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INTRODUCTION 

In this first of a series of papers, we shall introduce and begin to study and 
apply the notion of the characteristic cohomology of an exterior differential sys- 
tem. Recall that an exterior differential system is a graded, differentially closed 
ideal Jo c Q* (X0) on a manifold X0 . It is natural to consider the cohomology 
of the quotient complex QC = Q*(Xo)/J1 However, this cohomology turns 
out not to have good functorial properties. For this and other reasons to be 
explained below, we shall usually pass to the infinite prolongation (X, J) of 
(XO, J0), and define the characteristic cohomology H* of (X0, 90) to be the 
cohomology of the quotient complex Q* = Q*(X)/1J. Our first general result 
is that, in the local involutive case, 

(1) ftq=0 for O<q<n-e, 

where n is the dimension of the maximal integral manifolds (solutions) of the 
exterior differential system and e is an easily computed integer which measures 
the "degree of overdeterminedness" of J0 (When J0 is "unmixed"-i.e., 
roughly speaking, it is not composed of several exterior differential systems 
of different degress of complexity- is the codimension of the characteristic 
variety.) The first non-zero group In -e turns out to have a structure not 
immediately apparent from its definition. For reasons to be discussed below, 
we define the space ' of conservation laws of the exterior differential system 
to be Hn- e. As we shall see, in all of the cases of exterior differential systems 
which model classical partial differential equations, this space turns out to be 
isomorphic to the space of conservation laws as they are generally understood. 

For exterior differential systems arising from a system of partial differential 
equations, this result builds on and generalizes extensive previous work (see 
the references below). However, a major difference in our viewpoint is that, 
throughout, we insist on full contact invariance of the constructions. Thus, 
PDEs which appear to be quite different (such as u u - u2 = 1 and 
uXx - uYY = 0 ) may still be contact equivalent and therefore have the same 
characteristic cohomology. Since we are not carrying along unnecessary addi- 
tional structure, such as that needed to keep track of point invariance, the theory 
perhaps has greater conceptual simplicity. 

We are especially interested in developing methods for effectively comput- 
ing ' in examples, and in Part II we begin this task. We are especially inter- 
ested in exterior differential systems that arise from questions in geometry; for 
example, the study of gradient flows of functionals defined on classes of immer- 
sions which themselves are subject to differential constraints. Now, such exterior 
differential systems may always be written in local coordinates as PDE systems, 
but there is generally no preferred coordinate system and the introduction of 
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arbitrarily chosen coordinates frequently obscures the geometry. Even when 
there are more-or-less natural coordinates, the computation of the conservation 
laws of a given system has generally relied either on symmetry considerations or 
inspired guesswork. One of our goals is to provide a complementary, in some 
cases more systematic, method. 

Our proof of the general result (1) has essentially two steps. The first is to 
consider the spectral sequence of the filtered complex FPQ*, where 

FPn* = image J ' A ... AJ' A* Q(X) Q- * 
(X)} 

p times 

This spectral sequence abuts to H*(X) and the characteristic cohomology is 
the term EO?*. As will now be explained, invariants of the exterior differential 
system, such as its symbol, appear naturally in calculation of the terms EP'* 
for p > 0. Using information about these higher degree groups and standard 
spectral sequence machinery will then allow us to "solve" for the characteristic 
cohomology in this spectral sequence. 

The study of the terms Ep' * for fixed p > 0 involves a construction from 
exterior differential algebra that we shall call Frobenius extension. One thinks 
of a completely integrable Pfaffian system as being the simplest type of exterior 
differential system, and Frobenius extensions can be thought of as an attempt to 
close up a given Pfaffian system relative to the Frobenius integrability condition 
by adjoining new 1-forms. The actual definition of Frobenius extension is given 
in Section 2.3, as well as that of a Frobenius tower, which is an iteration of 
Frobenius extensions. The importance of this concept is that the prolongation 
tower of an involutive exterior differential system is captured algebraically by 
the notion of a Frobenius tower. For p > 0 the "position" of a form in the 
Frobenius tower allows us to define a weightfiltration WkCP' * on the complexes 
used to compute El* and then the main observation is that on the associated 
graded complex 

k WVkfyIVVkl1y' 

the induced differential 3 is linear over the functions. The cohomology 

(2) H(QDP,'*,3), p>O? 

is therefore algebraic and it is at this point that the symbol of the exterior 
differential system makes its appearance. For p = 1 the cohomology (2) turns 
out to be a variant of classical Spencer cohomology, but for p ? 2 a new 
algebraic object APM appears. 

The second step then consists of the study of the ARM. Over a polynomial 
ring S = ]F[x1, ... , xn] where IF is any field of characteristic zero, we consider 
S-modules M = fflk,k Mk which are quasi-finitely generated in the sense that 
dim, Mk < o for all k. The A-tensor product M ?A N of two such modules 
is defined as a graded IF-vector space by M ?A N = M o . N and the S-module 
structure is defined by the rule 

x'(m0An) = x mOAn + m?Ax n. 
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From the A-tensor powers o'M we may define the A-exterior powers M 
and our main algebraic result is: If M is an involutive S-module with resolution 
length ? (M), then A. M is involutive with resolution length ?(ARM) ? ? (M). 
In spite of its "functorial" appearance, this result does not seem to admit of 
a simple proof, but involves a careful study of the defining relations of the 
modules in question. That this result is not entirely trivial is suggested by the 
observation that if the symbol is "split" then the minimal resolution of M 
essentially lifts to one of the ARM, whereas if the symbol is generic then M 
is free in the lower degrees and in general is "more free" than M. 

The integer ? in (1) turns out to be the resolution length of the symbol mod- 
ule M associated to the exterior differential system, and the above vanishing 
result ultimately follows from the commutative algebra vanishing result that 

HKos(AAM)=O, p>O and O?q<n-f, 

where HKOS is the Poincare dual of ordinary Koszul homology. 
The quotient group Hi e turns out to have a more concrete realization than 

just as a cohomology group. This comes from the fact that there are canonically 
defined vector bundles Eo and E1 (whose fibres are Spencer-type cohomology 
groups) and a canonical linear differential operator 

V :Eo --yE 

such that 

(3) fn- ker V. 

Thus this cohomology, which is defined as a quotient space, is alternatively 
given as the kernel of an intrinsic differential operator. In the classical or un- 
constrained case ? = 0, the group Fn is the space of equivalence classes of 
functionals on integral manifolds and (3) represents a functional by its Euler- 
Lagrange equation. The general case is an extension of this concept. 

This explicit realization of the space of conservation laws as the kernel of a 
(generally overdetermined) differential operator will be seen to have important 
consequences. In particular, one application of (3) is to show that the space 
of translation-invariant quadratic conservation laws for a determined, linear 
constant-coefficient PDE system is given by Sym 2 (M), where M is the module 
associated to the symbol of the equation. 

Finally, in Section 6 we will discuss some topological issues related to (1). 
The first is a straightforward globalization of (1), expressed by the statements 

(i) H(X R) _ HqX, q < n -X 
n-f ~ ~ n-e 0-n- 

(ii) 0 -? Hne(X, IR) -, H- (X) - H (Xfn-e) 

where e is the sheaf of conservation laws. This result suggests certain 
purely geometric considerations. If we define H* , (X) to be the homology 
computed from the complex of piecewise- C1 chains whose individual simplices 
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are integral manifolds of >J, then (i) and (ii) suggest the statements 

(iii) Hq (X) H O_q < n-X, 
(iv) Hn -*(X) Hn_e(X) 0. 

Both of these would follow from the local result 

(v) Hq J(X)=O O 

where X is a sufficiently small neighborhood of an ordinary integral element. 
Now (v) is in turn closely related to a result of Thom [10], and in Section 6 we 
present a sketch of how (v) might follow from Thom's arguments in case >J has 
no real Cartan characteristics in the range 0 ? q < n - f . In general however, 
the real Cartan characteristics will contribute singularity considerations which 
Thom's arguments do not seem to be able to address, thus we only pose (v) as 
a question. 

Especially interesting is the local group Hnje >(X) and the natural mapping 

Au: ' > Hom(Hn_ >(X), R) 

under which conservation laws give what are called moment conditions. We 
conclude this section by analyzing ,u in a number of examples. It is clear that 
the study of the postulated ">J-de-Rham theorem"-meaning the analysis of 
whether the natural pairing 

H (X) 0 Hk >(X) -* R 
is non-degenerate (even locally)-is extremely interesting. The discussion in 
Section 6 raises more questions than it answers and, in our opinion, points out 
a very fruitful area for further work. 

The principal applications of the general theory will be given in subsequent 
papers. In particular, in Part II we shall completely analyze the conservation 
laws for a class of exterior differential systems that we call parabolic systems. 
As we shall see there the general theory will serve to "guide" the application of 
E. Cartan's equivalence method. This method gives in principle an algorithm for 
determining the intrinsic invariants of an exterior differential system. However, 
as in classical invariant theory the calculations very quickly get out of hand 
unless one is studying a situation that is guided by a geometric problem. It is 
such a guide that is provided by the general theory. 

This work has been principally influenced by the papers [13], [14] and [15] 
of Vinogradov. In seeking to understand the characteristic cohomology of an 
exterior differential system we were led to what is now called the "Vinogradov 
spectral sequence of the variational bicomplex" in the context of an exterior 
differential system. In this setting there is no longer a bicomplex, but rather 
there is a filtered complex. By insisting on full contact invariance of the theory 
one is led naturally to the Frobenius extension construction mentioned above 
and its cohomological implications. 

The papers of Vinogradov built on earlier work of the Russian school of 
formal differential geometry initiated by Gelfand and his collaborators (see [5] 
and Manin [8]). There is by now a considerable literature on these subjects, 
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and although our context is quite different we should like to mention Olver 
[9], Tsujishita [11], Anderson [1] and Dickey [4] as sources for further work 
and additional references to the literature. In particular, in the case when an 
exterior differential system arises from a determined PDE system in Cauchy- 
Kowaleska form, our main result implies the so-called "two-line theorem" of 
Vinogradov. Extensions of this result, still in the context of the variational 
bicomplex, to some more general classes of PDE's have independently been 
given by Tsujishita [12] and Anderson (loc. cit.). 

1. BASIC CONSIDERATIONS AND FIRST EXAMPLES 

1.1. Definition of characteristic cohomology. Let XO be a smooth manifold 
and Q (X0) = -` lpoKY(X0) the differential graded algebra of smooth differ- 

,I= 
ential forms on XO. We recall that an exterior differential system is given by a 
homogeneous differential ideal o c i2*(X0). These two conditions mean that 
-0= =q>O _ where _1,q = JOfn Q(X0) and d J C 0. We shall follow 
the terminology, and, for the most part, the notations of [2]. We shall also be 
assuming familiarity with the background of results from [2]. 

We shall be interested in the integral manifolds of J. By an integral man- 
ifold we shall mean a smooth immersion 

f: N -X 

where f*O = 0, 6 E .O Intuitively, integral manifolds are solutions to the 
PDE system 

0 = 0 where 0 eJO 
and where to "solve the equation 0 = 0 " means to find a submanifold on which 
0 restricts to zero. We will in particular be interested in integral manifolds of 
dimension n, and for purposes of exposition shall make the assumptions 

(1) I<OO=~~~1~o(0) 
() { = jQ (X0) for q > n. 

The first assumption means that 17' contains no functions-otherwise we may 
replace XO by the subset, assumed to be a submanifold, defined by setting 
equal to zero all of the functions in Jo . Neither assumption changes the set of 
n-dimensional integral manifolds. 

The very definition of an exterior differential system suggests that we consider 
the complex {IY, d} where 

I QO = (XO) /_` ' 
d =dmod Jo . 

Provisional Definition 1.1, The characteristic cohomology lo* of the exterior 
differential system J(3 is by definition the cohomology of the complex {Q f, d }, 

Elements ( E Ho are called characteristic classes of g. O 
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We shall explain the subscript " 0 " in Section 1.3 below. The groups Ho 
are only a first approximation to our ultimate objects of interest, which will be 
defined there and denoted by Hi* without the subscript. 

If f: N -) X0 is an integral manifold of J0, there is an induced mapping 

f: Ho ' HDR(N). 
We may think of f* (Ho*) as being the cohomology induced on N by virtue of 
its being a solution to the PDE system. Obvious questions are to "compute" 
Ho*, to understand how the image of f* varies with f, and so forth. 

The two extreme cases HO and H? may be fairly easily interpreted. For 
example, in case N is compact, using our assumption (1), we have that 

HOn = Q (XO)IMu 0(o gn 

and each A e i2n (X0) defines a functional I, on the set of compact integral 
manifolds by 

I(f) = f* (A) 
N 

Clearly, I, depends only on the class [i] e Hn defined by A. The question 
of how I, varies with f clearly involves the Euler-Lagrange equations of that 
functional. 

Example 1. Pfaffian systems. The understanding of Ho? is most immediate 
when Jo is a Pfaffian differential ideal, i.e., it is locally generated as a 
differential ideal in degree one. Concretely, locally there are linear differential 
forms d1, ..., Os such that J0 is generated algebraically by 61,..., QS; 

dO,...,dOS; we write 

>0={0 S ,0}. 

The derivedflag <4 D g1) D (2) D is by definition the nested sequence 

of Pfaffian systems defined inductively by -(k+1) 0 E o dO E o 
Then <~o0() = nkf0l is the largest completely integrable subsystem of -0 
Under suitable constant rank assumptions, we may invoke the Frobenius theo- 
rem to find local functions f1, ... , fr such that 

"4 = {df , = I dfr}. 

The ]R-vector space of functions f satisfying df e )0 is classically called 
the space of first integrals of the exterior differential system, denoted here by 
FI(J<'). Assumption (1) together with the exact cohomology sequence of 0 
J o 92* (Xo) 

- Q* 0 gives immediately that locally 

Ho{g e Q0(XO): dg e <ro= FI(.<). 

(The assumption that we are working locally is used not only to represent >J@O) 0 
globally in the form I{df1,.., dfr}I but also to insure that H~R(Xo) = 0. 
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Example 2. Contact manifolds. A more substantial and interesting example is 
that of a Pfaffian system locally generated by a single 1-form 00 . With suitable 
constant rank assumptions, there is an integer n so that 

o0A(dO0) #0. 

00A(d 0)n+1 = 0. 

For simplicity, we are going to assume that dim X0 = 2n + 1 . In this case, 
the ideal Jo generated by 00 is called a contact ideal and the pair (X0, 0) 
is called a contact manifold. By the Pfaff-Darboux theorem, every point of X0 
lies in a neighborhood on which there exist local coordinates (x1, ... , xn, z, 
Y.. , Yn) in which a non-zero multiple 0 of 00 has the normal form 

n 
0 = dz - Eyidx1. 

i=1 

Maximal integral manifolds of 0 have dimension n and are called Legendre 
submanifolds of X0 . Those on which dxlA... Adxn $ 0 are locally of the form 

I n n &z(x) _____ 

(X x .. x X ( .... . .. Z(X) 0() ....xi...... aZXn 

We will show that, locally, 
- Ho eDt, 

(2) ftHo=O, q>0, q$n, 
dim Ho = oo. 

On contact submanifolds of the form (2), Ho may be thought of as equivalence 
classes of first order functionals 

Z(X) &xxnz(x) &z(x) dxl A Adxn 

The proof of (2) will be given following a preliminary linear algebra discus- 
sion. Suppose that V is a vector space of dimension 2n + 1 and that we are 
given 

r 0E V, 

E) 9EA2V 
satisfying the conditions that (i) e is well defined up to adding multiples 
akA6 of 0, and (ii) 06eAn 5 0. (We are obviously thinking of V as being a 
typical T*Xo.) Set P = V/IRlO and let e E A2V be induced by 3. Then 
is a non-degenerate 2-form on P and it is well known that there is a so-called 
"'primitive" or "Lefschetz" decomposition of A* VJ. Recall that this comes about 
as follows: First, one shows that 

(i) : An- A V? 
is an isomorphism for 1 ? k ? n. Next, if for k ? 0 one defines the primitive 
space by 

Pn-k ker 0k+l An-k An+k+ 
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then there is a Lefschetz decomposition 

(ii) An-kn 
k 

pn-k 
- 
6-pn-k-2 -2 Pn-k-4 

If we now let I c A* V be the homogeneous ideal generated by 0 and 9, 
it follows from (i) that 

(iii) In+k =An+k V k > 1. 

Moreover, from (ii) we see that for k > 0 each V/ E A -k V has an expression 

(iv) V/ = Aa +)0 +9Afl1 +&2Af2+ + 

where the f.i are unique modulo 0 and satisfy E k+2i+lAi= 0 mod 0. 
We now apply this discussion where V is a typical TXO, the 1-form 0 is 

given by d z - E yi dx , and e = dO = - E dyiAdxi. We shall denote by 

pn-k cQn-k(XO) k > O, 

the space of forms that are primitive modulo 0, i.e., that satisfy 

E0k+1 Aa =_0 mod0. 

Using (iv), we have a decomposition of all forms in Qn-k(X0) in terms of 
multiples of 0 and primitive forms. 

From (iii) it follows that "'n+k = Qn+k (X) for all k > I which clearly 
implies that f2n+k = 0 for all k > 1 (cf. (1) above). This trivially implies that 
Hot = 0 for q > n + 1. 

From the exact cohomology sequence of 

0O* Q*(XO) -*QO -*0, 

and remembering that we are working locally (so that H (X0) = 0 for q > 0), 
we see that the coboundary map induces isomorphisms 

(3) :Ho 24H +(-Io) q > 1. 

Using this we will first prove that ..O = 0 for 0 < q < n by showing that 

(4) H Py) =O0, O?p ? n. 

Let 
V = CAa + e A E JyP 

be closed. Then a, dfA E Q' 1(X0) and 

O= A(a + dfl) - 0 Ada 
a a+dfl=OAy by(i) 

= y w=d(Ot AI) 

which gives (4). 
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We now turn to the most interesting group HO . We will show that a closed 
form ? I gn+l ( =n+1 (X0) ) has an expression 

?I=OAlr mod dJ 0 
(5) {j7r Epn 

where 7r is unique mod 0 and depends only on the class [I] E Hn+'(>) of 
I. Moreover, given 7r E pn we have by definition that 

EA7r = OAY. 

Replacing 7r by 7r + OAa gives y y + EAa. Thus, we may uniquely determine 
7r by further requiring that EAr = 0. The condition that I = OA7r be closed 
is then that 
(6) drA6 = O. 

Thus 
H n H (J {r pE mod 0: dr A 0 = O} 

is naturally represented as the sections of a vector bundle (actually a subbundle 
of the differential forms on XO ) satisfying a linear differential equation. (In the 
involutive case, this sort of "subspace" rather than "quotient" representation of 
Hft will be a characteristic feature of the first non-vanishing H1q with q > 0, 
once these groups have been defined.) 

Turning to the proof of (5), write 

I = oAa+eAEA 

Then, as before, dE = 0 gives that 
E A(a + d3) = 0mod 0 

=- a+dfl=7r+0Ay 

where 7r E pn is primitive mod 0 

(7) =- = I=d(CAf8)+0A7r. 

To show uniqueness we suppose that we have 
d =0 A r 

for some O = CAp + EAU E jn . This gives 
EA (p +dl) -0 Adp =0 A 7r 

p + da =0 A y for some y 
K < = d(Ct^a) 

O CAi = O. 

Thus, 7r is unique mod C and depends only on the class [q] E H (nY)+ as 
we wished to show. 

Using the isomorphism (3) we have 

6:Ho 2 { Er pE mod a: d7r A 0 = 0 
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As we shall now explain, the mapping 3 is a second order linear differential 
operator which may be interpreted as the Euler-Lagrange equations associated 
to the functional defined by @ E C2n 

Given Vi we seek a lifting qi E K2(Xo) such that 

(8) dl= OA 7 

where 1T E pn . If V' is any lifting of q, then as in (7) we have 

dyi' = OAir+d(OAfl) 

-s d((V'- Afl) = OAKr. 

Taking V = v' - GA/8 gives (8). We note that each of the mappings 

V 7T 

are first-order linear differential operators, so that Vi/ -- 7r is second order as 
claimed. 

In Section 3.3 we will further discuss the infinite prolongation of this example, 
in effect giving a resolution of Hn' by a complex of canonical linear, first-order 
differential operators. , 

Example 3. Symplectic manifolds. Now let us suppose that dimXo = 2n and 
that 9 is a closed 2-form on XO which satisfies the condition that E9n is 
nowhere vanishing, i.e., that 9 defines a symplectic structure on XO . We shall 
consider the differential ideal JO generated by the non-degenerate 2-form 9). 
Also, for simplicity, we shall exclude the trivial case n = 1 and henceforth 
assume that n > 1 . By the Pfaff-Darboux theorem, in suitable local coordinates 
(xl ,....x. 

n 
,n) on XO we have 

n 
9= dO = EdXiAdx'. 

i=1 

The maximal integral manifolds of e have dimension n and are generally 
referred to as Lagrangian submanifolds of XO . Those on which dxl A ... Adx 
0 are locally of the form 

(xi xn) x"I x 
n 

aS() ( S(x)) 

where S(x) is an arbitrary smooth function. We will show that, locally, 

-o Ho R 
-1I 
oH= R 5 

dim H= oo. 

(The case n = 1 is somewhat analogous but requires a separate discussion.) The 
proof is very similar to the contact manifold case and will only be sketched. 
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~ 1 we have n k2n+k ( From Eknk(X)> , we have O = 0 (X) for 
k > 1 and as a trivial consequence Ro = 0 for q > n. 

As in (3) we have isomorphisms 
- q. q+1 

:H0. (2+ H Y11,) 
for q > 0. If 

V = 9 A a EJgp 0 
is closed, then 

0 = dyi = 9 Ada. 

