ πv for some j. If πk contributes to the sum in
brackets, so does ω⊗ πk and ω⊗ πk ̸≃ πk. The sum is therefore a multiple of ℓ. We conclude
that αw = 1

ℓ
and that

(11.21) χv = χπv

on the norms in non-split Cartan subgroups. Moreover the sum on the right of (11.20)
contains exactly ℓ terms.

Renumbering if necessary we assume that

πk
v ≃ ωk ⊗ πv, v ∈ V ′, 0 ⩽ k < ℓ.

Choosing the π′
v defining fv to be inequivalent to each ωj

v ⊗ πv, we conclude from (11.19),
(11.21), and the orthogonality relations for characters of square-integrable representations of
G(Fv) that if k ⩾ ℓ then πk

v is not square-integrable. We want to show that there are only ℓ
terms on the right of (11.19). Suppose not, so that k takes on the value ℓ.

Choose η0 = (µ0, ν0) and φ as before, replacing vr by v and demanding that πℓ
v = π(µ, ν)

with µ(x) = µ0(x)|x|s, ν(x) = ν0(x)|x|−s for x ∈ NE×
v . As before we choose fv so that

Ffv(t) =

{
φ(t) + φ(t̃) t ∈ NA(Ev),

0 t ∈ A(Fv), t /∈ NA(Ev).

We then substitute in (11.19). The terms for k ⩾ ℓ yield a sum

(11.22a)
∑
j

αjφ
∨(sj), η0 ̸= η̃ 0,

or

(11.22b)
∑
j

αj

(
φ∨(sj) + φ∨(−sj)

)
, η0 = η̃ 0.

The sum is finite but not empty, and the αj are positive integers. It is equal to a difference

1

2

∑∫
NZ(Ev)\NT (Ev)

∆(t)χv(t)Ffv(t) dt

minus
1

2

∑∫
NZ(Ev)\NT (Ev)

∆(t)χπv(t)Ffv(t) dt.

The first part is contributed by the left-hand side of (11.19); the second by the first ℓ terms
on the right. Because of (11.21) the contributions from the non-split Cartan subgroups to
this difference cancel.

The proofs of Lemma 7.9, and of Proposition 7.4 of [14] show that

∆(t)

2

{
χv(t)− χπv(t)

}
is bounded on NA(Ev) and that it has support which is compact modulo NZ(Ev). If we
choose η0 and φ as above and set

ψ(s) =

∫
NZ(Ev)\NA(Ev)

∆(t)

2

{
χv(t)− χπv(t)

}
η0(t)−1

∣∣∣∣αβ
∣∣∣∣−s

dt
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then ψ(−s) = ψ(s) if η0 = η̃ 0 and

1

2

∫
NZ(Ev)\NA(Ev)

∆(t)
{
χv(t)− χπv(t)

}
Ffv(t) dt

is equal to

(11.23a)
b

2πmeasNZ(Ev)\A0(Fv)

∫ 2πi
b

0

ψ(s)φ∨(s) |ds|

if η0 ̸= η̃ 0 and to

(11.23b)
b

2πmeasNZ(Ev)\A0(Fv)

∫ 2πi
b

0

ψ(s)
{
φ∨(s) + φ∨(−s)

}
|ds|

if η0 = η̃ 0. Here b is ln|ϖv| if v is ramified and ln|ϖℓ
v| if it is not. Both (11.22) and (11.23)

are linear functionals of φ∨(s) given by measures. One is atomic, one is continuous, and
they are equal; and so, by the Riesz representation theorem, they are both zero. This is a
contradiction.

We conclude that there are only ℓ representations π which contribute to the sum B,
namely π0, . . . , πℓ−1, with πj = ωj ⊗ π0. It now follows from (11.19) that (11.21) is valid on
all norms, and hence that Πv is a lifting of πv.

We next prove Proposition 11.5. The proposition has already been proved for F
archimedean, and for π and Π not absolutely cuspidal. We may therefore suppose π and Π
are absolutely cuspidal. There is then a trivial reduction to unitary π and Π, which we omit.
It is moreover enough to show that every π has a lifting, for we can then conclude from the
completeness of the characters of square-integrable representations of G(F ), which follows
from Theorem 15.1 of [14], and the orthogonality relations of Lemma 7.12 that if Π is not a
lifting then χΠ′(t× σ) = 0 when Nt lies in a non-split Cartan subgroup. This contradicts
Lemma 7.9.

