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I. Introduction

This talk will be about the geometry of complex algebraic varieties.
These are defined by “adding the points at infinity” to the solutions in
CN of polynomial equations{

f1(x1, . . . , xN) = 0

fm(x1, . . . , xN) = 0 .

Examples include the following

y2 = x3 + ax + b

quartic

curve

1
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quadric

surface

algebraic surfaces

Grassmannian

L

(1 3) = ⊂ P5G ,

Threefolds such as the family in P4(
x5

0 + x5
1 + x5

2 + x5
3 + x5

4

)− t(x0x1x2x3x4) = 0

that has been much studied by physicists and mathematicians.
The geometry of an algebraic variety is especially well revealed by

the configurations of algebraic subvarieties lying in it, together with
equivalence relations among these subvarieties. For complex algebraic
varieties Hodge theory provides the fundamental invariants for the vari-
ety and its configurations of subvarieties. Two of the main conjectures,
the Hodge conjecture and the conjecture of Beilinson-Bloch, provision-
ally provide a general framework for understanding the structure of
these configurations. In this talk we will seek to explain the two con-
jectures, together with a summary of their current status and a brief
discussion of some of their implications.

This talk will be of a general “overview” nature. We will not be
able to discuss important aspects of general Hodge theory, such as
mixed Hodge structures (cf. the recent book by Peters-Steenbrink) or
variations of Hodge structure (cf. the books by C. Voisin) or the more
arithmetic aspects (Mumford-Tate groups, endomorphism algebra, etc.
(cf. the lectures by B. Moonan). The title of this talk might better
have been

Hodge theory and algebraic cycles

emphasizing in this way the historical roots of the subject as well as
a (perhaps “the”) central way in which Hodge theory has interacted
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with geometry. Somewhat in contrast with the classical development
of the subject, one conclusion of what follows will be

In complex algebraic geometry, once one leaves the
classical realm of codimension-one subvarieties (divisors),
arithmetic considerations necessarily and centrally enter
into purely complex algebro-geometric questions.

II. Algebraic cycles

We consider a smooth, projective algebraic variety X over C. The
configurations of the algebraic subvarieties of X underlie questions such
as:

— When dimX = 1, X is an algebraic curve, which is the same as
a compact Riemann surface

∼=

C Λ

when is a configuration of points pi, qi the zeroes and poles of a rational,
or equivalently a meromorphic, function on X? Recall that

#pi = #qi ;

i.e., the number of zeroes is the same as the number of poles.

— When a projective embedding

X ⊂ PN

is given,1 the study of the lines lying in X is of interest:

18th century:

• the ∞2 family of lines (rulings) on the quadric surface

1Any complex submanifold of PN is an algebraic variety (Chow).
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mid 19th century:

• the configuration 27 lines on a smooth cubic surface X ⊂ P3

early 20th century:

• the Fano surface of lines on a smooth cubic threefold X ⊂ P4

late 20th century:

• the 2875 lines on a (generic?) smooth quintic threefold X ⊂ P4

More generally, the configuration of general rational curves in an alge-
braic variety has surfaced as an important topic.

late 20th and early 21st centuries:

• Mori theory
• rationally connected varieties
• Gromov-Witten invariants (for rational curves)

Many other types of subvarieties enter into interesting geometric ques-
tions:

• In linear geometry — Schubert cycles in G(1, 3) such as lines in P3

meeting two
skew lines

• In moduli theory, the subvariety giving the boundary component

∆1 ⊂Mg

where Mg is the Deligne-Mumford moduli space of stable curves of
(arithmetic) genus g, with ∆1 being the principal boundary component
corresponding to irreducible curves with a single node.
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In the first example above, for f ∈ C(X)∗ a rational function one
defines the divisor of f

(f) =
∑
p∈X

νp(f)p

to be the formal linear combination of points of X with the integer
coefficients νp(f) = ν to where locally around p with coordinate z
f(z) = zνg(z), g(0) 6= 0. Relations such as{

(fg) = (f) + (g)
(f−1) = −(f)

suggest considering in general the group

Zp(X) =

{
Z =

∑
i

niZi, ni ∈ Z

}
of codimension-p algebraic cycles, where Zi is a codimension p irre-
ducible subvariety of X. This group is too big, and again the first
example suggests considering the Chow group

CHp(X) = Zp(X)/ ∼rat

where ∼rat is the equivalence relation generated by

Z ∼rat Z
′ if there exists

Z ∈ Zp(X × P1) with{
Z ·X × {0} = Z
Z ·X × {∞} = Z ′ .

