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0. INTRODUCTION.

These notes re n exposition of the philosophy due to ESe Crtn that, v
the use of moving frames, the theory of Lie groups constitutes powerful nd
elegant method for studying uniqueness nd existence questions for submnifolds
of homogeneous spce. This philosophy, as expounded in his beautiful book
"Groupes finis et continus et l gomtrie diffrentielle", Gauthier-Villrs
(Pris), is perhaps not s widely appreciated s it should be, especially s
regards the higher order inwrints of submnifold. A possible reson for
this is that, even though the bsic Lie group statements underlying the theory
re of rther general nture, their ppliction to geometry seems t present
more dpted to special cases depending on subtle conditions of non-degeneracy,
rather thn constituting vast general theory. It is the intricacy nd beauty
of these special cses which in the end justifies the general pproch. Our
purpose here is to present somewhat updated nd hopefully clear exposition
of portion of the Crtn philosopy, together with few traditional nd some
new applications to geometry. In particular, we emphasize the case of holo-
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morphic curves in locally homogeneous complex manifolds. It is here that the
non-degeneracy assumptions become most easily dealt with aualytical[y.
Moreover, as will be further discussed below, we have in mind eventual applica-
tions of these methods to variations of Hodge structure, and also perhaps to
value distribution theory.
We now give a brief outline of this paper. In Section 1, we state and prove

the two propositions about uniqueness and existence of mappings of a manifold
into a Lie group G which underlie the theory. Both results are phrased in terms
of the left invariant Maurer-Cartan forms on G, and they essentially boil down
to the standard existence and uniqueness for ordinary differential equations
as given by the Frobenius theorem.

In Section 2, we discuss a few examples of how a Lie group G may be fre-
quently interpreted as the set of "frames" on a homogeneous space G/H.
When this is done, the Maurer-Cartan forms appear in the structure equations
of a "moving frame", and the Maurer-Cartan equations give a complete set
of relations for the structure equations of a moving frame. The question of
describing the position of a submanifold M of G/H may then be thought of
as attaching to M a "natural frame", or, equivalently, a cross-section of the
fibration G ---> G/H over M. The Maurer-Cartan forms for G, when restricted
to this natural frame, become a complete set of invariants for M in G/H.

Before proceeding to some remarks on the general theory, we thought it
worthwhile to mention some classical examples. Section 3 is therefore devoted
to Euclidean differential geometry, in particular, to a proof of the standard
uniqueness and existence theorems for curves and hypersurfaces in R", both
presented in the general philosophy of this paper. Of course, there are many
more rigidity theorems than those discussed here, but generally speaking they
seem to involve either global considerations or thorny algebraic problems.

In Section 4 we take up holomorphic curves in complex projective space.
Via the use of Frenet frames, the Cartan structure equations for the unitary
group immediately yield the (unintegrated) Second Main Theorem of H. and
J. Weyl. Next, it is observed that, by use of the general lemmas on Lie groups,
the Second Main Theorem easily implies Calabi’s striking result (Ann. of Math.,
vol. 58 (1953), pp. 1-23) that a non-degenerate holomorphic curve in P" is
uniquely determined, up to a rigid motion, by its first fundamental form alone,
ghis being in strong contrast to the real case. Following this, we give a new
and easily stated existence theorem for when a metric Riemann surface can be
isometrically mapped into P". Section 4 concludes with a brief discussion
concerning the local character of the classical Pliicker relations. By Calabi’s
result, these Plticker relations exist locally, at least in principle, and they can
be made explicit by the Second Main Theorem.

Section 5 is perhaps the most important one. In it we discuss the related
questions of rigidity and contact of submanifolds of a homogeneous space.
These constitute the central theme of Cartan’s book cited above. The idea is
that, by going to a sufficiently high order jet or contact element of a submanifold



LIE GROUPS AND MOVING FRAMES 777

M of a homogeneous spce, there will nturlly pper good frame over M
in similar mnner to the ppearnce of the Frenet frames of a curve in Euclid-
en spce. Restricting the Murer-Crtn forms to this "natural frame"
then gives complete set of invrints of M. Moreover, these inwrints my be
rbitrrily prescribed when dim M 1, nd may be prescribed subject only to
the integrability conditions rising from the Murer-Cartn equations when
dim M > 1. The effective use of frames in specific cses involves subtle questions
of higher order geometry, nd goes fr beyond the somewhat common notion
that "frames re essentially the sme s studying connections in the principal
bundle of the tangent bundle." It is the analysis of higher order contact that
necessitates non-degeneracy ssumptions on the submanifold, nd it is perhaps
for this reson that general results in higher order geometry seem to me less
interesting thn special cses.

In the second prt of Section 5, we illustrate the general philosophy by
proving rigidity theorem for non-degenerate curves in the Grssmnnin
G(n, 2n) of oriented n-planes in R. We find that a. non-degenerate curve A
is uniquely determined, up to rigid motion, by the second order information
ong A, nd moreover the n first order nd n(n 1) second order invrints
my be arbitrarily prescribed.
Hving in mind the rigidity of holomorphic curves in P (4) nd second

order behavior of re[ curves in the Grssmnnin G(n, 2n) (5), we turn in
Section 6 to the rigidity question for non-degenerate ho]omorphic curves in
the complex Grassmnnin G(n, 2n). Such non-degenerate curve A()
turns out to be uniquely given by its second order behavior. However, the
holomorphic nture of A() implies that the number of independent second
order invriants is at most n(n 1)/2, which is one-hlf the number in the
rel cse. Although we think it is likely, we re unable to definitely prove that
these inwrints re of second nd not first order. In 6(b) we give geometric
interpretation of regular point on a non-degenerate ho]omorphic curve A()
in G(2, 4). Thinking of A() s family of lines in P, the condition that A
be degenerate is that the ruled surface S trced out by the family of lines
A() be developable. A point o on non-degenerate curve A is regular in case
the lines A(0 - e) do not meet the line A(o) for smll e. We then characterize
regular points ccording to the Schubert hyperplnes in G(2, 4) which meet
A(’) to second order t " o.
To conclude this introduction, we should like to mke few comments of
general nture leading to brief discussion of the problem which provided

the underlying motivation for this study.
The first remark is that the discussion of higher order invriants seems to

be considerably simpler for submanifolds of homogeneous space G/H where
H is compact. In this connection, the reder is invited to compare the Grss-
mnnin example given in 5 with the case of curves in the ffine or projective
plane discussed in the book by Crtn, which require jets of orders 3 or 5 re-
spectively to frame the situation.
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Now in the case of a holomorphic curve in pn or G(n, 2n), we may use either
the complex linear group, which is more natural for the study of analytic or
geometric invariants, or the unitary group which relates to metric invariants.
So far as first order behavior is concerned, both approaches lead essentially to
the same results, essentially because of the infinitesimal Wirtinger principle
expressing the analytic invariants in metric terms. However, when one passes
to higher order contact, the relationship between analytic and metric invariants
seems less intimate. For holomorphic curves in Pn, this doesn’t matter because
of Calabi’s rigidity theorem mentioned above. On the other hand, for holo-
morphic curves in G(n, 2n) the lack of a good analytic interpretation of the
2nd order invariants may cause difficulty in trying to study the deeper analytic
properties, such as the value distribution theory, of these curves.
Now one case in which metrics are intrinsic to the analytic situation is that

encountered in variation of Hodge structure. Here, one may think of being
given an analytic family {V }eM of smooth, projective algebraic varieties V
and then the periods of the integrals on Vr or equivalently the Hodge de-
composition of the cohomology H*(V, C), generates a holomorphic period
mapping

(o. M --, r\V/H

where G/H is a period matrix domain or, equivalently, classi]ying space ]or
Hodge structures, and F is the monodromy group. The Riemann-Hodge bilinear
relations induce intrinsic metrics in the situation (0.1), and it seems of interest
to find a complete set of local invariants for the period mapping A. As a first
guess, we would suggest that, as a consequence of the infinitesimal period
relation (cf., Griffiths-Schmid, loc. cit.), the period mapping is determined up
to rigid motion by its first order information.

