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Introduction. In Part I of this series of papers, we developed several aspects
of the general theory of the characteristic cohomology of an exterior differen-
tial system (EDS). In the local involutive case, we proved that this characteristic
cohomology H vanishes in the range 0 < q < n e, where e is a geometric in-
variant of the system (in the "unmixed" case, e is the codimension of the complex
characteristic variety). We then defined the first potentially nonvanishing group
n- to be the space cg of conservation laws associated to the EDS. It was shown
that the space of conservation laws has a "structure", in that cg is naturally identi-
fiable with the kernel of a canonically defined linear differential operator. More-
over, the highest order part of any cg has a canonical expression derived from
the symbol of the EDS.

In this second part, we shall refine this analysis of conservation laws for a class
of exterior differential systems that we call parabolic systems. As we shall explain,
by parabolic system we mean an exterior differential system on a 7-dimensional
manifold that is locally (but generally not globally) equivalent to the exterior
differential system arising from a second-order parabolic equation for one un-
known function of two independent variables. Examples of such systems arising
in geometry include gradient flows associated to locally defined, first-order func-
tionals given on curves on a surface or surfaces immersed in a Riemannian 3-
manifold with one of the principal curvatures being constant.

According to the general theory developed in Part I, the local conservation
laws of such a system are isomorphic to a certain space c of closed 2-forms in the
infinitely prolonged differential ideal, modulo nothing. Moreover, the general form
that any such closed 2-form must take is known from the symbol and sub-princi-
pal symbol of the EDS.
A particularly nice feature of the parabolic case is that the representing 2-forms

in cg turn out to be well defined on the original 7-manifold, i.e., it turns out not to
be necessary to pass to the infinite prolongation after all. This should, perhaps,

By parabolic equation we simply mean one with multiple characteristics in the classical sense. This
includes, as a special case, the class of so-called "evolutionary" equations (such as the heat equation)
which are the most commonly considered examples of parabolic equations in the PDE literature.
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not be surprising, since for the (simpler) case of parabolic evolution equations this
is well known and easy to prove by the methods used by Vinogradov, Olver,
Tsujishita, and Mikhailov et al. This is, of course, not true for hyperbolic or
elliptic equations, for which the classification of the conservation laws is consider-
ably more subtle.
The questions that we shall address include the following.

What is the "geometry" of parabolic systems whose space of conservation laws
have a given structure?

Determine the conditions on a parabolic EDS in order that it admit a given num-
ber of independent conservation laws.

Give a "dimension count" and normal form for all parabolic systems which have
at least k independent conservation laws.

The word "determine" should be understood to mean "give an algorithmic
method that is applicable in practice to examples", such as those mentioned above.
What we are really after is, using the general theory as a guide, to begin to
address the question of how one may effectively determine whether a given EDS
has conservation laws, what those laws look like, and so forth. As will be seen
below, we are able to carry this out completely for parabolic systems. Indeed,
for these systems the problem turns out to have an underlying geometry that is
surprisingly rich.
The "dimension count" that emerges from our study is the following: First, the

set 5: of all parabolic systems is locally parametrized by one arbitrary function of
six variables (loosely speaking, we may say that 53 has "transcendental dimension
six"). If we then let Ek denote the classes of parabolic system for which dim cg > k,
then we shall see that

depends on one arbitrary function of five variables

depends on one arbitrary function of four variables

E3 depends on one arbitrary function of three variables

E, Es the classes of linear equations.

The last statement means that: A parabolic system has at least four independent
conservation laws if and only if it is locally equivalent to a linear PDE system.
Thus, a posteriori we see ,that the imposition of each additional conservation law
reduces the "transcendental dimension" by one at each step until we reach
which has transcendental dimension two, that being the same as the transcenden-
tal dimension of the classes of linear equations.

Moreover, we shall be able to give a local normal form for all systems with
dim cg 1, 2, 3, > 4 which exhibits and makes precise the meaning of the phrase
"depends on one arbitrary function of k variables". We shall also give an effective
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algorithmmto be stated in a momentmwhich gives a way of "de-prolonging"
parabolic systems in each of the sets Ek and of determining their conservation
laws. Finally, underlying this algorithm is a beautiful and unexpected geometry.

In order to describe this algorithm, we recall the following terminology from
the theory of exterior differential systems (see [BCG3-1). A Pfaffian differential
ideal is one which is generated as a differential ideal by 1-f0rms. Setting

tO J c fl(M)

means that is generated algebraically by the forms 0, dO where 0 e O.
There are two natural constructions associated to Pfaffian differential ideals.

The first is the derived flag, defined as the sequence of Pfaffian differential ideals

where Jk has generating 1-forms Ok

by
k fl(M) defined inductively for k > 1

Ok {0 e Ok-11dO =- 0 mod Ok-1 }.

The second construction is the Caftan system of , which may be thought of as
the smallest submodule of fl(M) needed to express all the forms 0 and dO for
0 O. The Cartan system of o is completely integrable and therefore defines a
local foliation M N. This foliation has the property that there exists a differ-
ential ideal on N so that o is generated on M by the pullbacks of generators of
J on N. In practice, both the derived flag and Cartan system of a given Pfattian
differential ideal are readily computable.
With these preliminaries out of the way, here is how our algorithm for deter-

mining the conservation laws may be described: We first observe that a parabolic
system on a 7-manifold M is a Pfaffian differential ideal of rank 3, and the
assumption of parabolicity allows us to canonically define a certain Pfaffian sys-
tem //1 of rank 4 which contains and restricts to each integral surface of to
define the characteristic foliation. We denote the derived flag of /1 by

Each of the successive /’k +1 has codimension at least one in /k with equality for
k 1. A necessary condition that dim c > 1 is that /a have codimension one in
//2, and a necessary condition that dim c > 2 is that ’4 have codimension one
in //3. Assuming this to be the case, the Cartan system V" of ’3 is a completely
integrable system of rank 4 and defines a local foliation
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The space of conservation laws of the original system is then isomorphic to the
space of closed 2-forms on N whose pullbacks to M are congruent to zero modulo
J. The foliation M N has the geometric meaning of expressing the given exte-
rior differential system as a prolongation of an exterior differential system of a
special Monge-Ampere type.
The proof that this algorithm does indeed yield the conservation laws for para-

bolic systems is based on the equivalence method of 1. Cartan. This method is a
technique for determining the invariants of an EDS by successive coframe adap-
tations and use of the so-called "structure equations". Quite often, the equiva-
lence method very quickly leads to massive computations.2 However, in the situa-
tion at hand, guided by the geometric problem of determining the conservation
laws, we shall find that each step has geometric meaning and that only three
successive frame adaptations are necessary.
For example, the first-frame adaptation comes by restricting to the class of

dispersive parabolic systems, defined to be those whose Goursat invariant (defined
in 0) is not zero. Next, we find that, in order for there to be nonzero conservation
laws, the Mon#e-Ampere invariant must vanish, which implies that the system
is locally of Monge-Ampere type. This leads to the second-frame adaptation, and,
subsequently, to two further relative invariants T and U with the properties that:

T 0 = dim c < 1

T=0, U 0 =>c6 =0.

These invariants have geometric meaning, and we will take some pains to explain
this.
The question naturally arises of how effectively this geometrically formulated

algorithm may be applied to an explicit equation

F(x, y, u, ux, uy, uxx, uy, uyr) O.

The first, crude, answer is that the invariants associated to this equation are given
by (generally complicated) differential polynomials in F and its derivatives, in
much the same way that the Riemann curvature tensor is given by formulas in
terms of the components of the metric tensor in a local coordinate system. In
principal, these polynomials could be written out explicitly, but in practice (just
as in the case of Riemannian geometry), one rarely has to resort to the explicit
formulas. A more refined answer is that, in many "natural" classes of equations, it

The experience of using the equivalence method may usefully be compared to the famous descrip-
tion of obstruction theory in algebraic topology: The method is like a flashlight for the miner in an
underground mine which keeps branching. Using the method allows the miner only to see a few feet
ahead and therefore one does not know where a branch may eventually lead (if anywhere). In our
class of equations, the problem of determining the conservation laws serves to put a sign at each
branch, telling us which way to proceed.
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seems to be the case that special features of the situation enable one to quite
effectively apply the geometric algorithm given above. This is quite analogous to
the way that the curvature of a metric is usually determined by a combination of
geometric considerations and computation (although one may compute it by brute
force if necessary).

In order to illustrate how the general theory applies to an important special
class of equations, in 5 we discuss the conservation laws for parabolic evolution
equations, i.e., parabolic equations of the form

u, f(x, u, u, Ux).

A first result is that if this equation possesses a conservation law, then f(x, u, p, r)
must be linear fractional in r. In this case, it turns out that there is associated a
very lovely geometry on a suitable 3-manifold which leads to a normal form for
evolution equations having either one or two independent conservation laws. We
finally show that such an equation has three independent conservation laws if
and only if it is linearizable.

Although we frequently work locally in order to make the appropriate calcula-
tions, our conclusions have global significance. This is quite unlike the case, for
example, of a classical mechanical system in Hamiltonian form, since by Darboux’s
theorem such a system is always locally completely integrable. Indeed, in our
situation, except in the case of linearizable equations, there are enough local in-
variants to insure that any local conservation law will automatically have global
significance.
More precisely, let (M, o) be a global parabolic system and assume that the

rank of suitable linear bundle mappings over M are locally constant. Our discus-
sion below gives the structure of the space of conservation laws in a neighbor-
hood of any point x M. In precise (but perhaps unappealing) language, we de-
termine the stalk _x of the sheaf of conservation laws. It turns out that in the
nonlinear case

_
is what is called a local system. As a consequence, if M is con-

nected and simply-connected, then each local conservation law is the restriction
of a unique global conservation law. In the general case, the action of the funda-
mental group must be taken into account. It is in this sense that our local compu-
tations have global significance.
A very interesting question arises concerning the "field of definition" of the

conservation laws. To illustrate this, suppose that our parabolic system is given in
the category of real algebraic varieties. Then, aside from the linear case, we will
see that the conservation laws will be given by solving total differential equations
of the form

(1) d
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where each ogij is a rational 1-form and the matrix f IIool satisfies the inte-
grability condition df f ^ f. In the language of differential algebra, the con-
servation laws live in differential field extensions defined by algebraic differential
equations (1) of the field of rational functions. We will see that nonalgebraic field
extensions are indeed necessary (this happens for heat-shrinking plane curves on
surfaces of constant nonzero Gauss curvature). Thus conservation laws are ex-
pressed in terms of transcendental functions of a familiar and well-known kind,
but they need not be differential polynomials, as is the case for many of the
classical integrable equations.

