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topology. In the case of the Martin exit boundary of the set @ = {1, 2,3, ...},
the usual topology and uniform structure are discrete, i.e., points form open sets and
I is a uniformity.
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ON CERTAIN HOMOGENEOUS COMPLEX MANIFOLDS

By Pairip A. GRIFFITHS
DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated by D. C. Spencer March 7, 1962

The purpose of this note is to discuss some results on homogeneous vector bundles
over homogeneous complex ifolds; - complete proofs together with some more

results and applications are to appear’later Weé refer to the papers of Wang® and

Bott? for the terminology and basic results of the theory.

Let, G,U be complex Lie groups such that X = G/U isa C-spaceand let p: U —
GL(E®) be a holomorphic representation of U; then we may form the homogeneous
vector bundle E®* -+ E* = G X yE? =+ X. We recall that any C-space X fibers over
a rational C-space X* with a complex a-torus as fiber: 7% — X — X*. The
maximal compact subgroup M of @ acts transitively on X and transitively on the
fibers of E*; letting E” be the sheaf assocxated to E*, H*(X, E’) is an M—module
We denote this induced repfésentation.by p*, -

o*: M — GL(H*(X, E));

it is our problem to.study the transformation p — p*.

Let u = complex Lie algebra of U and hy, = maximal abelian subalgebra of u;
then hy C h, where h is a Cartan subalgebra of g = complex Lie algebra of G.
If the weights of p on hy are the restrictions of weights on h to hy, we call p rational;
otherwise p is #rrational. If p'is rational, we may describe an element Jp giving
the highest weight of an irreducible representatlon of M asfollows: we assume that
p is irreducible so that it is determmed by its highest weight, again denoted by p.
Then p is a weight on h which 18 dominant for u but may well not be dominant for
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g; welet g = one half the sum of the positive roots of (g, h) and look at p + ¢. . If
p + g is singular, we set Jp = 0, the zero representation of M. If p 4 g is regu-
lar, there exists a unique = in the Weyl group of M such that 7(p + g) — g is domi-
nant for g and thus determines an irreducible representation Jp of M; this
describes the mapping p — Jp; and we write Jp: M — GL(V'?). Also as-
sociated to p, we may define an integer (p), where (p) = index of the element 7 de-
fined above.

TueoreM 1. I f p is irreducible and trrational, H*(X, E*) = 0. If p1s ratwnal
and irreducible, then HY(X, E*) = 0 for ¢ < (o), H* T ¥/(X, B*) = V"* ® CQ), and

= (Jp) ® 1. (Here we set &) = 0 for ¢ > a.)

Application 1: Taking a = 0 (i.e., X = X*), we recover the main theorem of
Bott (Theorem IV’).

Application 2: If @ = 0, then x(X* E*) = (—1)* dim vV’ (Borel-Hirze-
bruch), and if a > 0, x(X, E®) = 0 for any representation p (Bott). Here x is the
sheaf Euler characteristic.

We state the next theorem for the case when U is solvable; the result holds in
general but requires a more complicated statement. Let py, . .., pa be the weights
of a rational representation p. We say that p satisfies condition S if either of the
following hold:

() (p) = (py foralls,j,
(i) (o) > (o) == (pg — (o) > L.

Since U is solvable, each p, w111 give a one-dnnens:onal representatlon Py U—>
GL(E*;), and we have :
THEOREM 2. If p salisfies comhtwn S, then as an' M—module

H*X,E’) = @] ZT H*(X, B").

Let Q% = sheaf of germs of holomorphic g-forms on X. Then using some proper-
ties of the roots together with Theorem 2, one has

Application 3: H*(X, Q9 is a trivial M-module, H*(X, % = 0 for p < ¢, and
HPH(X, 99 = C9®C(), where (g) = number of elements in the Weyl group of
M of index ¢. Taking a = 0, we get Theorem 22.8 in Borel-Hirzebruch.?

In order to derive further applications, we consider the Atiyah sequence (ref. 1,
equation 8.1) 0 = L — Q — ® — 0. Using Theorem 2, application 3, and a few
exact sequences, we have for X*

Application 4: HY(X* L) = Oforallq. From this and the Atlyah sequence, it
follows that H(X* @) = 0 for ¢ > 0 and H°(X*, @) = g. Thus, the analytic
structure of X* is mﬁmtesmally rigid (Bott) and the connected automorphism
group A%(X*) of X* is @ (Matsushima).

We now let X be a non-Kihler C-space with fibering 7% — X — X*; also we
set X¢ = X* X T%,

TueoreM 3. If ¥ = X or X°,then HY(Y, 8) = A @ B, where A = g @ C)
and B® = C* ® C®). The représentation of M on A%4s Ad ® 1andonB%is 1 ® 1
(1 13 the trivial representation).

Application 5: HY(Y, ) ' g @ C°and A%(Y) =@ X T*. IfY = X% AY(Y)
acts in the obvious way; if ¥ = X, then the fibering 7'** - X — X* is a homogene-
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ous fibering over X*, 7% acts as structure group in this fibering, and G acts by lifting
the action of G on X*. (This generalizes results in refs. 4 and 6.)

THEOREM 4. If a = 1, HY(Y, ©) parametrizes an infinitesimal deformation space
of Y(cf. ref.5). If a > 1, then there are primary obstructions to deformation but there
are no secondary obstructions and an infinitesimal deformation space is given ty (h ®
CY @ (C* ® C%).

Application 6: The homogeneous variations of the structure of Y lie in B!
(using the above notation) and are given by varying the toral structure.

