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Introduction

0.1 Functoriality and related matters. The notion of L-group and the principle of
functoriality appeared in [L] and were explained at more length in [Cor] and elsewhere. The
principle of functoriality, which is now widely believed but is very far from being established
in general, can be roughly stated as follows.

(I) If H and G are two reductive groups over the global field F and the group G is
quasi-split then to each homomorphism

ϕ : LH −→ LG

there is associated a transfer of automorphic representations of H to automorphic
representations of G.

I would like to thank James Arthur, who once again guided me through the subtleties of weighted orbital
integrals, Erez Lapid and Peter Sarnak for useful conversations related to the material of this paper and
Werner Hoffmann for his comments on [H] and on Appendices C and D.

There is available at https://publications.ias.edu/rpl/section/25 the text of a lecture Endoscopy
and beyond that can also serve as an introduction to this paper. It has the advantage of being informal, but
there are misprints and some suggestions towards the end are red herrings. The present paper may well turn
out to have the same defects!

Appeared in Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor
of Joseph Shalika, John Hopkins Press, 2004.
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A second problem that arose some time after functoriality is that of associating to an
automorphic representation π, now on the group G, an algebraic subgroup λHπ of LG that
would at best be defined up to conjugacy, although even that might often fail, and would
have the following property.1

(II) If ρ is a representation of LG then the multiplicity mH(ρ) of the trivial representation
of λHπ in the restriction of ρ to λHπ is the order mπ(ρ) of the pole of L(s, π, ρ) at
s = 1.

Once again, this is not intended as an absolutely precise statement.

0.2 Some touchstones. There are three. The first two form a part of functoriality. The
third does not. It is a question raised by a theorem of Deligne-Serre ([DS]). I take for
expository purposes the ground field F to be an arbitrary number field (of finite degree).

(T1) Take H to be GL(2), G to be GL(m + 1) and ϕ to be the m-th symmetric power
representation.

(T2) Take H to be the group consisting of a single element and G to be GL(2). Then LH
is a Galois group and problem (I) is that of associating an automorphic form to a
two-dimensional Galois representation.

(T3) Take G to be GL(2) and π to be an automorphic representation such that at every
infinite place v of the πv is associated to a two-dimensional representation not merely
of the Weil group but of the Galois group over Fv. Show that Hπ is finite.

A positive solution of the first problem has as consequence the Ramanujan-Petersson
conjecture and the Selberg conjecture in their strongest forms; the Artin conjecture follows
from the second. As is well-known, all these problems have been partially solved; some
striking results for the first problem are very recent. For various reasons, the partial solutions
all leave from a methodological point of view a great deal to be desired. Although none of
these problems refer to the existence of λHπ, I am now inclined to the view that the key to
the solution of the first two and of functoriality in general lies in the problem (II), whose
ultimate formulation will include functoriality. Moreover, as I shall observe at the very end
of the paper, the problem (T3) can be approached in the same spirit.

I by no means want to suggest that I believe the solution to (II) is imminent. What I want
to suggest rather, and to establish on the basis of the concrete calculations in this paper, is
that reflecting on the problem of attacking (II) with the help of the trace formula, in my
opinion the only analytic tool of any substantial promise available for either (I) or (II), one is
led to concrete problems in analytic number theory. They are difficult; but an often successful
strategy, even though slow and usually inglorious, for breaching an otherwise unassailable
mathematical problem is to reduce some aspect of it to a concrete, accessible form on which at
least small inroads can be made and some experience acquired. The calculations, tentative as
they are, described in the third part of this paper are intended as a first step in this direction
for problems (I) and (II). I concentrate on (T2), for which G is GL(2) and on π for which
λHπ is finite. The same approach applied to (T1) would entail dealing with GL(m+ 1) and
π for which λH was the image of GL(2) under the mth symmetric power. This would require
the use of the trace formula for GL(m+ 1), much more sophisticated than that for GL(2)
although perhaps not completely inaccessible to numerical investigation for very small m.

1I use the notation λH to stress that we are dealing with a subgroup of the L-group LG that may not itself
be an L-group, but is close to one. Although there is not yet a group H attached to λH, I use, for simplicity,
in the next statement and subsequently, the notation mH(ρ) or mHπ

(ρ) rather than mλH(ρ) or mλHπ
(ρ).
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Part I: Formal structure

1.1 The group λHπ. We might take (II) as a definition of λHπ, but there are several
difficulties. It is, first of all, perhaps best not to try to define λHπ for all π. Arthur in his
study of the trace formula has been led to a classification of automorphic representations
that in spite of its apparent reliance on objects whose existence is not established can, in
fact, in the context of the trace formula usually be formulated in decidable terms. The
classification is above all a separation into representations that are of Ramanujan type and
those that are not. It is of conceptual significance that one expects to prove ultimately that
the representations of Ramanujan type are exactly those that satisfy the general form of the
Ramanujan conjecture, but that is not essential to the classification. The point is that a
given trace formula will give a sum over both types of automorphic representation but the
contribution to the formula of the representations that are not of Ramanujan type will be
expressible in terms of traces from groups of lower dimension, so that the remainder can
be regarded as the sum over the representations of Ramanujan type. We shall see a simple
application of this principle to GL(2). If π is not of Ramanujan type, it will be natural to
define λHπ as the product λHπ′ × S of a group λHπ′ defined by an ancillary π′ of Ramanujan
type with an image S of SL(2,C), but this is a matter for which any great concern would be
premature.
The other difficulties are more severe. The first is that even though we may expect that

when π is of Ramanujan type the functions L(s, π, ρ) are analytic on Re(s) ⩾ 1 except
perhaps for a finite number of poles on Re(s) = 1 we are in no position to prove it. So an
alternative definition of mπ(ρ) is called for, even though, as must be stressed, the definition
need at first only be used operationally—as a guide to the construction of various algebraic
and analytic expressions whose meaning will be clear and unambiguous.

There are two more difficulties: given π (implicitly of Ramanujan type) why should there
exist an λH (implicitly a reductive, but often not a connected, group) such that

mH(ρ) = mπ(ρ)

for all ρ; even if there is such an λH, why should it be unique, or rather why should its

conjugacy class under Ĝ be unique? Recall that the L-group is the semi-direct product of

its connected component Ĝ with the Galois group Gal(K/F ) of a finite Galois extension of
F that has to be allowed to be arbitrarily large, so that the L-group is really an inverse
sequence of groups with a common connected component. It normally suffices, however, to
fix a K large enough for the purposes at hand.

The second of these difficulties is easily resolved. The conjugacy class may not be unique
and there may be several groups to be denoted λHπ. This is related to the multiplicity
problem for automorphic representations. It will, however, be important to establish that
if the function ρ → mH(ρ) is given then there are only finitely many possibilities for the
conjugacy class of λH. Jean-Pierre Wintenberger has pointed out to me that as a consequence
of a theorem of Larsen-Pink ([LP]) the group λH is uniquely determined by the numbers
mH(ρ) if

LG is GL(n,C), thus if G is GL(n) over F and the Galois extension of F used to
define the L-group is F itself.2

In so far as the condition that the function mπ be an mH is a linear condition—thus in
so far as (in some sense!) mπ(ρ) = trπ(fρ), where fρ is some kind of generalized function

2There are certain supplementary conditions to be taken into account even in this case.
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on G(AF )—the existence of λHπ is something to be verified by the trace formula. In the
simplest of cases, there would be a linear form

(1)
∑

αρmπ(ρ), αρ = αH
ρ ,

which is 0 if λHπ is not conjugate to a given λH but is 1 if it is. The trace formula will, with
any luck, yield an expression for the sum over all π with appropriate multiplicities of (1)
and will thus select exactly those π attached to λH, but a similar sum that selected exactly,
perhaps with multiplicity, those π such that λHπ lies in a given λH would be better. Thus∑
αρmπ(ρ) is to be 0 if none of the possible λHπ is conjugate to a subgroup of λH but is

otherwise to be βH
π ̸= 0, where βH

π depends only on the collection of possible λHπ and is to
be 1 if λHπ = λH.
If we admit the possibility that there is a second group λH ′ such that mH′(ρ) = mH(ρ)

for all ρ, then we see that we are demanding too much from the form (1). We might rather
introduce a partial ordering on the collection of λH, writing

λH′ ≺LP λH

if mH′(ρ) ⩾ mH(ρ) for all ρ. Then we could at best hope that (1) would be different from 0
only if λHπ ≺LP

λH and that it would be 1 if λHπ ∼LP
λH, thus if mHπ(ρ) = mH(ρ) for all

ρ. We would then, for each λHπ, try to obtain from the trace formula an expression for

(2)
∑

λHπ≺LP
λH

∑
ρ

αH
ρ mπ(ρ).

It is best, however, to admit frankly that the first of the two difficulties, which amounts to
understanding the conditions on the linear form ρ → m(ρ) that guarantee it is given by a
subgroup λH and to showing that mπ satisfies these conditions, is a very serious problem
that is not broached here. I content myself with a basic example or two that suggest it is
prudent to keep an open mind about the properties to be possessed by (1) and about the
final structure of the arguments. So (1) and (2) are at best provisional approximations to
what is to be investigated.

1.2 A simple observation. Not only is the L-group an inverse sequence but so is, implicitly,
each λH. If the occasion arises to distinguish the group in the sequence that lies in LGK =

Ĝ⋊Gal(K/F ), we denote it λHK . If K ⊂ K ′, there is a surjective map

λHK′ → λHK .

Among the representations ρ are those that factor through the projection of LG on the
Galois group, Gal(K/F ). Since L(s, π, ρ) is, for such a representation, equal to the Artin
L-function L(s, ρ), the number mπ(ρ) = mHπ(ρ) is just the multiplicity with which the trivial
representation occurs in ρ. If H is the image of λHπ in G = Gal(K/F ), it is also mH(ρ),
calculated with respect to G. This is clearly possible for all ρ only if H = G. Thus if λHπ

exists it will have to be such that its projection on Gal(K/F ) is the full group. We shall
implicitly assume throughout the paper that any group λH appearing has this property.

1.3 Calculation of mH(ρ) in some simple cases. In the second part of the paper, I shall
consider only the group G = GL(2) and it only over the base field Q. I have not reflected
on any other cases. I shall also often consider only π whose central character is trivial, so
that π is an automorphic representation of PGL(2). Then mπ(ρ) will not change when ρ is
multiplied by any one-dimensional representation of GL(2,C) and λHπ will lie in SL(2,C)
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or, to be more precise, in the family
{
SL(2,C)×Gal(K/Q)

}
. It is instructive to compute

mH(ρ) for a few λHK in SL(2,C)×Gal(K/Q) and a few ρ. We may as well confine ourselves
to the standard symmetric powers σm, m = 1, 2, . . . of dimension m+ 1 and to their tensor
products with irreducible Galois representations τ .

If λH ⊂ SL(2,C)×Gal(K/Q), the multiplicity mH(σ1) is 2 if the projection of λH on the
first factor is {1} and is 0 otherwise. Thus if we confine ourselves to groups λH that project
onto Gal(K/Q), then

(A) a1mH(ρ1), a1 =
1

2
, ρ1 = σ1,

is 1 if λH = {1} ×Gal(K/Q) and 0 otherwise. On the other hand,

(B) a1mH′(ρ1), a1 = 1, ρ1 = det,

is 1 for all subgroups λH ′ of λH = SL(2,C) × Gal(K/Q) but 0 for groups that are not
contained in λH. When and if the occasion arises for a precise reference, we denote the
groups in these two cases by λHA and λHB.
In general, as in (1) and (2), given λH, we would like to find a collection ρ1, . . . , ρn of

representations and a collection a1, . . . , an of real numbers such that∑
k

akmH′(ρk) = 1

if λH ′ ⊂ λH and 0 if it is not. We will normally want to consider only λH and λH ′ defined
with respect to a given K. To make clear to which group given collections are associated I
sometimes write as before ρk = ρHk , ak = aHk .

If the kernel of the projection of λH to Gal(K/Q) is infinite, it is either SL(2,C), a trivial
case already treated, or contains the group

Ĥ =

{(
a 0
0 a−1

) ∣∣∣∣∣ a ∈ C×

}
as a normal subgroup of index 1 or 2. The group of outer automorphisms of Ĥ, through

which the action of λH on Ĥ factors, is of order two and the image of λH in it may or may

not be trivial. If it is trivial, then λH = Ĥ ×Gal(K/Q) and mH(σm ⊗ τ) is 1 if m is even
and τ is trivial and otherwise 0. We take

(C) a1 = 1 ρ1 = σ2,

and denote the pertinent group by λHC .
If the image of λH in the group of outer automorphisms, identified with Z2, is not trivial

the map λH → Z2 may or may not factor through the Galois group. If it does not then Ĥ\λH
is isomorphic to Z2 ×Gal(K/Q) and λH contains the normalizer of Ĥ in SL(2,C). Moreover
mH(σm ⊗ τ) = 0 unless m ≡ 0 (mod 4) and τ is trivial, when it is 1. If the map λH → Z2

factors through the Galois group then Ĥ\H is isomorphic to Gal(K/Q) and mH(σm ⊗ τ)
is 1 if and only if m ≡ 0 (mod 4) and τ is trivial or m ≡ 2 (mod 4) is even and τ is the
one-dimensional representation τ0 of Gal(K/Q) obtained by projecting onto the group Z2

and then taking the nontrivial character of this group, which is of order two. Otherwise
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mH(σm ⊗ τ) is 0. We take in these two cases:

a1 = 1, ρ1 = σ4;(D)

a1 = 1, ρ1 = σ2 ⊗ τ0.(E)

The two groups will of course be denoted by λHD and λHE.
If λH ′ and λH are each one of the five groups just described, then∑

k

aHk mH′(ρHk )

is different from 0 only if λH ′ is conjugate to a subgroup of λH and is 1 if λH ′ = λH. Observe
as well that in each of these cases, mH(σm ⊗ τ), depends only on τ and on m modulo 4.
The only remaining possibility is that λH projects to a finite nontrivial subgroup in

SL(2,C). The projection is either abelian, dihedral, tetrahedral, octahedral or icosahedral.
For the last three cases, the numbers mH(σm) are calculated for m = 1, . . . , 30 to be the
following.

Tetrahedral: 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 2, 0, 2, 0, 3;

Octahedral: 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1;

Icosahedral: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1;

As a consequence, if we take K to be Q and let λHT ,
λHO and λHI be the three subgroups

of SL(2,C) corresponding to the regular solids and if we set

aT1 = 1, aT2 = −1, ρT1 = σ6, ρT2 = σ2,

aO1 = 1, aO2 = −1, ρO1 = σ8, ρO2 = σ4,

aI1 = 1, aI2 = −1, ρI1 = σ12, ρI2 = σ8,

then, for λH ′ infinite or equal to one of the same three groups,∑
k

aHk mH′(ρHk )

is 0 if λH ′ is not conjugate to a subgroup of λH and is 1 if λH ′ = λH.
On the other hand, if the projection on SL(2,C) is abelian of order ℓ, then mH(σm) is

the number N of integers in {m,m − 2, . . . ,−m} divisible by ℓ, and if it is dihedral with
center of order ℓ ⩾ 3 then mH(σ) is N/2 if m is odd and (N + 1)/2 if m ≡ 0 (mod 4) and
(N − 1)/2 if m ≡ 2 (mod 4). Suppose, for example, that it is dihedral with center of order 6.
Then N = 3 for m = 6 and N = 1 for m = 2. Thus

aT1mH(ρ
T
1 )− aT2mH(ρ

T
2 ) = 1 ̸= 0,

but the group H is not contained in the tetrahedral group. If we try exclude the group H by
adding other representations to the sequence ρT1 , ρ

T
2 , for example σ10, then we will introduce

other groups, like the abelian group of order 10 that should be, but will not be, subgroups of
the tetrahedral group. So we are still hoping for too much from the form (1). It looks as
though we will have to accept in (2) groups that are not subgroups of the tetrahedral group,
but that are finite dihedral groups or abelian. Since λHπ is abelian only if π is associated to
Eisenstein series, we can envisage treating them by first treating the infinite dihedral groups
along the lines of (1) and (2), and then treating dihedral λH as subgroups of the L-group of
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the group defined by the elements of norm 1 in a quadratic extension. This is clumsier than
one might hope.3

Suppose the group λHQ = λH = λHπ is defined and finite for K = Q. Then for an
extension K the projection of the group λHK on SL(2,C) will be λHQ and

λHK ⊂ λHQ ×Gal(K/Q).

There are two possibilities: there exists a K such that the projection of λHK onto Gal(K/Q)
is an isomorphism or there does not, so that the kernel is never trivial. If our definitions are
correct, it should be possible to decide which from the behavior of the mH(ρ) as K and ρ
vary.

Take as an example the case that λHQ is a cyclic group of odd prime order ℓ, a possibility
that will certainly arise. Then λHK will be a subgroup of Z/ℓZ × Gal(K/Q). If it is a
proper subgroup, then its projection to Gal(K/Q) is an isomorphism. If it is not, the case
to be considered, then it is the full product. In both cases, mH(σℓ) = 2, mH(σℓ−2) = 0 and
mH(ρa) = 2 if

ρa = σℓ − σℓ−2

is defined as a virtual representation.
The numbers

ℓ− 2, ℓ− 4, . . . , 1,−1, . . . , 2− ℓ

run over all the nonzero residues of ℓ, so that every nontrivial character of Z/ℓZ = λHQ

appears exactly once in the restriction of the representation σℓ−2 to λHQ. Suppose that τ is
a character of the Galois group of order ℓ and consider the representation,

ρb = σℓ−2 ⊗ τ.

If λH is the full group λHQ ×Gal(K/Q), then mH(ρb) = 0 because ρb does not contain the
trivial representation of λH. If, on the other hand, it is not the full group and τ factors
through Gal(K/Q) ≃ λHK → λHQ, then it contains the trivial representation exactly once
and mH(ρb) = 1. Thus

(3)
1

2
mH(ρa)−mH(ρb) ̸= 0

if λHK is the full group, but can be 0 if it is not.
The question with which we began is very difficult but an obvious hypothesis lies at hand.

1.4 A splitting hypothesis. Suppose that for some automorphic representation π of

Ramanujan type the group λHπ = λHK
π ⊂ Ĝ⋊Gal(K/F ), whose existence is only hypothetical,

were finite. Then I expect—and there is no reason to believe that I am alone—that for a

perhaps larger extension L and the group λHL
π in Ĝ⋊Gal(L/F ) the projection of λHL

π to
Gal(L/F ) will be an isomorphism and that this will then continue to be true for all Galois
extensions of F that contain L. Moreover if π is unramified outside a finite set S it is natural
to suppose that L can also be taken unramified outside of S and of a degree that is bounded

by an integer determined by the order of the intersection of λHπ with Ĝ. Thus L could be
chosen among one of a finite number of fields.

3On the other hand, we would be using these arguments in combination with the trace formula, in which
there is always an implicit upper bound on the ramification of the π that occur. Since π with large finite λHπ

would, in all likelihood, necessarily have large ramification, we can imagine that these two contrary influences
might allow us to remove the unwanted groups from (2).
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In general, even when λHπ ∩ Ĝ is not finite, we can expect that for some sufficiently large

L, the group λHL
π ∩ Ĝ will be connected and that L can be taken unramified where π is

unramified and of a degree over K bounded by an integer determined by the number of

connected components of λHK
π ∩ Ĝ. The observations at the end of the previous section

indicate what, at least from the point of view of this paper, the proof of the hypothesis will
entail in a special case: it must be shown that the expression (3), which we still do not know
how we might calculate, is 0 for at least one of the finitely many cyclic extensions of Q of
order p unramified outside a finite set that depends on the original π. One might expect that
the general hypothesis, or rather each case of it, reduces to similar statements.

1.5 Alternative definition of mπ. The integers mπ(ρ) have been defined by residues of
the logarithmic derivatives of automorphic L-functions at a point s = 1 outside the region
at which they are known to be absolutely convergent. So it is not clear how this definition
might be implemented. Since these integers have been introduced in the hope of broaching
the problem of functoriality and thus that of analytic continuation, an alternative definition
has to be found that better lends itself to harmonic analysis and to numerical investigation.
For this purpose, I recall some familiar basic principles of analytic number theory. Since the
extension of the principles and the definitions to other number fields will be patent, I confine
myself for simplicity to the rationals.

If c > 0 is sufficiently large and X > 0, then

(4) − 1

2πi

∫ c+i∞

c−i∞

L′

L
(s, π, ρ)Xsds

s

is equal to

(5)
1

2πi

∑
p

∑
ln(p)

∫ c+i∞

c−i∞

tr
(
ρ
(
A(πp)

k
))

pks
Xsds

s
.

This expansion shows that the integral (4) converges at least conditionally. Those terms of
(5) for which X < pk are 0 as is shown by moving the contour to the right. The finite number
of terms for which X > pk are calculated by moving the integral to the left as a residue at
s = 0. So (5) is equal to ∑

pk<X

ln(p) tr

(
ρ
(
A(πp)

k
))

On the other hand, if the L-function can be analytically continued to a region containing
the closed half-plane Re(s) ⩾ 1 where it has no poles except for a finite number at points
1 + iρℓ, ℓ = 1, . . . , n and if its behavior in Im(s) permits a deformation of the contour of
integration in (4) to a contour C that except for small semi-circles skirting these points on
the left runs directly from 1− i∞ to 1+ i∞ on the line Re(s) = 1, then (4) is (morally) equal
to ∑

ℓ

m1+iρℓ

1 + iρℓ
X1+iρℓ + o(X).

As a consequence

(6) mπ(ρ) = m1 = lim
M→∞, X→∞

1

M

∫ X+M

X

∑
pk<Y ln(p) tr

(
ρ
(
A(πp)

k
))

Y
dY.
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If, for whatever reason, we know that the only possible pole is at 1, then this may be simplified
to

(7) mπ(ρ) = lim
X→∞

∑
pk<X ln(p) tr

(
ρ
(
A(πp)

k
))

X
.

The possible appearance of other poles and thus the introduction of M are simply nuisances
that we could well do without.

For summation over primes, the sums ([Lan])

ϑ(X) =
∑
p<X

ln(p)

are the analogues of the sums over all positive integers∑
1⩽n<X

1.

In particular, ϑ(X) = X + o(X). Moreover,

ψ(X) =
∑
pk<X

ln(p) = ϑ(X) + o(X).

Since it is expected that for π of Ramanujan type the eigenvalues of ρ
(
A(πp)

)
all have

absolute value equal to 1, it is therefore not unreasonable in a tentative treatment to replace
(6) and (7), both nothing but possible definitions, by

(8) mπ(ρ) = lim
M→∞, X→∞

1

M

∫ X+M

X

∑
p<Y ln(p) tr

(
ρ
(
A(πp)

))
Y

dY.

and by

(9) mπ(ρ) = lim
X→∞

∑
p<X ln(p) tr

(
ρ
(
A(πp)

))
X

.