If a non-archimedean local field and a cyclic extension of it of order ℓ are given there is a
totally real global field F , a place v of it, and a cyclic extension E, totally real and again of
degree ℓ, such that the pair Fv, Ev is isomorphic to the given local field with the given cyclic
extension. Suppose πv is a unitary absolutely cuspidal representation of G(Fv). To prove the
proposition we have to show that πv has a lifting. By Step (2), we have only to show that
there is a cuspidal automorphic representation π of G(A), whose local component at v is
πv and whose local components at the non-archimedean places other than v are unramified.
This will be done with the help of the trace formula.

There is a character ζv of Z(Fv) = F×
v such that

πv(z) = ζv(z), z ∈ Z(Fv).

There is also a character ζ of F×\IF , unramified outside of v, whose component at v is ζv.
Let v1, . . . , vr be the infinite places of F . Let ζvi(−1) = (−1)mi . If ni > 0 and ni −mi ≡ 1
(mod 2) there is a pair µvi , νvi of characters of F

×
vi

such that

µviν
−1
vi

: t→ tni sgn t

µviνvi = ζvi .

The representation πvi = σ(µvi , νvi) introduced in Theorem 5.11 of [14] is square-integrable.
There is a smooth function fvi on G(Fvi) compactly supported modulo Z(Fvi) such that:
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(i) if γ in A(Fvi) is regular then∫
A(Fvi )\G(Fvi )

fvi(g
−1γg) dg = 0;

(ii) if T is a non-split Cartan subgroup over Fvi and γ in T (Fvi) is regular then∫
Z(Fvi )\G(Fvi )

fvi(g
−1γg) dg = χπvi

(γ);

(iii) if z ∈ Z(Fvi) then
fvi(zg) = ζ−1

vi
(z)fvi(g).

We may replace vi by v, πvi by πv and then define fv in a similar manner. If w is a
non-archimedean place and w ̸= v define fw by fw(g) = 0 if g /∈ Z(Fw)Kw while

fw(zk) =
ζ−1
w (z)

meas
(
Z(Ow)\Kw

)
The trace of Φ =

∏
fw, the product being taken over all places, on the space Lsp(ζ)⊕L0

se(ζ)
is given by the trace formula on pages 516–517 of [14]. Of the terms given there only (i)
and (ii) do not vanish. If the term in (ii) defined by γ is non-zero then F (γ) is a totally
imaginary quadratic extension of F . Denote the automorphism of this field over F by a bar.
Then γ/γ is a root of unity, for γ/γ must have absolute value 1 at all places. Moreover we
are only interested in γ modulo Z(F ) and if the term in (ii) defined by γ does not vanish
then, replacing γ by γ/δ, δ ∈ Z(F ), if necessary, we may assume that γ is itself a unit except
perhaps at the places in V , if V is a finite set of non-archimedean places containing v and
set of generators for the ideal class group of F . Since there are only a finite number of
possibilities for the root of unity, there is a finite set of integers {k1, . . . , ks} such that the
non-zero terms of (ii) are given by γ for which, for at least one i, γki lies in F and is a unit
away from V . Applying the unit theorem for the set {v1, . . . , vr} ∪ V we see that there is a
finite set of γ, taken modulo Z(F ), which can yield a non-zero contribution to (ii). This set
may be chosen to be independent of n1, . . . , nr.

If γi is the image of γ in an imbedding F (γ) → C extending vi and if (γiγi)
1/2 is the

positive square root, the contribution of a given γ to (ii) is

1

2
meas

(
Z(A)B(F )\B(A)

) r∏
i=1


−ζvi

(
(γiγi)

−1/2
)

(γiγi)
n−1
2 meas

(
Z(Fvi)\B(Fvi)

) γni
i − γni

i

γi − γi


times the product over the non-archimedean places of∫

B(Fw)\G(Fw)

fw(g
−1γg) dg.

The conclusion to be drawn is that the contribution of (ii) is uniformly bounded.
On the other hand the well-known formulae described in Paragraph 6 show that the

term (i) is equal to

meas
(
Z(F )G(F )\G(A)

) r∏
i=1

ni

measZ(Fvi)\G′(Fvi)
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times ∏
w

fw(1).

