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CHARACTERISTICS AND EXISTENCE OF
ISOMETRIC EMBEDDINGS

ROBERT L. BRYANT, PHILLIP A. GRIFFITHS AND
DEANE YANG

Let (M" ds*) be an n-dimensional Riemannian manifold. A well-known
problem is to prove the existence of a local C* isometric embedding

(Mn,d32)<—_)En(n+l)/2. (1)

By this we mean that there is a smooth isometric embedding of a neighborhood
of a given point x, € M; to simplify notation, we shall refer to this neighborhood
also as M.

When (M, ds?) is real analytic, the Burstin—Cartan—Janet—Schafly theorem (cf.
the references given in [3, 11]) shows that such local isometric embeddings exist.

When n =2 it is also known that local C* isometric embeddings exist in a
neighborhood of a point x, where the Gaussian curvature K(x,) # 0.

When n > 2 it has been proved by R. Greene [7] that local C* isometric
embeddings

(Mn’dSZ)_) E(n(n+ 1)/2)+n

always exist.
In general we may consider the exterior differential system (/,w) whose
integrals give local isometric embeddings

(Mn, dsZ) N E(n(n+ l)/2)+s. (2)

The basic invariant of (I, w) is its characteristic sheaf .#. We may think of .# as
a family of vector spaces #,;, of varying dimension whose support

supp A = {(x,§) :dim .4, >0}

is the characteristic variety = of (/,w). However, .# contains much more
information, both locally and globally, than = alone. The system (/,w) is
determined when s = 0, underdetermined when s > 0, and overdetermined when
s < 0. This is reflected in the properties of .# in a precise way (cf. the appendix
to §II(c)).

In particular, let us consider the case s = 0. Although the system (7, w) is only
invariant under the group E(n) of Euclidean motions, it turns out that both .#
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894 BRYANT, GRIFFITHS AND YANG

and Z are invariant under the full group A4 (n) of affine linear transformations.
For example, when n = 2 the system is elliptic when K > 0 and hyperbolic when
K < 0; the sign of K, but not its value, is invariant under the action of 4(2).
Therefore, it is not surprising that understanding .# is basically an algebro-
geometric problem, one dealing with the interplay between the Gauss equations
and the linear systems of quadrics that constitute the second fundamental forms
of embeddings (1).

Our first main result, Theorem A in §I(b), shows that a rational involution j is
canonically defined on X, and that .# is uniquely determined by the pair (%, j).
It is a general fact that the characteristic sheaf .# uniquely determines the
symbol map of an involutive exterior differential system (/,w). We find as a
corollary that the second fundamental form of a general M” C E""*+1/2 jg
uniquely determined up to general linear transformations by (%, j).

The characteristic variety is a union = = |J, <, %, of projective algebraic
varieties =, C P"~!; Theorem B, as stated in §II(c), describes the local and
global structure of =, . In summary, we find that for the general M” C E"("*+1/2

= is smooth for n < 4,
E . is non-empty for n > 3,
deg = , = n, where =  is the complexification of Z, ,

—

Frsg 7 Dforn=4m+2,m> 1, where Z,  is the singular locus of Z .

{Ecx» xEM} is a family of beautiful and remarkable hypersurfaces. For
example, when n = 4 the quotient Z. , /; is an Enriques surface in G(4, 10) first
considered by Cayley and Sylvester.

It is a general fact that the characteristic sheaf and variety of an exterior
differential system (/,w) induce the usual (at least for the characteristic variety)
objects for the linear variational equations of an integral manifold N of (7, w).
For the isometric embedding system the symbol map of these linear variational
equations are fiberwise of the form

Yy W®SW*>K 3)
where
W =R""=D/2 {5 the normal space,

V=R" is the cotangent space,

K = R"™("=D/12 s the space of curvature-like tensors.
In fact, (3) is just the map given by polarizing the (quadratic) Gauss equations.
When nZ=3, dim(W ® S*¥*) < dimK; therefore, the linearized isometric

embedding equations “appear” to be overdetermined. Intuitively, this is because
the naive system

(dx,dx) = ds?, @)
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which is determined, has been prolonged so as to uncover the geometry as
expressed in terms of the 2nd fundamental form and curvature tensor.

In concrete terms, we may try to represent a local isometric embedding (1) as a
graph

x> (x,z(x))
where
x=(x',...,x")=(x")€R"
z=(z',..., """ V%) = (z+) e R D2,

The Gauss equations are then expressed by relations of the (approximate) form

9%k 9%z *
_ axax*  dx‘ox!
Ry (x) = Sdetf & 20 050 )

9z79z%  9x/dx!

When n =2 this is a Monge-Ampere equation, but when » =3 it gives 6
equations in the 3 unknowns z*(x). For n = 4 the situation only worsens.

The general theory of exterior differential systems suggests “deprolonging” the
system (/,w) by replacing .# by .# ® #(—1). When this is done, the
characteristic variety = remains the same, but the symbol mapping now becomes
a square matrix. (This “deprolonging” of (/, w) does not lead to (4), for which the
characteristic variety is wrong.) In fact, this deprolonged system may be
concretely realized by a certain uncoupling of the linearization of the naive
system (4) into an n X n system plus an algebraic one. All of this is explained in
8§11, the upshot being that the linearized isometric embedding system reduces to
an n X n system with characteristic sheaf .# (— 1) whose microlocal structure can
be explicitly determined (cf. Theorem C in §I1(d)).

When n = 3 the situation is especially beautiful. The characteristic varieties =,
are cubic curves in P%; and the pair (Z,, j) determines a “parent cubic” ¥ C P2,
By putting the equation of ¥ in standard form, the 2nd fundamental form of an
M3 C E® and characteristic cubic =, can be made very explicit and simple (cf.
Theorem D in §III(a)).

It is well known that a smooth real cubic curve =, C P? has either two or one
components. The linearized isometric embedding system is accordingly strictly
Hyperbolic or real principal type. Moreover, for a certain range of the modulus o
of the parent cubic, the system is symmetric hyperbolic in the sense of
Friederichs [6]. This is all worked out in Theorem E, §III(b).

In §III(c) we investigate the relationship between the modulus o and the
solutions to the Gauss equations. On a 3-dimensional Riemannian manifold it is
well-known that the curvature tensor is determined by the Ricci tensor R;. For
our purposes it is more natural to use the (equivalent) Einstein tensor 7. We
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show in Theorem F that the range of values of ¢ for which the Gauss equations
may be solved depends on the signature of #.

The last three sections of this paper combine the geometric information
obtained thus far with PDE theory to prove our

MAIN THEOREM. Let (M,ds®) be a 3-dimensional C*® Riemannian manifold
and x, € M a point such that the Einstein tensor 9(x,) is not (L*) where
L € T;(M). Then there exists a local C* isometric embedding of a neighborhood
of x, into ES.

Before discussing our proof, we remark our general results on characteristic
varieties reduce the question of local C * isometric embeddings (1) for any n to a
local existence theorem, with suitable bounds, for a type of linear PDE’s that we
call “generic.” To explain what this means, we denote by ., the space of n X n
matrices and by

Lo C2L,

the subvariety of matrices of rank = n — k (thus .2, | is given by det = 0). There
is a canonical stratification

Ly DLy DLy DLy 12(0) (6)
with the properties

(ZLnk Vg = Lk
codim .2, = k>

Consider now a linear PDE system
P(x,D)u=f, x €Q, ©)

where u, f are n-vectors of functions and P(x, D) is an n X n matrix of 1st order
linear differential operators. We view the symbol of (7) as a map

P(x,§) : T*@)\(0) > 7, , (8)

and shall say that (7) is generic in case the mapping (8) is transverse to the
stratification (6) (transverse here has a precise meaning in terms of ideals of
defining functions). In particular, if we set

Z = P(x,8) 7 (Luk),
then
E = X, is the characteristic variety of (7);

-
=
=)

= X, is the singular locus of Z; and

~~

58
=, #@=codim I, = k2.

The linearized isometric embedding equations turn out to be generic in this sense.
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§§IV-V are a compilation of various results needed to prove the Main
Theorem. Although most are not new, they are presented in a form particularly
suited to our application. Then in §VI the proofs of Theorem H and the Main
Theorem are given.

First, the Nash-Moser—Schwartz—Sergeraert theorem is stated. This is a
generalized implicit function theorem using a simple version of the Nash—Moser
iteration scheme. The iteration method was first devised by Nash [16] to prove
his famous C* global isometric embedding theorem, and was simplified by
J. Moser [15]. The theorem given here is due to J. T. Schwartz [17] with a
refinement due to M. F. Sergeraert [19].

To use the Nash—Moser iteration scheme, a family of smoothing operators is
needed. The existence of such operators on R" and compact manifolds is well
known (cf. [17, 18]). However, the domains used here are manifolds with
boundary. In §IV(c), the construction of smoothing operators on R” and T" is
recalled; and then to define smoothing operators on compact manifolds with
boundary, an extension operator defined by E. Stein [21] is used. The extension
operator will also be an important tool in §V.

§IV(d) is essentially a review of some results obtained in §§II-III that will be
needed for the proof of Theorem H. The only difference is that the equations are
given explicitly in local co-ordinates, with all the invariant, abstract definitions
unraveled. In particular, the n X n system of PDE’s which is equivalent to the
linearized isometric embedding system is described in detail.

When trying to embed the general M C ES, we find that the linearized
isometric embedding equations reduce to a 3 X 3 linear hyperbolic system. §V
contains a detailed discussion on how to solve such a system with the bounds
necessary for the Nash—Moser—Schwartz—Sergeraert theorem. There are essen-
tially two types of hyperbolic systems. The easier of the two to study is called
“symmetric hyperbolic.” Such systems were first considered by K. O. Friederichs
[6] who showed that the Cauchy problem is well-posed for such systems.
S. Klainerman [13] used the Nash—Moser iteration scheme to prove the global
existence of decaying solutions to certain nonlinear hyperbolic PDE’s. We
reproduce here a clever argument he used, combining some calculus lemmas with
Gronwall’s inequality to prove that symmetric hyperbolic systems can be solved
with the desired bounds. Since we use a different set of Banach spaces than he
did, our results extend his slightly.* (See Corrections A and B at end of paper.)

The second type of hyperbolic system is called “strictly hyperbolic.” These
were first studied by Leray, Petrowsky, and Garding. Estimates for such a system
are now usually proved using a “symmetrizing” pseudodifferential operator (cf.
[23]). Although the proof of the needed estimates is essentially the same as for a
symmetric hyperbolic system, the details are greatly complicated by the use of
pseudodifferential operators. Therefore, the proofs for such systems have been
reserved for the appendix to §V.

Finally all the results given in §IV-V are brought together to prove Theorem

*Hamilton has proved the same estimates using a different technique in his paper The Inverse
Function Theorem of Nash—Moser, Bull. Amer. Math. Soc. 17 (1982), 65-222.
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H which shows that all metrics sufficiently close to a metric which is
isometrically embeddable are also isometrically embeddable. A short argument
exploiting the Burstin—Cartan—Janet-Schafly theorem then completes the proof
of the Main Theorem.

We would like to thank Eric Berger, S. S. Chern, Robert Greene, Sergiu
Klainerman, Richard Melrose, Louis Nirenberg, Donald Spencer, and S. T. Yau
for their help and encouragement.

I. The characteristic variety of the isometric embedding system.

(a) We consider a submanifold M" C EV. Since we are working locally we
shall fix a point x, € M and work in a small neighborhood, still denoted by M,
of x,. We shall denote by (M, ds?) the abstract Riemannian manifold associated
to M C EV, and we shall consider the embedded manifold as the image of an
isometric embedding

x :(M,ds*)>E". (la.l)

By ¥ (M) we shall denote the manifold of Darboux frames (x;e;, ..., e,;
€,+1,- - - » ey) associated to M C EY. Employing summation convention and
using the ranges of indices 1 =i, j=n, n+ 1= p, » = N, we have the structure
equations (cf. (1.27) and (1.31) in [4] for notations)'

dx = w'e

dei = \bijej
[E— J

dw Y Aw

Ay’ + Ui A = BN B
ht=Hpw/,  Hp=H!

h"’L AN th = %R{/klwk A wl

Here ¢ = ||x[xf || is (the pullback to .# (M) of) the connection form for (M, ds?)
and

= HF i/
H H,jeﬂ®ww

is the 2nd fundamental form of M C EV. The intrinsic and extrinsic geometry are
related by the last of these equations, the Gauss equations, which following the
notation in (1.36)—(1.38) of [4] we write as

y(H JH )= R.
We will denote by # (M) the principal O(n)-bundle of orthonormal frames on
'Generally speaking we shall follow the terminology, notations, and ranges of indices from [4].

One exception is that the abstract in Riemannian manifold is here denoted by (M, ds?) instead of by
M as in [4].
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(M, ds? and by ¥ (EV) the frame manifold for E¥. With the notations of §II(a)
of [4] (cf. 2.25) we denote by (I,w) the exterior differential system on the
manifold X C ¥ (M) X % (E¥) X (W ® S*V*) which gives the isometric
embeddings of (M,ds?) into EM. More precisely, the admissible integral
manifolds N C X of (I,w) are in one-to-one correspondence with the local
isometric embeddings. Since (/,w) is a quasi-linear Pfaffian system (loc. cit.,
(2.20)), on a suitable bundle of projective spaces lying over X there is defined the
characteristic sheaf .# whose support is the characteristic variety = of (/,w) (cf.
[5] for these definitions). Our object in this section is to study .# and Z in detail.

For this we let V=T, (M) be the tangent space to M, W = N, (M) be the
normal space, and

HeWw® S+

the 2nd fundamental form evaluated at x,. Below we shall define a proper
algebraic subvariety D C W ® S2V* of non-general 2nd fundamental forms,
and we let U= W ® S?V*\D be the dense Zariski open set of general 2nd
fundamental forms (the definition of U is given in §I(c)).

Definition. We shall say that the embedding (1.a.1) is general in case H € U.

Remarks. Since we are working locally we may assume that all 2nd
fundamental forms H, € N (M) ® S>T*(M) are general.

For the remainder of this paper we shall only consider embeddings (1.a.1) that are
general. Non-general embeddings satisfy a PDE system strictly larger than the
isometric embedding system.

With this assumption it will, at least for the time being, suffice to study the
characteristic sheaf and characteristic variety over the point x, € M. Conse-
quently, for the remainder of §I we adopt the following:

Notations. (1) .# will denote the restriction of the characteristic sheaf to
PV* =RP""!, and E C PV* will be the (real) characteristic variety.

(i) Vg, W will denote the complexifications of V, W, and .#¢, Ec will denote
the natural extensions of .#,Z to PV = CP"~ ..

We shall call .#; and Z; the complex characteristic sheaf and complex
characteristic variety, respectively (in other words, if we just say characteristic
variety then we are referring to the real characteristic variety).

(b) The following study is purely algebro-geometric. We will study the
characteristic sheaf and characteristic variety of the isometric embedding system
for a general M" C E""+*D/2 over a fixed point x, € M.

Let V, W be real vector spaces where W (but not V) has a non-degenerate
symmetric bilinear form w® w’—>w - w’ (which in practice will be positive
definite). We denote by

K C A’V* ® A’V* C Hom(®*V,R)
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the space of curvature like tensors (cf. §I(a) of [4]). Given
H e W ® S**=Hom(SV,W)
we define
Yy W®SW*>K (1.b.1)
by the polarized Gauss equations (loc. cit., equation (1.36))
Yu(G)(01,05,05,04) =3 { H(0,03) - G(v;,04) + H(v,,04) - G(0;,03)
— H(v;,v4) - G(vy,03) — H(vy,03) - G(v;,04)}

where v,,0,,05,0,€ V' (here, we are viewing y,(G) as an element of
Hom(®*V,R)). Using the bilinear form to identify W with W*, the transpose of
(1.b.]) is

YE K*>W®SW. (1.b.2)

As will now be explained, the symbol of the isometric embedding system is
obtained by localizing (1.b.2) at points £ € PV'*.
For this, we let L, C V* denote the line corresponding to § € PV*. Then

(L)* = Tev-(1),

is the fibre of the standard line bundle Zp,«(1) = Z (1) at £ € PV*. Composing
the evaluation map

SV —> S*(L,)*
with (1.b.2) gives the dual symbol map
Yhe  K*>W®2(2), (1.b.3)

of the isometric embedding system (cf. §I1I(a) in [4]). If we denote by ¢ *, %~
the sheaves of sections of the trivial vector bundles with respective fibres K*, W,
then with the standard notations Z (k) = ®*Z (1) and ¥ *(k) = ¥ * ® .0 (k),
the dual symbol maps (1.b.3) collectively give a sheaf map

Y KXW (2).

We denote by .# the cokernel of v}, so that we have

.Y*
H W (2)——> M —0. (1.b.4)

Definitions. (i) # is the characteristic sheaf (associated to H € W ® SV*);
(ii) the characteristic variety E C PV* is the support of .#.
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Remark. As indicated by our terminology, the dual
Yue: W®SL,—>K
of (1.b.3) is the symbol map at £ € PV* of the isometric embedding system. Since
E = {§ €PV*: vf fails to be surjective}
= {§ EPV* : vy fails to be injective},

we see that our definition is the usual one for characteristic varieties.
All of these constructions make sense when we extend scalars by complexify-
ing. For example, the analogue of (1.b.4) over PV} will be denoted by

KES>HWE2)> M0

where .#c is the complex characteristic sheaf with support the complex
characteristic variety

Ee= {£E PV :dim(keryﬂ,€ :We® S’L,—~> Kc) = 1},

Any coherent sheaf .# is, at least after tensoring with some #(k), the
characteristic sheaf of an exterior differential system. However, for the isometric
embedding system the characteristic sheaf and characteristic variety have an
especially beautiful description that we now explain.

Choose bases {w,},{v;} for W,V and denote the dual bases by {w"}, {w').
Then

H=H}w, ®w'w/.
Elements of PV* will be written as
§=¢o'
where [£,, . . ., &,] are homogeneous coordinates; similarly
A=A w#
will be a point of PW*. With the notations
H*= Hlw'e/ € S?V*
Hy=MAH",

in the language of classical algebraic geometry |H,|\cpy+ is a linear system of
quadrics on PV*.
Definition. We define

S2CPW*XPV*
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by
T={(A\§:Hy=E§0nforsomeneE PV*}.
The equation H, = £ o n means that
ANHE =§Em+ &, (1.b.5)

The projections onto the two factors of PW* X PV* induce a diagram

b
’/ \”2 (1.b.6)

ACPW* ECPV*
where

[A={}\EPW*:rankH,\§2}

— (1.b.7)
E=(§€PV* :Hy=§{onforsomeA EPW* nEPV*}].

To justify the notation we have the

(1.b.8) PROPOSITION. The subvariety = in (1.b.7) coincides with the previously
defined characteristic variety.

Proof. This is a variant of the computation in the proof of proposition 3.10 in
§11I(a) of [4]. The point is that the symbol map

YH,§ W->K

has a simple prescription that we now review. Choose coordinates so that § = «”
and write elements R € K as R= R0’ Aw/ ®w*Aw’. Then, with the
additional index range 1 = a, 8§ = n — 1 1t turns out (loc. cit. (3.11)) that

Yui(G)= G'Hlpo N w" ® WP A"
where G = G"w, € W. Setting A, = G* the condition
Yuy(G)=0 (1.b.9)
is equivalent to
A Hlg =0, I=a, B=n—1.
Clearly this is the same as
ANHE = 0" o

where 1 = AMH,f;wi. Finally, (1.b.9) is equivalent to the relation defining = in
(1.b.7). Q.E.D.
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Remarks. (i) The proof shows that the following conditions are equivalent:

H=¢oq for some n € V*
YrgAw") =0 (1.b.10)
HA|$J_ =0.

Hyperplanes £ - C V satisfying either of these conditions for some A € PW* are
classically called asymptotic hyperplanes. (ii) Of course, everything we have said is
also valid over C.

The following will be proved in §I(c) below.

(1.b.11) PrOPOSITION. If H is chosen generally, then 2 is smooth and the
projection

7 2> E (1.b.12)
is birational.

Equipped with these propositions we may describe the characteristic sheaf. For
this, we define an involution

Js 22
by
Jx(®)=mn
where the condition
H,=¢o0nq (1.b.13)

is satisfied. Using the birational map (1.b.12) we then define a rational involution
jiES>E

by
JjE=n

where (1.b.13) is satisfied for some A € PW*. We note that j fails to be defined
over the locus

E, = ((€E dimn; (§) 2 1),

As will be proved in §I(c), Z,, is the singular locus of = and (1.b.12) turns out to
be a canonical resolution of the singularities of = on which the rational involution
j becomes well-defined. With this understood, we define the rational map

T:E>A
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by #(§) = A where (1.b.13) is satisfied, and then we define the coherent sheaf
on X

7*0 (k) = (1)x(7E05(K)) (1b.14)

where, for & a coherent sheaf on =, (7,),# is the direct image sheaf on Z.
We note that all of this discussion extends in the obvious way to Z¢, Z¢, Ag,
jc, e etc.

THEOREM A. (i) The characteristic sheaf is given by
M =T*0\(1)® O=(2). (1.b.15)

(i) In case dim W = n(n — 1)/2 is the embedding codimension, the characteristic
sheaf uniquely determines H € W ® S*V*, up to GL(W) X GL(V).

(1.b.16) COROLLARY. The 2nd fundamental form of a general M" C E""+D/2
is uniquely determined, up to GL(W) X GL(V), by the pair (E, j) consisting of the
characteristic variety = together with the involution j.

Proof of the corollary. As remarked above, given = we may construct a
canonical resolution of singularities £— X on which j becomes a holomorphic
involution. If A = Z/; is the quotient variety, then we obtain a diagram

h)
/N
A =

constructed from (Z, j). We then have
.ﬂ = (Wz)*(ﬂrﬁl\(l)) ® ﬁ5(2),

which shows that the characteristic sheaf is uniquely determined by (Z, j). Now
apply (ii) in Theorem A. Q.E.D.

When n =3 the corollary is (a slightly corrected version of) a theorem of
Tennenblatt [24].