We want to see to what extent these definitions can be given real content and how.
We could modify (5) by replacing the denominator s by s(s+1). The residues at s = 1+ iρℓ

become 1/(1 + iρℓ)(2 + iρℓ) and the residue at s = 0 is replaced by residues at s = 0 and
s = 1. The result is that

(6′) mπ(ρ) = lim
M→∞, X→∞

2

M

∫ X+M

X

∑
pk<X ln(p)(1− p/X) tr

(
ρ
(
A(πp)

k
))

X
dX,

or in the favorable case that there is only a pole at s = 1,

(7′) mπ(ρ) = lim
X→∞

2
∑

pk<X ln(p)(1− p/X) tr
(
ρ
(
A(πp)

k
))

X
.

The two formulas (8) and (9) can be similarly modified. Some of the experiments have been
made using (7′), on the somewhat doubtful and certainly untested assumption that this
improves convergence.
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1.6 The role of the trace formula. As we have already stressed, in the general theory
of automorphic forms it is usually unwise to attempt to calculate directly any invariant
associated to individual automorphic representations. Rather one calculates the sum—often
weighted as, for example, in endoscopy—of the invariants over all automorphic representations
of one group and compares them with an analogous sum for a second group, establishing
by a term-by-term comparison their equality. For present purposes, what we might hope to
calculate from the trace formula is4

(10)
∑
π

µπmπ(ρ)
∏
v∈S

tr
(
πv(fv)

)
.

The finite-dimensional complex-analytic representation ρ of LG is arbitrary. The set S is a
finite set of places of the base field F , including all archimedean places and all places where
the group G is not quasi-split and split over an unramified extension, and fv is a suitable
function on G(Fv). Implicitly we also fix a hyperspecial maximal compact subgroup at each
place outside of S. The coefficient µπ is usually a multiplicity; the sum is over automorphic
representations of Ramanujan type unramified outside of S, ultimately perhaps only over the
cuspidal ones, although it is best not to try without more experience to anticipate exactly
what will be most useful—or the exact nature of µπ.

For the base field F = Q, at this stage an adequate representative of the general case, to
arrive at (10) we choose, for each a given prime p /∈ S, fq, q /∈ S and q ̸= p to be the unit
element of the Hecke algebra at q and we choose fp in the Hecke algebra to be such that

(11) tr
(
πp(fp)

)
= tr

(
ρ
(
A(πp)

))
if πp is unramified. Then we take fp(g) =

∏
v fv(gv), where fv, v ∈ S, is given in (10). If R

is the representation of G on the space of cuspidal automorphic forms of Ramanujan type
and if we can get away with (9), then (10) is equal to

(12) lim
X→∞

∑
π

µπ

∑
p<X ln(p) tr

(
R(fp)

)
X

.

If we use (7′) then (12) is replaced by

(12′) 2 lim
X→∞

∑
π

µπ

∑
p<X ln(p)(1− p/X) tr

(
R(fp)

)
X

.

Not only is it not clear at this stage whether it is the representation on the space of cuspidal
automorphic forms that is most appropriate or whether it might not be better to include some
noncuspidal representations but it is also not clear whether it is best to take the ordinary
trace or the stable trace. Such questions are premature. The important questions are whether
we can hope to prove that the limit of (12) exists and whether we can find a useful, concrete
expression for it.

We shall address some very particular cases of this question in the second part of this paper.
Grant for the moment that we have such a representation for representations ρk, 1 ⩽ k ⩽ n.

4We have to expect that it will at first be unknown whether the mπ(ρ) are integers. To show that they are
integers, comparisons like those envisaged in (15) will very likely be necessary.
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Then for any coefficients ak we also have an expression for∑
π

µπ

n∑
k=1

akmπ(ρk)
∏
v∈S

tr
(
πv(fv)

)
If we could find ak such that

(13)
∑
k

akmπ(ρk)

is equal to 1 if and only if λHπ is IP-dominated by a given group λH and is otherwise 0.
Then we would have an expression for

(14)
∑

λHπ≺λH

µπ

∏
v∈S

tr
(
πv(fv)

)
,

the sum being over automorphic representations of G unramified outside of S, principally
over cuspidal but perhaps with some noncuspidal terms present as well. The multiplicities
µπ could be ordinary multiplicities, but they will more likely be stable multiplicities and
may even depend on λHπ. As we observed, we will have to satisfy ourselves with satisfying
the conditions imposed on (13) approximately; some of the representations for which it is
not zero may have to be dealt with separately by an iterative procedure or the argument
modified.
The existence of coefficients ak for which (13) has the desired properties, exactly or

approximately, is an algebraic question that I have not broached except for GL(2). The
group GL(2) has a center, so that the representation of GL(2,A) on the space of cusp forms
is not the direct sum of irreducible representations. To achieve this it is necessary, as usual,
to consider the cusp forms transforming under a given character of Z+ = R+ and there
is no good reason at this stage not to suppose that this character is the trivial character.
So we treat the representation on the space of functions on GL(2,Q)Z+\GL(2,A). Then
f∞ will be a smooth function of compact support on Z+\GL(2,R) and the only π to be
considered are those for which π∞ is trivial on Z+. This implies that the central character of
π is trivial on R+. If in addition we suppose that S consists of the infinite place alone—this
is an assumption to be made purely for convenience as it removes inessential complications
from the preliminary algebra and from the experiments—then we conclude that the only π
to be considered are those whose central character is trivial on R+ and unramified and thus
trivial. Since the central character controls the group det(Hπ), this means that we are taking
only π with λHπ ⊂ SL(2,C), or, more precisely, λHπ ⊂ SL(2,C) × Gal(K\Q). These are
the very simple groups that we considered in a previous section and for which we are in a
position to find—insofar as they are available—the coefficients of (13).

1.7 Comparison. If we managed by a combination of the trace formula with various limiting
processes to obtain a formula for (14), then we would want to compare it with the trace
formula on λH itself, except that λH may not be an L-group, for it may not be defined by
a semi-direct product. When, however, the kernel of λHK → Gal(K/Q) is connected, it

is possible as a consequence of, for example, Prop. 4 of [L1] to imbed the center Ẑ of Ĥ,

the connected component of the identity in λH, in the connected dual T̂ of a product of

tori, T =
∏

iK
×
i , where each Ki is a field over F , and to imbed it in such a way that LH̃,

the quotient of the semi-direct product T̂ ⋊ λH by the diagonally imbedded Ẑ becomes an
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L-group.5 Notice that the Galois group Gal(K/Q) acts on T̂ , so that λH does as well. Maps ϕ

into λH may be identified with maps into LH̃ that correspond to automorphic representations

of H̃ whose central character is prescribed by the structure of λH. They can be presumably
be identified in the context of the trace formula.
Then to make use of (14), we would have to introduce a transfer f → fH from functions

on G(AF ) to functions on H(AF ) (if
λH = LH is an L-group but to functions on H̃(AF ) in

the general case) and compare (14) with

(15)
∑∏

v∈S

tr
(
π′
v(f

H
v )
)
,

the sum being over automorphic representations of H of, say, Ramanujan type unramified
outside of S, so that there will also be a formula for (15) which is to be compared with that
for (14). The difference between IP -domination and inclusion will undoubtedly complicate
this comparison.

There is no reason not to admit the possibility that (14) is replaced by a sum over groups
λH,

(14′)
∑
λH

∑
λHπ≺λH

µπ

∏
v∈S

tr
(
πv(fv)

)
.

Then (15) would be replaced by a similar sum (15′).
It is perhaps well to underline explicitly the differences between the comparison envisaged

here and endoscopic comparison. For endoscopy the transfer f → fH is defined in terms
of a correspondence between conjugacy classes. In general, the transfer f → fH , which is
defined locally, will be much less simple. There will already be much more knowledge of local
harmonic analysis, especially of irreducible characters, implicit in its definition. Secondly,
there will be difficult analytic problems to overcome in taking the limit of the trace formula
on G. Thirdly, the groups λH that occur are essentially arbitrary subgroups of LG, not just
those defined by endoscopic conditions.

1.8 Further concrete cases. I consider GL(2) and icosahedral representations but in two
different ways. The ground field F may as well be taken to be Q. Suppose K/Q is a Galois
extension and Gal(K/Q) admits an imbedding τ in GL(2,C) as an icosahedral representation.
Thus Gal(K/Q) is an extension of the icosahedral group by Z2. Take

LG = LGK and consider
ρ = σ1 ⊗ τ̃ , where τ̃ is the contragedient of τ . If mH(ρ) ̸= 0, then σ1 and τ define the same
representation of λH. Therefore the kernels of λH → Gal(K/Q) and λH → GL(2,C) are
the same and thus {1}. So the projection of λH to Gal(K/Q) is an isomorphism; λH is an
L-group, that attached to the group H = {1}; and σ1 restricted to λH is τ , or rather the
composition of τ with the isomorphism λH → Gal(K/Q).

Thus we can expect thatmπ(ρ) ̸= 0 if and only if π = π(τ) is the automorphic representation
attached to τ by functoriality. To compare (14), provided we can find such a formula, and
(15) we will need to define the local transfer fv → fH

v by means of the characters of πv(τ).
On the other hand, define the L-group LG to be LGQ and take ρ = σ12 − σ8. We have seen

that mH(ρ) is nonzero only if λH is a subgroup of the icosahedral group or perhaps a finite
abelian or dihedral group that can be treated independently. Then mπ(ρ) will be nonzero

5The L-group may have to be defined by the Weil group and not by the Galois group, but that is of no
import.
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only if λHπ is such a subgroup. There will be many such π and although (15) will not have
to take them all into account, it will have to contain a sum over all icosahedral extensions
unramified outside a given set of places.
So the first approach has at least one advantage: it singles out a unique π. It may have

another. Numerical experiments involving σ1 are manageable. Those for σm quickly become
impossible as m grows. Even m = 3 is very slow. On the other hand, the first approach alone
cannot, so far as I can see, assure us that if λHπ ⊂ LGQ is an icosahedral group, then π is
associated to an icosahedral representation of the Galois group. No matter what τ we choose,
it necessarily overlooks π for which this is false.

1.9 A cautionary example. Take the group G to be GL(1) over Q and take λH to be the
finite group of order m in LG = C×. If ρ is the representation z → zm, then mH′(ρ) = 1 if
λH ′lies in λH and is otherwise 0. Let S be, as usual, a finite set of places containing the
infinite places. In order to have a discrete spectrum under the action of G(A), we consider
functions, thus automorphic forms, on R+Q×\I, I being the group of idèles. This is the
space R+G(Q)\G(A). The function f =

∏
v fv will be such that f∞ is in fact a function on

R+\R× = {±1}. The function fp is the characteristic function of the set of integral γ with
|γ| = p−m.

If we take the measure on R+\G(A) to be a product measure, with the measure of G(Zp)
and of R+\R+ equal to 1, then µ

(
R+G(Q)\G(A)

)
is equal to 1 and

(16) trR(f) =
∑
π

trπ(f) =
∑
γ∈Q×

f(γ).

The element γ must be equal to apm, where

(17) a = ±
∏
q∈S

qαq .

Thus the expression (16) is equal to g(pm), where g is the function on
∏

q∈S Zq given by

g(x) =
∑
f(ax), the sum being over all a of the form (17).

Thus (12) is

lim
X→∞

∑
p<X ln(p)g(pm)

X
,

which is equal to ∑
x mod M g(xm)

φ(M)
,

where M is a positive integer that is divisible only by primes in S and that depends on the
collection of functions fq, q ∈ S, each of them being smooth. The number φ(M) is the order
of the multiplicative group of Z/MZ. In terms of f , this is

(18)

∫
R+QSI

m
S
f(x) dx∫

R+QSI
m
S
dx

.

where QS is the set of nonzero rational numbers that are units outside of S and IS is the
product

∏
v∈S Qv, the first regarded as a subgroup of the second.

The expression (18) is certainly in an appropriate form and is equal to∑
χ

χ(f),
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where χ runs over all characters of R+QSIS of order dividing m. This, however, is pretty
much the point from which we began. We are still left, as in class-field theory, with the
problem of showing that these characters can be deduced from characters of the Galois group.
Thus we cannot expect that the trace formula will spare us the arithmetical investigations.
It will, at best, make it clear what these must be.

Part II: Preliminary analysis

2.1 Measures and orbital integrals. In this part of the paper, we shall review the trace
formula for GL(2), the only group with which we are seriously concerned at present, and
examine the possibility of obtaining an expression for (14) or (15’). It would be worthwhile to
undertake a similar study of the trace formula for other groups. If the general trace formula
admits a similar analysis and transformation, it will be an encouraging sign.
To obtain expressions that can then be used for numerical purposes, we have to be clear

about the conventions. As we already observed, we shall consider automorphic forms on
G(Q)Z+\G(A), A = AQ and G = GL(2). The functions whose trace is to be calculated
are functions on Z+\G(A) and are taken to be products f(g) =

∏
v fv(gv). The measure on

Z+\G(A) is to be a product measure as is the measure on Z+\Gγ(A) if γ is regular and
semisimple. The group Gγ is then defined by the multiplicative group of a ring Eγ, the
centralizer of γ in the ring of 2× 2 matrices. At a nonarchimedean place p, the subgroup
Gγ(Zp) has a natural definition and we normalize the local measures by the conditions:

µ
(
Gγ(Zp)

)
= 1, µ

(
G(Zp)

)
= 1.

At infinity, the choice of measure on Z+\G(R) is not important, nor is that on Z+\Gγ(R). It
is not necessary to be explicit about the first, but it is best to be explicit about the second.

(a) Elliptic torus. Here I mean that the torus is elliptic at infinity and thus that E = Eγ is
an imaginary quadratic extension. I assume, for simplicity, that it is neither Q(

√
−2) nor

Q(
√
−3). An element in Gγ(R) is given by its eigenvalues, σeiθ and σe−iθ. The value of

σ > 0 is irrelevant and I take the measure to be dθ. The volume of

(19) Z+Gγ(Q)\Gγ(A) = Z+E
×\IE

is the class number CE times the measure of

±Z+\C× ×
∏
p

Gγ(Zp),

which, according to the conventions chosen, is the measure of ±Z+\C× or∫ π

0

dθ = π.
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(b) Split torus. Once again, the torus is only to be split at infinity, so that Eγ is a real
quadratic field. If the eigenvalues of an element δ are α and β, set

(20)

r = α + β,

N = 4αβ,

r√
|N |

=
1

2

sgnα

√
|α|
|β|

+ sgn β

√
|β|
|α|

 = ±1

2
(λ± λ−1),

λ =

√
|α|
|β|

, σ =
√

|αβ|,

α = ±σλ, β = ±σ
λ
.

The value of σ is irrelevant and I take the measure to be dλ
λ
. Notice that

(21) d

(
r√
|N |

)
=

1

2
(1∓ λ−2)dλ =

1

2

(
1− β

α

)
dλ.

The upper sign is that of N . The parameters r = tr δ and N = 4det δ can also be defined
when the torus is elliptic at infinity or globally or at any other place. When the torus is
elliptic at infinity,

(22) d

(
r√
|N |

)
= d cos θ =

i

2
(1− λ−2) dλ, λ = eiθ.

The fundamental unit ϵ can be taken to be the unit with the smallest absolute value |ϵ| > 1.
Thus ln|ϵ| is the regulator as it appears in [C]. The measure of the quotient (19) is now the
class number times the measure of

(23) ±R+\R× ×R×/
{
ϵk
∣∣∣ k ∈ Z

}
.

Since ±R+\R××R× can be identified with R× by projecting on the first factor, the measure
of (23) is 2 ln|ϵ|, which in the notation of [C] is 2h(D)R(D) if D is the discriminant of the
field Eγ.
There is a very small point to which attention has to be paid when computing with the

trace formula. Locally there are two measures to be normalized, that on Gγ(Qv)\G(Qv) and
that on Z+\Gγ(R) or Gγ(Qp). They appear in two ways in the measure on G(Qv): once
when fixing it, as dδ dg, by the measure on the subgroup Gγ(Qp) (or Z+\Gγ(R)) and the
measure on the quotient space Gγ(Qv)\G(Qv); and once, as in the Weyl integration formula,
when fixing the measure on {

g−1δg
∣∣ δ ∈ Gγ(Qv), g ∈ G(Qv)

}
by means of the map

(24) (δ, g) → g−1δg, Gγ(Qv)×
(
Gγ(Qv)\G(Qv)

)
→ G(Qv).

Since (24) is a double covering, the measure to be used in the Weyl integration formula is

1

2

∏
α

∣∣1− α(δ)
∣∣ dδ dg,
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the product over α being a product over the two roots of the torus.
If m is a nonnegative integer, let Tm

p be the characteristic function of{
X ∈ Mat(Zp)

∣∣ |detX| = p−m
}
,

where Mat(Zp) is the algebra of 2 × 2-matrices over Zp. If ρ = σm, then Tm
p /p

m/2 is the
function fp of (11). In other words,

trπp(T
m
p ) = pm/2

m∑
k=0

αm−k(πp)β
k(πp)

if πp is unramified and α(πp) and β(πp) are the eigenvalues of A(πp). I recall the standard
calculation.
Take πp to be the usual induced representation, so that the vector fixed by GL(2,Zp) is

the function

ϕ(ntk) = |a|−s1+1/2|b|−s2−1/2, t =

(
a 0
0 b

)
,

and
{
α(πp), β(πp)

}
= {ps1 , ps2}. Then∫

ϕ(g)Tm
p (g) dg =

m∑
k=0

p(m−k)s1+ks2p(2k−m)/2

∫
|x|⩽pm−k

dx = pm/2

m∑
k=0

p(m−k)s1+ks2 .

We shall need the orbital integrals of the functions Tm
p /p

m/2 for all m, but m = 0
is particularly important as it is the unit element of the Hecke algebra. The pertinent
calculations can be found in [JL] but there is no harm in repeating them here. If γ is a
regular semisimple element in G(Qp), set

(25) Um(γ) =

∫
Gγ(Qp)\G(Qp)

Tm
p (g−1γg).

Denote the two eigenvalues of γ by γ1 and γ2 and extend the usual norm on Qp to Qp(γ1, γ2)
or to Ep = Eγ ⊗Qp, which we identify, taking γ1 = γ. The ring of integral elements in Ep is
of the form Zp ⊕Zp∆. If ∆ is the conjugate of ∆, so that ∆+∆ = tr(∆), set δγ = p|∆−∆|.
Let γ1 − γ2 = b(∆−∆) with |b| = p−k, k = kγ.

Lemma 1. Um(γ) is 0 unless γ1 and γ2 are integral and |γ1γ2| = p−m, when it is given by
the following formulas.

(a) If γ is split then (25) is

pk =
1

|γ1 − γ2|
.

(b) If γ is not split and Eγ is unramified then (25) is

pk
p+ 1

p− 1
− 2

p− 1
.

(c) If γ is not split and Eγ is ramified then (25) is

pk+1

p− 1
− 1

p− 1
.
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The proof is familiar and easy. As the lemma is basic to our calculations, I repeat it.
The value of the characteristic function Tm

p (g−1γg) is 1 if and only if g−1γg takes the lattice
L0 = Zp⊕Zp into itself and has determinant with absolute value p−m, thus only if it stabilizes
the lattice and

∣∣det(γ)∣∣ = p−m. Thus, assuming this last condition, if and only if γ stabilizes
L = gL0. Knowing L is equivalent to knowing g modulo G(Zp) on the right. Multiplying g on
the left by an element of Gγ(Qp) = E×

p is equivalent to multiplying L by the same element.
If Ep is split, then we can normalize L up to such a multiplication by demanding that

L ∩
{
(0, z)

∣∣ z ∈ Qp

}
=
{
(0, z)

∣∣ z ∈ Zp

}
and that its projection onto the first factor is Zp. Then the x such that (1, x) lies in L are
determined modulo Zp by L. Multiplying by(

α 0
0 β

)
, |α| = |β| = 1,

we replace (1, x) by (1, βx/α), so that only the absolute value |x| counts. The measure in
Gγ(Qp)\G(Qp) of the set of g giving the lattice L is the index in Gγ(Zp) of the stabilizer
of L. This is just the number of y modulo Zp with the same absolute value as x (or with
|y| ⩽ 1 if |x| ⩽ 1), thus the number of lattices that can be obtained from the given one by
multiplying by an element of Gγ(Zp). The condition that L be fixed by γ = (γ1, γ2) is that
γ1 and γ2 be integral and that

(γ1, γ2x) = γ1(1, x) +
(
0, (γ2 − γ1)x

)
lie in L, thus that (γ1 − γ2)x be integral. We conclude finally that (25) is equal to 1/|γ1 − γ2|.
The argument is the same in the remaining cases. Identifying G(Qp) with the automor-

phisms of the vector space Ep, we identify the quotient G(Qp)/G(Zp) with the lattices in
Ep. Modulo the action of Gγ(Qp), these can be put in the form Zp + Zpp

j∆, j ⩾ 0. Such a
lattice is fixed by γ if and only if k ⩾ j. In the unramified case, the stabilizer of the lattice
in Gγ(Zp) has index 1 if j = 1 and index pj(1 + 1/p) otherwise. So (25) is equal to

1 +
k∑

j=1

pj
(
1 +

1

p

)
= pk

p+ 1

p− 1
− 2

p− 1
,

as asserted by (b). If Ep is ramified, the stabilizer has index 1 if j = 0 and index pj otherwise.
So (25) is now equal to

1 +
k∑

j=1

pj =
pk+1

p− 1
− 1

p− 1
.

This is (c).
This lemma provided us with the orbital integrals that we need outside of S. The discussion

inside of S is quite different. Since we are going to take, for the present purposes, S = {∞},
I confine myself to this case. The same principles apply in all cases. Over the field R = Q∞,
the necessary information is in the discussion of HCS-families in Chap. 6 of [L2] although it
is not elegantly expressed. Let ch(γ) =

(
4Nm(γ), tr(γ)

)
. For any γ in GL(2,R),

(26)

∫
f∞(g−1γg) dg = ψ

(
ch(γ)

)
= ψ′

∞
(
ch(γ)

)
+ ψ′′

∞
(
ch(γ)

) |Nm γ|1/2

|γ1 − γ2|
where ψ′

∞ and ψ′′
∞ depend on f∞. The second is a smooth function on the plane with the

y-axis removed. The first is 0 outside the parabola y2 − x ⩽ 0, but inside and up to the
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boundary of this parabola, it is a smooth function of x and y2 − x. The functions ψ′ and ψ′′

are not uniquely determined. Since we have taken f positively homogeneous, the function
ψ is positively homogeneous, ψ(λ2N, λr) = ψ(N, r) for λ > 0. Thus it is determined by the
two functions ψ(±1, r) on the line. The function ψ− = ψ(−1, r) is smooth; the function
ψ+ = ψ(1, r) may not be. They are both compactly supported.
If θ(γ) = θ

(
ch(γ)

)
is any positively homogeneous class function on G(R), the Weyl

integration formula and formulas (21) and (22) give

(27)

∫
Z+\G(R)

θ(g)f(g) dg =
1

2

∑∫
Z+\T (R)

θ
(
ch(γ)

)
ψ
(
ch(γ)

)∣∣∣∣1− α

β

∣∣∣∣∣∣∣∣1− β

α

∣∣∣∣ dλ|λ|
= 4

∑∫ ∞

−∞
ψ±(r)θ(±1, r)

√
|r2 ∓ 1| dr

because ∣∣∣∣1− α

β

∣∣∣∣∣∣∣∣1− β

α

∣∣∣∣dλ|λ| = 2

∣∣∣∣1− α

β

∣∣∣∣|λ| dr√
|N |

,

λ

(
1− α

β

)
= λ∓ λ−1,

r2

N
− 1 = ±(λ± λ−1)2 − 1 = ±(λ∓ λ−1)2

4
,

and

2|λ∓ λ−1| dr√
|N |

= 4

√∣∣∣∣r2N − 1

∣∣∣∣ dr√
|N |

.