Since da E Q" (XO) we infer that da = 0 if p ? n. Thus, if 3 ? p < n, 
then we may write locally a = d,l, which gives V = d(9Afl), which implies 
that O = HP(J') H-O'p . If p = 2, then a = C is a constant and y = C@, 
from which we infer that H' ]R. Finally, if p = n + 1, then da = 7r is a 
closed, primitive n-form. It is easily checked that 7r depends only on the class 

n+1I 
[y,] E H (0). This gives the identification 

3: HO {closed, primitive n -forms}. 

Again, HO is represented as the kernel of a canonical linear differential operator, 
modulo nothing. 

Remark. If locally we choose a 1-form a with da = e, then the most general 
solution of d f = 9 is 0 = a + df for an arbitrary function f . This suggests, 
that we consider the "universal" solution to this problem, which is obtained by 
taking 

Y = XO x R 

where IR has coordinate u and setting 

f = du - a 

on Y. If f c Q*(Y) is the exterior differential system generated by 0, then 
the projection 7r: Y -- XO induces mappings 

K2*(XO) WMi r 
U U 

Jo 
which give 

j7 :H(X) 
q 
or 

This mapping 7r is an isomorphism for q $ 0, 1, or n, while 7r kills 
Ho (XO) . 

This process of adjoining a "primitive" or potential (think of u as f a on 
integral manifolds of 0 = 0 ) will reappear and be formalized in Part II in 
connection with conservation laws of certain specific parabolic systems (such as 
Burger's equation). 

We will conclude this section with a discussion of two related examples. 
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Example 4. Complex manifolds. Let X0 be a complex manifold, with Q q(X0) 
denoting the space of smooth (p, q)-forms on X0 . We let JY0 be the differential 
ideal generated by the 2-forms 

0= a+, aEQ'0 (X0). 

Clearly, .Y1 = 0 and 50q = Qq(X0) for q > 3. Integral manifolds of X0 
are thus of (real) dimension at most two, and those of dimension two are holo- 
morphic curves in X0. The first interesting characteristic cohomology group is 
Hf , and denoting by QW'0(X0) the closed (and therefore holomorphic) (p, 0)- 
forms, we shall show that 

(9) Hot '-Qc (XO 

Proof. A class in ftl is represented by 

r+Q K2 1,0 (XO) 

which satisfies 
6?' +an' =0. 

Then 
7r = a?l E i2'0(XO) 

satisfies 
a= aO 02a =0. 

It is easily seen that Xr depends only on the class of q E HotS and that any 
7r E 20(X0) arises from a class in Ho. Q.E.D. 

Again we encounter the phenomenon that the first non-vanishing character- 
istic cohomology group is isomorphic to the kernel of a canonical linear differ- 
ential operator, modulo nothing. 

As will be made clear when we discuss conservation laws, in this example the 
group H can be interpreted as the space of independent conservation laws for 
this system. Note that when X0 = en, this space is of infinite dimension. This 
is perhaps the simplest non-trivial example of an exterior differential system 
with an infinite number of independent local conservation laws. Ultimately 
these are rooted in the Cauchy integral formulas 

d ( I zkf(z)dz) =0 

lzl=t 

for holomorphic functions in the complex plane. 

Example 5. Associative manifolds. Our last example is based on Bryant [3] and 
especially on work of Harvey-Lawson [7] on calibrated geometries. We denote 
by 0 the octonions with standard basis eo, el, ... , e8 where eo is the unit. 
We then let R"7 = Im 0 be the imaginary octarians with the standard metric 
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having el, ..., e7 as an orthonormal basis. Using xl, ..., x7 as dual linear 
coordinates on ]R7 and setting 

. 
fk di di dk dxiik = dx Adx1 AdX, 

we consider the 3-form 
d 123 + dx145 + dx167 + dx246 _ dx257 - dx347 dx56 

which gives the multiplication table of Im G) in the following manner: 
(i) e2=-eo, 
(ii) for i, j distinct 

ei* ej + ej, ei = ?~ 

(iii) for i, j k distinct we have 

ei * ej = ek 

if and only if dxiik appears with a + sign in ( . 
The form ( gives a calibration in the sense that for any vectors v1, v2, V3 

(10) I(P (V, V2, v3)I I VI AV2AV31 

with equality holding if and only if v1, V2, V3 span a 3-plane that is closed 
under multiplication (these are called associative 3-planes). We note the analogy 
to Kahler geometry, where for 

/- n n 

v2- EZdZiAdz = E dx A dyl 
i=1 i=1 

in C'n with coordinates zi = xi + Tv1 yi, we have Wirtinger's inequality 

jI (v1, v2)j < IV, AV21 

with equality if and only if vI and v2 are either linearly dependent or span a 
complex line. By further analogy, we will define an exterior differential system 
on R7 whose 3-dimensional integral elements are exactly the associative 3- 
planes. 

For this we set 
E)i = ei *1P 

and recall from the references given above that (10) may be completed into an 
equality by virtue of the relation 

7 

P(v1 , V2 , V3)1 + I 9i(V1 I V22, v3)1 = IVI AV2 AV331 
i=1 

Thus the exterior equations 
ei =0 

generate an exterior differential system <4 on 1R7 whose 3-dimensional integral 
elements are exactly the associative 3-planes. We note that 

g--oq=? 0 5 q=0, 1, 2, 
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and it may be shown that 

q(R7 q > 4. 

Thus the interesting characteristic cohomology group is Ho, and we will show 
that 

( 1 1 ) ~~~dim Ho = 21 . 

Proof. It is clear that 

Hft _ closed forms in y;3 

j3 i Now any form in 3 iS 

for some vector field X, and from 

O=dyl=d(XY*p) =Y,x(*9), 

we see that exp(tX) preserves the form * (. We will show that 
(i) the mapping (p -- *O is 2: 1, so that exp(tX) preserves p; and 
(ii) ( determines the metric, so that X is an infinitesimal Euclidean mo- 

tion. 
This proves already that dim Ho < 0, and the fact that dim ftH = 21 will 
depend on knowing that the symmetry group of (0 is- the exceptional group G2, 
which has dimension 14. 

Let V be a 7-dimensional real vector space and (P E A3V* . We note that 
this is one of the very few cases (other than the obvious ones) where GL(V) 
acting on A qV* has an open orbit. For q9 as above we define a symmetric 
bilinear map 

b :VxV )A7V 

by 
bq,(V w) = (V -J ) A (W I () A (. 

We say that (P is non-degenerate if b V is non-singular, and observe that the (0 
given above has this property. To convert b (P into a metric we need to single out 
a canonical volume form, which we now do by singling out unimodular bases 
for V. If vu , ... , V7 is any basis we set 

BV(vi, vj) = b(vi vj)(v, v , V7). 

If A E GL7(R) transforms vi to vi then a calculation shows that 

det B, (vi, vj)fj = (det A)9 det fBv(vi, Vj)f. 

For non-degenerate (0, we will say that a basis v1, . V., V7 of V is p-uni- 
modular in case det JIB;(vi, vj)lI = 1. In this way a non-degenerate (0 gives 

a metric on R7. For the particular V given above, B (el, e) =J is the 
standard metric. 
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The fact that the mapping (0 -- *9 is one-to-one near our particular (0 
(which is all that we need) is easily shown by computing the differential of the 
*-mapping at (V. It follows that any 1-parameter subgroup of diffeomorphisms 
of 1R7 which preserves *V must also preserve V and the standard flat met- 
ric. Since the group of diffeomorphisms which preserve ( clearly contains the 
translations, it follows that this group must be the semi-direct product of the 
translations with the subgroup of those rotations about the origin which preserve 

At this stage we have shown that 

X=T+L 

where T is a translation vector field (corresponding to constant linear com- 
binations of the Ei ) and L E g [(R7) preserves (V. But since V determines 
the multiplication in Im ? it follows that L induces an infinitesimal automor- 

7) phism of ?, and it is then known that L must lie in 02 C g[(R ) where 02 
is the Lie algebra of G2 embedded in g[(1R7) by the standard representation 
G2 - GL(Im 0). 

Remark. We have shown that for any connected open set U c 1Rg the char- 
acteristic cohomology Hot(U) is a 21-dimensional vector space. In a sense 
this example therefore resembles more the symplectic example above than the 
complex manifold example. However, in Section 6 below we will see that the 
differences are more important than the similarities. 

1.2. The exterior differential system associated to a partial differential equation; 
symmetries. It is well known that any partial differential equation system-PDE 
system for short-may be canonically rewritten as an exterior differential system 
in such a way that the solutions to the PDE system give integral manifolds of 
the exterior differential system. The converse is also true provided that we work 
locally and impose a transversality condition on integral manifolds. However, 
the exterior differential system formulation gives a coordinate free method of 
studying the system; moreover, the larger group of symmetries of the exterior 
differential system will allow us to do calculations of examples not yet possi- 
ble in the coordinate formulation. In this section we will briefly review this 
construction. For simplicity of exposition we will restrict ourselves to the case 
of a first-order PDE system, remarking that similar considerations apply to the 
general situation. 

The most classical formulation of a PDE system is to give a submanifold R, 
satisfying suitable conditions to be specified below, of the manifold J' (N, Y) 
of 1-jets of smooth mappings from a manifold N to a manifold Y. In this 
formulation, the symmetries are the diffeomorphisms of R that preserve the 
two coordinate projections R -* N and R -* Y. Concretely, let x , ... , xn 
and ul, ... , uS be local coordinates on N and Y, respectively. Then, using 
the ranges of indices 

1i ? 1j< n, 1 ? a, /1< s, 

there are induced local coordinates {xi, ua , pa} on J1(N, Y). Symmetries 
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are induced by diffeomorphic changes of independent and dependent variables 

x' =x"l(x), /a 'it 

(1) aU -U (u) 

pi = au u/a lxj/ax 

Each mapping f: N -+ Y given locally by xi uc(x) has a canonical lifting 
j1(f) c J1(N, Y) given in coordinates by {x', u (x)), Oue /Oxl}. That is, 
J1,(N Y) is just the vector bundle Hom(TN, TY) lying over N x Y, and 
associated to a mapping f: N -+ Y is first of all the graph 1f c N x Y of f, 
and then lying over this is the graph ji (f) c J1(N, Y) of the differential of 
fs 

A submanifold R c J 1 (N, Y) may be thought of as imposing constraints on 
the differentials of maps from N to Y; i.e., as a PDE system. In coordinates, 
R is given locally by equations 

(2) F A(xi Pi)-?, 

to which corresponds the PDE system 

(3) F (x , u (x), OUa(X)/0XL) = 0. 

We assume that the equations (2) define a submanifold R c J1 (N, Y) and that 
the projection R -+ N is a submersion. As explained above, the group Diff N x 
DiffY acts as a group of diffeomorphisms of J1 (N, Y), and the subgroup 
preserving R is by definition the classical symmetry group of the PDE system 
(3). 

A generalization arises by considering afibered manifold Z N and defining 
a PDE system to be given by a submanifold R c J1 (N, Z) where J 1 (N, Z) is 
the manifold of 1 -jets of smooth sections of the fibered manifold. By definition 
of a fibered manifold, the projection Z -+ N is a submersion, and locally 
on Z there are product coordinates (x', u') such that Z -+ N is given by 
(x', Ua) _+ (x') . Then there are induced local coordinates (x' ,ua, pa1) on 
J (N, Z), and R given by (2) corresponds to the PDE system (3). 

The difference between these two constructions is that in the fibered manifold 
context the symmetry group is enlarged to include gauge transformations. That 
is, the automorphism group of J1(N, Z) is induced from the automorphisms 
of the fibered manifold, defined to be the fiber-preserving diffeomorphisms of 
Z given in local coordinates by 

x = X"(x), 

(4) U/ U/a = '(u, x), 

Pi = ((0pua /0 I+ au /0xJ)0xJ/0x 

The enlarged symmetry group of R now consists of all transformations (4) 
which preserve R. 
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Associated canonically to either a classical PDE system or to a PDE system 
imposed on sections of a fibered manifold is an exterior differential system. The 
underlying manifold is R, and the exterior differential system is the restriction 
to R of the contact system defined on either of J1(N, Y) or J'(N, Z). The 
contact system is the Pfaffian system locally generated by the 1-forms 

0= du -_p dx'. 

Of course, the contact system may be described in a coordinate-free manner 
which makes apparent the invariance under the corresponding symmetry group, 
but we shall not do this here. An integral manifold of this system on which the 
transversality condition dxlA ... Adxn 0 is satisfied is locally a graph 

(Xi) -__ (X , Ua(X), p7 (X)) 

and the vanishing of the contact forms when restricted to this submanifold 
implies that 

pa(x) = Aua(x)/0xi. 
Restricting to R therefore gives an exterior differential system JY whose in- 
tegral manifolds satisfying a transversality condition are locally in one-to-one 
correspondence with solutions to the PDE system. 

However, by definition the symmetries of >J are the diffeomorphisms of R 
that preserve >J. The group Aut(J) of these symmetries certainly contains 
the gauge group described locally by the transformations (4) preserving R, but 
Aut(Y) may be strictly bigger than this gauge group. The constructions in which 
we will be interested in this paper are all invariant under this larger group. 

Moreover, regarding two PDE R1 and R2 as the same if there is a diffeo- 
morphism R1 -- R2 which identifies the ideals 9Y and J2 is a natural notion 
of equivalence which properly generalizes gauge equivalence. For example, as 
we shall eventually see, the following equations, though not gauge equivalent 
to linear equations, lead to manifolds R with ideals JZ which are (globally) 
equivalent to those generated by linear PDE: 

a 
auxx + b 

ut=+d X ad - bc=-, 
2 

uxx yyuxy =1 

u- k2(uy)uyy = 0, k(uy) $0, 

and, more generally, 

ut + f(u)ux = 0 

where u E R2 and the matrix f(u) has everywhere distinct real eigenvalues. 
Before going on we would like to mention one piece of terminology. Namely, 

when R is all of J'(N, Y) or J1(N, Z)-i.e., when there are no equations 
(2)-we shall say that we are in the unconstrained case. In this case it is a clas- 
sical result due to Lie and Backlund that all symmetries preserving the contact 
system are in fact gauge transformations (4) when s > 1. When s = 1 the 
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transformations preserving fi are only required to preserve the single contact 
form 0 = du - pi dxi up to a scalar factor, and it is well known that this group 
is strictly larger than (4). Such symmetries may not preserve the above transver- 
sality condition and are analogous to the contact transformations of classical 
mechanics. 

We remarked above that Aut (J) may be strictly larger than the gauge group. 
A discussion to the effect that this is the exception rather than the rule is given 
in Vinogradov [14]. Vinogradov's claim is analogous to the statement that an 
isometry of a generic submanifold of Euclidean space is induced by a Euclidean 
motion. For our eventual purposes we are interested in non-generic exterior dif- 
ferential systems; e.g., those having a large number of conservation laws. For 
these the distinction may be more significant. More importantly, we shall use 
the method of frame adaptation (equivalence method of E. Cartan) to study in 
practice the conditions imposed on a particular class of exterior differential sys- 
tems by the requirement that there be conservation laws. This method consists 
in successively normalizing the invariants of the exterior differential system and 
refining the frame adaptations-i.e., reducing the structure group-accordingly. 
These frame adaptations will be made without reference to a particular set of 
independent variables and are therefore reflective of Aut (>J) rather than the 
smaller group of gauge transformations. The freedom to make such frame adap- 
tations will be absolutely essential for the application of the general theory. 

1.3. The -prolongation tower. Given an exterior differential system > on a 
manifold, we have introduced the characteristic cohomology groups Hg and 
remarked that, for example, HO may be interpreted as functionals on integral 
manifolds. Natural questions that may arise are: "What are the Euler-Lagrange 
equations of such a functional?", and the inverse problem "When is a given PDE 
system the Euler-Lagrange equations of a functional?" It is well known that, in 
general, the Euler-Lagrange equations of a functional f A(x, u, Ou, ..., aku)dx 
will have order 2k, but in a number of very interesting cases (e.g., the Einstein 
equations) the order may be less. Thus, in the inverse problem we should not 
specify the order of derivative in the unknown functional, i.e., we should work 
on the manifold of jets of arbitrary order. 

Somewhat more substantively, we shall see that for the exterior differential 
system arising from a determined PDE system, the group H 1 is essentially 
the space of conservation laws for the PDE system. As famously illustrated 
by the KdV equation, these conservation laws may occur at arbitrarily high jet 
levels. These considerations suggest that we extend the original problem by 
allowing jets of arbitrarily high order, a process known as prolongation. Thus, 
given >0 on X0 under certain regularity assumptions we will pass to the infinite 
prolongation >J on an infinite-dimensional manifold X, thereby encapsulating 
behavior of arbitrarily high order. 

More formally, let Gn(TXO) -+ X0 denote the bundle whose fiber over a 
point p E X0 is the Grassmannian Gn(TpXO) of n-planes in the tangent space 
TpXo . Over Gn (TpX0) there is a canonical exterior differential system denoted 
by 2, whose integral manifolds are just the canonical lifts (Gauss mappings) 



526 R. L. BRYANT AND P. A. GRIFFITHS 

of immersions f: N -+O: 

Gn(TXO) 

(1) ,1 
N f, x 

1n 1s 
Given Eo E G n(TXO) we may choose local coordinates x , .. ., x , u , ..., u 
on XO such that Eo is given by dut = 0. A neighborhood of Eo in Gn(TXO) 
then has local coordinates (x', u , p') where the corresponding n-plane is 
given by 

0 = du -_p7 dx' = 0. 
More intrinsically, for an n-plane E E Gn(T XO) the subspace 

I~~~~~ 
* (E ) c *(TfX) c 7*(G (TX0)) 

has as basis the 1 -forms Oa, and these forms generate the differential ideal 
giving the canonical exterior differential system 2, on Gn (TXO) . The property 
summarized by the diagram (1) is apparent. 

Next, we recall that an integral element of 9O is given by a linear subspace 
E c TpXO such that 

(2) 6IE 0 OE 
The set of all n-dimensional integral elements will be denoted by G (>) c 
Gn(TXO). We assume that Gn(-5O) is a smooth manifold with defining equa- 
tions (2), and then the first prolongation (X1 , JY) of (XO, YJ) is defined to be 
the restriction to Gn (-b) of the canonical Pfaffian system 2 on Gn (TXO). 
By what has been said above, the integral manifolds of fij and Jo are in 
one-to-one correspondence. In local coordinates, the equations (2) are 

FA(xi, Ua, pa)= 

where FA is a function of the special form 

iIta ,, (x, u) det IlPav ||, 
expressing the important fact that the defining equations of Gn(J50) are the ex- 
terior equations (2). Thus the case of a classical PDE system, of the PDE system 
imposed on sections of a fibered manifold, and of the first prolongation of an 
exterior differential system all "look the same" in appropriate local coordinates, 
except that in the last case the defining equations are of a special form. In each 
of the first two cases there is a canonically associated exterior differential sys- 
tem, and all three of the Pfaffian differential systems are generated by 1-forms 
having the same expression in local coordinates. Although we shall use the PDE 
system imposed on sections of a fibered manifold for illustrative purposes, it is 
the last of the above contexts in which we shall be working. 

Returning to our general discussion, each higher prolongation (Xk, 4k) is 
defined inductively to be the first prolongation of (Xk_l, 5k-_) . This leads to 
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the prolongation tower 

Xk 

7 k 

Xk-i 

(3) 

fk 

xi 

fo 
N XO 

with the property that the integral manifolds fk: N Xk of Jk are in one-to- 
one correspondence with the integral manifolds fo: N -+ XO of JO . Intuitively, 
for q E N the point fk(q) in Xk is the k-jet of fo at the point q. 

Now we shall make the following 

Regularity Assumption. The Xk are smooth manifolds and Xk -+ Xk-l is a 
surjective submersion. 

This assumption is satisfied if, e.g., we restrict attention to the projection to 
XO of a neighborhood of a regular integral element Eo (cf. Chapter III of [2]) 
and take X1 to be this neighborhood. That Eo should have this property is in 
practice usually easy to verify using Cartan's test. 

With this assumption there are inclusions 

7rk 
Q* 

(Xk - 1) '2* (Xk ) 
U U 

and, omitting reference to the 7r*, we define 

X = limXk 

Q* (X) = U Q* (Xk), 
k_O 

J" = UkO 
k_O 
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A point of X is an infinite jet of an integral manifold of J0, and by definition 
a differential form on X is a form on some Xk (or, equivalently, forms 9#k on 
Xk for k > ko with the coherence property that k k-1l = k for k > ko + 1). 
The space X is the setting for the "formal differential geometry" of the Russian 
school and others. The infinite dimensionality of X will not be an issue for us, 
and we refer to [1] and [1 1] for general discussions about the rules for doing 
"calculus" on X. 

Our basic object of study is given by the following 

Definition. Let Jo be an exterior differential system on a manifold X0, and 
construct the prolongation tower (3). Then the characteristic cohomology H* 
is by definition the cohomology of the complex {Qi*(X)/>J, d}. Setting 2* = 
Q*(X)/>J and d = d mod J we thus have 

f* = H{2*, d}. 