Proof of (i) in Theorem A. For §EPV* we denote by 2, C fpyu, the
maximal ideal in the local ring #pp+; and then we denote by

My= M)y M
the fibre of .# at & Over PV* we define a vector bundle .%# with fibres
Fe=8S¥tcsw
where £+ C V is the hyperplane corresponding to £ € PV. Then the dual vector
bundle has fibres
FE=8S¥(V*/Ly)

where L, C V* is the line corresponding to £.
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According to (3.4)—(3.6) in [4], for w € L, and ¢,n € V*/ L, the map
(q)on)®w2—>%{(p/\w®17/\w+'q/\w®<p/\w}
induces an inclusion
Je 1 FE® S, > K.
The duals of the j, then induce a surjective sheaf mapping
7%
v 4 *—]——wa‘” (2)—0.
Now, and this is the main point, the localized and dualized Gauss mappings
Yhe K*>W® Sy

factor through j} to induce a commutative diagram

0
FRY—W (2)—>M (1.b.17)
J* Yh
o x

(cf. (3.9) and proposition (3.10) in [4]). We will use the exact sheaf sequence

Y*
F W ——> M (—2)—0 (1.b.18)

obtained by tensoring the top row of the exact sequence (1.b.17) with £ (—2) to
describe the fibres M, ® L of 4 (—2).
For this we have the fibre sequence of (1.b.18)

Vi
S+t —SW—M,Q L—0. (1.b.19)

If we consider H € W @ S?V* as an element H € Hom(S?2V, W), then Y ¢ In
(1.b.19) is simply the map obtained by restricting

H:SV->WwW
to the subspace
Skt c 8.
Thus, denoting by
U= (H(S%Y) c w+
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the annihilator of H(S? 1) C W, we have
M,® S’L,= W/H(S*%")
= Uf.
Using coordinates as above where § = "
U= {A:AHlz=0for1=a,B=n—1}
= (A€ W*: H, =§o° nfor somen € V*}.
Summarizing, the fibres of
Ty 2> E
are projective linear subspaces PU, C PW* where
M,® S’L, = Uf. (1.b.20)
Since for A € A
(7)7'N) = (¢ €EPV*:AEPU,)

we infer that the fibre over £ € PV* of the coherent sheaf (7,)4((7,)*Z (1)) is

H(PU;,Opy (1)) = Uf. (1.b.21)

Comparing (1.b.20) and (1.b.21) gives (i) in Theorem A.

Proof of (ii) in Theorem A. In case dim W = n(n—1)/2 is the embedding
codimension, both % and W are vector bundles of the same rank r over PV*.
The restrictions of H € Hom(S2V, W) to the subspaces S%¢* C SV induce

Hg:yg“)W.

The condition that H, be an isomorphism for a general point £ € PV* is
equivalent to the condition that H be ordinary in the sense of §2(b) of [4]. In this
case the isometric embedding system is involutive near x, € M, and it is a
general result (cf. [5]) that, for an involutive Pfaffian differential system in good
form, the characteristic sheaf uniquely determines the symbol. Since the symbol
of the isometric embedding system is H, part (i) of Theorem A follows from this
general result.

However, it is worthwhile to prove the result directly in the case at hand. For
ordinary H € Hom(S2V, W) the top row in (1.b.17) gives the exact sheaf
sequence

0> Fc(2)> W c(2)> Mc—>0 (1.b.22)
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over PV%. Roughly speaking, given only .# we shall reconstruct this sequence,
and this will lead to the desired result.
For £ € PV{ there are exact sequences

0>¢(+ > V> LE—>0
0> S*(¢(+) > S (V) > Ve ® L, —0.
The second of these gives the exact bundle sequence
0> F > 8S*7 > 7 (1)>0 (1.b.23)
over PV (here 7 ¢ is the trivial bundle PVE X V).
Remark. Taking 1st Chern classes in (1.b.23) gives

c(Fe)= —nw
where w € H¥(PV¥,Z) is the standard generator. Using (1.b.22) this gives

c(A ) = no.
Since supp .# ¢ = E; we obtain (cf. Theorem B below)

deg Z. = n.

Returning to the proof of (ii) in Theorem A, from the standard results ([20])
H(PVE,S*7 ¢) = SV¢
H'PVE, 7 c(1))=Vc® Vg
H'(PVE,S*7 o(~1))=0 i=12

and the exact cohomology sequences of (1.b.23)® Z(—1) and (1.b.23), we
obtain respectively

H'(PVE,Fo(—1) =V,
H'(PVE,F o) = AV,.

The exact cohomology sequences of (1.b.22) ® Z(—3) and (1.b.22) ® Z(—2)
then give respectively

HOPVE, Mc(—3)) =V,
(1.b.24)
0> We—> HOPVE, Mc(—2))—> AV;—0.

We will now complete proof of (ii) in Theorem A. Given .# ¢ and PV we use
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the natural identification (1.b.24) to define the sequence

0——Z—HOUPVE, Mo~ 3)) ® Vg—> A2V —0
! (1b.25)

Ve® Ve

where p is exterior product and Z is the kernel of u. Using the vertical equality in
(1.b.25) and product pairing »: #(—-3)®F(1)> #(—2) we obtain a
diagram

0 >Z > HOPVE, M (—3))® V¢
vl l
0 sWe——>  HOPVE, Mo(~2)

where, by definition, W = v(Z). By localizing the inclusion i we obtain
[y :WC_)‘/%C(_2)‘

Tensoring with £ (2) and taking global sections gives

HOPVE. W o(2) ——>HPVE, o)

I
We® SV,

Using the metric to have an identification W§ = W, we have

(kerp)" C W ® SWE. (1.b.26)

Construction. Given the characteristic sheaf .# over PV* we define the
subspace

I C S*V§
to be the image of (kerp)* in (1.b.26) under the natural map
(We® SVE)® WE—> SV,

Thus, I is a linear system of quadrics on PV§, and is in fact the linear
system of quadrics given by the 2nd fundamental form H. In this way we
reconstruct H, up to GL(W¢) X GL(V) acting on W ® S yx, from A .

To complete the proof we must show that H is determined up to the real group
GL(W) X GL(V).

When n = 2 the characteristic variety is either empty (elliptic case), two points
(hyperbolic case), or one point counted twice (parabolic case). In suitable
coordinates H is respectively (0')? + (w?)? 'w?, (w')%
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Thus we may assume that n = 3. The crucial point is the following

(1.b.27) Lemma. If H € W ® S*V* is general, then the conditions
{ S Eg(W) Xgl(V)
S-H=0
imply that S = 0.

Proof. Tt will suffice to prove the same result over C. The 1-parameter group
g(#) = exp(¢S) acts on PWg& X PS?V% and leaves = invariant. Thus g(¢) induces
a holomorphic vector field §g € H%Zg,0) with the special property that it is
induced by a linear vector field on P" under a suitable embedding =, C P
(= P(W¥® S?V¥) in our case).

When n = 3, 3, = = is a smooth curve of genus one (cf. Theorem B) and it is

well known that f; = 0.
When n = 4 we even have that

H°(Z¢,0)=0. (1.b.28)

For example, when n = 4 we will also see in Theorem B that =, = E, is a smooth
K3 surface and in this case (1.b.28) is well known.

In general, the proof of Theorem B will imply that the dualizing sheaf wz_ is
invertible, and hence

Wy =lx

c =c

since deg = = n. By Grothendieck—Serre duality and the fact that 3> Z. is a
rational resolution of singularities

dim H%(Z;,0) = dim H"(Z¢, wy, ® O3)
=dim H"(Eg, 0z, ® Q1)
= dim HO(EC , Hom(Q‘EC ,ﬂ))

=0.
Q.E.D. for lemma (1.b.27).
To complete the proof of (ii)) in Theorem B we suppose given general

H,H' € W ® S*V'* with

H' =TH
where T € GL(W) X GL(S*V%). Then

H' =TH

0=(T-T)H,

so that lemma 1.b.27 applies to give that S =y—1(7T— T)=0. Q.E.D.
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(¢) We continue our study of the characteristic sheaf .# and characteristic
variety = over x, € M where M" C E" is a general submanifold. In this section
we shall restrict to the case of the embedding dimension

N=n(n+1)/2=n+n(n—-1)/2

Keeping the notations from §I(b), for £ € PV* the symbol map for the isometric
embedding system is

‘YH,& :W- K.

Using bases so that { = »” and w, is an orthonormal basis for W, we have seen
in the proof of proposition (1.b.8) that for G = G*w, € W

Yui(G)= G'Hlgw* N &" ®wh A wm
As noted there (cf. (1.b.10)) there is a natural isomorphism
keryy,={A=Awt € W*: Hy=§onforsomen € V*}. (l.c.l)

Definition. We define Z, C PV* by
== {6€PV* dimkery,, = k}.
The same prescription also defines Z;, C PVE.

Since, by generality, the map §— vy, , will be injective we have =, = @ and
=, = Z. In fact, there is a filtration

—
= M~
=

In]

CEZ, ,C--- CE,CE, =5; (1.c2)

as will be seen below, this is a stratification with very remarkable properties (also
over C).

THEOREM B. For H general we have
(i) codimEZ; = 1 and degZ; = n,
(ii) for any k

codim Z¢ , = k*

deg =g, = det| : #0;

s lond —
1) (B s = Eck+13
(iv) my: 2> Eg is a canonical rational resolution of singularities; and
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(v) for the real characteristic variety

(Ek)sg=zk+l
E+0 if n=3
Z,790 if n=4m+2, m=1

Remarks. Here, ‘I'Sg denotes the singular locus of a variety ¥ (over either R

m2 _— . . . I .
or C). To say that £,—> Z is a rational resolution of singularities means in
particular that: (a) Zg is smooth; (b) the fibres 2, = 7, 1(¢) are rational
varieties; and (c) the direct image sheaves satisfy

ﬁzc q = O
RI(Os) = {

1.c.3
0 qg=1 ( )

In our situation it will also be the case that: (d) the dualizing sheaf wz_ of Z¢ is
invertible and satisfies

n Wz q=0
Rv?z(ﬂzc) = { 0 ¢ q =1 (1.0.4)

. on Wz q=0
j*(QEC\EC,sg) = { 0 ¢ q =1 (1.0.5)

where j: E\Eg,, = E¢ is the inclusion. Although rather technical to state, this
last condition is very strong. Effectively, it says that from an algebro-geometric
viewpoint the singularities of = are negligible.

(1.c.6) COROLLARY. For the characteristic variety = of the isometric embedding
system (I, w) of M" C E""*1D/2 ywe have
() =+ 9 if n=3 (in particular, (1,w) cannot be elliptic for n = 3);
(i) Z is smooth if M C E""*D/2 js general and n = 4;
(iii) Z is not smooth for any M CE""*V/2if n=4m +2, mz 1.

Remarks. (i) In perhaps more standard PDE terminology, the isometric
embedding system is of principal type if n =4 but has multiple characteristics if
n=dm+2, m=1.

(ii) Essentially the same proof will give the following for the isometric
embedding system of a general M" C E"*’

(i) dimE;=max(—1,r — (n—1)(n—2)/2 - 1)
(i) dim ¢, = max(—1,r — (n = 1)(n — 2)2 = k?)
i e _[(n(n+1)/2—r
o e

(iv) (Eck)se= Zck+i
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(1.c.7) CorOLLARY. E.=@ ifr=(n— 1)n—-2)/2.

This corollary was the starting point of the rigidity results in [4].
The idea behind the proof of Theorem B is based on the following three
considerations:

(1.c.8) Let A4,B be vector spaces (real or complex) and define the standard
determinantal subvarieties

¥, C PHom(A,B)
by
¥,={T €Hom(4,B) :rank T = /}.
(To be precise, ¥, is defined by the ideal given by all (/ + 1) X (I + 1) minors of
T.) Then, if dimA = a and dim B = b,
codimV¥, = (a—1)(b— /).
In particular, if @ = b = n and we set k = n — /, then codim ¥, _, = k%

(1.c.9) If we let G = G(a — I,4) be the Grassmannian of (a — /) planes A C A4
and define

3, C G x PHom(4, B)
by
Z,={(A,T) tACkerT},
then
72>,

is a rational resolution of singularities having the properties (a)—(d) listed above
(over C). Note that for T € Hom(4, B) with dim(kerT)Z a — |,

7~ (T)= G(a— LkerT).

In particular, it is reasonable to expect (a)-(d) to hold for any variety that is
locally a subvariety of ¥, situated transverse to the stratification ¥, c ¥, C - - -
CcV¥,.

(1.c.10) Let
o:E>F
be a holomorphic vector bundle map over a smooth complex algebraic variety =

and define

Z={x€Z:9(x):E,> F, hasrank =/ }.
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If r(E),r(F) are the respective ranks of E, F, then under the assumption that
p=codimZ, = (r(E)—1)(r(F)—1),
the fundamental class o, € H?*(Z, Z) of =, is given by Porteous’ formula (cf. [2]):
0, =A[(c(E),c(F)).

Here, c¢(E) and ¢(F) are the Chern classes of E and F, and the notation is that of
[2] (where a proof of Porteous’ formula is given).

The idea behind the proof is to apply the considerations (1.c.8)—(1.c.10) to the
symbol map of the isometric embedding system (thus, £ =PV* or PV} in
(1.c.10)). To implement this we will need to establish strong transversality
properties of the symbol map for a general M" C EY. Although it seems quite
reasonable that “general for the 2nd fundamental form of M" C E" = transverse
for the symbol map” this is by no means obvious, and in fact in algebraic
geometry one knows all too well that such “obvious” general position properties
are frequently false. Fortunately, we are able to adapt our situation to be able to
apply known transversality results for sufficiently twisted subvarieties of
Grassmannians meeting general special Schubert cycles. Our proof of the
qualitative part of Theorem B (over C) will be largely based on the paper [14] by
Kleiman—Landolfi, and so our first step will be to briefly review [14] in a form
suitable for our use.

Review of [14]. Let % be a complex vector space and G,(% ) the Grassmann
manifold of codimension-n planes E C %. We denote the universal bundle
sequence by

00— ——U —5>9——0 (l.c.11)

where /', % ,2 have respective fibres

fE=E
@E-_—@
QE=@/E.

Given an n-plane F C % we set
0u(F)={E € G,(%) :dim(E N F) Z k)
={E € G,(%):rank(7 : F>%/E)=n — k}.

Since any two n-planes F,F’' C % are related by GL(%), any two special
Schubert cycles o, (F),0,(F’) are related by GL(% ) acting on G,(% ). Choosing
a basis f}, . . ., f, for F, we may think of the vectors

[(E)Y=n(f,)E%/E
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as giving n holomorphic sections 7(f) € H %G (%),2). Then
o(F)={E C G,(E) :dim(span f,(E), ..., f(E))=n—k}.
In particular, 6,(F) is the locus

T(f) A AT(f) =0

The o,(F) are among the special Schubert cycles discussed in Kleiman—
Landolfi [14]. In particular they have properties

codima, (F) = k?;

(0 (F))sg = O1(F)s

. (1.c.12)
o, (F) is Cohen-Macaulay and normal; and

o,(F) has a canonical rational resolution of singularities

The first three properties are given in §4 of [14] (cf. also (6.3)), and the last one is
explained in §§5, 6. The term canonical refers to a succession of ordinary
monoidal transformations, with non-singular centers, that are defined purely in
terms of the scheme structure of o, (F).

The canonical resolution of singularities of these special Schubert cycles also
has the property (d) (cf. (1.c.4) and (1.c.5)) listed in the remarks following the
statement of Theorem B. Since we will only marginally use this result here (cf.
the proof of (1.b.28) for n=5) we will not give the standard but somewhat
technical proof.

The mapping 7 in (1l.c.11) induces a holomorphic mapping between rank n
bundles over G,(%)

75 > (1.c.13)
(here, ¥ is the trivial bundle F X G,(%)). Since
codim{E € G, (%) :rank(F—W—> OZz/E) =n- k} = k2
Porteous’ formula applies to give the fundamental class o, of 6,(F) as

Ce " Cok—
o, = det s (1.c.l4)
15 B Ck

where ¢; = ¢;(2) are the universal Chern classes.

Remark. Actually, (1.c.14) is a consequence of Giambelli’s formula (cf. page
205 in [8]) from classical Schubert calculus. We have emphasized the more
general Porteous’ formula since it may be useful in other problems of computing
degrees of characteristic varieties.
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Review of [14] (continued). Next we consider a smooth subvariety X
C G,(%). Setting

o (F,X)=0,(F)- X, (1.c.15)

it is natural to ask how many of the properties (1.c.12) are inherited by the
0, (F,X). Clearly, this requires a transversality condition on the intersection
(1.c.15). If this condition is satisfied for one n-plane, then it will be satisfied for a
general n-plane F C % (but usually not for all F), so what is required is a
condition on X that a general intersection (1.c.15) be suitably transversal. One
such condition is given in [14].

Definition. A smooth, irreducible subvariety X C G,(%) is said to be twisted
in case 2y (—1)= 2(—1)® Fy is generated by its global sections.
Here, Zx (1) refers to the standard line bundle under the composite embedding

X G,,(@)—>p P(AN="%)
where dim% = N and p is the Pliicker embedding.

Remark. In particular it follows that, for a twisted X C G,(% ), the universal
quotient bundle 9y = 2, (—1)® # (1) is very ample, whereas over the whole
Grassmannian £ — G,(% ) is not even ample (unless n=1 or n=N—1). A
slight additional argument shows that the normal bundle to X in G,(%) is also
very ample, so the above is a reasonable notion of “twisted.”

In §7 of [14] it is proved that the properties (1.c.12) are valid for a general
6, (F,X) provided that X C G,(%) is twisted. We shall not write out these
properties here, but rather refer to Theorems 7.1, 7.3, 7.5-7.8 in [14] for the
statements to be used below.

It may also be shown that (1.c.4), (1.c.5) follow from the analogous statements
for the o, (F). As mentioned above, the proof of this technical and for our
present purposes not really essential result will be omitted.

By Porteous’ formula applied to the restriction of (l.c.13) to a general
X C G,(%) the fundamental class o, € H*'(X,Z) of 6,(F,X) is given by the
same formula

G v G-
o, = det| : : (1.c.16)
cl . .. ck
as (1.c.14), where now ¢, = ¢, ( Qy).

Proof of (i)-(iv) in Theorem B. We now consider an algebraic 2nd
fundamental form

H € W ® S*V* = Hom(W*,S?V'*)
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where dim W = n(n — 1)/2. We set
% =SV,
Fy = (H(W*)*.

In coordinates, if H = H'w

4w, ® w'w/ then for A = A, w* € W§

H(\) = Hy =\ H}w'w) € SV
Fy={q%¢ €SV, :q'H} =0forallp}.
Note that for H € Hom(W*, S2V'*) injective (in particular, for general H)
dimFy =n(n+1)/2—n(n-1)/2
= n.
With the identification (projective duality)
PVE—G,(V¢)
given by
E>E,
we define a mapping
9 :PVE> G (%)
by
P(§) = S*(¢).

Setting X = @(PV{) it is easy to see that PV — X is biholomorphic, and we will
identify PV¥ with X. The fibres of the universal bundle sequence (1.c.11) over
£ € X are now

Se=8%¢Y)
U= SV,
De=SWo/S}ED).
In coordinates, if £ = »” and we use the additional index range 1 = a, 8=n— 1,
L= {q%e.e5}
%= {q'¢)

95 = {qaneaen}'
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In other words, if L, C V§ is the line corresponding to £ € P&, then there is a
natural isomorphism

Qe = VC ® Lg
and consequently
Dy =7 c®0x(1) (1.c.17)

where 7 ¢—> X is the trivial bundle with fibre V. It follows (just barely) that
X C G,(%) is twisted, and moreover

c(2x)=(1+w)

%(Z) = (g)e*

where w € HXPV,Z) is the standard generator.

Now, and this is the point of the above construction, (i)-(iv) in Theorem B will
follow from the fact that p(PVE) C G,(S*V,) is twisted and (1.c.18) once we
show that

(1.c.18)

o (FysX)=Ecy- (1.c.19)
For this, let £ € PV¥ and choose coordinates so that £ = w”. Then
P(§) = SU¢) = (q™ene) C SV
P()" =S¥ = {paw'e") C SV
Fy={qY%e¢ :q'H} =0forallp) C S?V¢
(Fy) = (Hy=AH}w'o/) € SVE.
Since
dim(@(§) N Fy ) = dim(e(&)" N Fg ),
and from the above descriptions
@) N Ff = (A€ W§: Hy = £ o 1 for some 7},
we see that the conditions
{dim(Sz(g YN Fy) 2k
dim{A € W§: Hy=§o nforsomen} =k
are equivalent. Since the first of these conditions gives o,(Fy,X) and, by

(1.c.1), the second gives = ;, we conclude (1.c.19) and with its parts (i)-(iv) of
Theorem B.
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Definition. We will say that a 2nd fundamental form H € Hom(W¥, S*Vg) is
general in case: (i) H is injective, so that F,, = (H(W*))* C SV is an n-plane,
and (ii) F, meets the subvariety X C G,(S?V,) transversely in the scheme-
theoretic sense. A real 2nd fundamental form is general in case the corresponding
complex 2nd fundamental form is general.

For H general we have now established Proposition (I.b.11), Theorem A
(condition i in the definition of general = ordinary as in the proof of Theorem
A), and Theorem B where all statements are over C. The corresponding real
assertions will be a consequence of the following argument.

Proof of (v) in Theorem B. The first statement follows immediately from (iii)
and the Jacobian criterion. (The general result is that

n—1 _ n—1
(¥),,NRP"~' = (¥, ) NRP

for any algebraic variety ¥ C CP"~! whose idea is generated by real
homogeneous polynomials.)

To prove the second part of (v) we recall our notational convention that
Z CPV*=RP" !is the real characteristic variety and Z5 C PV% = CP""! the
complex variety having the same real generators for its defining ideal as =. In the
embedding dimension, = is a hypersurface and we have proved that

deg Z. = n.

Consequently, for n =1 mod2 the real characteristic variety Z is a non-empty
hypersurface because of the following well-known

(1.c.20) Remark. Let I CR[¢,, ..., &,] be a homogeneous ideal with com-
plexification I C C[§,, ..., &,]. Suppose that the variety ¥ defined by I has
no multiple components and deg ¥, is odd. Then the real variety ¥ defined by 1
is non-empty.

Proof. Suppose that dim ¥ = m and let G,,(R") (respectively G,,(C")) denote
the codimension m planes in RP"~! (respectively CP"~"). If deg ¥ = d then a
Zariski open set  C G,,(C") of planes A = CP"~™~! all meet ¥, in d distinct
smooth points. Since G, (R") C G, (C") is not contained in any complex
algebraic subvariety, there must be real planes A meeting ¥ in 4 distinct points.
Complex conjugation then induces an involution on the finite set A - ¥, and
since #(A - ¥c) = d is odd there must be a fixed point. Q.E.D. for (1.c.20).

To prove that Z = @ for all n=3 we proceed somewhat differently. The
following argument is motivated by the proof of the similar result in [12].

We consider H € Hom(W*, S*V'*) and make the identification

S*V* = Hom“(V, V'*),
where the right-hand side is the symmetric homomorphisms of ¥ to V*. We set

Fy = (H(W*))" C Hom®(V*, V).
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Then since dim H(W*) = n(n — 1)/2,
dim Fy, = n.