The sums in (27) are over the two tori and then, in the last line, over the two possible signs.
The elliptic torus corresponds to the region −1 < r < 1, N = 1; the split torus to the rest.
The factor 1/2 is removed in the passage from the first to the second line of (27) because the
map γ → ch(γ) from each of the tori to the plane is also a double covering.

The formula (27) is applicable if θ is a one-dimensional representation of G(R), in particular
if it is identically equal to 1, and then (27) yields

(28) tr
(
θ(f)

)
= 4

∑∫ ∞

−∞
ψ±(r)

√
|r2 ∓ 1| dr

Another possibility is to take θ to be the character of the representation πχ unitarily
induced from a character

χ :

(
α 0
0 β

)
→ sgnαk sgn βℓ

of the diagonal matrices. Only the parities of k and ℓ matter. The character is 0 on the elliptic
elements, where N > 0 and r2 < N . Otherwise it is constant on the four sets determined by
fixing the signs of N and r, where it is given by

(29.a) (sgnN + 1)
sgn(r)√

|1− α/β||1− β/α|
if k ̸= ℓ and by

(29.b) 2
sgn(N)ℓ√

|1− α/β||1− β/α|
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otherwise. The eigenvalues α and β of γ with ch(γ) = (N, r) are of course one-half the roots
of x2 − 2rx+N = 0. Since

|γ1 − γ2|2

|Nm γ|
= |1− α/β||1− β/α| = |λ|2|1∓ λ−2|2 = 4

∣∣∣∣∣r2N − 1

∣∣∣∣∣,
we conclude that ψ±, although not necessarily bounded, are integrable functions of r and
that tr

(
πχ(f)

)
is given by

(30) 4

{∫ −1

−∞
ϵ+−ψ+(r) +

∫ ∞

1

ϵ++ψ+(r) +

∫ 0

−∞
ϵ−−ψ−(r) +

∫ ∞

0

ϵ−+ψ−(r)

}
,

where the constants ϵ±±, which are ±1 or 0, are to be chosen as prescribed by (29).

2.2 Calculating with the trace formula. Rather than refer to Arthur’s general trace
formula as I should if I were intent on preparing for the general case, I prefer to appeal
to the formula on pp. 516–517 of [JL] with which I am more at ease and to which the
reader is requested to refer. There are eight terms in that formula, but for a base field of
characteristic zero the term (iii) is absent. We shall also only consider, for reasons already
given, automorphic representations whose central character is trivial on R+. The formula
of [JL] gives the sum of the traces of π(f) over all automorphic representations occurring
discretely in L2

(
Z+G(Q)\G(A)

)
. So we need to subtract those representations that are not

of Ramanujan type. For G = GL(2), these are the one-dimensional representations. Their
traces will be subtracted from the term (ii) of [JL] and the difference will be more important
than (ii) itself. We refer to the difference as the elliptic term. It is the most difficult and will
be discussed—not treated—in §2.5.
The principal question that concerns us is whether there are any possible developments

in analytic number theory that might enable us to find an explicit expression for (12). The
numbers µπ are here equal to 1 (or, for those π that are absent from the sum, 0). Lacking
all experience, I fell back on the obvious and made explicit calculations. For ρ = σm ⊗ τ
they are feasible and not all too slow for m = 1. For m = 2, 3 something can still be done,
but for higher m, at least with my inefficient programs, they are too slow to provide any
useful information. On the other hand, as the first problem of §1.8 demonstrates, calculations
for m = 1 are of considerable interest provided that we take the tensor product of σm with
a general τ or even just a τ of icosahedral type. Although taking such a tensor product
demands a simultaneous study of icosahedral representations or other Galois representations,
there is no reason not to expect that the important features of the problem are not already
present for τ trivial and that they persist. Of course, there may be accidental features, but
these the wise student should recognize and resolutely ignore. The addition of the Galois
representation will add to the labor but should not put additional demands on raw computer
power, only on the skill of the programmer. So I confine myself to trivial τ and, by and large,
to m = 1. Although it is important for theoretical purposes to envisage taking S arbitrarily
large, computations and theory for larger S should not differ essentially from the case that
S consists of the infinite place alone, although there will be many more terms in the trace
formula to be taken into account.

The sum over r ∈ Z that occurs in the elliptic term will be replaced by sums over r satisfying
a congruence condition. This will entail that whatever behavior we find for S = {∞} should
remain valid when congruence conditions are imposed. Such an assertion, which implies a



20 ROBERT P. LANGLANDS

greater theoretical regularity that may make the proofs easier to come by, has to be tested
further, but these are the principles that justify confining myself at first to m = 1 and
to representations unramified at all finite places. We know of course a good deal about
such representations. In particular, there are none of Galois type, but this is an accidental
circumstance that we will use to verify that the programs are functioning well but that will
be otherwise irrelevant to our conclusions.
The representations are to be unramified at all finite places; so the central character η

of [JL] is trivial. Since we will also examine, at least briefly, some m > 1, I do not fix m to be
1. The representation τ will be, however, trivial. The trace formula replaces the expression
(12) by a sum of seven terms, corresponding to its seven terms. The function Φ of [JL] is
now being denoted f , fp or even fp,m and

fp,m(g) = f∞(g∞)fm
p (gp)

∏
q ̸=p

fq(gq),

in which f∞ is a variable function, fm
p depends on m, but all the other fq do not depend on m.

Thus the function Φ does not satisfy the conditions of [JL]; it does not transform according
to a character of the center Z(A) of G(A) and the resulting trace formula is different, but
not very different. In (i) there is a sum over the scalar matrices. In (ii) and (iv) there are
sums over the full tori, not just over the tori divided by the center. In (v) there is also a
sum over the scalar matrices, the n0 defining θ(s, fv) being replaced by zn0. In principle,
(vi), (vii) and (viii) are different, but because fq is a spherical function for all q, the sum over
(µ, ν) implicit in these expressions reduces to the single term µ = ν = 1.

Since we are in a situation where (7) is appropriate and (6) unnecessary, the contribution
of the first term of the trace formula to (12) is given by

(TF.1)
∑
Z(Q)

µ
(
Z+G(Q)\G(A)

)
X

∑
ln(p)fm(z).

Since

fm(z) =
f∞(z)

pm/2
,

if z = ±pm/2 and 0 otherwise, the limit that appears in (12) or (12′) will be 0.
The second term is the elliptic term to be treated in the next section. None of the terms

(iv), (v) and (viii) of [JL], is invariant on its own, so that some recombination of these terms
is necessary. The terms (vi) and (vii) can, however, be treated directly.

I begin with (vi), which yields a contribution that is not in general 0. Since fq is a spherical
function for all q, the only pair (µ, ν) that contributes to (vi) or to (vii) is the pair of trivial
characters and ρ(·, s), denoted ξs in this paper to avoid a conflict of notation, is the global
(or local) representation unitarily induced from the representation(

α x
0 β

)
→ |α|s/2|β|−s/2

of the adelic superdiagonal matrices. It is, moreover, easily verified that M(0) is the operator
−I. Thus the contribution of (vi) to (12) is

(TF.2)
1

4X

∑
ln(p) tr

(
ξ0(f∞)

)
tr
(
ξ0(f

m
p )
)
.
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Since tr
(
ξ0(f

m
p )
)
= m+ 1, the limit as X → ∞ is

(31)
m+ 1

4
tr
(
ξ0(f∞)

)
.

From (30) we conclude that for m = 1, this is

(32) 2

{∫ −1

−∞
ψ+(r) dr +

∫ ∞

1

ψ+(r) dr +

∫ ∞

−∞
ψ−(r) dr

}
.

Apart from the elliptic term, this will be the only nonzero contribution to the limit. Since
the standard automorphic L-function L(s, π, σ1) does not have poles on Re(s) = 1, we expect
that (32) will be cancelled by the elliptic term. This is accidental and will not be for us, even
numerically, the principal feature of the elliptic term.

The function m(s) that appears in (vii) is

π
Γ
(
(1− s)/2

)
Γ
(
(1 + s)/2

) ζ(1− s)

ζ(1 + s)
.

Thus

(33)
m′(s)

m(s)
= −1

2

Γ′((1− s)/2
)

Γ
(
(1− s)/2

) − 1

2

Γ′((1 + s)/2
)

Γ
(
(1 + s)/2

) − ζ ′(1− s)

ζ(1− s)
− ζ ′(1 + s)

ζ(1 + s)
.

It is to be multiplied by the product of

(34) tr
(
ξs(f∞)

)
and tr

(
ξs(f

m
p )
)
. The first of these two functions, as a function on (−i∞, i∞), is the Fourier

transform of a smooth function of compact support. The second is equal to

(35) pim
s
2 + pi(m−2) s

2 + · · ·+ pi(2−m) s
2 + p−im s

2 .

The estimates of §48 and §77 of [Lan] assure us that the product of (33) and (34) is an
L1-function on (−i∞, i∞). From the Riemann-Lebesgue lemma we then conclude that, for
odd m, the integral of the product of (33), (34) and (35) over that line approaches 0 as p
approaches infinity. So, for m odd, (vii) does not contribute to the limit in (12) or (12′).

2.3 The noninvariant terms. Both ω(γ, fv) and ω1(γ, fv) are 0 unless there is a matrix

n =

(
1 x
0 1

)
, x ∈ Fv,

and a matrix k in the maximal compact subgroup of GL(2,Qv) such that the element
k−1n−1γnk lies in the support of fv. Since f∞ is fixed at present, this means that the two
eigenvalues α and β of γ are units away from p and that there is a fixed δ > 0 such that
δ < |α/β|∞ < 1/δ. From the product formula we conclude that δ < |α/β|p < 1/δ. Since
αβ = α2(β/α) = ±pm if ω(γ, fv) or ω1(γ, fv) is not 0, we conclude that (iv) is 0 for all but a
finite number of p if m is odd and thus does not contribute to (12) or (12′). If m is even,
there are only a finite number of γ that yield a nonzero contribution to (iv). Indeed, such γ
have to be of the form

γ =

(
±pk 0

0 ±pℓ

)
, k + ℓ = m.
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Since α/β = ±pk−m is bounded in absolute value, for all but a finite number of p only

γ

(
±pm/2 0

0 ±pm/2

)
contribute. Since γ is not central, the signs must be different.

In the new form of (v), θ(s, fv) depends upon a nonzero scalar z,

θz(s, fv) =

∫∫
fv(k

−1
v a−1

v zn0avkv)

∣∣∣∣αv

βv

∣∣∣∣−1−s

dav dkv.

So the only contribution to (v) will be from z = ±pm/2 and it will only occur for even m.
At finite places q, the operator R′(µq, νq, s) that occurs in (viii) annihilates the vector fixed

by G(Zq). So, with our assumptions, (viii) reduces to

1

4π

∫ i∞

−i∞
tr
(
R−1(s)R′(s)ξs(f∞)

) m∑
k=0

pi(m−2k)s

 d|s|

in which R is the local intertwining operator at infinity normalized as in [JL] and in which it
is implicit that µ∞ = ν∞ = 1. According to the estimates of [A],∣∣∣tr(R−1(s)R′(s)ξs(f∞)

)∣∣∣ = O

(
1

s2

)
, s→ ∞.

Thus we can once again apply the Riemann-Lebesgue lemma to conclude that for m odd,
there will be no contribution to the limits (12) or (12′) from (viii).

2.4 The case of even m. 6 For even m, there are several contributions in addition to those
from (ii) that survive when we take the limit in X. Since the term p0 occurs in (35), the
expression (vii) contributes

(36)
1

4π

∫ i∞

−i∞

m′(s)

m(s)
tr
(
ξs(f∞)

)
d|s|

to (12) or (12′). From (viii) we have

(37)
1

4π

∫ i∞

−i∞
tr
(
R−1(s)R′(s)ξs(f∞)

)
d|s|

To treat (36), or at least part of it, we deform the contour from Re(s) = 0 to Re(s) > 0 or
to Re(s) < 0, as the usual estimates permit ([Lan]), expand

−ζ
′(1− s)

ζ(1− s)
− ζ ′(1 + s)

ζ(1 + s)
as

(38)
∑
q

∑
n>0

ln q

qn(1−s)
+
∑
q

∑
n>0

ln q

qn(1+s)

6There are four sections devoted to even m, by and large to m = 2, or to weighted orbital integrals: §2.4,
§4.3, and Appendices B and C. They are not used in this paper and are best omitted on a first reading.
The formulas for even m are given for almost no other purpose than to make clear that for odd m many
significant simplifications occur. Since the formulas are not elegant and are applied neither theoretically nor
numerically, I very much fear that errors may have slipped in and advise the reader to be cautious.
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and integrate term by term, deforming the contours of the individual integrals back to
Re(s) = 0. In fact, because of the pole of

ζ ′(1± s)

ζ(1± s)

at s = 0, we have first to move the contour to the right and then, for the contribution from
ζ ′(1− s)/ζ(1− s), move it back to the left. The result is that we pick up a supplementary
contribution − tr

(
ξ0(f∞)

)
/2.

Since the character of ξs is the function

|α/β|s/2 + |β/α|s/2√
|1− α/β||1− β/α|

,

the calculation that led to (30) shows that

(39) tr
(
ξs(f∞)

)
= 2

∫
(λs/2 + λ−s/2)ψ±(r) dr

where the integral is to be taken over the set of (±1, r) with the interval{
(1, r)

∣∣ −1 ⩽ r ⩽ 1
}

removed. This may be rewritten as

2

∫ ∞

−∞
|t|s
{
|t− t−1|ψ+(t+ 1/t) + |t+ t−1|ψ−(t− 1/t)

}dt
|t|
,

so that, for s purely imaginary, tr
(
ξs(f∞)

)
is the Fourier transform of

(40) 2
{
|ex − e−x|ψ+(e

x + e−x) + |ex + e−x|ψ−(e
x − e−x)

}
.

As a result, the contribution of (38) to (36) is

(41)
∑
q

∑
n>0

ln q

qn
{
|qn − q−n|ψ+(q

n + q−n) + |qn + q−n|ψ−(q
n − q−n)

}
−

tr
(
ξ0(f∞)

)
2

,

in which the terms for large q or large n are 0. Since this expression occurs for every p, it
remains in the average, as in part a sum of atomic measures that may well be finally cancelled
by a contribution from the elliptic term, but it is hard to see at present how this will occur!

Although the local normalization of the intertwining operators to R used in [JL] is necessary
if the products and sums appearing in the trace formula are to converge, or at least if the
global contribution (vii), which entails no study of local harmonic analysis, is to be clearly
separated from the contributions (viii) for which the primary difficulty lies in the local
harmonic analysis. None the less it is best that, having separated (38) from (33) to obtain a
term that could be analyzed more easily, we combine what remains of (36) with (37) so that
we can more readily appeal to known results on weighted orbital integrals.

Since

(42) −1

2

Γ′((1− s)/2
)

Γ
(
(1− s)/2

) − 1

2

Γ′((1 + s)/2
)

Γ
(
(1 + s)/2

)
is the logarithmic derivative of

π(s−1)/2Γ
(
(1− s)/2

)
π(s+1)/2Γ

(
(1 + s)/2

) ,
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the combination of the two terms amounts to multiplying the unnormalized operator

(43) Js : ϕ→ Jsϕ, Jsϕ(g) =

∫
R

ϕ
(
n(x)g

)
dx

on the space of the induced representation ξs by

(44)
π(s−1)/2Γ

(
(1− s)/2

)
πs/2Γ(s/2)

.

I set

n(x) =

(
1 x
0 1

)
n(x) =

(
1 0
x 1

)
.

The choice of measure is irrelevant, because a logarithmic derivative is to be taken. Moreover
there is a slight difference between (43) and the intertwining operator of [JL], but this
difference too disappears when the logarithmic derivative is taken. So we use (43), which is
the definition used in [H].
The logarithmic derivatives of both (44) and Js now have a pole at s = 0, the poles

cancelling, so that, when we replace the sum of (37) and the contribution of (42) to (36) by
the integrals of the logarithmic derivative of (43) and of (44), the contour of integration has
to be deformed whenever we want to discuss them separately. Hoffmann prefers to avoid 0
by skirting it to the right. I follow his convention. So if C is the new contour, we are left
with two terms,

(45)
1

4πi

∫
C

{
−1

2

Γ′((1− s)/2
)

Γ
(
(1− s)/2

) − 1

2

Γ′(s/2)

Γ(s/2)

}
tr ξs(f∞) ds

and

(46)
1

4πi

∫
C

tr
(
J−1
s J ′

sξs(f∞)
)
ds.

The contribution (46) is not invariant and must be paired with terms from (iv) and (v) to
obtain an invariant distribution, the only kind that is useful in our context, for it is the only
kind expressible in terms of ψ alone.
The two expressions will be, however, ultimately combined. Indeed, there is a danger in

discussing them separately. We need an explicit expression for the sum as

1

4πi

∫ i∞

−i∞
Ω(s) tr ξs(f∞) ds.

Since tr ξs(f∞) is even but otherwise essentially arbitrary, the function (or distribution) Ω
will be unique if it is assumed even. The integrands of (36) and (37) are even, so that if
we stay with them it is easier to use parity to monitor the manipulations. On the other
hand, the factor multiplying the trace in (45) is not even; nor is the integrand of (46). Since
Hoffmann’s results for (46) are in a form that is not only transparent but also symmetric and
since we can easily put (45) in symmetric form, we can readily restore the symmetry, the
only cost being the replacement of (45) by a somewhat lengthier expression, in which there
is one surprise, the final term in the following formula. If we avoid 0 by a small semi-circle of
radius ϵ then (45) becomes, up to a term of order O(ϵ)

1

4πi

∫ −iϵ

−i∞
+

∫ i∞

iϵ

{
−1

2

Γ′((1− s)/2
)

Γ
(
(1− s)/2

) − 1

2

Γ′(s/2)

Γ(s/2)

}
tr ξs(f∞) ds+

tr ξ0(f∞)

4
.
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The first factor in the integrand may be symmetrized, so that the singularity 1/s at s = 0
disappears, and then ϵ allowed to go to 0. The result is the sum of

1

16πi

∫ i∞

−i∞

{
−
Γ′((1− s)/2

)
Γ
(
(1− s)/2

) − Γ′(s/2)

Γ(s/2)
−

Γ′((1 + s)/2
)

Γ
(
(1 + s)/2

) − Γ′(−s/2)
Γ(−s/2)

}
tr ξs(f∞) ds,

or better, since
Γ′(s/2)

Γ(s/2)
=

Γ′(1 + s/2)

Γ(1 + s/2)
− 2

s
,

of

(47)
−1

16πi

∫ {
Γ′((1− s)/2

)
Γ
(
(1− s)/2

) +
Γ′(1 + s/2)

Γ(1 + s/2)
+

Γ′((1 + s)/2
)

Γ
(
(1 + s)/2

) +
Γ′(1− s/2)

Γ(1− s/2)

}
tr ξs(f∞)

and

(48)
tr ξ0(f∞)

4
When considering (iv) and (v), we suppose that p ≠ 2 since, as we observed, the values for

a particular p have no influence on the limit. We may also suppose that γ = ±pm/2δ, where
δ is a matrix with eigenvalues ±1. The signs are equal for (v) and different for (iv).
We begin with7 (iv), inverting the order of summation and discarding all terms that do

not contribute to the average, so that it becomes a sum over just two γ followed by a sum
over the places of Q. If v is a finite place q different from p, then

n(x)−1γn(x) = ±pm/2

(
1 2x
0 −1

)
is integral in Qv if and only if 2x is integral. Consequently, ω1(γ, fq), q ̸= p, is 0 except for
q = 2, but for q = 2,

ω1(γ, f2) = − ln(22)

2
= − ln 2

Moreover,

ω(γ, fq) =

{
1, q ̸= 2, p;

2, q = 2
.

On the other hand,
ω(γ, fp) = 1,

if p ̸= 2. Finally

ω1(γ, fp) = −

∫
1<|x|⩽pm/2 ln|x|2 dx

pm/2
= −

(
1− 1

p

)
ln p

pm/2

m/2∑
j=1

2jpj

The integral is taken in Qp.
Thus the sum over v in (iv) reduces to three terms, those for v = ∞, v = 2 and v = p.

Since our emphasis is on f∞, the only variable part of f , the first plays a different role than
the last two. It is invariant only in combination with (46). The first two are already invariant
as functions of f∞.

7There appears to be a factor of 1/2 missing in (iv). It was lost on passing from p. 530 to p. 531 of [JL],
but is included below.
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Before continuing, we give the values of the three constants c, λ0 and λ−1 appearing in the
trace formula as given in [JL]. First of all, λ−1 = 1 and λ0 is Euler’s constant. The constant
c is the ratio between two measures, the numerator being the measure introduced in §2.1 and
used to define the operators

R(f) =

∫
Z+\G(A)

f(g) dg

appearing in the trace formula8 and the denominator being that given locally and globally
as d(ank) = da dn dk, g = ank being the Iwasawa decomposition. Thus both measures are
product measures, so that c =

∏
cv. If we choose, as we implicitly do, the measures da and

dn so that A(Zq) and N(Zq) have measure 1 for all q, then cq = 1 at all finite places. On
the other hand, we have not been explicit about the measure on Z+\G(R). There was no
need for it. We may as well suppose that it is taken to be da dn dk, where a now belongs to
Z+\A(R). Then c = c∞ = 1.

The measure on Z+\A(R) has already been fixed, but the choice of measures on N∞ and
K∞ do not enter the formulas explicitly. We have

ω(γ, f∞) = ψ
(
ch(γ)

)
.

Thus the contribution from (iv) is the sum of two terms. The first

(49) −
∑
γ

ω1(γ, f∞)
∏
q ̸=∞

ω(γ, fq),

in which only two γ appear,

γ = ±pm/2

(
1 0
0 −1

)
,

is to be combined with (46). Since ω(γ, fq) is just the orbital integral of fq, it is calculated
by Lemma 1 and, as |γ1 − γ2| = |2pm/2| for the γ in question,

(50)
∏
q ̸=∞

ω(γ, fq) =
1

pm/2
2pm/2 = 2.