It is useful to examine the prolongation tower construction in local coordi- 
nates. We first do this in the unconstrained case-i.e., where J0 is zero-and 
for this we denote by Gn k(X0) the space of k-jets of n-dimensional subman- 
ifolds of X. Observe that Gn I(X0) = Gn (TXO) in our previous notation, that 
Xk c Gn k(X0), and that-there is a "universal prolongation tower" 

Gn, k (XO) 

Gn, k-l(XO) 

fk 

Gn, I(X0) 

N foX N XO 

containing (3) as a subtower. Generalizing the above local coordinate system on 
Gn, I (X0)-which amounts to locally in Gn I (X0) representing n-dimensional 
submanifolds of X0 as graphs-there are local coordinates 

(xH u ,P, ad pi w PI)e III s r 

in Gn (Xo) . Here Piaj = pyi, and in general we are using standard multi-index 
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notation I = (ii, ...k, k) where p7 is symmetric in the iv (think of p' as 
kc~~~~ II representing 0 ku/Ox,). The canonical contact system Y. on G k(X0) isthe 

Pfaffian differential system generated locally by the 1-forms 
a ai 

0 = du _- Pi dx , 

,a = dpd -_Piadx1, 

oi =dI _- iidx, III = k - 1 . 

As in the case k = 1 we can give a coordinate free description of 7k which 
amounts to saying that the Oa, II _ k - 1, span the annihilator to the span 
in TGn k (X0) of all tangent spaces to k-jets of n-dimensional submanifolds 
of XO. From 

d6 = -dPa Adx =_-a Adx1, IJI ' k - 2, 
we obtain the following simple but basic fact: 

Let ok denote the 1-forms in k and {ek} C Q (Gn, k(Xo)) the algebraic 
ideal they generate. Then 

(4) dek- C {e)}k 

In other words: The universal prolongation tower is constructed by successively 
adjoining higher derivatives as new variables. This is reflected in the sequence 
of Pfaffian systems 2 c 2 c ... by the statement that 7k-l satisfies the 
Frobenius integrability condition (4) relative to 7k . In particular, if we pass to 
jets of infinite order and set 

Gn (X0) = lim Gn, k (XO) , 

Y= U7k 5 

k_O 

then Y is formally a Frobenius system on Gn (X0). Since Gn (X0) is not a 
finite-dimensional manifold, we cannot of course apply the usual Frobenius 
theorem to conclude that Y defines a true foliation. However, at least infor- 
mally we may think of the leaves of this "foliation" as being the infinite jets of 
n-dimensional submanifolds of XO. 

By construction, these considerations restrict to the prolongation tower (3) 
defined by the original exterior differential system gO on XO. Using the nota- 
tion 

,= functions on X, 
Wi = *i(X),5 

i*= differential graded subalgebra of Q given by W*(Xk), 

8k 1 1 

{9)k} algebraic ideal in K2* generated by 8k V 
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the basic observation is then that 
dok C {9k+1}1 

Since Jk is generated as a differential ideal by ek, we may think of the con- 
struction of the prolongation tower (3) as being reflected algebraically by exten- 
sions 

qk C Qk 
U U 

--iqk C nk-1 
with the property that k-I is closed up in Qk relative to the Frobenius inte- 
grability condition. We shall formalize this in Section 2.3 below. 
1.4 Variation of characteristic cohomology. Let N be a compact manifold and 
consider integral manifolds 

f: N-+ X 
of JY. We shall identify two integral manifolds when the corresponding immer- 
sions differ by a diffeomorphism of N, and we denote by X4 the set of such 
equivalence classes. We are interested in how the characteristic cohomology 
f*(I*) c HLR(N) varies with f, and we observe that this is really a question 
concerning equivalence classes of integral manifolds. In discussing this question 
we shall argue formally. Thus, we assume that XW is a "reasonable" space and 
that there is a diagram 

F 

7rI 

where, if for t E X# we set 

Nt =-l_ (t) 

ft = FINtt, 
then Nt is diffeomorphic to N and under this diffeomorphism ft represents 
the equivalence class of the integral manifold given by t E X . 

We denote by f c Q*(X) the differential ideal generated by Q21 (.); the 
maximal integral manifolds of f' are just the Nt 's. By construction we have 

F* (J) cF. 
Now for any differential graded algebra {V , d} and differential ideal % c 

V there is a d-invariant filtration 

FPX = image XA ... AX As(D* 

The standard spectral sequence construction associated to a filtered complex 
then gives a spectral sequence EP'q(X) where 

E, q(X) = H* (GrPX); 
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here GrPX = FPXIFP+'X. This construction is functorial, and thus in our 
situation there is an induced mapping 

F* E p,q( Ep EPq( 

We note that 

is the characteristic cohomology of the infinitely prolonged differential ideal .J . 
This is the object of our study. 

Turning to the fibration X X, we recall that there is a vector bundle, 
known informally as the "cohomology bundle", fq X .# whose fiber over 
t E w is HDR(Nt) and whose space of global sections is E?',(f). Moreover, 
this bundle has an integrable (i.e., flat) connection 

V: Xq_ q (&,(.,) 

known as the Gauss-Manin connection, whose horizontal sections are interpreted 
as geometrically displacing cycles. Now El q / yq X 1 (X) and it is well 
known (and easy to see) that the differential in the spectral sequence 

O,q lq 

is the Gauss-Manin connection. For g E fq this gives us that 

d a (1) t)= 9td. 

This equation has the following interpretation: Given a point to E X4 and 
tangent vector 4 E T> #, the left-hand side of (1) is by definition the derivative 
at to of p along any curve in X4 with tangent vector . By the interpretation 
of the Gauss-Manin connection, this is just (V(p, 0) , which by our above 
remark is 4 _ di 1 . 

Putting this together we see that for q' E fI* 

where the a/0t on the right-hand side is interpreted as the normal vector along 
f,(N) corresponding to the tangent vector 0/at E Tt>. 

Thus, the variation of characteristic cohomology is measured by the differential 
d1 in the spectral sequence associated to the differential ideal >J c Q* (X) . 

Definition. We set Ep'q = Erpq(J) and call Er'pq the characteristic spectral 
sequence associated to the differential ideal .J. In particular, 

is the characteristic cohomology associated to >J. 

One point of this discussion is that once we agree to study the characteristic 
cohomology as an interesting object, then the characteristic spectral sequence 
naturally and inevitably enters. At a deeper level, we will see that our object of 
interest HI* is in fact best studied indirectly in terms of the Erp * for p > O. For 
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example, the symbol of the exterior differential system will allow us to compute 
a first approximation to Ef * for p > 0. 

In summary, we begin by studying the naive characteristic cohomology Ho 
associated to a differential ideal Jo on a manifold X. The necessity of consid- 
ering derivatives of all orders leads us to replace X0 and J14 with the infinitely 
prolonged exterior differential system .Y4 on X with its corresponding charac- 
teristic cohomology I*. But then variational considerations lead us to study 
the entire characteristic spectral sequence E' of which HI* = E?.* . We shall 
next isolate the essential algebraic construction which enables us to do this. 

2. FROBENIUS EXTENSIONS 

When one prolongs or differentiates a PDE system up to arbitrary order, 
what emerges is a filtered object together with differential operators having the 
property that on the associated graded the operators are algebraic-i.e., they are 
linear over the functions and depend only on the symbol on highest order terms 
of the original system. This led Spencer to the introduction of the "Spencer 
cohomology groups" associated to a symbol, and opened the way for a formal 
theory that greatly extended and clarified earlier work of Cartan and others. 
In the present problem of understanding the characteristic cohomology, a sim- 
ilar circumstance will obtain, albeit with one quite new and interesting twist. 
Underlying this development is a very simple and, we feel, very basic concept 
in what might be called exterior diferential algebra. This concept is that of 
a Frobenius extension of differential graded algebras relative to a Pfaffian dif- 
ferential ideal. This section will be devoted to a discussion centering around 
that concept, and ultimately pointing the way to a new and somewhat stranger, 
although seemingly basic, algebraic construction associated to a symbol. 
2.1. Structure equations of the prolongation tower. We shall arrive at the struc- 
ture equations of the prolongation tower in a number of steps. To explain these 
we recall that each of the three constructions of Section 1.2 

(i) R c J (N, Y) (classical PDE system) 

(ii) R c J (N, Z) (PDE system associated to a fibered manifold) 
(iii) X1 c Gn (TXO) (1st prolongation of an exterior differential system) 

"looks" the same in local coordinates (x', u', p'), except that the defining 
equations of X1 have a special form reflecting the fact that they arise from 
an exterior differential system, which is immaterial for the present discussion. 
What is different are the symmetry groups associated to the three situations. 
We shall first give a local coordinate description of the structure equations of 
the prolongation tower that is invariant under the gauge group associated to 
construction (ii) above. Our second step will then be to reformulate these equa- 
tions so as to be invariant under the full symmetry group of generalized contact 
transformations associated to construction (iii). 

We begin by studying some constructions associated to the fibered manifold 
Z -* N in the unconstrained case; i.e., when R = JI(N, Z). Denote by 
Jk(N, Z) the manifold of k-jets jk (s) of sections s: N -* Z of the fibered 
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manifold, and by J??(N, Z) = lim Jk (N, Z) the space of jets of infinite order 
j?(s). In coordinates the projection J?(N, Z) -* N is given by 

7r(X', U , ... ., PI, (X). 

We shall interpret the complete integrability of the infinitely prolonged contact 
system as giving a flat connection for the fibration J??(N, Z) -* N. 

For this we recall that functions G on J?(N, Z) are given by functions 
G(x1, u' , ...U , pa), II _ k, on some finite jet manifold Jk(N, Z). Letting 
0a= dpa - Pq dxi denote the generators of the contact system on J??(N, Z) 
associated to our choice of local coordinates, we define operators dv, dHby 

d G= ZaG,a V EIL AP I~ 

dG= dvG+dHG. 
Explicitly, 

dHG D iGdx 

where 

09 I __>O I 

is the operation of "total differentiation with respect to xi "-i.e., 

(1) 0 z (G(j?(s))) = (D G)(j]C (S)). 

The Di are commuting vector fields on J?(N, Z) that satisfy 

(6a , Di) = 0, 
and thus they span an integrable distribution on J??(N, Z) that is horizontal 
relative to the projection 7r: J??(N, Z) -* N. In fact, (1) expresses the fact 
that Di is the horizontal lift of 0/Ox' relative to the integrable connection for 
J??(N, Z) -- N. 

Under the decomposition on J? (N, Z) 

(2) d = dv + dH 
of the exterior derivative into vertical and horizontal components, we have 

dV = dH = ? ' 

{dvdH+dHdv = 0. 

The decomposition (2) and integrable connection are gauge invariant, as follows, 
e.g., from the coordinate-free formulation { d(j? (s)*G) = 0? (s)*(dHG), 

li`(s)*(dVG) = 0 

of (1). 
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We note that { dOa7 = 0, 

dH = -0_aAdx, 

and that trivially dv(dx') = dH(dx') = 0. The second of the bracketed equa- 
tions is equivalent to 

(3)(a)=O (3) R~~~~~~Di( I ) Ii 

where SD is the Lie derivative operator associated to the vector field D on 
JOO(N, Z). 

Suppose now that a constraint manifold R, c JP (N, Z) is defined by equa- 
tions 

F(xi,ua,p)=O. 

In PDE theory one defines the k-th prolongation Rk C Jk (N, Z) of R to be 
the PDE system defined by the prolonged equations 

DIF =0, III? k-1, 

where D D = .. . Recall our assumption that each Rk is a manifold 
and that the projections Rk - Rkl are surjective. We set R = lim Rk and 
have a fibration diagram: 

R c J??(N,Z) 

1 1 
N = N 

The pertinent observation is that the exterior differential system associated to 
the PDE system Rk is just the k-th prolongation, as defined in Section 1.2, 
of the exterior differential system associated to R1 . Thus, our terminology is 
unambiguous and we may say that the infinite prolongation is defined by the 
equation 

DIF' = O. 

Of course, we may also give the above construction in a coordinate-free man- 
ner. For example, Rk is simply the set of k-jets of formal solutions to the given 
PDE system, where a k-jet of a solution is given by a smooth section of Z -+ N 
that satisfies the equation up to order k at one point of N. We have used the 
notation Rk and R to emphasize that this discussion is invariant under gauge 
transformation of local coordinates, but is not necessarily invariant under full 
contact transformations. 

The equations defining R are invariant under the horizontal vector fields 
Di (actually, all that is needed is that the defining ideal of R c J?C?(N, Z) 
be invariant), and thus along R the horizontal spaces are tangent to R. We 
conclude that the fibration R -- N has a gauge invariant integrable connection, 
and we shall now denote by D,i 07, d = dv + dH the restrictions to R of 
the quantities defined above on J??(N, Z). 
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The vertical forms C' are no longer linearly independent on X, but rather 
satisfy the relations that define TR c TJ??(N, Z). To conveniently express 
these relations we recall our notation 

Ek = jk-n& (R) 
= span{CI: III ? k - 1}. 

The equations (1) imply that dH(DIF2) = 0 along R, i.e., in T(J?(N, Z)) H ~~~~~~~~~R 
Thus, when restricted to the submanifold R we have 

0 = d(DIF ) = dv(DIF2). 
Taking the ideal I to be empty, this gives 

0=- ?=apt ai aU a 

aFAa 
==~ Ca! -Omod E. 

apa 
Taking I = {j}, we have 

0 = dv(DjF') 

=Y. (d F 
A 

- 0 a ai mod EQ 

by (3). Repeating this computation inductively, we obtain the defining relation 

0aC aI=-o mod Ek+l, I k 

for TR in T(J?(N, Z)). In conclusion: 
With the notation 

Ek = k- n Q (X) 
ng nk = k 

we have the filtration 

(4) E1 C 02 C EC 
of the 1-forms in J. The subspaces ek satisfy the structure equations 
(5) dek 0k mod {ek?lk} 

and 
rk/ekl =span{CO: II = k-1} 

where the OC satisfy the symbol relations 
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We have observed that a gauge transformation preserves the filtration (4) and 
preserves the complement of 8 in Q2 (R) given by the horizontal 1-forms for 
the flat connection in R -+ N. Suppose now that we consider the original PDE 
system as an exterior differential system Y on a manifold X1 . Of course, R1 
and X1 are diffeomorphic as manifolds but the symmetry group of X1 may be 
strictly larger than that of R1, hence we use the different notations. As noted 
above, the manifold Rk underlying the k-th prolongation of RI as a PDE 
system is diffeomorphic to the manifold Xk underlying the k-th prolongation 
9k of the exterior differential system J . We have pointed out that the exterior 

differential system corresponding to Rk is just Jk on Xk, but again as before 
the symmetry group of the latter may be larger. Passing to jets of infinite 
order, an automorphism of the prolongation tower {Rk} of R1 will induce an 
automorphism of the prolongation tower {Xk}, and hence an automorphism 
of X preserving >J. But an automorphism T of J need not preserve the 
complement of e in Q1 (X); i.e., in coordinates we will only have 

T* dxi A'dxj mod e, 

T*O a =OmodOk for III<k-1. 

Nevertheless, the relations (4)-(6) are formulated in a manner invariant under 
such transformations, hence under Aut(JY), and are therefore valid on X. 

In summary, the relations (4)-(6) are not only gauge invariant, but are invari- 
ant under the full symmetry group of the exterior differential system and hence 
have meaning on (X, J) . 

2.2. The symbol relations. In the preceding section we arrived at the structure 
equations 

((i) d8k=O mod {8k+l} 

(1) j (ii) OF_Oa mod8 II =k, 

of the prolongation tower. The first equations are formulated in a coordinate- 
free manner that is invariant under the full symmetry group of the exterior 
differential system. In this section we will give a similar intrinsic formulation 
of (ii). 

For this we recall the construction of Gn oo(X0) = lim Gf k(XO), whose 
points are jets of infinite order of n-dimensional submanifolds of XO. For all 
k including k = oo there are fibrations 

Gnf k(XO) 

G'X 
Gn, I (XO) > X 
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and over Gn I (X0) = Gn (TXO) there are defined the tautological vector bundles 

E Ec7 (TXO) , 

IW = 7 (TXO)IE. 

In terms of the local coordinates used in Section 1.3, E has a framing 
0/a x', ... , a/axn and W has a framing a/luI, ... , a/lua. We shall con- 
tinue to denote by E, W the pullbacks of these bundles to any Gn k (X0) or 
to Gn o(XO) 

The first basic observation is that over Gn k(Xo) we have exact sequences 

O-W0 XS E - TGn,k(XO) -TGn,k-(XO) -*O 

and dually 

O-* T*Gn,k-1(X0) T* Gn k(XO) W S kE *O 

where Sk denotes the k-th symmetric product and as usual we are omitting 
the pullback notation. We shall always lift these sequences up to Gn oo(X0), 
and when we do so and use the local coordinates introduced above, the 1-forms 
6> II = k, give a framing for T* Gn, k (X0)/T Gk-l (Xo) -W & Sk E. For 
a function G(x1, u', .. ., PI), III _ k, on Gn k(XO) the differential dG is an 
element of T*Gn k(XO) and the map T*Gn k(XO) - W* 0SkE - 0 is given 
by 

dG aG Z a 
III=k I 

The existence of the above sequences is just a notationally complicated way of 
saying that the highest order derivatives are tensors. The one slight subtlety is 
that we shall use 6A and not dpa as a coframing of T*Gn k(XO)/T*Gflkl(XO); 
i.e., we choose our coframing to lie in the contact ideal. 

It is when we restrict the second sequence above to the prolongation tower 
of Jo that the symbol relations appear. More precisely, the pulling back and 
restriction of differentials associated to the diagram 

Xk C n, k (XO) 

1 1 
Xk_1 c Gn,k-1(Xo) 

induces on the infinite prolongation X a diagram 
T Gn k(XO)/T*Gn k( Xo) T*Xk/T*Xk 0 

* k 
0 B k-1I 

W* 
(& Sk_E ,k - 0 

where Bk-l, Mk are notations. The vector bundle Mk is spanned by the 
restrictions of the OA, III = k, to X, and the fact that these forms are subject 
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to the symbol relations given by equations (ii) in (1) is expressed by saying that 
Bk_l C W* (0 SkE is spanned by the forms 

(2) (F2 a JI IJI =k-1. 

2.3. Frobenius extensions. Most of the calculations in the theory of exterior 
differential systems have an algebraic, almost algorithmic character; the fact 
that we are working on a manifold is not the central point, and it may even be 
distracting. Moreover, many essential points of the theory such as a prolonga- 
tion and involution are most clearly formulated algebraically, even though they 
are motivated geometrically. In this and the next section we shall isolate in a 
purely algebraic formulation what we feel are the essential general aspects of 
the study of characteristic cohomology of an exterior differential system. 

To motivate this discussion, we observe that localizing (i.e., sheafifying) our 
construction at a point of X, we arrive at the data 

(1) In ', k ,d} 
where 

(i) {I*, d} is a differential graded algebra (DGA), 
(ii) J is a Pfaffian differential ideal, 
(iii) n* is an increasing filtration of Q* by subalgebras such that each 

9k = n* n J is a Pfaffian differential ideal. 
There are a number of axioms that the data (1) will need to satisfy, of which the 
essential one is this: Setting Ek = I3l and denoting by {Ek+l } the algebraic 
ideal in n4+l generated by ek?l, we have 

de)k 0 mod {Ek+I}. 

Intuitively, the extensions of DGA's 
C Qk C Qk+l C 

are obtained by adjoining 1-forms such that k satisfies the Frobenius integra- 
bility condition relative to 

We formalize this concept with the following 
Definition. We consider the data {A* , f, d } where A* is a differential graded 
algebra and f c A* is a Pfaffian differential ideal. 

(a) The above data is said to be regular in case A? is a regular local ring and 
0 are free modules over A 

(b) Given an inclusion of regular data 

(2) {A*,f, d} c {A,f , d}, 

such that A0 and AO have the same residue class field, we say that (2) is a 
Frobenius extension if ( (i) A* is generated algebraically by A* andf, 
(3) j (ii) f=A*n y 
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(c) The data (1) above where each inclusion {Qn, Jk, d} C {n*+I, Jk+l' d} 
is a Frobenius extension and where Q = Uk?o = Uk?o k will be 
called a Frobenius tower. 

As remarked above, intuitively the extension (2) is Frobenius if A* is ob- 
tained from A* by adjoining 1-forms (condition (i) above) such that in so 
doing f is "closed up" relative to the Frobenius integrability condition ((iii) 
above), and finally if this extension is non-trivial in the sense that we do not ob- 
tain f by adding 1-forms already in A* (condition (ii)). We may also speak 
of other properties, such as minimal and universal Frobenius extensions. We 
shall not enter into such a discussion, but rather we shall explain two conditions 
on {A, f, d} that will guarantee that a Frobenius extension exists-this con- 
struction will clearly exhibit properties of minimality and universality. These 
two conditions are motivated by circumstances prevailing in the construction of 
the prolongation tower of an exterior differential system, which we shall refer 
to as the geometric situation. 

Construction of Frobenius extensions. One may ask when regular data 
n d } admits a Frobenius extension that is in some sense minimal and 

universal. We are using the notation n* , "Y rather than A*, F to suggest the 
initial step in the construction of a Frobenius tower. We shall give two condi- 
tions on this data which mirror the geometric situation and which guarantee the 
existence of such a Frobenius extension {QU, 92, d}. Attempting to continue 
the process, the first of these conditions will automatically be satisfied for the 
Frobenius extension {Qn, J2, d}. The second condition, which mirrors the 
surjectivity of X2 -+ X1 , will have to be assumed at each stage in the construc- 
tion of the Frobenius tower. However, the first condition will allow us to define 
what it means for {In, 9Y, d } to be involutive, and then in the involutive case 
the second condition will also be satisfied at each stage in the construction of 
the Frobenius tower. 

We set no with residue field F and E= J . The first condition on 
the regular data {I7*, YJ', d} is: There exists a subspace Q0 c Q1 such that 

(4) dA _ (i/Q) A 0mod{91}. 

In the geometric situation we may take n' = 7r*n I(X0) where 7r: XI - X0 is 
the projection; the condition (4) follows from the structure equations discussed 
in Section 2.1 above. 