Here G′ is the multiplication group of the quaternion algebra over Fvi and w runs over the
non-archimedean places. It is clear that fw(1) ̸= 0 if w ̸= v. Since we may take

fv(g) = d(πv)
(
πv(g)u, u

)
with a unit vector u we also have fv(1) = d(πv) ̸= 0. We infer that a suitable choice of
n1, . . . , nr will make (i) arbitrarily large and the trace non-zero. We conclude that for such
a choice of n1, . . . , nr there is a constituent π′ of the representation on Lsp(ζ) such that if
π′ =

⊗
w π

′
w then π′

vi
= πvi , 1 ⩽ i ⩽ r, π′

v = πv, and πw is unramified if w is non-archimedean
but different from v.

There is one more conclusion to be drawn from the equality A = B.

Lemma 11.6.

(a) Suppose E is a quadratic extension of the global field F and Π = π(µ, µσ) with
µσ ̸= µ. Then Π is the lifting of a unique π.

(b) Suppose E is cyclic of prime degree ℓ and Π is a cuspidal automorphic represen-
tation of G(AE) with Πσ ≃ Π. Then Π is the lifting of ℓ cuspidal automorphic
representations π.

Let N be the number of π which lift to Π. The equality A = B now reduces to N = 1 in
case (a) and to N = ℓ in case (b).

The following lemma is important for a complete understanding of the notion of lifting.
It is trivial if ℓ is odd, but does not appear to be so if ℓ is even. Indeed the proof is lengthy
enough that it seemed best to omit it from these notes and to include it in [18], in which it
more easily finds a place.

Lemma 11.7. Suppose ω is a non-trivial character of F×NIE\IF and π is a constituent of
Lsp(ζ), for some quasi-character ζ of F×\IF . Then π ≃ ω ⊗ π if and only if ℓ = 2 and there
is a character θ of E×\IE such that π = π(τ) with

τ = Ind(WE/F ,WE/E, θ).

There is now no problem in verifying the properties (A)–(G) of global liftings. If π is
not cuspidal then it is a constituent of ρ(µ, ν), for some pair of idèle class characters. Its
lifting is then a constituent of ρ(µ′, ν ′), with µ′ = µ ◦NE/F , ν

′ = ν ◦NE/F , and, by [25], is
also automorphic. If π is cuspidal, then by Lemmas 11.3 and 11.4 it has a lifting. The global
unicity is a consequence of the local unicity.

If Π is isobaric and not cuspidal then Π = π(µ, ν) and Πσ ∼ Π if and only if µσ ∼ µ
and νσ ∼ ν or µσ ∼ ν, νσ ∼ µ. Thus (B) too follows from Lemmas 11.3 and 11.4. We
observe also that, since the notion of a quasi-lifting is independent of σ, the notion of a global
lifting is independent of σ. It then follows from the proof of Proposition 11.5 together with
Corollary 7.3 and Lemmas 7.4 and 7.5 that the notion of a local lifting is also independent
of σ.

Those parts of (C) which are not manifest follow from Lemmas 11.3, 11.6, 11.7 and
Lemma 12.3 of [14]. (F) has been proved, and (D) and (E) follow from the corresponding
properties of local liftings.

We have still to verify property (e) of local liftings.
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Lemma 11.8. Suppose Fv is a local field, ρv an irreducible two-dimensional representation
of the Weil group of Fv, and Ev a cyclic extension of Fv of prime degree ℓ. If ρv is dihedral
or tetrahedral then π(ρv) exists and the lifting of π(ρv) is π(Pv) if Pv is the restriction of ρv
to the Weil group of Ev.

The existence of π(ρv) follows from the results of §3 and of §12 of [14]. Indeed we may
choose global F , E and ρ so that Fv, Ev, and ρv are obtained by localization at the place v,
which we take to be non-archimedean, the lemma being clear otherwise. Since it is clear
from property (G) of global liftings, given in §3, that π(P ) is the lifting of π(ρ), we infer that
π(Pv) is the lifting of π(ρv).
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[10] S. Gelbart, Automorphic forms on adèle groups, Ann. of Math. Study 83 (1975).
[11] , Automorphic forms and Artin’s conjecture, Springer Lecture Notes, v. 627 (1978).
[12] S. Gelbart and H. Jacquet, A relation between automorphic forms on GL(2) and GL(3), Proc. Nat. Acad.

Sci. U.S.A., v. 73 (1976), 3348–3350.
[13] H. Jacquet, Automorphic forms on GL(2), II, Springer Lecture Notes, v. 278 (1972).
[14] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Springer Lecture Notes, v. 114 (1970).
[15] H. Jacquet and J. Shalika, Comparaison des représentations automorphes du groupe linéaire, C.R. Acad.
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