This discussion leads naturally into the concept introduced in 6 of an inte-

#table extension of a parabolic system. The conservation laws we discuss in 0-5
are what are known classically as local conservation laws. Intuitively, a local
conservation law is some universal expression in terms of the unknown functions
and a finite number of their derivatives which induce closed differential forms
whenever a solution to the PDE is substituted into the expression. Examples
show that an equation with a finite number of local conservation laws may never-
theless have an infinite number of conservation laws expressible in a suitable
differential extension of the ring of coordinate functions on the original manifold.
Such differential extensions are essentially obtained by adjoining the "functions"
fl, fk in a system of the type (1) above but where the integrability conditions
are of the form df f ^ f mod o. The "functions" f may not exist in the
usual sense, and the appropriate concept is that of an integrable extension of
an exterior differential system. In 6 this concept is introduced, and a first
structure theorem for integrable extensions of parabolic systems is proved and
illustrated.
To conclude this introduction, we would like to offer a contextual observation

and, in particular, to say what we are not doing. These two papers are intended
to help further the general objective of developing a geometric understanding of
partial differential equations.3 Developing such an understanding means in part
to study the geometry4 associated to a particular PDE or to a class of equations,
and this is the main thrust of the present work. It is also a means to shed new
light on their solutions, and this is only indirectly done here. Our opinion is that
developing geometric understanding of partial differential equations will necessi-
tate integrating these two aspects, the intrinsic geometry of the PDE and solving
the PDE. Although appealing, this principle has yet to be firmly established.
We would like to take this opportunity to thank J6anne Nielsen, who read a

previous version of this manuscript, found many typographical errors, and made
a number of suggestions which vastly improved the exposition, and the referee,
who supplied valuable references and also made suggestions which clarified the
relation of this work with that of previous authors.

This is related to, but not the same as, using partial differential equations to study problems in
geometry.

4 By "geometry" we mean the structures (including conservation laws, a connection if it exists, etc.)
intrinsically associated to the equation.
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O. Basics

Second-order contact geometry and structure equations for PDE. In classical
notation, a second-order partial differential equation for a single unknown func-
tion u(x, y) is an equation of the form

(o) F(x, y, u, p, q, r, s, t) 0

where, as usual, p, q, r, s, and denote u,, ur, Uxx, uxr, and urr, respectively. We
shall assume that F is a smooth function of its eight arguments, at least near the
locus F 0. The assumption of nondegeneracy (which we make henceforth) is
that the triple of functions (F,, Fs, Ft) does not have a common zero on the locus
F=0.
We want to rewrite this equation as an exterior differential system. Before

doing so, we first review the structure equations of the contact system in the
space of variables (x, y, u, p, q, r, s, t). On this space, the second-order contact
system is generated by the three 1-forms

(1)

0__o du p dx q dy

01= dp r dx s dy

0__2 dq s dx dy,

which satisfy the structure equations

d0__o -0__1 ^ dx O__2 ^ dy modt90

dO__ -dr ^ dx ds ^ dy mod O_o,
dO__2=- -ds ^ dx-dt ^ dy

Writing 1 dx, 2 dy, 11 dr, 12 21 ds, and 22 dr, these struc-
ture equations take the form

(2)
d_Oo -__Oi ^ co mod/90

d__Oi-- -_j ^ o9 mod __0o, __01 _02

where 1 < i, j < 2, and we have employed the summation convention. An admissi-
ble coframing is a local coframing (00, 01, 0z, 091, 092, n11, n12, nz2) on this space
which satisfies span{0o, 01, 0z} span{_.0o, _01, __0z} and for which the analogue of
the structure equations (2) holds, i.e.,

dOo =- -Oi ^ o9 mod Oo

dOi -nij ^ gJ mod 0o, 01, 02.
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It is not hard to see that for any admissible coframing there are functions Ao, Bj
and Aj so that

/90 Ao_Oo

O, B__Oi mod __0o

0)’_= Aj0) mod _.0o, 0, _.0.

In fact, it is not hard to show that B AoA- and

-1 k d mod 00, 01, 02 0.) 0)2rcj-- Ao BBjn_kd _,_,_

Returning to the partial differential equation (0), since the eight coordinate
functions are subject to the relation F 0, there is a single relation among their
differentials of the form

(3) F dr + F ds + F =_ 0 mod dx, dy, 0o, 01,192.

According to the classical theory of characteristics for second-order equations,
the characteristic covectors on any solution of the given equation are given by the
factors of the expression

(4) Q F dx2 F dx dy + Fr dy2

The equation F 0 is said to be parabolic if the quadratic form Q is of rank 1
(instead of 2), along the entire locus F 0. We warn the reader that this is a
slightly more general notion of parabolicity than is frequently encountered in the
literature. For example, by this definition, the equation u,,x 0 is parabolic even
though it is too degenerate (in a sense to be made precise below) to be regarded
as a parabolic equation in the PDE literature. Moreover, most of the literature
on parabolic equations concentrates on the case of parabolic evolution equations;
in our case this would be an equation of the form ut F(x, u, ux, ux), where the
partial of F with respect to its last variable (i.e., ux) is positive. Our parabolic
equations will not generally be equivalent to equations of this special kind, even
locally up to contact transformations. For example, the equation

Uxx 2UUxy + tl2tlyy tly

is parabolic in the above sense (and is even nondegenerate in the sense we will
describe below), but it cannot be put in evolutionary form, even locally.

Henceforth, we shall assume that F 0 is a parabolic equation. We denote the
locus F 0 (which is a smooth hypersurface in IRa) by M7, and we let denote
the rank-3 Pfaffian system on M generated by the restrictions of the three 1-forms
{Oo,
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In a general admissible coframing, the linear relation (3) is expressible in the
form

QiJrci =- 0 mod 0o, 01, 02, 0) 1, 0)2,

where QO QJ. Taking into account the possibilities for an admissible coframing,
our assumption that Q has rank 1 means that we may find such an admissible
coframing so that

and the relation (3) becomes simply

z11 0 mod 0o, 01, 02, 0)1, 0)2.

With this in mind, we can simplify the notation somewhat since we are restricting
to a 7-manifold. A coframing (00, 01, 02, 0)1, 0)2, re3, zr,) on an open subset U
in M is said to be O-adapted to if the 1-forms 00, 01, and 02 span the restriction
of to U and the following structure equations hold:

dO0 -01 ^ 0)1_ 02 ^ 0)2 mod 00

dO1 -= -3 A 0)2 ; mod 0o, 01
dO2 =- -T 3 A 0)1_ It,4 A 0)2

In the language of differential systems, a coframing is 0-adapted to if, in the
structure equation, the principal symbol of the exterior differential system is nor-
malized and the torsion has been absorbed. The assumption that F 0 is a para-
bolic equation implies that M can be covered by open sets U on which such
0-adapted coframings exist (in fact, the existence of such local coframings is equiv-
alent to parabolicity).
We observe also that a coframing is 0-adapted if and only if the symbol of its

structure equations is normalized to be that of an equation

Uxx f(x, t, u, ut, u,),

and the torsion has been absorbed, which is expressed in our notation by the
condition

rl 0 mod 0o, 01, 02.

(Note, however, that we are not asserting that every parabolic equation is actu-
ally contact equivalent to an equation of the above form. This is false.)
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Conversely, the structure equations (5) characterize second-order parabolic PDE
in the following sense: Suppose that M is a 7-manifold on which there exists a
coframing satisfying the structure equations (5). The Cartan system of the form
0o is clearly generated by {0o, 0:, 02, co, (2)2 }. It follows from the Pfaff normal
form theorem that every point of M has a neighborhood U on which there exists
a submersion

f (x, y, u, p, q): U --* IR

with the property that the form f*(du p dx q dy) is a multiple of 0o. For any
point rn U, let P,. c T,, U be the 4-plane annihilated by the forms {0o, 0x, 02 }.
Clearly the image F(m)= f.(P,,) Tt,.)IR is a 2-plane which is a contact ele-
ment for the contact form du-p dx-q dy. Let (IR) denote the (8-dimen-
sional) space of such contact elements.
The structure equations (5) imply that the map F: U (IRs) is an immer-

sion of U into U(IRS). By unwinding definitions, it can be verified that F pulls
back the canonical system on (IR5) to be the system spanned by {0o, 0, 02 },
and, moreover, the independence condition is described by the forms {o, a2}.
Locally, the image of F can be described by a second-order partial differential
equation which the structure equations (5) imply to be parabolic. Thus, the
coframing defines a second-order PDE uniquely up to contact equivalence.
For this reason we give the following.

Definition. A parabolic system is given by a pair (M, J) where M is a 7-mani-
fold and J is a rank-3 Pfaffian system, and every point of M has a neighborhood
U in which there is a coframing 00, 0, 02, o, o2, n3, n, such that J[v is gener-
ated by 0o, 0, 02 and the structure equations (5) are satisfied.

For each parabolic system (M, J) there is, lying over M, a principal bundle
with structure group a certain Go = GL(7, IR)

whose local cross-sections over any open set U M consist of all coframings
with domain U which are 0-adapted to o. The automorphisms of the exterior
differential system (M, o) can be identified with the bundle automorphisms of
this fibration which preserve the so-called structure equations (see below). More-
over, as we shall see, the geometry of the conservation laws of the underlying
partial differential equation can be studied in terms of the "intrinsic" (i.e., contact-
invariant) geometry of o.
Our tool for getting at the intrinsic geometry of J will be the equivalence

method of 1. Cartan, which will determine the geometric invariants of the J by
introducing intrinsic "partial connections" on the fibration - whose "curvatures"
and "torsions" may be interpreted as relative invariants and tensorial quantities.
Normalizing these will then lead to a reduction of the structure group of " M,
and further invariants.
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From the point of view of exterior differential systems and partial differential
equations, the objects of interest for a given parabolic system are the surfaees
S c M on which the forms in o vanish, the so-called integral manifolds of .
We are also usually interested in imposing the natural independence condition;
namely, we are interested in the integral manifolds S of J on which the 2-form
col ^ co2 is nonzero. (Note that this condition does not depend on the choice of
0-adapted coframing in which it is expressed.) Since the structure equations
imply that for any 0-adapted coframing, the 2-form rca ^ co2 must vanish on each
integral manifold S of (J, o ^ (.02) and since 0.)2 does not vanish on S, it follows
that there must be a function 2 on S so that 3 20)2. In particular, S is foliated
by integral curves of the so-called characteristic system , which is defined (in the
domain of any local 0-adapted coframing) to be the span of the 1-forms 00, 01, 02,
r3, and co2. The integral curves of the system (///, 091) are called the characteristic
curves of the system . Thus, every integral surface of (, 091 ^ 092) is foliated by
characteristic curves of .
The initial value problem which is most commonly of interest for parabolic

equations is the characteristic initial value problem: Given a characteristic curve of
when does it lie in or form one boundary of an integral surface of (, co ^ co2)?