Looking beyond the local situation, among the deepest and most interesting
results in the study of Hodge structures are those concerning the global mono-
dromy group F in case M is an algebraic variety. The basic outstanding prob-
lem is whether or not F is of finite index in its arithmetic closure F.. One
possible approach to this question is the following: Let A be the universal
covering of M and

> G/I 

[Mh>r\!/H
the lifted period mapping. By definition, the image () is r-invariant,
and, as a consequence of the finiteness of the volume of A(M), i] in addition

An expository account of this subject is given in Variation of Hodge Structure: A Discussion
of Recent Results and Methods of Proof by P. Griffihs and W. Schmid, to appear in Proc. Tata
Institute Conference on Discrete Groups and Moduli, Bombay (1973).
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the image is l’z-invariant, then 1" is of finite index in r,.. However, in general
X(Jr) will not be r,.-invariant, but the "span" in G/H of X(jr) should be.
Now the "span" of a subvariety of a homogeneous space has not yet been
defined precisely, but intuitively it should be the homogeneous subspace G’/H’
(G’ C G, H’ H G’) generated by the osculating frames of sufficiently high
order of the subspace. In particular, the "span" should be all of G/H in case
A is "non-degenerate", and by Deligne’s semi-simplicity theorem for the global
monodromy group r, the span of X(/]r) should be all of G/H in case r is ir-
reducible. Restricting to this situation, one might hope that a suitable modifi-
cation of the finite volume argument would yield the general result.

This is, of course, extremely speculative, but it seemed worthwhile to mention
a possible global implication of the study of the local higher order behavior of
a subvariety of a homogeneous space. In any event, as regards the period
mapping (0.1), it seems to us that either (i) there are no higher order invariants,
or (ii) if there turn out to be higher order invariants, then these should be of
algebro-geometric interest.

1. TWO LEMMAS ON MAURER-CARTAN FORMS.

Let G be a Lie group with Lie algebra . The left-invariant Maurer-Cartan
forms on G may be considered collectively as a -valued 1-form on G which
satisfies the Maurer-Cartan equation

(1.1) l"do 1/2’[o,o]
More precisely, if we let X1 X be a basis for the Lie algebra of left
invariant vector fields on G and ol the dual basis for *, then
.1 X () 0. Setting d(X ( oo,) X ( doo and [X ( , X( .]
[X X] A , equation (1.1) is satisfied.
For example, in the general linear group GL(n, R) we let g (gi) be a variable

non-singular matrix, and then

(1.2) g-1 dg

is the Maurer-Cartan form, which satisfies the equation (1.1) for GL(n, R)

d=A.

In general, if G GL(n, R) is a closed linear group, then the Maurer-Cartan
forms for G are spanned by the restrictions to G of the matrix entries w; in
(1.2). For instance, if G O(n) is the orthogonal group, then the Maurer-
Caftan form for G will be thought of as being given by (1.2), subject to the
relation - x 0.

We shall give two simple and essentially local results concerning smooth
maps of a manifold M into a Lie group G. The first of these is
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(1.3) Let , M ---, G be two smooth maps o a connected maniIold M into
G. Then

(x) . ](x)

]or fixed g G i], and only i],

where oo i the Maurer-Cartan ]orm on G.

Proo]. In the linear case we write

(x) (x) ](x)
and differentiate to obtain - d] - de] + ]- d],

from which it is obvious using (1.2) that

dg 0 ]* ]*,

thus proving our result in this case.
In the general case, we firs remark that a smooth mapping h.M G is

constant if, and only if, h* 0 since gives a basis for the cotangent space
t all points of G. We shall apply this to

h(x) I(x)](x)-’

to show that, if ]* ]*, then h* 0 at an arbitrary point Xo M. Chang-
ing ](x) and ](x) into ](Xo)-I(x) and ](Xo)-](x), respectively, does not change
the assumption ]* ]* nor the condition that h* 0 t Xo and thus we
may assume that ](Xo) ](Xo) e. If M is an open interval on the real 5ne,
and if , T(G) are the respective tangent vectors to the curves ](x), ](x)
at x Xo, then - T(G)

is the tangent to the product curve ](x). ](x) - at x xo. From this it follows
that, at xo,

h* 1"- ]*,

which then proves (1.3). Q.E.D.
Our second lemma is a well-known existence theorem:

(1.4) Suppose that is a 6-valued 1-]orm on a connected and simply connected
mani]old M. Then there exists a C map M G with *i], and only if,
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Moreover, the resulting map is unique up to le]t translation.

Proof. We first prove (1.4) locally around a point Xo V by using the
Frobenius theorem to construct the graph of ]. To insure that the submanifold
of M G to be constructed is indeed a graph, some preliminary considerations
are necessary. Denoting small neighborhoods of Xo by U, it is easy, using the
exponential map for G, to find g U - G such that g(xo) e and g* at
Xo. Now write the desired mapping ] in the form

](x) h(x).g(x),

nd we shall seek to find h with

(1.5) h*o Ad g(- g%,),

since (1.5) implies that ]*o as required. Note hat, by construction,

(1.6) k(Xo) 0,

and the integrability condition

d 1/2[, ]

follows from that for and (1.5).
On U G we consider the differential system given by the -valued 1-form

0=-.
This system is completely integrable, since

de 1/2[, ] 1/2[,

0 (modulo

Moreover, in the tangent space to U G at (Xo, e) the equation

O(Xo) o

defines the tangent space to U {e} by (1.6). Consequently, both the complete
integrability and rank conditions required by the Frobenius theorem are satisfied,
and so we may find a maximal integral manifold V of the differential system
t? 0 passing through (Xo, e). Since

T(....)(Y) T(....)(U X {e}),

V is the graph of a map h U - G.
By construction, h%, and so (1.4) has been proved locally.
Now we cover M by open sets U. in which there are maps ]. U. -- G with

J*o . In U.(’ U,
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{Xo} G

give constant maps into G, and thus define a flat principal bundle with fibre
G. Since M is simply-connected, this bundle has a global fiat cross-section
{g. }, and replacing ]. by g]f. gives a global map ] M - G satisfying ]* .

Q.E.D.

2. LIE GROUPS AND MOVING FRAMES.

In geometry one frequently encounters the homogeneous manifold G/H of
cosets of a closed subgroup H of Lie group G, and one is interested in the geomet-
ric properties of submanifolds M of G/H which are invariant under G. The
philosophy of Elie Cartan is that, in many cases, G may be identified with a
set of "frames" on G/H, and then associated to a submanifold M of G/H will
be a natural set of frames or, if one likes, cross-sections of G -- G/H over M.
In this situation the Maurer-Cartan forms on G when restricted to this natural
set of frames over M yield a complete set of inwriants to which the two Lie
group lemmas of 1 may be applied. In this section we will give a few examples
of Lie groups interpreted as frames on a homogeneous space, and in the following
paragraphs these considerations will be applied to geometry.
Example 1. On the Euclidean spce R we define a ]rame F to be a set of

vectors

F (x; el, e)

where x R is a position vector and e, e is an orthonorml basis for R.
In an obvious wy the set of all such frames F may be identified with the Lie
group E(n) of Euclidean motions, x being the translation component and
e, e the rotation part of a general Euclidean motion.