In example one the graph Γf ⊂ X × P1 gives

f−1(0) ∼rat f
−1(∞) .

Cycles may be moved into general position in CHp(X), and this leads
to good functoriality properties. If we think of the above as associated
to a boundary operator on

Zp(X × (P1, {0,∞}))

��
Zp(X) ,

the consideration of similar boundary operators on

Zp(X × (P1, {0,∞})k+1)

��
Zp(X × (P1, {0,∞})k)
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leads to Bloch’s higher CHp(X, k)’s. It is perhaps fair to say that
these form the basic algebro-geometric invariants for the study of the
configurations of subvarieties of X, and therefore of X itself. Today
we shall only be concerned with the CHp(X) = CHp(X, 0)’s.

In addition, relative Chow groups
CH1(P1, {0,∞})

0 ∞

CH2(P2, T )

may also be defined. In fact, they already suggest the appearance of
arithmetic phenomena in the geometry of higher codimension cycles
over C. First, anticipating the discussion below of a filtration on the
Chow groups, for the first graded piece of CH1(P1)

Gr1CH1(P1) = 0 .

This is because any Z =
∑

i nizi ∈ Z1(P1) has Z = (
∏

i(z − zi)ni) if∑
i ni = 0. But if all zi 6= 0,∞ and

∑
i ni = 0 we have

Gr1CH1(P1, {0,∞}) ∼= C∗ (= K1(C))

since for the relative Chow groups we can only use f ∈ C(P1)∗ with
f(0) = f(∞).

Turning to (P2, T )

one has (Bloch, Suslin,. . . ){
Gr1CH2(P2, T ) ∼= C∗ × C∗
Gr2CH2(P2, T ) ∼= K2(C)

and, for a field k, K2(k) is a “very arithmetic” object. Thus{
dimK2(C) =∞

K2(Q) = 0 .
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III. Hodge-theoretic invariants of algebraic cycles

The general story may be said to have begun with Abel’s theorem
(∼ 1820). For X a compact Riemann surface and

Z =
∑
i

nipi ∈ Z1(X)

the basic homological invariant is

[Z] =
∑

i ni[pi] ∈ H2(X,Z)xy o‖
degZ =

∑
i ni ∈ H0(X,Z) .

If Z = (f), then

Z = ∂Γ

where Γ = f−1(R−), and since deg(f) = 0 we have

0→ CH1(X)hom → CH1(X)
deg→ H2(X,Z)→ 0

o‖
Z .

If now ω ∈ H0(Ω1
X) ∼= Cg denotes the space of holomorphic differentials

on X, then ∫
Γ

ωmod {periods

∫
δ

ω, where δ ∈ H1(X,Z)}

is well defined in the Jacobian variety

J(X) = H0(Ω1
X)∗/H1(X,Z)

o‖
Cg/Λ

where Λ ∼= Z2g is a lattice

(g = 1)
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Abel proved

Z = (f)⇒
∫

Γ

ω ≡ 0 mod {periods}
so that 〈AJX(Z), ω〉 =:

∫
Γ
ω is well defined and we have

0 // CH1(X)hom

AJX
��

// CH2(X) // H2(X,Z) // 0

J(X) .

Abel and Jacobi proved that the mapping AJX is an isomorphism:

AJX : CH1(X)hom
∼→ J(X) .