How many such surfaces are there? (Note that this should be contrasted with the
case of the hyperbolic theory, where one is interested in posing noncharacteristic
initial value problems or the case of the elliptic theory, where one is generally not
interested in initial value problems at all.) However, in actual geometric problems,
one does not usually consider arbitrary characteristic curves but, in addition, one
imposes some sort of compactness or completeness assumption on the character-
istic initial curves that one considers. We will not generally worry much about
this point since our study will mainly be local. Nevertheless, it is worth remarking
that there are interesting problems in this regard. For example, one could con-
sider the problem of defining a reasonable notion of completeness for (and )
which would suffice to guarantee existence and/or uniqueness of the surface S.
Also interesting are cases where there are closed characteristic curves.
As we have seen, any parabolic system can be locally realized as a second-order

parabolic equation in the plane. However, this realization may not be possible
globally.

Example 1: The heat equation for curves on Riemannian surfaces. Let (S, da2)
be an oriented surface with a smooth Riemannian metric dtr2 specified. We want
to discuss the partial differential equation for smooth immersed curves y: N S
known as the "heat equation shrinking curves on S". This is the equation for
a 1-parameter family F: N x [0, T] S of immersed curves which satisfy the
condition

F
cot (u, t) x(u, t)N(u, t),

where, at each (u, t) N x 1-0, T-I, x(u, t) and N(u, t) represent the geodesic cur-
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vature and oriented unit normal at u e N to the immersed curve ’t: N S given
by ,(u) F(u, t).
We will now show how this partial differential equation can be expressed as a

parabolic system on a 7-manifold. Let F S be the oriented orthonormal frame
bundle of S with respect to da2. Thus, an element f e F is of the form f (s; el, e2)
where s e S and (el, e2) are an oriented orthonormal basis of TS. Let r/1 and r/2
denote the dual 1-forms on F and let r/21 denote the connection form. One has
the structure equations

d/1 /21 A //2

dr/2 -//21 A //1

d//21 -Kr/1 ^ /2,

where K is the Gaussian curvature of S regarded as a function on F.
If F is a solution of the heat equation for curves in S, then F has a natural lift

F: N x [0, T-I F given by

r(u, t) (r(u, t); T(u, t), S(u,

where T(u, t) and N(u, t) are the unit tangent and normal vectors to the curve Yt
at u a N. By the very definition of the tautological forms on F, it follows that
there are formulas

r*(r/21) tcr*(r/1 A dt F*(r/2 tc dt,

where x is as defined above and 2 is some function on N x [0, T]. Conversely
any map F: N x [0, T-I F is the canonical lift of a solution F of the heat equa-
tion shrinking curves on S provided that it both satisfies these identities for some
functions x and 2 and satisfies the open condition that F*(r/1) ^ dt 4: O.
With this iti mind, set M F x ]R4 with coordinates t, u2, us, and u, on IR4

and define

00 12 U2 dt

01 //21 U2/1 U3 dt

02 du2 u3//1 u4 dt

0)2 dt Z3 du3 (U4 U2(U22 +

7r,4 du4 + u2u3 1.

One readily sees that these forms satisfy the structure equations (5). Thus, the
system J generated by 00, 01, and 02 is a parabolic system. Moreover, the integral
manifolds of (J, 01 ^ 092) are clearly the " which are the canonical lifts of solu-
tions of the heat equation shrinking curves on S.
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Although the heat equation shrinking curves on S is a parabolic system, it is
not difficult to show that it cannot be globally realized as a parabolic second-
order partial differential equation. We will return to this example in 4, where we
will show that unless the Gauss curvature K of the metric dtr2 is constant, there
are no nontrivial conservation laws for this equation, while for the case where K
is constant, there is exactly one nontrivial conservation law. (As a consequence,
we will show that there is no local integral formula for the "vanishing point" to
which an embedded closed curve in the plane shrinks under this flow.)

From now on, we will treat the slightly more 9eneral case of a parabolic system
on a ?-manifold M.

The Goursat invariant. Conside two 0-adapted local coframings with the
same domain, say, (0o, 01, 02, 01, 092, n3, n4), and
4). These two coframings are easily seen to be related by a "transition matrix" of
the form

(6) #.

0 Oo 3

o,)2

g3 g3

where g is a matrix of the form

ao 0 0 0 0 0 0

* al 0 0 0 0 0

* alb a2 0 0 0 0

* al(Cl + b2bl) a2b2 ao/a2 0 0 0

* * a2cl -(ao/a2)bl ao/al 0 0

* * * (ao/a2)c2 0 ala2/ao 0

.* * * * (ao/al)c2 2(ala2/ao)bl (a2)2/ao.

where the functions a0, al, and a2 are nonzero, the functions bl, b2, Cl, and c2 are
arbitrary, and the entries marked~ by a are also arbitrary. Conversely,.)f is a
0-adapted coframing and is related to by such a matrix, then is also
0-adapted. It follows that the 0-adapted coframings associated to a parabolic sys-
tem are the local sections of the principal Go-bundle -, P where Go GL(7, IR)
is the lower triangular group of dimension 19 described in Equation (6). We note
the zero in the (5, 6) position, expressing the fact that we cannot add to zr3 a
multiple of 091 while preserving the structure equations (5); this in turn ultimately
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reflects the geometric fact that 0-adapted frames already contain the information
of the characteristic directions on integral surfaces of the system.

Let us consider a 0-adapted coframing in local coordinates. Starting with the
original parabolic equation F 0, one can always perform a contact transforma-
tion in a neighborhood of any point of M so as to get a new equation which can
be locally solved for r. Thus, we can write the equation in the form

F(x, y, u, p, q, r, s, t) r E(x, y, u, p, q, s, t) O.

The parabolicity condition then takes the form Et -(1/4)E2. In this case, it can
be verified that the following is a 0-adapted coframing:

00 du p dx q dy

1
01 dp E dx s dy - E(dq s dx dy)

02 dq s dx dy

(7)
o) dx

1
(D2 dy + -E dx

1
3 ds -E dt (Er + qE + sEp + tEq) dx

rc4 dt.

It is easy to compute that, for the coordinate 0-adapted coframing (7), the
following structure equation holds:

(8) dO1 -n3 A 092 02 A (Azra + Bo)2 + C091) mod 00, 01,

where

1
B --(Er + qE. + seep + tEq)
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1 1 1
C E + -EpE -E + -E(E, + qEu + seep + tE)

--(pEru + EEsv + sEq + (Er + qE, + sEv + tEq)Es).

Indeed, for any 0-adapted coframing, the structure equations (5) imply, after some
calculation, that there is an equation of the form (8) for some functions A, B,
and C; the explicit coordinate coframing (7) serves to identify these coefficients
explicitly in local coordinates.
Now, adding to 0)2 the term A02 eliminates the term -02 ^ Arts in dO1, and

then adding to if3 the term -B02 eliminates the term -0. ^ B0)2, resulting in the
equation

(9) dO1 =- --3 ^ 0)2 C02 ^ (3)1 mod 0o, 01.

We now find that we cannot eliminate the 02 ^ 0) term from this equation by
further admissible changes of coframings that preserve the condition A B 0.
This suggests that C may be a tensorial quantity. Indeed, for any coframing @
related to @ as in Equation (6), we find that

(a/(aoa2))C.

Thus, the quantity C is an example of what is known classically as a relative
invariant of the G-structure; it was first identified explicitly by E. Goursat [Go].
We shall henceforth refer to C as the Goursat invariant of the system o. The
complicated formula for the Goursat invariant of an explicitly known equation
illustrates one of the difficulties of working with geometric quantities in coordi-
nates. Because of Goursat’s work on parabolic equations for which C vanishes
identically, Cartan l-Call calls such equations by the name equations of Goursat
type.

Example 1 (continued). For the parabolic system which describes the heat
equation shrinking curves on a Riemannian surface, it is easy to compute that, in
the coframing described above, we have dO1 -02 ^ 0)1 n3 ^ 0)2 mod 00, 01.
Thus, the Goursat invariant for this system is nonzero.

Example 2. As might be expected, the Goursat invariant for the equation
u,x 0 vanishes while the Goursat invariant for the classical heat equation
Uxx ut 0 is nonzero.

Example 3: Weinoarten surfaces. Let (Ns, ds2) be an oriented Riemannian 3-
manifold. On any oriented surface S c N, one can define the principal curvatures

xl and x2. The surface S is said to be a Weinoarten surface if there is a nontrivial
functional relation of the form F(x, x2) 0.
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For any specified F(xl,/2), the Weingarten condition defines a second-order
differential equation for surfaces in N, which we shall now describe. For simplic-
ity, we shall assume that the surfaces S that we consider are free of umbilics, i.e.,
that x : x2 at any point of S. Let F N be the oriented orthonormal frame
bundle of N, and let Ili and Ili -il for 1 < i, j < 3 be the tautological and
connection forms on F. They satisfy the structure equations (summation conven-
tion assumed)

dil Ilj ^ Ilj

1
dili --ilik ^ Ilkj "-F Rijkiilk A Ill

where the functions Rijkl are the components of the Riemann curvature tensor.
Let fl (x) and f2(x) be two functions of x which satisfy F(fl (x), f2(x)) 0. We

shall assume that fl (x) f2(x) for any x and that f and f do not simultaneously
vanish. Let M F x IR, with coordinate x on the second factor. Define the
1-forms

O0 Il3 (01 Ill n2 f(x) dx

(02t91 II31 --fl(/(7)ill Il2 (fl(x)

02 Il32 f2(KT)ii2 7r4 f(x) dtc.

It is easy to see that they satisfy the equations

dO =_ _01 ^ (01_ 02 ^ (02 mod 0o

dO1 -= --n2 ^ (01 n3 A (02 _{_ R3112(01 A (02 mod 0o, 01
dO2 --3 A (01 /g4 A (02 + R3212(01 A (02

,02

and the one relation f(KT)n2 f;(/)n4 0. It follows that the differential system
J generated by 00, 01, and 02 with independence condition (01 ^ (02 0 (whose
integrals are the nonumbilic surfaces which satisfy the Weingarten relation) is of
parabolic type if and only if one of f; or f is identically zero. Thus, the parabolic
Weingarten relations are those which restrict one of the principal curvatures to
be constant.
By symmetry, we may assume that fl(x)= c for some constant c and that

f2(x) x + c. Then the nondegeneracy condition is simply x : 0. It then follows
that the coframing (00, 01, 02, (02, (01, n3, n4) is a 0-adapted coframing for
this parabolic system on M. Redefining (02 and na to be Il2 + x-102 and xi112
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R3112 r/1, respectively, the refined structure equation for dO1 becomes

dO1 =- -if3 A 0)2- tc-l R1312 02 A 0)1 mod 00, 01.

