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1. Introduction

It is well-known that the fields of algebraic geometry and complex
analysis frequently have a parallel development and also frequently share
the same underlying general principles. For example, the local theory of
algebraic or of analytic varieties is roughly the same. The global theory
of affine varieties or of Stein manifolds again follows the same general
patterns.

A somewhat less obvious parallel arises in the study of the zeroes of an
entire holomorphic function f(2) (z¢ C). Here the growth of the mazimum
modulus function

M(f, r) = maxmsr‘log 121
plays the role of the degree of & polynomial, Assuming that f(0) =1, a
fundamental result is the bound
(1) w(f, ) & CM(f, 2r)

on the number #n(f, ») of zeroes of f in |2] £ r, generalizing the obvious
bound on the number of zeroes of a polynomial. Suitably interpreted, the
estimate (1) carries over to bound the size of the analytic hypersurface
f(z) = 0 where fe©O(C*) is an entire holomorphic function of % variables

* This research was partially supported by NSF grant GP31859X,
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534 PHILLIP A. GRIFFITHS

(cf. §3 in [6]).

The purpose of this paper is to discuss one instance where the analogy
between analytic and algebraic geometry seemingly breaks down. This is
the transcendental Bezout problem of estimating the number n(f, fu 7) of
common zeroes in |z,|, |z,] = » of two entire functions Ji(z, 2) and fi(z, 2,)
in terms say of M(/f, r) and M(f, r). Cornalba and Shifman [6] have given
examples to show that there is generally no estimate of the form (1), even
thoughsuch an estimate does hold “on the average” (Stoll [15]), The purpose
of this paper is to attempt to clarify the problem in the helief that the
analogy between algebraic and analytic geomstry might, if properly under-
stood, continue to hold in a suitable form.

More specifically, we consider the Bezout problem in the formulation of
trying to estimate the “gize” of the intersection

vnc

of analytic subvariety VCC* in terms of the “size” of V. In this form, the
Bezout problem is already solved in case codim(V) =1 (cf. §4 below), and
8o the first interesting case is that of an analytic eurve Vc C. Our main
theorem (Theorem 1 in § 3) is an estimate on.the size of the intersection

Vne

which is independent of the particular C*. The estimate is in terms of the
growth of the areas of V and of the dual variety V*, and in terms of the
number and position of the inflection points” on V. An examination of the
Cornalba-Shiffman example shows that consideration of the inflection points
is essential.*

2. Formulation of the problem

a) Let f(z), +++, fi() € (C*) be entire holomorphic fﬁnctions. For a
point a = (a,, ---, @;) € C* we let ¥, < C" be the analytic set defined by

fs(f) =@y

@) =a,.
We assume throughout that codim,(V,) = k at every point ze V,. Letting
V.r] = {ze V.t |2] < r}, the Bezout problem is to estimate the “size” of V]

* The author wishes to thank the referce for numeroazisug‘zest'lons to the original
manuseript.

" 12V is locally given by {~2(0) (C€C, 2(0)€C", then the inflection points are defined
by (DA (QA2"() =0 in case z({)+ 0, 2({)A2'({) #0, and by Sord(a({) A2/({)) <3 ord(z(0))+
ord(#{O)A%" Q) A2”()) in the gemeral case (the factors of 3 appear because of homogeneity
restrictions).

~d
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BEZOUT PROBLEM FOR ANALYTIC SETS 536

in terms of the f,’s independently of the point a € C*, By the “size” of V.[7],
we mean as a beginning the Euclidean area

—_— UL ]
(2) WV 1) = Sy.m"’

where

o = dd° |2]* = _......"2;135(2;'_1 |29

is the standard Kahler metric on C*. In the same way that the growth of
M(f, r) = max,., log | f(2)]
generalizes the degree of a polynomial, the growth of

(3) Vo) = Ulul)

generalizes the degree of an algebraic set in C*. In fact, it is a fundamental
theorem of Stoll ([12] and [18]) that for any codimension % analytic set
V c C", the function

— 1 2t
#V, 1) = pin-k me

ig increasing with » and
WV, rysd (deZt)
if, and only if, V is an algebraic set of degree sd in C*.* This result will

be discussed below, and deeper insight into it should follow from an under-
standing of the Bezout problem.

b) A more general form of the Bezout problem is the following: Let
V, WcC be analytic sets of pure codimensions k, } respectively. Assuming
that the intersection Z = VN W has pure codimension k + I, we want to
estimate the size of Z in terms of V and W. Indeed, this version of the
problem is closer to the usual algebro-geometric statement.