Finally, the de Rham cohomology of X in degree one is a direct sum:{
H1

DR(X,C) ∼= H1,0(X)⊕H0,1(X)

H0,1(X) = H1,0(X)

(Hodge structure of weight one) where

H1,0(X) = H0
(
Ω1
X

)
so that

J(X) ∼= H1,0(X)∗/H1(X,Z) .

This summarizes the relation between Hodge theory and algebraic cy-
cles in the classical case. It may be expressed by:

There exists a filtration F kCH1(X) with k = 0, 1 and{
Gr0CH1(X) ∼= H2(X,Z)

Gr1CH1(X) ∼= J(X) = H1,0(X)∗/H1(X,Z) .

We will see in a moment that H2(X,Z) = Hg1(X) and J(X) have
Hodge theoretic interpretations. In summary, there is a filtration on
the Chow group whose graded quotients have Hodge-theoretic interpre-
tations.

In general, a Hodge structure of weight r is given by a lattice VZ ∼= Zb

together with a Hodge decomposition2 VC = ⊕
p+q=r

V p,q

V q,p = V̄ p,q .

2The most important Hodge structures have the additional data of a polarization,
which we shall not discuss here.
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Hodge’s theorem: For X a smooth, projective variety, Hr(X,Z)/torsion
has a canonical Hodge structure of weight r.

This Hodge structure on cohomology comes about as follows: By de Rham’s
theorem

Hr(X,C) ∼= Hr
DR(X)

=
(closed forms)

(exact forms)
.

Now X is a complex manifold with local holomorphic coordinates
z1, . . . , zn  Ar(X) = ⊕

p+q=r
Ap,q

Āp,q = Aq,p

and locally ϕ ∈ Ar(X) is

ϕ =
∑
I,J

ϕIJ̄dz
I ∧ dz̄J

where I = (i1, . . . , ip), dz
I = dzi1 ∧ · · · ∧ dzip , etc. Hodge proved that

for special types of compact, complex manifolds — those that have a
Kähler metric — the decomposition on forms induces one on cohomol-
ogy. Submanifolds of Kähler manifolds are Kähler using the induced
metric. Since PN is a Kähler manifold, smooth complex projective va-
rieties are Kähler manifolds (of a special type). Thus their cohomology
groups have canonical Hodge structures. For the study of algebraic
cycles, their Hodge-theoretic invariants will lie in

— the group of Hodge classes

Hgp(X) =: Hp,p(X) ∩H2p(X,Z) .

— the intermediate Jacobian, which when dimX = n is given by

Jp(X) =: F n−p+1H2n−2p+1(X)∗/H2n−2p+1(X,Z)

where

FmVC = ⊕
p=m

V p,r−p .

When n = p = 1

J1(X) = H1,0(X)∗/H1(X,Z)



10 PHILLIP GRIFFITHS

as above. We then have the basic diagram

0 → CHp(X)hom → CHp(X)
[ ]−−→ Hgp(X)

?−−→ 0yAJpX

y[ ]D
∥∥

0 → Jp(X) → H2p
D (X,Z(p)) −−→ Hgp(X) −−→ 0

The map [ ] assigns to Z ∈ CHp(X) its fundamental class

[Z] =
∑
i

ni[Zi] .

If [Z] = 0, then Z = ∂Γ and

〈AJX(Z), ω〉 =

∫
Γ

ω mod {periods}

where {
dimR Γ = 2n− 2p+ 1
ω ∈ F n−p+1H2n−2p+1(X,C)

}
.

The middle mapping [ ]D is the Deligne class, which gives the proper
way of formulating the above.

The above diagram summarizes the basic Hodge-theoretic invariants
of an algebraic cycle. When p = 1 (i.e. divisors or codimension one
cycles) it is exact on each end (Picard-Poincaré-Lefschetz — late 19th

and early 20th centuries) and, using standard dualities

AJ1
X : Pic◦(X)

∼→ H1(OX)/H1(X,Z)∥∥
J1(X)

is an isomorphism.

The (original form of) the Hodge conjecture (1954) is

[ ] is surjective .