The second stands alone and is

(51) ψ−(0)

ln 2 +

(
1− 1

p

)
ln p

pm/2

m/2∑
j=1

2jpj

,
an expression that is about ln p in size. Its occurrence is certainly unexpected, as it is not
bounded in p, so that the elliptic term will have to contain something that compensates for
it. The source of this atomic contribution to the elliptic term—if it is present—should not be
hard to find, but I have not yet searched for it.

We verify immediately that

θz(0, fv) =

∫
Qv

∫
Kv

fv

(
±pm/2k−1

v n(x)kv

)
dkv dx, z = ±pm/2,

8So the symbol R has two different roles. It is not the only symbol of the paper whose meaning depends
on the context.
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if v = q is finite. If q ̸= p, this is equal to 1. If q = p, it is equal to 1 because pm/2x is integral
for |x| ⩽ pm/2. Since (the notation is that of [JL], p. 194)

L(1) = π−1/2Γ

(
1

2

)
= 1

and f∞ is positively homogeneous, the first term of (v) contributes

(52)
∑
±

λ0θ±1(0, f∞) = λ0
∑∫

R

∫
K∞

f∞
(
±k−1n(x)k

)
dk dx.

to the average.
The expression (52) can be calculated easily in terms of ψ+. We take

γ = ±

(
et 0
0 e−t

)
,

and let t approach 0. Then ch(γ) = (N, r) = (4,±2 cosh t), r/
√
|N | approaches ±1, and, as

a simple change of variables shows,

(53) 2

(√
r2

N
− 1

)
ψ+(r) = 2|sinh t|

∫
R

∫
K∞

f∞

(
k−1γn

(
(1− e−2t)x

)
k
)
dx dk

approaches the integral of (52). According to (26), the limit of (53) is ψ′′
∞(4,±2). It is

nonzero only when ψ+ is singular at 1 or −1.
The derivative

(54) θ′z(0, fv) = − ln q

q − 1

∫
fv
(
k−1zn(x)k

)
dx dk +

∫
fv
(
k−1zn(x)k

)
ln|x| dx dk

if v = q is nonarchimedean. If it is archimedean, then

(55) θ′z(0, fv) = κ

∫
f∞
(
k−1zn(x)k

)
dx dk +

∫
f∞
(
k−1zn(x)k

)
ln|x| dx dk,

where

κ = −π
−1/2Γ(1/2)

2
ln π + π−1/2Γ′(1/2) = −λ0

2
− ln π

2
− ln 2,

a result of

Γ′
(
1

2

)
= (−λ0 − 2 ln 2)

√
π, (cf. [N, p. 15]).

The expression (54) is deceptive. If v ̸= p and z = ±pm/2, then θz(s, fq) is identically 1
and its derivative 0. If q = p, then

θz(s, fq) =
1

pm/2Lq(1 + s, 1)

∫
|β|⩽pm/2

|β|1+s dβ

|β|
= pms/2,

so that

θ′z(0, fp) =
m ln p

2
.

The sum in (v) is a double sum, over γ = ±pm/2 and over v. Only v = ∞ and v = p yield
a contribution different from 0. The first will be combined with (52) to give the sum of

(56) κ1
∑∫

R

∫
K∞

f∞
(
±k−1n(x)k

)
dx, κ1 =

λ0
2

− ln π

2
− ln 2



28 ROBERT P. LANGLANDS

and the noninvariant expression

(57)
∑∫

f∞
(
k−1zn(x)k

)
ln|x| dx dk,

which will have to be combined with (46). The second is

(58)
∑ m ln p

2

∫
R

∫
K∞

f∞
(
±k−1n(x)k

)
dx,

in which two disagreeable features appear: the logarithm of p which cannot possibly have an
average and the integral that is expressible only in terms of the singularities of ψ+ at ±1. So
there is no question of the logarithmic terms in (51) and (58) cancelling.

2.5 The elliptic term. The sum in the expression (ii) from [JL] is over the global regular
elliptic elements γ, each γ being determined by its trace, which we have denoted r and by 4
times its determinant, N = 4det(γ). Only γ for which r is integral and N = ±4pm appear.
The eigenvalues of γ are

r

2
±

√
r2 −N

2
.

Their difference is ±
√
r2 −N . Thus γ will be elliptic if and only if r2 −N is not a square.

We write9 r2 − N = s2D, where D is a fundamental discriminant, thus D ≡ 0, 1 (mod 4).
Both D and s are understood to be functions of r and N . If r2 = N , then D is taken to be 0;
if it is a square then D = 1.

I claim that

(59)
∑
f |s

f
∏
q|f

1−

(
D
q

)
q

,
in which

(
D
p

)
is the Kronecker symbol ([C]), is equal to the product of Um(γ) taken at p

with the product over q ̸= p of U1(γ). By multiplicativity, it is enough to consider

1 +
k∑

j=1

qj

1−

(
D
q

)
q


for each prime q. If

(
D
q

)
= 1, this is 1 + qk − 1, but if

(
D
q

)
= −1, it is

1 + (qk − 1)
q + 1

q − 1
= qk

q + 1

q − 1
− 2

q − 1
.

Finally, if
(

D
q

)
= 0, it is

k∑
j=0

qj =
qk+1

q − 1
− 1

q − 1
.

So we have only to appeal to Lemma 1.

9So the symbol s appears in the paper in two quite different ways: here and elsewhere, as an integer by
whose square we divide to obtain the fundamental discriminant; previously and also below, as a variable
parametrizing the characters of R+.
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Let µD be the volume µ
(
Z+Gγ(Q)\Gγ(A)

)
if D ̸= 1. Then the uncorrected elliptic term

is the sum

(60)
∑

N=±4pm

∑
r

µD
ψ(N, r)

pm/2

∑
f |s

f
∏
q|f

1−

(
D
q

)
q

,
in which the function ψ continues to be defined as in (26). The factor 1/2 in (ii) has been
removed because each r accounts for two γ. Because of the presence of the term ψ(N, r),

the sum is finite, the number of terms being of order
√
|N |. The terms with D = 0, 1 are

excluded because they do not correspond to regular elliptic γ. Moreover p is fixed for the
moment.

We now make use of formulas from [C] (§5.3.3 and §5.6.2—the general form of the second
formula is stated incorrectly but we do not need the general form) for µD. If n is a positive
integer and x a real number, define the function φ(x, n) by the following formulas.
x < 0:

φ(x, n) = π erfc

(
n
√
π√
|x|

)
+

√
|x|
n

exp
(
−πn2/|x|

)
.

x > 0:

φ(x, n) =

√
x

n
erfc

(
n
√
π√
|x|

)
+ E1

(
πn2

x

)
,

where E1 is defined to be the function

−γ − ln(x) +
∑
k⩾1

(−1)k−1 x
k

k! k
,

γ being Euler’s constant. Then, on making use of the formulas in §2.1 for µD in terms of the
class number, we obtain

(61) µD =
∞∑
n=1

(
D

n

)
φ(D,n).

The series (61) is absolutely convergent and we substitute it in (60) to obtain

(62) 2
∑
n

∑
f

∑
{ (r,N) | f |s}

f

(
D

n

)
φ(D,n)

ψ(N, r)√
|N |

∏
q|f

1−

(
D
q

)
q

.
Recall that N assumes only two values ±4pm, but that r runs over all integers except the
very few for which D = 0, 1. By homogeneity, we may replace ψ(N, r) by ψ±(xr), where for

brevity of notation I set xr = r/
√

|N |. I rewrite (62) as

(63) 2
∑
f

∑
{n | (n,f)=1}

∑
{ (r,N) | f |s}

∑
f ′

f

(
D

nf ′

)
φ(D,nf ′)

ψ±(xr)√
|N |

∏
q|f

1−

(
D
q

)
q

.
The sum over f ′ is over all positive numbers all of whose prime divisors are prime divisors
of f . The sum over (r,N) is over those pairs for which f |s, s continuing to be defined by
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r2 −N = s2D. In principle, we want to examine the individual terms

(64) 2
∑
f |s

∑
f ′

f

(
D

nf ′

)
φ(D,nf ′)

ψ±(xr)√
|N |

∏
q|f

1−

(
D
q

)
q

,
the outer sum being a sum over r and the two possible N , but we must first subtract the
contribution (28) from the trivial representation. So we have to express it too as a sum over
n and f .

The contribution from the trivial representation θ is the product of (28) with

tr θ(fm
p ) =

m∑
k=0

p(m−2k)/2 = pm/21− p−m

1− p−1
=

√
|N |
2

1− p−m

1− p−1

So it is

(65) 2
√

|N |1− p−m

1− p−1

∑∫
ψ±(x)

√
|x2 ∓ 1| dx,

the sum being over the set {+,−}. To see how this is to be expressed as a sum over n and f ,

we observe that φ(D,n) behaves for large |D| like
√

|D|/n =
√

|r2 −N |/sn, so that, for a
rough analysis, (63) may be replaced by

(66) 2
√

|N |
∑
f

∑
{n | (n,f)=1}

∑
f |s

∑
f ′

f

snf ′

(
D

nf ′

)
ψ±(xr)

√
|x2r ∓ 1|√
|N |

∏
q|f

1−

(
D
q

)
q

.
Suppose we replace each of the factors

(67)
∑
f ′

f

snf ′

(
D

nf ′

)∏
q|f

1−

(
D
q

)
q

 =
f

sn

(
D

n

)
by a number ϵn,f (N), an approximation to its average value on intervals long with respect to

n but short with respect to
√

|N |. Then (63) is replaced by

(68) 2
√

|N |
∑
f

∑
{n | (n,f)=1}

∑
±

ϵn,f (N)

∫
ψ±(x)

√
|x2 ∓ 1| dx.

The inner sum is over the two possible values of N .
The exact sense in which ϵn,f(N) is an approximation to the average is not important,

provided the choice works, but we do need to show that

(69)

∑
n,f

ϵn,f (N) =
1

1− p−1
+O

(
|N |−1

)
,

=
1− p−m

1− p−1
+O

(
|N |−1

)
,

so that (65) is equal to (68) and the difference between (63) and (65) has some chance of

being o
(
|N |1/2

)
. For the purposes of further examination, we write this difference as the
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sum over n and f , gcd(n, f) = 1, of10

(70) 2

∑ f

(
D

nf ′

)
φ(D,nf ′)

ψ±(xr)√
|N |

Φ−
√

|N |
∑
±

ϵn,f (N)

∫
ψ±(x)

√
|x2 ∓ 1| dx

,
with

Φ = Φf =
∏
q|f

1−

(
D
q

)
q

.
The first sum in (70) is over r, f ′ and ±.

I now explain how we choose ϵn,f (N). Let t be an integer large with respect to
√
|N | and

divisible by a multiplicatively very large square. The average of (68) is to be first calculated
on [0, t). The divisibility of r2 −N by s2 is then decided for all s up to a certain point by
the residue of r modulo t. Whether (r2 −N)/s2 is then divisible by further squares is not,
but it is except for squares that are only divisible by very large primes. There will be very
few r for which this occurs. Otherwise f divides s if and only if f 2 divides r2 −N with a
remainder congruent to 0 or 1 modulo 4. Then, for (n, f) = 1,(

(r2 −N)f 2/s2

n

)
=

(
D

n

)
.

Thus ϵn,f (N) will be an approximation to the average value of

(71)
f

sn

(
(r2 −N)f 2/s2

n

)
.

If gcd(n, f) were not 1, these expressions would be 0 and it is useful to set ϵn,f(N) = 0
if gcd(n, f) ̸= 1. The calculation of these factors is long and tedious, but their values are
needed for the numerical experiments, and (69) is a confirmation of the correctness of the
calculation. So I present the calculation in an appendix.

Part III: Numerical experiments

3.1 A first test. We observed that (32) was, apart from the elliptic term, the only nonzero
contribution to the limit. Since L(s, π, σ1) is regular and nonzero on Re(s) = 1 for all cuspidal
automorphic π, we expect that the limit (12′) is 0. For m = 1, we have calculated explicitly
all contributions to the limit (12′) except for the difference between the elliptic term (60) and
the contribution (65) from the one-dimensional representations. So we have to show that
this difference, or rather its average in the sense of (12′) over p < X, cancels the simple, but
in our context fundamental, distribution (32). A first test is numeric.
Both (60) and (65) are distributions, even measures, on the pair (ψ+, ψ−). The first is

a sum of atomic measures. The second is absolutely continuous with respect to Lebesgue
measure. So their difference and the average over p is also a measure, symmetric with respect
to r → −r. I divide the interval from −3 to 3 on each of the lines N = ±1 into 60 equal
parts of length 0.1 and calculate numerically for each p the measure of each interval. In the
unlikely event that a point common to two intervals has nonzero mass, I assign half of this

10Notice that the sum (70) has a simpler mathematical structure than (60), especially for f = 1 for then
the sum over f ′ is absent. The only element that varies irregularly with r is the square s2 dividing r2 −N .
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mass to each of the two intervals. Then I average over the first n primes in the sense of
(12′). The result should be approaching −.2 on each of the intervals except those on N = +1
between −1 and 1, where it should approach 0. From Table 3.1 at the end of the paper in
which the first two columns refer to the average over the first 200 primes, the second to that
over the first 3,600 primes, and the third to that over the first 9,400, we see that the average
is almost immediately approximately correct at least for the intervals closer to 0, that it does
seem to converge to the correct values, but that the convergence is slow, sometimes even
doubtfully slow.

Thanks to the symmetry, only the results for the intervals from −3 to 0 need be given. In
each set of two columns, the numbers in the first column are for intervals of r with N = −1,
and those in the second for N = 1. Once the results get within about 0.007 of the expected
values they cease to improve. I assume they would with better programming.

3.2 A rough estimate. For m odd and in particular for m = 1, the elliptic term, or
more precisely the difference between the elliptic term and the contribution from the one-
dimensional representations, is a formidable expression, with which it is difficult, probably very
difficult, to deal. The limit of the average is nevertheless expected to exist and is, moreover,
expected to be, even if S contains finite places, a linear combination of the distributions (30),
of which there are three, because ϵ−− = ϵ−+. The coefficients will depend on the functions fq,
q ̸= ∞, q ∈ S, thus on congruence conditions. So there is a great deal of uniformity present
in the limit, and it is fair to assume that it will influence the structure of the proofs.

On the other hand, the average of the difference, with the elliptic term expressed as in (62)
and (65), decomposed with the help of (69), will be a sum over three parameters, r, p and n.
More precisely, the last sum is over n and f , but the additional sum over f may be little
more than an unfortunate complication, whose implications are limited, of the sum over n.
At the moment, I am not concerned with it. There are also sums over ± and f ′ that occur
simultaneously with the sum over r and are understood to be part of it.
The sum over r has a simple structure, except for the dependence on s. The use of the

logarithmic derivatives that leads us to an average over p with the factor ln p is alarming as
any incautious move puts us dangerously close to the mathematics of the Riemann hypothesis,
but there is nothing to be done about it. The structure suggested by functoriality and the
L-group imposes the use of the logarithmic derivative on us, and any attempt to avoid it for
specious (in the sense of MacAulay11) technical advantages is likely to lead us away from our
goal, not toward it. We do want to discover something about the behaviour of automorphic

11Although in the middle of the nineteenth century the word did not yet have its present thoroughly
pejorative sense, it did evoke doubt; so a few words of explanation are in order. The only tool presently in
sight for passing from π to λH are the functions mπ and mH , which are linear in ρ. We are already familiar,
thanks to basic results for the Artin L-functions, with the importance of the linearity in ρ of the order of the
pole of the L-functions at s = 1. The linearity in ρ is naturally accompanied by a linearity in π. The functions
mπ not only incorporate the structural advantages suggested by functoriality that will be of great importance
when we pass to groups of large dimension but also are fully adapted to the trace formula, provided we take
them as defined by the logarithm of the L-function L(s, π, ρ) or its derivative. On the other hand, we have
none of the necessary analytic experience. We are faced with sums and limits in which we do not know what
is large, what is small, what converges, what does not, and we desperately need insight. If some experience
and some feeling for the analysis can be acquired by a modification of the problem in special cases in which
the sums over primes that appear in the logarithmic derivative are replaced by easier sums over integers,
then common sense suggests that we start there.
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L-functions near s = 1 but if we are careful we should not otherwise find ourselves inside the
critical strip.
By passing from (60) to (62) we remove the class number, an almost intractable factor,

but at the cost of the additional sum over n and f . Although the contribution from the
one-dimensional representations is not at first expressed as a sum over n and f , we observed
in §2.5 that there was a natural way so to express it, so that the difference becomes the sum
over n and f of (70).

If it turned out that for each n and f , the sum over r and p behaved well, then we would,
it seems to me, have a much better chance of dealing with the elliptic term. More precisely,
it would be a real windfall if the average of (70) approached a limit for each n and f and
if the sum over n and f followed by the average could be replaced by the average followed
by the sum. The most important observation of this paper is that preliminary numerical
investigations suggest that the average of (70) does indeed have a regular behavior, but
there are no windfalls. Since my experience as a programmer is limited and mistakes are
easy to make, either outright blunders or a careless analysis of possible systematic errors in
what are necessarily approximate calculations, I very much hope that others will find the
results sufficiently curious to be worthy of their attention. Not only should my conclusions
be examined again and more extensively, but, apart from any theoretical efforts, higher m,
especially m = 2, 3, need to be considered as does the effect of congruence conditions or of
characters of the Galois group.
Interchanging the order of summation and the passage to the limit is another matter. In

the summation there are three ranges: n substantially smaller than
√
|N |; n about equal

to
√

|N |; n substantially larger than
√

|N |. We can expect that the interchange picks out
the first range. The function φ(x, n) is such that we can expect the last range to contribute
nothing. This leaves the intermediate range, which may very well contribute but about which
nothing is said in this paper, whose tentative explorations, instructive though they are, stop
short of all difficult analytic problems.12

Although we persuaded ourselves that (70) might very well be o
(
|N |1/2

)
, so that it is

smaller than the two expressions of which it is a difference, we made no effort to see what size
it might be. Its average over p is intended to have a limit, thus, in particular, to be O(1), but
that does not prevent violent oscillations in the individual terms. Besides the existence of a
limit may be too much to expect. The numerical results described later in this section suggest

that (70) is O
(
ln2|N |

)
, but I have not yet even been able to show that it is O

(
lnc|N |

)
for

some exponent c. Before coming to the experiments, I describe briefly the difficulties that I

12Since φ(x, n) is a function of n/
√
x, the factor φ(D,n) in (62) can almost be treated as a constant when

n ∼
√
N . Thus, in so far as D is just r2 −N , the pertinent expression in the intermediate range is pretty

much

(F.1)
∑

−cn⩽r⩽cn

(
r2 −N

n

)
ψ±

(
r

n

)
.

More extensive investigations, which I have not yet undertaken, would examine, at least numerically but also
theoretically if this is possible, the sum over the intermediate range in this light as well as the validity of the
separation into three ranges. Is it possible to hope that the average over p < X of (F.1) will have features
like those described in §3.3 for the average over the first range? Can the separation be made cleanly so that
any contributions from intermediate domains on the marches of the three ranges are small?
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met in trying to estimate (70) directly. I have not yet made a serious attempt to overcome
them.

Recall first that ψ± in (70) are zero outside some interval [c1, c2], so that r need be summed

only over c1
√

|N | ⩽ r ⩽ c2
√
|N |. To simplify the—in any case rough—analysis, I suppose

that both ψ± are bounded; thus I ignore the possible singularity of ψ+ at r = ±1. Observe
that, for large N ,

φ(x, n) =

√
|x|
n

+ A+B ln|x|+O
(
|x|−1/2

)
,

where A and B are well-determined constants that depend only on the sign of x. The constant
implicit in the error term depends on n. Since∑

c1
√

|N |⩽r⩽c2
√

|N |

1√
|N |

= O(1),

we can replace φ(x, n) by
√

|x|/n at a cost that is O
(
ln|N |

)
, a price that we are willing to

pay.
Thus, at that level of precision, we can make the same modifications as led from (63) to

(66) and replace (70) by twice the sum over ± of the difference

(72)
∑
r

f

sn

(
D

n

)
ψ±(xr)

√
|x2r ∓ 1| −

√
|N |ϵn,f (N)

∫
ψ±(x)

√
|x2 ∓ 1| dx.

In (72) there is no longer a sum over f ′ and no need to sum over ±, as we can simply fix the
sign.
To simplify further, I take n = 1. In so far as there is any real argument in the following

discussion, it can easily be extended to an arbitrary n. This is just a matter of imposing
further congruence conditions on r modulo primes dividing 2n. For similar reasons, I also
take f = 1. Then (72) becomes∑

r

ψ±(xr)

√
|D|√
|N |

−
√

|N |ϵ1,1(N)

∫
ψ±(x)

√
x2 ∓ 1 dx.

It might be better to take ψ± to be the characteristic function of an interval and to attack
this fairly simple expression directly. I tried a different approach.
I indicate explicitly the dependence of s on r by setting s = sr and then write the first

term of the difference, with n now equal to 1, as

(73)
∑
s

1

s

∑
sr=s

ψ±(xr)
√

|x2r ∓ 1|.

We then compare

(74)
∑
sr=s

ψ±(xr)
√

|x2r ∓ 1|

with

(75)

√
|N |
s2

∫ ∞

−∞
ψ±(x)

√
|x2 ∓ 1|gs(x) dx,
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where gs(x) is constant on each interval
[
ks2/

√
|N |, (k + 1)s2/

√
|N |
)

and equal to the

number Cs(k) of integral points r in
[
ks2, (k + 1)s2

)
such that r2 − N divided by s2 is a

fundamental discriminant. The sum (73) is compared with

(76)
∑
s

√
|N |
s3

∫ ∞

−∞
ψ±(x)

√
|x2 ∓ 1|gs(x) dx

We have to compare (76) not only with (73) but also with the second term of (72), which is,
for n = f = 1,

(77)
√

|N |ϵ1,1(N)

∫
ψ±(x)

√
|x2 ∓ 1| dx.

I truncate both (73) and (76) at s ⩽M = |N |1/4. An integer r contributes to the number
Cs(k) only if s2 divides r2 −N . This already fixes r up to a number of possibilities modulo
s2 bounded by 2#(s), where #(s) is the number of prime divisors of s. Thus the truncation of
(76) leads to an error whose order is no larger than∑

s>M

√
|N |2#(s)

s3
= O

(
ln2c−1|N |

)
,

as in Lemma B.1 of Appendix B. As observed there, the constant c may very well be 1.

For s > M , the number of r in
[
c1
√
|N |, c2

√
|N |
)
such that s2 divides r2 −N is O(2#(s)),

because
√
|N |/s2 is bounded by 1. Thus, according to Lemma B.3, the error entailed by the

truncation of (73) is of order no worse than∑
C
√

|N |>s>M

2#(s)

s
= O

(
ln2c|N |

)
.