In this language, obtaining the left-invariant Maurer-Cartan forms on E(n)
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is equivalent to the Cartan method of "moving frames"
given a smooth mapping

More precisely,

E(n) R

which is equivariant in the sense that

b(F. F’) F. (F’)

for frames F, F’ E(n), the differential d is an R-valued 1-form on E(n)
which may be written as

db(F) b(F)e

at a frame F (x; el e). it follows immediately that, writing the di]-
]erential db at the ]tame F in terms of the basis ]or R determined by F leads to
le]t invariant 1-]orms b on E(n). This is the Caftan method of moving frames,
and when h is taken to be x or one of the e’s, we are led to a basis for the Maurer-
Caftan forms on E(n). Explicitly, we write

(2.1) f dxde oiie o -- oi 0

and then the and ; (i < ) give a basis for the Maurer-Cartan forms on
the Euclidean group. Taking the exterior derivatives of the equations (2.1)
yields

(2.2)

which are the Maurer-Cartan equations (1.1) for the group N(n).
From the fibre bundle point of view, the position vector map

(2.3) x E(n) -- R"

gives the principal fibration E(n) -+ E(n)/O(n) with group O(n).
o are horizontM in the fibration, and the quadratic differential form

The forms

is the pull-back under x of the usual metric on R. The fibration (2.3) may be
identified with the principM bundle of orthonormal tangent frames for this
metric. When this is done, the first equation in (2.2) says that the o form
the connection matrix for the Riemannian connection on R, and the second
equation states that this connection has no curvature.
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Example 2. We shall represent points of complex projective n-space P"
by non-zero homogeneous coordinate vectors Z [Zo zn] in C/1. A
frame F for P is a unitary basis

F-- {Zo,Z1, ,Z.}

for C’/; thus the set of all such frames is the unitary group U(n 1). Writing
as before

(2.4) dZi Z OiiZi Oil 1- ii 0

gives the Maurer-Cartan forms O; on U(n + 1), and taking the exterior de-
rivative of (2.4) gives the Maurer-Cartan equation

(2.5)

for the unitary group.
The mapping

(2.6) Zo U(n + 1) --, P"

gives a principM fibration with fibre U(1) U(n), the U(1) actor corresponding
to all rotations

Zo e
/- Zo

in the line OZo in C/, and the U(n) factor being the rotations in the orthogonal
plane Zo to Zo. The corresponding vector bundles are the universal line bundle

with fibre Lzo OZo, and universal quotient bundle

with fibre Qzo C+I/Lz.
Using the index range 0 i, j, ]c n and 1 a, , n, the 1-forms

0oa

re horizontal for the fibrtion (2.6), and we claim that they are of type (1, O)
for the usual complex mnifold structure on P. To verify this, let F Z(F)
be a holomorphic mapping of the F-disc into P and

...,
C" lifting of this map into U(n 1). Then
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Zo(t) e--7 IIZ(t)ll
and consequently bZo is a multiple of Zo since 3Z() 0.

dZo() OooZo + OoZ

where all 0o are of type (1, 0).
The (1, 1) form

fo
/-- 1 Ooo

It follows that

is the pull-back to U(n + 1) in (2.6) of the standard K/ihler form on P as-
sociated to the Fubini-Study metric. The matrices of 1-forms

{oo}, {}

are the connection matrices for the metric connections in the universal bundles
L and Q respectively. Setting

it follows from (2.5) that

dOo. . A 0o

l. + . 0,

and thus {.} is the connection matrix for the K/ihler metric

I= _,Oo.0o.

on 1).
Example 3.

It-planes in Rn.
over A is a set

We denote by G(lc, n) the Grassmann manifold of oriented
Points of G(]c, n) will be denoted by A, and a frame F lying

F (el, ,e ;e+l, ,en)

of vectors such that el e forms an oriented basis for A and el e
forms an oriented basis for R". The set of all such frames is clearly the proper
orthogonal group SO(n), and the fibration

(2.7) SO(n) -- SO(n)/SO(k) X SO(n It)

_
e(k, n)

sends F to A el A A e.
The structure equations for this frame manifold are

Since the considerations in this paper are primarily local, questions or orientation will not
concern us.
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If we use the index range 1 _< a, B <_ k, lc + 1 <_ it, v <_ n, then the 1-forms

are horizontal for the fibration (2.7). The quadratic differential form

I

is the standard invariant metric on G(k, n), and the matrices

of 1-forms are the connection matrices for the obvious universal vector bundles
over the Grassmannian.

In Section 5 we shall use the Plgtclcer embedding

p n) --+

obtMned by sending a/c-plane A into

e A

where e1, ek forms an oriented basis for A. From (2.8) we find the relation

d(e, A A ek) ::t:: (e, A A e. A A e A

which implies that’ p is an equivariant isometric embedding.
Similar considerations apply also to the Grassmannian PG(lc, n)

_
G(lc + 1, n + 1) of oriented /c-planes in real projective space, and to the
complex Grassmannians G(k, n) of complex /c-planes in C and PG(lc, n)
G(/ + 1, n + 1) of/c-planes in P. This latter example will be extensively
discussed in 6 below.

3. EUCLIDEAN GEOMETRY.

(a) Curves in R. We shall see that, through the use of Frenet frames, (1.3)
and (1.4) may be interpreted as the classical statements that the curvature,
torsion, etc. of a curve in Euclidean space uniquely determine the curve up to
rigid motion, and that these quantities may be arbitrarily prescribed. Let
x(s) be a curve in R, which for convenience we assume parametrized by arc
length so that i]x’(s)ll 1. The curve is non-degenerate in case it does not lie
in a linear subspace. This is expressed analytically by saying that the Wronstian

W(s) x(s) A x’(s) A A
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is not identically zero. The point So is regular in case W(so) O, and in a
neighborhood of a regular point we may define a Frenet frame

(x(s), e(s), e.(s))
inductively by the condition

x’(s) A A x

Geometrically, the vectors el(s), e(s) span the th osculating space to the
curve, and they are uniquely determined up to sign. The Frenet frame gives
a distinguished lifting of the curve to the frame manifold, and a complete set
of invariants is obtained by restricting the Maurer-Cartan forms to this lifting.
More precisely, since x(s) e(s) we observe that, on the Frenet frame,

ds and w , O.

Next, since e(s) is a linear combination of x’(s),
combination of x’(s), x(/l)(s) and consequently

x()(s), dek is a linear

for > /-b 1

Using the symmetry o 4- 0 and writing

,.+ K(s) ds,

the structure equations (2.1) restricted to the Frenet frame become the Frenet
equations

dx

(3.1)
ss el

de,- -,,,_,(s)e,_, + ,,+,()e,+,

For n 3, K,(s) is the curvature and (s) is the torsion. In general, (1.3) and
(1.4) imply the classical statements: The "curvatures" (s) (k 1, n 1)
uniquely determine the curve x(s) up to rigid motion, and by setting ds,

0, .+1 (s) ds, and 0 for > k + 1, a curve x(s)
exists with preassigned curvature/unctions k(s).