The Beilinson-Bloch conjecture (∼ 1980) concerns the kernel of

AJpX : CHp(X)hom → Jp(X) .

(here modulo torsion). For p = 2 both conjectures involve new consid-
erations — both geometric and especially arithmetic — that are not
present for p = 1 when one is doing complex algebraic geometry.3

3They are, of course, present and interesting if one is working in arithmetic
algebraic geometry.
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Both conjectures ultimately involve an existence result; i.e. con-
structing something given Hodge theoretic and/or arithmetic assump-
tions.

IV. The Hodge conjecture4

(i) Status

— True for p = 1 (Lefschetz, ∼ 1920)
— Beyond this and interesting but special examples, nothing gen-

eral is known.
— A few consequences of the HC have been verified and a few

modifications/refinements have been found.

Specifically
— It must be modified to be over Q for p = 2.

• Atiyah-Hirzerbruch example of a torsion, non-algebraic coho-
mology class (1960’s)
• Kollar et al. example (1990’s) of

— ζ ∈ H4(X,Z) (dimX = 3)
— ζ = [Z] where Z ∈ Z2(X)⊗Q but where we cannot choose

Z ∈ Z2(X) to be integral (must have denominators)

— Kähler version is false. For X a Kähler manifold and ζ ∈ Hg1(X),
there exists a holomorphic line bundle L → X with c1(L) = ζ. Voisin
(∼ 2002) constructs a (non-algebraic) complex torus X = C4/Λ and
ζ ∈ Hg2(X) where X has no coherent sheaves F with ci(F) 6= 0 for
i 6= 0, 8 (X is complex analytically “barren”).

Conclusion: Any general construction of cycles must be modulo torsion
and must make use of having an algebraic variety.

(ii) An aritmetic implication
Given a field k of characteristic zero and a smooth variety X de-

fined over k (think of polynomial equations with coefficients in k), the
algebraic de Rham cohomology

Hr
DR

(
Ω•X(k)/k

)
is defined (for X affine think of the usual de Rham cohomology con-
structed from polynomial differential forms with coefficients in k and
restricted to X). For any embedding

σ : k ↪→ C
4We shall not discuss the generalized Hodge conjecture (GHC).
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there is a corresponding complex algebraic variety Xσ(C), and for X
smooth and projective Grothendieck proved that Hr

DR

(
Ω•X(k)/k

)
⊗k C ∼= Hr

DR(Xσ(C),C)

Hr
DR

(
Ω

=p
X(k)/k)

)
⊗k C = F pHr(Xσ(C),C) .

Given ζ ∈ H2p
DR

(
Ω

=p
X(k)/k)

)
we denote by

ζσ ∈ F pH2p(Xσ(C),C)

the corresponding class. On the face of it the rationality condition

ζσ ∈ H2p(Xσ(C),Q)

or equivalently

(∗) ζσ ∈ Hgp(Xσ(C))

depends on the embedding σ. However

HC =⇒ (∗) is independent of σ .

Remarks: In concrete terms, on an affine open set U in X given by

fλ(x1, . . . , xN) = 0

where the coefficients are in k, ζ is represented by a differential form

ϕζ =
∑

α

gα(x)dxα1 ∧ · · · ∧ dxαm

where gα(x) ∈ k[x1, . . . , xN ]. Setting

fλ,σ(x) = σ · (coefficients of fλ(x))

the equations fλ,σ(x) = 0 define a complex variety Uσ ⊂ CN . Then (∗)
is equivalent to the form σ(ϕζ) having rational periods∑

α

∫
Γ

gα,σ(x)dxα1 ∧ · · · ∧ dxαm ∈ Q

for Γ ∈ Hm(Uσ,Q). As for the implication =⇒ we have:

Z ∈ Zp(X(k)) =⇒
{

the fundamental class

[Z]k ∈ H2p
(

Ω
=p
X(k)/k

)
is defined.