To show that = # @ we must show that there is £ € V*\{0} such that

(A,€°m)=0 (L.e21)
for some n € V*\{0} and all A € F,;. Writing (1.c.21) as
(A(&).m) =0,
the failure of (1.c.21) to hold means that the map
a;: Fy->V
given by
af(4) = A(§)

is surjective for all £ € V*\{O}. Since dim Fy; = n, a; must be an isomorphism. In
other words, if (1.c.21) fails then

AE F\[0}, £€V*\(0})=>4(%+0.
Equivalently,
A € Fy\{0} =det4 #0.
According to the paper [1] of Adams—Lax—Phillips, the existence of a subspace
F c Hom®(R",R")
satisfying the two conditions

{dimF= n
det4 #0 forall A €F

implies that n = 2. This proves the second part of (v).
To prove that =, # @ if n=4m + 2, m = 1, we shall use the remark (1.c.20)
together with (iii) and the first part of (v) from Theorem B. Thus

() ()} _wee-n

deg =g, = det =t
R (G
If n=22m + 1) this is

(2m + 1)’ (16m* + 16m + 3)

degZg,, = 3 =1 mod 2.
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Remark. Naturally we would conjecture that

Eyg 7D for n=5.

I1. The linearized isometric embedding system.

(a) Let (M,ds? be a Riemannian manifold with metric g= g,.j(x)dx idx/ in
local coordinates. Fixing a point p,€ M and replacing M by a small
neighborhood of p,, still denoted by M, we want to begin discussing the problem
of finding a local C* isometric embedding

x :(M,ds*)—>E"n*+h/2 (2.a.1)
Thus we want to solve the 1st order, non-linear P.D.E. system
(dx,dx)=g (2.a.2)

in a neighborhood of p,. Now (2.a.2) is a determined (i.e., the same number of
unknowns as equations) system, but the “geometry”, which relates the 2nd
fundamental form of an embedding (2.a.1) with the curvature of g via the Gauss
equations, can only be uncovered by differentiating (2.a.2).

This suggests that we approach the problem more intrinsically via the exterior
differential system of isometric embeddings set up in §II(a) of [4]. This is
especially true since the differential system formulation leads quite naturally to
the solution of the embedding problem in the real-analytic case (the
BCJS-theorem, cf. the references cited in [3] and §II(b) of [4]). Finding
admissible integral manifolds of an exterior differential system is also a 1st order,
non-linear P.D.E. system (cf. any proof of the Cartan—Kaihler theorem). What is
suggested is that we try to solve this system by an iteration scheme using strong
solvability problems of the linearized equations, which of course must be
established in the particular case at hand.

Following some further general remarks, we will in the next section give the
general formulation for the variational equations of an exterior differential
system. These will turn out to be a Ist order linear P.D.E. system whose symbol
map and characteristic variety are in a very natural way induced from that of the
exterior differential system (cf. [5] for the definitions and terminology we are
using here). When applied to the isometric embedding system, we obtain a linear
P.D.E. system, the essential part of whose symbol is given over p, € M by

Yy WRSW*>K
where H is the 2nd fundamental form at x, = x(p,) of an embedding (2.a.1), and
where the remaining notations are given below (1.b.1). Since
nz(n2 -1
12

n2(n - 1)2
4

dimK =

dimW ® S*V* =
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the linearized equation appears to be overdetermined (i.e., there are more
equations than unknowns) when »n = 3. This is because the isometric embedding
system (I, w) has been obtained by prolongation of the non-involutive system
(1y, w) of §II(a) in [4] (cf. (2.7) there), and it is a general phenomenon that the
prolongation of a determined system appears to be overdetermined.

However, when the Cauchy problem for the linearized equation is well posed,
this difficulty can be sometimes overcome. For example, in R"*! with variables
(x,)=(x;, ..., x,,t) we consider a 2nd order hyperbolic system

u,—a’u,, =0 (2.a.3)

for one function u(x, ) with initial data
u(x,0)=f(x),  u(x,0)=g(x)

In the general theory of differential systems, (2.a.3) would be written as the 1st

order system in n + 1 unknown functions (u,, . . ., u,,0)
”x,-"'(“i)x=0 i=1,...,n
(#)y, — (#),, =0 1Si<j=n (2.a.4)

v, — ag(ui))‘j =0
with the initial data
{ u(x,0) = f.(x)
v(x,0) = g(x)

Now (2.a.4) seems to be overdetermined when n = 2. However, by differentiating
the first equations in (2.a.4) the functions

wij = (ui)xj— (uj)x,»
satisfy
(wij)t =0
w,.j(x,O) =0

and hence w;; = 0. In other words, we may omit the middle equations in (2.a.4) to
have a determined system.
This procedure will not work for a general 2nd order equation

af —
b u)’a 7 0

in R™*! with coordinates (yy,...,»,,;) unless we can single out a non-
characteristic hypersurface so that, after a change of variables, it can be written
in the form (2.a.3).
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Similarly, for a vector-valued function U = (u', . . ., u*) the 1st prolongation
of the determined system

U - AiUxi =0
U(x,0) = F(x),

where the A’ are k X k matrices, is the seemingly overdetermined system

V. —(U;),=0

(U, = (U), =0

V,—AY(U;), - A/U;=0

Uy(x.0) = F,(0)
As before, the 2nd equations may be omitted to obtain a determined system.

Now even if this procedure of finding determined subsystems could be made

to work in general, to be applicable to C* problems it requires at the very least
that Holmgren’s uniqueness theorem be valid, and most likely the whole Cauchy
problem would have to be well posed. Fortunately, for the isometric embedding
problem it turns out that the linearized version of the naive system (2.a.2)
uncouples along M in a very special way and may be effectively used without
prolongation. This procedure, which in some sense already occurs in Nash’s
original paper [16], will be given in §I1(c) following our discussion in §II(b) of the
general linearization of exterior differential systems.

(b) Let (I, w) be an exterior differential system on a manifold X, and let
fiN->X (2.b.1)

be an admissible integral manifold. We will derive the equations for the first
order variations of (2.b.1) as an integral manifold of (7, w).

Step one. It is well known that the first order variations of any map (2.b.1)
are given by sections » € C®(E) of the normal bundle E = f*T(X)/T(N) to
f(N)in X. In suitable coordinates (x’,x*) on X and (»’) on N, (2.b.1) is given by

y=>(rLx4(y)

A variation is

y=2>(rix (. 0) (2.b.2)

Setting "= 9/9¢|,_, the tangent to (2.b.2) is

p =520 (2.b.3)
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Step two. Suppose that dim N = n, dimX = N, and use the ranges of indices
l1=i,j=n n+1=a, = N. Denote by G,(X)—> X the Grassmann bundle
whose fiber

Gu(X),= Gu(T,(X))
over p € X consists of all n-planes in the tangent space 7,(X). A local coordinate

system (x’,x*) on X induces local coordinates (x’,x%/*) on G,(X), where
(x',x%, 1) corresponds to the n-plane with basis

(el
ox' ox

Any maximal rank mapping (2.b.1) has a canonical lift
G,(X)
fx , (2.b.4)
f

N —7X

given by f.(y) = f*(Ty(N )), or in the above local coordinates by
= (yix(y), & 2.5
S = >5x% () 2y ) (2:6:5)

On G,(X) there is a canonical exterior differential system (J, w) whose admissible
integral manifolds are the canonical lifts f, : N— G,(X). Locally, (J,w) is the
Pfaffian system generated by the 1-forms

8¢ = dx® — I%dx’

with independence condition dx' A - -+ A dx"#0.
To see this, let g: N> G,(X) be any mapping with g*(dx' A - - - A dx") #0.
Then by the implicit function theorem locally g may be given by
y=> (LX), 5()
The condition
g*(0*)=0
is
a ax*
=370
X

which is (2.b.5).
Step three. Now let
g :N—>G,(X) (2.b.6)
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be a l-parameter family of maps given locally by

yo (VX (0, 15 (p, 1))

The associated infinitesimal variation is given by (2.b.3) where we replace X by
G,(X), and it is

.a 0 i« O
X 3x +l, _—1}; (2b7)

The condition that for each ¢ (2.b.6) be an integral manifold of (J, w) is
ax*
IF(p, ) = == (y,1). 2.b.8
() 2y (1) (2b8)

Setting g = g,, the corresponding condition on a general normal vector

a0 ppe 0 (2b.9)

A PR T

to g(N) C G,(X) is, by (2.b.7) and (2.b.8),

0% _ pa (2.b.10)
ay’

In summary:

Given an admissible integral manifold g(= f,) of (J,w) the infinitesimal variations
of g as integral manifolds of (J,w) are given by normal vectors (2.5.9) that satisfy
the 1st order linear P.D.E. system (2.b.10).

Step four. Now suppose that (I,w) is an exterior differential system on X
whose integral elements V, (I, w) C G,(X) are locally given by

Frx',x%1#)=0.

Differentiating
Fr(yLx*(p,0),0%(», 1)) =0
gives
oF" ia _QE: v O
Wli + 3% 0 (2.b.11)
Let

g:N->V,(I,0) C G,(X)

be the canonical lift of an integral manifold f: N> X of (/,w). Then the
conditions that a normal vector » = »*(3/9x®) to f(N) C X be the infinitesimal
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variation of a l1-parameter of integral manifolds of (I, w) are given by combining
(2.b.10) and (2.b.11), and are

OF" 3v* | 3F" o _
T Tl 0 (2b.12)

If we recall that the first prolongation (1P, w) of (1, w) is given by the restriction
of the canonical system (J,w) to V,(I,w), and that (I‘V,w) is the quasi-linear
Pfaffian system

0°=0

b= -7 N’ mod {4}

with symbol relations

blmf = mod{w’, 6% )
given by
i OF”
ba - alia ’

then we may write (2.b.12) as
v=7p* a)aca isnormal to f(N) C X

by =0
ay'

(2.b.13)

(2.b.14) Conclusion. The equations of variation of an integral manifold
f: N> X of (1,w) are given by a linear 1st order differential operator

D :C*(E)~> C*(F) (2.b.15)

between vector bundles E,F over N. In coordinates, D is given by (2.b.13), and in
intrinsic terms

E = normal bundle to f(N) in X
F = co-normal bundle to V,(I,w) in G,(X)

In the last sentence it is understood that we pull back the co-normal bundle of
V,(I,w) in G,(X) to N by the canonical lift f, of f.

Remarks. (i) It is interesting to note that the linearized version (2.b.15)
already involves the st prolongation of (I, w).

(ii) Especially important is the observation that the symbol of (2.b.15), in the
usual P.D.E. sense, is induced by the symbol of the exterior differential system
(IV, w) as defined in §I of [5].
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(iii) Suppose that (I,,w,) is a 1-parameter of exterior differential systems on X
with (1, wg) = (I, w), and let us ask for the variational equations of a 1-parameter
family of integral manifolds f,: N—> X of (/,,w,). Then essentially the same
procedure shows that (2.b.15) is replaced by an inhomogeneous system

b ety = g (2.b.16)
ay'
where, if F"(x',x%1*,t) =0 defines V,(I,,0,) C G,(X), then
oo OF

9t |i=o

(c) We shall now deal directly with the variational equations of the naive
system (2.a.2). These are obtained by differentiating

(dx,,dx) =g, (2.c.l)

at 1 = 0. Setting "= 9/9¢|,_, and using the notations

X=X0
y=x
k=3(%)

the variational equations of (2.a.2) are
(dx,dy) + (dy,dx) =2k (2.c.2)

Both sides are sections of S>T*(M); consequently (1.c.2) is an n(n + 1)/2 X
n(n + 1)/2 linear inhomogeneous system, and the main point is to uncouple the
system along M by breaking y into tangential and normal components.

Thus, let {e;,e,} be a Darboux frame field along x(M) C E""*D/? with {w'}
the dual co-frame to {e;}. Recall the structure equations (cf. §I(a))

dx = w'e,
do' = —\[/ji A w/
dei=¢ilej

de,= Hlew’  mod{e,}

where ||/ is the connection matrix and H = Hle, ® w'w/ is the second
fundamental form. If W — M is the normal bundle to x(M), then H gives a map

H:W- S°T*(M) (2.c3)
by

Pl
)\Men—ﬁ\”Hijw w’.
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We shall assume that the embedding x : M — E""*D/2 is non-degenerate in the
sense that (2.c.3) is injective, and we denote by II C S*T*(M) the image. Then
Il =,en1l, where II, C S ZT;‘(M ) is a subspace of co-dimension n. We define
I+ C ST(M) by I =J,cp1l," where 1" is the annihilator of I1,. We

may think of II* as the relations (depending on p € M)
b'H! =0, p=n+1,...,n(n+1)/2.
To uncouple the equations (2.c.2) we write
y=yle,+yte,
dy=(dy' + y i/ — y*H}w')e;  mod{e,).
Then (2.c.2) becomes
(dy’ +y/i,l/j") ow' —y"Hq‘.‘w" ow/ = kijwi ow/
To put these in intrinsic form we consider the 1-form
p=yw €C(THM))
Its covariant differential is

Do = (dy' =y /) ® o'

= (dy" +yf¢j")®w" € C®(T*(M)® T*(M))

If we denote by
DO = (dy' + y ) o0’ € C*(S’T*(M))
the symmetrized covariant differential and set
H'= Hl'w' o w/ € C*(S’T*(M)),
then (2.c.5) is
D@ = y*H" + k
This is equivalent to

DWp=k  modll

The formula

> Dy  modll
defines a Ist order linear differential operator

D : C®(T*(M))—> C>(S*T*(M)/II)

(2.c4)

(2.c.5)

(2.c.6)

(2.c.7)



928 BRYANT, GRIFFITHS AND YANG

and (2.c.6) is the same as
Do =1 (2.c.8)
where / is the projection of k to S2T*(M)/II. In summary:

(2.c.9) The solutions y to the variational equations (2.c.2) are in one-to-one
correspondence with the solutions ¢ to (2.c.8).
Explicitly, if b, = {bJe,e;} give a basis for I+ and if we write

DYy = (D(S)(p)ijw" 0w/,
then the equations (2.c.8) are
ij (), _ _
B((D ), ~ k) =0

If p=y'w’ is a solution to these equations, then by our nondegenerary
assumption we have

DWp = y*H" + k

for unique y*’s. Finally, y = y’e, + y'e, is a solution to (2.c.2).
We will give some observations on the system (2.c.8).

(2.c.10)  The bundles T*(M) and S*T*(M)/ II both have rank n, so that (2.c.8)
is an n X n determined system.

(2.c.11) The characteristic variety of the operator (2.c.8) is equal to the
characteristic variety E of the isometric embedding system.

Proof. The symbol of (2.c.8) is given by
of(D)(m) = (b (&m; + &)
where §,m € T*(M). The condition oD )(n) = 0 is therefore equivalent to
AMH']” = ginf + 5/71,-
for some A = A e** € W*. Writing this as
H}\ = £ on
we obtain exactly the condition that § € = (cf. (1.b.10)). Q.E.D.

Remark. The characteristic variety of (2.c.8) coincides with = as a scheme.
However, the characteristic sheaf of (2.c.8) is not equal to the characteristic sheaf
of the isometric embedding system (cf. Appendix to §I1(c)).

We shall conclude this section by considering briefly the variational equations
(2.c.2) for a general

M"C En(n+ 1 /2+s
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If we define W to be the bundle of 2nd osculating spaces to x(M) modulo the
tangent bundle, then we may still assume that (2.c.3) is injective. In this case
exactly the same derivation goes through, so that the variational equations (2.c.2)
are still equivalent to (2.c.8) where D is given by (2.c.7). We now separate into
over- and underdetermined cases.

s <0. There the system (2.c.8) is overdetermined. The dimension of the
complex characteristic variety is given by the 2nd remark following (1.c.6), and
we are in the situation of [4].

s > 0. There the system (2.c.8) is underdetermined. In particular, where s = n
the operator (2.c.7) is zero and the variational equation (2.c.2) may be solved
algebraically by taking the y’ arbitrary and determining the y* by the conditions

D(s)(yiwi) =)’”H"
This is the situation considered by Nash [16] and Greene [7].

Appendix to §II(c). We shall attempt to clarify how the same characteristic
variety = turns up in the two quite different linearized isometric embedding
systems. For this we shall use the notations and terminology of [5]. Let (I, w) be a
quasi-linear exterior differential system with characteristic sheaf .#. Then

Supp.# = E;CPVE (2.c.12)

is the complex characteristic variety of (I,w). The condition that (I,w) be
involutive is given by the vanishing of the torsion of (I, w) and by homological
conditions on .# (loc. cit.).

Suppose now that (/,w) is involutive and denote by .# (D the characteristic
sheaf of the 1st prolongation (1V,w) of (/,w). Then (loc. cit.)

MO = 4 ®O(1) (2.c.13)

Moreover, (IV,w) is involutive with characteristic variety Z( given by

M = =

It]

according to (2.c.12) and (2.c.13). Finally, if (/,w) is “determined” in the sense
that its symbol matrices are square, then (/(?, ) is “seemingly overdetermined”
in the sense that its symbol matrices are k X m with k < m.

Conversely, suppose that (I, w) is involutive and is “seemingly overdetermined”
in the above sense. For example, we may consider the isometric embedding
system for a general M" C E""*1/2 with symbol matrices

B.: W—-K.

Suppose we also suspect that (/,w) is, at least formally, the prolongation of a
determined system. For example, the isometric embedding system is formally the
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Ist prolongation of the determined system (2.a.2). Then to find this determined
system we should try to “deprolong” (I, w) by considering

M(~1)= M REI(-1).

If .# (—1) satisfies the homological conditions for involutivity, then it appears to
be the case that the linearized equations for (I, w) microlocally uncouple into an
algebraic system plus a system with characteristic sheaf .# (—1). This suggests
the following

Definition. An involutive exterior differential system (/,w) is said to be
determined if for some k the sheaf .#(—k)= .# ® /(- k) satisfies the
homological conditions for involutivity and has square symbol matrices.

(2.c.14) PROPOSITION. The isometric embedding system of a general M"
C E"n*D/2 s determined.

We will not give a formal proof of this result, but simply remark that the
symbol mapping corresponding to .# (— 1) turns out to be the symbol map of the
linearized equation (2.c.2).

It is instructive to conclude this discussion by explaining directly how the same
characteristic variety Z turns up in the two quite different linearized isometric
embedding systems. Keeping our above notations we recall that (cf. (1.b.10))

E={[¢] EPV* :thereexist A€ W*andn € V* with H, =£0 19} (2.c.15)
In indices the relation Hy, = {0 7 is
ANHE =Emi+ &, (2.c.16)

The key observation is that the symbol map o,(§) of the linearized isometric
embedding system (I,w) has A € kerg,(§), while the symbol map 0,(§) of the
linearized equation (2.c.2) has 1 € ker 6(§).

More precisely, recalling from the proof of Theorem A our notation

F =S¥ (V*/Ly)
and the canonical inclusion
Je: FE® S, SK,
the symbol map
o,(§) : W*> K
of the linearization of (/,w) is given by
@M =) (2<17)

where Hy € S¥(V*/L,) is the projection of H,= AHw' o w/ € S?V* (cf.
(1.b.17)).
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On the other hand, the symbol map
o) (§) : V*> S+ /1T
of the linearized and uncoupled equation (2.c.2) is given by
0)(§) =[£°n] (2.c.18)

where [£ o 1] is the projection of £ o 1 to S*V*/IIt.
It is clear that the conditions

o\(§A =0
02(5)71 =0

are each equivalent to (2.c.16). In fact, the map
kero(§) - ker 0,(§)
given by
A=,

where (2.c.16) is satisfied, is an isomorphism. It is for this reason that the two
characteristic varieties are equal as schemes.

(d) Theorem B and its consequences, especially corollary (1.c.6), give us
fairly strong information on the microlocal behavior of the linearized isometric
embedding system (2.c.8).

TueoreM C. Let M" CE""*Y/2 pe a general submanifold. Then at a point
(x9,40) € Z \E) 1, the linearized isometric embedding system (2.c.8) is microlocally
equivalent to a system of pseudo-differential equations whose leading symbol is

Ly(x,6) - Lu(x%
o(x,§) = :

Liy(x,8) -~ ka(x,ﬁ)
0 G-

2.d.1)

where the L,z (x,§) are homogeneous of degree one in § with L,g(x,,%,) = 0 and are
generic in the sense that

AN deLg(x,8)#0

1Sa,8=k
in a conical neighborhood of (x,&).

(2.d.2) COROLLARY. When n = 2,3,4 the variational equations of the isometric
embedding of a general M" C E""*V/2 are locally solvable.

Proof of Theorem C. This is pretty much equivalent to a more general result
whose formulation may shed additional light on the situation. For this we use the
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notations
2 = P(Hom(R™, R™))
U
3, = {4 € Hom(R",R™) :rank 4 = m — k}

Thus, X is the projectivized space of m X m matrices and 2, C 2 is the algebraic
subvariety whose ideal is generated by all (m — k + 1) X (m — k + 1) minors of a
variable matrix. It is well known that

codim I, = k?
(Ek)sg =2
We shall refer to
3,cxc...Cc3¥,_,C= (2.d.3)

as the canonical stratification on the space of m X m matrices.
We now consider a symbol

p(x,£) : T(M)\{0} > Hom(R",R™)
given by an asymptotic sum
P(x9~pi(x,€) + po(x,§) + - - -

whose leading term is homogeneous of degree one. This leading term induces a
map

pi(x,€) :PT*(M)—>Z2 (2.d.4)
for each fixed x € M.

Definition. We shall say that the symbol p(x,§) is fibrewise transverse in case,
for each fixed x € M, the mapping (2.d.4) is transverse to the canonical
stratification (2.d.3).

Remarks. (i) If we set
Ee=(p) "%

then it follows that = = X, _, is the characteristic variety and that either =, is
empty or else

codim E, = k2.

It follows moreover that

: oy p—
In particular, X, = %,.
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(i) If we write p)(x,£) = || p1as(x. ||, then this definition has only to do with
the principal symbol || py,5(x, )| for each fixed x. It does not say anything about
the Poisson brackets {p;,5(x,%), p;ys(x,§)} and whether or not the =, are
involutive for k =2. It also says nothing about the sub-principal symbol of

p(x,é).