(b) Hypersur]aces in Euclidean space. Let M C Rn+i be a connected hyper-
surface. Associated to M are the Darboux/tames

(x; e e. e+l)

where x M, the vectors el, e constitute an orthonormal tangent frame
to M at x, and e./l is a unit normal. Using the index range
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the e are determined up to orthogonal transformation and e/ is determined
up to sign. By restricting the Maurer-Cartan forms on E(n 4- 1) to the mani-
fold of Da.rboux frames, we obtain a complete set of invariants of the hyper-
surface M. We shall interpret these as the traditional first and second funda-
mental forms of M, and upon doing this the Maurer-Cartan equations (2.2)
will become the Gauss and Codazzi equations.
More precisely, since dx is tangent to M and is thus linear combination

of the e

(3.2) o.+ 0

on the mnifold of Drboux frames. The quadratic differential form

is the first ]undamental ]orm of M. To obtain the second fundamental form,
we use (3.2) and (2.2) to have

(3.3) 0 dn+ n+l,a a

Applying the Caftan lemma to (3.3) gives

.,+ b. b. b.

and the second ]undamental ]orm is defined by

(3.4) II bww

The Maurer-Cartan equations (2.2) are

(3.5) dw w.,+ A w,+. (Gauss)

dw.,+ w A w.,+ (Codazzi)

We now use (1.3) to prove that: M is determined up to rigid motion by its

first and second ]undamental ]orms. To do this it is convenient to think of M
as an abstract manifold together with a map

Moreover, it is clear that (3.2) is the only additional relation beyond the Maurer-Cartan
equations.

The Cartan lemma states that if 1, , on are linearly independent l-forms on a manifold
N, and if 1, are l-forms on N which satisfy

’. , A o =0,

then o aoo where a a.
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Given another map

such that I
embeddings.

M_R-+

[, he mnifold of Darboux frames is he sme for boh
Thus

where

and if the Guss nd Codazzi equations (3.7) are subsequently satisfied, then
from (1.4) we obtain: Given a simply-connected n-manifold M with Riemannian
metric I and quadratic orm II such that the equations o] Gauss and Codazzi are

We next claim that, as a consequence of (3.6),

(3.7) (Guss theorem).

To prove this, use the Gauss equation in (3.5) to obtain

o.

By the Cartan lemma,

o. . aw a. a..
But a. --a. since. . O, and this easily implies that all a. O.
If now II II, then

(3.8) .,.+ .,.+

by (3.4). Combining (3.6)-(3.8) we see that 11 Maurer-Crtn forms gree
on the frame bundle of M, and rigidity follows from (1.3).
Suppose now that M is simply-connected n-mnifold on which we have

Riemnnin metric I nd quadratic differential form 1I. On the orthonorml
frame bundle for M, global 1-forms w nd wo re uniquely defined by

If we define .,+, -w,+. by

(3.6) t o, &. (a 1, ..., n).
Wn+l (n+l 0
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satisfied, there exists an immersion M - R"/: realizing I and II as first and
second ]undamental ]orms.

4. HOLOMORPHIC CURVES.

(a) Frenet rames and the Second Main Theorem. A holomorphic curve is
a holomorphic map Z M -o 1a" from a Riemann surface M into complex pro-
jective space. The holomorphic curve is non-degenerate in case the image does
not lie in a proper linear subspace of P’. In terms of a local holomorphic co-
ordinate " on M, the holomorphic curve may be given by a holomorphic homo-
geneous coordinate vector

...,
Analytically, non-degeneracy is expressed by saying that the Wronskian

A A

is not identically zero. As in the real case, o is a regular point in case W(o) O.
In the neighborhood of a regular point we may define Frenet ]tames Zo(),
Z.() by the conditions

(4.1) IIZ(t) A A Z(*)(t)ll
Each Z.() is then determined up to a rotation

(4.2) Z(t) e’Z(t).
Geometrically, W() Z(i’) A A Z() (’) in the point in the Grassmannian
PG(]c, n) of/-planes in P" determined by the ]th osculating space to the holo-
morphic curve. Since Z() is a linear combination of Z(), Z() () and
Z() () 0, it follows as in the real case that

(4.3) ’ 0 if > low 1

.,/ is of type (1, 0)

Thus the Frenet equations for a holomorphic curve are

(4.4) dZ O._Z_

At this juncture it is convenient to recall the structure equations of local
Hermitian geometry. Let ds h d d be a conformal metric on M with
associated (1, 1) form

V/--L---
h d" A dft-

2

The Ricci ]orm is defined by

(4.5) Ric gt %/-- 0 log h;
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equivalently,

Ric 12 2K12

where K is the Gaussian curvature of the metric.
for calculating Ric , we write

To give an alternate means

where 0 is a (1, 0) form determined up to rotation
exists a unique 1-form (the connection form) which satisfies

and one verifies that

Then there

(4.7) Ric 12
2 d.

Explicitly, if we choose h d then -0 log h + log h. Rotating
into e"/:* changes the connection form into -{- d6 and this obviously
does not change Ric .

Returning to our holomorphic curve, we set

(4.8) fa,
2

e,.,+ A ,.,+,

Clearly, is the pull-back under W of the standard Kiihler form on PG(k, n).
To calcu]ate the Ricci form of, we shall use (4.6) to verify that the connection
form for the metric determined by 9 is

(4.9) o O. 0h+l.+l
Indeed, by (2.5) and (4.3)

A 0,+

wle obviously W 0. Using (4.6) it follows that the connection form
for is given by (4.9). By (4.7) and (2.5)

Ric
2 d

0k+l,k A 0&,k+l 0k+l,k+2 A 0k+2,k+l)
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The basic formula

(4.10) [Ric t t_-- gt+- 2gt

is called the Second Main Theorem in the theory of holomorphic curves. The
first few equations arising from (4.10) are

Ric

Ric o- 2+ 2

Ric - 2+ ,
etc., and from this we see that
(4.11) Given a non-degenerate holomorphic curve Z(), the osculating metrics

(k 1, k 1) are uniquely determined by o using the Second
Main Theorem (4.10).

As an application of (4.10), we shall derive the theorem of Blaschke that:
The Poincar$ metric (d d)/(1 [) on the unit disc cannot be obtained by an
isometric embedding into

Pro@ We shall give the argument when n 2, the general case being the
same. Setting

2

we have

Ric

If ft flo for some embedding in p2, then

2[t Ric t Ric fro -2gto

or

Then by (4.10)

Ric t 221 [to 3to

Ric 21 Ric to 22o,

which is a contradiction.

(b) Uniqueness and existence o] holomorphic curves. Using (1.3) and (4.1)
we shal[ prove the folIowing result of Calabi (Isometric Imbedding o] Complex
Manifolds, Ann. of Math., vol. 58 (1953), pp. 1-23):
(4.12) A non-degenerate holomorphic curve is uniquely determined up to

rigid motion by its first ]undamental ]orm o
Proof. Suppose that we are given two holomorphic curves
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induces the changes

(4.15)

on the Maurer-Cartan forms. By (4.13) and the Cartan structure equations,

(4.16)

Using the last equation in (4.16) for/c n gives d(0...
locally on M

,.,) 0, and so

For a real function .. Rotating Z. through angle -n gives, by (4.15), 0..... The first relation in (4.16) yields

0,+ e*/--7k0.+l (It 0, n- 1),

and thus rotating Zo,
again gives the relations

Z._l through angles o, q,-1 and using (4.15)

(4.17) (k 0, ,n- 1)

Z, Z M-.- I"
such that, with the obvious notation,

o 2o.

Then, by (4.11) we obtain

(4.13) 2 (k 0, ..., n- 1).

Assuming now (4.13), we wish to determine Frenet frames Zk 2, for Z, 2
respectively such that the Maurer-Cartan forms satisfy

(4.14) 0h., d., (/, 0,... n).

The implication "(4.13) (4.14)" is the complex analogue of the real theorem
that the arc-length, curvature, torsion, etc. determine a curve in R" (3(a)).
To begin with, rotating a given Frenet frame by
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Finally, the second equation in (4.16), when combined with the first relation
in (4.17), implies

(] 0,...,n- 1)

which when taken with the other equation in (4.17) implies (4.14). Q.E.D.
We shall now use (1.4) and the Second Main Theorem 4.10 to obtain an

existence theorem for non-degenerate holomorphic curves with preassigned
metric. Given a positive (1, 1) form 2o on a Riemann surface M, we define
a (1, 1) form 1 by

Ric 2o + 22o 21.