Two comments are relevant. The firstis that thesizeof VxWcC*xC*
may be estimated by that of V, W, and thus writing

Z=VnWz(VxW)nGC;

where C; < C* x C* is C* embedded as the diagonal in C* x C*, we see that
it will suffice to take W to be a linear subspace of C*. Secondly, refering to

% Kneser [7] first proved the monotonicity of #{V,*) using a form of Btokes' theorem
not yet available. Lelong [8] gave another complete proof of monotonicity. In case 0=V,
Stokes’ theorem gives p(V,r}={y(,;(dd?log|2[)** which makes the monotonicity evident,
since dd*loglzi*2 0.
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536 PHILLIP A. GRIFFTTHS

the first form of the Bezout problem discussed above, if we let
W = {(z £#), -, fuld)): 2€ C}c C* x C*
be the graph of (f,, ++, fi), then on the one hand
Vo Wn(C x {0}),

while on the other hand the growth of W and that of the f;’s is roughly the
same (cf. the Ahlfors-Shimizu form of the Nevanlinna characteristic function
given in [9, pp. 171-177]). Thus the more general form of the Bezout problem
does indeed contain the first question as a special case,

On the basis of this discussion, then, we shall concentrate on the Bezout
problem in the following form: Let G(i, n) be the Grassman manifold of
n — | planes through the origin in C*. Letting VCC" be an analytic set

of codimension %, and denoting points of G{{, n) by 4, B, ---, we want an
estimate on the size of the intersection

ANV

which is independent of 4, always assuming that codim,(ANV) =k + 1 at
asll points z€ AN V.

A recent theorem of Shiffman gives us an average Bezout Theorem analo-
gous to the classical Crofton’s Formula in integral geometry. Letting d4
be the measure on G{I, #) invariant under the unitary group and suitably
normalized, Shiffman’s result is the formula,

(4) wv,m =\, mvnod,nda,

AeGlim
where k& + § £ n and ¢ is given by (8), and where we assume for simplicity
that V does not pass through the origin.
In particular taking ! = n — &, (4) becomes
(5) v, = n{4 N V[r])da

AeGlin—kn)
where n({A ( V[r]) is the number of points of intersection (counted with
multiplicities) of A and V in {z| < ». If V is algebraic of degree d, then
(V,7) 1d as r — <o, and Stoll’s Theorem is the converse to this statement.

38, The first main theorem

Let V< C*** be an analytic set of pure dimension m (note the # + 1 on
C**). To estimate the size of V' N A where A isa linear space, it is sufficient
totreat the case when 4 is a hyperplane and then proceed inductively down-
ward (this is also necessary when using Crofton’s Formula (4)). Henceforth,
we will thus assume that 4, B, -+-, are hyperplanes in C**, and we view
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BEZOUT PROBLEM FOR ANALYTIC SETS 537

A, B, -+-, as points in the projective space (P*)* dual o the projective space
P* of lines through the origin in C**'.,

A technique for approaching this problem is to apply Nevanlinna Theory
to the residual mapping (assuming thatog V)

fiV—s P,
{f(z) = line 6z for ze V.
This is the method used by Stoll {13] in the original proof of his theorem
mentioned above; and even though other proofs of this result have since
been given ([2], [11], and [16]), Stoll’s argument still has global geometric
appeal and also offers one possible means of understanding the general
Bezout problem. To state the first main theorem (abbreviated F.M.T.) of
Nevanlinna Theory in the present context, we use the following notations:

( t=loglzl:V—R (exhaustion function for V),
Q = dd'r (Levi form of 1),

Vir] = {ze V:2(2) < log 7},
T(r) = Sop(V, t)_‘l‘tﬁ (order function for V),
) N4, 1) = E:;u(A nv, c).%‘_ (counting function for AN V),
|z, Al = Kz, A)] (ze C*H, Ae(C*+)*),

_ l=l14] oo
m(4, ) = gm log pud't A Q™ 20 (prozimity form),
S(4, r) = L[ llog 00" (remainder term) .
\ r

The F.M.T. now reads (cf. [6, Proposition 5.14] and [14])
(7) N, v+ m(4, r) = T() + S(4, 7).