Theorem C is a consequence of

THEOREM C'. Let p(x,§) be a fibrewise transverse symbol. Then microlocally,
p(x,$) is equivalent to a symbol whose leading term has the form (2.d.1) with

N diLg(x,6)#0.
1=apf=k

The assertion “Theorem C’= Theorem C” is a consequence of Theorem B.
To prove Theorem C’ we consider p(x, £) as an operator

P(x,D): C&(E)—> C&(F)

between compactly supported sections of vector bundles E, F over the open set
in question. (We may also assume that P is properly supported.) Let
(x0,%p) € E,\E, ., and choose a frame {¢;(x)} for E so that

ker p,(xg,%o) = span{e;(xo), - - . , €(Xo)}

Using the index ranges 1 = a, B=k and k + 1 = p,» = m write

Lig(%,€) Lyu(x,6) “

PO 0 Luot)

where

[ Lo (X05€0) = Lyp(¥0:40) =0 (2.d.5)

det”pr(xO ’50)“ 7 0

We may assume that det||L,,(x,§)|| # 0 throughout a conical neighborhood
V C T*(2)\{0}. For each a, 88 set

Laﬂ Lot,k+l tr La,m

Lk+1,ﬁ Lk+1,k+1 Tt Lk+l,m
Maﬁ = det .

Lm,B Lm,k+l e Lm,m

= det|| L,pl|det||L,, || + {terms containing products L, - L,, }

By our assumption, the k? functions M, generate the ideal of Z, N V.
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We have
Pi(x:€)e,(x) = Z Liu(x. §)fi(x)
In our conical neighborhood ¥V we choose a new frame ﬁ(x,&) where

Jux 9 =49
Juo® = { i S L 9A) | = g7 16 Ha)

Then { f:(x,g)} is a frame for #* F— V that is homogeneous of degree zero in §.
Using this frame the matrix of p,(x,$§) is

Lp(x,8) O
Lg(x,8) €8,

where the conditions (2.d.5) are still fulfilled. We next define a new frame for
a*E—> V by

8058 = () = a1 | S L6909
é,(x,€) = e,(x)
The matrix of p,(x,§) is then

Lp(x,§) O
0 1€116,,,

where the conditions (2.d.5) are also still fulfilled. Since, with obvious notation,
M,z = L,y
and these functions generate the ideal of =, N ¥, we have

N d:Lg(x,6)#0 (2.d.6)
a.B

by our fibrewise transversality assumption.

In summary, given (x,,%,) € Z,\Z,,, there exists a conical neighborhood V'
of (x4,£,) and m X m matrices a(x,§) and b(x,§) defined and homogeneous of
degree zero in T*(2)\{0} and invertible in ¥, such that in V'

Lg(x,8) O
0 €118,

where (2.d.6) is satisfied. If we let A (x, D) and B(x, D) be the pseudo-differential

a(x,&) pi(x,€)b(x,§) = (2.d.7)
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operators (made properly supported) corresponding to a(x, ) and b(x, §), then
A(x,D)P(x,D)B(x,D)= P(x,D)
where
(6 E)~pi(x,€) + fo(x,6) + - - -

where p(x, ) is given in ¥ by the right-hand side of (2.d.7). This is exactly what
is required in Theorem C’. Q.E.D.

Proof of Corollary (2.d.2). Since either Z,, =@ or
codim =, = 4,
the operator (2.c.8) is of principal type when n=2,3,4 (but not when
n=206,10,14,...), and the corollary follows from a theorem of Hormander [10],
[22].

However, for later use we want to describe how (2.d.1) may be used to obtain
local solutions with bounds. For this we write (2.c.8) as a P.D.E. system

Pu=f (2.d.8)
where
P(x,D):C*(2,D)> C*(Q,F)

is a linear lst order operator between sections of vector bundles E, F over an
open set & C R”. With x, € Q a reference point we set Q5 = {|x — x,| < 8} and
define

lulls = [ (877 +1&P) a9 dé
H (25, E) = completion of C5°(Qs,E)in || ||,

Then it can be shown that (cf. [10]):

2.d.9) There are constants C= C, and 8, such that for 86 =8, and
s 0
f € H/(Qs, F) the equation (2.d.8) has a solution u € H (S5, E) with

llulls,s = OC| flls,s (2.4.10)

III. The characteristic variety and Gauss equations in the 3-dimensional case.

(a) For a 3-dimensional vector space V we consider a 3-dimensional
subspace II C S?V*. Note that the annihilator /1 + C S2V is also 3-dimensional.
Elements of /I will be denoted by P, Q, ... . We recall that the characteristic
variety

ECPV
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is given by
E={x€PV*:Q=¢ocnforsome Q € Il andn € V*}.

In this case, we say that £¢E€PV* is characteristic. The following is a
strengthening of (i) in Theorem B when n = 3.

(3.a.1) PROPOSITION. For any I, either = = PV* in which case Il consists of
all multiples of a fixed § € V*, or else Z is a cubic curve in PV™*.

Proof. Choose a basis x',x% x> of ¥* and let Q' = jﬂ(xka be a basis of I1.
If £ = ¢xP € PV* (e, [€),£,, &) are the homogeneous coordinates of £), then the
condition £ € Z is equivalent to

}\1Qi =§on
for some A,7n. Explicitly, this is

NHy = 3 (§mi + &on)- (322)

This is 6 homogeneous equations for the 6 unknowns {A;,7,}. Since the Q' are
linearly independent, if (3.a.2) is satisfied, then we cannot have either A = 0 or
n=0. Thus § is characteristic if, and only if, the 6 equations (3.a.2) are
dependent; i.e.,

& 0 0 0 & g
0 & 0 & 0 £
o0 0 & & & 0
H|, Hy H3; 2Hy 2H;, 2H),
HYy, Hj H3p 2H; 2H5 2HG
H\, Hy H3; 2H; 2H5 2H)

=0 (3.2.3)

This is the equation given in Cartan [5] and Tenenblat [24]. We write it as
F(¢) =0, (3.a.4)

where clearly F(£) is a cubic polynomial or else F = 0. In the latter case, every
Q € II is decomposable and we may see that every Q is a multiple of a fixed
£ PV*, as follows: We picture |II| =PIl as a linear system of quadrics
Q C PV = P2 By assumption, each Q is a pair of lines, one of which must then
be fixed as Q varies. Q.E.D.

In addition to Z C PV* we shall have occasion to use the complex curve
Ec C PV, defined by the same equation (3.a.4) but where £ € P V. Proposition
(3.a.1) is also valid for =.

By Theorem B, we see that II is a general subspace in case Z is smooth.
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Remarks. (i) It is easy to see that

{Ec is smooth} & { X is smooth and irreducible}. (3.a.5)

The implication = is clear (if Z is reducible, then any two components of =
must intersect in a singular point). Conversely, if Z is irreducible, then Z; is
irreducible (if F= QL where L is linear, then either L = L or else Q = ML
where M = M is linear). Then any singular point ¢ of the irreducible complex
cubic curve Z; must be real (otherwise, £ and £ would be distinct singular points
and by Bezout’s theorem Z; would contain the line £).

(i) Since = has odd degree, it is non-empty (cf. (1.c.20)). In fact, it is a
well-known consequence of Hanarck’s theorem that = C RP? has either one or
two components, each of which is a differentiable circle. Using real affine
coordinates (x, y) the Weierstrass normal form of F is

y2=f(x)=x3+ax+b

and the possible pictures are

( N / f(x) has three
Case ! \_, \ { real roots
Case 2 / { f(x) has one
\ real root

As we shall see, the distinction between these two cases is of great analytic
significance.

(3.a.6) ProposITION. If II is general, then II contains no perfect squares and
no two-dimensional subspaces S C II which depend on only two variables.

Proof. Suppose that we could choose bases x’ of V* and Q' of II so that
Q', 0? depend only on x', x2. From (3.2.3) we see that F(¢,,£,,0) = 0, so that F
contains §; as a factor.
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Now suppose we could choose bases so that Q> = (x*)*. Then (3.a.3) reduces
to

& O 0 & )
0 & & 0 3
0 0 £ 3 0 |=o0.
H\, Hy, 2H); 2H), 2H),
HY H3; 2H} 2H; 2H}

Expanding along the middle row, we see that F(£) is linear in &;. It is then
well-known (and easy to verify) that this implies that either &, is a factor of F or
that [0, 0, 1] is a singular point of =Z. Q.E.D.

A remarkable feature of 3-dimensions is that there are three cubic curves in the
story. Two of these are = C PV* and A C PW that we have already encountered
in general (cf. (1.b.6)); the remaining one is what we shall call the parent cubic

v CcPV,
and it will now be described.

Definition. Let G € S°V* be a cubic form. We define the subspace
0G C S*V* by

3G={30G/dec SV*:eE V).

Note that 3G is a subspace of dimension 0 (if G = 0), 1 (if G is a perfect cube),
2 (if G depends only on two variables), or 3 (if G depends on all variables).
(3.2.7) PROPOSITION. If II is general, then there exists G € S*V* such that
0G = 1I.
Moreover, G is unique up to scalar multiples.

Proof. Consider the exact sequence (polynomial Poincaré lemma)

0— S —L5 82 @ 1 — L 1@ A F—Ts AV ——0
(10) (18) ©®) M
of forms of degree 3 on V (the maps d are given by exterior differentiation). The
number in parentheses under each vector space is its dimension. Consider the

subspace II ® V* C S2V*® V*; it has dimension 9. Since d(S°V*) has
dimension 10 and S*V* ® V* only has dimension 18, it follows that

d(S*V*) N (11 ® V*) #(0).

In other words, there exists G € S3V* so that G # 0 and dG € 1I ® V*. This
clearly is equivalent to 0G C II. If G depends on k <3 variables, then
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dim(0G) =k <3 and dG would depend on only k variables, contradicting
Proposition (3.a.6) and our hypothesis of generality. Thus G depends on all three
variables and we must have 0G = I1.

Now we must_prove uniqueness. Suppose that G € S** also satisfies
8G II. Then 3G = 3G. Let ¢,,e,,e; be a basis of V. Then Q, = 9G/de; and
Q‘ = E)G/ de; are both bases of II. Therefore, there exists a matrix 4 = (4; D)
satisfying Qj ‘Q, Since A is 3 X 3, it has a real eigenvalue, say A, and a
corresponding elgenvector a = (a') so that a’4/ = Aa’. This gives

(9}

i iqj i 0G G
= 1O. = A/ — =
a'Q, a'AlQ; Aa aej A= e

QJ!QJ

where e = a’e;. It follows that
A (G-rG)=0.
de

Thus G —AG depends on at most two variables, so (G —AG) C II has
dimension at most 2. By Proposition (3.2.6) (see the above argument constructing
G), we see that B(G AG) = 0. This can only happen if G = AG. Q.E.D.

(3.2.8) PROPOSITION. Let 1I C S*V* be general and let G € S*V* be such
that 3G = I1. Then the locus G = 0 defines a nonsingular cubic curve ¥o CPV.

Proof. Referring to (3.a. 5) we shall show that ¥ is smooth and irreducible.
To begin, suppose G = Qx> where Q € S?V'* is a quadric. Let e,,e, € ¥ be
such that x*(e;) = x*(e,) = 0. Then

={0,x’0Q/3e,,x’0Q/de,} = II.

Since dim/II =3, we see that the linear forms 9Q/de, and 9Q/de, are
independent. But then, by the very definition, the covector £ =¢,00/de, +
£,00/0e, is characteristic for all (§,§)#0. Thus Z contains a line,
contradicting the generality of I1.

Now, suppose that ¥ is irreducible but singular. We may suppose coordinates
x' chosen so that the (real!) node or cusp of G = 0 is at [0,0, 1]. It follows that G
has the form

G= G3(x',x2) + Gz(x',xz)x3.
This implies that the quadrics in G = I1 are all linear in x*. Consulting equation

(3.a.3), this clearly implies that &; divides F, so II could not be general. Q.E.D.

We may now use the classical normal form for a non-singular cubic. We
record this lemma without proof, see [9]. It is valid over either R or C.

(3.29) LeMMA. If G € S°V* is a non-singular cubic form, then there exists a
unique number o and a basis x',x* x> of V* unique up to permutation and
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simultaneous scaling (by roots of unity, if any) so that
1,3 2,3 3,3 1,2.3
G=(x") +(x°) +(x7) +60ox xx".
Moreover, 0 # —1/2 or oo since ¥ is singular in these cases.

Let us take G in this standard form and compute /1 and =. A basis for I/ can
be written

(x')2 + 20x2%x3
0G=11= (x2)2 + 20x3!-
(x3)2 + 20x'x?

A covector £ = g.x" is characteristic iff the determinant

& 0 0 0 & &
0 ¢ 0 & 0 ¢
0 0 & & & Of=o
1 0 0 26 0 O
01 0 0 20 O
0 01 0 0 20

Multiplying the first, second, and third columns by 2¢ and subtracting them
from the fourth, fifth, and sixth columns respectively, we see that this is
equivalent to

- 20$| £3 gz
& —20¢, (& |=0.
£2 g] - 20§3

Expanding this, we get the result
o(§ + & + &)+ (1 - 4064, =0.

It follows that we cannot have ¢ = 0 since = is assumed to be non-singular. We
may now write the equation in the form

F=§+8&+& +6p56t=0

where
_1-44°
60
In order to avoid singularity of = we cannot have p = —1/2. This would give

1—40> _
6o - 1/2
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or
40— 1=30
or
46> =30 — 1 = (0 — 1)(40” + 40 + 1) = (6 — 1)(20 + 1)*=0.
Thus, we cannot allow o = 1 either. We summarize this discussion by

THEOREM D. Let II C S*V* be a general subspace, and let G € S*V* satisfy
0G = I1. Write G in its normal form

G= (x')3+ (x2)3+ (x3)3+ 60x'x%x3.
Then we have 6 + —1/2,0, 1, 00 and
1,2 2.3
(x7) +20x°x
I = (x2)2 + 203! (3.2.10)
(x3)2 + 20x'x?
F=§+&+& +6p£6;

where

_1—-4¢6°
k=6 -

Remark. We graph p as a function of o:

~4-b

It follows that when p < —1/2, there are three distinct real values of o which
give the same value of p. We can now draw pictures of the cubic ¥ for the
interesting intervals of 0. The dashed lines are the co-ordinate axes x' = 0, the
line at infinity is x' + x? + x> = 0 (it contains the three real flexes), and the solid
lines constitute the curve. (See next page for figures.)
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Graphs of

G= (x')3+ (x2)3+ (x3)3+ 60x'x%>3 = 0.

N /
\ //
A
/4
\
AN
/ \
/ \
/ \\
// N
______ ; e
, \
, \
/ \
/ \
\
-1/2<0<

(b) We now consider a submanifold M> C E®. For each x € M the 2nd
fundamental form is given by

H, € N, (M)® S’T*(M),
and it defines a subspace
I, C S°T*(M)

where I, = {H,-v:v € N (M)}.

We recall that M> C ES is general in case each I, is a 3-dimensional subspace
of S?T*(M) that is general.

For a general M®CES we consider the linearized isometric embedding
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equations (cf. (2.c.7) and (2.c.8)). Setting
E=T*M)
F=S*T*(M)/II =(II*)*
we consider (2.c.7) as a st order linear differential operator
D :C®(E)—> C*(F). (3.b.1)
In terms of local coordinates x‘ on M and local frames for E, F we will have

Du=4'(x) ;’—” + B(x)u
X

where u ='(u',u? u’) and the 4(x), B(x) are 3 X 3 matrices.

Definitions. (i) We shall say that (3.b.1) is symmetric in case we may choose
frames for E, F so that the 4’(x) are symmetric.

(ii) If, in addition, some linear combination £(x)A4‘(x) is positive definite, then
we say that (3.b.1) is symmetric hyperbolic.

(iii) Finally, (3.b.1) is hyperbolic if for each x € M the characteristic cubic
= . CPT¥(M) consists of two components.

Remarks. The notion of symmetric hyperbolic coincides with the classical
notion of Friedrichs [6].

Referring to the pictures in remark (ii), following the definition of general in
§IIi(a), (3.b.1) is hyperbolic if each =, falls in Case 1. For £ inside the oval, we
then have a picture where each line through ¢ meets =, in 3 distinct real points.

%
e ad i

§

Choose coordinates (x!,x2,7) on M so that 4t lies inside the oval, and for any
choice of frames for E, F write

D= /fo(x,t)a/at + ff'(x, Nd/ox' + /fz(x, 1)d/3x* + B(x,1).
For £ = (§,,4,,m) € T¥(M) the symbol is

op(§) =nA’+ £, A + £,4%
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Since dt =[0,0,1] & =, we have det A%+ 0. We may then change frames so that
D=13/3t+ A'(x,1)3/3x" + A%(x,1)9/9x> + B(x,1). (3-b.2)

The line joining [0, 0, 1] to the point [£,,£,,0] on the line n = 0 at infinity is given
parametrically by

f=[AT%A T, 1)
where A = 0 corresponds to [0, 0, 1]. Thus
op(EH) =T +AT'EAT +ATIEAT = AT (M + 4" + £,47).
It follows that the equation
det|Al + £,4" + £,4% =0

has, for each (§,,&,)# (0,0), three distinct real roots A;(§,,§,) (i=1,2,3).
Consequently, (3.b.1) is hyperbolic in the sense of Petrovsky—Garding-Leray (cf.
[10]).

Referring to the normal forms for G and F given in Theorem D, we define the
following open intervals in R:

I={a<—1/2}
IL={-1/2<e¢<0}
I;={0<0o<1) '
I,= (1<)

(3b.3)

THEOREM E. (i) The linearized isometric embedding system is always
symmeltric.

(ii) It is symmetric hyperbolic if, and only if, 6 € I, U I,.

(iii) It is hyperbolic if, and only if 6 € 1, U I, U I,.

(iv) In each 1, it is of principal type.

Proof. The statement only concerns the symbol mappings
op : T*(M)® T*(M)—> S*T*(M)/II,.

For fixed xEM we set V=T(M) and let II C S*V* correspond to
II, C S’T*(M). Then, for &n € V*

op(§)(m) =[&°m] (3.b.4)

where [¢ o 1] is the equivalence class of £ o 1 in S*V*/II. If {x'} € V* is a basis
relative to which we have the normal form of Theorem D (note that there is no
orthonormality requirement), then the basic observation is that by (3.a.10)

xioxi= —2ax/ o x*, i, j,k distinct. (3.b.5)



CHARACTERISTICS AND EXISTENCE OF ISOMETRIC EMBEDDINGS 945

The vectors x/ o x* (j, k distinct) therefore project to a basis of S*V'*/ 11, and by
(3.b.4) and (3.b.5)

ap (B)(M) = 2 (3(§me + &emy) — 20m,)[ %7 © x¥] (3.b.6)
where 3’ means the sum over distinct i, j, k. In terms of this basis
Op (5)(71) =§4 177 +&,4 2"7 + &4 3"7

where the A’ are the following 3 X 3 matrices

(=26 0 O
A'=1 0 o0 1
0 10
0 o0 1
A*=10 -20 0
1 0 0
01 0 )
A*=11 0 o
0 0 —20]

From this it is clear that (3.b.1) is symmetric.

In order that the system be symmetric hyperbolic, it is necessary that the
characteristic cubic have two components, and that for some £ = § the matrix
A, = A’ be positive definite. Since

- 2£10 £3 52
A= & — 260 £
52 $| - 2&3“

we see that the characteristic variety is given by
o(8+ &+ &)+ (1 - 4054, =0
as expected. We have already seen that this has two components exactly when

6<—1/2, -1/2<06<0,0ro>1.
The condition of positivity is that we have, for some &,

—2£{6>0 for all i Q)
402£,£j > §? for i, j, k distinct ()
o(§7 + £ + &) + (1 - 40))kfofs > 0. 3)

Equation (2) clearly implies that 462 > 1, so |o| > 1/2.
When o > 1, conditions (1) and (3) imply (2) as follows: If —2¢,0 > 0, we must
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have all § < 0. Thus we get, for example,
0> o(&) + &) + £i6:8;.

Since (3) is equivalent to o(¢ + &) + £,6,¢; > 0&;(4€,€, — £7), we see that we
must have 0&;(4¢,£, — £2) < 0. Since of; < 0, we get 4£,&, — £7 > 0. The other
two inequalities in (2) follow similarly. Thus A4, is positive definite if, and only if,
£ is in the interior of the even circuit of Z.

If 0 < —1/2 (the only other possibility), the situation is more delicate. The
conditions (1) and (3) imply that each & > 0 and that £ must lie inside the even
circuit of Z. We must show that every point in the even circuit actually satisfies
(2) as well. To do this, we note that the point [1, 1, 1] satisfies (1), (2), and (3);
thus, some point of the interior of the even circuit satisfies (2). Now consider the
pair of equations

402&]52 = 532
o(£§) + & + &) + (1 - 40)t6¢,=0.

Multiplying the first by &, and adding it to the second, we get o(¢} + £5) =
—§,£,6;. Squaring both sides of this equation, we get

(& + &) = £3D = 40708

SO
(& -8)’=0

so the only real points of intersection of the curves satisfy £, = £,. From this we
deduce £; = —20¢,. Thus the unique rea/ point of intersection of = and the
quadric 40%,&, — £2=0 is [1,1, —20]. Since the regions 46%,£, — £2 >0 and
det(4,) > 0 have [1,1,1] in common, it follows that = and the quadric must be
tangent at [1, 1, —20] and that the interior of the even circuit of = lies inside the
quadric 40%,¢, — ¢} = 0. Clearly, the same argument holds for the other two
equations of (2).
This completes the proof of Theorem E.

(¢) In the previous section, we saw that the modulus o of the second
fundamental form II of a general submanifold M3 C ES completely determines
the type (e.g., symmetric hyperbolic, etc.) of the linearized isometric embedding
equations. In this section, we want to study the relationship between the
curvature of the induced metric ds?> on M > and the modulus o.

For comparison, consider the case of a surface M2 C E>. For x € M 2 we set
V=T.,M and note that II_ consists of a single quadric. By choosing an
appropriate basis x!,x? of V* we may display the relationship between the
possible normal forms of 17, and the Gauss curvature K(x) of the induced metric
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ds? at x:

Y+ () Kx)>0
o, ={(x"Y’ K(x)=0
) - () K(x)<0

This is, of course, well known.

In the case of a general M3 C ES, the relationship between the modulo and the
Riemann curvature tensor R is not so direct.

The Gauss equations are written

y(H,H)=R B.c.ly

where, now, we think of R € K C S*(A*V'*) as given and H € W @ S?V* as
unknown. In the case n=3, we know that K= S*(A’V*). If we set
Y(H) = vy(H, H), the quadratic map

7 W ® SHV*)> SHA V™) (3.c2)

is O(W)-invariant and GL(V)-equivariant. It follows that ¥ maps O(W) X
GL(V)-orbits to GL(V)-orbits.