With this assumption there exist free v-module generators O' for e1 and 
1)i for Q0 such that 

(5) d a-=( -7ra Ai mod {E} 

for some elements 7r7 E ' . These 7r7 are only well defined modulo the t- 
span of Q and e1. Moreover, they are not linearly independent but are 
subject to a minimal set of symbol relations 

bai7ri = O mod {Q, e91} 
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where bAi E S . The non-uniqueness of the 7r7 is expressed by saying that they 
are well defined modulo e1 up to a substitution 

a _,7a jPa a a (6) 7r ' i+iCt, PjPi E tSw 

The symmetry condition is necessary in order that the equations (5) remain 
valid. Our second condition is that: There exists a substitution (6) such that 
the refined symbol relations 

b'7( = 0 mod9E 

are satisfied. 
As explained in [2], Chapter IV, in the geometric case this condition is equiv- 

alent to the assumption that X2-+ X1 be surjective. Of course, it can be for- 
mulated intrinsically in terms of the data {1*, n', Y, d } but that would take 
us too far afield here. 

Once we impose the refined symbol relations, the 77a are unique up to a 
substitution (6) where 

Aia a a 
(7) ba pi1 = 0 P11 = p1i. 
We then define 

-4' = PIj] 
where the P ij are indeterminates over F subject to (7), and we then define 
n* to be the DGA generated by n* and the and their differentials d ij 
subject of course to the relations obtained by differentiating (7). Finally, we 
define J2 c n* to be the Pfaffian differential ideal generated as a differential 
ideal by Y and the 1-forms 

6 = 7i +PUW(E2 E 

The equation (5) now reads 

d6a- A WO mod {9E}, 
which is the Frobenius extension condition (iii). The other conditions (i) and 
(ii) are clearly satisfied, and thus {I , 92, d} is a Frobenius extension of 
{I,n , d}. 

We now want to show that condition (4) is inherited by {*, 2 d}. Exte- 
rior differentiation of the preceding equation gives 

0 _ -doa A )i mod {E2}* 

Applying the Cartan lemma, we obtain 

(8) dO a -76 a 
A (O mod {E2} 

where 
ij - 

ji 2 

As before, we may refine this last relation to 
a a 

7(.. = 7(.j. 
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Equation (8) is just the first condition (4) for {Q*, ' , d }, where we keep the 
same subspace Q. 

We now investigate the second condition for {Q*, J2, d}. Exterior differ- 
entiation of 

bAla- 0 mod 0 
yields, after some fiddling and application of the Cartan lemma, the symbol 
relations 

bAl 7ra Omod0, 92 . 

The ni.i satisfying (8) and the symmetry condition are uniquely defined up to 
a substitution 

(9) 7t ij 7ij +P ijk co 

where pajk E g and is symmetric in i, j, k. We must then assume that we 
may determine Pajk so as to have the refined symbol relations 

bA i7rj O mod 82. 

In the geometric case this assumption is equivalent to X3 -+ X2 being surjective. 
Once it is satisfied, the 7irij satisfying (8) and the refined symbol relations are 
uniquely determined up to a substitution (9) where 

bi a 
ba Pijk 

We set 3= [P?jkI where the are indeterminates over IF subject to these 
linear equations plus the symmetry in i, j, k, and proceed as before to define 
In*, J3, d} where J.3 is the Pfaffian differential ideal generated by 

6Ij = 7ij + PijkO.C 

We may continue the argument, constructing a Frobenius tower under the 
assumptions that the initial data satisfies the condition (4) and that, at each 
stage, we may refine the symbol relations 

bAi0I a O mod n I ok III = k, 
to 

b Ai0a 0 mod k III = k. 
In so doing the only technical tool required for the inductive step is the Cartan- 
Poincare lemma on page 321 in [2]. 

Comparing this discussion with the discussion of the structure equations in 
Section 2.1 and symbol relations in Section 2.2 we see that (4) is satisfied in 
the geometric case and that moreover the refined symbol relations are satisfied 
under the assumption that the projections Xk+1 -+ Xk are all submersive. 

It is important to remark that there is a condition on the symbol matrices 

B(Q) = Ilb'i iII 
that will guarantee that the refined symbol relations are satisfied for all k ? 2, 
provided only that they are satisfied for k = 1. This is the condition that the 
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symbol be 2-acyclic as defined in [2], Chapter VIII. In the geometric case, the 
involutivity of the symbol matrices j1OF /Op%jill will guarantee that the maps 
Xk?l -* Xk are submersive for all k > 2 provided that this is the case for 
k = 1. We will then say that the data { 7, fJ1, d} is involutive. As explained 
in Chapter VI of [2], at least in theory we may always reduce to the involutive 
case. 

In summary, if we begin with a regular DGA {Il* .Y9, d} which satisfies 
condition (4) above, for which the refined symbol relations hold andfor which the 
symbol is involutive, then we may construct a Frobenius tower {1*, k J d} . 
In the next section we will investigate the behavior of this construction un- 
der automorphisms (which need not preserve co C Q1 ), and shall show that 
the Frobenius tower construction leads to a weight filtration on the associated 
graded to the filtration of !* defined by the powers of J . This weight filtra- 
tion will have a remarkable property which in practice allows us to get a first 
approximation to our object of interest H* = H{Q*, d} purely from properties 
of the symbol. 

2.4. The weight filtration. Associated to the data { J*, 5, d} we have defined 
the filtration 

FPQ*= imageof{JA A A Aq 4 A} 

to which there is the associated graded complex 

FPQ*/FP+l Q* = f =P,* = f p, q. 
q 

Suppose now that we have a Frobenius tower { *, Y, 2, d}. We will use 
the increasing filtration of Q.* given by the !k to define an intrinsic weight 
filtration on each of the complexes {Q" *, d}, one of which has the remarkable 
property that on its associated graded the induced differential is linear over the 
functions, a property traceable to the Frobenius extension condition. 

Definition/Proposition. We consider all functions 

W: z Z 

which satisfy 

(i) w(f(p)=w(p) for f e , f =$O, 
(ii) w(qp) < k for 0 e Okl, and if equality holds, then ok 
(iii) W(9A17) ? w(p) + w(4), and 
(iv) w((P + 1) < max(w((p), w(i1)) 

We set 
wt p = maxw(q') 

w 

where the maximum is over all functions w satisfying (i)-(iv) above. Then, for 
p > 0 "wt" is well defined on the associated graded complexes fQ" *, and if we 
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set 

FkfP = { E flp'* wt((p) < k}, 

Q = FkQ /Fkl1Q =I-k 
q 

we obtain a weight filtration {Fk} that is stable under d and has the property 
that the induced differential: 

(l)~~~~~ : k' Qk'ik is i--linear (p > O). 

We shall give the actual construction of the weight filtration under the as- 
sumption that {1 K* Yj1, d } satisfies (4) in the preceding section and that the 
refined symbol relations hold at each step. As noted above, these assumptions 
are both satisfied in the involutive geometric case. Before giving the construc- 
tion we remark that the crucial property is (1). By means of this property the 
groups El * (for p > 0 ) will themselves be the abutment of a spectral se- 

quence, the one coming from the weight filtration whose E -term Ek'* will 
be calculated purely algebraically. It is here that the symbol and Spencer coho- 
mology of the exterior differential system enter the picture, in a more or less 
standard setting for p = 1 but in a new and algebraically rather subtle way for 
p ? 2. 

Construction of the weight filtration. We will follow the notations in the preced- 
ing section, especially those used in the construction of Frobenius extensions. 
Accordingly, we may find a spanning set of forms 

(2) Oa 

for K21 with the properties that 

(a) the l Eiel1 \ E), 
(b) Oa Ek+l for III < k, 

(c) b A0a -O mod Ek for III = k. 

The relations (iii) are a defining set of relations among the forms cow, Oa. 

Now properties (a)-(c) imply that 

{ wt wi = -1 

wt 0 = II, (provided that 0a 0 mod E) 

These properties, together with (iii), give 

(3) wt(o a, A ... A Oap A Zj}IA ... A COJq) = Iv IIl - q 
v 

provided of course that the expression on the left is not zero. Finally, (iv) allows 
us to define wt (0 for a general form (repeated indices are summed) 

f, = 
I. 

pa 
Q 

JIsA 
... A Oap A (] . 

We must check how "wt" behaves when we make an admissible change of 
a spanning set of forms (2), and then we must check how "wt" interacts with 
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exterior differentiation. For the former, the a) are determined up to a trans- 
formation 

w' -Awto+ (terms in 0), det IIAllI:O, 
and recalling that 6' E E011+1 the Of are determined up to a transformation 

0 a E A aJ 
fl=+ (terms in 0ii), det IIA ai I $40. 

IJH=II 

It follows that (3) is well defined provided that we consider , A... AOPA 

(03 A A** jq as an element in FpQ*/FP+l1 2. Put another way, if we assume 
that the matrices 11A'll and IA6 11 are each the identity, then under the above 
transformation we have 

a, A ... AOap AO_ aI A .. AOp AZ + (terms inFA .. J Ag K) 

p+1 

+ (terms spanned by forms A ... A OaP A COf where all 
IlIP 

IviI _ IvI 5 IJI = IJI and some lIIl < I'I>). 
The conclusion is that "wt" is well defined on ff * = FP2* /FP+ Q*. 

We note that in C' * we have the defining relations 

(4) bAiO ia=0, III =k- 1. a 

More generally, in Yk' * the relations among the spanning set of forms 

LJ 1a E ,AajpA(iIIJ I-JI =k, 

are linearly generated by the relations (4). 
Finally, it remains to investigate how d = d mod .Y interacts with the weight 

filtration on CY` . For this we recall the structure equations for the spanning 
set of forms (1) 

{dcol A (i mod {0}, 

dfi --- Ii A CO mod {k}k = |I|+ 1k. 

From these it follows that 

{ dO= 0 modulo (J + terms of lower weight), 
dO-= A CO modulo (terms of lower weight). 

Moreover, for a function f 

df =ZE I i+ (terms in 0) 

~ df=E fic ) has weight -1. 
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Combining this with (5) we see that in the associated graded spaces to the weight 
filtration QC'* 

a61. apJ0 A ... AO pA ) 

(6) I Ja a a 
-III 0 A .. A ..AOPAUI)AOI) 

aIJ 
.. 

apJi v,i 

This establishes the property (1), and moreover (6) gives us a formula for 6 on 
C* that will be used below. 

We note in closing the trivial but important point that there is no alter- 
nation of signs with the index v on the right-hand side of (6). If we let 
S = F[e..., en], define an S-module action by 

ei 1. Ii 
t 

and extend this to products A A... A* * 0 ofZ to act by the Leibnitz rule (with 

all plus signs) on Oa 'A... AOap, then the right-hand side of (6) is essentially a 
Koszul boundary operator for this module structure. We shall explore this in 
detail in the following sections. 

2.5. A variant of Spencer cohomology. We continue with our consideration of 
a Frobenius tower {*, , W , d } of Pfaffian differential ideals. We shall as- 
sume that this tower arises by an inductive construction, starting with 
{QI, YJ, d}, where at each step the two conditions consisting of (3) and the 
refined symbol relations discussed in Section 2.3 are satisfied. As explained in 
the preceding section, we may construct the weight filtration on the associated 
graded complexes CY'* for p > 0, and we may then consider the induced 
differential 

( Pq QPq+ 

on the associated graded complexes to the weight filtration. From equations (1) 
and (6) in the preceding section we see that ( treats the functions Y = Q? as 
constants and the forms in Qo as being closed. Thus, the cohomology of the 0 
complex {6'* 3} iS for p > 0 "purely algebraic", and as we shall now see 
it is a variant of Spencer cohomology. Actually, it will turn out to be a variant 
in two ways. The first essentially trivial one is that a Poincare-type duality 
will intervene. More significantly, for p = 1 we will find the usual Spencer 
or Koszul cohomology associated to a module M, whereas for p > 2 we will 
obtain Spencer cohomology associated to AZ,M where " AP " is an apparently 
new and to us quite interesting multilinear algebra construction. 

Review of Spencer-Koszul cohomology. Let E be a vector space over a field F 
of characteristic zero, and set 

SkE = Sym kE = k-th symmetric product of E, 

S = SE = 3 SkE = polynomial algebra on E. 
k_O 
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Let N be a graded (but not necessarily finitely generated) graded S-module 
and recall the standard definition of Koszul homology: Setting 

CQ(N)=No. APE 

with action by S given by f(n w co) = fn & co where f E S, n E N and 
wo E APE, one defines the S-linear mapping 

0: Cp(N) Cp_(N) 

by the usual formula 

a(n ( e *A Aep) E-)en el AA ... A ep 

where n E N and ei E E. Then 02 = 0 and the resulting Koszul homology will 
be denoted by Hp(N). Clearly H.(N) = Hp(N) is again a graded S-module. 

Dually we set 
Cq (N) = N (& AqE* 

and define 
j: Cq (N) ___ Cq+ I(N) 

by 
dco(el,.., eq+ )=,-)ei *co(e,, ... ., e^i,.., eq+l ) 

where co E N 0 AqE* N 0 (AqE)* and the e1 E E. Alternatively, we let 
Id E E ? E* Hom(E, E) be the identity and define 

Id: N &A qE* N (&A q+'E* 

by 
Id(n 0 e, A *Ae) Zein o eAe7 A ... Ae* 

where n E N and e1 E E is a basis with dual basis e* E E*-thus Id = 
Ei ei 0 e* . Then it is easy to verify that 
(1) dco=-Idco 
where co E Cq(N). The reason for the minus sign will appear below. 

To relate these two constructions, we suppose that dim E = n and choose a 
non-zero volume from Q2 E ARE. Contraction with Q2 gives an isomorphism 

i(Q) A AqE* An-qE 

and a commutative diagram 

N03An-PE* a N0An-P+'E* 

N?APE N 9 N AP -1E 
leading to an isomorphism 

i(Q): Hn-P (N) AHp (N). 



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS (I) 547 

A different choice of Q alters this isomorphism by a non-zero element in F. 
We now want to relate this construction to the formula (6) from the preceding 

section when p = 1 . For this we use the notation 

for the free S-module corresponding to a vector space $'. Below we shall take 
Z/, E to be the fibers W*, E of the vector bundles W*, E introduced in 
Section 2.2 above. For the moment we assume given vector spaces , S Go = ' 
and a linear mapping 

(2) b: SM1 t to (& E 
which we shall refer to as a symbol mapping. In practice, the vector spaces 91, 

2o, E will have bases uA, ua, ei such that 

b(u') = bA'u' X e 

where the bA' are the quantities introduced in the preceding section. Associated 
to (2) is an S-linear mapping of free modules 

b 
e1 * t0. 

where 
A i a 

b(uitej) = b ueie, 
(we shall omit the 0 symbol), and we denote by M the cokernel so that we 
have 

(3) 1. 0bg. W M t0. 

The F-basis uae1 of Wo. projects to an F-spanning set of vectors [uaeil e M 
subject to the F-spanning set of relations 

1i a 
(4) ba [u e,e1] = 0. 
M is usually called the graded S-module associated to the symbol b and 
b(W.) c G simply the symbol module. 

We now denote by dxi E E* the basis dual to ei and consider the spanning 
vectors 

[uae1] 0 dx JE Cq (M), IJI = q. 
Then by our formula (1) above 

(5) 3[uae1] 0 dxj = ee[ue,eu 0 dx' A dxJ. 

Comparing with the preceding section, we find that the relations (4) are exactly 
those imposed on the ea considered in the associated graded to the weight 
filtration, and (5) is exactly the formula (6) in that section for 3(a YAwJ) under 
the correspondence 

(6) { I 
- dx'. 

coi . dvx 
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To be able to reduce the cohomology of {Qk' }*, to Spencer cohomology we 
need to make two further remarks. The first is that for p > 0 we may consider 
the cohomology of {k7 } as a module over the local ring ' k &* this is 
because 3 is linear over the functions. Denoting by mk C gk the maximal ideal, 
there is a common residue field IF = 8k/mk for all k . It is the reduction modulo 
mk of the cohomology of {I`' *} that will be a Spencer-type 'cohomology, 
as described in, say, Chapter 8 of [2]. By Nakayama's lemma we will be able to 
use results about this cohomology to infer information about the cohomology 
of {ffX *,} 

The other remark is that even after we reduce modulo mk the 6 do not 
have values in the k-th graded piece Mk of M, but rather have values in 
Mk 0 T* for some vector space T, reflecting the fact that the HI are differential 
forms. (In the geometric case, T* = T*X / XkT* _) With these two points Tp k Ipk 
understood we may summarize our discussion as follows: 

For p = 1, we consider the reduction modulo mk of the complex 
( {k1 }. This is then isomorphic to the k-th graded piece of 

{C*(M) X T*, 3} where M is the graded module associated to 
the symbol of {f* , 9k, J, d}. 

For the sake of explicitness, let us note that we are implicitly using the bi- 
grading 

Ck,q(M)= {uaei X dxj: iJI = q, III = k + q}. 

For p > 2 we shall see that a similar conclusion holds with M replaced 
by AMM where " A " is part of the A-multilinear algebra formalism to be 
discussed in the next section. 

3. A-MULTILINEAR AND COMMUTATIVE ALGEBRA 

The considerations of the preceding section have reduced the computation 
of the first approximation to the characteristic cohomology to a purely algebraic 
matter involving a certain type of cohomology constructed from the symbol of 
the exterior differential system. For p = 1 we find ordinary Spencer cohomol- 
ogy, but for p ? 2 a new type of construction appears and it is to this that we 
now turn, following some preliminary remarks. 

3.1. Poincare polynomials and Spencer cohomology. We keep our previous no- 
tation S = ek>0 SkE for the symmetric algebra on an IF-vector space E. We 
will consider graded S-modules M = ekEZ Mk with the properties 

(i) M =O for k<k0o 
(ii) dimF Mk < oo for each k. 

Such modules will be called quasi-finitely generated-abbreviated QFG. The 
modules we shall encounter in practice will generally not be finitely generated. 
Intuitively we may think of a QFG module as being essentially of the form 

M = M1 E M2 E ... 
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where Mk is finitely generated in degree dk with d, < d2 < * - . Many of the 
usual definitions and properties of finitely generated modules carry over to the 
QFG case. 

For example, for a QFG module M we define the Poincare series of M by 
the formula 

PM(t) = Z(dimjFM')t'; 
i 

it is a Laurent series with a finite tail. If E has dimension n, so that upon 
choosing a basis e1, ... , en we have 

S '--F[e,.., enb] 

then 

PS(t)= (+ 1t=( It),,. 

It follows that for any free quasi-finitely generated S-module F 

(1- t)nPF(t) = E>fti 

where fti is the number of free generators of degree i in any set of free gener- 
ators of F. 

If we have an exact sequence of QFG S-modules 

(1) O - Mt + Mt 87-I 
l> 

- M IM ?, 

where (0k has degree 5k a then one has the relation 

( 1)ktkPM (t) = 0 
k=O 

where rno = 0 and (k = 1 + + dk for k > 0. More generally, if (1) is 
a complex with homology modules Hi = kerf9/j+j(Mj+j), then the Hi are 
quasi-finitely generated S-modules and the Euler-Poincare formula 

(-1 )ktakPH (t) = (-1)ktakPM 

is valid. 
We want to apply this relation to the Spencer cohomology H* (M) of a QFG 

S-module M. Recall from the preceding section that Spencer cohomology is 
constructed from the complex of QFG S-modules 

***M( sFA AE* M (gF A+ 'E *-* * 

and remark that a number of properties from the usual finitely generated case 
carry over. For example, if S+ = ek>O Sk denotes the maximal ideal of S, 
then 

(2) Hfn (M) odMaS+fM 
which follows immediately from 
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More generally, the maximal ideal acts trivially on all of H* (M), as follows 
from the homotopy formula 

pi = 3vi + Vi3 
where ui is multiplication by ei and vi(m 0 p) = m 0 ei -J fo. In particular, 
the Hq(M) are QFG F-modules-i.e., they are graded F-vector spaces of the 
form EDi>io where Vi has grade i and dim, Vi < oc . 

If F is a QFG free S-module, then it is well known and easy to prove that 

(3) H q(F) = O, q < n. 

The converse is also true; i.e., if M is QFG and all Hq(M) = 0 for q < n, 
then M is free. This may be seen as follows: Setting F = S OF Hn (M) we 
have an exact sequence of QFG modules 

.0 --+N -+F --M --+ 

with H (F) -_ H (M) by construction. It follows from the assumption (3) 
and long exact cohomology sequence that H n(N) = 0, which by our above 
observation (2) gives that N = 0 and consequently F ' M. 

Generalizing this argument gives, as in the usual case, the Hilbert syzygy 
theorem for QFG S-modules: Given a QFG module M there is a minimal 
resolution by free QFG modules 

O ,--+ F F-i F, (IFoM  O 

where 0 has graded degree zero and all the other (i for i > 0 have positive 
graded degree, and where 

Fi S OFH ni(M). 

We observe that the resolution length e satisfies e ? n. 
In particular, for the Poincare polynomials one has the formula 

(1 _-t)nPM(t) = 1(_1)q tqPHn-q(M)(t). 

q 

3.2. A-tensor and exterior products. Our basic construction is the A-tensor 
product, denoted Mo A N, of QFG graded S-modules M and N. The defining 
properties are 

(i) (M?,AN) = E Mi? N, 
i+j=q 

(ii) e.(m?n)=em?n+m?en, eeE. 