}
If Zσ ∈ Zp(Xσ(C)) is the corresponding cycle using the embedding
σ : k ↪→ C, then

[Z]k = [Zσ]
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under the above isomorphism. Thus all ζσ are Hodge classes. If some
ζσ = [Z ′] where Z ′ ∈ Zp(Xσ(C)), then by an algebraic equivalence we
may move Z ′ to a cycle Z defined /k.

We say that

ζ ∈ H2p
(

Ω
=p
X(k)/k

)
is a Hodge class if (∗) holds for one σ, and that σ is an absolute Hodge
class if (∗) holds for any embedding σ. Then

(∗∗) HC =⇒ Hodge classes are absolute.

Deligne has proved the RHS of (∗∗) for abelian varieties (∼ 1980),
but it is not known in general.

If ζ is an absolute Hodge class, then consideration of all the embed-
dings leads to a family (smooth and projective total space and base
space)

X→ S

• defined over a number field
• having X as a fibre
• having Z ∈ Hgp(X) with

Z |X= ζ .

Maillot and Soulé have asked the question: Can the HC be reduced
to the case of varities defined over Q̄? This is related to the field
of definition of Noether-Lefschetz loci. Without assuming that Hodge
classes are absolute, Claire Voisin (∼ 2006) has proved that in some
interesting cases these loci are defined /Q̄.

(iii) A potential topological reformulation
Given (X2n, L, ζ) where

• ζ ∈ Hgn(X)prim

• L→ X gives X ↪→ PL
there exists an admissable normal function

P̌L
νζ−−→ J̃Σ

with singular locus
sing νζ ⊂ P̌L

such that
HC ⇐⇒ sing νζ 6= ∅ for L� 0 .

The proof in this strong form is due to deCataldo-Migliorini and Brosnan-
Fang-Nie-Pearlstein (2007) — it uses the decomposition theorem (Beilinson-
Bernstein-Deligne-Gabber) and results of M. Saito. The space J̃Σ is a
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universal Néron model for intermediate Jacobians. It’s construction is
“work in progress” by Andrew Young and others; it is based on the ma-
jor work by Kato-Usui (2006) constructing partial compactifications of
quotients of period domains by (suitable) arithmetic groups. There is
hoped to be a subvariety

ΞΣ ⊂ J̃Σ

such that

sing νζ = ν−1
ζ (ΞΣ) .

Thus

ν∗ζ ([ΞΣ]) 6= 0 =⇒ sing νζ 6= ∅ .
In a number of cases the converse has been proved, indicating that it is
at least plausible to have such a topological reformulation of the HC.

V. The Beilinson-Bloch conjectures

In the late 1960’s it was found that the wonderfully harmonious story
for divisors breaks down in higher codimensions. For the fundamental
class mapping, the (modified) HC provides a potential answer about
the image. However, for AJX the situation was found to be radically
different from the codimension one case.

Example: Let X be an algebraic surface with H0(Ω2
X) 6= 0 (eg., X ⊂ P3

a smooth surface of degree = 4). For 0-cycles Z =
∑

i nipi one has
— [Z] =

∑
i

ni[pi] ∈ H4(X,Z)

l l
degZ =

∑
i

ni ∈ H0(X,Z) .

— If [Z] = 0 then there is defined

AJX(Z) ∈ H0(Ω1
X)∗/H1(X,Z) .

(Albanese map — same as for curves), and Mumford showed

dim{ker AJX} =∞ .

In addition to X ⊂ P3 of degree = 4, (P2, T ) gives a relative example
with 2-form dx

x
∧ dy

y
.

Example: Let X ⊂ P4 be a generic quintic threefold. Using the lines
on it, Clemens and Voisin showed

Im{AJX} is a countable, non-finitely generated group.
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Thus the converse to Abel’s theorem and the Jacobi inversion theo-
rem are very false in higher codimension. Some conjectural order was
brought to at least ker{AJX} by the conjectures of Beilinson and Bloch
(late 1970’s, early 1980’s). These conjectures relate to the structure of
CHp(X) and may be informally stated as: Over Q there exists a filtra-
tion

F kCHp(X)

such that 

F 0CHp(X) = CHp(X)
∪

F 1CHp(X) = CHp(X)hom

∪
F 2CHp(X) = Ker AJpX

...
F p+1CHp(X) = 0 .