Remarks. (1) First I want to apologize for the flood of notations and
terminology, which anyone familiar with value distribution theory will
recognize as standard. In one form or another, the F.M.T. is the technique
for proving all known versions of Bezout-type theorems. With reference
to (6), the proximity form m(A4, ») = 0 and so (7) gives an inequality

(8) N(4, r) 5 T(r) + S(4, 7) .

If we interpret “size” of an analytic variety Z as meaning growth of ¢(Z, 7),
then the Bezout problem amounts to estimating N(4, ) in terms of T(r)
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538 PHILLIP A. GRIFFITHS

and other quantities independent of A. Inequality (8) suggests that we
attempt to estimate S(4, ). This will be done in two cases.

(2) In the counting function N(4, ), multiplicities must be taken into
account. In case V is smooth, AN V is the zero set of a holomorphic function
and then it is clear how to define multiplicities. Our Main Theorem deals
with the case when V is an analytic curve, and thus has a canonical de-
singularization (=normalization) V; in this case, multiplicities are defined
by pulling back the holomorphic function A4 to V. The general case may be
treated using recent results of Tung [17], where the F.M.T. for singular
varieties is treated.

4. The hypersurface case

With the notation of Section 3, the one case in which the Bezout problem
always has an affirmative answer is when V< C"*' is a hypersurface. We

will briefly discuss three proofs of this, all of which already exist in the
literature.

First proof. We begin by remarking that
(9) [, 0 =nvn.

This follows from Crofton’s Formula (4) applied to the projective space P*
of lines through the origin in C*** because

(i) Q= dd*log |z| is the pull-back under f of the Kihler metric on P*,
and

(ii) We evidently have the equality .-

SV[']Q. = L.P‘u(A NVirla4 .
Next, since the residual mapping f: V— P* is equidimensional and the form

oL
is integrable on P*, we have for the remainder

S(4, ) = (v, "){}lﬁ‘},";)'gm log 0.9}

s urvs ol o)

by the concavity of the logarithm. Now the integral

SV[r) p‘Q'
may be directly estimated by standard methods in Nevanlinna Theory (cf.
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BEZOUT PROBLEM FOR ANALYTIC SETS 539

the second proof of Proposition 4.1 in [6]). This leads to a bound on S(4, 7)
which is independent of A, and thence to an estimate

(10 N, ») £ CT(r)+ + C', €>0).
(Actually, (10) is an easily stated but crude form of the estimate in [6].)

Second proof. For each point ze C*+* — {0}, we let L, = 6z be the line
connecting z to the origin, and we consider the counting function

N, 1) = N(L.NV, r|z]) = S:mu(L, av, z)%

which measures the number of points on L, N V in the disc of radius r|z].
By Crofton’s Formula (4) we can estimate the average

|, NG, )
[ L9

(d42) = Euclidean measure) of N(z, r) over [2] < 1 in terms of
[k 0.

On the other hand, N(z, 7) is a pluri-subharmonic function of z a fact which
may most easily be seen as follows: By the second problem of Cousin for
C**, we may write V = {#: f(2) = 0} for some entire function fe O(C**') with
Sf(0) = 1. Then by Jensen's theorem ({6] and [15])
=1 [* o '
NG, v) = " log | ftrea) a0,

which is obviously pluri-subharmonic in z. Now pluri-subharmonic functions
satisfy the sub-mean-value property, and thus the value of N(z, r) may be
estimated by its average over a ball around z. This coupled with the estimate
on L “N(z, r)d (%) leads to an estimate on N(z, r) in terms of T(2r) for all
z with |z| = 1. The inequality (10) follows by averaging over z with z¢ 4,
|z} = 1. . P . .