The orbits of GL(V) acting on S*(A*V'*) are well understood. If we regard
S%(A*V*) as the space of quadratic forms on A%V, then each element
R € SYA*W*) has a well-defined signature, (p,q), where p is the dimension of
the largest subspace of A%V on which R is positive definite and ¢ is the
dimension of the largest subspace on which R is negative definite. A GL(V')-orbit
in S2(AV*) then consists of all R with a given signature (p, 9):

Gy ={RE S} (A’V*)|sign(R) = (P9}

The following topological features of the orbits will be important in our
discussion: The orbit #,, is open iff p + g =3. The orbits #3y and &y are
convex cones in S*(A*V*). The closure of an orbit &, , consists of all the orbits
Oy With p’ < p and ¢’ < g.

The geometric meaning of R as a quadratic form on A%V is well known: If
e,,e, are orthonormal with respect to the metric ds®, then R(e, A e,) is the
sectional curvature of the two-plane spanned by e, and e,. Henceforth, when we
speak of the signature of R we mean the signature as defined above. We remind
the reader that this signature is not the same as the signature of the Ricci tensor,
Ric € S¥(V*), which may be formed from R by use of the metric ds* € S*(V*).

The orbit structure of O(W) X GL(V) acting on W ® S%(V*) is somewhat
more complicated. However, we need only a description of the orbits in the open
set U C W ® S*(V*) consisting of general second fundamental forms. For each
H € U, let 6(H) denote the modulus of the parent cubic of the corresponding
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subspace II C S2V*. The function o is constant on the orbits of O(W) X GL(V)
acting on U and can be seen to be smooth there. It follows, by Theorem D, that
we may write U as the disjoint union of open sets {U;|1 < I < 4} where H € U,
if and only if 6(H) € I, (see (3.b.3)). Referring to Theorem E, we shall say that
H € U is symmetric hyperbolic (resp. hyperbolic, principal type) if H € U, U U,
(tesp. H e U, U U,V U,, HEe U, U U,U U; U U,).

THEOREM F. Let R € S*(A*V*) be given and suppose the signature of R is
(2.9).
(i) If q > 2, the Gauss equations (3.c.1) have a symmetric hyperbolic solution.
(i) If (p,q) # (0,0) or (0, 1) then (3.c.1) has a hyperbolic solution.
(iii) If (p,q) # (0,0), then (3.c.1) has a principal type solution.

Remark. What we shall actually prove is that the range of ¢ on ¥~ '(R)N U
is described by the following Table, in which (k,/) refers to the signature of R
and the union of intervals underneath is the range of 6 on ¥~ !(R) N U, except
for the two starred entries, where the range of ¢ may be larger. That this Table
implies Theorem F is an immediate consequence of Theorem E and (3.b.3).

TABLE
3,0) 2, H* (1,2) ©,3)
LU I, LUl LULUILU I, LULUILUI,
2,0) (1, H* ,2)
LU, LU I, LULUIU,
(1,0) ©,1)
12 13
0,0
(0]

Proof of Table. Let
UAN)={H€EU|s(H)=A)}

where A & {—1/2,0,1,00}. U(A) is a union of O(W) X GL(V)-orbits. Because
of the equivariance of ¥, it follows that §(U)) C S*(A*V*) is a union of
GL(V)-orbits. It follows from our previous discussion that the signature of
R € S} A*V*) completely determines whether or not R € $(U())). Obviously,
this is the same as saying that the range of 6 on y "!(R) N U depends only on the
signature of R.

Let ¥ (W) denote the space of bases w = (w;,w,,w;) of W and let & (V*)
denote the space of bases y = (y', y% y°) of V*. For each A & {—1/2,0,1, 0}
we define

i in2 i
Q' (»N) = (') + 207 0 p*

H(w, y,A) =w,® Q'(»,\).
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Clearly, this gives a map for each / =1,2,3,4
F(W)YX F(V¥)X 1> U,.

By Theorem D, this map is surjective and satisfies H(w, y,A) € U(A) for all A.
The fibers of this map are given by the twelve curves

1t (17 (wee), 2t(y-€)  (1>0)

where € € S5 and S, is the sub-group of permutation matrices in GL(3, R). Thus,
in order to determine y(U(A)) as a union of GL(V)-orbits, it suffices to
determine the possible signatures of R = y(H(w, y,A)) as w € . (W) and
y € F (V*) vary. Now, we may write

H(w, p,A) =w,;® Q'(y,A) = Hy(w,\)® y' o )/

where
W Awsy Aw,
}]Hij.(w,}\)|] =|Awy; w, Aw, |
Aw, Aw;  wy
Writing

R= Ry (y' Ny') o (5" Ny'),
the Gauss equations y(H(w, y,A)) = R become (cf. (1.b.1))’
Rijk[ = ik(w9}\) : Hﬂ(W’ }\) - Hﬂ(W’ )‘) ' ij(w,)\). (3-0'3)

This equation may be written in terms of symmetric 3 X 3 matrices as follows:
Let . denote the vector space of 3 X3 symmetric matrices. For each
A& {—1/2,0,1,00} we define a linear transformation L, : /= ./ by

Ly|by a, b,|=|—Aa;+ A%, by —N%a, —Aa, +\%,
b, b, ay| |—Ag+Ab, —Aa,+Ab,  b,— A,

If we define h(w) €  and G(R) € / by
hy(w) = w; - w; (3.c.5)
Gj(R) = Rt (3.c.6)

where (i, k,/) and (j,m,n) are even permutations of (1,2,3), then the equations
(3.c.3) may be written

G(R) = Ly(h(w)). (3.c.7)
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Now it is easy to see that the signature of R as defined above is the same as the
usual signature of G(R) as a symmetric matrix. On the other hand, h(w) is
necessarily positive definite, being the matrix of inner products of a basis of W.

Let & C . denote the convex cone of positive definite matrices. Our
discussion has shown that

(3.c.8) PROPOSITION. The following are equivalent
(i) For a given R € S*(A*V*) of signature (k,l), there exists an H € W ®
S2V* satisfying o(H) =\ and

y(H,H)=R.

(i) 1y CY(UDN)).
(iii) There exists a matrix of signature (k,I) in

Ly(Z)c /.

Using (3.c.8), the proof of the Table follows from the case analysis below. In
what follows, we always assume that A & {—1/2,0,1, c0}.

(3.c.9) PrROPOSITION. L, is invertible. In fact
Ly
A -\

Proof. Compute.

(3.c.10) PROPOSITION. L,(#?) does not contain O (and, hence, no matrix of
signature (0,0)).

Proof. 0& & and L, is invertible. Q.E.D.
(3.c.11) PrROPOSITION. Consider the matrix
a b b

S=1b a b

b b a

() If b=0, then S has a triple eigenvalue at p = a.
(i) If b 5 O, then S has a double eigenvalue at u = a — b and a single eigenvalue
at p=a+2b.

Proof. Compute.

(3.c.12) PrROPOSITION. If L\(¥?) contains matrices with signature (3,0), then
AELUI,.
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Proof. Suppose that Ly(#)U Z # @, and let M € & be such that L,(M)
€ #. Define T: > ./ by

a, by b, a, b, b,
T\by a, b/|=|by ay b,|
b, b, a, by b, a

Clearly T preserves & and commutes with L. Thus L,(TM),L\(T*M) € 7.
Since Z N Ly (%) is a convex cone, we see that M = 1/3(M + TM + T*M)
belongs to Z N Ly '(#). We write

_ |la b b
M=|p a b|
b b a

Now M >0 so we may divide by a so as to reduce to the case a = 1. We then
have

_ b—A2 Ab—\ AB-—A
L(M)=|\p—-\ b—XN Ab-)\|
A —A A—A b—A2

Referring to (3.c.11) we see that the conditions
M >0
Ly(M)>0
are incompatible unless —1/2 <A < 1. Q.E.D.

(3.c.13) PROPOSITION. L,(Z’) contains matrices of signature (0, 1) if and only if
A e 13.

Proof. Any matrix with signature (0, 1) can be written

"12 ryy s
Q=—|rnr, 15 s
ryry ryrs ":%
Setting
A= (2}\3 + D)yryryry — }\Z(r? + rg + rg)
we may compute
A2

detLy'(Q)=—"—.
(A =A%
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Hence, if Ly '(Q) >0 we must have A —A*>0 so 0 <A < 1. Conversely, if
0 <A< 1, we may set r, = r,=ry =1 and see that L7 '(Q) >0. Q.E.D.

(3.c.14) PROPOSITION. L\(Z) contains matrices of signature (1,0) if and only if
A€,

Proof. Keeping the same notations as in (3.c.13), we see that —Q has
signature (1,0). We also compute

detL;‘(—Q)=~—4§‘2—3.
(A* = 1)

Thus if Ly '(— Q) > 0 we must have A* = A > 0,1.e, A > 1 or A <0. Now Ly(¥)
is an open set, and any open neighborhood of such a — Q must contain positive
definite matrices. By (3.c.12), Ly\(Z?) contains positive definite matrices only if
—1/2 <A< 0or0<A< 1. Hence, we conclude that the only possibility for A is
—1/2 <A <0. Conversely, if A€ 1,, then setting r;=r,=ry=1, we get
Ly'(Q)>0. QE.D.

(3.c.15) PROPOSITION. L,(Z) contains matrices of signature (0,2), (1,2), and
(0,3) for all A.

Proof. 1f Ly(%’) contains a matrix of signature (0,2), then it necessarily
contains matrices of signature (1,2) and (0, 3). This is because L,(Z’) is open and
any neighborhood of a matrix with signature (0,2) contains matrices of signature
(1,2) and (0, 3).

If A € I,, then L,(Z’) contains a matrix of signature (0, 1), hence we are done
by the above argument.

IfAel,U U I, then the matrix

1 b b
M=1p 1 b
b b 1

with b = A\ +2)/(2\* + 1) is positive definite and L,(M) has signature (0,2).
Q.E.D.

(3.c.16) PROPOSITION. L,(Z?) contains matrices of signature (2,0) if and only if
Ae LU L.

Proof. 1f Ly(#) contains a matrix of signature (2,0) it must contain a matrix
of signature (3,0). By (3.c.12) this forces A € I, U I;.
If A € I, then the matrix
1 b b
M=|p 1 b

b b 1

where b = A\ + 2)/(2A\? + 1) is positive definite and L,(M) has signature (2,0).
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If A€ I,, then L,(#) contains matrices of signature (1,0) by (3.c.14) and
hence must contain matrices of signature (2,0). Q.E.D.

(3.c.17) ProposITION. If A € I, U I, then L(ZP) contains matrices of signature
2, 1) and (1,1).

Proof. If A € I, then L,(#’) contains matrices of signature (1,0). Hence, by
openness, it contains matrices of signature (2,1) and (1, 1).

If A € I;, then L,(#’) contains matrices of signature (0,1). Again, openness
implies that L,(#’) contains matrices of signature (2,1) and (1,1). Q.E.D.

IV. The set-up for the Nash—Moser-Schwartz—Sergeraert theorem.

(a) We begin by defining the manifolds and Banach spaces which will be
used in §§IV-VIL

Let © C (0,1)"! be an open convex set. The manifold which will be embedded
into Euclidean space is

M=Qx[4,2], dimM=n.

Although this will only be done for n = 3, the discussion in §§IV-V is valid for
all n > 1. Therefore, we will restrict to # =3 in §VI only.

The co-ordinates on M will be (x!,...,x" 1), x=(',...,x""HeqQ,
t €[1/4,3/4], in §V, but in §VI we will change “r” to “x"”. We do this because
in §V, it is useful to distinguish a “time co-ordinate” ¢ in contrast to the “space
co-ordinates” x', ..., x"~'. On the other hand, in §VI, when the proofs of the
main theorems are being given, it will be more convenient to “forget” the
distinguished co-ordinate.

In §V a linear hyperbolic system of partial differential equations on M will be
solved by extending the system to one on a larger manifold

X=T7"""x[0,1], T '=R"'/Z"7,

where hyperbolic systems are more easily solved. Co-ordinates on X will be
(x',...,x" 1), 0< x’, t <1. Another domain we will use is the “spacelike
hypersurface”

T,=TX{t} CX, t€[0,1].
Given a multi-index a € (Z*)""!, we will denote
D= (L) ()
ax! dx"!
However, if « € (Z*)", then
9 a 9 a, P o B Q-1 p) @y,
Da = — LR = — I — .
x (axl) ('c)x") (8x') (ax”_') (Bt)

Let Z be M, X, or T,; V a normed vector space, and E a vector bundle over
9 with a smooth norm on the fibers. We denote by C*(Z, V) (C*(E)) the
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space of V-valued functions (sections of E) which are smooth up to the
boundary. LY %, V) (L*(E)) is the space of square-integrable V-valued functions
(sections of E) with respect to the measure dx =dx'...dx"" ! or dxadt
=dx'...dx", depending on &. The L>norm will be denoted

oy = ( [ P x(an)

The Sobolev spaces L2(Z, V) and L}(E) are defined to be the completions of
C*(9,V) and C ®(E) respectively, using the following norms:

1/2
iy = ( 3, 1P3ls) k0
al <

Here, « is a multi-index running over (Z* )%™ <,

Given u: X —> V, we also define the following norms:

, ) 1/2
Y peu . 0<r<I;
S PR

l
lul 1,1y = ( >

J=0lal<k—j

!

2 = ( S 3

Jj=0la|<k—j

) 2 1/2
Y pay ).
LX)

ot
Here, a = (a;, - . ., &,_ 1), DX =(3/9x")™ ... (3/3dx" "),

The vector bundle S?T*M has a canonical trivialization with respect to the
co-ordinates (x!,..., x"). Using this and the flat metric, we can define, as
above, the spaces C*°(S*T*M), L3(S>T*M) of sections of the bundle. In local
co-ordinates, given any section g = g; dx‘dx/,

n 1/2
| 8l 2ar) = (fM . > (gy.)zdxdt)

i, j=1

(b) The main tool we shall use to prove theorem G is the Nash—Moser—
Schwartz—Sergeraert theorem. The heart of this theorem is a simplified version of
the Nash—Moser iteration scheme. Just as the Picard iteration scheme leads to
the usual implicit function theorem, the Nash—Moser scheme leads to a
generalized implicit function theorem.

Let ®: E—> F be a Fréchet differentiable map between two Banach spaces;
usually it will be a nonlinear differential operator mapping between the
appropriate Sobolev or Holder spaces. Given uy, € E and f, € F satisfying
®(uy) = fy, the usual implicit function theorem says that if the linearized operator
®’(uy) has a bounded right inverse, then for f sufficiently close to f,, there exists
u € E satisfying

Q(u) =f. (M
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One way to prove this is to construct a sequence u,—> u using the Picard
iteration scheme, i.e.,

U,y = u, + D' (up) "' (f — D(u,))s n>0

However, when solving a linear differential equation
Py =f,

where we assume P is a nth order operator with smooth coefficients, it is not
always possible to prove that if f € L2 or C*, then u € L}, or C**". In other
words, in solving for u, we have suffered a “loss of derivatives.” Then viewing
P:L},,—> L} or C¥*"—> C*, the inverse to P is unbounded. Therefore, the
Picard iteration scheme diverges badly since more derivatives are lost for each
iteration.

If there is to be any hope of solving for u satisfying (1), the loss of derivatives
must be controlled. Nash’s fundamental idea was to modify the correction term
by smoothing it, and to use Newton’s iteration scheme, a much more rapidly
convergent method than Picard’s. The iteration scheme he used was a fairly
complicated one and several people have given simplified schemes which usually
yield weaker results than Nash’s original formulation.

The iteration scheme used here is of the form

Uy oy =ty + S,®'(u) " '(f— D(w,)), n>0, ()

where S, is a sequence of smoothing operators, i.e., S,u is smooth and for n
large, S,u approximates u. Observe that we need to have ®'(u) be invertible for
all u near u,; this is a stronger assumption than needed for the standard implicit
function theorem. Further assumptions on ® are needed to prove that an
iteration sequence like (2) converges. The key requirement is that @ satisfy
estimates of the form

| (w)ol, < c(|ul)(0lksp + [l kaylvlg)
19 () "' Al < ([l o) (|Blis g + Nl irylolp)s

where a, B,v, o/, B’,y" are fixed constants and | |; denotes a Hélder or Sobolev
norm. The essential feature to notice is that there are no terms of the form
[uliralOlisp OF |4lpsas|hlisp- Such “quadratic” terms cause the iteration
scheme to diverge. However, it turns out that estimates like (3) are not
unreasonable to expect. The basic example to which almost everything finally
reduces is. given by lemma (5.6.1) which says roughly that for any two functions f
and g,

©)

| /gl < Gl flil glo + | flol glx)-

As can be seen in §§V-VI, this lemma seems to be the key fact when applying
the Nash—Moser—Schwartz—Sergeraert theorem.
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The theorem we give here is exactly the same as the one stated in [17], except
that we have put the assumptions into the form of [3]. However, in [17], only a
C*-existence theorem is proved, one apparently far weaker than Nash’s original
theorem which gave smooth solutions. M. F. Sergeraert, in [19], was able to make
clever use of Schwartz’s own estimates and a standard interpolatiort inequality
(cf. (4.b.1)) to prove a C *-existence theorem.

We will not use here the specific Banach spaces defined in IV(a). Instead the
Nash—Moser—Schwartz—-Sergeraert theorem will be stated for a general scale of
Banach spaces.

Definition. {E,, k=0,1,2,...} is a scale of Banach spaces if
1. Each E, is a Banach space with norm | |,.
2. Forall k < [, E, D E;; and

lul < |ul, u€EE

We set

Ew= n Ek'
k>0

The standard examples of such a scale are the scale of Sobolev spaces defined
earlier and the scale of C*-spaces.

In either case, E is a space of smooth functions. We say that a scale { £, } has
smoothing operators if there exists a family of operators:

Sy:E,>E,, 6>1

which satisfy the following estimates for any 0 < k < I:

|Sou|, < M 8" *|ul,, u€E, (S1)
(I — Sg)ul, < M 0%"u|,, u€EE (S2)
Z%S"“|k <MLO ", u€EE (S3)

Before discussing the theorem, we state and prove an interpolation inequality
which will be quite essential both in proving the Nash—Moser-Schwartz—
Sergeraert theorem and in applying it.

(4.6.1) LEMMA. Let { E,} be a scale of Banach spaces with smoothing operators
k P g op
Sy, 8 > 1. Then the following estimate holds:
lul, < M, Jul(e=/E= Dy =n/k=D y e E,, i<j<k

A

Here, M, ;. is a constant independent of u.
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Proof.
|ul; < 1(I = Spyul; + | Spul; < juj,ioj_ilulj + ngok~j|“|k

This estimate holds for any > 1. In particular, set 8 = (|u|,/|u|,)"/*~*. We then
have:

|ul; <(M;,; + Mk‘i)|u|’,.‘_j/k"‘|u|f,;_"/k”" Q.E.D.

Let {E.}, { F,} be scales of Banach spaces with smoothing operators; we will
denote the norms of both scales by | |,. D, will denote the closed unit ball in E,,
and for any r > 0, D;(r) will be the ball of radius r centered about 0 in F,.

NASH-MOSER—SCHWARTZ—SERGERAERT THEOREM. Let ®: Dy— F, be a map
satisfying the following assumptions:

(1) ®0)=0

(2) For any k > 0, ®: DyN E, > F, is a twice Fréchet differentiable map

(3) The Fréchet derivatives ®',®" satisfy the following estimates:

Forany k > 0;u € DyN E;; v,w € E,

|®"(u)v], < Ce(lolk + |ulilvlo) (4.b.3)
I(®”(u)o, W)l < C (1 + [ul)lo] | wli (4.b4)

(4) There is an integer o > 0 such that for any u € D,, ®'(u) has a right inverse
Q(u): F,> Ey N D, satisfying the following estimate:

| Q(u)v|i_o < Ki(lo] + |uliloly) k>a, u€ED,NE,, vEE,. (4b.5)

Then there exists 8 > 0 such that for any integer m > 11, we can find a continuous
map ¥ : D,,(8)—> D, satisfying:

Qo V(u)y=u u € D, (8).

Moreover, for any k > a and A > 50(k — a)/33k, ¥: D, (8) N Fy x> D, N E,.
In particular, ¥: D, ()N F,> D, N E,.

A proof of this result can be found in [17] and [19].

(¢) In order to use the interpolation inequality (4.b.1) and the Nash—-Moser—
Schwartz—Sergeraert theorem on the scales defined in 1V(a), smoothing operators
must exist. First, we will construct smoothing operators for {L}(R")}. These
operators are easily adapted to any compact manifold, (cf. [18]). However, our
domains are manifolds with boundary. To define smoothing operators on these
domains, we will use extension operators. The extension operators will also be
useful in studying hyperbolic systems on manifolds with boundary.

2See also HAMILTON, The Inverse Function Theorem of Nash—Moser, Bull. Amer. Math. Soc. 7
(1982), 65-222.
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The smoothing operators we construct for { L?(R")} are exactly the same as
those constructed for { C¥(T™)} in [17]. The proof of the inequalities S1-S4 are
the same as well; a different Holder inequality is used. The proofs are elementary
and are omitted here.

Let 4:R">R be a compactly supported C*® function with 4=1 in a
neighborhood of 0. Let a : R" > R be the inverse Fourier transform of 4;

a(x)= [ a@)etdt,  dE=dt, ... dE,.
Rn
a(x) is a Schwartz function and satisfies

o 1 lf a=0
dx= ,
fx a(x)dx {0 if a0

where a = (a, . .., @,), x* =X, ...X,,dx=dx,...dx, Givenu € L¥R") and
8 > 1, we define the smoothing operator S, : L*(R")— L2 (R") to be

(Sa)(x) = 0" [ a(B(x = 7))u())d.

Remark. The set of operators {S,, § > 1} defined here are also smoothing
operators on L2(T"). To do this, we write a function on 7" as a periodic function
on R". It is easy to check that S, preserves whatever periodic properties a
function has.

We now turn to extension operators. The existence of such operators is given
by the following result of Stein, [21]:

STEIN EXTENSION THEOREM. Let D be either a bounded convex domain or a
domain with smooth boundary in R". Then there exists an extension operator
& : LA(D)—> LXR") satisfying:

(1) for any x € D and f € C®(D), (£f)(x) = f(x);

(2) & is a bounded linear operator,

& :L{(D)-> L{(D), 1< p<oo, 0<k<co.

We will only need this statement for p = 2.
It is now clear that given D = X or M, we can define a family of smoothing
operators {S;} simply as

Spu = (Spu)|p .

Therefore, we can use both lemma (4.b.1) and the Nash-Moser—Schwartz—
Sergeraert theorem on the manifolds M and X.

(d) We now recall the results of §II but here using co-ordinates. This is
necessary because we do not know how to prove estimates using moving frames.
Although the equations will only be needed for embeddings of a three-
dimensional manifold in E®, we will derive the results for an n-dimensional
manifold in EV.