Thus, the Goursat invariant in this coframing is C x-lR1312. Notice that this
vanishes identically on M if and only if R1312 vanishes identically on F. In turn, it
is known that this happens if and only if the metric ds2 has constant sectional
curvature.

Equations of Goursat type. It is possible to interpret the Goursat invariant as
a way of measuring the "dispersive" nature of the characteristic initial value prob-
lem for a parabolic equation. Since this is the essential characteristic of parabolic
equations in the usual PDE studies, the equations for which the Goursat invariant
vanishes, i.e., the equations of Goursat type, are of less interest. Indeed, the bulk
of this paper will consider only the non-Goursat case.

In fact, it turns out that parabolic equations of Goursat type belong more to
the study of ordinary differential equations. In [Cal-I, Cartan shows how equa-
tions of Goursat type can be integrated using only techniques from ordinary
differential equations. In the interest of completeness, and because it is interesting,
we will now indicate how this is done.
Assume that C 0. Then the structure equation for 01 becomes

dO _= -7z3 A 092 02 A (Air3 + B0)2) -= -(7c3 + B02) A (0)2 a02) mod 0o, 01.

It follows that, replacing (D2 by 0)2 AO2 and n3 by na + B02, one may arrange
that the structure equations take the form

dO0 --02 A 0)2 mod 00, 01.
d01 -3 A 0)2

It follows that the Cartan system of the rank-2 Pfaffian system f {0o, 01} is
the rank-5 Pfaffian system /= {00, 01, 02, 0)2, r3 }. In particular, the characteris-
tic system g is completely integrable.

It follows that every point of M lies in an open set U on which there exists a
submersion f: U IR5 whose fibers are the leaves in U of the system ’. More-
over, there exists a rank-2 Pfaffian system on f(U) IR5 which pulls back
under f to be the system og" restricted to U. From the structure equations, it
follows that there is a well-defined rank-3 Pfaffian system (+ which contains
and pulls back via f to be spanned by the forms {0o, 01, 0)2}.

Let N c U be any integral manifold of (J, 0)1 ^ 0)2). Since 0o, 01, 02, and
0)2 ^ rc3 all vanish on N, it follows that the image C f(N) has rank 1 and is
hence a curve in IR5. By the admissibility condition, it follows that this curve C is
an integral curve of but is not an integral curve of +. (Note also that the
intersection of N with any fiber off is a characteristic curve.)
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Suppose now that we are given a noncharacteristic integral curve P c U of
the system {0o, 01, 02 }. Since P is noncharacteristic, 0)2 does not vanish on P. It
follows that the image C f(P) is an integral curve of oU but not an integral
curve of +. Let P+ f-l(C). Then P+ is a 3-dimensional submanifold of U.
(Clearly, P+ is simply the union of the fibers of f which intersect P.) By construc-
tion, 0o and 01 vanish on P+ while 0)2 does not. On the other hand 02 ^ 0)2
clearly does vanish on P+ since dOo -02 ^ 0)2 mod 00, 01. Hence there exists a
function g on P+ so that 02 g0)2 on P+. The function g vanishes along P c P+
since P is an integral manifold of 0o, 01, and 02. Finally, the structure equation
dO2 --73 ^ O)1 --4 ^ 0)2 mod 0o, 01, 02 implies that dg does not vanish on
P+. In particular, the locus g 0 is a smooth surface in P+ which contains P. By
its very construction, it is the unique integral manifold of {0o, 01, 02} which con-
tains P. Thus, the noncharacteristic initial value problem is solved.

Example 2 (continued). Consider the parabolic equation ux, 0. Of course,
its general solution is of the form u(x, y) f(y) + xg(y), where f and are arbi-
trary functions of y. It is easy to compute that the characteristic curves of d are
of the form

(x, y, u, p, q, r, s, t) (x, Yo, Uo + pox, Po, qo + SoX, O, So, f(x)),

where Xo, Yo, Uo, Po, qo, and So are constants while f is an arbitrary function of x.
Clearly such a curve does not lie in an integral surface of dr unless f is a linear
function of x. Thus, the characteristic initial value problem for this (very trivial)
equation is not well posed; one has neither existence nor uniqueness.

This ill-posedness of the characteristic initial value problem is a general feature
of parabolic equations of Goursat type. On the other hand, for the system asso-
ciated to the (non-Goursat) classical heat equation Uxx uy, the characteristic
curves of dr are of the form

(x, y, u, p, q, r, s, t) (x, Yo, f(x), f’(x), f"(x), f"(x), f’(x), ftiV)(x)),

where Yo is any constant and f is any function of x. Of course, in this case,
provided either that f is periodic or decays sufficiently rapidly at infinity,
one has existence and uniqueness of solutions of the characteristic initial value
problem.

Example 3 (continued). In a space N of constant sectional curvature, the above
method leads to the result that the surfaces S c N which have one principal
curvature equal to a constant c are the normal tubes (of constant radius) of
curves in N. The characteristic curves are the "normal circles". Note that in this
case, the Frenet frame of any curve of constant geodesic curvature c yields an
integral curve of the system dr, but that only the ones with vanishing torsion lie in
integral surfaces.
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1. Conservation laws for equations not of Goursat type: First steps

Preliminary structure equations on the infinite prolon#ation. In Part I we intro-
duced the infinite prolongation of an involutive exterior differential system. De-
noting by f* the forms on the infinite prolongation and by J c t2* the infinitely
prolonged differential ideal, we saw that f* is filtered by subalgebras f’ such
that each OCk f’ C is a Pfaffian differential ideal with the following property:
Setting k ’k fl, then

(o) dog 0 mod{Og+l}.

That is, the extensions of differential ideals Jk C k+X may be thought of as
adjoining new 1-forms to "close up" Jk relative to the Frobenius integrability
condition. This construction then ultimately led to the weight filtrations and
generalized Spencer cohomology, which gave us a first approximation to the
characteristic cohomology and, in particular, to the conservation laws of the
system.

In this section, we will first derive the structure equations for an infinitely pro-
longed parabolic system that is not of Goursat type, i.e, a system whose Goursat
invariant is nonvanishing. This will be done after choosing coframings for which
Goursat’s relative invariant satisfies C 1. Beyond normalizing the principal sym-
bol, this frame reduction has one implication on the structure equations that we
should like to mention. Namely, the condition C - 0 is a nondegeneracy condi-
tion on the subprincipal symbol and restricting to adapted frames where C 1
amounts to normalizing the subprincipal as well as the principal symbol. When
this is done we have, in a manner of speaking, looked at the geometry one level
below the highest order terms, and this is manifest in that the Frobenius exten-
sion condition (0) is replaced by the 2-step Frobenius extension condition ex-
pressed by Equation (2) below.
From now on, we assume that the relative invariant C never vanishes on M.

We may then define a more restricted class of local coframings than the 0-adapted
ones by refining the structure equation for dO1.
From the calculations in the previous section, we know that for any 0-adapted

coframing , there exist functions A, B, and C so that

dO1 =- -3 /k 092- 02 /k (Ara + B0)2 d- C0)1)mod 00, 01.

Replacing 0)2 and/r3..in by the forms 0)2 "i- AO2 and t3 B02, respectively, we
get a new coframing (I) which is easily seen to be 0-adapted and in which A and B
are zero. Thus, let us assume that

dO1 -CO2 A 0)1 3 A 0)2 mod 0o, 01.
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Since the function C is nonzero, the following is also a 0-adapted coframing:

(COo 01, C02, (D2, C031, n3, Cn4).

Moreover, this 0-adapted coframing has C 1.
This motivates the following definition: A coframing (0o, 01, 02, 0)1, 092,

rt3, rt4) is said to be 1-adapted if it is 0-adapted and also satisfies the condition

dO1 -= --02 ^ 0.) 3 ^ 032 mod 0o, 01.

As noted above, 1-adapted coframings are those for which both the principal
symbol and subprincipal symbol have been normalized. It is not difficult to show
that any two 1-adapted local coframings and on the same domain are related
by a transition matrix of the form

02
(02

3

a 0 0 0 0 0 0

abl air 0 0 0 0 0

ab2/r air2 0 0 0 0

aba/r 0 r2 0 0 0

aba/r2 -b2r2 r 0 0

* a(bl + b2)/r2 b4r2 0 air3 0

br 2ab2/r3 a/r4.

O0
O
02
032

031

where the functions a and r are nonzero, the functions bl, b2, b3, and b4 are
arbitrary, and the entries marked by an are also arbitrary.

Converselyz if t9 is a 1-adapted coframing and is related to by such a
matrix, then is also 1-adapted. It follows that the 1-adapted coframings are the
local sections of a G1-structure on the underlying 7-manifold M, where G1 c
GL(7, IR) is a lower triangular subgroup of dimension 16.

Note, in particular, the "transition" relation (2 = /.2032 mod 00, 01. This implies
that the foliation of any integral manifold N of (o, 031 ^ 032) by characteristic
curves (032 0) is transversely oriented. Thus, there is a "positive" sense to mo-
tion transverse to the characteristic curves. This is characteristic of non-Goursat
parabolics: there is a well-defined sense of "increasing time".
We now want to derive a crude version of the structure equations for the

successive prolongations of a non-Goursat parabolic system. We begin with the
structure equations of a (local) 1-adapted coframing:

dO0 -= -01 ^ 031 02 ^ 0)2 mod 0o

(1) dO1 --02 A 031__ 3 A (02 mod 0o, 01

dO2 -= -3 ^ 0)1 4 ^ 032 mod 0o, 01, 02.
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All of the constructions to be carried out in this section can be "globalized"
straightforwardly, so for simplicity we will assume that the domain of the cofram-
ing is M itself. The reader can make the necessary changes to describe the global
structure if this is desired.

First, we describe the space of integral elements of (, 091 ^ 0)2) at a general
point of M. For any two numbers P5 and P6, the 2-plane E(p, ps, P6)c TpM,
defined as the set of v T,M which satisfy the relations

00(V 0l(v) 02(V (re3 p50)z)(v) (g4 P5 0)1 P60)2)(v) 0

is an integral element of (, 0)1 ^ 0)2). Conversely every integral element of
(J, e) ^ coz) is of this form.