Third proof. Given V, we may solve the second problem of Cousin with
growth conditions (cf. Skoda [11]) to write V = {z: f(z) = 0} where f€ O(C**)
satisfies an estimate

M(f, ») = CT@r)(ogry + C'.
Given a line A ¢ P", we then apply Jensen’s theorem to f|A to obtain the
variant of (10):
N4, r) s M(f, r) SCT@r¥log r)*+ G .

With further work, the referee remarks that the estimate
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6§40 PHILLIP A. GRIFFITHS

N(4, r) £ CT@r) + C

can also be proved,

Remark. The Bezout estimate (10) is easily atated but somewhat crude.
A more careful argument gives the inequality (cf. §4 in [6]).
(10) N4, 7r) s T + o(T()) |/
where the meaning of “//” is explained preceding the statement of Theorem
I in Section 5 below. Using (10’) we may prove Stoll’s theorem for hyper-
surfaces as follows: Assuming that #(V,r) < d, we have T(r)sdlogr+c,
and (10') then gives

mAnvV)=sd

for all hyperplanes A ¢ (P*)*, Iterating this we find that V meets every line

through the origin in <d points, from which it easily follows that V is al-
gebraic of degree <d (cf. the proof of Chow’s theorem given in §2 of [6]).

8. Curves In C' statement of the main theorem

Cornalba and Shiffman [5] have given an example of an analytic curve
Vc C such that g(V, r) = O() for every & > 0, but for which there is a
2-plane A e (P%* with ’

A4 N Vr]) = O@")
for any N. Thus, in the terminology of the theory of functions of finite
order, V has order zero but ANV has infinite order. Observe that V is
necessarily non-degenerate in the sense that it isnot containedina C, since
otherwise the Bezout Theorem for hypersurfaces could be used. This sug-
gests that we seek a Bezout estimate which involves not only the growth
of the area of V, but also the size of the oseulating varicty V* associated
to V. More precisely, we consider the residual mapping
LV P,
Associated to this holomorphic curve is the dual curve
fHV—s ()

which associates to each point z¢ V the 2-plane f*(2) spanned by 2 and the
tangent line to V at 2. If ® is the standird Kihler metric on a projective
space, the (1, 1)-forms

&=,

Q= (e
are the fundamental local invariants for the metric geometry of AV). The
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BEZOUT PROBLEM FOR ANALYTIC SETS 541

order functions

o =[] o}

]

Tifr) = S: {Srmg‘}%i

measure the growth of V and of the osculating variety V'* respectively. If
(12) Q, = hQ,,

the non-negative function & becomes infinite at the inflection points of V
(cf. (26) in §7 below). The quantity

(13) Sy =| log*h0 20

is intrinsically associated to V and would appear to become large if V has
many inflection points (cf. the example in § 7 below).
To state our main result, we suppose given ¢ > 0, and use the notation
o(r)y = ¥(r) [/
to mean that the stated inequality holds outside an open set Ec R* such
that | dejt < oo .

(1)

THEOREM I. There exist constants C, C', C" such that for any A€ (PY)",
the counting function N(A, r) satisfies an estimate

(14 N4, 7) S C{T oY+ + IO+ CSE) + ¢ /.

An easy corollary results by assuming that the holomorphic curve V' is
bounded away from having inflection points in the sense that h e < oo in
(13). Then S(») = O(T(r)) and so we obtain the
(156) COROLLARY. If VC C* is an analytic curve which is bounded away
Jrom having inflection points, then

N4, r) £ C{T(r)* + T\(»)} + C'
Jor all 2-planes Ae (P¥)*. ’

Remark. In the Cornalba-Shiffman example, both Ti(r) and 7\(r) are
O@(***) for any & > 0 (cf. § 7 below), but ¥ has many inflection points.

There are two criticisms of the above theorem. The first is that the
result fails to yield the Stoll theorem, which we recall is the statement that
V is an algebraic curve, if, and only if, Ti(r) < dlog» + ¢ (cf. [12]). The
second is that the quantity S(r) given by (13) does not have a direct geo-
metric interpretation, although it does appear somewhat naturally in the
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542 PHILLIP A. GRIFFITHS

second main theorem for VC C* (not discussed here). Consequently, Theo-
rem ] should be thought of as indicating that some understanding of the
Bezout problem is perhaps possible rather than as a definitive result.