It is easy to see that 
e' * (es (m 0 n)) = es (e'. (m 0 n)) 

so that the action of E on M F N extends to an action of S on M o N, 
thereby defining the S-module M ? A N. The "Leibnitz rule" (ii) is of course 
what gives interest to this construction. The properties 

M?AN N?AM, 
(M N) 0AP (M0AP) e (NoAP), 

(MO A N) ? AP M M A (N ?A P) 
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hold for the A-tensor product of S-modules as for ordinary tensor products. 
It is not true that the A-tensor product of finitely generated modules is again 

finitely generated. For example, suppose that S = TF[x]. We will show that 

(1) S (&AS has {xk 1; k _ 0} as free generators. 

Proof. Let M be the S-submodule generated by the xk ? 1 . Then 

X k 
(X X x -xk+l C XI = Xk X X1+1 

so that xk O X'+' E M if x k+1 x' and xk X Xi e M. It follows inductively 
that M generates S OA S . Suppose now that we have a relation 

Pkjx)* (X Xk?) =0 
k 

in S o S. Writing Pk (x) = E1 Pkix we look inductively at the terms of total 
degree zero, one, two, etc. to obtain 

Poo1 1= - POoP=0O, 

PO(X 1 + 1 Ox)+POxl 1 =0==PO, =0 Po =?0 

P02(x2 1 +2xx+1x2)+Pll(x2ox+xox)+P20x 01=0 
==> P02 = 0, P11 = 0, P20 = 0- 

Continuing in this way we find that all Pk(x) = 0. Q.E.D. 

Remark. We may think of (1) as saying that: "By integration by parts in 
f f(k)(x)g(I)(x)dx we may move all the derivatives to f, and no further re- 
ductions are possible." This is of course obvious. As we shall see below, what 
is more interesting is what happens when f and g anti-commute. 

A generalization of (1) is given by 

Proposition 1. For S - F[e1, . e. , en] the A-tensor product SOAS is a free QFG 
S-module, and in fact is freely generated by the F-subspace S ? A 1 C SO&AS. 
Proof. We have the relation of Poincare polynomials 

__ 1 
PSA S5(t) = PS(t)PS(t) - (I -2n 

From 
eim 0 n _ -m O ein modulo E * (S A S) 

it follows that S (A 1 generates the entire S-module S OA S. In particular, the 
S-module mapping 

SIF(S0A 1) _*SOAS 

given by m o (n 0 1) -* m * (n o 1) is surjective. It also preserves natural 
gradings, and since by the above Poincare series formula both graded vector 
spaces have the same dimension in each grade the mapping must be injective 
as well. Q.E.D. 
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Corollary. The A-tensor product of any number offree QFG S-modules is also 
free and QFG. 

Consider now the q-fold A-tensor power of a QFG S-module M, which is 
denoted by (&qM. The symmetric group on q letters, ,q' acts on the QFG 
S-module (&qM in the obvious way. Since F has characteristic zero, there 
is a direct sum decomposition of (&qM into submodules invariant under the 
action of Sq. These submodules are free in case M is free. One of these 
summands will be of particular interest to us, namely the q-th A-exterior power 
AqM c ?&M. 

To get some feeling for this construction suppose that S = FI[x]. We set 
m An = m 0 n - n 0 M e AqS. 

k2 Thus by (1) the elements x Al generate the free module AIS. But these are 
not free generators, since we have the relations 

X0Al O= k=O, 

X2Al=X(XAl), k=2, 
43 3 

X Al =-x *(XAl)+2x*(x A1), k=4. 
We shall see below that this pattern continues, so that we will have the result: 

Proposition 2. The elements x2k+ Al, k > 0, freely generate AIF[x]. More 
generally, for S = F[e1, ..., ej] the elements 

e, Al, III=2k+l, 

where I = (il ** i'2k+l) and e1 = ei ... e freely generate A S. 
Proof. For any e E E and m, n E S the defining property 

e(m An) = em An + nAen 

implies that (em)An= -mA(en), and so mAl _(1)deg mlAm where de- 
2 notes congruence modulo E ..AAS. Thus 

e A 1 )I1+1 e, A1 

and so e1A1 _ 0 for III even. It follows from Proposition 1 that the elements 
e1Al, I11=2k +1, generate A2S. 

We will first show that these are free generators in the case n = 1 when 
S -_FIX]. 

Let V be the graded F-vector subspace of FI[x] spanned by the x2k+1 Al for 
k ? 0. There is a surjective F[x]-module mapping 

lF[x] (?F V - ANI[x] 

given by f 0 v -+f f v. It will suffice to show that the Poincare polynomi- 
als of these two modules coincide, and inspection shows that each is given by 
EZ>o [2] t' (in each case, we add one new dimension each time the grade 
goes up by two). 



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS (I) 553 

In general, any relation among the eA 1, III = 2k+ 1, would induce a relation 
on a line-i.e., when we set ei = aix where the ai are fixed. If the relation 
were non-trivial, this would still be the case on a general line in contradiction 
to the case when S = F[x] above. Q.E.D. 

An alternative argument not reducing to the case n = 1 arises by computing 
the Poincare polynomial of A, M in terms of the Poincare polynomial of M, 
to which we now turn. 

Since the A-tensor product of two S-modules, when regarded as a vector 
space, is merely the graded tensor product over F of the underlying graded 
vector spaces, it easily follows that the following standard formula is valid: 

A q(M (D N) - 
3 
(A,NM (&IAAS,N). 

i+j=q 

In particular, if the modules M and N are QFG, this implies the following 
relation on Poincare series: 

PAq (MDN) (t) E PAI(M) (t)PAJ(N) (t). 
i+j=q 

The above observation can be used to develop a formula for the Poincare series 
of A qM in terms of the Poincare series of M. 

First, a few observations about symmetric polynomials will be useful. Let 
Y1 ,Y2 ,... * * Ym be any set of variables and let si denote the i-th elementary 
symmetric function of the variables ya. The power functions of the ya are 
defined as 

Pi = (Yi) + (y2)i + ... + (Ym)' 

It is well known that the functions pi for i < m freely generate the ring of 
symmetric functions in the Ya and hence that there exist unique polynomial 
functions Ei(p1, pP2 Pd , *,) so that, independent of m, one has 

Si =Ei(pl ,P2, * "' ,Pd) 
For example, the first four such polynomials are 

El =PI) 

E2 = ((p1) -P2), 

E3 = 6 (1 ) 3-_3PIP2 + 2P3) 

E4 = ((P1)4- 6(p1)2 + 8p1p3 + 3(P2) 6p4). 
Now, if yo is another variable, and si is the i-th elementary symmetric function 
of the variables YO, y1, Y2, .5. y, ym, then clearly si = si + Yosi 1 It follows 
that the polynomial functions Eq satisfy the following functional identities for 
any y: 

Eq(Y+p1, Y+P2 2*, yq+pq) = Eq(p1, P2, ,pq)+yEq1(p1, P2 , Pq_l)- 
Proposition 3. For any QFG S-module M, the Poincare' series of its q-th A- 
exterior power AqM is given by 

PAqM(t) = Eq (PM(t), PM(t2), * * , P (t )) 
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Proof. As has been already remarked, this is really a result about exterior pow- 
ers of graded vector spaces which are bounded below. Moreover, since the 
polynomial Eq is weighted homogeneous of degree q when the variable pi is 
assigned the weight i, one can clearly reduce to the case where Ml = 0 for all 
i < 0 by an elementary shift-of-index argument. Thus, we assume this from 
now on. 

Since M' = 0 for all i < 0, it is clear that the i-th graded piece of AqM 
is completely determined by the vector spaces MJ for j < i. It follows that it 
suffices to prove the above formula in the case that M is a finite-dimensional 
graded vector space. 

Thus, assume that M is finite dimensional. We will now complete the proof 
by double induction on q and the dimension of M. If q = 1 or the dimension 
of M is zero, then the formula is clearly true. If M = N ED Fu where u is an 
element of degree k, then PM(t) = PN(t) + tk. Moreover, by the above formula 
for exterior powers of sums, we see that AqM AqN E (Fu 0 AA 1 N), so 

PAqM(t) = PA^q(t) + t PAq- y(O) 

This formula, coupled with the functional identity on the polynomials Eq, 
clearly implies the desired result. Q.E.D. 

In particular, consider the case of Proposition 2 above when S - 

F[ej, , ej]. Then 

2 
PA2S(t) = E2(PS(t), PS(t2)) 

2(1t)2 (1t )ny 

In particular, we have 

(1- t) PA2S(t) = 2 ((1 t)a - (1 + t)n) 

iE2z++1 

2 The last term is the Poincare series of any graded F-subspace of A S which 
freely generates A S. It follows again that the monomials mA 1 where m has 
odd degree must be a freely generating set. 

Finally, we consider the general free module case where 

M-- W (&F F[ej ,..en] 

for some vector space W* with basis w, ..., w . We then have relations 
generalizing the one given above, 
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from which we may infer that 

Free generators of A 2M are given by 
(3) 

eWr aAW { a <?f if I is odd, 

wh<erei IflIiseven; 

here it is understood that e1w AWl = (e wa)Awl. 

In cohomological terms, if S+ denotes the maximal ideal of S, then 

H n(A 2M) A AM/S+AA2M 

{ I ewaw:+-) III } ~ {q = qgafieIW A W:ep + (-)~q, = O} 

I a where t = ofiaeJw AWfl. A similar result may be proved for the A-symmetric 
product Sym2 M, giving that 

(4) Hn(Sym2 M) { = Ifl III t =o 

We now establish contact between the A-exterior product construction and 
the induced differential on the associated graded to the weight filtration. 
Namely, comparing formula (6) in Section 2.4 with the formula (1) in that 
section for the coboundary map in Spencer cohomology using the correspon- 
dence given by (6) in Section 2.5, we infer that (7) then extends to the general 
case, as follows: 

We consider the reduction modulo mk of the complex { ' 3 } 
This is then isomorphic as a complex to the k-th graded piece of 
{ C* (A,M) 0 T*, 3 }, where M is the graded module associated 
to the symbol of the exterior differential system. 

4. VANISHING OF THE CHARACTERISTIC COHOMOLOGY 

4.1. Characteristic cohomology in the unconstrained case. Recall that the un- 
constrained case refers to the empty exterior differential system ̀7 on X0; i.e., 
geometrically we are considering all immersions 

f: N -+ XO 
of an n-manifold N into XO. In this case the prolongation tower is described, 
in the notation of Section 1.3, by 

X = G (X) = { all k-jets of immersions of } 
k = Gn,k(XO) =ian n-dimensional manifold into XO 

We shall also consider the local case; i.e., we work in the inverse image in 
X = Gn . (X0) of a particular n-plane Eo E Gn i(X0). The basic result here 
is due, in its general form, to Vinogradov [13]. 

Theorem. In the unconstrained local case 

lq = 0 for O<q<n. 
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Proof. We shall see that the result is a direct consequence of the facts, noted in 
Sections 3.1 and 3.2 above, that 

(i) For F a free QFG S-module the Spencer cohomology 

H q(F)=, q<n. 

(ii) If M is a free QFG S-module, then so are the exterior powers APM. 
Thus by (i) 

H (AM) =0, q<n. 

The first part of the following discussion will apply to the general constrained 
case. Referring to Section 1.4, we recall that the filtration of Q (X) by the 
exterior powers of >J induces a filtration Fp on Q* (X) such that the resulting 
spectral sequence has 

E?' q = Hq, 

EOO > HDR(X). 
Since we are working in the local case, X is contractible and thus EP q = 0 
for p + q > 0. It will therefore suffice to prove that 

.EP=q 0 for p > 0, q < n. 

(An important point to take note of here is that we are studying the characteristic 
cohomology indirectly, i.e., from the knowledge of the E q for p > O and of 

Set D * = FPQ*/FP+1 * and from Section 2.4 recall the weight filtration 
defined on CY` * for all p but non-trivial only for p > 0. Fixing p > 0, there 
is the weight spectral sequence Erk q which abuts to Ep q and has 

Ek, =H(p ) 

where C.' * is the associated graded complex to the weight filtration. Now the 
main point is that, from (1) in Section 2.4, H(?' *) is given by sections of a 
vector bundle over X, and from Section 2.5 we see that 

Thefiber at 4 E X of H(p'*) is given by 

(1) H()Pk')sr = Hk *(AP,M) 

where M is the graded S-module associated to the symbol of the 
exterior differential system. 

This result is valid for any exterior differential system, and it constitutes the 
essential step in relating the characteristic cohomology to the symbol of the 
exterior differential system. 

In the unconstrained case the symbol is trivial, and thus as noted above M 
and the A-exterior products are free QFG S-modules. This gives Ek',q = 0 

for q < n, hence Ep q = 0 for p > 0, q < n, and from this the desired 
result. Q.E.D. 
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Corollary. In the local unconstrained case the sequence 

O _Hn!En d ,n diE2,n d, 

is exact. 
The groups EP " nare for p > 0 the sections of a vector bundle whose fiber at 

E X is given by 
E MS A,M/S+A M. 

Thus the fiber has as basis any set offree generators of A,M. 

Remark. This corollary may be compared with the contact manifold example 
in Section 1. The (elementary) argument given there dealt with the unpro- 
longed, unconstrained case with one dependent variable (which is equivalent to 
rank(M) = 1 in the present setting). In that case it identified ftH with the range 
of a second-order linear differential operator. By prolonging, that operator be- 
comes first-order linear on a suitable jet bundle-it is just the Euler-Lagrange 
operator d: fHn - E1 "n in the present setting. Moreover, the sequence in the 
corollary gives an exact complex with the Euler-Lagrange operator as the initial 
term. 

The above theorem, together with the corollary, contains completely the clas- 
sical formalism of Euler-Lagrange operators, Helmholtz operators, and so forth. 
Moreover, it also contains an "explanation" of the various complicated classical 
formulae as simply reflecting choices of generators for certain free QFG mod- 
ules and then expressing other elements in terms of these generators. We shall 
now explain this. In order to keep the notation as simple as possible, we shall 
do this in the case of one independent variable x and one dependent variable 
u. 

We thus set uo = u and let 

(X, U, Ul1, U2, ...) 

denote the standard coordinates in J' (R, IR), with the contact system having 
generators 

6 = = duo - u1dx, 
01 = dul - u2dx, 

and structure equations 
dOk = Ok+l AdX. 

In this case M - F[x] and the statements that we have free generators 

(i) 1 for ]F[x], 

(ii) {x2k+l A I} for AIF[x], 

translate into the statements that the closed differential forms 
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(o) dx, 
(i) 60 Adx, 
(ii) 02k+6 AG Adx, 

1 1 1 ~2,1 give a framing for H 1 F1 , 
1 E1 

A class [A] E H is represented by a 1-form 

A = f(X, u, ul ..,Uk)dx 

and corresponds to a functional 

fAU =| (X, U(X), U'(X), . ,U(k) (x) dx 

which, for u with compact support, depends only on the class [A] in H . As 
explained in Section 1.4, the Euler-Lagrange equations of this functional are 

d1 [A] = 0. 

By what we have said above, we will have 

[dA] = [dVA] = [E(A) 0o A dx] 

for some unique operator E(A), which is of course the Euler-Lagrange operator. 
To determine E(A) we let _ denote congruence modulo exact forms, and using 
the notations and structure equations from Section 2.1, we have 

d, [A] = [dvA] 

dv1 = ({oo + t9Ol &I+ U02 + )A dx 

- 

60Ao ^dX -0 Ud6O - __ 

l 

aU AdX D(0) aA dX 61 ) dX -( 0 f- Adx f )d)Oo dx l + -f)da 0u 1UI0 U 

(~ 0U D Adx- ) (0 )) Adx dx- * Ad (g D (:{)G Adx+D(:{ dGO+.. 

- f 
D - f +D__ 2_ ta 

0Ax_ 

[afU af 2l ) (af k2 k afU 

where f = f(x, u, ul, ... , Uk). The operator in the brackets is the classical 
Euler-Lagrange operator E(A). The formula for E(A) is simply a reflection of 
how one expresses x , k > 0, in'terms of the generator 1 e IF[x]. 
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We note that if k is the largest integer such that af $ O,then 
auk 

Dk ( ) =a) U2k+ (terms depending on (x, u0, u1, ... , U2, )) 

Thus, unless f is linear in uk, the Euler-Lagrange operator is of even order 
2k. 

We now consider a class [E 00Adx] e El ' 1 where E = E(x, U, u1, . U. , uk) 
and ask when E is of the form E(A) for some A = f dx . Again this depends 
only on the class in El ' 1 of E O0AdX, and by the above corollary the condition 
is d, [EOoAdX] = O. 

By what was said above we will have 

[dv(E OO A dx)] = [H2k+l (E)02k+l A 00A dx] 
-k>O 

for unique operators H2k+l (E). The fact that only odd orders appear is a 
reflection of the fact noted above that in general the Euler-Lagrange operators 
are of even order. Thus, if E = E(x, uo, ul, ... , u2k+l) with aE/Ou2k+l # 

0, then dv(EOoAdx) O9E/Ou2k 02k+l A 0AdX mod{2k- A0, i .. , O1A0}, 

so d, [E0OAdx] $ 0 in this case. These operators will express the Helmholtz 
conditions corresponding to our particular choice of free generators x2k+l Al for 

AITF[x], and determining them explicitly will simply reflect how one expresses 

x 2kAl in terms of these generators. Explicitly, we have 

dv(E0OAdx)= (0O _+ _2 3 __4 ) 

-- 
OA?OA dx = d(Ol AOO) --D (0 ) AO A0Adx, 

aE aE OE aE 
OF~~ OF d(0A 0) -30oD +D (O E) ) 00AdX,A 

002A0Ad _-2D u OUA0d+(o d?A0 

4_AO Adx = E d(03 A) E 03 AOI Adx 
4 ~ ~ 014 014 

tOE a(E\ 

( ) 03 A O A dx d(02) 02 A 0 d) 

(D ) 03 A 00 A dx+D (OF )d2 A Aodx 
-2D (OF 0 AO A dxD~ OF" (OA 0u 3 0~ 2\)0A0d 
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In general, if we write 
2k k 2k-2e-I 2f+1 X Al=E (x (x A1), 

e>0 

then 
H2a+1(E)E=0& ECkD2k-2e-I (Oa ) 

This shows, in the most direct manner, how the A-exterior algebra results di- 
rectly translate into classical formulae, in this case, the Helmholtz conditions 
H2+11 (E) = 0 which are the necessary and sufficient conditions that an expres- 
sion E be of the form E = E(i) for some functional I . A different choice 
of generators for the module AjF[x] would yield a different, albeit equivalent, 
set of equations. 
4.2. Involutivity and A-exterior powers. Let M be a QFG graded S-module 
with minimal resolution 

(1) ?,e' _l- F'e-_ . qF1 ' ) 

by QFG free graded modules FT,. Recall that ? ? n and that 
k k 

(o: Fk Mk 

fI q/ @Ft: v > 1 

f>k+1 

The first of these simply states that ( maps free generators of Fo onto a set 
of generators of M, while the second says that we have chosen a minimal set 
of free generators of Fo with the property, that we then choose a minimal set 
of generators for the relations among the generators of M, and so forth. 

Definition. (i) M is involutive if each Vv , v > 1, has graded degree exactly 
equal to one. 

(ii) The integer ? giving the length of the resolution (1) will be called the 
characteristic number of the module M. 

Intuitively, M is involutive if the relations among a minimal set of generators 
of M are themselves minimally generated by relations in degree one, if the, 
relations among the relations are themselves minimally generated in degree one, 
and so forth. If M is generated in degree zero, then involutivity is equivalent 
to 

H +,q(M) = 0, 
where 

H q(M) = EDH k,q(M) 
k 

is the graded vector space of Spencer cohomology. Whether or not M is gen- 
erated in degree zero, the characteristic number ?(M) is defined by 

t(M) = min{E IHq(M) = 0 for O?q <n--}. 
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Below we shall recall the definition of the Cartan characters s 5i' ..., Sn 
of the first prolongation of an exterior differential system. These integers satisfy 

50-5 - SI>.. Sn 

and are easily computed in practice. Setting 

17i = Si - Si+I 1 i=- 0 1, ... ., n - 1 
and A,n = Sn I the characteristic number ? > 0 is also uniquely characterized as 
the smallest integer so that 

(2) a,n-e $ 0 

and this is how it is computed in geometric examples. We remark that although 
the Cartan characters are not invariant under prolongation, the characteristic 
number defined by (2) is invariant. 

Our main algebraic result is given by the 
Theorem 1. If M is involutive, then so are the A-exterior powers AMM. More- 
over, 
(3) f (ASP,M) _ t (M) . 

Actually, as our proof will show, the inequality ? (AR, M) ? e (M) holds with- 
out the assumption of involutivity and, once formulated and set up, this result 
by itself is relatively easy. 

It is more substantial to understand the minimal resolution of AiM in terms 
of that of M. As we will see below, if there are "sufficiently many" variables 
and if the symbol is generic among involutive symbols, then AIM will be freely 
generated in low degrees but will have relations in higher degrees. It is perhaps 
for this reason that our proof of the theorem stated above is not intrinsic. 

A geometric application results from the fact that 
H "APM) = O, O _ q < n- . 

Before proving Theorem 1, we shall make a few preliminary remarks. For 
these we will let Jo be an exterior differential system on a manifold X0 and 
Eo c TpXO an n-dimensional integral element of J0 . The concept of what it 
means for Eo to be ordinary may be defined (see pages 73-ff in [2]), and Jo 
will be said to be involutive in a neighborhood of an ordinary integral element (if 
such exists). If Eo is ordinary, then the symbol is involutive in a neighborhood 
U of Eo in Gn("0), and moreover the prolongation tower will satisfy the 
regularity assumption of Section 1.3 over U. Here, it will be convenient to set 
X0 = U and begin the construction of the prolongation tower with Xl, and 
when this is done we will say that we are in the local, involutive case. 