Application. 7: We construct explicitly the nonhomogeneous variations of strue-
ture of X* X T2 where @ > 1 and X* = G/U*. These deformations are global
and are parametrized byh ® C*=h ® H»(T%, C). Letw &€ H»(T*,C),h € h;
define a representation ®(h, w): H' (7%, Z) = G by ®(h, w)(2) = exp (( S w)h)

for z € H\(T%, Z). If C°®is the universal covering of 7%, we have the fibering
H\(T?, Z) - C°* — T, and we may form the associated bundle G — P(h, w) — T,
where P(h, ) = C* X gu112G and H(T%, Z) acts on G by ®(h, ). The non-
homogeneous deformations of 5/U* X T2 are given by the manifolds P(h, w)/U *

One may also construct a local family of complex structures in the non-Kéhler
case; this local family corresponds to the infinitesimal family given in Theorem 4.
We shall not enter into the details here.

Let E,, E; be analytic vector bundles over a complex manifold ¥'; we define
Ext (E,, E,) to be the set of analytic vector bundles E such that we have 0 — E, —
E — E, = 0. There is an isomorphism {: Ext (E., E)) = H'(Y, Hom (Es, Ev))
(see ref. 1). . T

TueoreM 5. Let X be a C-space and EY, Ef be homogeneous vector bundles over X.
Then E € Ext(Ef, E¥) is a homogeneous vector bundle <=> {(E) € H'(X, Hom(Ef,
E")) is acted upon trivially by M.

Using Theorems 5 and 7 and the fact that all line bundles over X are homogene-
ous (this follows easily from Theorem 1), we have

Application 8: All line bundles over X with nilpotent structure group are homo-
geneous.

Application 9: Let X* = M/V* be algebraic and let (ry,. . .,7,) be a set of simple
roots of M such that (ry,. . .,7,) are simple rocts of V*. Then there exists an inde-
composable vector bundle E — E-— X* with solvable structure.group and dim £ >
| <=> there exists a j with s < § < r such that (r;, ) = Ofor1 <4 < s, where
( , ) = Killing form.

COoROLLARY (Ise). If the second Betti number boy(X*) = 1, then every bundle with
solvable structure group is a sum of line bundles.

Finally, we give the following result which was conjectured in reference 4.

THEOREM 6. If ¢ ts irreductble as a representation, then EY is indecomposable.

It is known (ref. 3, Theorem 1) that for any y, H*(X, E¥) may be written in
terms of Lie algebra cohomology. Using this fact voupled with Theorem 1,
Theorems 2-6 and the appli'catx;ions are proven using a variety of standard tech-
niques in Lie algebra cohomology, representation theory, complex manifold theory,
etc. The proof of Theorem 1 may be done in a couple of ways; we outline one
proof which is done in two steps. First, we obtain a generalization to the non-
Kibhler case of the Kodaira criterion for the vanishing of sheaf cohomology groups.
For C-spaces, this goes as follows:
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TreoreM O. Let E¥ — EY — X be a homogeneous line bundle over a C-space of
complez dimension n. Suppose that the first Chern class c(E) 1s given by a negative
semi-definite quadratic form of tndex k < n. Then HY(X,E%) = 0for g < k. (If
k = n, we have again Kodaira’s theorem.)

To apply Theorem O to C-spaces, a fairly extensive study of the differential
geometry of homogeneous vector bundles is useful; these results may be of inde-
pendent interest. The reason is that the Atiyah construction of the Chern classes
in terms of forms does not work in the non-Kihler case and so one must use a cur-
vature tensor in order to construct the forms.

Using Theorem O and the fact that H*(X, E¥) may be written in terms of Lie
algebra cohomology, Theorem 1 is completed using several spectral sequences in
Lie algebra cohomology. The Leray spectral sequence used by Bott does not seem
to give the complete information here. As mentioned above, the details of the
proofs together with other results and applications will appear later.

T Atiyah, M. F., “Complex analytic connexions in fibre bundles,’’ Trans. Am. Math. Soc.,
85, 181-207 (1957).

* Borel, A., and F. Hirgebruch, ““Characteristic classes and homogeneous spaces, 11,”” Am. J.
Math., 81, 315-382 (1959).

* Bott, R., “Homogeneous vector bundles,”” Ann. Math., 66, 203-248 (1957).

4 Ise, M., “Some properties of complex analytic vector bundles over compact complex homo-
geneous spaces,”’ Osaka Math. J., 12, 217-252 (1960).

§ Kodaira, K., and D. C. Spencer, “Deformations of complex analytic structure, I, I1,” Ann.
Math., 67, 328466 (1958).

¢ Wang, H. C., “Closed manifolds with homogeneous complex structure,”’ Am. J. Math., 76,
1-32 (1954).
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Conjectured by von Neumann and proved by Gale, Kuhn, and Tucker,! the dual
theorem of linear programming has been unique among dual extremal (or vari-
ational) principles (see, for example, K. Friedrichs? for classical mathematical
physics principles and J. B. Dennis® and W. 8. Dorn* for miore recent use of Legendre
transformations to establish dual ‘\quadratic’’ programming principles) applying to
general systems of constraints involving a finite number of variables in that neither
principle contains the variables associated with the other. The theorem has also
been shown to be as fundamental for the theory of linear inequalities (see par-
ticularly Charnes and Cooper® for this approach) as the classic Farkas-Minkowski
lemma.

Generalizations to linear mappings between linear topological spaces were forth-
coming from 8. Karlin and H. F. Bohnenblust® (also L. Hurwicz?) for the Farkas-
Minkowski lemma and from D. Bratton (also recently K. Kretschmer®) for the dual
theorem in a brilliant unpublished but well-known paper.® As expected, these
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