To estimate the difference between (74) and (75), we regard

ψ±(xr)
√
|x2r ∓ 1| =

√
|N |
s2

ψ±(xr)
√
|x2r ∓ 1| s2√

|N |
,

ks2 ⩽ r < (k + 1)s2, as an approximation to√
|N |
s2

∫ (k+1)s2√
|N|

ks2√
|N|

ψ±(x)
√
|x2 ∓ 1| dx.

Difficulties around x = ±1—where ψ+ may not be bounded, much less smooth—aside, the
approximation will be good to within√

|N |
s2

O

( s2√
|N |

)2
 = O

(
s2√
|N |

)
.
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Multiplying by 1/s and summing up to M , we obtain as an estimate for the truncated
difference between (73) and (76)

1√
|N |

O

∑
s⩽M

2#(s)s

,
which is estimated according to Corollary B.4 as O

(
ln2c|N |

)
.

For a given N and a given natural number s, the condition that (r2−N)/s2 be integral but
divisible by the square of no odd prime dividing s and that (r2 −N)/4 have some specified
residue modulo 4, or any given higher power of 2 is a condition on r modulo 4s4 or some
multiple of this by a power of 2, so that it makes sense to speak of the average number
α′(N, s) of such r. The number α′(N, s) is O(2#(s)/s2). If q is odd and prime to s then the
average number of r for which, in addition, r2 −N is not divisible by q2 is

1−
1 +

(
N
q

)
q2

.

Thus the average number of r for which r2 −N divided by s2 is a fundamental discriminant
can be defined as

α(N, s) = α′(N, s)
∏

gcd(q,2s)=1

1−
1 +

(
N
q

)
q2

.
As in the first appendix,

ϵ1,1(N) =
∞∑
s=1

α(N, s)

s
.
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Diagram 3.2.A

It remains to compare (75) with

(78)
√

|N |α(N, s)
∫ ∞

−∞
ψ±(x)

√
|x2 ∓ 1| dx
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remembering that their difference is to be divided by s and then summed over s, although by
Lemma B.1, the sum can be truncated at s ⩽M . I had difficulties with the estimates that I
have not yet been able to overcome. I describe them.

Let gs be the average of gs on some interval [−C,C] large enough to contain in its interior
the support of ψ±. The difference between (75) and (78) divided by s is the sum of two terms.
First of all,

(79)

√
|N |
s3

∫ C

−C

ψ±(x)
√
|x2 ± 1|

(
gs(x)− gs(x)

)
dx;

and secondly,

(80)

√
|N |
s3

∫ C

−C

ψ±(x)
√

|x2 ± 1|
(
gs(x)− s2α(N, s)

)
dx.

The first should be smallest when ψ± is very flat; the second when its mean is 0. So it appears
they are to be estimated separately.
First of all, to calculate Cs(k) and thus gs, we have to examine the O(2#(s)) integers r in

the pertinent interval such that s2 divides r2 −N . For simplicity, rather than work with gs
and gs, I work with the contributions to Cs(k) from a single residue class r modulo s2, but
without changing the notation. As a result, the estimates obtained will have to be multiplied
by the familiar factor 2#(s). Moreover, the definition of α(N, s) will have to be modified
according to the same principle.

If r lies in
[
−C
√

|N |, C
√

|N |
]
and has residue r, then we attach to r the set p1, p2, . . . , pℓ

such that s2p2i divides r2 −N and is congruent to 0 or 1 modulo 4. Then s(r) is divisible
by sp1 · · · pℓ and s2p21 · · · p2ℓ ⩽ (C2 + 1)|N |. So there are only a finite number of sets
{p1, . . . , pℓ} that arise. Let A(p1, . . . , pℓ) be the set of k such that r ∈

[
ks2, (k + 1)s2

)
⊂[

−C
√

|N |, C
√

|N |
]
with the given residue r has s(r) divisible by sp1 · · · pℓ and by no prime

but those in {p1, . . . , pℓ}. Let |A| be the total number of elements in all the A(p1, . . . , pℓ),

ℓ ⩾ 0. Then |A| − 2C
√

|N |/s2 is O(1) and 1/|A| = s2/2C
√
|N |+O

(
1/|A|2

)
. Let A(+) be

the union of A(p1, . . . , pℓ), ℓ > 0.

Set Ψ±(k) equal to the integral over the interval
[
ks2/

√
|N |, (k + 1)s2/

√
|N |
]
of

ψ±(x)
√

|x2 ± 1|.
Then with our new conventions, the integral in (79) becomes∑

k∈A()

Ψ±(k)

1−
∑
i∈A()

1/|A|

−
∑

k∈A(+)

∑
i∈A()

Ψ±(k)/|A|+O
(
s2/
√
|N |
)
.

Thanks to (B.10) we may ignore the error term. The main term is

(81)
1

|A|
∑
k∈A()

∑
i∈A(+)

(
Ψ±(k)−Ψ±(i)

)
Each term Ψ±(k) that appears in (81) is assigned not only to a k ∈ A() but also to an

i ∈ A(+), say i ∈ A(p1, . . . , pℓ). We can change the assignation and thus rearrange the sum
by decomposing the integers into intervals Im =

[
ms2p21 · · · p2ℓ , (m+ 1)s2p21 · · · p2ℓ

)
, choosing

for each of these intervals an i′ in it such that i′ ≡ i (mod s2p21 · · · p2ℓ) and assigning Ψ±(k)
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to k and to that i′ lying in the same interval Im as k. For this to be effective, we introduce
sets B(p1, . . . , pℓ), defined as the set of k such that the r ∈

[
ks2, (k + 1)s2

)
with the given

residue r modulo s has s(r) divisible by p21 · · · p2ℓ . Then i′ necessarily lies in B(p1, . . . , pℓ),
although it may not lie in A(p1, . . . , pℓ). Then the union B(+) of all the B(p1, . . . , pℓ), ℓ > 0,
is again A(+) but these sets are no longer disjoint. The number of times Q(k, i′) that k is

assigned to a given i′ is clearly O
(√

|N |/s2p21 · · · p2ℓ
)
.

If we change notation, replacing i′ by i, the sum (81) becomes

(82)
1

|A|
∑

i∈A(+)

∑
k∈A()

Q(k, i)
(
Ψ±(k)−Ψ±(i)

)
.

If ψ± is continuously differentiable and if i ∈ A(p1, . . . , pℓ) and Q(k, i) ̸= 0, then

Ψ±(k)−Ψ±(i) = O

(
s2√
|N |

)
O

s2∏ℓ
j=1 p

2
j√

|N |


the first factor coming from the length of the interval, the second from the difference of
the functions ψ± on the two intervals. Since the number of elements in B(p1, . . . , pℓ) is

O
(
2ℓ

′√|N |/s2p21 · · · p2ℓ
)
, ℓ′ being the number of p2j , 1 ⩽ j ⩽ ℓ, that do not divide s, (81) is

estimated as

1

|A|
∑
ℓ>0

∑
p1,...,pℓ

2ℓ
′
O

(
s2√
|N |

)
O

s2∏ℓ
j=1 p

2
j√

|N |

O( √
|N |

s2p21 · · · p2ℓ

)2

O(p21 · · · p2ℓ)

the final factor being the number of intervals of length s2 in an interval Im. This expression is

(83) O

(
s2√
|N |

)
O

∑
ℓ>0

∑
p1,...,pℓ

2ℓ
′

,
which multiplied by

√
|N |/s3 yields

(84) O

(
1

s

)
O

∑
ℓ>0

∑
p1,...,pℓ

2ℓ
′

.
Were it not for the second factor, we could appeal to (B.10). Even though this factor

is a finite sum because s2p21 · · · p2ℓ ⩽ (C2 + 1)
√
|N |, it is far too large to be useful. It is

likely to have been very wasteful to estimate the terms in (82) individually. We can after
all expect that if 0 ⩽ i < s2p21 · · · p2ℓ is the residue of i in A(p1, . . . , pℓ) then i/s

2p21 · · · p2ℓ is
distributed fairly uniformly over [0, 1) as p1, . . . , pℓ vary but at the moment I do not know
how to establish or to use this. So the poor estimate (83) is one obstacle to establishing a
reasonable estimate for (72).
As in the analysis of (79), we may calculate, with an error that is easily estimated as

O
(
s2/
√

|N |
)
, gs as

∣∣A()∣∣/|A| or, better, s2∣∣A()∣∣/2C√|N |. It is clear that

(85)
∣∣A()∣∣ = ∣∣B()

∣∣−∑
p1

∣∣B(p1)
∣∣+∑

p1,p2

∣∣B(p1, p2)
∣∣−+ · · · ,
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in which the sum is over s2p21 · · · p2ℓ ⩽ C2 + 1. Each set B(p1, . . . , pℓ) corresponds to an
interval

[
ks2p21 · · · p2ℓ , (k + 1)s2p21 · · · p2ℓ

)
and it is implicit in the definition that this interval

must meet
[
−C
√

|N |, C
√

|N |
]
. It is not, however, necessary that it be contained in the

larger interval. Then

(86)
∣∣B(p1, . . . , pℓ)

∣∣ = α(p1, . . . , pℓ)

(
2C

√
N

s2p21 · · · p2ℓ
+ ϵ(p1, . . . , pℓ)

)
.

Here

α(p1, . . . , pℓ) =
ℓ∏

j=1

α(pj).

If p is odd, α(p), which is 0, 1 or 2, is the number of solutions of r2 − N ≡ 0 (mod s2p2),
(r2−N)/s2p2 ≡ 0, 1 (mod 4) with the condition that the residue of r modulo s2 is r. If p = 2, it
is 1/4 the number of solutions of the same conditions but with r taken modulo 4s2p2. Because

those intervals
[
ks2p21 · · · p2ℓ , (k + 1)s2p21 · · · p2ℓ

)
that lie partly inside

[
−C
√
|N |, C

√
|N |
]
and

partly outside may or not belong to B(p1, . . . , pℓ) the number ϵ(p1, . . . , pℓ) lies between −1
and 1 if no pj is 2. Otherwise it lies between −4 and 4.
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Diagram 3.2.B

We can also calculate the modified α(s,N) as∑
p1,...,pℓ

(−1)ℓ
α(p1, . . . , pℓ)

s2p21 · · · p2ℓ
.

We conclude from (85) and (86) that, apart from an error that we can allow ourselves, the
difference gs − s2α is∑

ℓ⩾0

∑
p1,...,pℓ

(−1)ℓα(p1, . . . , pℓ)ϵ(p1, . . . , pℓ)
s2

2C
√
|N |

.
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So once again, we have to deal with

(87)
∑
s

1

s

∑
ℓ⩾0

∑
p1,...,pℓ

(−1)ℓα(p1, . . . , pℓ)ϵ(p1, . . . , pℓ)

.
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0.356779, −0.136681, 0.358137, −0.135542, 0.358815, −0.136301,
−0.305870, 0.089564, −0.304567, 0.090622, −0.303917, 0.089916,
0.102864, 0.114616, 0.104113, 0.115592, 0.104736, 0.114941,

−0.108330, 0.054990, −0.107135, 0.055883, −0.106538, 0.055287,
−0.027594, 0.071878, −0.026452, 0.072683, −0.025881, 0.072146,
−0.212283, 0.083968, −0.211192, 0.084682, −0.210647, 0.084206,
0.117788, −0.003163, 0.118829, −0.002547, 0.119348, −0.002958,
0.091523, −0.015066, 0.092514, −0.014557, 0.093010, −0.014897,
0.020256, −0.084660, 0.021200, −0.084275, 0.021671, −0.084532,

−0.252761, −0.016231, −0.251863, −0.016025, −0.251414, −0.016162,
0.133049, 0.067864, 0.133903, 0.068064, 0.134330, 0.067930,
0.088015, 0.014307, 0.088828, 0.014663, 0.089234, 0.014425,

−0.081067, −0.030958, −0.080293, −0.030509, −0.079906, −0.030808,
0.017027, 0.076392, 0.017766, 0.076908, 0.018135, 0.076564,
0.121633, 0.025750, 0.122340, 0.026318, 0.122693, 0.025939,

−0.081617, 0.053260, −0.080938, 0.053867, −0.080599, 0.053463,
−0.002066, −0.126718, −0.001409, −0.126081, −0.001082, −0.126505,
0.068478, 0.082597, 0.069116, 0.083256, 0.069435, 0.082816,

−0.004951, 0.124929, −0.004325, 0.125601, −0.004012, 0.125153,
−0.239656, 0.099643, −0.239035, 0.100322, −0.238725, 0.099869.

Table 3.2.A: Part 1: p = 59,369

The expression in parentheses in (87) depends strongly on s and is, once again, apparently
far too large, a coarse estimate suggesting that the inner sum is of magnitude

(88)
∑

p21···p2ℓ⩽(C2+1)
√

|N |/s2

2ℓ
′
,

where ℓ′ is once again the number of j, 1 ⩽ j ⩽ ℓ such that pj does not divide s. Perhaps
we have to take into account that the signs of the factors ϵ(p1, . . . , pℓ) vary and cancel each
other. I have not tried to do this.
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−0.219263, 0.068058, −0.215435, 0.071714, −0.208291, 0.070964,
0.143721, 0.001004, 0.146339, 0.004404, 0.153195, 0.003706,

−0.020184, 0.035014, −0.016663, −0.065354, −0.010093, −0.065998,
−0.091281, −0.098202, −0.087911, −0.095335, −0.081622, −0.095923,
0.003985, −0.017991, 0.007207, −0.015405, 0.013220, −0.015936,
0.087754, 0.076422, −0.042187, 0.078715, −0.036444, 0.078245,
0.180775, −0.060344, 0.183710, −0.058364, 0.189187, −0.058771,
0.107415, 0.038662, 0.110212, 0.013086, 0.115430, 0.012750,

−0.058412, −0.094389, −0.167936, −0.093154, −0.162967, −0.093407,
−0.073063, 0.007405, −0.070531, 0.008066, −0.065803, 0.007930,
0.070096, 0.045556, 0.072506, 0.046198, 0.077003, 0.046066,

−0.023146, 0.060006, −0.020854, 0.061151, −0.016574, 0.060916,
0.129606, −0.071048, 0.084723, −0.117606, 0.088799, −0.117902,

−0.044026, 0.110108, −0.041942, 0.111766, −0.038054, 0.111426,
−0.015731, −0.062830, −0.013737, −0.061007, −0.010015, −0.061381,
−0.180290, 0.079119, −0.258895, 0.081069, −0.255319, 0.080669,
0.077034, −0.078929, 0.078885, −0.076884, 0.082340, −0.077304,

−0.011454, 0.060534, −0.009653, −0.008355, −0.006292, −0.008789,
−0.003079, 0.082049, −0.001312, 0.084207, 0.001986, 0.083764,
0.031046, 0.121403, −0.041293, 0.123583, −0.038028, 0.123136.

Table 3.2.A: Part 2: p = 746,777

Our estimate of (70) is unsatisfactory, so that at this stage it is useful to examine it
numerically. The numerical results that I now describe suggest strongly that all estimates

that look, for one reason or another, weak are indeed so and that (70) is O
(
ln2|N |

)
. The

experimental results, too, leave a good deal to be desired, partly because it is impossible to
detect slowly growing coefficients but also because it is inconvenient (for me with my limited
programming skills) to work with integers greater than 231 = 2,147,483,648. For example,
when testing the divisibility properties of r2 −N by s2, it is inconvenient to take s greater
than 215. Since we can work with remainders when taking squares, we can let r be as large
as 231. None the less, if we do not want to take more time with the programming and do not
want the machine to be too long with the calculations, there are limits on the accuracy with
which we can calculate the s = sr appearing in (72). We can calculate a large divisor of s,
for example the largest prime divisor that is the product of powers qa = qaq of the first Q
primes, where Q is at our disposition and where qaq is at most 215. The same limitations
apply to the calculation of ϵn,f (N) and in particular of ϵ1,1(N). So we can only approximate
(72), the approximation depending also on Q.
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0.065614, −0.026226, 0.077929, −0.016149, 0.086276, −0.021717,
−0.099652, −0.151652, −0.087834, −0.142283, −0.079825, −0.147459,
−0.148913, 0.172582, −0.137585, 0.181226, −0.129909, 0.176450,
0.403084, −0.036168, 0.413927, −0.028269, 0.421275, −0.032633,

−0.156494, 0.060108, −0.146127, 0.067236, −0.139102, 0.063297,
0.016583, 0.038520, 0.026483, 0.044839, 0.033191, 0.041348,
0.273885, 0.195733, 0.283327, 0.201189, 0.289726, 0.198174,

−0.074761, −0.041762, −0.065764, −0.037253, −0.059667, −0.039744,
0.092875, 0.010855, 0.101440, 0.014259, 0.107244, 0.012378,

−0.126962, 0.015473, −0.118812, 0.017294, −0.113290, 0.016288,
0.065242, 0.009336, 0.072994, 0.011104, 0.078248, 0.010127,
0.258894, 0.023944, 0.266270, 0.027098, 0.271269, 0.025356,

−0.120552, −0.028011, −0.113526, −0.024038, −0.108765, −0.026233,
−0.059059, 0.034596, −0.052355, 0.039166, −0.047812, 0.036641,
−0.106739, −0.015397, −0.100324, −0.010374, −0.095977, −0.013149,
0.093762, −0.044505, 0.099926, −0.039132, 0.104104, −0.042101,

−0.101929, 0.219005, −0.095973, 0.224641, −0.091937, 0.221527,
0.101531, 0.011202, 0.107326, 0.017028, 0.111253, 0.013809,
0.036660, −0.033043, 0.042345, −0.027093, 0.046198, −0.030380,

−0.010312, −0.008676, −0.004683, −0.002666, −0.000869, −0.005986.

Table 3.2.A: Part 3: p = 8,960,467

In Table 3.2.A, which has three parts, we give three approximations not to the difference
itself but to the difference divided by ln p. Each is for n = f = 1 and for three different
primes of quite different sizes, the 6,000th, p = 59,369, the 60,000th, p = 746,777, and the
600,000th, p = 8,960,467. The three approximations are for Q = 80,160,320. They give not
(72) itself, but the measure implicit in it, thus the mass with respect to the measure of the
twenty intervals of length 0.1 between −2 and 0, a point mass falling between exactly at the
point separating two intervals being assigned half to one and half to the other interval. All
these masses are divided by ln p. For the smallest of the three primes, all approximations
give similar results. For the largest of the primes, even the best two are only close to another.
For numbers with any claim to precision, either a larger value of Q or a larger bound on
the powers of the primes would be necessary. Nevertheless, the change in the numbers with
increasing Q is far, far less than suggested by (84) and (88).

In each part of the table one of the three primes is considered. Each part has three double
columns, each of them corresponding to one value of Q. For a given Q, the first element of
the double column is the measure for ψ− and the second for ψ+. The interval in the first
row is [−2,−1.9] and in the last is [−.1, 0]. Notice that the mass divided by ln p does not
seem to grow much or to decrease much but does behave irregularly. Thus the mass itself
at first glance seems to be about O(ln p), but, as already suggested, this is not the correct
conclusion.
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0.065424, 0.139319, 0.009127, 0.020117,
−0.339535, 0.095697, 0.244114, 0.028861,
0.064939, −0.125936, −0.242039, 0.013350,
0.227577, 0.215971, 0.068047, 0.008164,

−0.077371, −0.069531, 0.011311, 0.034411,
−0.210577, −0.056532, 0.159543, −0.064707,
0.373104, −0.083462, −0.002606, 0.046361,

−0.279405, 0.042905, 0.147926, 0.197334,
0.176183, 0.114329, −0.041558, 0.238247,

−0.049009, −0.016793, −0.180851, −0.082724.

Table 3.2.B

To exhibit the fluctuating character of these numbers, a similar table for the 6,001st prime
p = 746,791 is included as Table 3.2.B, but I only give the results for Q = 320. Once again,
they come in pairs, for N = −1 and N = 1, but there are two columns, the first for the
interval from −2 to −1 and the second for the interval from −1 to 0. Table 3.2.B can be
compared with Table 3.2.A, Part 1 to see the change on moving from one prime to the next.

As a further test, I took the largest of the absolute values of the masses of the 2 times 20
intervals for the 1,000th, the 2,000th, and so on up to the 100,000th prime and divided it by
ln p. The one hundred numbers so obtained appear as Table 3.2.C, which is to be read like a
normal text, from left to right and then from top to bottom. In the calculations, the integer
Q was taken to be 160, but doubling this has only a slight effect. Although at first glance,
there is no obvious sign in the table of any increase, a plot of the numbers, as in13 Diagram
3.2.A, suggests that they do increase and rather dramatically.
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Diagram 3.2.C

On the other hand, if we continue up to the 600,000th prime we obtain the results of
Diagram 3.2.B, where once again Q = 160 and where once again doubling Q leads to
essentially the same scattering with only a slight displacement of the points. So Diagram
3.2.A is misleading and there is no dramatic rise! A second, more careful glance at the

13Unfortunately, it was not always convenient to insert the tables and the diagrams at the points where
they are discussed in the text.
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diagram suggests, however, that a slow movement of the points upward, perhaps compatible

with the O
(
ln2|N |

)
= O(ln2 p) hypothesis, is not out of the question. We will return

to this point when we have more and different data at our disposition. As a convenient
comparison, Diagram 3.2.C superposes the points of Diagram 3.2.B on the graph of the curve
0.4 ln

(
1000x ln(1000x)

)
/15, 1 ⩽ x ⩽ 600. The diagram confirms, to the extent it can, the

hypothesis.



46 ROBERT P. LANGLANDS

0.358120, 0.872623, 0.258640, 0.295414, 0.345120,
0.358137, 0.310121, 0.427307, 0.392101, 0.461449,
0.301074, 0.242229, 0.353707, 0.498970, 0.449767,
0.405747, 0.256198, 0.461453, 0.381769, 0.347241,
0.317558, 0.345492, 0.324273, 0.559732, 0.305104,
0.246601, 0.355806, 0.287550, 0.435331, 0.400707,
0.275095, 0.324584, 0.376984, 0.427550, 0.321304,
0.319035, 0.306974, 0.494958, 0.301518, 0.393844,
0.394138, 0.252000, 0.429559, 0.365034, 0.407917,
0.359968, 0.458391, 0.338244, 0.312106, 0.300587,
0.291630, 0.489896, 0.327670, 0.405218, 0.209386,
0.227849, 0.481018, 0.556393, 0.322056, 0.258895,
0.361781, 0.383069, 0.374638, 0.337790, 0.287852,
0.441601, 0.695974, 0.321117, 0.627571, 0.324480,
0.391816, 0.830769, 0.615896, 0.358815, 0.291243,
0.644122, 0.228597, 0.557525, 0.313941, 0.440433,
0.343996, 0.864512, 0.356637, 0.678889, 0.582523,
0.314871, 0.329813, 0.398283, 0.385383, 0.645377,
0.314966, 0.470168, 0.331259, 0.298338, 0.479059,
0.302799, 0.579901, 0.365380, 0.457965, 0.388941.