In case.21 is positive, which is equivalent to the Gaussian curvature of o being
< 1, we may define a (1, 1) form 22 by

Ric 21 -t- 221 2o %..

If 2 > 0, we may then continue and define 23 by (4.10) and so forth.
Definition. We say that 2o satisfies the Second Main Theorem in dimension n

in case positive (1, 1) forms o, 2n-, can be inductively defined by (4.10),
and when this is done

(4.18)

for (1, 0) forms 6k,k+

(4.19)

Ric ’n-1 22n_1 + 2.-2

A metric o on a simply connected Riemann sur]ace M is induced by
a holomorphic mapping Z :M ---+ P’ i], and only #, o satisfies the
Second Main Theorem in dimension n.
Given o, ,- satisfying (4.10), we write

Then l-forms stisfying

"A ,.+1

+ 0

are uniquely defined, and by (4.10)

(4.20) d. 26k.k+ A 6k+l.k 6k--l,k / 6k,k-1

Using the Poincar6 lemma, define 6oo by

(4.21) d6oo 6ol A

and set

611 600---(0
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If we define O,i -;, and 0; 0 for j > i + 1, then (4.19)-(4.21) imply
the Maurer-Cartan equations

and we may apply (1.4) to conclude (4.18). Q.E.D.
(c) Discussion of the Pliclcer relatios. The Second Main Theorem (4.10)

is one of the basic facts instrumental in the extension of the value distribution
theory o[’ au entire meromorphic function to a non-degenerate entire holo-
morphic curve

Z C-,P"

(c.f., "I-Io[oraorphic curves and metrics of negative curvature" by M. Cowen
and the present author to appear in Jour. d’Analyse). The relation (4.10) was
originally due to H. and J. Weyl, who remarked that the Second Main Theorem
essentially constitutes an unintegrated P[iicker formu|a, ttere we wish to
point out that the Pliclce’ [ormulae are o[ a local nature, and m’e essentially
reflections o] the Caftan equations or the unitary group wl.en applied to a Frenet
rarne
More precisely, we let PG(lc, n) be the Grassraannian of It-planes in P". For

a fixed (u lc 1)-plne , the set of all k-planes W which meet A constitutes
a divisor D on PG(lc, n) (these are the Schubert hyperplane sections of the
Grassraanniau). The unitary group U(n + 1) acts transitively on the space
PG(n lc 1, n) of such divisors D and we denote by dA the unique in-
variant raeasure of total volurae one.
Given a (possibly non-compact) Riemann surface and non-degenerate

holomorphic mapping Z ]r -, p-, we consider the associated curves W, 2 --PG(lc, n), and denote by 20 the pull-back under W of the standard Kiihler
metric on PG(I, n). Given a relatively compact open set M C /r, we then
define the mean degree

f n(M, A) dh
laG (n-k- .n)

to be the average of the number n(M, A) of points of intersection of W0(M)
with the Schubert hyperplanes D. In case is compact, we may take M
and then n(M, A) is the same for all A, and i(M) is degree of W,(M) in the
usual sense of lgebraic geometry. If we let

v(M) -The classical Pliicker formulae for au algebraic curve C in 1a" give linear relationships
between the degrees, as defined in algebraic geometry, of the various osculating curves C()

(k 0, n 1, C() C), a formula in which the genus of C and the singularities of the
various C() appear also linearly. We will discuss this formula in some detail for plane curves
with ordinary singularities.
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be the area of Wk(M), then Cro]ton’s ]ormula ]rom integral geometry gives the
relation

[(4.23) vk(M) k(M),

expressing the area of W(M) as the average number of points of intersection
of this curve with Schubert hyperplanes. If M M is compact, (4.23) is the
classical Wirtinger theorem, equating the degree (a projective invariant) with
the area (a metric invariant).
The Plticker formulae are linear relations among the mean degrees (M).

They are obtained by applying the Gauss-Bonnet theorem (for singular metrics)
to the Second Main Theorem (4.10). In the non-compact case, an integral
over the boundary of M in appears, but in some cases, such as/r C and
M disc of radius r, this may be estimated (cf., the paper by Cowen-Griffiths
cited above). In the compact case M ., there is no boundary term and
one proceeds as follows" A pseudo-metric on M is a C non-negative (1, 1)
form such that, given a point x M and local holomorphic coordinate centered
at x,

where ho is a positive C function.
Ric t are defined by

(4.24)

The singularity index u(2) and Ricci form

,(u) ,(x)
xM

fl
%/-f

2
O0 log ho

The Gauss-Bonnet theorem for singular matrics is the formula

(4.25) J Ric 2 + x(M) + (2) 0,

where x(M) 2 2g (g genus of M) is the Euler-Poincar characteristic.
Setting k (2,) and applying (4.25) to (4.10) gives the genera] Plicker
]ormulae

i(4.26) + 6_(M) -t- 6+,(M) 26o(M) + 2g- 2.

It is perhaps worthwhile to conclude by specializing (4.26) to plane curves
with ordinary singularities, which will now be explained. Given a compact
Rieman surface M and non-degenerate holomorphic mapping Z M --the image Z(M) will be an algebraic curve C of degree d in P2, where d is the
number of points of intersection of C with a general line A. The first associated
curve will be denoted by Z* M -- p2., where P* is the dual projective space
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of lines in P. The image curve C* Z*(M) is the dual curve to C, whose degree
d* is the number of tangent lines to C passing through a geaeral poiat W 1)

The degree d* of C* is traditionally called the class of C. The relation

(Z*) * Z

is easy to verify.
Given a point x M and local holomorphic coordinate centered at x,

we may make a linear change of coordinates in P such that Z has the form

(4.27) Z() [1, .a+i + .a+l+2 + ...]

for non-negative integers a, . Using that Z*() Z() A Z’(), we find that

Z*() L(a + 1)" + ( + + 2) "++ + -( + 1)="++=]

a+ 1 a+l @ awl

This together with (4.27) imply that"

(4.28) a 0(x) is the ramification index of Z at x;

(x) is the ramification index of Z* at x.

The curve Z M P is said to have ordinary singularities in every point
x M is either’
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(i) a regular point
(ii) a flex
(iii) a cusp
(iv) a double point

(v) a bitangent

The pictures are"

(a 0);
(a 0,= 1);
(a 1, 0);
(Z(x) Z(x’) for some x’ x, and where the two
branches of C passing through Z(x) have distinct
tangents); or
(the tangent line to C at Z(x)is also tangent at
some other point Z(x’)).

flex cusp double point bitangent

Using (4.27) and (4.27)*, it follows that:

Z(x) is a flex on C :, Z*(x) is a cusp on C*, and
(4.29)

[Z(x) is a bitangent on C = Z*(x) is a double point on C*.

In particular, Z has ordinary singularities : Z* has ordinary singularities.
Using the notations:

i # double points on C
k #cuspsonC

) #flexesonC
# bitangents on C,

and similarly *, l*, ]*, b* for C*, then by (4.29)

(4.30)
6" b*=

The Pliicker formulae (4.26) for lc 0, 1 are

(4.31) Ik + d* 2d -t- 2g 2

]+ d 2d*-t- 2g- 2,

where (4.28) has been used to calculate o and tl If we use the genus ]ormula

g
(d-- 1)(d2 2) 6-k= (d*- 1)(d*-2 2)

ti*-

in (4.31), we obtain the classical Pliicker formulae
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(4.32) d: d(d 1)- 2 3k

d*(d*- 1) 2b- 3].

It is, I think, quite remarkable that these beautiful relations are simply reflec-
tions of the Cartan structure equations for the unitary group U(3).