Thus, the first prolongation space of (J, 0)1 ^ 0)2) can be described as follows.
The underlying manifold is M<1 M IR2 (with coordinates p5 and P6 on the
]R2 factor). The system <1 on M<1 is generated by 0o, 01, 02, and the two
1-forms

03 g3--P5 0)2

04 g4 P5 0)1 P6 0)2.

This yields the equations

dOo -01 ^ 0)1 02 ^ 0)2 mod 0o,

dO1 -= -02 ^ 0)1 03 ^ 0)2 mod 0o, 01,

dO2 _03 ^ 0)1 04 ^ 0)2 mod 0o, 01, 02.

Taking the exterior derivative of the second of these equations and then reducing
modulo 193 {00, 01, 02, 03 } yields

0 =-- -dO2 A 0)1 dO3 A 0)2 (04 A 0)2) A 0)1 dO3 A 0)2

= (dO3 + 04 ^ 0)1) ^ 0)z mod 03.

It follows that there exists a 1-form rc5 on M so that

d03 -= --04 A 0)1_ rC5 A 0)2 mod (R)3.

Computing 0 d(d02) reducing modulo t94 {0o, 01, 02, 03, 04), and using the
relation just obtained yields

0 =- -(dO4 + re5 A 0)1) A 0)2 mod 04.
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Of course, this implies that there must exist a 1-form n6 on M so that

dO4 -= -z5 ^ (01 6 A (02 mod 194.

Considering how 03 and 04 were defined, it easily follows that

n5 dps" mod 04 {(01, (02}.
7r, 6 dP6

In particular, rs and 6 are independent on the fibers of the projection M<1

M.
It is clear that the process just described can be continued at each prolonga-

tion. Thus, on the kth prolongation space M<k> M<k-1 x IR2, the system
is spanned by 1-forms 0o, 01, 02k/2 which generate the kth prolonged system
and satisfy

dO -0+1 ^ (01 0+2 ^ (02 mod (R) {00, 01,..., 0i},

for j < 2k while

dO2k+l =-- 02k+2 /k (01 (022/+3 A mod 2k+1

dO2k+2 =-- 2k+3 /k (01 (022j+4 A mod 2k+2,

where 2j+3 and n2j+4 are independent when restricted to the fibers of the
projection M<k M<k-1 >.

Passing to the infinite prolongation M<>, one has the "infinitely prolonged"
system J<o> (R)o {0o, 01, } which satisfies the "crude structure equations":

(2) dO =_ -0+1 ^ (01 0+2 ^ (02 mod (R) {0o, 01,..., 0}.

The forms in o<>, together with the forms (01 and (02 suffice to generate the full
exterior ideal of forms on M<>. The adjective "crude" refers to the fact that these
equations reflect normalizing the principal and subprincipal symbols; they do not
reflect the lower-order invariants of the system.

Conservation laws: General form. We set fl* f*(M)) and let J denote the
differential ideal generated by (R)oo. By definition the space c of conservation laws
is given by

c {q9 f11dq 0 mod J}
{dflf o} O
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Using the general formalism from Part I, we will establish two results (Proposi-
tion 1 and 2) which give the general form of any conservation law for a parabolic
system. Following the proofs of these two results, we will give an alternate proof
of the second proposition, one which does not explicitly use the language of
Spencer cohomology.

PROPOSITION 1. Under the assumption that Hq(M) 0 for q > O,

c { A(c01 ^ 00 + 092 ^ 01) + Boo2 ^ O01d- 0 mod o ^ o}.

Moreover, the function B is a linear combination of A and its first derivatives, and
therefore any such is uniquely determined by A. The condition dO =_ 0 mod J ^

is a linear PDE for A whose "highest order part looks like the backwards heat
equation."

We will explain what this latter statement means during the course of the
proof; cf. Equation (7) below.

Proof. We first recall what the general constructions from Part I give in this
case. With the notations

FPf* image of {o ^ ^ ^ t)* f*}
p

P’* FPf*/Fp+lf* with induced differential

’* cohomology of (P’*, },

we have by definition

On the other hand, the spectral sequence E,p’q of the filtered complex {f*, Fp, d}
has

E’* Hp’*

E 0 for p + q > 0

since we have assumed that M, and therefore also M(), has no topology. More-
over, since the exterior differential system o has characteristic number e 1 (see
4.2 in Part I), it follows from general considerations (loc. cit.) that

E’ 0 forp > 0.
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Combining this with the above, we obtain

(3) cg
_

ker dl" El ’1 --} E’x

We will see that (3) translates into the assertion of the proposition. Indeed, in the
case at hand we will show that

(4) E2’ 0.

Since it is a general fact that

El’ {ker V: E F},

where E, F are canonically defined vector bundles (of rank 1 in our particular
case), and V is a canonical linear first-order differential operator, the proposition
will result from (4) and the identification of E, F, and V using a modified Spencer-
type of cohomology.
We now turn to specific calculations based on the crude structure equations

(5)
co2 mod (R)o o+ ^ o o/ ^

&o -= eo) ^ o9 mod 19oo.

We define weights by setting

w(O)

w(o9 1

w(o2) -2

and denote by Fk the induced weight filtration on fP’* with f’* Fkf;"*/
Fk-1 P’* (see 2.4 in Part I for further details). It follows from (5) that d preserves
Fk and that the induced differential

d: 2,q--.} 2,q+l

is linear over the functions and satisfies

0 0+ ^ o 0+ ^ ,o

O.
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Thus the d cohomology is purely algebraic and is therefore given by sections of a
vector bundle whose fibers "look like" the fibers in the "fiat" case ut- uxx 0.
This will compute the El-term of the weight spectral sequence k,,, and, since for
p > 0 that spectral sequence abuts to E’*, we will obtain a description of this
latter group. Writing this out explicitly will give the proposition. Here are the
details.
Denote by {A (p,q Ap’q, (} the bigraded complex in the flat linear constant

coefficient case. Thus

A A{0o, 01, 02, ...; 091, (--02

(0 --Oi+ A 09 Oi+ 2 A 092

60) =0.

We let fP’ denote the cohomology in bidegree (p, q) of {A, 6} and shall prove
that

(i) 1,1 has a basis 00 ^ 0)1 + 01 ^ co2;
(ii) 5f 1’2 has a basis 00 ^ 091 ^ 092.
(iii) f2, 0.

To do this, we set A’ A ^ 0)2 and A" A/A’ and observe that each of A’ and A"
is isomorphic to the constant coefficient unconstrained case in one independent
and one dependent variable. Thus we have the exact cohomology sequence

(6) 0 Ha(A) HI(A") H2(A’) - H2(A) 0.

Taking p 1 we have

HI(A") lF0o ^ 091

H2(A’) lF0o ^ 091 ^ 092

A(0o ^ 091) class of 6(0o ^ co 1)

class of 02 A 0) A 0)2

class of (-01 ^ 0)2)

class of (- di01) ^ 0)2
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This tells us not only that ,t,t and gt,2 have rank 1, but it also tells us how to
lift 00 ^ 09 to the 6-closed form 00 ^ 0 + 0t ^ 092. In fact, it tells us more. In
the general nonflat case, denote by _H(A) and _H2(A) the vector bundles with
fibers H(A) and H2(A), respectively, and define a linear differential operator
V: Ht (A) _H2 (A) by the formula

V__(A(O0 ^ co + Ot ^ 092))- class of (A(O0 ^ co + Ot ^ 092))

=: (VA)0o ^ co ^ co2.

Writing

A =: D Acot + D2ACO2

we have

l(A(O ^ cot + 0t ^ 092))= (D2A)O ^ cot ^ 0)2_ (Dt A)O ^ cot ^ cot

+ A(Oo ^ oo + Oi ^ co2).

Also, for some functions and fl, we have

(00 A col + 01 A co2)__ 00 A col A 0,)2- fl01 A col A 0)2

Thus

(A(Oo ^ cot + Ot ^ o92))= (D2A + oA)Oo ^ cot ^ 092_ (DtA + flA)O ^ cot ^ 0)2.

By the general theory we may reduce the second term to a multiple of 00 ^ cot ^co2. Explicitly, using the fact that (00 ^ co2) -0t ^ cot ^ co2 + e00 ^ col ^ co2
for some e, we have

-d((DtA + 3A)(Oo ^ coz))= (-DttA- 3DtA- tA)Oo ^ cot ^ co2

-(DIA + flA)Ot ^ cot ^ 0)2

+ e(DtA + flA)Oo ^ cot ^ 0)2,

which implies that there exist functions ; and # so that

(A(Oo ^ cot + Ot ^ 0)2)) (D2A + Dtt A + 2DtA + #A)Oo ^ cot ^ co2

x mod ^ + image(d).
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This gives

(7) VA D2A + DiiA + 2D1A + #A,

where 2, # depend on lower-order invariants of the parabolic system. Finally, we
have

(8) El’ {- A(cox ^ Oo + co2 ^ O1) (DiA + flA)co2 ^ 0olVA 0}.

The proposition will thus follow from (iii).
For this we use (6) in the case p 2 together with our knowledge of A2IF[x].

Thus, referring to Proposition 2 in 3.2 of Part I, we have that

H(A") {0 ^ Oo ^ ogxli odd}

H2(A’) {Oi ^ 00 ^ 091 ^ co21i odd}.

Now comes the interesting point where signs and weights are important:

A(Oi ^ 0o ^ o) class of 6(0i ^ Oo ^ a))

class of(--0i+2 ^ 0o- 0i ^ 02) ^ 091 ^ o92

class of(-0i+2 ^ 00 + 0i+ ^ 01) ^ O) ^ (.D2

(since 6(0 ^ 0i ^ co2) (0i+ ^ 0t + 0i ^ 02) ^ o ^ co2)

class of(-0i+2 ^ 00 -0i+2 ^ 00) ^ o9 ^ 092

(similar calculation). Thus, it follows that

A(0i ^ 0o ^ co i) -2(0i+2 ^ 0o ^ co ^ co2).

Thus A is injective and this implies (iii).

At this stage we know that

El

{functions A satisfying VA 0 in (7)}.

That is, any conservation law is uniquely represented by a form

(9) (I) A(o9 ^ o + c2 ^ O1)- (D1A + flA)(92 ^ o + B’iOi ^ i

satisfying

(10) d=O.
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The condition that be closed implies that VA 0; conversely, if VA 0 then
by the general theory we may determine the B in (9) such that (10) is satisfied. In
fact, for E’ given by (8) we have dl 0 since E2’1 0. But, by definition,
dl class ofd and, since 0, it follows that d f2’2 is quadratic in the
0. Since the cohomology class of dO is zero we must have

for some functions B. Then

d- -(ZBiJOi ^ 0)

d(- + ZB’Oi ^ 0) F3D*

is cubic in the 0i and is closed. Since o3’0 E3’0 0, it follows that d(- +
0.