Finally, we remark that in practice there is a very effective criterion called 
Cartan's test that allows us to determine when an integral element Eo is or- 
dinary in terms of the Cartan characters sl', S2 ..., sn mentioned above. We 
shall review this at an appropriate time. The upshot is that in practice both 
the issue of involutivity and the characteristic number may be effectively deter- 
mined from the characters si. 

The following application of the theorem follows immediately from the same 
argument as in the preceding section. 
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Theorem 2. In the local, involutive case the characteristic cohomology satisfies 
jq=0 for O<q<n-e 

where ? is the characteristic number of the symbol of the exterior differential 
system. 

In the context of fibered manifolds what essentially amounts to the case ? = 1 
of this result is due to Vinogradov [13]; he refers to it as the two-line theorem. 
An alternative proof of Vinogradov's result is proposed in [11], but we are 
unable to follow the argument. Generalizations of Vinogradov's theorem are 
also given in [1] and [12]. All of these works deal with the situation of fibered 
manifolds and as so formulated do not imply the above result. 

In light of the above result, attention is naturally focussed on the first possibly 
non-vanishing cohomology groups. 

Definition. In the local, involutive case we set ' = Hn'e and shall call ' the 
group of conservation laws of the exterior differential system. 

Much of our subsequent work will be devoted to studying the group of con- 
servation laws in classes of examples and to geometric applications of those 
results. From the characteristic spectral sequence we have 

, ni 2,n-f 
(4) - kerd d:El El 
This rather abstract looking result will in practice turn out to be extremely im- 
portant. In effect, this will allow us to systematically study the conservation 
laws in terms of the symbol, then the subprincipal symbol and so forth. More- 
over, when written out, (4) will give the conservation laws as the kernel of 
a certain canonical linear differential operator and not as a quotient space- 
one may think in effect of having an intrinsic harmonic operator for ordinary 
deRham cohomology. This puts in a general context the phenomena noted in 
the examples in Section 1.1. 
4.3. The tableau and its normal form. We will begin the proof of Theorem 
1 from the preceding section in some special cases. As mentioned there, our 
proof is not intrinsic but will give more than just the statement of the theorem. 
However, we can explain why the estimate t (A.M) ? t (M) should be true, as 
follows: "The characteristic number of M is the smallest integer ? such that 
if we restrict to a generic n - ? plane, then M is free. By Proposition 2 in 
Section 3.2, the restriction of A,M to this n - ? plane will also be free, hence 
the result." This reasoning is not correct, but it is also not entirely incorrect 
and captures the essence of the result. 

We now recall the device known as a "tableau" introduced by Cartan and 
used by him to put a symbol in a sort of normal form (further details may be 
found in pages 141 'ff in [2]). Let W and E be vector spaces, B c W* 0 E 
a subspace, and B c W* 0 SE the submodule generated by B. Then B is a 
symbol and M = W* 0 SE/B is the graded S-module associated to B. 

We may think of B as corresponding to a linear, homogeneous constant 
coefficient PDE system whose formal power series solutions are given by the 
graded subspace 

A c WoSE* 
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annihilated by B. Thus A = Gk?OAk where Ak c W oSkE* are the W- 
valued homogeneous polynomials P of degree k that satisfy 

B -P = 

where B * P E Sk E* . We shall call A = A1 the tableau associated to B and 
shall think of elements L E A as W-valued linear functions on the vector space 
E. Choosing a generic linear coordinate system xl, ... , xn we may then ask 
how many elements L E A are uniquely determined by their restrictions to 
linear subspaces xk+ = k = x' = 0 and whether the restriction of L to this 
subspace may be arbitrarily prescribed. 

To visualize this we let w1, ... , wS E W* be a basis, to be adjusted during 
the following construction, and el, ... , en E E the basis dual to the generic 
linear coordinate system xl, ... , xn, which is fixed once and for all. We denote 
by 

b' b=bAiwa eeW*E 
a basis for B and introduce the spanning elements 67 for the dual space A* 
given by projecting wa 0 e1 to Ml = A*. Then the Oa are subject to the 
defining relations 

a b 6oi = 0. 
We then introduce the tableau matrix 

01 01 01 1 2 n 

0= 

Os Os 
... 

O 

By definition, the Cartan characters so, s1 S S2' ..., sn are given by so = s and 

number of independent 1-forms} 
Si + * * + Sk = Oia in the first k columns of 0 

We first choose our basis wa for W* so that 01 ..., 1l are linearly indepen- 
dent, we then refine that choice so that 01 0Si 0 . Os2 are linearly I' '1 2' '2 independent, and so forth (see page 141 of [2] for further discussion). Then 
Si - 52 _ ... * Sn and si + * * * + Sn = dim A. We may picture the normalized 
tableau matrix as looking like 

1 2 n 

62 

where for ft > Sk the form 06" is a linear combination of the other 67 where k k k d < i.h f se ec i o 
i ? k and a ? si , i.e., the *forms are linear combinations of the other 0 's. 
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Actually, for the purposes of the argument we shall be giving, it will be 
advantageous to organize the normalized tableau matrix into blocks 

where the si are constant in each block. We will develop the proof of our result 
through examination of a number of special cases. Before turning to this we 
will introduce some notation. 

* dx1 and O6 are linear functions on two vector spaces, the dxi being 
linearly independent and the O6 subject to the relations 

bA4i a= 0. 

* qy,q is spanned by the forms 

Oa I'^ A O,aP A dx I A .. A Ndxjq 

and Q*=E Pyq. 
* The differential 

d: jy,q __p,q+1 

is defined by d(dx1) = 0 and 

d6O = -6iAdx', 

together with the usual properties of being a derivation of the exterior 
algebra. 

* We will denote by A* = @ q a complex analogous to S?'q but 
where the number of dx"s is m and where there are no relations on 
the O6-this "free" case models the unconstrained geometric situation 
in which the number of independent variables is m, and we have seen 
that 

(1) ~~~~~H k(A*) = ?~ k < m. 

4.4. The determined case. By definition, the determined case is an exterior 
differential system whose Cartan characters are the same as for a determined 
PDE system 

n constant linear combination 
i/lx = lof &u/&xl, ,Au0xn 

where u = t(ul, ..., us). The Cartan characters are given by 

s1 = .. = Sn-1 = S, Sn =?0 

In this case we may solve for the last column 0n of the tableau matrix in terms 
of the first n - 1 columns 0, 1 < p ? n - 1 . Thus we have relations 

0n = _00 
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where each bl is an s x s matrix. These relations induce relations 

In = bOI 

on the vector-valued forms OJ = t., ,...). When written out fully, these 
relations are 

0an = b apOp, 

In fl IpI 

We shall refer to the case bp = 0 as the split case; on the symbol level it looks 
like the PDE system au/aXn = 0. The opposite extreme is when the bp are 
generic. 

It is well known and easy to prove that any determined exterior differential 
system is involutive. 

The minimal free resolution of the graded S-module associated to the symbol 
is 

0 WI b W* M 

where W*, JJ* are s-dimensional vector spaces with respective bases wa, wa 
and where 

b(wa) = enwa - b aPep * wfl 

corresponding to (1). We want to infer properties of the minimal free resolution 
of the AR M> . For this we will use the standard shift notation P[?] for a graded 
object P-thus P = Gk pk and PV] = Ek p[]k where p[e]k = pk+t . We 
introduce the complexes 

Q'p,q dn AQ'p,q-1 _APn'q-l1] 
lp,= Qp q/Q'p An_ q 

The first line means that Q'* is a subcomplex of Q* which is isomorphic as 
a complex to A*_ [1], this being the case since there are no relations among 
the Oa . In the second line, Q"* is in effect obtained by setting dxn = 0, 
and it is again isomorphic as a complex to A*_. From the exact cohomology 
sequence of 

O Q'/* Q* / 
Q"* 

O 

together with (1) in the preceding section, we obtain 

H p'q Q)=O q<n - 2, 
(1) 
0 HP,n-1(Q*) --HP,n1(Q/*) - Hp,n(Q/*) n HP ' )HP,n(Q*) ' 0 

HP,nl1(A HP,)n-1(An- 11) 

The first result implies (3) in Theorem 1 in Section 4.2, which as one sees is 
relatively elementary once one sets the problem up and has the statement that 
the AiP M are free in case M is. 
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The exact sequence (1) will now be examined, and we shall see. a great dif- 
ference between the cases p = 1 and p > 2. In the former we will see that 
3 = 0, just as if we were in the split case; in the latter almost the opposite will 
hold. 

We first compute 3 in the case p = 1. Setting dxi = (-1)'1dx1A. .. 

dx'A ... AdX , dx' = dxv, dx = (-1) dX A ...AdXA ...AdXi and dx = 
dxl A ... Adx' we have bases 

Oa Adx' for H InI(Q*), 

O Adx for H In( id*) (dx =dxn Adx'). 

Now 

3(Qa A dx') = class of d(Oa A dx') 
= class of -_na Adx 

= class of d(bapo A dxp), 1 < p ? n- 1, 

= class of (-_ )n dx Ad(bflP aO Adxp) 
_~~~~~~~~f 

P 
=0. 

Thus when p = 1 there is no difference between the split and the general case. 
We next turn to the case p = 2. Let E' be the subspace dxn = 0 of E 

with basis el, ... , en_I, S' = SE' the symmetric algebra of E', and M' = 

W* = W* 01 S'. Then as we have seen at the end of Section 3.2, AA2M has 
generators 

e,w A W 

where I = (P1, ..., Pk) and relations 
a fl (_Ik fi Wa= 

eIw AW +(-l) e,w AW -O 

among the generators, where _ is congruence modulo the action of the maximal 
ideal S'+ of SE'. Thus we shall write elements of V' 2M/S+ AM' as 

(2) p= ipeIw AW f + (-, 
III = 

where (t ) fl = Zfla. Now each of H n (Q/I*) and H 2n(Q ') is isomorphic 
to V', and making this identification we shall compute 3: V' - V'. For this 
we introduce indeterminates 4I ..., (n-I and set 

b(4)= jib a4pi bQ) II P~II. 
Proposition. With the above notations 

(Jp()= [^oQ4), bQE)] ( = tb(4)oQ() - p()() 

Proof. We set 
? 1aA A 0 Adx ' H 2'n-I(Q"*) )VI 
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and must compute 

d( o) = class of d9 E HE (Q* )V- V 
Now we have (note the signs) 

d(6O A6V Adx')=6Oa AOfl Adx+6OaA6Adx 

= (b7ap 6' A 0 - b+6p1O A QY) A dx 

_(b ap OIyA 0'-bVP Oa A Y) Adx 

where _ is congruence modulo exact forms and we have used 

d(67 A 62 A dxp) = (Oak A 6y + Oa A O6) A dx. 

The proposition follows by using the symmetry conditions (2) on (a. Q.E.D. 

Discussion. M has a two-step minimal free resolution with minimal generators 
and minimal generating relations given respectively by 

(i) w 

(ii) ew a - b apep * Wfl = O. 

Using the proposition, we will show that AIM has a minimal free resolution 

(3) 0 _+F, AF Fo AIM -- 

where F1 $ 0 and A has degree one. It follows that: 

Al is involutive and ? (AIM) = ? (M). 

We will also see that in the split case F1 has generators in all degrees where Fo 
does, but in the generic case generators of F1 appear only in degrees that are 
high relative to s and n; i.e., in low degrees the generators of A2M generate 
free summands. 

In order to best understand the situation, we will work through the first few 
degrees, and from these draw general conclusions based on the evident patterns 
that will emerge. 
Degree zero. Minimal generators and relations among the generators are 

(i)o w aA/W a<fli, 

(ii)o en(p9aflw AW )-ep ((Iayby w AW) -0 where 

(ii) (a +t = o [(, bp] = 0 for p= 1, ...,n- 1. 

Thus, when we try to "lift" the relations (ii) from M to AIM we are only 
able to lift certain linear combinations (ii) 0, namely those which satisfy the 
equations (ii) . 

Degree one. Minimal generators are a linearly independent set of elements 
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taken modulo those of the form 

(i) lP bp], (P + t( =o. 

Relations among these generators are given by 

(ii) l en *(Vaflep WAw)ea(aybflep W AWf) =0 

where 

(ii) l [b, orP]epe6 = 0. 

Thus we find that the "expected" generators (i) 1 must be corrected by "moding 
out" by the range (i) of the operator (P -+ [(p, bP] whose kernel gave (ii) O, 
and moreover that trying to lift the relations (ii) as in (ii) 1 requires that the 
condition (ii) ' be satisfied. 

Degree two. Minimal generators are a linearly independent set of elements 

(i) 2 qI= fla epewa A W , q + / = 0 

taken modulo those of the form 

(i)2/ pa =[bp ,(o a+ [bp, f (p, 
t 

_ =. 

Relations among these generators are 

(ii) 2 en. *jIIapfepew W - eT * y PWbTe a A W) =0 

where 

(ii) 2 [bp, f t']eepeeT = 0. 

From these first few terms the general pattern is clear. The statements (i) i 
(i) I, (ii) a, (ii) are interpretations of the exact cohomology sequence with the 
various identifications being made. As far as the involutivity goes, from (1) it 
follows that for all p there is a two-step minimal free resolution 

0 -F1,p - Fo,p AM O-+0 

where as graded vector spaces I FQ P/S Fo p coker3, 

FI,PIS+Fl p _ker s, 

deg 3 = 1. 

The mapping 3 probes when a linear combination 

of em ent , s a I A A opn 'A 
O 

P Acdxa b II f + td+ I t l + d f k 

of elements of HP ,n-1 (An_ can be lifted to a closed form 
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of the same weight k - n + 1 as (0. Writing 

O = dy = Edx 
we see that the formula (0 -+ E has degree one, i.e., the relations among the 
generators of AM.M are themselves generated in degree one. 

Finally, again in the case p = 2 we will make some observations about the 
operator 

(4) (o) [(0), b(c)]- 

If, say, degree (o) = 2k - 1 is odd, then this is an operator from a vector space 
of dimension ( 2"2k s(s+ 1) to a vector space of dimension n-1+2k s(s1) of diensin n22k- 2 to(2k )2 
The inequality 

(n- I+2k s(s- 1) > (n-2+2k' s(s+1) 
t 2k J 2 = 2k-1 J 2 

is for s ? 2 equivalent to 

1 + >+ - I + 2k = s- I 
For fixed s and n this inequality is satisfied for 

k < (s- 1)(n- 1)/4 
but not for k > (s - 1)(n - 1)/4. Thus we may expect that for a generic symbol 
the operator (4) will be injective for small k but not for large k. This means 

2~~~~~~~~~~~~~~ that in the minimal free resolution (3) the minimal generators of AIM in low 

degree will be free-i.e., AAM will have free summands generated in the lower 
degrees-but that there will definitely be degree one relations among the high 
degree minimal generators of AIM. In conclusion, we may see that AAM is 
involutive and in general will be a mix offree modules generated in low degree 
together with involutive modules of resolution length one generated in all higher 
degrees. 
4.5. The unmixed, overdetermined case. By definition this is an involutive ex- 
terior differential system whose Cartan characters are the same as for an overde- 
termined PDE system which is not a non-trivial iteration of several systems; it 
is expressed by the condition 

(1) Si=.. Sn-e =5, Sn-f+1 Sn =? 

which is equivalent to the tableau having the block form 

***0*0 .. 

n-i? ? 
In this case we may solve for the last ? columns of the tableau matrix in terms 
of the first n - X, expressed by the relations 

o bi < p, a < n - X, n - + I _i, n. 
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Written out fully these relations are 

(2) 62 = b6 U0 . 

Setting BA(Q) = bP the involutivity of the symbol is equivalent to the com- 
mutation relations 

(3) (gBA(), B, (g)] = 0. 

The minimal free resolution of the graded S-module associated to the symbol 
is 

? - e,. t W1,. W M- + O. 

As will now be explained, this is essentially the Koszul complex constructed 
from the commuting "variables" By(g). For this we introduce a vector space 
V of dimension e and having a basis v2 where n - e + I _ A _ n. We set 

W = W OFrA V 

and define the mapping 

to be that induced by the assignment of generators 

(4) 9l(w 0 v2) = e)w - b epwl 

based on (2). Due to the commutation relations (3), this mapping induces, 

W* (sv--W* W 0SV--*W 
and allows us to define a degree one mapping 

W* (&A kV W* (&A k-V *~~~~~~~~~ * k 

given by 

e w X A A ... AV Ak 
e- - (w C) v Al A . A 

AVA A VAk 

where , is (4). This defines the above complex, which can be seen to be exact. 
We will now show that 

(5) H (AM) =O O50< q < n -e 
For this we retain the notations used in Sections 2.4 and 2.5, and we filter the 
complex Q* as follows: Set 

yP = XP p, a< n - 

|t =x, n- e+1 <A,_u n, 

and write a general ( EKQ* as 
(DP 6a1A I. D.A 

P 
d d IIc1 l 9 9a, . apRK II ^ OP^y^t I|c{,.,n-} 

and then define 
F Q =f: IKI > aK}. 
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That is, FaQ* consists of forms that have at least a differentials selected from 
the last n - e coordinates. Clearly 

Fa+* c F'Q 

d(FaQ*) C =aQ* 

while the symbol relations (2) imply that 

(6) FaQ* /=a+lQ* f%J -a 

More precisely, we identify A*_ with the complex of forms 

II .. 
p 0al A p.. A Oap AdyR Iv C 1, * I n 

tK Then for each multi-index K with IKI = a, we have that dt AVI E F!Q* and 
this induces the isomorphism of vector spaces 

pa Q* /a+l Q* tK d *tK -a 

IKI=a 

inducing the isomorphism of complexes (6). The spectral sequence of the above 
filtered complex has 

=a,b a+b * 

E =0 for O?b<n-e+a 
and this implies (5). 
Remark. The proof shows that the vanishing result (5) does not require the 
involutivity of the symbol; it holds whenever the Cartan characters satisfy (1). 
This will be a completely general phenomenon-the inequality e (ARM) < e (M) 
does not require that the symbol be involutive. The much more subtle question 
of relating the minimal resolution of A' M to that of M will now be discussed 
in the first non-trivial overdetermined case e = 2. 

For this we write the relations (2) as 

n f= pI 

3n1 = lp o3. 
The filtration introduced above has 

F2 = { P 0 I A A ap A dy A dtnd A d 

=1 II f a I K K tn1 F = .. 0 A ... AKOpAdy Adt 
a .. p K I p 

+ 
III .IP 

Kal A A Oap A dy A dtn 

=0 F = {all forms (}j 
Then we have 

H qF )0I q 54 n, 
H ~F/F)=O, q$4n-1, 

Hq(Fol I) = O, q $ n - 2, 
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and the E spectral sequence reduces to the commutative diagram 
0 

1~~~~~~ 
H (F ) 

Hn-2 (F IF 

lao 4, 

o Hn-l(s) ,n HIn-(F1/F2) 2 Hn(F2) , Hn(F1) F 0 

1 1 

H (F ) Hn(F?) 0 

1 1 

o 0 

In the split case do= 1= 2 = 0. This has the interpretation that a resolution 
of M lifts to one of ARM. Thus 

(generators wa, 
M has generating relations rn:enw& = 0, rn- :e n1w- =0, 

I generating relation among the relations: en_rn - enrn- 1=0 

and when p = 2 

generators ( = lW& AW (P + (-l)(It = 0, 

2 generating relations rn given by en f = 0, 
AAM has rn_ I given by en- I ( = 0, 

generating relations among the relations 
given by en_ 1 rn - en rn- 1 = 0 

n=2 nI 
12 

n-2( 01 corresponding to H (F = 1lF/2)H-(0F) respetivl in th 
above diagram. 

n( =2 n I 1 1 2 n 2 In the non-split case the groups H(F ) H -(F /F2), H-2(F0/F) are 
the same and represent what we may call "postulated" generators, relations, and 
relations among the relations. The actual generators are obtained by reducing 
the postulated generators modulo image 62. The postulated relations are af- 
fected in two ways. First, they may not lift to actual relations-only those in 
kernel 2 will do so. Secondly, those that do must be reduced by image 6< I 
Finally, the postulated relations among the relations H -2 (F 0F) may not 
lift-only ker 6, = ker do will do so. In all of this, however, we see that the 
minimal presentation of AIM, and indeed of a general ARM, has mappings 
of the same degree as in the split case. Thus AP.M is involutive. 
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4.6. The mixed case. We shall now illustrate how the general case goes by 
considering a tableau of the form: 

r1 r1 + r2 =s 

r2I 
I. 171~~~~~~~~n + n2 = U 

n, n2 

It is to be proved that 
Hq (APM) = , O < q < n. 

In the preceding section we separated the independent variables (horizontal 
axis) by setting 

yP =XP, 1< p, a < n1, 

t = x, nl + 1<Ai, _n , = a 

and filtering a* by the images Fa of 
0 
o Aa{dtnl+l, ... dtn} ,*+a 

In this case we shall also separate the dependent variables (vertical columns) as 
indicated by the blocks in the tableau and shall separate the effect of differentia- 
tion with respect to the two sets of dependent variables. This method will work 
in general, and, as in the previous sections, the vanishing result does not require 
involutivity of the tableau, this being needed only to insure the involutivity of 
the ARM. The main difficulty lies in organizing the notation. 

Proceeding to the proof, we shall use the above ranges of indices and in 
addition shall let 

JI , J , K c [I nj], 
| R , S c [n, + I n] . 