CHARACTERISTICS AND EXISTENCE OF ISOMETRIC EMBEDDINGS 959

Suspending the definition given in §11(a), let M be any smooth n-dimensional
manifold, possibly with boundary. We will, however, use the Sobolev spaces
defined in §77(a).

We define the functional ® to be the left hand side of (2.a.2),

®(u) = (du,du) = 2 (a—ul , ﬁ'—‘; ) dx'dx/ in local co-ordinates. (4.d.1)
ij=1\0x' 0x

This defines a map
®: L} (MEYY> LX(S*T*M), k>0.
The Fréchet derivative @ is given by
®'(u): L}, (M,EY)> LY(S*T*M), ue L}l (ME"),

'(u)y = 2 [(ﬂ a—y)+(3)i —E)—"f)]dxidxj.

b . P
ij=1|\ 0x’ 0x/ dx’ ox/

(4.4.2)

This corresponds to the linearized or variational equation (2.c.2).

Fix a smooth embedding u,: M —>E". We want to apply the Nash—Moser—
Schwartz—Sergeraert theorem to the functional ®. The main requirement is to be
able to solve the linearized equation (2.c.2) which we write as

' (u)y =h, u “near” u,, (4.d.3)

with the estimate given by (4.b.5).
We may assume that ¥ and 4 are smooth, and u is a general embedding of M
in EY. Given y: M >E", we can write

y=y+y
where y’ is the component of y tangent to M and y” the normal component with
respect to the embedding u.

Let ¢ be as in §II(c), the 1-form dual to y’ with respect to the metric ®(«). In
local co-ordinates,

¢ = g;dx’
where
(2w ) - (_81 )
v (ax"’y axi )
We also split the second partials of u into their tangent and normal

components, obtaining in local co-ordinates

u m U ..
2t =Tm_ =X . < .
Y I‘y A" +Hy, 1<i,j<n
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The I are the Christoffel symbols of the Levi-Civita connection for ®(u) with
respect to the local co-ordinates (x°). Set

H = Hydx'dx/ € C*(S’T*M).

H is the second fundamental form of the embedding u.
Then in local co-ordinates, (2.c.5) looks like:
1 ( dg; + El&

2\ 30 T o ) —Tie, — (Hy, y")=hy 1<ij<n (4.d4)

Clearly, solving for y is equivalent to finding ¢ and y” satisfying (4.d.4). If we
let N > (n(n + 1)/2) + n, then by setting ¢ = 0, we get at each point x € M, a
determined or undetermined system of linear equations for the unknown y”(x)
which has N — n components. This is easily solved with the estimates needed for
the Nash—Moser theorem, leading to a local C ® isometric embedding theorem of
any M" in EY, N > (n(n + 1)/2) + n, (cf. [7]). However, if N < (n(n + 1)/2) +
n, the intrinsic piece with the “symmetric covariant differential” cannot be
suppressed. A “decoupling procedure” was described in §1I(c) and we review it
here.

Recall that II C S2T*M is the subbundle defined by the second fundamental
form. In local co-ordinates, for any p € M,

o%u ) i g }
I =y, ——— dx'dx’|lve N M
P {( a ,a /(P) I )

We also defined the “annihilator bundle” of II, II+ C S*T*M. Each fiber is
given by:

L_Jfpi__ 0
IIp = {BJ

Ax ox/ B’jHij(P) - O}

Now restricting to a contractible piece of M, we can choose a set of smooth
sections

" 2
b =bi—9 e court)
dx’0x/

such that at each point p, {b,(p)} span IIPJ'. Applying each of these sections to
the system (4.d.4), we obtain

i 9% k i
b,f( 5;7 - rijqpk) = b,fh,,. (4.d.5)

We restate (2.c.9) in the context here:

(4.d.6) The solutions y to the linearized equation (4.d.3) are in one-to-one
correspondence with the solutions ¢ = ¢,dx’ to (4.d.5).
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Thus, to solve the linearized isometric embedding system, we must solve a
system of first order partial differential equations. As described in §II(c), the
system is underdetermined if N > n(n+ 1)/2, determined if N = n(n+ 1)/2,
and overdetermined if N < n(n+ 1)/2. A study of the overdetermined case
is done in [4]. We will investigate only the determined system, when N =
n(n+1)/2.

Given a system of PDE’s, the first step to determining the existence of
solutions is to look at the characteristic variety or equivalently the principal
symbol of the differential operator. One hopes to find something that is elliptic or
hyperbolic because these are the best understood PDE’s. For such equations,
existence theorems are classical and good estimates are not hard to find.

In our case, the characteristic variety of the operator defined by the left hand
side of (4.d.5) is the one for the operator in (2.c.11). It is therefore the one studied
in great detail in §I and §III. We find that for n > 5, the characteristic variety
has singularities; in linear PDE theory such an operator is said to have “multiple
characteristics.” Very little is known about the existence of solutions to such
equations. For n = 3,4, the characteristic variety is generally nonsingular; such
an operator is called “real principal type” and as stated in corollary (2.d.2), local
solutions are known to exist. However, we are not yet able to prove the estimates
needed for the Nash—Moser theorem.

Finally, when n = 3, §III describes in detail when the linearized equation is
hyperbolic. In §V we will describe in detail the estimates which will lead to a
local C* isometric embedding theorem for the general M? in E®,

V. Estimates for linear hyperbolic systems.

(a) We now define what a linear hyperbolic partial differential operator is;
and state the theorems which give the existence of a right inverse satisfying the
estimates necessary for the Nash—Moser—Schwartz—Sergeraert theorem. The
remaining sections of §V contain a proof of Theorem G, when the operator is
symmetric hyperbolic. The proof of Theorem G’ for a strictly hyperbolic
operator has been relegated to the appendix. (See Corrections A at end of paper.)

A first order determined hyperbolic system on M or X is of the form

Pu=f
where u and f are R™-valued functions; and

P=4a"2 +4' 3 45
at ax’
where A, A", B are smooth m X m matrix-valued functions satisfying one of the
following:

(5.a.1) P is symmetric hyperbolic if A',A" are symmetric and A" is positive
definite.

(5.a.2) P is strictly hyperbolic if A" is nonsingular and for any (x,7) € M or
X, £ € R""\{0), the polynomial p(7) = det(7A4"(x,) + £A4'(x, 1)) has n distinct
real roots.
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Given a hyperbolic operator P on M, define the following quantities:

IPIL,%(M) = 21 lAj|L,§(M) + IBILE(M)’
j=

(5-a.3)
i |o-A"(x,)0|
AP)= inf —m——"—
X HEM |v|2
vER™\{0)

A(P) gives a lower bound for the magnitudes of the eigenvalues of 4"(x,¢).

THeorReM G. Fix 0 < a < b and an integer a >[n/2). Let P be a symmetric
hyperbolic operator on M satisfying

1Pl racmy < b (5.a.5)
AP)>a (5.a.6)
Then P has a right inverse
Q : C*(M,R™)—> C*(M,R™)
which satisfies the following estimate:
L Ofl 2wy < CellPzany| flizemy + | fl 20> k>a, feC*MR™).
(5.a.7)
where C, is a constant independent of u, f, and P.

The corresponding statement for a strictly hyperbolic operator requires further
assumptions.

Let 227 C(R"®R”) X - - - X (R” ® R™) denote the set of all (n — 1)-tuples
of m X m matrices, (4', ..., A" "), such that for any £ € R"~'\{0}, 2;?;,'Af£j
has m distinct real eigenvalues. 2#° is an open set in R~ D",

THEOREM G'. Fix a set o/ C 2, diffeomorphic to the closed ball in R”~ D",
a real number b > 0, and a positive integer o > n + 3.

Given any strictly hyperbolic operator P = A"(3/3t)+ A'(d/9x)+ B on M
such that

((amn~al(@an 42 ..., an A eco (M, o),  (5a8)
|P|L§(M) <b, (5.a.9)
there exists a right inverse Q : C*(M,R™)—> C*°(M,R"™) satisfying
| Of 1 zmy < CeIP iz, .o flaeany + | f1L200n))> k>a, f&C*(M,R").
(5.a.10)

Here, C, is a constant depending on </, b, and a.

The basic idea involved in constructing the right inverse Q is to extend P to a
hyperbolic operator on X, solve a fixed initial value problem there, and restrict
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the solution back to M. The Sobolev estimates (5.a.8) and (5.2.9) are obtained by
a technique used by S. Klainerman in [13]. The main ingredients are the standard
energy integral estimates, Gronwall’s inequality, and some elementary calculus
lemmas. The proof for a symmetric hyperbolic system is fairly straightforward.
However, the basic estimates for a strictly hyperbolic system are proved using
pseudodifferential operators. A discussion of this plus the other modifications of
the proof to Theorem G to make it work for a strictly hyperbolic operator are
contained in the appendix §AV.

(b) Before embarking on our excursion into hyperbolic systems, we need
some calculus lemmas which will be quite essential in proving (5.a.8).

In §IV(c), we observed that the scales {L2(M))}, {L}(X)}, and {LX(T))} all
have families of smoothing operators. Therefore, on each scale, the interpolation
inequality (4.b.1) holds. We will use this lemma to obtain estimates on the
product of two functions and on the composition of two functions.

(5.b.1) LemMa [13]. For any f, g€ C*(Z); ¥ = M, X, or T; the following
estimates hold for any multi-index a, |a| = k > 2:

(a) |Da(fg)|L2(@) < Gk(|f|Lk2(_@)|g|L2(@) + |f|L2(_@)|g|L,%(.@))

(d) |1D*(fg) — fD°glixay < Ge(lfl oyl 8l iz + | fliaay| 8l iz (2))
G, is a constant depending only on & and k. (See Corrections B at end of paper.)

Proof. We use the following elementary fact: given any a,b > 0 and integers
k>i>0,

a'/kpk=D/k < g 4 b,

Proof of (a):
k
|Da(fg)|L,3(@) <G IZOIfI Lf(@)|g|Lk2_,(@) by Leibniz’s rule
. k=1)/k| £|l/k 1/k k—1)/k
< Gl:lz()'ﬂ(l}(—_@))/ Ifll{,f(@)l g|1{2(.@)| g|(1,,3(—_@'))/ by (4-b'l)

< Gk(|f|L2(9)|g|Lk2(.@) + IflL,f(.@)lgle(@))'
Proof of (b):
|D*(fg) _fDag|L2(.@)

k
< Gk”lzllflL}(_@)|g|L,%_,(_@)
i-(2)

k

< Gk(|f|L2,(.@)|g|L,§_.(@) + IflL,%(.@)lgle(@))' Q.E.D.
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Remark. The lemma holds also for f and g vector-valued; f matrix-valued
and g vector-valued; or f and g both matrix-valued.

(5.2) LEMMA. Let Z =M, X, or T,. Let ¢ € C*(B), B a compact domain
in RN. Then for any u € C*(Z, B), we have the following:

lg o “ILkz(@) < Mkl“IL;?(@) ’ k>1

(See Corrections C at end of paper.)

Proof. Let a be any multi-index, |a| = k. Using the chain rule, we have:

D(pou)= > [(Dfg) o ul(Duty ... (Dut)
e+ - +e, =8
I<k
a+ - roy=a
where u = (u',u? ...) and {e,} is the standard basis for R". Therefore,

IDa((P ° “)ILZ(.@)

< Mk”( sup E 'Dyﬁq’()’)') IulL,fl(_@) v |“|L,§I(_@)-
YEB|B|<k k+1<l
P

Apply the interpolation inequality (4.b.1) to each factor in the terms of the
summation. We obtain

k
|D*(@ ° u)| 2y < M;é(IZOIuI’Lz(@>)IuIL;(@)-

However since u is a map into a bounded domain,
|u|Lz(@) < (vol(.@))( sup |y|)
YEB
Therefore, if we sum the estimate over all |a| < k, the lemma is proved. Q.E.D.

(¢) The Cauchy problem for a linear hyperbolic system is known to be well
posed. Proofs for both the symmetric hyperbolic and the strictly hyperbolic cases
may be found in [23]. The result we shall need is:

(5.c.1) ProrosITION. Let P be a hyperbolic operator on X = "' % [0,1];
i.e., it satisfies either (5.a.1) or (5.a.2). Then given smooth functions ¢: T"—>R",
f: X—>R"™, there is a unique solution u: X - R™ to the system:

Pu=f
u(x,0) = ¢(x)

Moreover, u is smooth.
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We will not prove the existence of the solution u. However, the regularity and
uniqueness of u will be implied by the estimates we prove for symmetric
hyperbolic systems in this section and for strictly hyperbolic systems in the
appendix.

For the rest of this section, we will consider only symmetric hyperbolic
systems, and only those of the form:

du i 0u _
a1 +A4 ™ + Bu=f. (5.c.2)
The A%, B, and f will always be smooth functions on X.
The first estimate is the standard energy integral inequality whose proof
requires the 4 ’s to be symmetric.

(5.c.3) PROPOSITION. Let u be a solution to (5.c.2) with any L? initial value.
Then for any t € [0, 1], the following estimate holds:

d
7 [y < cOlul iy + 1 fli
where c(t) = "2} |Ai|L{0(r,) +|B| 1y -

Applying Gronwall’s inequality (5.c.5) to this estimate gives an a priori
estimate for |u| 37, in terms of | f| 2.7, and the coefficients of P. An immediate
consequence is the uniqueness of u. However, since what we really want are
Sobolev estimates, we will defer the use of lemma (5.c.5).

Proof of (5.c.3):
3 o (uxu(xn) = (u —82)=(u,—A"a%%—Bu+f)
=-%ai(u,4u)+(u, : g 54——3 u)+(u,f).

Integrate each side over 7, to get:

|u|LZ(T,)%|u|L2(T,) f( [ ,21 ox’ ]u)dx+fT(u,f)dx

< C(t)l“|21_2(r,) + |u|L2(T,)|f|Lz(T’) Q.E.D.

Next, we extend this estimate to Sobolev norms involving only derivatives in
the x"’s.

(5.c.4) PROPOSITION. Let u solve (5.c.2) with any initial data. Then

d ~ .
7 Hizary < aOlelzyry + G(Olulizyry + | flgn, k>0, 0<1<1;
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where

n—1
a(t) = ak( 21 14" iy + |B|L2(T,))’
fom

n—1
G (1) = ‘7k( 21 14 zy(my + |B|L£,0<T,))’
b

and ay., ;. are constants independent of A i B, f, and u.

Proof. For k =0, we have (5.¢.3).

For k=1, differentiate (5.c.2) with respect to x/, j=1,...,n—1. Use
the resulting set of (n — 1)m equations and the original m equations to con-
struct an am by mm symmetric hyperbolic system for which the vector
(u,(@u/dx"), ..., Qu/3x""") is a solution. Applying Proposition (5.c.3) to this
new system, we get the estimate we want.

For k > 2, we will use the calculus lemmas proved in §V(b). Fix a multi-index
a €Z" . Let u® = D°. Apply D2 to (5.c.2) to get:

ou'® ; 0u'® ( i Ou ) e OU a

Qu 4 419 — per_pe(4i 9L ) 4 gipa 94 _ pepy
a1 ox’ ! dx' * ax! X (Bu)

This is a symmetric hyperbolic system; we can apply Proposition (5.c.3) and the

triangle inequality, obtaining

d
3;|“(a)|LZ(T,> < (0w 2y + 1D 3

n—1

+ 2

i=1

D42 )~ pea’ B

+ |DZ(Bu .
ox Py |Dg( )|L2(T,)

LXT)

We now use lemma (5.b.1) to estimate the last two terms on the right hand side,
and sum both sides over all |a| < k, proving the proposition. Q.E.D.

(5.c.5) Lemma (Gronwall’s inequality). Let @(2), K(t),h(t) be smooth positive
functions satisfying

do
— < .
o Ko+ h

Then @(f) < e“O0@(0) + (4 e~ “Dh(r)dr], where C(¢) = [{ K(7)dr.

(5.c.5) is proved by solving the corresponding differential equation explicitly.
Using this lemma, we can prove the following:

(5.c.6) PROPOSITION. Fix R >0. Let P=23/3t+ A'(d/9x")+ B be a sym-
metric hyperbolic operator with smooth coefficients on X, satisfying

n—1

21 IAilLZ,YO(X) + |B|L%_0(X) <R
i=
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Let u solve

Pu=f f€C>(X,R™).

Then for any k > 1, the following estimate holds:

|4l 27y < Ck,0[|“|L£,o(To) + 1l 2400

n
+ ( ,21 147 240x) + |B|L%'O(X))(|“|L{o(ro) +1flyx)
b

where C, o depends only on R.

Proof. We first prove for k =1,
|l 2yry < Crollulzyry + 1 flizgn]-
Apply (5.c.5) to (5.c.4) when k = 1, obtaining
|ul < ey +f’e_c'(’)|f| dr

LT Lio(To) b LI T)
where

Cy(1) = fo ‘(1) + E(r)dr < fo le\(7) + &\(7)dr.
One can easily show that:

1
fo |g|L,3,0(T,) dr< |g|L,%‘o(X) .
Therefore
~ 1 i ~
C\(1) <(a, + a,)fo S A i3 ycry + 1Bl oery dr <(ay + @)R.

Similarly

¢ 1
foe Ol fl gy d7<f0 |l zamy @ < | flagx-

We may set C;o=e“*X proving the lemma when k = 1. For & > 2, the
proof proceeds in a similar fashion. Apply Gronwall’s inequality to (5.c.4),
obtaining

t ~
lul 2cry < eck(')[|”|L£_o<To> "'foe O fl 2oy + Ce(Mul 3 y(ry) dr
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where

Cu(?) =f’ck(¢)d¢< @R,
0

I 1 1.
< Gl ul 2ycry +f0 | fl iz oz dr "'fo Ce()ul 3y d”]

r 1/2
, 1. 1/2
<G |u|L,f'0(T0) + 'f|L,%_0(X) + (fo 'Ck(”')|2d"') (J‘|u|21,{0(md”) ]
L

[ n—1
= Ci| lulizyry + 1 fl 2oy + ‘7k( 21 14" 2gx) + |BIL2,0<X))|”|L%.0(X>}'
b

The lemma is then proved by putting in the estimate for |u|,2 x, and absorbing
G, C,, into C; to define a new constant C, . Q.E.D.

We now want to derive Sobolev estimates which include 9 /9d¢’s. However, we
also want to suppress the contribution to the estimates from the initial data.
Therefore, we will assume zero initial data, and take f to be identically zero in a
neighborhood of the initial surface T,,. We get the following result:

(5.c.7) ProPOSITION. Fix R >0. Let P=193/3t+ A'(d/9x')+ B be a sym-
metric hyperbolic operator which satisfies

n—1
igl |[4"] 2cxy + |Bl 2y < R.
Let f € C*(X,R™) satisfy the following: There exists € > 0 such that

f| T '%[0,e] = 0.

Let u solve the initial value problem:

Then the following holds:

|“|L,3(X) < ék

n—1
If]L,%(X) + ( .21 |A1|L,3(X) + |B|L,§(X))|f|L2,(X):I'
i=

Proof. We prove the following estimates by induction: For any k > / > 0,

lul 2,00 < Ci

n—1
[ fliacxy + ( ‘21 |4 12ex) + IBILE(X))IflL%(X)]' (5.c.8)
=

This will prove the proposition.
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To prove (5.c.8), o, square both sides of the estimate in (5.c.6), integrate over ¢,
and take the square root. The right hand side doesn’t even depend on ¢ and
doesn’t change.

Now fix integers 0 </ < k. Assume that (5.c.8),, has been proved for the
following pairs of integers (r,s):

(D) s<r<k

2)s<Lr=k.

Let a € Z""! be any multi-index, |a| = k — /.

! -1 .
‘i’—lp;‘u = |Dg al_l(f—A’a—“i—Bu)
ot L¥(X) ot 0x LY(X)
<|fly +|pe 2 (A"a—") +|ps 2L (Bu)
Lii—y - 1(X) x g1 ax’ L) x ! L)

We estimate each of the last two terms:

al—l
b P (Bu) < Gk[lBng_.(X)I“ILZ(X) + |B|L2(X)|“1L,L.(X)]’
L*(X)

by Lemma (5.b.1a).

D* al—l (AIM)
N T2 ox’

LX)
-1 . . 1/ . [/
\D: aI—] (A’Q’L[)-—-A'Dxa iaul—l +’A‘D: iaul-—l
at dx dx'at L¥(X) dx'adt L¥(X)

n—1 n—1
< Gk—l[( Zl |A'|L,3_.(X))|“|L2,(X) + ( 21 IAllL%(X))IulLE_.(X):l
i= i=

+ (2 |4 ilLZ(X))|“|L,%_,_,(X) .

Here, we have used (5.b.1b) to estimate the first term and the Cauchy-Schwarz
inequality for the second.

We can now substitute in the assumed estimates for |u|,; (v, and |u|;z, (x)-
We also need the following:

2

SRS VI _ i du _
IuIL%(X)_lulL%‘O(X)'i-\at L0 |u]L%‘U(X)+|f 4 ax’ Bu

<c{

Now substitute in the estimate for |u|,:  y,. The resulting estimate can in turn be

LX)

2

n—1
(1 + '21 |A'|LZ(X) + |B|L2(X))|uIL2w(X) + |fﬁ,2(,\')}~
i=
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put into the estimate for |D®*(3'/91')u| s x,. Summing these estimates over
|a| = k — I proves (5.c.8),,. Q.E.D.

(d) We give a proof of Theorem G. Given a symmetric hyperbolic operator

P=ard 14’ L 4

at Ox
on M and f € C*(M,R™), we can solve the equation
Pu=f

by first transforming P into an operator of the form

=2 +,41~‘—i)—, + B, A’ symmetric,
at x!

extending Ptoa symmetric hyperbolic operator Pon X, solving an initial value
problem on X, and restricting the solution back to M. This procedure defines a
right inverse Q to P. The estimate (5.a.7) is then proved using Proposition (5.c.7),
Lemma (5.b.1), and Lemma (5.b.2).

Let &': L (M)— L*(R") be the extension operator given by the Stein
extension theorem (see §IV(c)). We can then define an extension operator
& : L M)~ L¥X) as

Eu= (q)canfu)i[o’l]" R ue Lz(M),

where ¢ € C*(R") satisfies the following:

(a) support of ¢ C (0, 1)"

b)p=1on M.
The function & 'u may be viewed as a function on X since it is identically zero
on a neighborhood of the boundary of [0, 1]".