In fact, more is true. Recall that a function on the infinite prolongation Mt) is,
by definition, a function on some finite prolongation Mtk). The vanishing of E2’

and E3’ can be exploited to prove that, for A satisfying (7) and well defined on
Mtk), the B are given by some universal linear differential operators

One question naturally arises: For a function A satisfyin9 (7), what order ofjet
does A depend on? That is, what is the smallest k such that A is defined on Mtk)?
Similarly, is there a fixed ko such that any function A satisfyin9 (7) is already
defined on Mtk)? Or do we keep addin9 new conservation laws as k increases? The
latter is, of course, the case for famous completely integrable equations like KDV.
Thus, it is reasonable to ask if this phenomenon can occur for our parabolic
equations.
To discuss this question, we set

and define

i=1,2 j_>-O

% {AI0 VA ATM Ak+2 }.

Then k c k+1 and the least integer k such that A ffk reflects the order of jet
that A depends on (roughly speaking, that order is [k/2] + 1). If

<I) A( ^ 0o + 092 ^ 01)- (D1A + flA)co2 ^ Oo + BiiOi ^ Oi
i+j<=s
i<j

satisfies dO 0, then it is clear that A lies in cg
k for some k _< s 1. Thus, the

following result gives a fixed bound on k for all nontrivial conservation laws.
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PROPOSITION 2. Any of the form (9) satisfying (1O) is of the form

(11) I)=A(0) ^00+0)2^01)-(D1A+flA)0)2^00+C100^01
"Jr- C200 ^ 02 - C3(00 ^ 03 --b 01 ^ 02).

In particular,

Therefore, local conservation laws for our second-order parabolic systems can
depend at most on u, t3u, d2u, where u is the unknown function. In particular, the
"KDV phenomenon" cannot occur for such systems.

Proof. For I) of the form (9) we let s be the largest integer so that there exists
a nonzero Bij with + j s. Thus s is the highest weight appearing in I). For
each k => 0 let Fk denote the algebraic ideal generated by 0o, 01 and all of the
quadratic terms 0i ^ 0j where + j =< k. Expanding dl) 0 and reducing modulo
Fs yields the relations

i+j=s-1
i<j

niJE(-Oi+2 A 0)2) A Oj- 0 A {--0j+2 A 0)2)] 0

BiJ[(--Oi+ A 0)1 i+2 A 0)2) A Oj- 0 ^ (--Oj+l A 0)1 Oj+2 A 0)2)] 0,
+j =s
i<j

where the congruences are modulo 0o and 01. The second of these uncouples into
the relations

where, again, the congruences are taken 0o and 01. If s > 3, it is easy to see that
these relations imply that Bi 0 for all + j s. Moreover, if s 3 then these
relations imply that B12 Ba. This implies our result. E!

We shall now give an alternative, more direct argument for the local normal
form of conservation laws for parabolic systems. It is based on the identification

closed forms in E’1 {P FI21dfP 0}
d(F1f

The result is the following.

PROPOSITION 2’. Any closed 2-form in Flf2 can be written uniquely in the
form

A(0) A 0o + 0)2 A 01) -F B0)2 m 0o + C10o A 01 + C20o A 02-- C3(0o A 03 + 01 A 02) q’- d(,Oo -]-’’’ +/POp).
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In particular, the space of conservation laws for is isomorphic to the vector space
consisting of the closed 2-forms of the form

A(0) ^ 0o + 0)2 A 01)-}- B0)2 A 00

-}- C100 A 01 -- C200 A 02 -- C3(00 A 03 -- 01 A 02).

Proof. Suppose that is a closed 2-form in FI2.
First, we will prove the uniqueness of the claimed representation for . Sup-

pose that can be represented as the proposition claims, and that we also have a
representation of the form

(I)--/(0)1 A 00 --0)2 A 01)-}- 0)2 A 00 -+ d(tOo +’"+ ,0).

O<i<j<

Clearly, we may suppose that p =/ and q . (Simply replace p and/5 by their
maximum, etc., and set the new coefficients in the appropriate representation
equal to 0.) Taking the difference of the two representations and setting A A
A, etc., yields

0 A"(0) ^ 0o + 0)2 ^ 01) + /0)2 A 00 +

^0+ d(20o +’"+ ,P0p).

O < <j<q

Expanding out the exterior derivative of the right-hand side of this relation and
then reducing modulo (R)p+l and terms quadratic in the 0i, we see that P= 0.
Since could have been supposed to be the last nonzero , it follows that all
of the must vanish. It now follows that A =/ dJ= 0 as well. Thus, the
representation is unique, as claimed.

Second, we prove existence of such a representation for . Now, since is in
the ideal generated by 000, there exist integers p and q sufficiently large together
with functions a t, b , and cj, so that

p--1 p

t aJ0) A Oj+ bJ0)2 A Oj-t- E ciJOi A Oj.
j=o j=o o<i<j<q

Taking the exterior derivative of both sides and reducing modulo (R)p and the
"quadratic ideal" (000)2 yields the congruence

0 =- (ap-10) + bP-10)2) ^ (Op+l ^ 092) + (bP0)2) ^ (Op+l ^ 0)1 + Op+2 ^ 0)2).

It follows that ap-1 bp.



562 BRYANT AND GRIFFITHS

If p < 2, a slight relabeling yields

^ 0o ^ + ^ 0o + cUO ^ es.
O<i<j<q

On the other hand, if p > 2, then the relation ap-1 b’ implies that can be
rewritten in the form

p-2 p -1

E aJl ^ Oj + E bJ2 A Oj-t- E CUOi A Oj
j=0 j=0 O<i<j<q

+ a’-1(0) ^ 0,-1 + 092 ^ 0,).

Since dOp_2 091 ^ 0,-1 + 0)2 ^ Op mod Op_2, it follows that, by modifying a
and b for 0 < < p- 2 and the appropriate c as well as possibly raising q, we
may express in the form

p-2 p-1

P aJ0) ^ O + bJ0)2 ^ Oj + E
j=O j=O O<i<j<q

c’Oi ^ O + d(a’-lO,_2).

Now, if p > 2, this argument can be repeated on d(aP-lOp_2). In fact, it is
now clear that, by repeating this construction at most p 2 times, we can write
in the form

tI) a0) A 0o + b0)2

^ Oo + bt0)2 ^ 01 +

+ d(alOo +... + av-tOt,_2).

O< <j<q

Differentiating once more and reducing modulo 0o, 01, and the quadratic ideal as
before yields that a b 1. Thus, with a slight relabeling, we have

tI) A(0) ^ 00 + 0)2 ^ 01) + B0)2 ^ 00 +

+ d(alOo + ...+ aV-10v_2).

O<i<j<q

At this point the proof proceeds as before. We will derive further limitations on
the c, and for this purpose, we may drop the exact differential term and suppose
that our closed 2-form is of the form

A(0) ^ Oo + 0)2 ^ 01) + B0)2 ^ Oo + cO ^ 0.
O<i<j<q

Let s > 0 be the largest integer so that there exists a nonzero c so that + j s.
For each k > 0 let Tk denote the algebraic ideal generated by 0o, 01, and all
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of the quadratic terms 0i ^ 0j where + j < k. Expanding dO 0 and reducing
modulo Ys yields the relations

ciJE(-Oi+l ^ 09
+j =s
i<j

E
i+j=s-1

i<j

cE(-O/ ^ o) ^ O -0, ^ (-o+ ^ o)] 0

’-o,+: ^ o) ^ o- o, ^ (-o+, ^ o’-o+ ^ )] o,

where the congruences are modulo 0o and 01. The second of these two relations
uncouples into the relations

i+j=s i+j=s
i<j i<j

where, again, the congruences are taken modulo 00 and 01. If s > 3, it is easy to
see that these relations imply that cu 0 for all + j s. Moreover, if s 3, then
these relations imply that c 12 c3. Writing C in place of ct, we now have in
the desired form. 13

2. The non-Goursat equivalence problem. In order to make further progress
in understanding the space of conservation laws for a given parabolic system, we
will need to develop an understanding of the invariants of parabolic systems in
general. For this purpose, we will use 1. Cartan’s method to study the equiva-
lence problem for parabolic systems. (For the convenience of the reader, a sum-
mary of the "recipe" for applying this method is given in Appendix 1 to this
section.)
Implemented blindly, the equivalence method frequently leads to unmanage-

able calculations or unintelligible results. However, we will see that, when moti-
vated by the geometric problem of understanding conservation laws, we are led
to study special cases and make normalizations in such a way that the equiva-
lence method works very nicely. Before beginning the detailed calculations, we
will now explain in outline how this will go.

Consider a pair of 1-adapted coframings

(0o, 0, 02,

on some domain U in M which satisfy the transition relations given at the begin-
ning of 1. Extend each as described in 1 to 1-adapted coframings on the infinite
prolongation U((R)) c M() so that they satisfy the crude structure equations (2) of
1. As we saw in that section, any conservation law has a unique representing
2-form l" on Ut of the form (9). Thus, there are coefficient functions A, , B,/,
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etc., so that

() Y A(Oo ^ o + 01 ^ (.O2) -- BOo ^ co2 + ClO0 ^ 01 + C200 ^ 02-- C3(00 ^ 03 -- 01 ^ 02)

Z(Oo ^ ’ + 0 ^ )+ 0o ^ +o ^ 0 +o ^ 0

+ (o ^ + ^ ).

By the transition formulas given in 1, we know that 0 aO0 and 03
(a/r3)03 mod 02. It follows easily that

(2) C3 (a2/ra)3.

In particular, whether or not Ca 0 for a given conservation law Y is indepen-
dent of the choice of 1-adapted coframing in which Y is expanded.
One of the first results we will get from the calculations below is that C3 0

for all conservation laws of a parabolic system.
Second, the equivalence method leads us to introduce an invariant of a non-

Goursat parabolic system (called the Monge-Ampere invariant) whose vanishing is
necessary in order that the system have nontrivial conservation laws. (See Appen-
dix 2 of this section for a review of the notion of a Monge-Ampere system.) Thus,
we will pursue the equivalence problem calculations only in the case of Monge-
Ampere systems.