Table 3.2.C

3.3 Some suggestive phenomena. The previous section does not establish beyond doubt
that (70) is O(ln2 p) or even the slightly weaker hypothesis, that, for some integer ℓ the
expression (70) is O(lnℓ p). We now, consider fixing n and f and taking the average of (70),
in the sense of (12′) over the primes up to X. If X = x lnx, then, under the hypothesis that
(70) is O(ln p), the order of the average will be majorized by a constant times

(89)

∑
n<x ln

2(n lnn)

x lnx
.

This is approximately ∫ x

2
ln2(t ln t)

x lnx
∼ lnx ∼ ln(x lnx) = lnX.

If the order were lnℓ p, then (89) would be majorized by a constant times lnℓX. The
average is a measure νn,f,X , which we may also consider as a distribution on the set of possible
ψ±. Suppose

νn,f,X = αn,f + βn,f lnX + on,f (1),

where αn,f and βn,f are two measures or distributions. Then interchanging the order of the
sum up to X and the sum over n, we find that we are to take the limit of

(90)
∑
n,f

αn,f +
∑
n,f

βn,f lnX +
∑
n,f

on,f (1).
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If there were no contributions from the other two ranges and if the third sum was itself
o(1), then the sum

(91)
∑
n,f

βn,f

would have to be 0, and the sum

(92)
∑
n,f

αn,f

the limit for which we are looking, thus the contribution from the first range of summation
where n is smaller than

√
|N |. There is, however, no good reason to expect that (91) is 0. It

may be cancelled by a contribution from the intermediate range.
We can certainly envisage polynomials of higher degree in (90). For such asymptotic

behavior to make sense, it is best that the change in lnℓX be o(1), as X changes from n lnn
to (n+ 1) ln(n+ 1), thus in essence as we pass from one prime to the next. Since

(n+ 1) ln(n+ 1) = (n+ 1) lnn+O(1) = n lnn

(
1 +O

(
1

n

))
,

we have

ln
(
(n+ 1) ln(n+ 1)

)
= ln(n lnn) +O

(
1

n

)
.

13.2 13.4 13.6 13.8 14.2

1.9

1.95

2.05

2.1

2.15

2.2

Diagram 3.3.E

I examined the behavior of the average of the sum (70) for n = 1, 3, 5, 15 and f = 1,
treating it again as a measure on the two lines N = ±1 and plotting the average, in the sense
of (12′), over the first 1000k primes for 1 ⩽ k ⩽ 60 against 1000k ln(1000k). The results
are given at the end of the paper in Diagrams 3.3.A to 3.3.D. The results are not so simple
as (90), although they do make it clear that the average behaves regularly and is naturally
expressed as a quadratic function of ln(X), so that νf,n,X would be a quadratic function of
lnX with a small remainder and there would be another sum in (91) that would have to
vanish.14 I divided the interval [−3, 0] into six intervals of length 0.5, each column of each

14It is perfectly clear to me that these suggestions are far-fetched. I feel, nevertheless, that they are worth
pursuing.
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diagram contains the six graphs for the six intervals, the first column for N = −1 and the
second for N = 1. They are close to linear as (90) suggests, but not exactly linear.
So I redid the experiments for detN > 0 and n = 1 on the intervals in [−1, 0] for primes

up to 140,000, using a slightly better approximation to the integral∫ √
1− x2 dx

over the two intervals but continuing to use only 320 primes to compute the various factors.
Since ln(k ln k) is 13.4 for k = 60,000, 14.32 for k = 140,000 and 15.7 for k = 600,000,
not much is gained by taking even more primes. The two resulting curves, but only for
50,000 ⩽ k ⩽ 140000, together with quadratic approximations to them are shown in Diagrams
3.3.E, for the first interval, and 3.3.F, for the second. The quadratic approximations are

−1.37552 + 0.24677x+ 0.06329(x− 13.5)2

for the first interval and

−1.97565 + 0.33297x+ 0.10656(x− 13.5)2

for the second. The quadratic term looks to be definitely present. There may even be terms
of higher order, but there appears to be a little question that we are dealing with a function
that as a function of lnX is essentially polynomial. Thus the natural parameter is lnX and
not some power of X.

13.2 13.4 13.6 13.8 14.2

2.6

2.7

2.8

Diagram 3.3.F

Part IV: Supplementary remarks

4.1 Quaternion algebras. There is some advantage in treating quaternion algebras as
similar results are to be expected, but only the terms (i) and (ii) appear in the trace formula.
The disadvantage, especially for numerical purposes, is that some ramification has to be
admitted immediately. Apart from that, the only formal difference in the elliptic term is

that the discriminant D is subject to the condition that
(

D
q

)
= 1 for those q that ramify in

the quaternion algebra. Moreover, if the algebra is ramified at infinity then only D < 0 are
allowed.
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4.2 Transfer from elliptic tori. The representation σ2 is of course the representation

(93) X → AXAt

on the space of symmetric matrices. Thus if a reductive subgroup λHQ of LGQ = GL(2,C)
is not abelian but has a fixed vector in the representation, it is contained in an orthogonal
group. Observe that the condition of §1.3 may no longer be fulfilled: the group λH may not
lie in SL(2,C)×Gal(K/F ). If λHQ is the first term of an inverse system λH in the system
LG, then λHQ is contained in the usual image in LGQ of the L-group of an elliptic torus.
Thus, if we take the ρ implicit in (12′) to be σ2, then we can expect to single out in the limit
those cuspidal representations π that are transfers from elliptic tori. They will, however, have
an additional property. If the torus is associated to the quadratic extension E with associated
character χE, then χE will be the central character of π. Since we can, in the context of the
trace formula, fix the central character of the representations π to be considered in any way
we like, we can in fact single out those representations that are transfers from a given elliptic
torus. Then the sum in (14′) will be a sum over a single torus.
If we want an arbitrary central character, then we have to replace (93) by the tensor

product of σ4 with det−2. Thus the sum in (14′) will be an infinite sum, over all elliptic tori.
Moreover there will in all likelihood be no choice but to let the transfer f → fH reflect the
reality of the situation. It will have to be defined by the condition that

tr θ(fH) = trΘ(f)

if Θ is the transfer of the character θ. These transfers are certainly known to exist, but the
relation between the characters of θ and Θ remains obscure. So the definition of fH , which is
to be made locally is by no means clear.
If the base field is Q, we cannot take fv to be unramified at all finite places, because fH

v

would then necessarily be 0 at those places where the quadratic field defining the torus H
was ramified. So for experimental purposes, some ramification in f has to be admitted.

If we consider only representations trivial on Z+, then (14′) will be

(94)
∑
H

∑
θ

tr θ(fH),

with those θ that lead to noncuspidal representations excluded. Since they can be taken care
of separately, it is best to include them. Then (94) can be written as

(95)
∑
H

µ
(
Z+H(Q)\H(A)

) ∑
γ∈H(Q)

fH(γ).

Although this sum appears infinite, it will not be, because fH will necessarily be 0 for those
H that ramify where fv is unramified. The sum (95) is very much like the elliptic term of
the trace formula, except that the γ in the center appear more than once.
The transfer θ → Θ is well understood at infinity. There, at least, the inverse transfer

f → fH differs in an important way from endoscopic transfer. Endoscopic transfer is local in
the sense that the support of (the orbital integrals of) fH is, in the stable sense, the same as
the support of (those of) fH . In contrast, even if the orbital integrals of f∞ are supported on
hyperbolic elements, fH

∞ may be nonzero for tori elliptic at infinity. This does not prevent a
comparison between (14′) and (17′), but does suggest that it may have a number of novel
elements not present for endoscopy.
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The first, simplest test offers itself for the representations unramified everywhere. Since
every quadratic extension of Q is ramified somewhere, there are no unramified representations
arising from elliptic tori. Thus the limit (12′) should be 0 for ρ = σm, m = 2. This is even less
obvious than for m = 1 and everything will depend on the elliptic contribution to the trace
formula. It must cancel all the others. I have made no attempt to understand numerically
how this might function, but it would be very useful to do so. A distillation that separates
the different kinds of contribution in the elliptic term term may be necessary. It would then
be useful to understand clearly the orders of magnitude of these contributions.

As a convenient reference for myself, and for anyone else who might be inclined to pursue
the matter, I apply the formulas of Appendix B to the conclusions of §2.4 to obtain a list of
all the contributions to be cancelled. As it stands, the list has no structure and the terms no
meaning. Until they do, §4.3 has to be treated with scepticism.

4.3 Contributions for even m. I consider all contributions but the elliptic. The first is
made up of (31) from the term (ii), corrected by the last term in (41) and by (48) to yield

(a)
m

4
tr
(
ξ0(f∞)

)
.

The second is the sum of atomic measures in (41):

(b)
∑
q

∑
n>0

{
|qn − q−n|ψ+(q

n + q−n) + |qn + q−n|ψ−(q
n − q−n)

}
,

The third arises from (51) which is equal to

ψ−(0)

ln 2 +m ln p

(
1 +O

(
1

p

))
and whose average is

(c) ψ−(0)(ln 2 +m lnX).

As was already suggested, this means that for m = 2 the analogue of (91) will not be 0, but
will have to cancel, among other things, (c), at least when there is no ramification.

The contributions from (56) and (48) yield together, in the notation of Appendix C,∑
±

(
κ1 +

m ln p

2

)
f̂∞
(
a(1,±1)

)
,

or when averaged

(d)
∑
±

(
κ1 +

m lnX

2

)
f̂∞
(
a(1,±1)

)
.

I offer no guarantee for the constants in (c) and (d).
All that remains are the terms resulting from the combination of (49) and (57) with (46)

and an application of Hoffmann’s formula. There is, first of all, the contribution from (C.13)
(which must be multiplied by 1/2)

(e) −1

2

∑∫ ∞

−∞

e−|x|

1 + e−|x| f̂∞(a) dx,
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where the sum is over the arbitrary sign before the matrix

a = ±
(
ex 0
0 −e−x

)
,

and, from (C.17) and (C.18),

(f)
1

2

∑∫ ∞

−∞

(
e−|x|

1− e−|x| −
1

|x|

)
f̂∞(a) dx,

in which

a = a(x) = ±
(
ex 0
0 e−x

)
,

the sum being again over the sign, and

(g) −1

2

∫ ∞

−∞
ln|x|df̂∞

dx
(a) dx,

which according to the formula of Appendix D is equal to∫ i∞

−i∞

(
ln|s|+ λ0

)
tr ξs(f∞).

From (47) we have

(h)
1

16πi

∫ i∞

−i∞

{
−
Γ′((1− s)/2

)
Γ
(
(1− s)/2

) − Γ′(s/2)

Γ(s/2)
−

Γ′((1 + s)/2
)

Γ
(
(1 + s)/2

) − Γ′(−s/2)
Γ(−s/2)

}
tr ξs(f∞) ds.

Finally, from (C.19) there is the completely different contribution

(i) −1

2

∞∑
k=0

(±1)k−1Θπk
(f).

The usual formulas [N, §72], for the logarithmic derivative of the Γ-function suggest that
there should be cancellation among (f), (g) and (h). The Fourier transform of ξs(f∞) is,
however, a function on all four components of the group of diagonal matrices, each component
determined by the signs in

a = a(x) =

(
±ex 0
0 ±e−x

)
.

So any cancellation between (h) and (f) would also have to involve (e). I am not familiar
with any formula that relates (e) to the Γ-function and have not searched for one.

4.4 The third touchstone. The problem (T3) is, on the face of it, different than the first
two, but may be amenable to the same kind of arguments. If the base field is Q, the pertinent
representations of GL(2,R) are those obtained by induction from the representations(

a x
0 b

)
→ (sgn a)k(sgn b)ℓ

∣∣∣∣ab
∣∣∣∣s/2, k, ℓ = ±1.

We can try to isolate them by a function f∞ such that trπ(f∞) is 0 if π lies in the discrete
series and tr ξk,ℓs (f∞) is independent of k, ℓ but, as a function of s, is an approximation to

the δ-function at s = 0. This means that f̂∞ is concentrated on a with positive eigenvalues
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and that it is approaching the function identically equal to 1. Thus ψ− will be 0 and ψ+ will
be 0 for x < −1. For x > 1, it will be approaching

ψ+(x) =
1

et − e−t
=

1√
|x2 − 1|

, r = et + e−t, x =
r

2
.

What will happen on the range −1 < x < 1 remains to be worked out.
Since the approximation at infinity would be occurring while fq remained fixed at the other

places, the sum over r in the elliptic term of the trace formula would be a sum over a fixed
lattice—the lattice of integral r if fq were the unit element of the Hecke algebra everywhere.
So the problems that arise look to be different than those for (T2): the limits to be taken
are of a different nature. They are perhaps easier, perhaps more difficult; but I have not
examined the matter. I have also not examined the role of the other terms in the trace
formula.

4.5 General groups. Is there an obvious obstacle to extending the considerations of this
paper to general groups? Recall that the structure of the trace formula is the equality of a
spectral side and a geometric side. The principal term of the spectral side is the sum over
the representations occurring discretely in L2

(
G(Q)\G(A)

)
of trπ(f). As for GL(2), we

will expect that an inductive procedure will be necessary to remove the contributions from
representations that are not of Ramanujan type. This will leave∑

π

R
trπ(f)

in which to substitute appropriate f before passing to the limit.
On the geometric side, there will also be a main term, the sum over the elliptic elements.

For GL(k) an elliptic element γ corresponds to a monic polynomial

xk + a1x
k−1 + · · · ak−1x+ ak.

For GL(2), a1 = −r, a2 = N/4. Of course, for γ to be regular certain degenerate sequences
a1, a2, . . . , ak will have to be excluded. For GL(2), not only is N ̸= 0 but r2 − N ≠ 0. In
addition split γ are excluded. We should like to say that for a general group, an elliptic
element is defined, after the exclusion of singular or partially split elements, by the values of a
similar sequence a1, a2, . . . , ak. If the group is semisimple and simply connected, these could
be the characters of the representations with highest weight λi, (λi, αj) = δi,j, but only if we
deal not with conjugacy classes in the usual sense but with stable conjugacy classes, as is
perfectly reasonable if we first stabilize the trace formula. For groups that are not semisimple
or not simply connected, something can surely be arranged. So we can expect in general
a sum over a lattice, analogous either to the lattice of integral (r,N), or, if we recognize
that the values of the rational characters of G on those γ that yield a contribution different
from 0 will be determined up to a finite number of possibilities by f , over an analogue of the
lattice of r. As for GL(2), it will be appropriate to allow a fixed denominator or to impose
congruence conditions.

The limits of the remaining terms, either on the spectral side or on the geometric side, we
can hope to treat by induction. So the question arises during these preliminary reflections
whether the terms in the sum over the lattice have the same structural features as for GL(2).
If so and if there is a procedure for passing rigorously to the limit in the sum over p < X,
either one in the spirit of the remarks in Part III or some quite different method, then we
can continue to hope that the constructs of this paper have some general validity.
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There are several factors in the sum: the volume µγ of Gγ(Q)\Gγ(A); the orbital integral at
infinity, a function of a1, . . . , ak and the analogue of ψ; the orbital integrals at the finite number
of finite primes in S that give congruence conditions and conditions on the denominators;
the orbital integrals at the primes outside of S. These latter account for the contribution

(96)
∑
f |s

f
∏
q|f

1−

(
D
q

)
q


of (59).

The usual calculations of the volume of T (Q)\T (A) (see Ono’s appendix to [W]) show that
it is expressible as the value of an L-function at s = 1 so that it will be given by an expression
similar to (61). There will be changes. In particular, the L-function will be a product of
nonabelian Artin L-functions. For GL(k) the Kronecker symbols

(
D
n

)
will be replaced by an

expression determined by the behavior of xk + a1x
k−1 + · · · ≡ 0 in the local fields defined by

this equation and associated to the primes dividing n. This behavior is periodic in a1, . . . , ak
with period given by some bounded power of the primes dividing n, so that the nature of the
contribution of µγ to the numerical analysis appears to be unchanged. For other groups the
relation between the coefficients a1, a2, . . . and the stable conjugacy class will be less simple,
but the principle is the same.

The contribution of the orbital integrals for places outside S will not be so simple as that
given by Lemma 1. It has still to be examined, but it will have similar features. Lemma
1 expresses, among other things, a simple form of the Shalika germ expansion, and it may
very well be that this structural feature of orbital integrals will be pertinent to the general
analysis. It is reassuring for those who have struggled with the fundamental lemma and
other aspects of orbital integrals to see that the arithmetic structure of the orbital integrals
of functions in the Hecke algebra, especially of the unit element, may have an even deeper
significance than yet appreciated.
It remains, however, to be seen whether anything serious along these lines can be accom-

plished!
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−0.686858, −0.010181, −0.232848, −0.181406, −0.207348, −0.213738,
0.186493, −0.509315, −0.143169, −0.267028, −0.160988, −0.214750,

−0.291132, −0.231973, −0.268148, −0.267438, −0.226005, −0.252182,
−0.199118, −0.079383, −0.183245, −0.132645, −0.202296, −0.171024,
−1.025438, −0.527494, −0.233874, −0.247813, −0.248718, −0.231158,
0.017161, −0.245755, −0.271121, −0.200476, −0.211613, −0.186097,
0.057466, −0.073425, −0.243888, −0.170394, −0.227328, −0.194990,

−0.604006, −0.449603, −0.106058, −0.211854, −0.123694, −0.198008,
−0.147666, −0.198848, −0.244547, −0.154175, −0.267187, −0.169350,
−0.232995, −0.460777, −0.199048, −0.265850, −0.163095, −0.238796,
−0.352068, 0.088846, −0.154301, −0.183977, −0.186853, −0.186285,
−0.183918, −0.399292, −0.319741, −0.250550, −0.273583, −0.235420,
−0.218394, −0.137239, −0.112422, −0.158514, −0.140592, −0.170782,
−0.331184, −0.328770, −0.223462, −0.234503, −0.237538, −0.201874,
−0.330528, −0.277603, −0.236737, −0.227831, −0.191458, −0.218459,
−0.107266, −0.126031, −0.195398, −0.185583, −0.213405, −0.202951,
−0.138815, −0.188041, −0.211230, −0.181449, −0.197189, −0.192290,
−0.388114, −0.267641, −0.236432, −0.223636, −0.239041, −0.204733,
−0.285824, −0.179338, −0.159782, −0.179327, −0.176213, −0.194733,
−0.147042, −0.182515, −0.213875, −0.195378, −0.207439, −0.192548,
−0.137437, −0.008915, −0.225177, −0.013033, −0.211749, −0.000857,
−0.413068, −0.056893, −0.220921, 0.007333, −0.201721, 0.003851,
−0.080076, −0.004867, −0.169043, −0.005863, −0.182254, −0.007391,
−0.270411, −0.037313, −0.235472, −0.020661, −0.224686, −0.006618,
−0.282038, −0.001461, −0.188183, 0.019859, −0.193986, 0.005356,
−0.232331, −0.095297, −0.217932, −0.011204, −0.224461, 0.004303,
−0.125913, 0.028871, −0.208961, −0.020619, −0.194989, −0.011606,
−0.238424, −0.026239, −0.177729, 0.004167, −0.197464, −0.006211,
−0.175674, −0.020565, −0.215916, 0.008770, −0.192947, −0.007468,
−0.249100, 0.015408, −0.184689, −0.009332, −0.198297, 0.006565.

Table 3.1
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Diagram 3.3.A
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10 11 12 13-1.2

-0.8

-0.6

-0.4

10 11 12 13

-0.55

-0.5

-0.45

10 11 12 13
-1.2

-0.8

-0.6

10 11 12 13-0.52

-0.48

-0.46

-0.44

-0.42

10 11 12 13

-1.4

-1.2

-0.8

-0.6

10 11 12 13

-0.8

-0.6

-0.4

-0.2

10 11 12 13

-1.4

-1.2

-0.8

-0.6

10 11 12 13
-1.2

-0.8

-0.6

10 11 12 13

-1.6

-1.4

-1.2

-0.8

-0.6

10 11 12 13

-1.4

-1.2

-0.8

-0.6

10 11 12 13

-1.6
-1.4
-1.2

-0.8

10 11 12 13

-1.6
-1.4
-1.2

-0.8
-0.6

Diagram 3.3.B
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Diagram 3.3.C
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-0.4

-0.3

-0.2

-0.1

10 11 12 13

-0.6

-0.5

-0.4

-0.3

10 11 12 13

-0.5

-0.4

-0.3

-0.2

10 11 12 13

-0.7

-0.6

-0.5

-0.4

10 11 12 13

-0.6

-0.5

-0.4

-0.3

10 11 12 13

-0.7
-0.6
-0.5
-0.4
-0.3

10 11 12 13

-0.7
-0.6
-0.5
-0.4
-0.3

Diagram 3.3.D
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Appendix A: Calculation of ϵn,f (N)

Both n and f are products of prime powers, n =
∏
qa and f =

∏
qb. Thanks to the

Chinese remainder theorem,

ϵn,f (N) =
∏
q

ϵqa,qb(N).

It will suffice to show that

(A.1)

∞∑
a,b=0

ϵqa,qb(N) = 1, q ̸= p,

=
1

1− p−1
+O

(
|N |−1/2

)
, q = p.

When q is fixed, we set for brevity ϵqa,qb(N) = Λa,b. It will be more convenient to define
Λa,b,c, c ⩾ b, as the product of the average value of(

(r2 −N)q2b/q2c

q2a

)
on the set of r for which q2c is the highest even power of q dividing r2 −N with a remainder
congruent to 0 or 1 modulo 4 with the density of the set, and to calculate Λa,b as

(A.2)
∑
c⩾b

qb

qa+c
Λa,b,c.

That the Λa,b,c are at least as natural to calculate as the Λa,b suggests that rather than
expressing the elliptic term as a sum over f and n as in the experiments to be described, one
might want to express it as a sum over f , n and s. This would mean that a, d = c− b and c
were as good a choice of parameters as a, b and c, or that (71) could be replaced by

(A.3)
1

gn

(
(r2 −N)/g2

n

)
, g =

s

f
.

A direct analytic attack on the problems leads to (A.3) and not to (71).
Suppose first that q is odd and not equal to p. Then N is prime to q. If t is a high power

of q, then the density of r modulo t such that r2 −N is divisible by qc is(
1 +

(
N

q

))
q−c.

if c > 0. Thus the density µc of r such that it is divisible by q2c and not by q2c+2 is

(A.4)

1− 1

q2

(
1 +

(
N

q

))
, c = 0

1

q2c

(
1 +

(
N

q

))(
1− 1

q2

)
, c > 0
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For positive even a it is the density νc of r such that r2 −N is divisible by q2c and not by
q2c+1 that is pertinent. This is

(A.5)

1− 1

q

(
1 +

(
N

q

))
, c = 0

1

q2c

(
1 +

(
N

q

))(
1− 1

q

)
, c > 0

When c > 0, if r2 = N + uqc, then

(r + vqc)2 ≡ N + (u+ 2v)qc (mod qc+1).