The symbol relations are 

OIR O mod {,a, OKS} for IRI > O, a > r, 
corresponding to the lower right-hand block a > r1, i > n in the tableau. 
The forms 07, OJR are independent and we look at a typical spanning exterior 
monomial 

(2) 0=aI A Oak A OI1 A ^ O A AdyK AdtS 
II k J1R1 i .Re 

where all IR,I > 0. We set 

w(O) = ISi, 
Fa = {forms (0 with 'w(() > V, 
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where this means that each monomial in the expression of (0 has at least a 
dt A 's. Then we have a d-stable filtration 

Fn2cFn2l c *2 cF1 cF?=QI* 

and from 

d a 
_-Oa Adyp mod {dtnl+l, dtn}, 

dOER =0 GJpAdyP-OfRAdt dJR =-OPR A -JRA Ad 

=a /a+1 we see that on the successive quotients F /F the exterior derivative only 
"sees" dy, ... , dyn' . More precisely, we let 

Q R'tS= {span of the forms (2) where S with ISI = a and 

R = (R1, ...,R) is fixed}. 

Then 
=a1pa+ I eS k t 

k+e=p 
R,S 

=k e If on QR',S we set 

d O d (Oa1 A ...A Oak ) A OElA A.A OE AdyK Adt 
s 

dlIO= (-1) koa AA .. Aok AdY(JAR -- AO J'Rt)Ady Adt 

where 

d 06a=_Oa Adyp, dyOR= -I Ip IdyP, 

dy JR =-JpR d 

then the induced differential d on Fa/Fa+1 is 

d=d'+d". 
Moreover, 

-k,e k+l e 

d':~4 =0 
R 

d": fi k ,t+l 

d/2 = d ,2 = dd" + d?dd= O. 
The point is that both the d'-cohomology and the d"-cohomology look like the 
unconstrained case, and consequently 

H (F/F+)- q < n, + a. 
This implies that 

HaM) s0 q < n 

as desired. 
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The general case will be clear from a three-step tableau: 

n, n2 n3 

We keep the same splitting of independent variables (1) and filtration Fa on 
Q* by the number of dt 's. We shall use the ranges of indices 

| < rl, 1 _ 1 r2, 
1< i,j < n, , n, + 1< p, a < n, + n2, n, + n2+ 1< A, It < n 

and corresponding blocks 
I= (il)... ik) R,S=(P1 ,... ,Pe), M=(A ...' m) 

The following are a basis for the 1-forms in the ideal 
I ' SIR where IRI > ? " 0R where IMI > 0 I IRIRM 

and forms in Fa(FP/FP+l) are sums of monomials: 

(3) , A A... 
Ak A O01 A...A6e A 611 A ...1 AOlm y 

S 
II k I1R1 i lRe 11S1M1 IMSmMMMAy d 

where k +e + m = p, SI + IJI a . As above we may split the induced exterior 
differentiation on PR /FR+ into 

d =d +d + d"' 
where d', d", d"' are mutually graded-commuting and correspond to these 
vertical blocks in the above tableau. Each of d', d", d"' does not effect the in- 
dex blocks R1, I... Re, SIMl, ..., SmMm, and the individual cohomologies 
are all isomorphic to cohomology in the unconstrained case. Unwinding what 
this means yields the desired vanishing result. 

5. STRUCTURE OF THE CHARACTERISTIC COHOMOLOGY 

We have proved that H1q = 0 for 0 < q < n - e where the characteristic 
number e measures the degree of overdeterminedness of the exterior differential 
system. In this section we shall examine the structure of the remaining groups, 
focussing on the space ' = Hn-e of conservation laws for the system. This 
discussion will require that the exterior differential system be involutive, and it 
will show that ' may be canonically identified with the kernel of a first-order 
linear differential operator between naturally defined vector bundles. 

One may ask: Is this rather abstract theorem of practical value for computing 
conservation laws in specific examples? A fair question, one which we shall 
begin to address when we turn to the computation of examples later in this 
paper and, especially, in Part II. 
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5.1. A variant of the Spencer complex. Let (X, Ji) be the infinite prolongation 
of an involutive exterior differential system >0 on a manifold X0 . The exterior 
powers of Ji define a filtration FPQ* (X) whose associated graded we have 
denoted by Q"' * with induced differential d. For p ? 1 there is then defined 
the (non-trivial) weight filtration Wk (Q X *) and we have denoted its associated 
graded by a.' * with induced differential J. The basic property is that 3 is 
linear over the functions, and making suitable constant rank assumptions we 
denote by 9Zr` q the vector bundle over X defined by the cohomology of the 

"k ~ ~ 
comiplex 3} 

k~~~~~~~~ 

WP, q q ( 3). 
We also set 

Xp, q _= 
, 

k 

Now there is a spectral sequence Ep ' q abutting to H* (X) and with 
q~~~~~~~ 

Ep q= Hq (Qp* d) 

E1,q = H1q (our primary object of study). 

The weight filtration then gives a second spectral sequence {Erk' } abutting to 
EP * for each fixed p > 0 and with 

k, _Wp, q 

Our main result thus far has been to infer that Hq = 0 for 0 < q < n - e 
by showing that (i) Xp,q = 0 for p > 0, q < n - e, which implies (ii) 
Ep 'q = 0 for p > 0, q < n - E , and then this implies the above stated vanishing 
result for the H,q .We will now study some aspects of the structure of the non- 
zero part of the characteristic cohomology. To state the result, we denote by 

(1) ~~~~ ~_p q ;p, q+ p>O (l) Vk:~~~k k Zk-l I P > 0, 
k, q ~ k- 

the differential in the Er' q spectral sequence, and we denote by 

V: Xp q _ Xp,q+I 

the direct sum over k of the mappings (1). Then V2 = 0 and the cohomol- 
ogy of the complex {P *, V} computes the E2-term of the weight spectral 
sequence for each p > 0. Our result is given by the 

Theorem. (i) In the involutive case 

E 1q = Hq(X ,* V). 
(ii) For all p > 1, 

is the subspace given by the kernel of a canonical linear differential operator. 

Corollary. F kerVVnker d where V: XI,n-__ XI,n-e+' and d E1, n- 

E2' n-i are canonically definedfirst-order linear differential operators. 
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Proof. We have seen in Section 4.1 above (see equation (1) there) that Zp q 
is the vector bundle whose typical fiber at a point 4 is 

H +q (APM ) 

where M, is the graded module associated to the symbol of the exterior differ- 
ential system at the point X, and where Hq (q) refers to (the dual of) Koszul 
homology in module degree m . The index k + q appears above and the weight 
filtration encodes both the module degree and the exterior degree. 

When p = 1, since M is involutive and is generated in degree zero, we have 
that 

Hq(M) = O. 
Thus the weight spectral sequence degenerates at the E2-term, and 

E2=H*(E1lV) 
Unwinding the notation gives the first result. 

The remaining part of the theorem follows from general properties of spectral 
sequences {Ek, } with Ek,q 0 for O? q < n -e . Q.E.D. 

Discussion. The complex {I * V} will be called the universal Spencer com- 
plex. We shall explain this point. 

Referring to the notations introduced in Section 2.1, in any local coordinate 
system (xi, u&, Pi, Pi, ...) on G, .(Xo) there is a splitting 

d = dv + dH 

of the exterior derivative into "vertical" and "horizontal" components. Explic- 
itly, 

00 

v= E /OPK K 
II1=0 

a a where we have set p0 = u 

dH = EDidx', 
0.0 

Di = a/axi + E /PI PIE. 
I11=0 

For any integral manifold 

f:N Gn,oo(X0) 

of the universal Pfaffian system 7 = 0, III > 0, on X, we have 

f* do = 0, 

f*dHOa =0. 

In fact, if the integral manifold is given by 

(xi) -+ (xi, ua(x), pa(x), paj(x) ...), 
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then for any function (0 on X 

f*(Di#) = al/xi (fP) 
so that Di is a "universal form" of 0/Ox'. 

Let now X c Gn n,0(X0) be the underlying manifold of infinite prolongation 
fi of an involutive exterior differential system _0 on X0. We have seen that 
the equations defining X are 

DIF = O 

where F(x', ua, p P) varies over all the functions on G* (TXO) defined by 0 E 

_10, 
n i.e., 

F(E) = IE 
for E E Gn(TXO) . It follows that the vector fields DiIx are tangent to X and 
induce vector fields on X that we still denote by Di . In these local coordinates 
the operators 

are then easily seen to be horizontal, in the sense that 

V=EA'Di+B 
where A', B E Hom(*l q, 1 l1+1) are bundle maps that are linear over the 
functions. It follows that {Z& ', V} induces on any integral manifold 

f:N - X0 
of X0 a complex of vector bundles and first-order linear operators, which we 
shall denote by {IZ, Vf} . In fact, it may be seen that {I-, Vf} is just the 
dual of (a suitable relabelling of) the Spencer complex associated to the PDE 
system which is defined by the exterior differential system )0 in our particular 
local coordinate system (cf. Chapters IX, X of [2] for a discussion of the Spencer 
complex and further references). 

One may invert this discussion. That is, not knowing what Spencer cohomol- 
ogy and the Spencer complex are, one is led naturally and inevitably to them 
once one agrees to study the characteristic cohomology of an exterior differential 
system. 

The first term in the Spencer complex is 

(2) Vf: f > f 
and it is an interesting point that the universal conservation laws appear natu- 
rally as a subspace of ker Vf in (2). 

What the theorem and its corollary give is that the space of conservation 
laws is given by the kernel of a canonical linear differential operator, modulo 
nothing. We have seen a special case of this in the contact and symplectic 
manifold examples in Section 1. In the case of determined PDE systems, this 
phenomena has been formulated in coordinates and used to compute examples 
by Vinogradov [15] and others. As we shall see in Part II of this paper, the 
result itself is of some use, but most importantly it serves to guide the generally 
complicated computations that arise in non-trivial applications of E. Cartan's 
equivalence method. 
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5.2. Quadratic conservation laws for constant coefficient linear equations. As a 
first application of the general theory in the preceding section, we shall inves- 
tigate the space of conservation laws associated to a constant coefficient linear 
PDE system. We first consider the determined case which in suitable coordi- 
nates may be written as 
(1) OU~ala(X) -bapaUf Ou(x) <p 
(I)aXn 

=P a(p), l_pcr<n-l 

where the bP = libPI j are constant matrices. Associated to this system is its 
symbol and we denote by M the graded module associated to the symbol. De- 
noting as usual by (xi, Ua, pa, pa,...) the natural coordinates on the space 
J?(7Rn , RS) of infinite jets of mappings from Rn to IRs, we observe that the 
group of gauge transformations that leave invariant the property that (1) be a 
linear, homogeneous constant coefficient equation will in general be equal to 
GLn x GL5, and it is this symmetry group that we shall take. We are interested 
in conservation laws that are invariant under translation in Rn, and for rea- 
sons to be explained below we shall focus on those represented in El n-i by 
translation invariant forms whose coefficients are linear in the jet coordinates 
ua, pa ,a The following will also be explained below: 

Definition. Conservation laws represented in El' n1 by translation invariant 
forms whose coefficients are linear in the jet coordinates will be called quadratic 
conservation laws for the PDE system (1). 
Theorem. The space of quadratic conservation laws for (1) is naturally isomorphic 
to Hn -I (Sym2M). 

Thus, the A-multilinear algebra appears once again, in a different form, in a 
natural way associated to a geometric problem. 
Proof. We shall use the notation in the preceding section. For a point 4 E X 
we shall successively compute that part of 

(i) ?ln- 

(ii) V:,ZT' n- ,,,1n 
(iii) d :ker V y 2,n-I 

corresponding to forms that are translation invariant and linear in the jet coor- 
dinates. By the corollary in the preceding section, the kernel of (iii) is identified 
with the space of conservation laws for (1). 

Step one. We first recall notation. 
* dx' and 6 are linear functions on two vector spaces, the dx' being 

linearly independent and the Oa subject to the relations 

a I ba 6hi= ?* 
* Qq is spanned by the forms 

0a,1 A ... A Oap A dxjl A . .. A dxjq 
1 P 

andQ= Q' . 
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* The differential 
d: Qp,q 

-4jp, 
q+ 

is defined by d(dx)= 0 and 

diO _OIaAdx', 

together with the usual properties of being a derivation of the exterior 
algebra. 

* We will denote by A* = eAp q a complex analogous to Up, q but 
where the number of dx 's is m and where there are no relations on 
the 6 -this "free" case models the unconstrained geometric situation 
in which the number of independent variables is m, and we have seen 
that 

H k(A) =O, k <m. 

In order to compute the fiber 
I Hn-IH' n-I (Q* d) 

we proceed as in Section 4.4 and set 
'p, q =AXn 2 Apjq-I .APnql 

lip, q Qp, q /'p, qAp, q 
92/ n-1P 

In the exact cohomology sequence 
O - HI,n-I1 (Q* ) -+HI' n-I1 (Qt* ) a H' n (Q/* 

we have 6= 0 as noted in Section 4.4. In fact, given 

=f Oa AdXn EIHI-IQ2 

we see that 
afoA dX 6-f?bfl) A dxp 

satisfies 
5o =O 

and thus gives a class ( E Hl'n 1(Q*) which serves to provide a lifting of the 
class defined by o E Hl,n-l (QY*). 

Step two. We will consider sections 

( = f Oa AAdxf afiblP6 
AidX 

of ApI,n-1 where fa is a function on X. In fact, we shall consider functions 
of the form 

fa S fa1fiPI 

M>10 fi 
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that are linear in the fiber coordinates, and where we set u' = pO. As noted 
above, this has intrinsic meaning, and by a scaling argument in the independent 
variables x' we see that it will suffice to consider the case where 

fa E fa1fPI 
III=k, f 

is homogeneous of degree -k in the dependent variables. We want to compute 

V ,g;Xl, n-I o l, n 

for p EA1,n-1 of this form. By definition 

Vp = dfq mod>JAYJ 

= (Dnflf-DpfA bfP) G A d x 

= (fDflPin - D PfbfbP) Oa A dx 

= (f'fblP - blPf7) p;yoa A dx. 

If we set 

o(')= lfa8(lf) =fa 

then we have 

(2) Vf = o 4) , b(4)] = O 
We note the analogy with the proposition in Section 4.4, where the condition 
[(0 (c), b(4)] = 0 arose in a different context. We note there the symmetry 
condition 

( + (-1)lIItq = 0 

that was imposed on p . 
Step three. We assume that 

I f #Oaadx fI pYbfPttOa Adx E El n 
fa l I n fiy I a p1 

satisfies Vo = 0, and we want to compute the condition 

digo=O in E2'n-I 
For this we denote by E', E"' the spectral sequences associated to the bigraded 
complexes Q'*, Q"* respectively. Then we have a diagram 

O E2,n-I E Elt2, n-I 
1 1 

Id dl' 

O l,n-l ,n-1 

from which we see that 
di 0 = 0 A=s d70" =0 
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where 
0 fapP4I AdXn 

is the image in E"11,n-1 of 9 E El 1n. 
Now 

di j a8?4 A 0 A dXn. 

Setting fA= it+ ffl where 

ffal= 1 (fi + (')Ji+a) 

fafl ( -2 1 f Ia \ ) IIa 

faf8i2 fai3 - k' fla) 

we see from equation (3) in Section 3.2 that 

d7(0" =O?=ffl =0. 

Thus 

(0v =ffIOp1 A dXnfI paPbP 
O 

A dxp Ja8I nflayI afp 

(3) {V(0=dl(=O}X4. where [9(4),b4)]=O and 

(0) - (-1)IIIt V(4) = 0J 
By (3) in Section 3.2 the space of 0 satisfying the condition 

(0) - (-I q t(4) = 0 

is isomorphic to Hn -(Sym2 M') where M' is the free module over S' 
F[e,., ene1] with generators w1 , ..., wS . It remains to identify those 9 
satisfying both conditions on the right-hand side of (3) with Hn n (Sym2 M). 
This is done in essentially the same way as for AlM', and we will only sketch 
the argument. 

In general, to compute the Hq(Symip,M) we consider the complex Q - 

EDfp" of forms 

'A' ~ V~aa 1...a0J 11 v = Va 'P it)I (& ooPXdx, IJJ = q 

where the Oav are independent forms multiplied symmetrically. We define a 
differential 5 by linearity and 

3(70aI 1o ... o 0aPdxJ) =E 1 o ... o(06 )o * oa P dxJ, 

6 (Oa) = Oa (g dxp + b ap "60 dxn, 1 < p < n -, 

where we move multiplication by dxj across the 
a " and exteriorly multiply I 

it with dx"'. Thus, more or less by definition, the cohomology of this complex 
at the place with p O 's and q dxi 's computes Hq(SymP M) . 
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We next set Q = dxfAQ* and Q"f* = Q*/'*, and note as in the case of 
A,tM we have 

tH (f*)=o, q <n, 
H Hq(* ) = 0, q < n -. 

From the exact cohomology sequence 
Hn-I (i2, * n-I (Q't2' * n ' * ) 

0 ---+ H 42 H)-6H (Ki2 
for a class in Hn-1 (2 *)= Hn-l(Sym2M') represented by 

-I a fi I ITIIJ 
fa'' = '0, o ? g3 dxn, fa-(-l1)' 'f = O 

we have as in the proposition in Section 4.4 that 

do" = 0 [(p(4), b(Q)] = 0. 
Since ker 5 _ H n- (Sym2 M), we have completed the proof of the theorem. 

Discussion. The conservation laws F = E? ,ni map injectively to El n-i by 
OEn-l in-l 

The above theorem identifies the classes in E1 n - that are in the image of dl 
and that are linear in the jet coordinates. But since d, is determined by the 
rules 

d,(Ga) = d (dx') = O, 

d, (f) = Zaf/0l,pa6 
On-i 

we see that dl maps exactly those classes in E?' that are quadratic in the 
pa 's to classes in El , n I that are linear in these coordinates. This explains the 
above definition. 

Now, in the classical calculus of variations perhaps the most interesting La- 
grangians are those of the form 

L(x , u , p, ...,p)dx, III < k, 
which are quadratic in the highest order terms. Similarly, as illustrated by the 
various classical conservation laws and the KdV, we may expect conservation 
laws that are quadratic in their highest order terms to be of particular interest. 
It is for this reason that we have focussed on the quadratic cpnservation laws 
in the above theorem. We note that finding these indirectly by studying classes 
in El' -n that are linear in the pi and satisfy certain conditions appears to 
be considerably more efficient than directly studying the quadratic conservation 
laws. 

6. GLOBAL RESULTS 

The results obtained thus far are microlocal, in a precise sense to be explained 
below. In this final section we shall give a global theorem in cohomology, one 
which follows in a more or less standard way from our local result, and then 
we shall discuss a more geometric dual set of questions which pertain- to a very 
prescient theorem of Thom [10]. 
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6.1. A relation between ordinary and characteristic cohomology. Let Jo be an 
involutive exterior differential system on a connected manifold X0, and as 
above denote by (Xk, Jk) the k-th prolongation with X = lim Xk and J = 
>0 Uk>0 gk (cf. Section 1.3). Since F0 may not be a quasi-linear Pfaffian 
differential system, we need to be a little careful about what is meant that >0 
be involutive. Denote by G (J0) c G (TXO) the set of n-dimensional integral 
elements of F;. A priori, Gn(>F) is locally the locus of common zeros of 
a collection of smooth functions defined in an open set of Gn(TXO) (these 
functions are of the special form given in Section 1.3, but that only serves to 
restrict somewhat the singularities of Gn (JF) in the fibers of Gn (TXO) ---+ X0). 
We shall make the following regularity assumptions: 

There exists a connected, locally closed submanifold X1 of Gn(>0) such that 
(i) each point E e X1 has a neighborhood U in Gn(TXO) such that U n 

X1 = U n Gn(J0) and such that the forms in JO give a regular set of 
defining equations for U n X1, 1 

(ii) Xl consists of ordinary integral elements, and 
(iii) the projection X1 -* XO is a submersion. 

The concept that E E Gn(Y) be ordinary is also explained in Chapter III of 
[2]; in the real analytic case it implies that there is a local integral manifold 
of J0 that is tangent to E. It is also shown there that with the assumptions 
(i)-(iii) the prolongation tower (Xk, Jk) exists and satisfies the conditions of 
Section 1.3 above. In particular, for k > 1 the submersions Xk+l -4 Xk are 
fibrations whose fibers are affine linear spaces, and thus the projections Xk -X 
are all homotopy equivalences. (For more detail, the reader may want to consult 
Chapter VI of [2] as well.) 

By microlocal we shall mean in a sufficiently small neighborhood in XI of 
an ordinary integral element E E X1. Our main vanishing result, given by 
Theorem 2 in Section 4.2, states that in the appropriate range the characteristic 
cohomology vanishes microlocally, i.e., it vanishes in the range 0 < q < n - X 

in open sets xr l(U) c X where 7r:X -> Xl is the projection and U c Xl is 
a sufficiently small open set. We shall now prove 

Theorem 1. Let JO be an involutive exterior differential system of character ? 
and with trivial infinite derived system. 2 Then we have 

(i) H R) ( O < q < n - 
(ii)O 

) 
n- 

t(X , 11) 
n-e ( x O 

(-t) 
Hn-t+l 

(X R 

where 2q is the q-th characteristic cohomology sheaf on X. 
Proof. We recall that the topology on X is defined by taking the open sets to be 
7k l(U) where U c Xk is an open set and 7rk: X -* Xk is the projection. Then 
we define the sheaves Qq, yq = q by considering the appropriate 

1 In Chapter III of [2] there is an explanation of how forms on XO give functions on G (TXO) 
and what it means for a set of such functions to give a regular set of defining equations. 

2 This means that there are locally no non-constant functions f with df E go-geometrically, 
it means that locally there are no "inessential variables" in the system. 
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smooth forms in the open sets 7k 1(U). We then have a complex of sheaves 
over X 

a O d nI d d 2q d 2q+I d } 

and we denote by jq the cohomology sheaves. By the assumption that 4 
has a trivial infinite derived system, it follows that 

-?o _ R 

is the constant sheaf. Our microlocal vanishing theorem gives 

aq = 0 for 0 < q < n - t. 