Third, we show that a Monge-Ampere admits a more restricted class of cofram-
ings, which we call 2-adapted, characterized by the vanishing of certain expres-
sions computable for any 1-adapted coframing. These 2-adapted coframings are
the sections of a certain principal G2-subbundle of the bundle of 1-adapted
coframes. We then show that, among these 2-adapted coframings there is a cer-
tain subclass, the 3-adapted coframings, characterized by the vanishing of certain
expressions computable for any 2-adapted coframing. These 3-adapted coframings
are the sections of a certain principal G3-subbundle of the bundle of 2-adapted
coframes.

Finally, we show that, in any 3-adapted coframing, the identities

(3) C C2 0

hold for any closed 2-form f of the form (1).
In conclusion, the assumption that cg # will imply that a set of invariants of

the system must vanish and, for such parabolic systems, we may reduce the struc-
ture group to a set of 3-adapted coframes relative to which any conservation law
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is of the form

(4)
@= A(091 ^ 00 + 092 A 01) + Be92 ^ 00

B

Under changes of coframing we will have

(A ar.

t B ar2- abA
r

where a, b are parameters in the group G3 given below. Using (4), in the next
section we will be able to determine a normal form for all parabolic systems for
which c # .

The Monge-Ampere invariant. We will now carry out this process explicitly.
Let -M denote the bundle of 1-adapted coframes over M. As explained
before, - is a principal right G1 bundle over M. The structure equations of -can be written in the form

(5)

"dOo 1dOi

d(D2

do
drc3
dr J

0 0 0 0 0 0

fl -p 0 0 0 0 0

vl 2 0 2p 0 0 0 0

V2 3 0 2p 0 0 0

1)3 1)4 f13 --2 P 0 0

1)5 1)6 1 -- 2 05 0 - 3p 0

1)7 1)8 1)9 06 05 2fl2

0o
0
02
0

2

091
73

I)2
..}_ ’2

l-I3

The square matrix of 1-forms in (5) (whose components are henceforth to be
referred to as the pseudoconnection forms) assumes values in the Lie algebra of
G1. However, this matrix is not uniquely defined by this condition.
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Since

dOo -= -01 ^ 091 02 ^ ‘02 mod 0o

(6) dO1 --02 ^ 0) n3 A 0)2 mod 0o, 01

dO2 -/1;3 A 0)1 g4 A (.02 mod 0o, 0, 02

it follows that we may choose the forms , p, and fll so that

O0 __01 ^ 0)1 02 ^ 0)2

1 02 A 0)1 3 A 0)2.

This uniquely determines modulo 0o and p and //1 modulo {0o, 01 }. It then
follows that we may choose v and//2 so that

I)2 3 A (_D 4 A 0)2 A 02

for some 1-form e which is a linear combination of the basic forms. In fact, by
modifying v and/32 appropriately, we may assume that e is a linear combination
of 0)1, 0)2, n3, and n4, so we do. Now, taking the exterior derivative of dO0 and
reducing modulo 00 gives the relation

01 ^ "1 ..[_ 02 ^ ("2 / ^ 0)2) 0 mod 0o.

In particular, it follows that "2 / ^ 0)2 mod 0o, 01, 02, SO by modifying 2 and
fla, it follows that we may arrange that

"2 A 0)2
__

^ 02

for some 1-form qg. By suitably modifying v2 and f13, we may assume that p is
a linear combination of 0)1, 0)2, na, and 4. This then implies that 01 ^ fl=0 mod 00, so fl is a linear combination of 00 and 01. Now, by modifying va and
v4 suitably, we may arrange that fl 0, which we do.

Differentiating dO1 and reducing modulo 0o and 01 yields the identity

(( A 3 "t- e A 0)1) ^ 02
__

(i-ia + g4 A 0)1 + e A 7T3) A 0)2 0 mod 0o, 01.

It follows that 1-I3 _= -4 A 0)1 e A 3 mod 0o, 01, 02, 0)2; SO modifying vs, v6,
and 05 appropriately, we may assume that

1-I 3 -TT4 A 0)1 e A 7T3 ) A 02



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS II 567

for some 1-form ? which is a linear combination of 091, n3, and n4. Substituting
this back into the above identity, we get

() A 0)2 - A 0)1 .q_ (fl A /173) A 02 ------0 mod 0o, 01.

Since none of % e, or q contain any terms involving 00, 01, or 02, it follows that
we actually have the relation

Finally, computing the exterior derivative of dO2 and reducing modulo 0o, 01, and
02 yields the identity

(II4 + 2e ^ n4) ^ 0)2__ 0 mod 0o, 01, 02.

Hence, by suitably modifying the 1-forms VT, va, v9, and 06, we may assume, as
we shall henceforth, that

114 -2e ^
Our work so far has resulted in structure equations of the form

5
V7

dOo

dO2
do)2

do)

drc3

0 0 0 0 0 0
-p 0 0 0 0 0

2 0- 2p 0 0 0 0

3 0 2p 0 0 0

V4 3 --2 ]9 0 0

v6 ill+fiE 05 0 0--3p 0

v8 v9 06 05 2fl2 --4p.

0o
0
02
0)2
0)1

3

--01 A 0)1 02 A 0)2

--02 A 0)1 /173 A 0)2
0)1 R4 A 0)2 / A 02

0
-e A 3-Y A 02

where

0)2 + 8 A 0)1 .. (fl A 3 "-0
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and ), has no 602 component. It follows from Cartan’s lemma that there are
functions So,..., $4 on - so that

e S $2 S 0

S3 S4 0 0)2

In order to perform further structure reductions, it is important to understand
how the functions St vary on the fibers of " over M. To determine this, we
differentiate the structure equations.

First, expanding the identity d(dOo) 0 yields

(V3 A 01 "- 112 A 02 --V A 0)2__ 1 A 0)1__ d) ^ 0o 0.

Thus, there exists a 1-form no so that

dcz-- -no ^ 0o -!- va ^ 01 -t- 1)2 ^ 02- 1)1 ^ 0)2__ 1 ^ 0)1.

Next, expanding the identity d(d01) 0 mod 00 yields

(dp + (v‘* v2) ^ 02 + (vl 1)6) ^ 0)2 .. (2fll f12) ^ 0)1 + f13 ^ n3) ^ 01

=0mod 0o.

Thus, there exist 1-forms nl and Zo so that

dp -Zo ^ 0o nl ^ 01 --(1)4- 1)2) A 02 --(1)1 1)6) ^ 0)2 (2fll f12) ^ 0)1

f13 ^ n3.

Now, the identity d(d02)=_ 0 mod 0o, 01 takes the form -E ^ 02 0 mod 0o, 01
where

E (S3 -- S2S1)n3 ^ 0)1 .. 2S4Slna ^ 0)2 _].. $2S40)1 ^ 0)2

+ (dS4 2S‘*p San4 q- $22 S105 2V6 -t- V9) ^ 0)2

+ (dS2 S2p 2S1 n‘* + 4fll 2fl2) ^ 0)1 + (dSl + Sl(3p )- Son,,

A n3

Finally, the identity d(d0)2) 0 mod 00, 01 takes the form E ^ 0)2 _. " ^ 02
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0 mod 00, 01, where

"1e -2SoS40)2 A /1:3 -t- (3S2So 2S)/1:3 A 091 -I- (S3S2 2SSl)0)2

^ 091

d-(dS3 "k- S3(2p -0)-1- S2fl3 d- Sl(fll d- 2fl2)- So05- 2v4 d- 3v2) A 0)2

+ (dS1 + S1 (3t9 t) Son, + f13) A 091 + (dSo So(2t 7p)) A n3.

These relations imply the formulas

dSo So(2a- 7p)

dSl S1(- 3p)- fla

(7) aS2 S2(p)- 4fll + 2fl2

dS3 S3( 20)- S2fl3 Sl(fll + 2fl2) + So05 + 2v, 3v2

dS4 S(2p)- S22 -- S105 9 " 2v6,

where the congruences are taken modulo the span of the semibasic 1-forms 00, 01,
02, n3, ,, co1, and 0)2. It follows that the 2-form W S03 ^ n, modulo the
forms {00, 01, 02, 091, 092 } is well defined on M. Note that W therefore restricts to
each (2-dimensional) leaf of the system {00, 01, 02, 091, 0)2} to be a well-defined
area form. We call this form the Monge-Ampere invariant because of the following
result.

PROPOSITION 1. The invariant P vanishes identically if and only if the para-
bolic system is locally equivalent to an equation of Monge-Ampere type.

Proof. First, suppose that W vanishes identically, i.e., that So 0. Then the
structure equations imply

dO0 =- 0

dO =- o A O

doo2 =- S co A O

mod 0o, 0, 092

Thus, the Cartan system of the system o{" {00, 01, 0)2 } is the same as the
Cartan system of the single 1-form 0o, namely {00, 01, 02, 0)2, 0)1 }. It follows
that M can be covered by open sets U on which there can be defined a submer-
sion f: U IR whose fibers are the leaves of the system restricted to U.
Moreover, there is a differential ideal o defined on IR5 whose pull-back under f
is generated by the forms {00, dO0, 01 ^ 0)2 }. From the discussion in Appendix 2
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to this section, we see that this ideal is a parabolic system of Monge-Ampere type.
Let 2() denote the space of 2-dimensional integral elements of J. There is a
natural map F: U 2(o) defined by letting F(p) denote the image 2-plane f’(Ep)
c Typ)lR5 where E c TU is the 4-plane on which 0o, 01, and 02 vanish. Using
the structure equations, it is easy to see that F is a local diffeomorphism and that
F pulls the canonical Pfaffian system on /-2(o) back to be the system on U
generated by 00, 01, and 02.
The converse, that any parabolic Monge-Ampere system has its invariant W

vanish identically, can be left to the reader. El

Note. If one is interested in isolating the Monge-Ampere invariant without
going through the equivalence method, this may be done as follows. Taking the
exterior derivative of the middle equation in (6) gives 0 n3 ^ do)2 mod 00, 01,
02 0)1, 0)2, which implies that do)2 SoO2 ^ n3 mod 0o, 01, 0)1, 0)2. Under a change
of 1-adapted coframing of the above form, we have

d2 -= rE do)2 mod 0o, 01, 0)1, 0)2,

the point here being that, when we change coframings, no multiple of 0)1 appears
in 32. It follows again from the equations of coframe rotation in G1 that

a2

So

so that

Kp S03 ^ , mod{0o, 01, 02, 0)1, 0)2}

is well defined. (The reason one might have expected invariants to turn up in do)2

is that, on integral manifolds of , the equation 0)2 0 defines the characteristic
foliation, which has an invariant meaning.)