Thus, the average value of (
(r2 −N)/q2c

qa

)
on those r for which r2 −N is divisible by q2c and not by q2c+2 is 0 if a is odd. For c = 0
and a odd, we have a simple lemma that shows that the average is −1/q.

Lemma 2. The sum A of (
r2 −N

q

)
over r modulo q is −1.

Since the number of solutions of

(A.6) y2 = x2 −N

for a given value of x is (
x2 −N

q

)
+ 1,

the number A+ q is just the number of points on the rational curve (A.6) modulo q whose
coordinates are finite. The lemma follows.

The value of all Λa,b,c and Λa,b can now be calculated. For a = b = 0, Λ0,0,c = µc and

Λ0,0 =
∑ 1

qc
µc

= 1− 1

q2

(
1 +

(
N

q

))
+

∞∑
c=1

1

q3c

(
1 +

(
N

q

))(
1− 1

q2

)

= 1−

(
1 +

(
N

q

)){
1

q2
− 1

q2
q2 − 1

q3 − 1

}

= 1−

(
1 +

(
N

q

))
q − 1

q3 − 1
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If a > 0 and b > 0 then Λa,b,c = 0 and Λa,b = 0. For b > 0,

Λ0,b =
∞∑
c=b

qb

qc
Λ0,b,c

=
∞∑
c=b

qb

qc
µc

=

(
1− 1

q2

)(
1 +

(
N

q

)) ∞∑
c=b

qb

q3c

=

(
1− 1

q2

)(
1 +

(
N

q

))
1

q2b
1

1− q−3
.

Thus

(A.7)
∞∑
b=1

Λ0,b =
1

q2

(
1 +

(
N

q

))
1

1− q−3
=

q

q3 − 1

(
1 +

(
N

q

))
If a > 0 is even,

Λa,0 =
1

qa

∞∑
c=0

νc
qc

=
1

qa

1− 1

q

(
1 +

(
N

q

))
+

1

q3 − 1

(
1 +

(
N

q

))(
1− 1

q

).
The sum of this over all positive even integers is

∞∑
a=0

Λ2a,0 =
1

q2 − 1

1− 1

q

(
1 +

(
N

q

))
+

1

q3 − 1

(
1 +

(
N

q

))(
1− 1

q

)
=

1

q2 − 1
− 1

q3 − 1

(
1 +

(
N

q

)) .

If a is odd

Λa,0 = − 1

qa+1
.

Thus
∞∑
a=0

Λ2a+1 = − 1

q2
1

1− 1
q2

= − 1

q2 − 1
.

Examining the previous calculations, we conclude that
∞∑

a,b=0

Λa,b = 1

We now consider q = 2 ̸= p, calculating first of all for each r the highest even power 22c of
2 that divides r2 −N with a remainder congruent to 0 or 1 modulo 4. We begin by observing
that 4 divides r2 −N if and only if r = 2t is even and then

r2 −N

4
= t2 −M, M = ±pm,
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which is congruent to 0 modulo 4 if and only if t is odd and
(−1
M

)
= 1 and to 1 if and only if t

is even and
(−1
M

)
= −1. In the first of these two cases, c > 0; in the second c = 1. Otherwise

c = 0.
There are thus two ways in which c can be 0. Either r is odd or r is even. Since r2 −N is

odd if and only r is odd and is then congruent to 1−N modulo 8,

Λ0,0,0 =
1

2
+

1

4
=

3

4
,

Λa,0,0 =
1

2

(
1−N

2

)
=

1

2

(
5

2

)
= −1

2
, a > 0, a odd,

Λa,0,0 =
1

2
, a > 0, a even,

If
(−1
M

)
= −1 and c > 0, then c is necessarily 1. Thus for such M ,

Λa,b,c = 0, c > 1.

Moreover, recalling that the Kronecker symbol
(
n
2

)
is 0 for n even, 1 for n ≡ 1, 7 (mod 8),

and −1 for n ≡ 3, 5 (mod 8) and that t2 −M is odd only for t even and then takes on the
values −M , 4−M modulo 8 with equal frequency, we see that for the same M ,

Λ0,b,1 =
1

4
=

1

4
− 1

16

(
1 +

(
−1

M

))
1 ⩾ b ⩾ 0,

Λa,0,1 = 0 a > 0, a odd,

Λa,0,1 =
1

4
a > 0, a even

Now suppose that
(−1
M

)
= 1 and c > 0. Then, as observed, 4 divides t2 −M if and only if

t = 2u+1. The integer u2+u is necessarily even and for any even v and any d ⩾ 2, u2+u ≡ v
(mod 2d) has exactly two solutions modulo 2d. In particular, u ≡ 0, 1, 2, 3 (mod 4) yield
respectively u2 + u ≡ 0, 2, 2, 0 (mod 4). Since

(A.8)
t2 −M

4
= u2 + u+

1−M

4
,

and we conclude that c = 1 for 1/2 of the possible values of u and c = 2 for the other half
when M ≡ 5 (mod 8). Thus, in this case,

Λ0,b,1 =
1

8
=

1

4
− 1

16

(
1 +

(
−1

M

))
, 1 ⩾ b ⩾ 0,

Λ0,b,2 =
1

8
=

1

32

(
1 +

(
−1

M

))(
1−

(
M

2

))
, 2 ⩾ b ⩾ 0,

Λa,0,1 = 0, Λa,0,2 = 0, a > 0, a odd,

Λa,0,1 = 0, Λa,0,2 =
1

8
. a > 0, a even

These numbers are to be incorporated with the factor

1

4

(
1 +

(
−1

M

))(
1−

(
M

2

))
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in so far as it is not already present.
For M ≡ 1 (mod 8), (A.8) can be any even number and the density of u for which it

can be divided by 22d, d ⩾ 0, to give a number congruent to 0, 1 modulo 4 is 1/2 if d = 0
and 1/22d if d > 0. Since d will be c− 2, this is 1/22c−4. On the other hand, the density is
multiplied by 1/4 when we pass from u to r, so that

Λ0,b,1 =
1

8
=

1

4
− 1

16

(
1 +

(
−1

M

))
1 ⩾ b ⩾ 0,

Λa,0,1 = Λa,0,2 = 0, a > 0, a odd,

Λa,0,1 = Λa,0,2 = 0, a > 0, a even,

Λ0,b,2 =
1

16
, 2 ⩾ b ⩾ 0,

Λ0,b,c =
1

22c−2

(
1− 1

4

)
, c ⩾ b ⩾ 0, c > 2,

Λa,0,c = 0 a > 0, a odd, c > 2,

Λa,0,c =
1

22c−1
a > 0, a even, c > 2.

These numbers are to be incorporated with the factor

1

4

(
1 +

(
−1

M

))(
1 +

(
M

2

))
.

Then Λ0,0 is the sum of

(A.9′)
7

8
− 1

32

(
1 +

(
−1

M

))
+

1

27

(
1 +

(
−1

M

))(
1−

(
M

2

))
and {

1

28
+

3

24

∞∑
c=3

1

23c−2

}(
1 +

(
−1

M

))(
1 +

(
M

2

))
or

(A.9′′) Λ′
0,0 =

1

28

(
1 +

3

7

)(
1 +

(
−1

M

))(
1 +

(
M

2

))
For b > 0,

Λ0,b =
∞∑
c=b

2b

2c
Λ0,b,c.

Thus Λ0,1 is

1

4
− 1

16

(
1 +

(
−1

M

))
+

1

64

(
1 +

(
−1

M

))(
1−

(
M

2

))

+
1

27

(
1 +

3

7

)(
1 +

(
−1

M

))(
1 +

(
M

2

))
,
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while

Λ0,2 =
1

32

(
1 +

(
−1

M

))(
1−

(
M

2

))
+

1

26

(
1 +

3

7

)(
1 +

(
−1

M

))(
1 +

(
M

2

))
and

Λ0,b =
3

7

1

22b−1

(
1 +

(
−1

M

))(
1 +

(
M

2

))
, b > 2,

because
3

16

∞∑
c=b

2b

23c−2
=

3

7

1

22b−1
.

Thus ∑
b>2

Λ0,b =
1

23
1

7

(
1 +

(
−1

M

))(
1 +

(
M

2

))
and

Λ′
0,0 +

∑
b>0

Λ0,b

is equal to the sum of

(A.10′)
1

4
− 1

16

(
1 +

(
−1

M

))
and

(A.10′′)
3

64

(
1 +

(
−1

M

))(
1−

(
M

2

))
and

(A.10′′′)

{
5

27
+

1

7

1

23

}(
1 +

(
−1

M

))(
1 +

(
M

2

))
,

because
5

7

(
1

27
+

1

26
+

1

25

)
+

1

7

1

23
=

5

27
+

1

7

1

23
.

Finally

Λa,0 =
∞∑
c=0

1

2a+c
Λa,0,c, a > 0.

I express it as a sum of three terms, the first of which is

Λ′
a,0 = − 1

2a+1
, a odd,

or

Λ′
a,0 =

1

2a+1
+

1

2a+4

(
1−

(
−1

M

))
, a even.



BEYOND ENDOSCOPY 65

The other two, Λ′′
a,0 and Λ′′′

a,0, will be multiples of(
1 +

(
−1

M

))(
1 +

(
M

2

))
and

(
1 +

(
−1

M

))(
1−

(
M

2

))
respectively. Observe that

(A.11)

∞∑
a=1

Λ′
a,0 = −1

3
+

1

6
+

1

48

(
1−

(
−1

M

))

= − 1

16

(
1−

(
−1

M

))
− 1

12

(
1 +

(
−1

M

))
.

Since

(A.12)
1

8
=

1

16

(
1 +

(
−1

M

))
+

1

16

(
1−

(
−1

M

))
,

we can conclude at least that
∑

Λa,b − 1 is a multiple of
(
1 +

(−1
M

))
.

The terms that involve
(
1 +

(−1
M

))
alone without a second factor

(
1±

(
M
2

))
come from

(A.9′), (A.10′), (A.11) and (A.12).

(A.13)

{
− 1

32
− 1

16
+

1

16
− 1

12

}(
1 +

(
−1

M

))
.

Since all other terms involve the second factor, I multiply (A.13) by

1

2

(
1 +

(
M

2

))
+

1

2

(
1−

(
M

2

))
.

To establish the first equality of (A.1) for q = 2, we have to show that the coefficients of the

two expressions
(
1 +

(−1
M

))(
1±

(
M
2

))
add up to 0.

The remaining terms that involve the product
(
1 +

(−1
M

))(
1−

(
M
2

))
come from (A.9′),

(A.10′′) and ∑
a>0

1

2a+2
Λ′′

a,0 =
∑
a>0

1

22a+7

(
1 +

(
−1

M

))(
1−

(
M

2

))

=
1

27
1

3

(
1 +

(
−1

M

))(
1−

(
M

2

))
.

They multiply it by the factor
1

27
+

3

64
+

1

27
1

3
.

The sum of this factor and 1/2 of that of (A.13) is

1

32
− 1

24
+

1

25
1

3
= 0.
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Since ∑
a>0

Λ′′′
a,0 =

1

4

(
1 +

(
−1

M

))(
1 +

(
M

2

)) ∑
a=2d>0

∞∑
c=3

1

2a+3c−1

=
1

27
1

3

1

7

(
1 +

(
−1

M

))(
1 +

(
M

2

))
,

the terms involving the factor
(
1 +

(−1
M

))(
1 +

(
M
2

))
yield

(A.14){
5

27
+

1

7

1

23
+

1

27
1

3

1

7

}(
1 +

(
−1

M

))(
1 +

(
M

2

))
=

11

263

(
1 +

(
−1

M

))(
1 +

(
M

2

))
Since

− 1

32
− 1

12
= − 11

253
,

the term (A.14) cancels the contribution from (A.13).
I treat the second equality of (A.1) only for q odd as this suffices for our purposes. We

calculate Λa,b using (A.2). Since

∑
a⩾0

∑
c⩾b

∑
c⩾m/2

qb

qa+c
O

(
1

qc

)
=

∑
a⩾0

∑
d⩾0

1

qa+d

 ∑
c⩾m/2

O

(
1

qc

)
,

we need not use the exact value of Λa,b,c for 2c ⩾ m. We need only approximate it uniformly

within O
(

1
qc

)
.

For 2c < m, the density of r for which r2 −N is exactly divisible by q2c is (1− 1/q)/qc.
For 2c ⩾ m, it is O(1/qc). Thus, as an approximation,

Λ0,0 ∼
(
1− 1

q

) ∞∑
c=0

1

q2c
=

q

q + 1
.

Moreover, again as an approximation,

Λ0,b ∼
(
1− 1

q

) ∞∑
c=b

qb

q2c
=

q

q + 1

1

qb
, b > 0,

so that ∑
b>0

Λ0,b ∼
q

q + 1

1

q − 1
.

If 2c < m and r = qct, (q, t) = 1, then

r2 −N

q2c
≡ t2 (mod q)

and (
(r2 −N)/q2c

q

)
= 1.
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Thus, the approximation is

Λa,0 ∼
(
1− 1

q

) ∞∑
c=0

1

qa+2c
=

1

qa
q

q + 1
,

and ∑
a>0

Λa,0 ∼
q

q + 1

1

q − 1
.

Finally

Λ0,0 +
∑
b>0

Λ0,b +
∑
a>0

Λa,0 ∼
1

1− q−1
.

Appendix B: Some estimates

I collect here a few simple estimates needed in Section 3.2. They are provisional and made
without any effort to search the literature. To simplify the notation, take N to be positive
and M = N1/4. If s is a positive integer, let #(s) be the number of distinct prime divisors of
s.

Lemma B.1. There is a constant c ⩾ 1 such that

√
N
∑
s>M

2#(s)

s3
= O(ln2c−1N).

There is a chance that the constant c is 1. It is even very likely, but I make no effort
to prove it here. The analysis would certainly be more difficult. For the lemma as stated
it is sufficient to use the well-known Tchebychef estimate ([HW, p. 10]) for the nth prime
number15 p(n) ≍ n ln 2n. I have used n ln 2n rather than n lnn only to avoid dividing by
ln 1 = 0. To verify the lemma with c = 1 would undoubtedly entail the use the prime number
theorem, thus the asymptotic relation p(n) ∼ n/ ln 2n ∼ n/ lnn, and a different, more incisive
treatment of the sums that appear.
Let q(n) be the n-th element of the sequence of prime powers {2, 3, 4, 5, 7, 8, 9, . . . } and

σ(x) the number of prime powers less than x. I observe first that the Tchebychef estimate
π(x) ≍ x lnx implies that σ(x) ≍ x lnx as well and thus that q(n) ≍ n lnn ≍ n ln 2n.
Indeed,

σ(x) = π(x) + π(x1/2) + · · · π(x1/D) +O(1), D = [lnx],

and
D∑
j=2

π(x1/j) ⩽ C

∫ D

t=1

x1/t

lnx1/t
dt ⩽ C

∫ lnx

t=1

x1/t

lnx1/t
dt,

15Following [HW], I use the notation p(n) ≍ n ln 2n to mean that C1n ln 2n ⩽ p(n) ⩽ C2n ln 2n, with
positive constants C1 and C2.
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because y/ ln y is an increasing function for y ⩾ e. The integral is

1

lnx

∫ lnx

1

telnx/t dt =
1

lnx

∫ 1

1/ lnx

et lnxdt

t3

= lnx

∫ lnx

1

et
dt

t3

⩽ lnx

∫ lnx/2

1

et
dt

t3
+

8

ln2 x

∫ lnx

lnx/2

et dt = O

(
x

ln2 x

)
.

Thus σ(x) ≍ π(x).
To prove the lemma we write s as s = pa11 · · · pℓtaℓ , where all the primes p1, . . . , pℓ, are

different. At first, take p1 < p2 < · · · < pℓ. The expression of the lemma may be written as

√
N

∑
ℓ>0

∑
p1,p2,...,pℓ

2ℓ

p3a11 · · · p3aℓℓ

.
There is certainly a sequence 1′ < · · · < k′, k′ ⩽ ℓ such that p

a1′
1′ · · · pak′k′ > M while

p
a1′
1′ · · · p̂ai′i′ · · · pak′k′ ⩽ M for any i′, 1 ⩽ i′ ⩽ k′. The notation signifies that p

ai′
i′ is removed

from the product. Thus the expression of the lemma is bounded by

√
N

∑
k>0

∑
p1,p2,...,pk

2k

p31 · · · p3k

(∑
t

2#(t)

t3

),
where t is allowed to run over all integers prime to p1, . . . , pk, but where p1 < · · · < pk,
pa11 · · · pakk > M , and pa11 · · · p̂aii · · · pakk ⩽M .

I next allow p1, . . . , pk to appear in any order, so that I have to divide by k!. It is still the
case, however, that pa11 · · · pakk > M and that pa11 · · · pak−1

k−1 ⩽M . Since∑
t

2#(t)

t3
⩽
∏
p

(
1 +

2

p3
+

2

p6
+ · · ·

)
is finite, we may drop it from the expression and consider

(B.1)
√
N

∞∑
k=1

2k

k!

∑
p
a1
1 ···pakk >M

p
a1
1 ···p

ak−1
k−1 ⩽M

1

p3a11 · · · p3akk

=
√
N

∞∑
k=1

2k

k!

∑
q1···qk>M

q1···qk−1⩽M

1

q31 · · · q3k
,

where q1, . . . , qk are prime powers. It is this sum that is to be estimated. In it,

qk > A =
M

q1 · · · qk−1

⩾ 1.

So in general, as a first step, we need to estimate, for any A ⩾ 1,

(B.2)
∑
q>A

1

q3
.
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We apply the Tchebychef estimate. Thus, if C is taken to be an appropriate positive constant
independent of A, (B.2) is majorized by a constant times∑

n>C A
ln 2A

1

n3 ln3 2n
⩽

1

ln3(CA/ ln 2A)

∑
n>C A

ln 2A

1

n3

= O

(
1

(A/ ln 2A)2
1

ln3(2A/ ln 2A)

)

= O

(
1

A2 ln 2A

)
.

Although the argument itself is doubtful for small A, especially if C is also small, the
conclusion is not.

As a result, (B.1) is bounded by

C
√
N

∞∑
k=1

2k

k!

∑
q1···qk−1⩽M

1

q31 · · · q3k−1

q21 · · · q2k−1

M2

1

ln(2M/q1 · · · qk−1)
,

with perhaps a new constant C. Since M2 =
√
N , this is

(B.3) C
∑
k

2k

k!

∑
q1···qk−1⩽M

1

q1 · · · qk−1

1

ln(2M/q1 · · · qk−1)
.

To complete the proof of Lemma B.1, we shall use another lemma.

Lemma B.2. If A ⩾ 1, then

(B.4)
∑
q⩽A

1

q ln(2A/q)
⩽ c

ln lnA

ln 2A
,

the sum running over prime powers.

The constant of this lemma is the constant that appears in Lemma B.1. So it is Lemma B.2
that will have to be improved.
Before proving the lemma, we complete the proof of Lemma B.1. Set A =M/p1 · · · pk−2.

Then

(B.5)
∑

q1···qk−1⩽M

1

q1 · · · qk−1

1

ln(2M/q1 · · · qk−1)

may be rewritten as ∑
q1···qk−2⩽M

1

q1 · · · qk−2

∑
qk−1⩽A

1

qk−1

1

ln(2A/qk−1)
,

which, by Lemma B.2, is at most

c
∑

q1···qk−2⩽M

1

q1 · · · qk−2

ln lnA

ln 2A
⩽ c ln lnM

∑
q1···qk−2⩽M

1

q1 · · · qk−2

1

ln 2A
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It is clear that (B.5) is O
(
(c ln lnM)k−1/ ln 2M

)
for k = 1, and this estimate now follows

readily by induction for all k uniformly in k. As a result (B.3) is

O

 ∞∑
k=1

2k(c ln lnM)k−1

k! lnM

 = O

(
e2c ln lnM

ln lnM lnM

)
= O(ln2c−1M),

where we have discarded a ln lnM in the denominator that is of no help.
If we are willing to accept a very large constant c in (B.4), then we can replace ln 2A/q in the

denominator by lnCA/ ln p, where C is any given constant greater than 1 or by CA/n ln 2n,
if q = q(n) is the nth prime power and C is chosen sufficiently large in comparison to the
constant in the Tchebychef inequality. We can also replace the p(n) in the denominator by
n ln 2n. Thus, at the cost of adding some terms, we may replace the sum (B.4) by

(B.6)
∑

n ln 2n⩽C′A

1

n ln 2n

1

ln(CA/n ln 2n)
.

There is no harm in supposing that C ′ = 1, Clearly, we can demand in addition that the sum
run over n ln 2n ⩾ C1, where C1 is a fixed arbitrary constant, because the sum∑

n ln 2n⩽C1

1

n ln 2n

1

ln(CA/n ln 2n)

is certainly O(1/ lnA). Set

CA

n ln 2n
= A1−α, α = e−a.

If C1 ⩾ C, α = α(n) ⩾ 0. Moreover, as we have agreed to exclude the initial terms of the
original sum, α < 1 and a > 0. If β is some fixed number less than 1, then∑

α(n)⩽β

1

n ln 2n

1

ln(CA/n ln 2n)
⩽ C2

1

ln 2A

∑
α(n)⩽β

1

n ln 2n
⩽ C3

ln lnA

ln 2A
.

So we may sum over α(n) > β or a = a(n) < b, b = − ln β. We now confine ourselves to this
range.

In addition (1− α) lnA ⩾ lnC, so that (1− α) ⩾ C4/ lnA and

a ⩾ C5/ lnA

Let ϵ > 0 and set b(k) = b(1 + ϵ/ lnA)−k. I shall decompose the sum into sums over the
intervals b(k + 1) ⩽ a(n) < b(k), for all those k such that b(k + 2) ⩾ C5/ lnA and into one
last interval C5/ lnA ⩽ a(n) < b(k), where k is the first integer such that b(k+2) < C5/ lnA.
I shall denote these intervals by I and use the Hardy-Wright notation to indicate uniformity
with respect to I.

Notice first that

Aα(n+1)−α(n) =
(n+ 1) ln 2(n+ 1)

n ln 2n
= 1 +O

(
1

n

)
= 1 +O

(
1

ln 2n

)
.

Thus α(n + 1) − α(n) ⩽ C6/ ln
2A when α(n) > β. As a result, on the same range a(n) −

a(n+ 1) ⩽ C7/ ln
2A. Moreover

b(k)− b(k + 1) ⩾ b(k)
ϵ

lnA
>

C5ϵ

ln2A
.
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Thus each of these intervals contains at least two terms of our sum provided that C5ϵ > 2C7, as
we assume. Moreover, if a′ and a lie in the same interval, then a′/a ≍ 1 and (1−α′)/(1−α) ≍ 1,
so that

ln(CA/n′ ln 2n′)

ln(CA/2n ln 2n)
≍ 1,

where n′ = n(α′) and n = n(α) are not necessarily integers.
We conclude first of all that, for any point aI in I,∑

a(n)∈I

1

n ln 2n

1

ln(CA/n ln 2n)
≍ 1

aI ln 2A

∑
a(n)∈I

1

n ln 2n

and that ∫
I

1

a
da ≍ 1

aI

∫
I

da.