Moreover, if X is defined over a number field k, then

F 2CHp(X(k̄)) = 0

(as noted above, K2(Q̄) = 0 is a theorem). There is a conjectural
formula for the graded quotients in terms of the category of mixed mo-
tives. In particular, over C and assuming the GHC, the graded quo-
tients should have Hodge-theoretic interpretations. There have been
a number of proposals (Murre, Jannsen, Nori,. . . ) for the definition of
the FmCHp(X).

To at least this complex algebraic geometer the last, boxed state-
ment in Bloch-Beilinson seemed to come out of the blue — what could
the field of definition have to do with rational equivalence in higher
codimension? It turns out there were at least two hints:

— the formal tangent space to F 2CHp(X(k̄)) is zero for p = 2.
(TfK2(F ) ∼= Ω1

F/Q (van der Kallen) and Ω1
Q̄/Q = 0.)

— the natural generalization of the Birch and Swinnerton-Dyer
conjecture concerning the order of vanishing of an L-function
suggests the boxed statement above.

About three years ago it was found that:

The GHC plus the boxed part of conjecture imply the
remaining B2 conjectures. Moreover, the graded pieces
have Hodge-theoretic interpretations .



16 PHILLIP GRIFFITHS

The kernel of the idea occurs already for 0-cycles on a surface: Given
Z =

∑
i nipi ∈ Z2(X) with

0-forms: degZ =

∫
Z

1 = 0, 1 ∈ H0(Ω0
X)

1-forms: AJX(Z)(ϕ) =

∫
Γ

ϕ ≡ 0 (mod periods)

where ∂Γ = Z, ϕ ∈ H0(Ω1
X)

can we construct a real 2-chain Λ such that

2-forms:

∫
Λ

ω ≡ 0 for ω ∈ H2(Ω2
X) =⇒ Z ∼rat 0?

For simplicity we assume that X is defined over Q by equations

(∗) fλ(x1, . . . , xN) = 0

with coefficients in Q. Then

Z =
∑
i

nipi

where
pi = (xi,1, . . . , xi,N)

has coefficients in a finitely generated extension k of Q. Applying
Aut(C/Q) to (X,Z) leaves X fixed and “spreads” Z to an algebraic
family of 0-cycles. The component of this family containing Z may be
assumed to be a smooth, projective variety S with

dimS = tr degQ(k)

and where S is defined over a number field, which for simplicity we
take to be Q. The spread of Z then gives

Z ∈ Z2(X × S(Q))

where we may think of
Z = {Zs}s∈S

as a family of 0-cycles parametrized by S. The idea now is to write

Zs = ∂Γs

and consider the integrals

(∗∗)
∫

Λ

ω, ω ∈ H0
(
Ω2
X(Q)

)
where Λ is the 2-chain traced out by the 1-chains Γs over a closed loop
λ ∈ H1(S,Z). There are ambiguities in this construction:
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• choice of Z in [Z] ∈ CH2(X)
• choice of S in its birational equivalence class
• choices of Γs and λ.

Modding out these ambiguities one sees that one obtains

[Z] ∈ F 1CH2(X × S)/ambiguities

and that

AJX×S(Z) ≡ 0 ⇐⇒
{

AJX(Z) = 0
(∗∗) ≡ 0 mod periods.

By the boxed statement in Bloch-Beilinson one sees that the RHS gives
the condition (modulo torsion)

Z ∼rat 0 =⇒ Z ∼rat 0 .

Remark: If one does the analogous construction for divisors on curves,
one finds that there is no new information modulo the ambiguities.

One may informally express the idea behind the above as

In codimension = 2, the invariantly defined part of the
Hodge theory of the field of definition of the cycle must
be used.

In this way, one see again that arithmetic considerations necessarily en-
ter into the study of cycles in complex geometry in higher codimension,
which has been the main theme of this talk.
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