Finally, it is possible to prove a result similar to Theorem I for an ana-
lytic curve V< C* for any #. The estimate will bound N(4, r) in terms of

(a) T(ry*s, Tu(r), o) Taolr)
where T, _,(r) is the order function for the k' associated curve [4], and

(b) A quantity S(») which measures the number of stationary points
oforderkforl sk < n.

I do not know even a conjectural statement in case dim V> 1,
codim V > 1, and this is another indication that the correct result is yet to
be found.*

6. Proof of the main thecorem

(a) We will apply the theory of holomorphic curves, especially the so-
called Ahlfors’ inequalities [1], to the residual mapping f: V— P2. In doing
this we will follow the terminology of the paper by Chern [4], and will also
use his notation with the following two exceptions:

(i) We use 2 instead of Chern’s Z to denote a point in C;
(ii) Hyperplanes in P* will be denoted by 4 instead of a.

Given a local holomorphic coordinate { on V, the corresponding point in C*

will be denoted by 2({). Following Chern, we then use Frenet frames 2, 2.,
z, where

( =2
NPT
= 2AZ ' = 92
1 zo/\zx"'lz/\z,l (z“dc)s
- INZAZ Uy Y,
\20/\21/\23—’2/\2'/\211[ (( (z))’
For a hyperplane A e (P9)*, we set
[Po = |20 AP = |20 AT (assuming [4| =1),

lo, = |2, AP + |2, AF .
Then @, = 0 at the points of intersection A N V and @, = 0 at the points of
A NV where V is tangent to A.
Referring to the F.M.T. (7), we have an inequality (for 0 <M < 1)

* (Footnote added in proof) See W. Stoll, Deficit and Bezout estimates Tulane Conf. in
Value Distribution Theory, I, Marcel Dekker, 1973,
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BEZOUT PROBLEM FOR ANALYTIC SETS 5438

(16) N4, 9 s T + -‘{.'(m;log(%)m :

Motivated by the first proof of Bezout for hypersurfaces, we might try to
use concavity of the log to write

S log -;z-Qo s log E—g:;

However, the area integral Q,/9} will fail to converge at points where V
has high order contact with A. This suggests that we write

an Svm log %{Q" = Srm og(—)g" + S ) g( . )Q° A,Sm

where £,Q, = Q, so that & = (1/h,). The third term on the right hand side
of (17) is less than or equal to S(s), and in particular is independent of A.
As for the first term, setting v () = L[ )Qo we have

Svm 108‘(-;% = v"(?){ v(7) S»ml g -g:—)g }

= v.,(';)log{ (1) (u 32 Q°}

s v.‘(r)log{S’ -?-E—Q,} (for large 7) .

rirl g
Similarly we obtain

s[rl Og( )Q = t:(?‘)log{sﬂ'}-gé—

Since v.(») = dT(v)/d log r, we may use a standard lemma ([4, pp. 253-254])
to obtain

1 fwzf2 ¢xgo Q
(18) Lmlog-q-,}-mg T4r) P{logﬁn% + ngﬂm%}+ 150 /1.

To prove our theorem, it will suffice to prove the estimates

¢xQO 147 ‘
S'm oS < Ty

s Ty

" @l =
Indeed, (186), (18), and (19) give
N(4, ) € CT{(r)'** + CTAr)*"log T,(r) + -i- S(r) .

log AQ,

(19)

Using the inequality )
ab < at*? v (@, b=0)
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544 PHILLIP A. GRIFFITHS

we may estimate the product Ty(r)'+*" log T\(r) by
n(r 14¢ + log T‘(r 141/9)

for sufficiently small 8. This gives the inequality

N(4, v) < CT{r)** + Cllog T\()}" + -{-scr) ,

which obviously implies (14).

(b) We now prove the first estimate in (19) using the inequalities (70),
(71) in Chern [4]. From these we obtain

(20) g Zes ol . nBOVIAW(4, BB
where
o) = —2— 4 b8 (@ 5>0).