So, if we can show that

(B.7)
∑

a(n)∈I

1

n ln 2n
≍
∫
I

da

the lemma will follow, because∑
I

∫
I

1

a
da =

∫ b

C5/ lnA

1

a
da = O(ln lnA).

Since
(n+ 1) ln 2(n+ 1)

n ln 2n
= O

((
1 +

1

n

)2
)
,

the sum in (B.7) may be replaced by the integral with respect to dn from n1 to n2 if
a2 = a(n2 − 1) and a1 = a(n1) are the first and last points in the interval associated to
integers. The integral is equal to∫ n2

n1

1

n ln 2n
dn = ln ln 2n2 − ln ln 2n1.

We show that the right-hand side is equivalent in the sense of Hardy-Wright to a2 − a1 or,
what is the same on the range in question, to α1 − α2. Thus all three are of comparable
magnitudes uniformly in I. Since a2 − a1 is equivalent, again in the sense of Hardy-Wright,
to the length of I, the relation (B.7) will follow.

Since n ln 2n = CAα, lnn+ ln ln 2n = lnC + α lnA,

lnn+ ln ln 2n = lnn+

(
1 +

ln ln 2n

lnn

)
,

and α = α(n) is bounded below by − ln b, we infer that lnn ≍ lnA. Moreover

(B.8)

ln lnn+ ln

(
1 +

ln lnn

ln 2n

)
= ln

(
α lnA

(
1 +

lnC

α lnA

))

= lnα + ln lnA+ ln

(
1 +

lnC

α lnA

)
.
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Since a difference between the values of a continuously differentiable function at two values
of the argument is equal to the difference of the arguments times the derivative at some
intermediate point,

(B.9) ln

(
1 +

lnC

α2 lnA

)
− ln

(
1 +

lnC

α1 lnA

)
= O

(
lnC

lnA
(α1 − α2)

)
= O

(
1

lnA
(α2 − α1)

)
.

The expression

ln

(
1 +

ln ln 2n

lnn

)
= ln

(
1 +

lnX

X − ln 2

)
, X = ln 2n.

So the difference

ln

(
1 +

ln2 ln 2n2

lnn2

)
− ln

(
1 +

ln1 ln 2n1

lnn1

)
= O

(
ln lnA

ln2A
(lnn2 − lnn1)

)
Since

ln lnn2 − ln lnn1 ≍
1

lnA
(lnn2 − lnn1),

we conclude from (B.8) and (B.9) that

ln ln 2n2 − ln ln 2n1 ≍ ln lnn2 − ln lnn1 ≍ α2 − α1.

The next lemma is similar to Lemma B.1.

Lemma B.3. There is a positive constant c ⩾ 1 such that for any positive constant C,∑
C
√
N>s>M

2#(s)

s
= O(ln2cN).

It is again very likely that c may be taken equal to 1, but once again our proof will squander
a good deal of the force even of the Tchebychef inequality.
I have stated the lemma in the way it will be used, but the constant C is clearly neither

here nor there. Moreover, we prove the stronger statement

(B.10)
∑
s⩽

√
N

2#(s)

s
= O(ln2cN).

Thus the lower bound on s in the sum is unnecessary. We take A =
√
N and write s = p1 · · · pℓt,

where t is prime to p1, . . . , pℓ and where p|t implies that p2|t. So the left side of (B.10) is
majorized by ∑

ℓ⩾0

∑
p1···pℓ<A

2ℓ

p1 · · · pℓ

∏
p

(
1 +

2

p2
+

2

p3
+ · · ·

)
.

The product is a constant factor and can be dropped for purposes of the estimation. So we
are left with

(B.11)
∑
ℓ⩾0

∑
p1···pℓ<A

2ℓ

p1 · · · pℓ
=
∑
ℓ⩾0

∑
p1···pℓ<A

2ℓ

ℓ!

1

p1 · · · pℓ
,

the difference between the left and the right sides being that the first is over p1 < · · · < pℓ,
whereas in the second the primes are different but the order arbitrary.
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It is clear that∑
p<A

1

p
= O

 ∑
n ln 2n<CA

1

n ln 2n

 = O

(
ln ln

(
A

lnA

))
= O(ln lnA).

Thus, ∑
p1···pℓ<A

1

p1 · · · pℓ
⩽

∑
p<A

1

p

ℓ

⩽ (c ln lnA)ℓ,

uniformly in ℓ. The estimate (B.10) follows from (B.11).

Applying Lemma B.3 with N replaced by
√
N we obtain

Corollary B.4. There is a constant c ⩾ 1 such that

1√
N

∑
s⩽M

2#(s)s = O(ln2cN).

Appendix C: Weighted orbital integrals

This is largely a matter of recollecting results from [H] and earlier papers, amply acknowl-
edged in [H]. More must be said than would be necessary had the author, W. Hoffmann, not
assumed that his groups were connected, for, like many groups that arise in the arithmetic
theory of automorphic forms, Z+\GL(2,R) is unfortunately disconnected, but there is no
real difficulty and I shall be as brief as possible. The goal of §2.4 and §4.3, for which we need
these results, is just to make clear what terms in addition to the elliptic term contribute to
the limit (12′) when m is even and how. We first establish the relation between the notation
of this paper and that of [H], as well as the connection between ω1(γ, f∞) and θ′z(0, f∞), or
rather, on referring to (55), between ω1(γ, f∞) and

(C.1)

∫
f∞
(
k−1zn(x)k

)
ln|x| dx dk.

Let

γ =

(
α 0
0 β

)
.

According to its definition in [JL],

ω1(γ, f∞) = −
∫∫

f∞
(
k−1n−1(x)γn(x)k

)
ln(1 + x2) dx dk

= −
∫∫

f∞

(
k−1γn

(
(1− β/α)x

)
k
)
ln(1 + x2) dx dk

which is equal to

− 1

|1− β/α|

∫∫
f∞
(
k−1γn(x)k

){
ln
(
(1− β/α)2 + x2

)
− ln(1− β/α)2

}
dx dk.

Thus

(C.2) |1− β/α|ω1(γ, f∞)− ln(1− β/α)2ω(γ, f∞)

approaches −2 times (C.1) as α and β approach z. So we shall be able to deduce a convenient
expression for (C.1) from Hoffmann’s formulas, which are valid for αβ > 0. Since the
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singularity of |1− β/α|ω1(γ, f∞) at α = β is only logarithmic, we may multiply it in (C.2)
by any smooth function that assumes the value 1 for α = β.
Because

γ = z

(
1 0
0 −1

)
does not lie in the connected component of Z+\GL(2,R), Hoffmann’s arguments do not
apply directly to ω1(γ, f∞) for this γ.
When comparing the notation of this paper with that of Hoffmann, it is best to replace,

without comment, all of Hoffmann’s group elements by their inverses. Otherwise the con-
ventions are not those of number-theorists and not those of this paper. For him maximal
compact subgroups operate on the left, and parabolic and discrete groups on the right.

The group P of Hoffmann is for us the group of upper triangular matrices, P the group of
lower-triangular matrices, and M is the quotient of the group of diagonal matrices by Z+ and
has as Lie algebra aR. His map λP , which is determined by the weight in the noninvariant
orbital integral defining ω1, we take to be(

a 0
0 b

)
→ a− b,

and the λ defining his σ to be s/2 times λP . In addition, his dλ is ds/2. Then, as a result of
the transfer of the parabolic subgroup to the right in [H], Hoffmann’s v

(
n(x)

)
is ln(1 + x2)

and is, as he observes, positive.16 Since

DG(m) =

(
1− β

α

)(
1− α

β

)
, m = γ,

we conclude that

JM(m, f∞) = −|α− β|
|αβ|1/2

ω1(γ, f∞).

So we may replace |1− β/α|ω1(γ, f∞) in (C.2) by −JM(m, f∞). Here and elsewhere in this
appendix I freely use the symbol m as it is used by Hoffmann. Elsewhere in the paper, the
symbol m is reserved for the degree of the symmetric power.
Before entering into further comparisons between our notation and that of Hoffmann, I

review my understanding of his conventions about the measure on M and on its dual. He
takes the two measures to be dual with respect to the Fourier transform. So when they both
appear, the normalization is immaterial. On the other hand, only one may appear; moreover,
there is a second choice, that of λP , which is fixed by the weighting factor v. Hoffmann’s IP is

a linear combination of JM (m, f) and an integral over the dual M̂ . JM (m, f) depends directly
on λP but not on the two Haar measures. There is a further dependence on the measure on
M\G, but this dependence is the same in every pertinent expression in his paper and can be

ignored. The integral over the dual depends directly on the measure on M̂ and directly on the
measure on M because of the presence of πP,σ(f) which depends directly on the measure on
G, thus on the measures on M and M\G; because of the derivative δP it depends directly on
λP as well. Since the measures on M and its dual are inversely proportional, the dependence
on the two measures is cancelled and both terms of the sum depend on λP alone.

16What with signs and factors of 2, there is considerable room for error when attempting to reconcile
conventions from various sources.



BEYOND ENDOSCOPY 75

This must therefore be the case for the right side of the formula in his Theorem 1 as well.

In the second term, the integral over M̂ , this is clear, because Θπσ depends directly on the
measure on M and ΩP,Σ depends depends directly on λP . In the first term, however, the only
dependence is through Ωπ(f) and is a direct dependence on the measure onM . If the theorem
is to be valid, this measure must be defined directly in terms of the form λP . This Hoffmann
does in a straightforward manner. I refer to his paper for more precision. For the group
SL(2,R) = Z+\G+, with G+ =

{
g ∈ GL(2,R)

∣∣ det(g) > 0
}
and with our parameters, s,

for the characters of M and t for a = a(x) as in §4.3, the measures are dσ = d|s|/2 and
da = dx, which is also the measure dλ/λ of §2.1.
The collection M̂ of unitary representations of M has four connected components, corre-

sponding to the four choices of k, ℓ = 0, 1,

σ : γ → sgn(α)k sgn(β)ℓ
∣∣∣∣αβ
∣∣∣∣s/2,

with s purely imaginary. Although Js and tr
(
J−1
s J ′

sξs(f∞)
)
were defined in §2.3 only for

k = ℓ = 0, they are defined for all choices of k and ℓ and Hoffmann’s −JP (σ, f∞) is nothing
but 2 tr

(
J−1
s J ′

sξ
k,ℓ
s (f∞)

)
, an expression in which all implicit dependence on k and ℓ is not

indicated. Earlier in the paper, ξ0,0s appeared simply as ξs. The factor 2 is a result of the
relation λ = sλP/2.
Recalling that DM(m) = 1, we consider

(C.3) JM(m, f∞) +
1

8πi

∑∫
C

sgn(α)k sgn(β)ℓ
∣∣∣∣αβ
∣∣∣∣−s/2

tr
(
J−1
s J ′

sξ
k,ℓ
s (f∞)

)
ds.

The sum before the integration is over the four possible choices for the pair (k, ℓ). If f is
supported on G+ and if det(m) > 0, then the integrand does not change when k, ℓ are
replaced modulo 2 by k + 1, ℓ+ 1. So the sum over ℓ can be dropped, ℓ can be taken to be 0
and the 8 becomes 4. So (C.3) would reproduce Hoffmann’s definition if we were concerned
with G+ alone.

We will, in general, be summing (C.3) over ±m, so that the total contribution from the
integrals for k ̸= ℓ will be 0 and for k = ℓ the 8πi in the denominator will be replaced
by 4πi. Moreover replacing k = ℓ = 0 by k = ℓ = 1 has the effect of replacing ξs(g) by
sgn
(
det(g)

)
ξs(g) and has no effect on Js. For the contribution from (iv), we shall be concerned

with α = −β and, for such an m, sgnαk sgn βk is 1 for k = 0 and −1 for k = 1. The sum of
(C.3) over ±m therefore reduces to

(C.4) JM(m, f∞) + JM(−m, f∞) +
1

2πi

∫
C

tr
(
J−1
s J ′

sξs(f
−
∞)
)
ds,

where f−
∞ is the product of f∞ with the characteristic function of the component of

Z+\GL(2,R) defined by det(g) = −1. The analogous f+
∞ will appear below. For the

m in question, the factor
∣∣DG(m)

∣∣1/2 is equal to 2. This is the factor coming from ω(γ, f2).
Thus (C.4) is twice the negative of the sum of the contribution to the limit (12′) of (iv), in
which there is yet another minus sign, and of that part of (viii) associated to f−

∞.
The expression (C.3) has no meaning for the γ that are pertinent in the contribution of (v)

to the limit (12′) for even symmetric powers, namely for α = β. We may however consider
it for α unequal but close to β. Once again we consider the sum over ±m. Then only the
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terms with k = ℓ remain. Since sgnα will be equal to sgn β, we obtain

(C.5) JM(m, f∞) + JM(−m, f∞) +
1

2πi

∫
C

∣∣∣∣αβ
∣∣∣∣−s/2

tr
(
J−1
s J ′

sξs(f
+
∞)
)
ds.

We add to this
ln(1− β/α)2

{
ω(γ, f∞) + ω(−γ, f∞)

}
, γ = m.

Since the second term in (C.3) is well behaved as α → β, the result will have a limit as α and
β approach a common value z because the integrals themselves will have a limit. The limit is

(C.6) 2
1∑

j=0

∫
f∞

(
k−1(−1)jzn(x)k

)
ln|x| dx dk + 1

2πi

∫
C

tr
(
J−1
s J ′

sξs(f
+
∞)
)
ds.

This is twice the contribution of (57) and of that part of (viii) associated to f+
∞ to the limit

(12′),
Although the results of Hoffmann cannot be applied directly to the general form of (C.3)

or (C.4), they can be applied to (C.5). In fact, the material necessary for extending his
arguments is available, although not all in print. The principal ingredients are the differential
equation for the weighted orbital integrals and an analysis of their asymptotic behavior.
The first is available in general ([A1]) and the second will appear in the course of time in a
paper by the same author. Since irreducible representations of Z+\GL(2,R) are obtained by
decomposing—into at most two irreducible constituents—representations induced from its
connected component SL(2,R), the Plancherel measure of the larger group is, at least for the
discrete series, the same as that of the smaller one. So I feel free to apply Hoffmann’s results
to (C.3) and (C.4) as well, taking care that the measures used are compatible on restriction
to functions supported on G+ with his.

For any diagonal matrix m with diagonal entries of different absolute value, Hoffmann ([H,
Th. 1]) finds—at least for f supported on G+—that IP (m, f∞) is equal to

(C.7) −|α− β|
|αβ|1/2

∑
π

Θπ̌(m)Θπ(f) +
1

8πi

∑
k,ℓ

∫ i∞

−i∞
Ω(m, s) tr ξk,ℓs (f∞) ds,

where
Ω(m, s) = ηk,ℓ(m, s) + ηℓ,k(m,−s)

and

(C.8) ηk,ℓ(m, s) = sgnαk sgn βℓets


∑∞

n=1
(α/β)−n

n−s
, t > 0∑∞

n=0
(α/β)n

n+s
+ π(−1)k+ℓ

sin(πs)
, t < 0,

if

m = m(t) =

(
α 0
0 β

)
=

(
±et 0
0 ±e−t

)
,

the two signs being chosen independently. The factor λP (Hα)/2 that appears in [H] is 1.
There are two observations to be made. First of all, Ω depends not only on m and s, but

also on k and ℓ, which determine the character of MI . Secondly, Ω(m, s) is, for a given m,
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symmetric in s and, despite appearances, does not have a singularity at s = 0, so that the
contour of integration can pass through that point.

For our purposes, it is best to represent (C.7) in terms of the Fourier transform of ξk,ℓs (f∞).
We begin with the case that detm is negative, for the passage to the limit |α| = |β| is then
more direct. We refer to the first term in (C.7) as the elliptic contribution and to the second
as the hyperbolic contribution. If detm is negative, then the character of a discrete-series
representation vanishes at m, Θπ̌(m) = 0. So the elliptic contribution is 0.

The character of the representation ξk,ℓs is 0 on the elliptic elements of GL(2,R), but on a
hyperbolic element

(C.9) a = a(x) = ϵ

(
ex 0
0 δe−x

)
, δ, ϵ = ±1,

it is equal to

(C.10) ϵk+ℓ δℓesx + δke−sx√
|1− α/β||1− β/α|

,

where the signs are that appearing in the matrix. Since

r = ϵ(ex ± e−x),

the numbers ex and e−x can of course be recovered from r and the sign. The measure dλ/λ
is in this new notation dx. If

f̂∞(a) =
√

|1− α/β||1− β/α|
∫
M\GL(2,R)

f∞(g−1ag) dg,

then, by the Weyl integration formula,

tr ξk,ℓs (f∞) =
∑∫ ∞

−∞
ϵk+ℓδℓesxf̂∞(a) dx,

where a is given by (C.9) and there is a sum over the two free signs in a. Thus tr
(
ξk,ℓs (f∞)

)
is expressed as the Fourier transform of the functions f̂∞(a), although the formula (C.10)
and the calculations that led to (30) allow us to express this immediately as an integral of
the two functions ψ±. It is, however, too soon to pass to the variable r.
What we want to do is to express the hyperbolic contribution to (C.7), for |α| ̸= |β|, in

terms not of tr ξk,ℓs (f∞) but in terms of its Fourier transform, then to pass to α = −β, and at
this point and for this particular choice to express the result in terms of ψ±. I stop short of
this final transformation.

Since we shall be taking the limit t→ 0, it suffices to take t > 0. Since the signs of α and
β are supposed different, the function η(m, s) is the Fourier transform of the function that is

sgnαk sgn βℓ

∞∑
n=1

(−1)ne−n(t+x) = − sgnαk sgn βℓ e−(t+x)

1 + e−(t+x)

for x > t and 0 for x < t. Thus, the hyperbolic contribution is

−1

4

∑
k,ℓ

∑∫ ∞

t

sgnαk sgn βℓϵk+ℓδℓ
e−(t+x)

1 + e−(t+x)
f̂∞(a) dx,

in which the inner sum is over the free signs in a. The effect of the sum over k and ℓ together
with the factor 1/4 is to remove all terms of the inner sum except the one for which ϵ = α and



78 ROBERT P. LANGLANDS

δϵ = β, as we could have predicted. Thus the signs of a are those of m and the hyperbolic
contribution is

(C.11) −
∑∫ ∞

t

e−(t+x)

1 + e−(t+x)
f̂∞(a) dx.

The limit as t→ 0 can be taken without further ado and gives

(C.12) −
∑∫ ∞

0

e−x

1 + e−x
f̂∞(a) dx,

where a has eigenvalues of opposite sign. Which is positive and which is negative does
not matter because of the summation over the two possible opposing signs. When we take
η(m,−s) into account as well, we obtain in addition

(C.12′) −
∑∫ 0

−∞

e−x

1 + e−x
f̂∞(a) dx,

The two are to be added together. Since we take the sum of IP (m, f∞) and IP (−m, f∞), it is
probably best to represent it as the sum of (C.12) (together with (C.12′)),

(C.13) −
∑∫ ∞

−∞

e−|x|

1 + e−|x| f̂∞(a) dx, a = a(x)

If detm is positive, then, the sign no longer appearing, (C.11) is replaced by

(C.14)
∑∫ ∞

t

e−(t+x)

1− e−(t+x)
f̂∞(a) dx,

where, of course, the signs of a are those of m. When we need to be explicit, we denote by
a(x, ϵ) the diagonal matrix with eigenvalues ϵex and ϵe−x, ϵ being ±1. For the passage to the
limit,17 we replace (C.14) by the sum of

(C.15)
∑∫ ∞

t

(
e−(t+x)

1− e−(t+x)
− 1

t+ x

)
f̂∞(a) dx,

whose limit is obtained by setting t = 0, and

(C.16)
1

2

∑∫ ∞

t

1

t+ x
f̂∞(a) dx = −

∑
f̂∞(±m) ln(2t)−

∫ ∞

t

ln(t+ x)
df̂∞
dx

(a) dx,

where we have integrated by parts. Once again, there will be similar terms arising from
η(m,−s). The first term is an even function of x and will thus contribute

−2
∑

f̂∞(±m) ln(2t).

Since 1− β/α ∼ 2t, we are to add to this

ln(4t2)ω(γ, f∞) = 2 ln(2t)f̂∞(m), γ = m,

because in spite of our notation, taken as it is from a variety of sources, f̂(m) = ω(γ, f∞).
So the limit as t→ 0 of the sum over m and −m is the sum of

(C.17)
∑∫ ∞

−∞

(
e−|x|

1− e−|x| −
1

|x|

)
f̂∞(a) dx

17The formulas here are variants of those to be found in [H], especially Lemma 6. They are not necessarily
more useful.
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and

(C.18) −
∑∫ ∞

−∞
ln|x| sgnxdf̂∞

dx
(a) dx.

In both (C.17) and (C.18) there is a sum over a and −a, as in (C.13).
For the elliptic contribution, we recall that from the formula for the discrete-series character

with parameter k ⩾ 0, as found, for example, in [K]

−|α− β|
|αβ|1/2

Θπ̌(m) = −(±1)k−1e−kt, m = a(t,±1), t > 0.

This has a limit as t→ 0. It is −(±1)k−1. Since

(C.19) −
∞∑
k=0

(±1)k−1Θπk
(f)

is absolutely convergent, we can provisionally take (C.19) as the contribution of the elliptic
term of Hoffmann’s formula. The contribution (C.19) does not appear to be expressible as
an integral of the pair of functions ψ± against a measure. So for the moment I prefer to leave
it as it stands.

Appendix D: A Fourier transform

The Fourier transform of the distribution

(D.1) h→
∫ ∞

0

lnx
dh

dx
(x) dx

is calculated by treating the distribution as minus the derivative with respect to the purely
imaginary Fourier transform variable s of

lim
ϵ→0

d

dt

∫ ∞

0

xte−ϵxh(x) dx

for s = 0. The Fourier transform of the distribution without either the derivative or the limit
is calculated directly as ∫ ∞

0

xte−ϵxesx dx = (ϵ− s)−1−tΓ(t+ 1),

where s is purely imaginary. Differentiating, setting t = 0, and multiplying by −s, we obtain
s

ϵ− s
Γ(1) ln(ϵ+ s)− Γ′(1)

s

ϵ− s
.

Careful attention to the real content of this formal argument reveals that ln(ϵ+ s) is to be
chosen between −π/2 and π/2. Letting ϵ approach 0, this becomes

(D.2) − ln s+ Γ′(1),

where ln s is ln|s|+ π
2
sgn s. The symmetric form of (D.1) is

(D.1′)

∫ ∞

−∞
ln|x| sgnxdh

dx
(x) dx

and the symmetric form of (D.2) is −2 ln|s|+2Γ′(1). Recall from [N, p. 15] that Γ′(1) = −λ0
is the negative of Euler’s constant.
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