5. RIGIDITY AND CONTACT.

(a) The general problem. Let G be a Lie group, H C G a closed subgroup,
and G/H the resulting homogeneous space. We consider smooth mappings

] M G/H

of manifold M into G/H.
Definition. Two such mappings

], ]" M -- G/Hhave contact o] order if, for each x M, there exists a g G depending on
x such that

] and go]

agree up to order at x.
Thus any two mappings have contact of order zero since G acts transitively

on G/H. If G E(n) is the Euclidean group and H O(n) so that G/H R,
then ] and ] have contact o/order one if, and only if, the first fundamental forms
induced by ] and ] are the same. They have contact o] order two exactly when
the first and second fundamental forms are the same, etc. Although I have
never seen a formal proof, it is presumably the case that
(5.1) Given ] M -- G/H which satisfies a suitable non-degeneracy condition,

there exists an integer (], G, H) such that ] and ] are congruent
by a fixed g G i], and only i/they have contact o] order .

In any event, the special cases of (5.1) are in some ways more interesting than
the general principle. Thus, the uniqueness results of Secs. 4, 5 may be rephrased
as:
(5.2) Two non-degenerate curves x(s), g(s) in R" are congruent by a rigid

motion i], and only i], they have contact o] order n;
Two hypersur]aces x, M ---, R’+ are congruent i], and only i], they
have contact o] order two;

In general, for our purposes, it will be convenient to assume that the Jacobian of f has
maximal rank.

There is a general discussion of sorts in Chapter VI of the book by Cartan. In the review of
this book by Hermann Weyl (Bull. A.M.S., vol. 44(1938), pps. 598-607), he attempts to clarify
the general problem of framing a submanifold of a homogeneous space and subsequent rigidity
question, but seems to feel that the argument, as it stands, is incomplete.
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(5.3) Two non-degenerate holomorphic curves Z, Z M ---> P’ (M being a
Riemann surface) are congruent if, and only i], they have contact o]
order one.

The way one generally proves results such as (5.2)-(5.3) is, by using contaqt
elements of sufficiently high order, to associate to the mapping

f M -- G/Ha "natural" lifting or set of liftings

G

G/H

and then (1.3) may be applied to F. Moreover, the generalized Frenet or Darboux
]tame F should be adapted to the geometry o] the original mapping ], so as to make
it apparent that i] ] and ] have contact o] order t(], G, H), then

F* *
where is the Maurer-Cartan ]orm on G.
To explain this a little further, let us assume that dim M 1 and discuss

first how not to frame M. In this case, an Ad H-invariant splitting

induced a G-invariant connection in the principle bundle

G - G/H,

and a lifting F in (5.4) may always be found by simply using this connection;
i.e., by requiring that F.() for all tangent vectors to M. This naive
li/ting seems to be almost never the correct one to use! For example, in the
case of a curve

x(s) (x(s), x.(s))

in R, the naive lifting requires that the frame

(X(8); el(8), e,,(s))

satisfy de O. Then the Maurer-Cartan forms pulled back under F are just

dxl dx,,

and we obtain an uninteresting rigidity statement which tells us nothing about
contact.
As a rule of thumb, a "good lifting" F in (5.4) seems to have the following

properties, at least when dim M 1"
(i) Being able to uniquely choose F depends on the mapping M G/H

being "non-degenerate" in a suitable sense,
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(ii) The integer such that contact oJ order implies rigidity as in (5.1) should
be easily discernible ]rom F;

(iii) The number oJ independent l-Jorms appearing in F*() should be equal to
d dim (G/H), since a general (real) curve in G/H has d degrees oJ Jreedom.

As an indication of the subtlety of finding F in special cases, we remark that
framing a curve in the real projective plane requires the consideration of contact
of order six! In the second half of this section we shall give a simpler but non-
classical example of a good lifting F.

(b) Curves in Grassmannians. We consider the Grassmannian G(n, 2n) of
oriented n-planes in R. This is the homogeneous manifold SO(2n)/SO(n)
SO(n) of dimension n, and the interpretation of SO(2n) as the set of frames
for G(n, 2n) was discussed in Section 2. Our rigidity statement is
(5.5) Two non-degenerate curves A, in G(n, 2n) are congruent iJ, and only iJ,

they have contact oJ order two.
For notational simpScity, we shall give the proof when n 2; the general

argument is essentially the same. An additional advantage for doing this is
that, for n 2, there are only a small number (in fact one) of exceptional cases,
and we are able to completely discuss these.
We begin by choosing an arbitrary frame e(s), e(s), e(s), e(s) such that

*s(s) A e h(s)

[e(s) A et(s) A(s)z

The vectors e(s), e(s) and e(s), e(s) are then determined up to general
rotations in S0(2). Writing

de
ds

A * (moduloe e)ae2+

where 1 a, # 2, the condition that

A (A.a) Hom (A, A)

be an isomorphism is independent of our choice of frumes.
Definition. We define A(s) to be non-degenerate in case the transformation

A is an isomorphism.
As mentioned, we shall try to justify this definition by examining the

degenerate case below. Assuming that A is non-degenerate, we shall put A
in canonical form.

In general, given two Euclidean vector spaces V, W and a linear isomorphism

T’VW,

Geometrically, h(s) is non-degenerate in case the n-planes h(s) and h(s W As) do not
intersect outside the origin. The precise definition of non-degeneracy will be given belowf
course, a "general" curve is noa-degeaerate.

An iaterpretatioa of non-degeneracy vis vis the Schubert hyper-planes in G(2, 4) will be
discussed in Sec. 6(b).
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the image of the unit sphere in V is an ellipse in W, and we may use the axis
vectors for this ellipse to put T in standard form. Algebraically, using the
identification of W with its dual, one considers the positive definite symmetric
isomorphism

S= TT :V-oV.

Choose an orthonormal basis vl, vn for V such that

and set

Then from

Sv, X, > O,X.v.

X.w. = Tv..

it follows that wl, w, is an orthonormal basis for W.
Applying these considerations to A, A and A allows us to select a distin-

guished frame el(s), e2(s), e3(s), e4(s) for A(s) where

(5.6)

At points where hi ),2 this frame is unique up to signs and is smooth; otherwise,
it is only continuous. It will turn out to be the good lifting F discussed in
Sec. 5(a) above.
We are now ready to prove (5.5). If two non-degenerate curves A(s) and

(s) osculate to 2nd order at s So then, using the Plicker embedding (Sec.
2(c)), we have

(5.7) e(s) A e2(s) g(s) A g2(s) (modulo (s- So))
where the e,(s) and (s) are the natural frames constructed above.
’"" denote the derivative with respect to s, from

e A (e A e2)’ --Xe A e2 A e3

e2 A @1 A e2)’ )k2el A e2 A e4

Letting

and the similar equations for g, it follows that

e(so) g(So) (i 1,... 4)(5.S)
/
kX.(So) X,(So) (a 1, 2)

As a consequence of (5.6) and (5.8), we see that if h and X osculate to first
order, then

(5.9) o,..+ 5,.2+0 (a, f 1, 2).

It remains to show that 2nd order contact leads to
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(5.10)

For this we calculate:

)12

,W34 W34

(el A e2)’ --Xle2 A ea + Xel A e

( a e,)" x- x, ;)/

+ x g- x,) A e,

+ (...)

where (...) are germs involving the other e A e. Comparing this with (5.7),
(5.8) gives at s so

(5.11)
/

In the general ease when X, # X2, (5.11) immediagely yields (5.10).
In the exceptional ease where Xl X2 X on an open subset of M, we firs

Then the structure equationsmake X --= 1 by a change of variables s s(t).
become

(5.12)

del o12

ds l e + e

de2 -. ds el -t-e.