Given a smooth matrix-valued function 4" which is always positive definite
symmetric, the Gram-Schmidt procedure can be used to define a smooth
matrix-valued functio S: M —>R™ satisfying:

S(x,0)A"(x,6)S(x,t) = I
Let
P=sps=2 + 43 15
at x’

where A’ ='SA'S, B ='SA"(dS/dr) + 'SA'(dS/dx") + 'SBS. We then extend P
to an operator on X,

R {1y 9
P =g+ (84 = +(&B).
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Since P is symmetric hyperbolic on X, a right inverse Q may be defined as
follows: Given f € C*(X,R™), set Q f equal to the solution u of the initial value
problem:

po=f
fil 7, = 0.
The right inverse Q to P is then defined to be
Q = SAQE'S,
where # : LA(X)—> LZ(M ) is the restriction operator, since
PQ = PSRQE'S ='S 'PROE'S ='S "'RPOS'S = I.
We begin the proof of the estimate (5.a.7) with a lemma.

(5.d.1) LEMMA. Fix b>a > 0. Let A € C*(M,S*(R™)) satisfy the following
conditions (corresponding to (5.a.5) and (5.a.6)):

M) |A(x, 0| € b, (x,)) € M.

(@) v A(x,)v > alv|v ER™, (x,1) € M.
Then there exists a smooth function S(x,t) such that

'SAS =1,
and such that for any f € C*(M,R™) and k > 0, the following estimate holds:
ISfl 2y < Ni(14 2oan | fl2eany + 1f L 2ean)-
N, depends only on a and b.

Proof. Let Z,, = {4 € S*(R™)|a < (v,4v) < b). Z,» is clearly a compact
domain in S*(R™) = {symmetric m X m matrices}. The Gram—Schmidt process
defines a smooth function ¢ : %, , = GL(m, R) such that

Y(A)AY(A) =1, AeZ,, .
We then define
S(x,t) = (Y o 4)(x,?).
Linear algebra shows that

1 . : 1
|S(x,0)| < —, implying that |S]|;2,, <—.
(%) Va O e
On the other hand, Lemma (5.b.2) gives

181200y < GilA| 2¢ary -
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Therefore, using Lemma (5.b.1a) and these bounds for the norms of S, we get
ISl 120y < Gk[|S|L3(M)|f|L2(M) + |S|L2(M)|f|L,3(M)]
1
< G| Ml Al oy fl oy + —= 1 fl zemny
Va
The proof is completed by setting N, = max(G, M,,G,(1/ya)). Q.E.D.

Proof of (5.a.7). Observe that |Sul;x) < Efulyxy and |2z <
|| 12 xy - Recall that

P=5s"9 +4' 9 4+p
at Ax!

is assumed to satisfy (5.a.5) and (5.a.6). In particular, (5.a.5) implies that
|47 20ary < b
Since a > [n/2], the Sobolev lemma implies that there is a constant 5" such that
4" (x, )| < ¥, (x,t)E M.
Therefore, we may use Lemma (5.d.1) to obtain the following estimate.
|A~i!L,3(M) = 'S4 iS|L,%(M) < Nk[IA"IL,f(M)|AiS|L2(M) + |4 iSIL}(M)]

b
Va

< NP ey (recall definition (5.a.3)).

<N,

IA"|LZ(M) + Nk(lAnlL,f(M)'Aile(M) + lAilL,f(M)):|

A similar argument shows that
|§lLE(M) < Nk”|P|L,3+,(M)-
Then given f € C*(M,R™),
IQﬂLz(M) = |S%Q5)'Sf|L,§(M)
< Nk[|An|L,%(M)| QA@mSﬂLZ(M) + | QAg’SﬂLz(M)] by (5-d-1)'

Using (5.a.5) and the bounds for A',B we just derAived, we see that R > 0 can be
chosen, depending only on a and b, so that P satisfies the assumptions of
Proposition (5.c.7). Observe as well that by the definition of &, &'Sf meets the
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condition given in (5.c.7). Therefore, we have the following:

IQé)'SﬂLZ(M) < COEIVSfILz,(M) < C(;If'Lz,(M) .

| O Sfl 12y < Ci| Ex(14"| i2eany| fl 2wy + 1 £ i20my)

n—1
+ ( 21 |5)A '|L,3(M) + |£BIL,3(M))I£ISf|L%(M)
=

We get the estimate by substituting in the estimates for |4’ 12 M),|§ [ L2cary >

A.V. Appendix: Estimates for linear strictly hyperbolic systems.

(a) This appendix contains the propositions necessary to prove theorem G’
and their proofs.

An L-inequality similar to the one in Proposition (5.c.3) is proved in §AV(c)
using a pseudo-differential operator to “symmetrize” the operator P. In using
such machinery, more derivatives of the coefficients 4, B will be required than
in the symmetric hyperbolic case. The argument used to extend the basic
inequality to a Sobolev inequality is essentially the same as before.

The new wrinkle here is the use of pseudo-differential operators on 7"~ !. A
precise representation of the composition of two pseudo-differential operators
and of the adjoint of a pseudo-differential operator is required. Also, we need to
estimate the norm of an operator in terms of its symbol. §AV(b) contains a brief
exposition of pseudo-differential operators on 7" (we use T" instead of 7" ! for
convenience). The operators are defined globally using Fourier series rather than
Fourier transform. This avoids the use of local co-ordinate charts, and a partition
of unity which are necessary in the standard construction of pseudo-differential
operators on a compact manifold. Moreover, the statements and formulas
obtained are simpler than even those for operators on R” since there one has to
worry about the operators being properly supported. However, the results in
§AV(b) do hold in some sense for any compact manifold. Although the
corresponding statements are not invariant, they can be made with respect to
some fixed choice of co-ordinate charts and partition of unity. Using this,
Theorem G can be proved for a strictly hyperbolic operator on I X S, § a
compact manifold without boundary.

The last piece needed to complete the proof of Theorem G’ is showing how to
extend a strictly hyperbolic operator on M to one on X. This we do in §AV(d);
the rest of the discussion in §V(d) carries over without change to complete the
proof.

(b) We will only use matrix-valued pseuo-differential operators; there is
essentially no difference in the following propositions and the corresponding
ones for scalar-valued pseudodifferential operators. Let ¥ denote the space of
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complex m X m matrices. We will use the standard matrix norm on V, i.e., as a
linear operator on C". We denote D,=(9/0¢,...,0/0,) and D,
=(/dx',...,0/9x"); a, B are multi-indices.

(A.5.b.1) Definition. Denote by #*(T", V), k €R, the space of smooth
functions a: T" X R" - V satisfying the following property:
For any multi-indices «, B, there is a constant Cop > 0 such that

|DEDfa(x,8)| < C,p(1 + g 1A (A.5b.2)

An element a(x,§) € /% (T", V) is called a V-valued symbol of order k.
We can take the Fourier transform of a(x,§) € % (T", V) as a function of x.
Since it is a function on the torus, we obtain a Fourier series as follows:

a(n,§&) = L"e”z"i"'"a(x,ﬁ) dx, nezZ", (¢€R"
a(x,g) = 2 e21rix~na(,n’£)’ xeT", ¢eR".
nez

Here, 7" = R"/2".
Since a is smooth, 4 is rapidly decreasing in the first variable, i.e., it satisfies
the following estimates:

|Dga(n. &) < Coy(1+ [nl) ™' (1 + [g))*, (A5.b.3)

where / is any nonnegative integer, « is a multi-index.

A collection of seminorms is then defined on .#'* (T", V') by setting |a|,, , equal
to the infinum of all CA'a’, satisfying (A.5.b.3) for |a| < m.

Given a(x, &) € /% (T", V), a pseudo-differential operator, denoted Opa, is
defined as follows:

(Opa)u(x)= > €™ a(x,m)i(n), u€C®(T",C"), (A5b4)
nez”

where # is the Fourier series of u, i.e.
f(n) = L"e'2"ix'"u(x) dx, nez

Since u is smooth, |#(n)| is a rapidly decreasing function of 7. It is then easily
checked that the sum (A.5.b.4) and all its derivatives are absolutely convergent,
showing that (Opa)u € C*(T",R™).

Furthermore, Opa can be uniquely extended to a continuous linear map
Opa: L% (T™)— LA T"). More specifically, we have the following:

(A.5.b.5) PROPOSITION. For any a € #*(T",V), u € C*(T",C"),

[(Opa)u|2rmy < Coplalogsnsiltliz, (7 » k.5 nonnegative integers.
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The proof presented is essentially the standard one for continuity of
pseudo-differential operators on R". We first recall some basic facts on the
Sobolev norm of a function.

Given a function f :Z2"—> C™, we will denote

fe=( S Vr)”

nezZ"

The Plancherel theorem states that for any u € LX(T",C™) and # its Fourier
transform,

|”|L2(T") =d|,.

Basic fact. For any nonnegative integer k, there are constants C;,C;” such
that

Ul 2rmy < CIL+ D) u ()] 2 < Clul 13rm) (A5.b.6)

Proof of proposition.

—_—

(Opa)u(n)=ane"2"i""’(Opa)u(x)dx

_ z e_2ﬂix'("‘€)a(x’£)ﬁ(£)dx
T'¢ezn

- —2aix- (7-8) .
5ezz" [fT”e a(x,&)dx | (§)

= 3 a(n-&8a).
tezr
By (A.5.b.6) we have
I(Opa)“h}(r") < Cs/l(l + |n|)s(0/pa\)u(n)le

=C

L+l 2, a(n—§8a()
¢ez”

L?

<c

(+hl)’ 3 1a(n =& 9l1ae)

L?

< Cs/,l|a|0,1

(b’ 3 (1 =87 +EY IO

Now using the fact that 1+ |n| <1+ £+ |n—§ <A+ [P + |n — §]), we
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obtain

< Cs/,llalo,l

tez”

> L+ =&y ~'(1+ gy 4@
LZ
< Cs',llalo,l( S 1+ Inl)"')l(l + ) * 4 ()l 2
nez"

by Hélder’s inequality. By setting /= s + n + 1, the sum in the second factor
converges. Using (A.5.b.6) we obtain the desired estimate. Q.E.D.

We next develop the symbol calculus of pseudo-differential operators up to
“zeroth order.” However, an error term, analogous to that of a Taylor series, is

obtained.

(A.5.b.7) PROPOSITION. Let a € /*(T", V), be /' (T", V). Then ab€e
KT, V) and

(Opa) » (Opb) =Opab + Opc,

where the Fourier transform of ¢ € S **!=Y(T" V) is given as follows:

1 —~ —
E(n ) = 517—1 ango D.a(n— 8,6+ t8)- D.b(5,¢8) dt.

Proof.
—_—

(Opa)(Opbju(x) = 3, ™ Ma(x,m)(Opb)u()

= 3 3 e a(xm)b (n - £8)i).

nezZ" tezZ”
By the fundamental theorem of calculus,

a(x,m) =a(x,§) + (n— &) - r(x,&n —§),

where
r(x,£0) =f0’1)€a(x,g+ 18 ) dt
Then (Op a)(Op b)u(x) = S,(x) + S,(x), where

Si(x)= X ™ a(x,8)b (n - £ 8)a(é)
n€§€Z"
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and
(0= % =g rxbn- 95 - i),
né€Z"
Si) = 3 @ a s)[ S, -9 |
neZ"
= gzz ”ez""""sa(x,é)b(x, £)ii(¢) = (Opab)u(x).
$,(8) = fT e 38,(x) dx
= 3 [ -gax] (-9 - 92
= ;Z"(3-n,ﬁ,n—£)°(n—§)5(n—£,£)ﬁ(£)
n.§€Z"
where

f(n,g,a)=fo'pfa(n,g+ 8 dt.
Since D_b(n — £ &) = 2mi(n — £)b(n — £ £), we get
$®)= 3 U D (8 — m,&+ t(n— &) Dyb(n — ££)dt]u(£)
n¢€Z”
U D8 —£— £+ t€)- D b(e, £)dt]u(£)
c&EZ"

—_—

= (Opc)u(d).

We still need to check that c is in fact a symbol. It suffices to show that ¢ satisfies
(A.5.b.3) for all a and /. Only the case a = 0 will be proved here; the general
estimate for a = 0 is proved in the same way.

[é(m,8)| < 2 f |Dga(11 6,6+ t8)||D b(m,§)|ar
<lalinlbloy 3 ['(1+In=8177(1+ 6+ @'+ ) /(1 + ) e
8ez/0
< lalnlBlo,(1+ DA+ ) 3 [+ In—8) "1+ [+ )
8ez"/0

— - -m (1 -
<lalyulblo,(1+ a7+ )T S (1= 8) 7" (1 + e8]y .
sez” 0
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For k > 1, we obtain

le(n.§)] < lalymlblo; (1 + a7 '(1 + Iél)k”_'sgz (I+[n—=8)~" A +[8)*"
[ n

< |alymlblog(1+ ) 7FEA+ [ S (14 [ — 8]y
s€z”
Set m = n + k to make the sum converge, s = j — k obtaining

|C|0,s < C|a|1,n+k|b|0,s+k=@§ C= 322 (r+ |6|)_n_]~ (A-5'b-8)
e n

For k < 0, the integral drops right out, then setting s = j — 1 and m = n + 1, the
following is obtained:

Iclos < Claly s 1lblossr - (A5.b.8")

In particular, c(x, §) satisfies the symbol estimates of order k + / — 1. Q.E.D.

We will denote the adjoint operator to Opa with respect to the L? inner
product as (Opa)*.

(A.5.b.9) PROPOSITION. For any symbol a € /*(T" V), (Opa)* is also a
pseudo-differential operator Opa* of order k. Moreover, its symbol is given as
follows:

a*(n,é) ='5(——11,£) +f0117' D;'a(—mn,&+ m) dt
Proof. By Plancherel’s theorem,
(u,(Opayy = 3 i(n) Opayo(n) = 3 3 a()a(n—69 5

nezZ" nEZ" LEZ

Thus,
T RS
(Opa)*u(n) = gzz aE—m,m) (A.5.b.10)
e 'n
As before, use the fundamental theorem of calculus to say
A A 1 A
aE=mm)=dE-nH+ [ (1-§° Dd(E—mt+i(n—)d
Substituting this into (A.5.b.10), we obtain the desired expression for (Op a)*u. It

is easily checked that a*(x, &) € #*(T", V). Q.E.D.

(¢) Fix & and 27 as defined in §V(a). Throughout this section, we will also
fix a set &/’ C 27 such that

(1) &/ C interior (&)

(2) o’ = closed ball in R~ V",
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Let P=0/3t+ A'(3/9x") + B be a strictly hyperbolic operator on X. We will
always take (4',..., 4" )€ C*(X,« ') and B € C°(X,R™ ® R™). Denote

4 = A"(x,z)% _:C*(T,R™)> C*(T,R")

T

Setting a,(x, &) = 27321 A'(x, 1), A4, = Opa,.

P strictly hyperbolic implies that a,(x,£), £ 0, has m distinct imaginary
eigenvalues, denoted 2miA,(x,1,4), . . ., 2miA,(x,8,§), where A; <A, < ... <A,
Using this property, a symmetrizer for 4, can be constructed as follows:

(A.5.c.1) PROPOSITION. Let (A°) € C¥(X,5¢),
n—1
a,(x,8) = 2mi 3, A/(x,1)§,
j=1
and

n—1 9
A,=Opa, = > 4/
j=1 0x/

Then there exists a pseudo-differential operator R, = Opr, of order zero satisfying
the following:

R} =R, (AS5.c2)
1 o) n— m
{u,Ru) > gy lulizro-y, w€C®(T"",R™), (A5.c3)
where {u,v) = [ (u(x),v(x))dx.
A}XR, + R,A, is an operator of order zero. (A5.c4)

Futhermore, if we assume that (A') € C®(X, /"), then the following estimates
hold:

n—1 2

IRtule(Tn) < M( 21 IAllL,fH(X) + 1) lule(T) (A.5.c.5)
j=

th n—1 ) 2

— Y LZ(T)< M( gl 47|12, 0x) + 1) ul 21 (A5.c.6)
J

Proof. For each eigenvalue 27l (x,,§), £ 0, define the matrix
1 -1
,t’ =53 I - ) d ’
Pt =3 (- a(x8)

where v,(x,t,§) is a contour, smoothly varying with (x,7,£), enclosing
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27, (x,t,€) and no other eigenvalue of a,(x, £). p, is a well-defined, smooth, real
matrix-valued function on X X R*“'\{0}. As a linear transformation on V, p,
projects a vector onto its component in the A, (x,1,£)-eigenspace. It is then seen
that

(1) p, is homogeneous of degree zero.

(2) p, commutes with a,.
Now set

r(x,€) = §=31 P,(%, 1, E)p, (%, 1, £);

ri(x,§) is a positive definite symmetric matrix. Furthermore, since a, is pure
imaginary, a* = —‘a,. Using this, it is easy to check that r/a, + a*r, = 0.
However, we need a positive definite, self-adjoint operator R, and having a
positive definite symmetric symbol does not necessarily give one. One can be
constructed, in the following manner:
A bound on the lowest eigenvalue of 7, is given by:

m 2 m 2
|D|2 = 21 pv(x’ Z g)v < ( 21 lpv(x’ t’ £)vl)

< |m2 i] |pv(x’ t’£)012= mz(v’r;(x9£)0)s

where v € R™, (x,t,£) € X X R""1\{0}.
Therefore, r)(x,&) —(1/ 2m?)I, I =identity matrix, is also positive definite
symmetric. It then has a smoothly varying “square root”, b,(x, £), satisfying

v (%, ) =B} (x, E)b] (x,8) + —L= I.
2m?

b;, like all the other functions defined thus far, is not a symbol since it is not
smooth when £=0. This is remedied by fixing a function ¢ € C*(R),
®lio1/21 =0, 9|1,y = 1 and setting b,(x, £) = @(|€));(x, §). Since b, is smooth on
T ' X R""!, for fixed ¢, and homogeneous of degree zero in ¢ for 1§ > 1,
b, e YT, V).

The desired symmetrizing operator is then given as:

R, = (Opb)* o (Opb) + —= 1,
2m

where I:C*(T,R")—> C*(T,R™) is the identity map. R, clearly satisfies
(A.5.c.2) and (A.5.c.3). Using the standard symbol calculus of pseudo-differential
operators, as seen in propositions (A.5.b.7) and (A.5.b.9), (A.5.c.4) follows easily.
Observe that the cut off function adds only an error of infinitely negative order.

It remains to prove (A.5.c.5), (A.5.c.6). For this, the following lemma is
needed:



CHARACTERISTICS AND EXISTENCE OF ISOMETRIC EMBEDDINGS 981

(A5.c7) LeMMA. Let p € C*(X,V) be such that for fixed t, p(:,t,*)
€ SK(T"", V). Then p satisfies the following inequality:

|P(o 8 los < Msgsgg(l +1E) T P 1)l 12, 0y -

Proof.

|Plos= sup (1+n)"(1+ 1) [ ™2™ p(x.1,8)dx
nezn! T"
fER”"'

<M sup (1+[E)7*[ S [Dip(x1|dx
teR! T"|a|< s

Fact. For any f € C*([0,1)), | f(x)| < [§]f(D] + | f(D|dt, x €0, 1].
We leave the proof as an elementary exercise. Using this fact and the
Cauchy-Schwartz inequality, we get

- 1 9
<M sup (1+[)~ % D (x,1,8)|+| = D (x,t,£)| dx dt
S () f [ 3 Do 9+ | 7 Dip (o)

< M| sup I(1 + |£|)“k|p(x, L2, xy- QED.
¢eR™

For fixed £, the function b,(x, £) is obtained by composing a fixed smooth map
# XR"!S5>R"Q@R™ with (4',..., 4" 1,¢). In particular, if we restrict to
A',..., A" Y€ o/, a compact set in 2#°, lemma (5.b.2) gives

|b:(x,§)|1,}+,(x> < Cs’ﬂ’gla,(x,é)l,“gﬂ(x) , for each &.

Since b, is homogeneous of degree zero in &,

n—1

sup b, (x,€)\ 12, (x) < SUP Clrr gl (%, €)l 2, (x) € Couwr 20 47112, ()
fern! =1 f=
Combining this estimate with lemma (A.5.c.7), we obtain
n—1
[belo, < M’ '21 1471 12, ,(xy - (A5.c8)
j=

Finally we estimate the norm of R,:

(o, Ruy = <o, [(Opb,)* o (Opb,) + ﬁ ]u>
= ((Opbyyo, (Opbyu) + —— (o,u)
2m

1
< Ibtlg,n‘vle(T)lule(T) + mlvlﬁ(nlull}(n
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Setting v = R,u and using (A.5.c.8), we get

n—1

2
|Rtu|L2(T) <( 21 |Aj|L3+,(X) + 1) |“|L2(T)-

j=

Repeating the argument above, it can be proved that
ab, o
‘W <M 14,00 -
0,n Jj=1

Then by differentiating (v, R,u) with respect to ¢, we obtain the estimate

n—1

2
dR .
: < M]( zl |47] 12, xy + 1) |u 27y - QE.D.
=

T

LXT)

Using R,, we can prove an energy integral inequality. It will be convenient to
define the following inner product and norms on L*(T,R™):

<u’v>R, = Cu, R,v)
lulR, =(u, u>}<{2 .

The norm | |, by (A.5.c.3) and (A.5.c.5), is equivalent to the L>-norm.

(A.5.c.9) PROPOSITION. Let P=193/3t+ A'(d/9x')+ B be a strictly hyper-
bolic operator on X with (A") € C*(X, ") and B € C*(X,R™ ® R™). Given any
fs u € C*(X,R™) satisfying Pu = f, the following inequality holds:

D luly < clulg +1flg,  t€[01],

where c is a constant depending on the coefficients A'. However, if we fix a constant
b > 0 and assume that

n—1

> 1472, + |B] ;< b,

Jj=1

then ¢ may be chosen so as to depend only on o/’ and b and to be otherwise
independent of P.