(1— 8y Q-3+’
Integrating (20) with respect to dt/t and using the F.M.T.(8), we get

@1) j'{jmf;?'} % sotun +of t,,,.-ih—-—-—“ _f;’;‘ff)m

where
se,n =, g0,

is the remainder term. The main step in our proof is the
LeMMa,

1\ 1
S..m,- tog( % BG4 Bt =7

where ¢ i3 independent of 2, A (assume |z, |A], |B| =1).

Proof.¥ Take 1<q<(2/(1+\))and (1/p)+(1/g) = 1. Holder’s inequality
gives

1 1
L.m,-hg o Bl (L = |4 Bt

= _;'U(logrz',lﬁﬁ)’dg]uﬂ (- IA,XBI')"““ dB]
According to Chern [4], formulae (39) and (48):

Lur*:-(l |2, Bl') aB = 2S (108 -%-)’(1 — )it < o,

3 e

and

% This proof is due to the referee.
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BEZOUT PROBLEM FOR ANALYTIC SETS 545
1 _ 1
Snur’r (1 — |4, Bps-ae dB = Sssu’!)‘(l — 1A%, B‘x)cumdB

_Jfa—tdt _ 2
- 28«(1 — D T g1 40) ~1

where A+ e Cis defined by
(z A) =<4,
for all ze C. Q.E.D.
Combining (21) and (22) gives

S:{Lrt)?;%}% S cTr) + c'vlr),

which implies the first estimate in (19).

The second estimate in (19) is proved similarly using (116) and (116)
in Chern [4]. More precisely, associated to f:V — P* is the dual curve
JV— (PY)*, where locally

FFRQ =D NZQ),
viewed as a 2-plane in C*. Adding together (115) and (116) in [4] gives

Q° 2
S”“*mﬁ = S e (P,),”(B, tig(l A, BI)dB.

Applying the F.M.T. to this leads, as before, to

2 o~ ?
@2) Smm <CT(M+C /.

Replacing the original holomorphic curve by its dual converts (22) into

a2, < CT(n) +C'
\iTE T A E SCRO O I

which implies the second inequality in (19). Q.E.D.

7. An example

We shall discuss the Cornalba-Shiffman example of an analytic curve
V& for which the usual Bezout theorem is false. For this V we will find
that

Tyr), Ti(r) = O(**1) ¥
but there will be a 2-plane A such that
n(A N V[r]) = O(r")

© These estimates are crude; by being more careful it is possible to lower the 24: to
any ¢>0. The computation of Ty (r) was shown to me by Jim Carlson.
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for any N. The dominant role of the inflection points on V may be clearly
seen in this example, both geometrically and by the computation of the
term S(r) appearing in our main theorem.

The curve V€ will be an infinite union V = {Ji, Vi of algebraic
curves. Explicitly, we have for V,,

Vi = {(z" %, 2)eChz, =2 5= 3_'{2?}

where {¢,} forms a strictly increasing sequence of positive integers to be
chosen later. Parametrically, V, is given by

7 = 2%,
(@3) n=4,
2y = 3—':‘&“ ’

and is thus a rational curve of order ¢,. The 2-plane 4 is given by 2, =0,
and thus

ANV =73_,6(2,00).
For the counting function we consequently obtain

(24) 2ANVIr]) = Tz, s
and thus we may make n{A N V{r]) grow as fast as we wish by choosing
the ¢, properly.

F16. 1
Referring to (23), for the vectors 2(Z), 2'({), 2({) we find respectively
2(0) = [2*, §, 374L4],
{z’ ) =10, 1, 3737,
20 = [0, 0, e(es — )87,
Throughout we will replace the multiplicative constants ¢, — 1 by ¢, for
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simplicity of notation; this will not affect calculation of rates of growth.
When this is done, then
{ g AZ =2, 284, 68-R0n],
EAZ AZ =23,

and
|2 =2 + | + 3¥A[{,
(25) ls A2 = 2% + 2t (L + g O
[EAZ AL = 2:5013-3045‘»;-4 .

Referring to (25), we see that at the points of ANV, both [s]*and [zA 7
are =2 but |z A 2 A 2 has a zero of order 2¢, — 4. Thus these points
are inflection point of increasingly high order.