Applying a rotation through angle to both frames e, e and e, e preserves
the equations (5.12), and solving

allows us to make 0 for the rotated frame. From (5.11) it now follows that

0

34 34

thereby proving (5.10). Q.E.D.
We now examine the degenerate ease. For this we fist consider a curve e(s)

on the 3-sphere in R. Setting

e e

e2 e

[ ee A e’ Ae AchAea= le A e’
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defines a Frenet flame (e e ea e) associated to the curve e, and taking

(5.13) A(s) el A e2

gives a curve in G(2, 4). This curve is degenerate since

e A e 0 in A’,
and we shall show that any degenerate curve is of this form.

Geometrically, any curve A in G(2, 4) gives a ruled surface SA in the real
projective space RP3, since G(2, 4) is just the set of oriented lines in RP3. Sur-
faces of the form (5.13) correspond to the locus of tangent lines to a curve in
RP3, and are said to be developable. So what we are about to prove is that any
degenerate ruled surface is developable.
Given a degenerate curve

h() e*()/ e*(),

we have by assumption that

de*l ),e* (modulo A)ds

de*2
d--" ze3* (modulo A)

Changing variables by s s(t) allows us to assume that X" z2 1, and
then we write

{: --sin
COS q

Rotating the frame e*, e* through angle then gives

de__i 0 (modulo A)ds

de.
ds e3 (modulo h)

This implies the relations

del o12e

de2 --012e --02ae3

de3 w23e2 -- c034e4

de oe
from which it is clear that the curve h in G(2, 4) is part of the Frenet frame
of a curve in the 3-sphere. Q.E.D.

Remark. Three observations concerning this example may be of interest.
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The first is that, whereas the classical examples (3, 4) of Euclidean and non-
Euclideaa geometry are symmetric spaces of rank one, the Grassmannian
G(n, 2n) is a symmetric space of rank n. Thus, the use of frames in studying
contact may be thought of as having wider applicability than just to the classical
Euclidean and non-Euclidean geometries.
The second is that, even though G(n, 2n) has dimension n, contact of order

two is sufficient to insure rigidity. Geometrically, this is clear from the proof,
and presumably one may also give a purely group theoretic explanation.
A final remark is that the 2[n(n 1)/2] + n n differential forms

{0$fl 0n+q,n+

arising from the natural frame of non-degenerate curve A in G(n, 2n) are generi-
cally independent. Conversely, they may be prescribed arbitrarily, thus
constructing a curve in G(n, 2n). This is because of (1.4) and since
dim G(n, 2n) n2.

6. HOLOMORPHIC CURVES IN A GRASSMANNIAN.

(a) Frames and rigidity ]or ruled sur]aces. Let A :M --, G(n, 2n) be a holo-
morphic mapping of a Riemann surface M into the Grassmannian of n-planes
in C’. We denote by A() the image of a local coordinate i" M, and shall
think of A(i’) as a holomorphic curve in G(n, 2n). Locally A(i’) is spanned by
holomorphic vectors Z1 (), Z.(), and we say that the curve is non-degenerate
in case

dZ1 dZ.(6.l) Z1A AZ/’\-A A-0.
Comparing (4.12) and (5.5), it seems quite likely that such a non-degenerate
curve should be determined up to rigid motion by either its first or second
order behavior, and it is of interest to determine which possibility actually
occurs. Although unable to settle this question definitively, we are able to
show that (i) second order contact-implies rigidity, and (ii) the Cauchy-Riemann
equations imply a large number of relations among the second order invariants,
so that in any case the number of independent ones is much less than in the
real case.

Before stating precisely what we are able to find out, we shall give some
preliminary definitions. As in the real case, we shall restrict ourselves to the
case n 2 although the main result (6.3) is valid in general. Then A() is a
holomorphic curve in G(2, 4) --___ PG(1, 3), and may thus be interpreted as a
complex analytic ruled sur]ace SA traced out by the family of lines A() in
p3. The ruled surface is developable in case it is the set of tangent lines to a
holomorphic curve Z() in P3, and as in the real case one may easily prove

(6.2) A is degenerate :, SA is developable.
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In addition to developable surfaces, another special class of ruled surfaces
arises as follows" Let L1, L be two orthogonal lines in p3, and

Z() L, (i 1, 2)

holomorphic mappings to these lines. Then the fmily of lines in P3 joining
Zl(i’) to Z() traces out what we shall call special ruled surface. Our result is:

(6.3) Two non-degenerate holomorphic curves A, 7t which have second order
contact are congruent. Moreover, associated to A is a second order in-
variant O, which is a 1-]orm on A with the property that 0 0 :, S
is a special ruled sur]ace.

We are not able to determine whether 0 is in fact a first order invariant,
although calculations by John Adams indicate that at least part of 0 is first
order. Regarding the rigidity question for holomorphic curves in general
algebraic varieties, Mark Green has pointed out the following immediate
consequence of (4.12):

(6.4) Let V pv be an irreducible projective algebraic variety and A M V
a holomorphic curve which does not lie in a proper algebraic subvariety
o/V. Then A is determined up to rigid motion o/V by its first ]unda-
mental ]orm.

.In case V is G(2, 4) embedded in P by Pliicker, (6.4) says that an arbitrary
holomorphic curve in G(2, 4) is either determined up to rigid motion of the
Grassmannian by its first order behavior, or else A lies on the intersection of
two non-singular quadrics in P. It is not clear just how this algebraic de-
generacy is related to the analytic non-degeneracy assumption (6.1).
To prove (6.3), we begin as usual by considering unitary frame fields ZI(),

Z.(), Z(), Z() such that

() z()/ z(),

and we try to. determine a natural such framing. Following the procedure
in the real case, we define a linear map

At :() - C*/h(t)

as follows: Given Z A(i’o), choose a holomorphically varying Z(’) A(’)
for [i" ’ol < and with Z(o) Z, and set

dZ()A(Z) d -_o

It is clear that At varies holomorphica]ly with , and moreover

rank At _< 1 for all :, A is degenerate.

Assuming non-degeneracy, A is an isomorphism outside a discrete set. Re-
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stricting our attention to such regular points where rank At 2, we may select
natural ]tames Z1, Z4 with the property that

(6.5) t’AZ= XZ
,ArZ. Z4.

By rotating Z1 and Z, we may further assume that h, are real and positive.
In case h , such frames are then determined up to rotations

(6.6) Z e’Z Z e’Z
Z eZ Z eZ

At exceptional points where , Z Z and Za, Z are only determined up
to the same unitary transformation in two variables.

Using (6.5), the structure equations of a natural frame field are

dZ OZ OZ OZ
(6.7) dZ2 021Z + 022Z + 024Z4 where

[0 dt and 02 dt

are of type (1, 0) since A() is holomorphic. From (6.7) we obtain

(6.8) d(Z Z) (e + )Z Z eZ Z + eZ Z,
from which it follows that

are first order invariants of A. In particular,

is well-defined, and

is a positive (1, 1) form on the curve. Setting

(6.9)

it follows from the Caftan structure equations that

+=0.
Thus is uniquely determined b w, and is a first order invariant.
To obtain further information, we go to second order. For this we rewrite

(6.8) in the form

(6.10) (Z1 Z2) + ] Z2- xZ2 Z3 + Z1 Z4
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where (-) is the -derivative and

0 0’ -4- 0"

is the type decomposition of a 1-form into (1, 0) and (0, 1) components.
the curve A() is holomorphic,

(6.11) (Z1 A Z2) is a linear combination of Z1 A Z2, (Z1 A Z2).