Proof.
LA 3u R,
il = (57 Ru) + (wRGH) + <”’ a “>
dR,
=<f—A,u—Bu,R,u)+(u,R,(f—A,u——Bu)>+<u,7u>

dR
=2(f,Ru) + <u, -Ei u> — 2{u, R, Buy — {u, (R, A, + AR )u)
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We estimate each term separately:

{HEuy, <|flglulg, by Cauchy—Schwartz.
th n—1 ) 2
<u,——u> < M,( 21 |[47] 2, x) + 1) |u|2Lz(T’) , by (A.5.c.6),
t j=

2
< 2m2Ml( S 4]y + 1) ufy, by (AS.c3).
Jj=1

Cu, R, Buy = {R,u, Buy < |Ryul 21| Bul 121

n—1

2
< M( .21 |47] 12, x) + 1) 1B 2y lul 2y
=

n—1

2
< 2m2M( 21 |47 12, xy + 1) |B| 27y lul%,
j=
A crude bound on |B|,» r, is given by the Sobolev lemma:
|B| 21y < ( sup |B(x, t)l)vol(T,) < sup |B(x,8)|< B, -
xeT (x1)EX

To estimate the last term, the symbol of R, A4, + A} R, must be estimated. First,
the symbol of 4} is given as follows:

n—1

A,"‘=(Af—a-:)*= — 8. olg/= - M-—’A!‘_.a_,.
dx/ dx/ j=1 0x’ ax/
Therefore,
n—1 n—1 i
ar (8= —2mi S Alg— S YA
j= j=1 x

Using (A.5.b.8), (A.5.b.8"), and (A.5.b.9), we see that
Cu,(RA, + AFRYu) < Clr|y (| e + 'al*ll,n+l)lulsz(T})

n—1

3
< C‘( .21 |47] 12, x) + 1) |l
f=

n—1 3
< 2m2C1( 21 [47) 2, .cx) + 1) ul%

Jj—

The proposition follows immediately. Q.E.D.
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The extension of the estimate to Sobolev estimates proceeds exactly as in
§V(c). The only difference is that a different norm is used, namely

- 1/2
= ]

The final estimate, of the form given in Proposition (5.c.7), can be converted
back to the desired estimate using the L2-norms, using (A.5.c.3) and (A.5.c.5).
This gives the following resuit:

(A.5.c.10) PROPOSITION. Fix b’ >0 and o' C 2% as described earlier. Let
P=3/0t+ A'(d/9x")+ B be a strictly hyperbolic operator on X with (A°)
€ C*X, "), B € C*(X,R" ®R™),

n—1

21 147122, 00 + 1Blzon <
j=

Let fe C*(X,R™) satisfy the following: There exists € >0 such that
flr-1x10,q = 0. Let u solve the initial value problem:

Pu=f,  u|l;,=0.

The following estimate holds:

iuIL,f(X) < ék

n—1
|f|L,%(X) + ( 21 IAle,f(X) + 'BlL,%(X))IﬂLZ,(X)]
j=

when ék depends on b’ and &/’ but is otherwise independent of u, f, and P.
We now give a similar argument as in §V(d) to indicate how a strictly
hyperbolic system of the form

ndu 4 gi Ou =
AnG AT 4 Bu=]
on M is solved using the results of §AV(c) and an extension operator. The
procedure is slightly more involved than for symmetric hyperbolic systems.
Let &7, b, and a be fixed as in the statement of Theorem b’, given in §V(a).
Also, fix &' D & as described in §AV(c). ‘
Consider a strictly operator P = 4"(3/37) + A'(d/9x') + B on M satisfying
the assumptions of Theorem b. Denote
5_ 4 n\—1p_ 0 ~i 0 5 Ti_ gny—1 5 ann—
P=(a")"'P=g +4' 5 +B, A'=(4")""'4, B=(4")"'B.
We want to extend P to a strictly hyperbolic operator on X. Fix an 2extension
operator, as described in §IV(c), & : L3A(M,R"~ V") L2(X,R"~ V"), Recall
that & is bounded in the L® norm. Therefore, by embedding &/’ appropriately
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as a ball in R""Y" and & as a much smaller ball, we can define
& LAM,o)> L*(X,o/"). Moreover, it is clear that this definition_of & still
gives a bounded operator on L2, k > 0. Now set A'=~&4". Extend B to a map
B:X>R"®R" as in §V(d). This defines a strictly hyperbolic operator P
satisfying the assumptions of Proposition (A.5. c.10). Observe that b’ depends
only on b and #. Let Q be the right inverse of P as given in (A.5.c.10). Then a
right inverse of P is given by

Q=R05(A")',

when % : LA(X,R™)— L*(M,R™) is the restriction operator. That Q is a right
inverse of P and satisfies (5.a.8) is proved in the same fashion as Theorem G was
proved in §V(d). We do not repeat the argument here. This completes the proof
of Theorem G’.

VL. Local existence of smooth isometric embeddings.

(a) In this section, all the various pieces presented in §§III-V are assembled
together to prove a local existence theorem for smooth isometric embeddings of a
three-manifold in R®.

Throughout this section; we will use the manifold M3 =Q?x[},3], Q a
compact convex domain in R2.

(6.a.1) Definition. A smooth embedding u: M>—>RS is hyperbolic if the
following equivalent conditions hold:

(1) The differential operator given by the left-hand side of (4.d.5) is hyperbolic
as defined by (5.a.1) and (5.a.2).

(2) The characteristic variety of the linearized isometric embedding system is a
cubic with two components; and the line Rdx® € TM lies inside the oval for
each x € M.

(6.a.2) Remark. The first half of (2) corresponds to the definition of
hyperbolicity given in §1II(c). The second part corresponds to the x>-direction in
M being a “timelike direction.” Using (1), Theorems G and G’, and the
discussion in §IV(d), we see that the linearized isometric embedding system
(4.d.3) can be solved whenever u is hyperbolic. This then leads to the following
result:

THEOREM H. Let uy: M —> R® be a smooth hyperbolic embedding. There exists
s €2Z*%, 8 €R* such that for any metric g € C*(S>T* M) satisfying

lg — ‘I’(“O)ILf(M) <9,
there is a smooth embedding u: M — R® inducing the metric g; i.e.,
O(u)=g.

Remark. Theorem H also holds for any manifold M’ = S X I where S is a
compact surface and I a closed interval. The proof is exactly as for M, but
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messier since there are no global co-ordinates. To obtain the estimates analogous
to Theorems G and G’, M’ is embedded in X’ = § X I’, I CC I’; and the initial
value problem is solved in X".

The proof of this theorem consists of checking that the assumptions of the
Nash—Moser—Schwartz—Sergeraert theorem hold for a suitable choice of the
Banach spaces and the functional. The conclusion then follows directly.

The scales of Banach spaces we will use are given as follows:

E, =L} (M,R%, F.=L)S*T*M); k>0

The norms for { F,} will be taken to be the usual L?-norms. However, we will fix
€ > 0 and scale the norms for { E,} as follows:

|u|k=e_'|u|¢+l(M), ue k..

The constant e will be specified more precisely later in the proof.

Denote by D, (u,) the unit ball in E, centered at u,,.

The functional to which the Nash—Moser—Schwartz—Sergeraert theorem is to
be applied is

Do(v) = P(uy + v) — P(uy), v E LY(M,R%

when @ is the functional defined by (4.d.1).

(1) Clearly we have ®,(0) = 0.
(2) To see that @, is twice Frechet differentiable, it suffices to show that @ is.
The derivatives of ® are easily seen to be as follows:

D' (u)y = 2(du,dy) = 2( % , % )dxidxj

(D" (u)y,w) = ' (y)w = 2(dy, dw)

(3) The estimate (4.b.3) is proved using lemma (5.b.1) as follows: let
u=uy+ v € Dyu).

|®o(0) ] =2 (ﬂ ,i}-)—.)dx"dxj
dx' dx’ LAM)
3
<26 3|22 Y o 4
ij=110x" [LZan| 0x7 | 2ary | Ox" 20| O/ | L2(a)

< lsGk[|U|L,3+.(M)|)’|L%(M) + |°|L2.(M)|)’|Lz+,(M)]

< C/:(|Ulk|}’|o + |U|0|)’|k) < Cé(l”lkl)’lo + [)’lk)’

since |vly = |u — ugly < 1.
(4.b.4) is proved the same way but is even easier since Lemma (5.b.1) is not
used.
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(4) The rest of this section will be devoted to constructing a right inverse Q(u)
to ®’(u) and showing that the estimate (4.b.5) holds. Equivalently we want to
show that given an embedding u € D,(uy) N E,, o some fixed integer, h € F,
we can always solve for y : M — R such that

Q(u)yy=nh (6.a.3)
and
I e—a < Ke(Julilhl, + 1R8]0, k> a. (6.2.4)

We showed in §1V(d) that to solve for y, it suffices to find a 1-form ¢ = @,dx’
satisfying the system of partial differential equations (4.d.5). The object of the
rest of this section is to show first that if » is sufficiently close to u, in the
C%norm, the system (4.d.5) is a hyperbolic system of the form studied in §V.
Theorems G and G’ then give a solution for ¢ and hence for y. Then, in order to
prove the required estimate, we must bound the norms of g, I‘f;, bJ, and H; in
terms of norms of u. This is done by observing that all these geometric quantities
are obtained by composing fixed smooth functions with the 2-jet of ». Lemma
(5.b.2) then bounds the L2-norms of these functions by the L?-norm of the 2-jet
of u; but this is simply the L2, , norm of u. Finally applying Lemmas (5.b.1) and
(5.b.2) a few more times, the desired estimate for | y|, 4, is obtained.

We now provide the details of this argument.

Given a smooth map u: M —>RS® we denote by jz(u) the 2-jet of u, the
associated section of the bundle R® ® J?(M). Let V be the fiber of this bundle.
The co-ordinates on M determine a trivialization of R®® J?(M); we can then
identify

V=R'®RORD S°R’);

and the 2-jet of u is given as follows:

B ).
(@)

The property that u: M>—>R® be a general immersion is a linear algebraic
condition on j*(u)(x), x € M. In particular, u is an immersion at x if the vectors
@u/dx")(x), (du/dx>)(x), (0u/dx>)(x) are linearly independent. It is not hard to
show that an embedding u is non-degenerate, as defined in §I(a), if at each x
€ M, the vectors (du/dx")(x), (Bu/dx>)(x), (Ou/dx>)(x), %u/@x"V)(x), ...,
(du?/(3x*)*)(x) span all of R®. We can rephrase this as follows: An embedding u
is non-degenerate if and only if the 2-jet of u maps into ¥, C V, where we define

2
du (x), 0u

2 =|u(x ~ay—x e,
ACO R LT velC AR vl bty

2(x),...,

V,= {(u, u; ,uy) | {1;) are linearly independent, {#;, y;} span R6}.
On V;, we define the following functions:

gy’(“’ U, uy) = (U, uj)
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Let g(u,u,,u,) = (g;(u,u,, u,)) denote the full positive definite symmetric matrix;

g,].— 1 (u, u,, us,) = (i, j)th component of g(u, u,, uﬂ)— 1,
Ar 3
(v, uy) = 121 B (s 1, 1) () )3

A A
Hy(u,u, ,u,) = u; — I‘f;.(u, U, 5 Uy ) Uy

Notice that Hj is R®-valued.

It is clear from the dlscusswn in §IV(d) that the functions g, = g, © JA(w),
T} = F" o j(u), and H o j%(u) give the metric, Christoffel symbols and the
second fundamental form assomated to the embedding u. The span of the vectors
{H;(x)} give the normal bundle of M as a subbundle of T,RS.

We can associate a cubic form to any point in V| as follows: The vectors
H;(u,u,,u,) span a 3-dimensional subspace of R®. Choose any basis of this
subspace. The equation (4.a.3) then defines a continuous map.

[F]:V,>P(S°RY)

[F] is well-defined since a change of basis of the subspace only changes F by a
scalar factor.

Let ¢ C P(S°R?) denote the space of cubics whose associated complex cubics
are smooth. € is clearly an open set in P(S°R’). Lemma (4.a.9) defines a
continuous function o : 4 > R which is a projective invariant of each cubic.

Let V, C V, denote the set of (u, u,,’us,) which satisfy the following:

(D [FXu,u,,u,) € €.

) o((Fl(u,u,,u,)) € (=00, —3) U (—3,0) U (], c0).

(3) The point [0,0, 1] € RP? lies inside the oval of the cubic [F1(u,u,, u,,).

V, is an open set of V| and hence of V. Moreover, V, can be characterized as
follows:

(6.2.5) An embedding u is a hyperbolic embedding of M3 in R® if and only if
JAw): MV,

(6.2.6) LeMMA. Let B €Z™*, B > 3. There exists € >0 such that for any u
satisfying

lu — “0|L§+,(M) <€
u is a hyperbolic embedding.
Proof. By the Sobolev lemma, there is a fixed constant Cg such that
|75 )(%) = F(uo)(*)| < Clu = uol i3, (wy < Cge, X EM.

Here, we are using the norm on V induced by the standard one on R®.
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By choosing € small enough, u will clearly be an embedding. Moreover, since
V, is open, we have jiu): M —> V,. By (6.a.5), the conclusion of the lemma
follows. Q.E.D.

Fix B > 3 and € > 0 as determined by the lemma. Use € to define the norms
| |, for the scale { E,} as in (6.2.2). Then by construction, Dg(u,) contains only
hyperbolic embeddings satisfying (6.a.11).

To use Lemma (5.b.2), j*(u) must map to a fixed compact set. The set we use is
the following:

B(u) = {(u,u,,u,) € V|(u,u4,,u,) = j*(u)(x) for some u € Dy (up), x € M }.

That B(u,) is in fact compact follows from the Sobolev lemma and the fact that
M is compact.

We still need one more set of functions on V,, namely the ones that give a
basis for II*. Following §IV(b), we make the basis a symmetric third order
tensor, and for convenience, we lower all the indices. Thus, given (u,u,,u,,), set
(b (u, u,, u,)) equal to the solution of the following system:

byk=bjik= ikj > 1<i,j,k<3

3
> byH;=0, 1<k<3.
=1

At each point (u,u,,u,) € V,, this gives 26 independent equations for 27
unknowns by (u,u,,u,), determining the solution only up to an arbitrary scale
factor. However, V,—in particular, condition (3)—implies that the matrix
(b3;j(u, u,, uy,)) has real, nonzero eigenvalues. We can then obtain well-defined
smooth functions by (u,u,,u,) by demanding that the eigenvalue of (b;;) with
the least magnitude be equal to 1. If (u,4,,u,) is a “symmetric hyperbolic” point,
then b, (u, u,,u,) will in fact then be positive definite.

We now begin with estimates on the solution of the “intrinsic”, piece of the
linearized system. Fix for the rest of the section an integer y > 9.

(6.2.7) PROPOSITION. Let u € D, (yo) N C*(M,R®). Given any h = hydx'dx’/
€ C®(S’T*M), there exists a smooth 1-form ¢ = @,dx’ solving (4.d.5) and
satisfying the following estimate:

1@l 20wy < Mk(|“|z}+,(M)|h|L%(M) + |l 2ca))s

where M, is a constant independent of u, h, and ¢.

Proof. This uses Theorems G and G’ with the operator
3
P=34*2 4B A¥=(b,), and B=(b,T%)

We wish to solve the system Po = b, h, . First, |P|;3,, is bounded in terms
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of u:

3 3
[P 20wy = 2 [47] 2ary + 1Bl 2omry < 2 lbyle,z(M)"' > BTl 2wy
bk ij=1
Since by, = ,jk o jA(u) and TV, = I‘{s o j(u), Lemma (5.b.2) may be applied,
obtaining:

|P|L,§(M) < Ml;luIL,f”(M) . (6.2.8)
In particular, let « = y —2 > n+ 3 =6. Then
|P|L3(M) < Mo:lullg(M) <M,

where M’ is a constant independent of u € D, (u).

Suppose P is symmetric hyperbolic. Then by construction, A(P)=1.
Therefore, both (5.a.5) and (5.a.6) hold with b = M’, a = 1. Therefore, a solution
¢ satisfying (5.a.7) exists. Substituting (6.a.8) into the estimate proves the
proposition when P is symmetric hyperbolic.

On the other hand if u, defines a strictly hyperbolic operator P,, then any
u € D, (uo) will also define a strictly hyperbolic operator. Moreover, there exists a
closed ball & C 2% such that the operator P defined by an embedding
u € D, (u,) satisfies (5.a.8). Theorem G’ and (6.2.8) now combine to prove the
proposition. Q.E.D.

In §IV(d), a solution y to (6.a.3) is obtained from ¢ by setting
Y=y

where

du
y—gjk(pka ;

and at x € M, y”(x) is the unique solution to the following system of linear
equations:

(2 ), 7(0)) =0,

( 9/ 0x (%), y”(x)) %(%(X)+%%(x))— )P (%) — (),

1<i, jk<3.

y"” can be written in the form:
3 0. a
"y = 1{ %%
Y'(¥) "j’k2=1‘ljk(x)[ 5( I ,) Tjipm = hjk}’

where the functions J, € C*(M, R® are defined in terms of du/dx’,
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o%u/ axfax In other words, there are fixed functions . i € C=(V5, R®) such that

Jue=Jy ° Jz(u) The following proposition gives the last estimate needed for the

Nash—Moser—Schwartz—Sergeraert theorem:

(6.2.9) PROPOSITION.  Given u € D, (up) N C*(M, R), ®'(u) has a right inverse
Q(u): C(S*T*M)—> C°(M,R® such that given

Q'(mh =y,
the estimate (6.2.4) holds for any fixed o > vy + 1.
Proof. Given h € C*(S°T*M), solve for y as described above, and set
Q(wh=y.

We will prove that the L2-norms of y’ and y” are bounded by the right-hand side
of (6.a.10). This will prove the proposition.

I.y/'Lf(M) =‘(gj_] du )‘Pi

dx/ LXM)
-1 0u_ 1 0u
2 + 2
(g Y l(PlL(M) gy P, 2(M)|<P|Lk(M))

< Cllc”(|u|L,§+z(M)|(p|L2(M) + |“|L§(M)|<P|L,%(M))
< Ck”(lulLf“(M)lhlL%(M) + |u|L,3+y(M)|h|L%(M) + Ih|L,E(M))
< Clé(luILzﬂ(M)IhlL(M) + |h|L2(M))

Replacing k£ by k — a + 1, this becomes
|V lk=a < Ce(lulilhl, + |-

3 d
” 1 aq)l (p m
ij=1 x/ x! L20M)
2 il 2| 5 (8 ri Py j,) T, — hy
W=t x L)
ag; dp

+ Z | |L2(M) ( —+— ) rfn m_htj ]

ij=1 dx J ax j LAM)

< CW[|”|L,%+2(M)(|<P|L2,(M) + 1Al 2 my)
+ IuILZ(M)(lulL,f+z(M)|q)|L2(M) + |‘P|L,%+,(M) + |h|L,§(M))]
< Clé’l[IuIL,%”(M)lhlL%(M) + |“|L,§+2(M)|h|L%(M)

+luliz, L onlhlaan + 1A, o)
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Collecting terms and replacing k by k — a + 1, the estimate becomes

1 lk-a < G (1ula + |Aly). QE.D.

All of the assumptions of the Nash—Moser—Schwartz—Sergeraert theorem have
been confirmed; Theorem H then follows immediately.

Theorems F and H now combine to give us the Main Theorem which we
restate here using some different letters to minimize confusion (remember that
M=QXx[,3].

MAIN THEOREM. Let S be a smooth Riemannian three-manifold. Let p € S be
such that the Einstein tensor at p,&(p), is neither zero nor a perfect square
L? = [ldx'dx/, L = ldx' € T*S. Then there exists a neighborhood N of p with a
smooth isometric embedding

u:N->RC.

Proof. Let g= gy.dx‘dxf be the metric on S. The basic idea is to find a
smooth hyperbolic embedding u, of some neighborhood of p such that ®(u) is
very close to g. Theorem H would then give the desired conclusion. However,
this argument does not quite work because we are varying the embedding u,
which is fixed in Theorem H. Therefore, we don’t know what happens to the &
given by Theorem H as u; or the neighborhood is varied in order to make g very
close to ®(u,). The trick is to fix u, appropriately and then to define a new metric
g which agrees with g in a small neighborhood of p and is sufficiently close to
D(uyp).

We begin by solving formally for the Taylor series of a map u,: S — R® such
that ®(u,) agrees with g at p up to infinite order. We do this so that
J*(u)(p) € V,; Theorem F shows that this can be done. That the series exists is a
consequence of the proof of the local analytic isometric embedding theorem
which uses the Cauchy-Kowalewski theorem; here, we only need the formal part
of the Cauchy-Kowalewski theorem, without considering convergence. Given
such a Taylor series, we can then use the Borel theorem to find a neighborhood
N of p and a smooth embedding u,: N — R® such that the following hold:

(1) @(uy) agrees with g up to arbitrarily high order at p.

(2) N = M, as defined in §IV(a).

(3) u, is hyperbolic.

Now let ¢ : R—>R be a smooth function such that

Ploism =1 and @l;/5. =0.

Given 0 < p < L,let @ (1) = ¢(t/p).
Now fix co-ordinates x : N— B X [—1, 1], where B is the closed unit ball in R?
and x(p) = 0. For any p > 0, define a metric

8o(X) = @,(1x]) g(x) + (1 — 9,(Ix])) go(¥)
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Observe that on a sufficiently small neighborhood of p, g, = g. Therefore, if we
can isometrically embed N with the metric g,, for some p >0, we will have
proved the Main Theorem. The existence of such an embedding is given by the
following proposition and Theorem H.

(6.b.1) PrROPOSITION. Given a positive integer k, and a positive real number 8,
there exists p > 0 such that

|gp - go|L,3°(N) < 8.
Proof.
Igp - gOIL,fO(N) = |‘Pp(|x|)(g - go)ngo(N)
= |‘Pp(g - go)|L,30(B,,) > where B,= ball of radius p,

<|:|(Pp|L,%O(B,,)| g~ 80|L2(B,,) + |q)p|Lz(BP)| g~ gol L,%O(Bﬂ)]

We need to show that each term on the right-hand side goes to zero as p— 0. For
the second term, it suffices to observe that

|(pp| L8, < vol(B,) = 7p>

and | g — gol128,) <18 — 8ol (n) @ fixed quantity. On the other hand,

I‘Pp|L,30(B,,) < Cko 2 lDa(pple(Bp) < Cko 2 P_la'( sup |Da¢(|x|)l)V°1(Bp)
|a| < ko Ja| < ko XEB

< Cpko*3, for p<1.
Since g — g, vanishes to infinite order at x = 0, we also have the following:
lg(x) = go(x)| < Clxl, k>0

Therefore, the first term can be estimated as follows:
|(Pp|L,3°(B,,)|g - gOlLZ(B‘,) < C”P-k"ﬂ( Sé‘l; lg(x) — go(x)l)vol(Bp)
x »

< Clp*~ko*S,  forany k> 0.

In particular, if we choose k > ky — 6, we see that the first term also becomes
arbitrarily small as p—>0. Q.E.D.

Corrections added in proof.

A. These statements and proofs of Theorems G and G’ are not exactly correct, because Lemmas
(5.b.1) and (5.b.2) are incorrect. When the correct versions of the lemmas are used, there is a larger
loss of derivatives than indicated here. This, however, does not affect the proofs of Theorem H and
the Main Theorem.

B. The estimates given here are incorrect. n derivatives should be added to all the norms of f. The
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proof given is clearly wrong, but, using the Sobolev lemma, is easily modified to give the corrected
estimate.

C. The statement and proof of this lemma are wrong. If the proof is corrected using the Holder
inequality and the Sobolev lemma, the estimate given is correct when the L? norm of u is replaced by
the L2, , norm.
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