Now for the forms Q,, Q, we have (cf equation (29) in [4])

2] (%3
lzltlz A 2 /\z"[‘(‘/—i
(26) 9 =L EEE chdc)
k= [zA &1

T lefle AT AT
Referring to (25), on V[r] we have

_ logr T
log 2’

@ o< e,
3—2a’. Ic‘zek <92,

To estimate the rate of growth of L[ ‘Qo, we write

(28) Er[r)Qo = ({%%){m?x svurlnﬂ} !
and similarly for S Q. OnV,
rie)

lz A zola _ .z_z_s_ 2"‘6?.3"“&““" + cis-u;ma.,

|zt Edy [zl (2]t
and the first term on the right hand gide is <1 and contributes <+ to
X Qo. For [{] £ 1, the gsecond and third terms on the right hand side of
(29) are <e¢i3-s which goes to zero as A—» o, Thus these terms con-
tribute £ (constant) to Smﬂg“ Finally, for |{]| = 1,

29
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(30) B[P = (@) (B (L L
where
(3 ) = 3% — 0, 48 ¢~ oo,
and by (27)
(8-2ye-nte(| L [rytetie < (pf)lemtie g 92, forrz1.

On the other hand, {z]' = 2**|{|* + |{[* so that the second and third terms
on the right hand side of (29) are < (constant)r/|{]* and contribute £
(constant)(log r)»* to Sv , ]Qo. In summary,
A v
|, 2= Cllog ryr*.

It follows that T,(») < Cr**.
As for L Q,, we have
k

2z A 2 A 2] + 2“623""’”““""‘ 2"633‘”“;[”‘—' + 2:hc:3—ccﬁlc|4c,,-4 )

lzAZ} Iz A 2| EX A fznZ})
For |{[ £ 1, this is < (constant) since
023’“3-———t0 a8 h——s 0o,

For [{| =1, the first two terms are < (constant)r*/|[ by (30) and (27).
The third term is less than or equal to

i3 Lo
since
l2 A 2] 2 2hei8 R L]
Then
3R [ < (constant)r| ([
by (30) again. In summary, the term g Q, is £ (constant)(log 7)»* and so

T.(r) < Cr**. This shows that both T{(+J and Ti(r) are O(**).
As for the term

Se) = Svm log *hg2, ,*
from (25) and (26) we have on V|r] that
2"
1"2”0@3"‘“(‘:(““"‘ 4

% Here we are using boldface for the function A given by (12), in order to distinguish
the function k from the index h.
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and
log h 272¢i log 8 + (2¢, — 4)Iogé—‘ ~6Blogr — 4loge, .
The term —4 log ¢, is small relative to 2¢; log 8 and will be ignored. Now
2% -1
02 2( Gl n ).
so that

Str) = EM log* hQ, = E,,,S,g(g{“ , Jog hQ,,)

RISt

zh
2 Dyes (20t log 3 + 20, — 6log r + C} .

The terms involving 2¢,, 6 log », and C are relatively negligible, so that,
approximately,

=5
Sr) 2 E).sxogr:lon cz(?;c—) )

Comparing this with (24), we see that S(r) is the dominant term in our
Bezout estimate.

8. Miscellany

(8) Comments on the various Bezout problems. In Section 2 we dis-
cussed the following two questions: (i) Given entire holomorphic functions
L oo, [ €O(CY), estimate the size of the zero set

V={zeCfi(z) = +++ = file) = 0}
in terms of the growth of the f,’s; and (ii) Given analytic sets V, Wc C*,
estimate the size of the intersection VN W in terms of the sizes of V, W.
In that section we remarked that (ii) could be reduced to the case where W
is a linear subspace of C"*, and also that (i) is a special case of (ii). Of course,
in all of this the notion of the “size” of an analytic set has been left some-
what ambiguous. The most primitive concept of size is the order of growth
of the function

WY, 7) = Euclidean zgmme of Vir]
where codim(V) = k. Now g(V, r) is the analogue for analytic sets of
the degree of an algebraic variety in C*, and seems to be a satisfactory
notion for measuring size when codim(V) = 1. Moreover, a recent result
of H. Skoda [11] states that for a given V, we may write
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V={zeC:fi(a) = ++» = foui(?) =0}
where the modulus of the f;’s grows essentially like p#(V, » + gh*=**~", In
particular, if “size” is taken to mean the growth of f«(V, r), then problems
(i) and (ii) above are roughly equivalent.