The results (i), (ii) are then a standard consequence of these two facts. 
In more detail, denote by H(Q ) the hypercohomology of the complex of 

sheaves Q . Then there are two spectral sequences 'E and "E each abutting 
to H(?F), one where 

%Ep q = H pq) 

and the other where 
'Elp Hd (H',5 Q) 

Here, a is used to denote the Cech cohomology of the sheaf in question. But, 
by the usual partition of unity argument, H'?(Q2) = 0 for p > 0 and so 

"E'q- ?' p > ?, 

1 -| q(X) p=O. 

On the other hand, EP q = 0 for 0 < q < n - X, and the "picture" of the 'E 
15 

HO (AP n-) k n 

1S~~~~~~~~~~~~~~~~~~~~S 

H i(X) H Hn-I (X) Hn"-,+I(X) 

The result follows from this. Q.E.D. 

6.2. >J-homology. Let / be an exterior differential system on a manifold 
Y. We let Aq denote a standard q-simplex and consider mappings 

f:Aq- Y 

that are of class C' on Aq, including on the boundary, and that satisfy 
f*0 = O, E 
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We will call such a simplex a ,f-simplex, and we may then define a f,-chain 
to be a singular chain each of whose simplices is a ,f-simplex. The boundary 
of a OF-chain is again a f-chain, and we denote by 

H* ,(Y) 
the resulting homology. 
Definition. We shall call H* ,(Y) the f-homology of the exterior differential 
system f. 

This concept has been introduced by Thom [10] in the special case when Y is 
an open set of Jk (Rn , Rs) and f is the restriction to Y of the contact system. 
He proved a result which is in a certain sense dual to the 1-line theorem of 
Vinogradov (i.e., Vinogradov's result [13] in the unconstrained case), although 
it neither implies nor is implied by Vinogradov's theorem. We will formulate 
and discuss a possible extension of Thom's result. It must be emphasized that 
the following discussion is highly speculative and is not intended to be anything 
more than suggestive. Apparently, there are great technical difficulties to be 
overcome before an actual proof of any of these results can be constructed. 
We have included this discussion here mainly because it indicates a geometric 
interpretation of the characteristic cohomology which we believe will have great 
importance for the theory. 

First, remark that if we now denote the characteristic cohomology of the 
complex (Q*(y)/f d) by 

H (Y) = H* (Q*(Y)/ , d), 
then there is a natural pairing 
(1) H>(Y) 0 Hq (Y) R 

A natural question then is whether the F-de-Rham Theorem holds. In other 
words, is the pairing (1) non-degenerate? We will see that, although in general 
the answer appears to be no, the question presents some very interesting and 
highly non-trivial issues. 

There is always a natural mapping 
Hq (Y) - Hq(Y) 

(homology with Z-coefficients), and by analogy with Theorem 1 in Section 6.1 
above, we may pose the 
Question. In case JO is an involutive exterior differential system of character 
? with trivial infinite derived system, do we have 

J (i) Hq (X) ?H O _ q < n -(X) 
( (ii) Hn_ e(X) - Hn(X) 0? 

Thom's result is that the answer to the same question for Y an open subset 
of J k (Rn, ]Rs) is affirmative, so that we have 

Hq (Y Hq(Y) < q < n, 

Hn,of(Y) nH(Y) -0 
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We will indicate how the type of arguments Thom used might be used to 
establish (i) and (ii) above in the case where `7 satisfies the condition that it 
"has no real Cartan characteristics in the range 0 ? q < n - ? ", a condition 
that we shall explain below and which is satisfied for the contact systems. 

A technical issue that arises concerns the level of smoothness that we require 
of f-chains. Thus consider the induced mappings 
(3) Hq,+ (Xk+l) -Hq,_(Xk), k > 1. 

These mappings are all isomorphisms in ordinary homology and HB*(X) _ 
H*(Xk) for all k ? 1 . If we have a piecewise- Cj Jk-chain Fk on Xk, then 
its prolongation Fr is a piecewise C'1 chain on Xk+l . But unless j _ 2 we 
cannot say that F* will be a `4+ -chain. Moreover, even if j _ 2 and rk is an 
Jk-cycle on Xk, it may not be the case that Fr is an k+I-cycle since the edges 
of Fk may separate under prolongation. Although we see no real reason why 
(3) should fail to be isomorphisms for all q, we shall not pursue this matter 
here and shall restrict our attention to X1 . Similar arguments to those below 
will apply to the other Xk . 

Next, we point out that the question (2) is essentially local. That is, suppose 
that for sufficiently small neighborhoods U of each point in X1 we have for 
the reduced <Y-homology groups 
(4) Hqj, J(U) = O, O q < n - t. 
Then by standard local-to-global arguments such as those used in the preceding 
section, we may infer (2) with X1 replacing X. 

To discuss (4) it will be notationally more convenient to use cubes, denoted 
by Oq or simply C if the dimension is understood, rather than simplices. To 
establish (4) the following sort of result must be proved: 

Let 0 ? q < n - ? and let X c 0aq+1 be a set of q-dimensional 
faces of the boundary of a (q+ 1)-cube. Suppose that 

(5) f: X_ U 
is an >,-integral manifold that has an extension as a piecewise- 
CI mapping to all of Oq+l Then f may be extended to a 
piecewise- C1 J>l-integral manifold. 3 

By arguments of the type used by Thom, the crucial case is when T = AOq+ 
and this is the situation that we shall discuss. 

Thus, let 0 q < n - i and let 

(6) fO aoq+l -* U 
be a piecewise- C1 4-integral manifold where U is a sufficiently small neigh- 
borhood of a point in Xi . We shall sketch arguments to the effect that: 

(i) In case (6) is in general position, f may be extended to a piecewise- C' 
>,j-integral manifold. 

3 This means that O may be subdivided and a continuous mapping f exists which is a C 
integral manifold on each of the subcubes. 
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(ii) In case there are no real Cartan characteristics, we may deform f to be 
in general position. 

The essential case to understand (i) is when SO = SI = 52 > S3 ? 0. We shall 
take first the case s3 = 0 (and n = 3), and then indicate the modifications 
necessary in general. 

Locally we may choose coordinates (x, y, z, u, p, q, r) in Jl (R3, RS) such 
that the constant system is, as usual, 

0 = du - pdx - qdy - rdz = 0 
where u, p, q, r are Rs-valued, and such that X1 is locally given by an 
equation 

(7) r=F(x,y, z, u,p, q) 

where F is defined in convex open set in R3+3s . The integers n and ? are 3 
and 1, respectively, and thus the relevant dimension range is 0 ? q < 2. 

Suppose first that q = 0 and 01a is comprised of the two points T1 = 
(xi, yi i zi, ui, pi , qi, ri), i = 0, 1, and where ri = F(xi, yi , zi, ui, pi , qi)i 
We want to find a piecewise-C' arc y(t) with y(O) = yo, y(l) = y, and 
satisfying 

(8) f r(t) = F(x(t) , y(t), z(t) , u(t) , p(t), q(t)) 
t u (t) = p(t)x'(t) + q(t)y'(t) + r(t)z'(t). 

Given x(t), y(t), z(t), u(t) these are a set of finite (i.e., not differential) equa- 
tions for p(t), q(t), r(t). Moreover, these finite equations are underdeter- 
mined. Thus we may expect that in general-i.e., when suitable open general 
position conditions are satisfied-we may solve these equations. 

In fact, in the case q = 0 we may always solve the equations (8). If 
(xO, yO, zO) : (xI, , y, z,), then we may assume that xo : x, and yo = 
Y,, Zo = Z1. We may then take an arbitrary arc x(t) with x(O) = xo, 
x(l) = X1, x'(t) :$ 0, and set y(t) = z(t) = 0. We then choose a function 
u(t) with u(O) = uo, u(l) = ul, u'(O) = pOx0, u (1) = plxl and then set 
p(t) = u'(t)/x'(t). Finally we may choose q(t) to be any arc with q(0) = qo, 
q(1) = to have a solution to (8). Of course, we must take care to insure 
that (x(t), y(t), z(t), u(t), p(t), q(t)) remains in the domain of definition of 
F, and this may be done by subdividing the interval and using a piecewise- C' 
arc. 

If, on the other hand, (xo, yo, zo) = (x, , y, z, ), then a similar argument- 
in fact with the same notation-applies. 

Remark that in general the case q = 0 of (4) follows from Chow's theorem 
(see Chapter 1 of [2]), and indeed one may view (4) as an extension of that 
result. 

More interesting is the case q = 1. -If EO is the unit square 0 ? s ? 1, 
0 < t < 1 in the (s, t) plane, then we must find a ma-pping 
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satisfying 

(i) r=F(x,y, z, u,p, q), 
(10) < (ii) u,=px +qy,+rzS, 

(i)Ut = pxt + qyt + rzt, 

and where (9) is given on the boundary of the square such that (10) is satisfied 
there. If x(s, t), y(s, t), z(s, t), u(s, t) are given arbitrarily, then (10) 
is a determined set of finite equations. Equations (10)-(ii) and (10)-(iii) are 
analogous to the equations encountered in Thom's result, and we may seek to 
adapt his arguments to our situation. In fact, this may be done provided that 
the boundary conditions are in general position. Thus, assume that the image 
of O9 is in general position in the sense that we may choose coordinates so 
that the projection of i9L to the (x, y, z) space is the unit square in the x, 
y plane. Then we may replace s, t by x, y and seek to determine a mapping 
of the special form 

(x, y) -* (x, y, 0, u(x, y), p(x, y), q(x, y), r(x, y)) 

such that (10) is satisfied. Equations (10)-(ii) and (10)-(iii) reduce to those in 
Thom's theorem, with no equations involving r since zx = Zy = 0. Having 
solved for p and q, equation (10)-(i) then gives us r. Moreover, if u, p, q 
satisfy the boundary conditions, then so does r. Summarizing, if the bound- 
ary conditions are in general position, then Thom's arguments may be used to 
establish (5) in the case s0 = sI = s2 , S3 = 0. 

We now point out that the arguments continue to apply-and indeed are 
"easier"-if s3 : 0. In this case we may decompose Rs = Rs' 3 R S- S3 (s = 

So = S1 = S2) and correspondingly write v E IRs as v = (v', v"). The equation 
(7) is then replaced by 

r F(x, y, z, u, p, q, r), 

and the argument proceeds as before. It is "easier" in the sense that not only 
u but also r' may be prescribed arbitrarily, subject to open conditions in the 
Cl-topology plus the boundary conditions. 

In summary, then, (i) above might be provable by arguments of the type used 
in [10]. It remains to explain how the absence of real Cartan characteristics 
allows us to achieve general position for the boundary conditions. 

We recall from Chapter V in [2] that characteristics arise when the rank of 
polar equations of integral elements falls below the maximum. To say that J0 
has no real Cartan characteristics in the range 0 < q < n - e therefore means 
that in this range the polar equations have constant rank. If E' is an, integral 
element of dimension q ? 1, then this rank is si + * + Sqf (the case q = 0 is 

trivial, and all E0 are non-characteristic). 
As examples, we note that this condition is satisfied for the contact system on 

Jk(n n, Rs), and indeed for any system whose symmetry group acts transitively 
on the q-dimensional integral elements for 0 ? q < n - e . The condition is 
clearly generic and open. On the other hand, for the exterior differential system 
arising from the 0-operator in m complex variables, we have n = 2m and 
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? = m; moreover, if m ? 3 there are real Cartan characteristics in dimensions 
2 ? q < m even though the system itself is elliptic. 

The way in which the non-characteristic condition arises is this: Referring 
to the special case s = S0 = S1 = s2 s3 = 0 discussed above, suppose we have 

f:E12 __ U c X1 . Then we wish to deform f in a neighborhood of a point 
p E On in order to get it in general position at p. The way to do this is to 
construct a little piece of integral surface near p 

f(p) 

f(p) 

and replace f by f given on the other side of the piece of integral surface. 
Now since we are in the range 0 < q < n - X, constructing the piece of integral 
surface involves solving finite, not differential equations, 4 as we saw above. 
Infinitesimally, constructing the piece of integral surface amounts to solving the 
polar equations 

(4, v) = O, E3t E 2 
where 4 is the tangent to f(aOL) at f(p) and v E Tf(p)(Xl) * So long as these 
equations do not have jumping rank, we may smoothly do this. In terms of the 
coordinates used above, the absence of real characteristics means that for any 
(not just a generic) choice of coordinates (x, y, z) in 1R3 we may solve for r 
as in (7). 

In concluding this discussion, we mention that we are not saying the presence 
of real Cartan characteristics necessarily provides an obstruction to the validity 
of (4). What we are saying is that such characteristics provide singularity issues 
that go beyond those that arose in Thom's paper, and which clearly merit further 
investigation. 

6.3. Moment conditions. We retain the notation of the preceding section, and 
shall work locally. In building up integral manifolds the critical dimension 
is n - e, for it is here that the transition is made from "strip conditions" to 
what might be called "honest differential equations". S A very natural question 
to consider is the Dirichlet problem in the critical dimension: 

Given an integral manifold 

f: Sntf X 

4 What is going on here is that we are discussing the classical strip conditions used to prescribe the 
boundary values of a PDE in terms of a certain number of arbitrary functions and their derivatives. 
Since we are in the range 0 ? q < n - e there are no conditions imposed on the derivatives of 
these functions, in the sense that the number of equations is insufficient to impose such conditions 
provided that we are in general position. 

5 Strip conditions for q-dimensional integral manifolds in the range 0 _ q < n - e are parame- 
trized by s = sq arbitrary functions of q-variables (arbitrary means subject to open conditions in 
the C I -topology). In contrast, the integral manifolds of dimension n -e + 1 are given by S < s 
arbitrary functions of n - e + 1 variables; the remaining s - sn_-+1 functions will be subject to 
non-trivial closed conditions given by the imposition of a PDE system. 
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what are the conditions that it extend to an integral manifold 
FBn-e+l 

Here, Sn -e and Bnft+l are the standard sphere and ball with B n-e+i = 
Sne ; since we are working locally we may assume that a topological extension 
F exists. The "moment conditions" are the homological obstruction to the 
Dirichlet problem. More formally, 

Definition. Let K be the kernel of the natural mapping 

Hne g(X))Hn-t(X) 

Then the moment conditions are 

K* = Hom(K, R). 

There is an obvious interesting mapping 

(1) , W , K 
from conservation laws to moment conditions, and in this section we will discuss 
a number of examples of ,u. Roughly speaking, it seems that ,u should be 
injective and will sometimes, but not always, be an isomorphism. 6 In these 
examples, which are drawn from those in Section 1, we will work locally so that 
Hn _ (X) = 0 and (1) reduces to 

(2) -u:F - Hom(Hnte,_(X), R). 

We will also follow the notation of that section, and will therefore replace X, 
>J and F by XO, J0 and Wo as we shall be working with the non-prolonged 
systems. 

Example 1 (the contact system). In this case dim XO = 2n + 1 and J0 is 
generated by 

n 
0 = du - Epidx'. 

i=1 
Also, since t = 0 we should think of Hn _ (X0) as "compactly supported ho- 
mology". Thus, "cycles" are given by integral manifolds x -* (x, u(x), Du(x)) 
where u is compactly supported, and no two cycles are homologous since there 
are no (n + 1)-dimensional integral manifolds. The space of conservation laws 
is given by functionals on integral manifolds, and (2) amounts to the mapping 

A f)4| (x, u(x), Du(x))dx 

where u(x) is compactly supported. To prove that ,u is an isomorphism means 
to show that: 

(i) f )(x, u(x), Du(x))dx = 0 

6 We have not proved that it ever fails to be an isomorphism; this seems to require additional 
foundational work. 
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for all compactly supported u X the class of A(x, u, p)dx is zero in ft-i.e., 
Adx is a divergence, and 

(ii) fA(x, u(x), Du(x))dx = A(x, i(x), Dui(x))dx 

for all A i u = u. 

Both of these are elementary to prove. 

Example 2 (the symplectic system). In this case dim XO = 2n, n > 2 and J0 
is generated by 

o= ZdpiAdx'. 

Also, from Section 1 we recall that n - ? = 1 and that Wo is one dimensional 
and generated by any 1-form 6 satisfying 

dO = 9. 

The space H1 >_(XO) is given by closed curves modulo the equivalence re- 
lation that y 0 in case y = OF where V is a piecewise- C1 2-chain whose 
simplices are Lagrangian surfaces. We will prove two special cases towards 
showing that (2) is an isomorphism. 

To do this we first consider the case where y is the image of a mapping 

f: S -+Xo 
1 ~~~~~~~2 where S is the unit circle in R . We will show that f extends to a mapping 

2 X F:B -*0 

satisfying 
F*O=0 

if and only if the moment condition 

ff*0=Q 
Si 

is satisfied. 
Choose any base point PO E S1 and set 

u(P) = f*O. 
PO 

This defines a function u on Si and we have a diagram 
J 2 

I -r 
U - - - - 1 
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where Y = XO x IR and f = (f, u) (cf. Section 1). By construction, 

f*(du - O) = 0 

and we may then extend f to a mapping 

F: B -Y 

satisfying 

F*(du - 0) = 0 

by the filling in problem for contact systems (cf. Thom [10]). For F = o a F 
we have 

F =-F* (d(du - 0)) = 0 

as required. 
A slight extension of this argument deals with two mappings 

ti:S Xo, i=O=,1, 

which satisfy 

(3) f fO = flfO. 
S' S' 

We then want to fill in the cylinder; i.e., to find a mapping 

F: S1 x I -* XO 

such that FISIx {0} = fo, FISIx {1} = fi and 

F*e= 0. 

As above, we consider Y = S1 x XO and the diagram 

SXI Y 

u ,,- 

0(Sl xI) - XO 

where f is given by fo, fi and the lifting f exists by virtue of (3) (the u- 
coordinate is now periodic with the same period fsi fi*<). By construction, 
f*(du - 0) = 0 and so again by Thom's theorem we may extend F to 

F: S1 x I-Y 

satisfying P* (du - 0) 0. 
The argument when y is an arbitrary I -cycle is more complicated and will 

be omitted. 
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Example 3 (CR system). This is the example from Section 1 where X0 is a 
complex manifold and Jo is generated by the 2-forms a+ a, a E Q2,0(XO). 
Since we are working locally we may assume that X0 is a contractible, Stein 
open set in Cnm, m > 2. Then n = 2, t = 1 and the moment conditions are 
the linear functionals on H1 _ (X0) . On the other hand, as we saw in Section 
1 the conservation laws are given by 

t {holomorphic 1-forms qi/d(holomorphic functions)} 

and we are interested in the question of whether the mapping 

go W0 -Hom(Hl <(X0), R) 

is an isomorphism. As in the symplectic example just considered, the crucial 
result is the following theorem of Harvey-Lawson [6]: 

Given a mapping 
f:S1 -*Xo 

satisfying 

ff* = o 
Si 

for all i E Wo, then f extends to a holomorhic mapping of the disc. 
As discussed in [6], this result may be extended to show that go in (2) is an 

isomorphism. 

Example 4 (associative geometry). This is the exterior differential system given 
by the final example in Section 1. In, this case n = 3, t = 1 and so the 
crucial homology group is H2 _ (X0). As we saw in the earlier discussion of 

'0 

this example, 
dim W= = 21 

and we shall see that this strongly suggests (but does not quite prove) that 

go: W0- Hom(H2 g(X0) , R) 

fails to be surjective.7 

Let E3 c R1 be an associated 3-plane with B3 c E3 the unit ball having 
2 3 boundary S = . We seek the equations on sections of the normal bundle 

to B3 in R7, T(1R7)/T(B3) - (R7/E3) x B3, that express the conditions that 
the corresponding infinitesimal variation of B3 remain an integral manifold of 
J0. In fact, letting F denote the trivial bundle with fiber R7/E3 R4, the 
linear equations for variation of B3 as an integral manifold of J0 are just the 
kernel of the Dirac operator 
(4) D:F - F 

(cf. Harvey-Lawson [7]). 
7 This argument only depends on the fact that dim W oo . 
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Now in general if we have a linear elliptic operator, for convenience still 
denoted by (4), over the n-ball B c RX, then for solutions u of D and v of 
the adjoint operator D* 

f(u v) =f(Du, V) + (u D*v) = 0. 
OB B B 

In other words, the boundary values of solutions to the adjoint equation D*v = 
0 give an infinite number of independent moment conditions on boundary 
values of solutions to the equation Du = 0.8 

Applying this to variations of B3 as an integral manifold of J0, it follows 
that there are an infinite number of independent conditions imposed on a small 
perturbation S' of S2 that S' fill in to an integral manifold. On the other 
hand, the conservation laws of the system J0 provide only a finite number of 
moment conditions. 

There are two ways in which this discussion is incomplete and therefore fails 
to provide an example where (2) is not an isomorphism. The first is that we 
have only discussed the moment conditions to fill in S' with a C1 integral 
manifold. Conceivably, to realize S' as the boundary of a piecewise- C1 chain 
whose individual simplices are integral manifolds of J might provide enough 
additional flexibility to enable (2) to be an isomorphism. Because of regularity 
for elliptic equations this seems to us unlikely. 

The other possibility is that when we pass to the infinite prolongation of J, 
then HTo increases to give an infinite-dimensional ft2 which accounts for all the 
moment conditions. What would probably have to happen is that the infinite 
number of conservation laws for the linearized exterior differential system (4) 
somehow survive to give conservation laws for >J provided that we allow higher 
order jet dependence. This also seems to us unlikely. 
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