Computing modulo Z A Z, we obtain from (6.10)

(6.12)

Combining (6.10)-(6.12) yields the two relations

(6.13)

(6.14)

’ (o,.,. + o)- (o,, +(o- O) log

Oa
k oI + o’

Adding (6.9) and (6.13) gives that:

(6.15) 0 0aa 0 0 are first order invariants.

Here is another proof of (6.14). Writing

0. ad-+Bd, 0, 7d+ d,

we have from the Cartan structure equation

0 dOl 0 A 02+ 03 A

(- + )g ;
0 d023 021 A 013 + 024 A 043

which gives
(,/x)3, (x/,)

John Adams has pointed out that, if we take the exterior derivative of 011
in (6.15) and let "=-" denote "congruence modulo first order terms",

Since

Oaa
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OY

(6.17) d(011- 033) (2 2:)(].2 + ][2)d A d.

Since 0 is only determined up to multiplication by

-(-)e

via a rotation (6.6), this means that 0 has at most two real degrees of freedom
modulo first order invariants.
To prove that 0 is indeed a second order invariant, we compute (Z A Z)

modulo Z A Z2 and (Z A Z2) to obtain

(6.17) (ZlAZ)tt -X+,/ +,[] A Z,.

Comparing (6.14) and (6.17) gives:
(6.18) I1 , then O.and 0 are determined up to multiplication by e

by the second order behavior o] A.
We are now ready to prove (6.3). The function ( ) is real-analytic,

and thus is either identically zero or vanishes on a lower dimensional set. We
first consider the case u, nd may restrict our attention to nonexceptional
points where p. If A() and () have first order contact, then by the
above discussion

(6.19)

Using the Cartan structure equations,

=0

since A (- a {:) d A d is a first order invariant. Similarly

Solving the equations

d(o.- ) o.

d(011- 11) i d

d(044- ) i.db
and rotating Z1 Z2 through angles , h gives

Comparing with (6.19) we obtain:

(6.20) I] A, have first order contact, then.
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, ,, (i < i)

]or all (i, ) (1, 2) or (3, 4).
We now prove that 12 12 in case A, have second order contact. In

any case, by (6.18),

012 eiP12
Now, on the one hand

(6.21) dO (- ) A 0 (6- 6) A e6
while on the other hand

(6.22) d(el) i dp + ( ) A e.
Combining (6.21) and (6.22) together with the same relations for and
using (6.14) gives

{ ooA ol;+ooA oI =0
20p 0" 22 2 O.

d O.

Rotating Z and Z3 through the constant angle p does not change (6.20), and
gives , and then by (6.14). Thus natural frames for A and
have been chosen such that all Maurer-Cartan forms agree, and rigidity is
proven.

In the exceptional case where , we will show that Z, Z may be
chosen so that

(6.23) 0 0,

and this clearly impSes rigidity. For this it is useful to use the language of
vector bundles. The frame Z Z is a unitary frame for the universal vector
bundle S over A, and {} (1 a, 2) is the connection matrix. By the
Cartan structure equation, the curvature is

0 0 A 0 0 df A d
On he oher hand, 0 + 0 is ghe eonneegion form for ghe line bundle L
deg S relagive go ghe frame Z A Z, and ghe assoeiaged eurvagure is d(O + 0)

-2Xdf A d. Thus

S @ L-/

is a fl vector bundle, and applying a suitable unitary charge o he frame
Z @ (Z A Z)-/, Z @ (ZI A Z)-/ gives a new frame W W wigh ero
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connection matrix. Then Z* W1
is a unitary frame for S with connection matrix

o (o + 0)

For this frame O 0, gnd (6.23) is satisfied.
Finally, suppose we cn choose nturl frame for A so that the second

order inwrint

(6.24) 0 0 0.

By (6.14), 0 0 and thus

, A (zi) A (zi) 0

,z A (z) A (z): 0.

Consequently, both holomorphic curves Z(), Z() 5e in a 5he, and it follows
that S is a special ruled surface. This completes the proof of (6.3).

(b) Non-degeneracy and Schubert hyperplanes. Let h() be a holomorphic
curve in G(2, 4) given locally by two holomorphic vectors Z(), Z() with
A() Z() A Z(). Setting

() z() A z() A z() A z(),

the holomorphic curve in non-degenerate in case A() 0, and o is a regular
point in case (o) 0. In Sec. 6(a) we remarked that A() is degenerate the
ruled surface S is developable, and we now wish to give a geometric interpreta-
tion of the regular points on h.

Before doing this it is convenient to recall the analogous statements for
holomorphic curve Z() P. Setting

w() z() A z’() A A z()(),
the curve is non-degenerate in case W() 0, and o is a regular pot in case
W(o) 0. Now then, Z() is non-degenerate the curve does not lie in a
P-, and o is a regular point there is a unique hyperplane Hr. having contact
of order exactly n 1 with Z() t o ;indeed

Hr. Z(o) A Z’ffo) A A Z(’-’(o).
For G(2, 4), we consider the Plficker embedding

(2, 4) p.

Among the hyperplane sections of G(2, 4) are special ones, called Schubert
hyperplanes, which are defined as follows:
Thinking of G(2, 4) PG(1, 3) as the 5nes in P, for a fixed line L we set

(6.25) H {L’ PG(1, 3) L.L’ }.
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The incidence relation (6.25) then defines the Schubert hyperplane HL in
G(2, 4). Given such a line L, we choose orthogonal unit vectors W1, W2 which
span L, and, upon setting 0 W1 A W2 the Schubert hyperplane section
of our holomorphic curve is defined by

(6.26) A() A O 0.

Our characterization of regular points is:
(6.27) The point o is regular = ]or each point Ao pZl(o) -- (Z(o) on

the line A(o), there exists a unique line L L(Ao) passing through
Ao and such that A() has second order contact with Hr, at o

Proo]. Following the notations of 6(a) we consider natural frames Z
Z2, Z., Z4 for A(’), but where h, in (6.5) are allowed to be complex numbers.
Then arbitrary rotations

Z, --are permissible, and so we may choose . so that all

o.o(o) o.
Setting

(6.28) W1 pZ(o) -{- zZ(’o) Ao,

we seek to uniquely determine

(6.29) W aZ(o) + bZ2(’o) + cZ3(o) + dZ4(o)

such that

()/ o
vanishes to exactly 2nd order at o.
W1, W are

(6.30)

The orthogonality conditions on

=1
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Writing 0 a d -t- d and computing modulo Z A Z we have from
(6.17) that, at o,

(6.31) (Z1 A Z2)" --kZ2 A Z3 + Zl A Z4
(6.32) (Z /f Z2)" --’Z2 A Z3 + /$’Z1 / Z4

+ (x ,)z/ z + - (F x’)z A z.
-t- 2/Z A Z4.

The last term in (6.32) is non-zero : ’o is a regular point, and this observation
is the basis of (6.27).
By (6.28) and (6.31), the condition

(ZI A Z2)- A 0 "--0

at o is

(-pZ, A Z, A Z. tto’Z A Z A Z) A W O,

which using (6.29) is

(6.33) -Up d -t- tac 0.

Similarly, letting xl, x2, denote coefficients whose explicit form is irrelevant,
we have from (6.32) that

(Zl Z2)*" A Wl IZ1 A Z2 A Z3 + x2ZI A Z2 A Z4

Using (6.29), the condition

(6.34)

Ifa 0, thena d 0and

-}- 2kpZI A Z A Z4 -t- 2hgo’Z2 A Z A Z.

(Z A Z)rr A 0 0

and plugging this into (6.34) and using

If 0, then a rs 0 and by (6.30) and (6.33)

1 gives

so that L is uniquely determined.
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O"

Thus the ratios

are uniquely defined, and so L is uniquely determined by the eondition of
second order contact. Q.E.D.
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