However, as suggested by the Cornalba-Shiffman counterexamples, in
case codim(V) > 1 the concept of size of V should probably involve more
than just the growth of y(V, 7). Roughly speaking, it seems necessary to
measure not only the wolume of Vr], but also the directions in which
V is going to infinity. For example, suppose that we let P*~'(=c) be the
hyperplane at infinity in P*>C" V the closure of V in P*, and consider
the intersection ¥ N P*~'(=<). In case codim(V) = 1, either ¥ n P*}(=) =
P"-'(>5) or else V is algebraic. If codim(V)=£k>1, then of course VN P*'(z=)
may be equal to P"~'(c:), but it may also happen that V n P*~'(=<) misses a
Pt contained in P*'(c) without V being algebraic. To put mattersanother
way, in codimension one, as in functions of one complex variable, the charac-
ter of an essential singularity is qualitatively rather simple: the closure must
be everything. If the codimension is larger than one, then this Casorati-
Weierstrass phenomenon no longer holds, and the general character of an
essential singularity is evidently more complicated. It may be that some
understanding of the Bezout problem would result from a deeper qualitative
study of such essential singularities, in which study the Bishop-Stoll and
Remmert-Stein theorems should appear as the simplest special cases.

(b) Remarks on the zeroes of two entire funciions on C.
(i) Let fi(z, z.) and fi(z, z) be two holomorphic functions on C and
consider the set of common zeroes

Z = {z:f(2) = £{z) = 0},
assumed to be a discrete set of points. In this case, it would seem that the
“gize” of Z can only mean the number n(r) of points in Z[r] = Z N {|z| = 1}
together with the distribution of the lines through the ovigin on which the

points of Z lie. With this notion of size, there may be a Bezout theorem,
whereas there is not one for n(r) alone.

In this connection, an interesting observation has been made by Corn-
alba. Suppose that
n(r) ~ ert
for some X\ (so that Z is of finite order A). Pan [10] has proved that Z may
be defined by three functions g,, g., g; of finite order <\. If, for example,
all of the points of Z lie on a line, then one of the ¢g’s must have order ex-
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actly A because of the relationship between the number of zeroes and growth
of the maximum modulus of a function of one complex variable. On the
other hand, if the points of Z are evenly distributed on the lines through
the origin, then, as Cornalba proved, we may take the g’s all to have order
<. This gives an easily understandable counterexample to a sharp form
of the Bezout problem, and also motivates the above loose definition of
“size” of Z.

(i) Continuing with the discussion of the common zeroes of two entire
functions f, and f,on C’, we may consider f=(f,, f.) as a holomorphic mapping
f: C— P* and try to apply value distribution theory to f to study the size
of Z, = f~'(A) for Ae P. Letting Q be the Kihler metric on P? the order
Junction

=[], reno)

represents the average ‘4 =}'\’ (A, 7r)dA of the counting function for Z, over
AeP*. Letting & T(r)) be a quantity with

. {T) _

hm,_,,, T(?‘) =0 ]
a variant of the Bezout problem is to ask if there is an estimate of the form
31 N(4, ) < T(r) + T(r))

forall A¢ P:. If (23) were to hold, then integrating with respect to A gives
C:,N(A' r)dA < vol[ f(CO] T(r) + & T(+))

where it is always assumed that vol(P?) = 1. From (24) it follows that
vol[ £(CY] = 1 8o that the image f(C°) is dense in P%. But Fatou and Bieber-
bach [3] have given an example of f: C*— P* whose image omits an open
set. For this f, there is no estimate of the form (31) which is quite reason-
able geometrically, since if an open set of points 4 € P* fails to be covered
by f, then some other points must be covered more than on the average in
order to compensate for this.

62 Te) = L‘P;N(A, a4 = | .

RELY A

HARVARD UNIVERSITY
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