It is easy to show that, for a parabolic equation of the form r E(x, y, u, p, q, s,
t) (in the classical notation), the quantity So is a nonzero multiple of Esss, so that
this equation is Monge-Ampere if and only if it is at most quadratic in s.

With the finer structure equations we now have at our disposal, we are now
ready for the first refinement of Proposition 1. The following calculation takes
place up on the infinite prolongation, which we recall means that we are up on
the kth prolongation M(k) for some k. The 1-forms 0o, 01, 02, t93, 04, 0)1, 0)2 are
defined on M1) and are semibasic relative to the projection Mtk) Mtl); the
coefficients A, B, C1, C2, C3 are functions on Mtk).

PROPOSITION 2. Relative to the prolongation of any 1-adapted local coframing,
any closed 2-form of the form

(I) A(0) A 0o + 0)2 ^ 01
__

B0)2 A 00 -1- C10o A 01 d- C20o ^ 02

+ Ca(Oo ^ Oa + O ^ 0,)
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must satisfy ca= 0. Moreover, on the open set in M where the Monte-Ampere
invariant is nonzero, the only such closed 2-form is O. In particular, if a para-
bolic equation is "everywhere non-Monle-Ampere", then its space c of conservation
laws is trivial.

Proof. Suppose, as usual, that (0o, 01, 02, 0)1, 0)2, 3, 4) is a 1-adapted
coframing on an open set U in M. Then by our equivalence problem calculations,
there are pseudoconnection forms on U so that the structure equations hold.
We then define 0a, 0, on Mtl> as in Section 1; explicitly, 03 73- P50)

2 and
04 "-7Z.- p50) --p60)2. Assume that is closed and of the form given in the
proposition. Then a short calculation shows that d q ^ 01 mod 0o where

(dA A( + p) C102 / A0) + C304 + Be) ^ 0)2

--(dC3 C3(2g 3p) + C20) A- cae) ^ 02 + 2C303 A 0)1.

Since is closed, we have W 0 mod 0o, 01. Since W 2C303 ^ 0)1 mod 0o, 01,
02, 0)2, it follows that Ca _= 0. This proves the first part of the proposition.

In order to prove the second part, note that, with C3 0, the formula for
simplifies to

(dA A( + p) C102 + B0) + Ae) ^ 0)2 (C20)1 A) ^ 02

Of course, this implies that A C20) 0 mod 00, 01, 02, 0)2. However, using
the fact that Sofia + $10) / $30)2, this clearly implies that ASo 0 and C2

AS1.
Now if : 0 then A : 0 and hence So 0 as required.

Second and third reductions. In light of Proposition 2, there is no point in
pursuing the study of the non-Monge-Ampere case if one is interested in finding
equations with nontrivial conservation laws. Thus, let us assume that So 0.
Examining the relations (7) with this new assumption in mind, we see that there
exists a principal subbundle " of ff which is defined by the equations
Sa S, 0. The structure group of’ is of codimension 4 in the structure group
of -. We shall denote this 12-dimensional lower triangular subgroup of GL(7, IR)
by G2. (This group bears no relation to the famous simple group of the same
notation.) The group G2 consists of the matrices of the form

a 0 0 0 0 0
ab a/r 0 0 0 0

2ab/r air2 0 0 0
2ac 0 0 r2 0 0

3ac/r 0 2br2 r 0

ad/r 3ab/r2 erE 0 air3

2ad/r2 er 4ab/ra

0
0
0
0
0

a/r4
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where a and r are nonzero; b, c, d, and e are arbitrary; and the entries marked by
an asterisk are also arbitrary.

Restricting the structure equations found so far from ff to if’, we have 0
d(d02) -E ^ 02 mod 00, 01, where E simplifies to

E (v9 --2v6) ^ 092 + (4fl- 2fl2 ^ 091 + (f13) A 3"

Thus, we must have E =_ 0 mod 00, 01, 02. Also, 0 d(d0)2) E ^ 092 -- " ^ 02
mod,0o, 01 where now Y simplifies to

Y (3v2- 2v) ^ 0)2 q-(f13) ^ 0)1.

Using these relations and taking advantage of the remaining ambiguity of the
pseudoconnection forms in the structure equations, a little work shows that it is
possible to modify these forms in such a way as to have

f12 2fll + Ro02 + Rl0) + R20)2 d- R33

1)9 2V6 2R20)

f13 2T02 2R3 0)1

3
4 - v2 -]- U02 -- Trr3 Ro0)

for some (unique) functions Ro, R1, R2, R3, T, and U on -’. Setting fll fl,
v2 2y, and v6 , the structure equations take the form

"V3

5

dOo
dO1
dO2
do)2

d4

0 0 0 0 0 0
a-p 0 0 0 0 0

2fl a- 2p 0 0 0 0
0 0 2p 0 0 0

3 0 2fl p 0 0

3fl 05 0 o- 3p 0

vs 26 06 05 4fl a 4p.

01
02
0)2
0)1

3

__01 ^ 0)1__ 02 ^ 0)2
__02 ^ 0)1__ a ^ 0)2

--n3 ^ 601 --74. A 0)2__ R ^ 01
2(R30) TO2) A 01

-zre ^ mt --R A 02
2R2 A 02 --2R A 3
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where fl R ^ 092 + 2R30) ^ 02 + (R00) U02 T3) ^ 01 and R RoO2 +
R10) + R20)2 + R37g3.

We shall say that a coframing which is a section of if’ is 2-adapted. By com-
putations similar to those done to determine how the functions St varied on-, it is not difficult to show that

(8)

dT T(20- 5p)

dU U(2 4p) + 4Tfl + 6R3)

dRo =- Ro( P) + 7R3fl v3

dR =- R (2p) + 3v 6

dR2 =- R2(3P)- 2Rift + Ra05 + 2v5

dR3 - R3(0 2/9)

mod 0o, 01, 02, 3, 4, (D1, 0)2.

8

It follows that T is a relative invariant. It is the fundamental invariant of Monge-
Ampere systems.

It also follows that a principal subbundle " of codimension 4 in -’ can be
defined by the equations Ro R1 R2 R3 0 (i.e., as the locus where these
functions vanish). Although this is somewhat bad form (since we have not nor-
malized T and U as well), we will refer to " as the third-order structure bundle
of the parabolic system. A coframing on M which is a section of -" will be said
to be 3-adapted.
The structure group of the bundle -" will be denoted G3. By the relations (8),

we know the Lie algebra of the group G3, and, from this, it is not difficult to show
that the group G3 consists of the matrices of the form

a 0 0 0 0 0 0
ab air 0 0 0 0 0
ac 2ab/r air2 0 0 0 0
0 0 0 r2 0 0 0
0 0 0 2br2 r 0 0
ae 3ac/r 3ab/r2 dr2 0 air3 0

.gf 2ae’/r 6ac/r2 fr2 dr 4ab/r3 a/r4.

where a and r are nonzero, b, c, d, e, f, and g are arbitrary, and e’= e + 3bc-
2b3. (The method of getting these formulas is to use the above relations to
compute the Lie algebra of G3 and then exponentiate.) In particular, G3 has
dimension 8, as expected.
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Now, setting 6- 3Vl x, 3--, Va
equations become

-2v5=#, and vl=v, the structure

(9)

dO1
dO2
do)2

do)

dzr, 3

drc4

0 0
-p 0

v 2fl - 2p
0 0 0
0 0 0

v5 3v 3fl
.v7 2v5 6v

0 0 0 0
0 0 0 0
0 0 0 0

2p 0 0 0

-2fl p o o
0s 0 -- 3p 0
06 05 4fl a 4p.

0
02

+
0)1

--01 A 0)1- 02 A 0)2

-2TO2 A 01 -27 ^ Oo-- A 00 --(TT3 + UO2 + 37) ^ 01
--4 A 0)1 A 01
-g ^ 01 -2x ^ 02

Now expanding out the identity d(dOo) 0, we see that there must exist a 1-form
no so that

d -no ^ 0o v ^ 0)2 fl A 0)1 . A 01 "[- 27 ^ 02

Similarly, expanding out the identity d(d01)= 0 yields that there must exist
1-forms n l, Z, and , so that

dp -Z /x 0o re1 /x 01 + 2v ^ 0)2 _. X A 0)2 7 A 02 TO2 A 3

dfl - ^ 0o -(reo )(,) ^ 01 + p ^ fl- v5 ^ 0)2 Y A 0)1

+ A 02 + 27 ^ 3.
Next, expanding out the identity d(d02)= 0 and reducing modulo 0o yields the
formula

[0)2 A # - 0)1 A / "[- 02 A ( 2z1 + 2TTz4 + U73) -- 3 A 7] A 01 0 mod 0o.

Thus, we must have

0)2 A # "- 0)1 A / -- 02 A ( 2r + 2Tz4 + Uz3) + 3 A 7 0 mod 0o, 01.



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS II 575

Expanding out the identity d(dco2) --0 and reducing modulo 0o yields the
formula

[(Tzr, rt) ^ 092 + (y + Tna) ^ co (dT- T(20 5p)) ^ 02] ^ 0t

=0mod 00,

or, equivalently,

(TTz4 n) ^ 032 " () "" Trc3) A 091 (dT T(2 5p)) ^ 02 0 mod 0o, 01

In particular, it follows from this that there must exist functions To, T1, T2, P2,
and P1 so that

dT= T(20- 5p) + ToO0 + T101 + T202 + Plco: + P2 co2.

Substituting this back into the relations we already have yields the following
relations among the "torsion forms" ,, 0, x, #, and zl"

032 ^ # -F 0) ^ 1 -" 02 A ( 2nl + 2Tn, + Un3) + na ^ Y =- 0
mod 0o, 01.

(Tn4 + P202 1) A 602 + (]1 -- T3 + P102) A COl =_ 0

Keeping in mind these relations and again taking advantage of the ambiguity in
the remaining pseudoconnection forms, it is not hard to show that we can modify
the pseudoconnection forms so as to have the following formulas:

(10)

" GO1 + Hco P102 Tit.3

lr,1 pco2 + P202 + Tit,4

F101 + F202 + Dcol -(P1 + U)n3

X DO2 + Kco + Hns

# -2PO2

for some unique functions G, H, P, F1, F2, D, and K on -". These normalizations
make , p, and fl unique and make v unique modulo 00.

Reduction past the third order becomes complicated unless one makes fairly
stringent assumptions about these 14 functions. Fortunately, we will not need to
carry the reduction any further in this generality.

Here is a sample of the sort of information we can get from the equivalence
problem calculations. Again we are back up on the prolongation Mtk) for some k.



576 BRYANT AND GRIFFITHS

PROPOSITION 3.
of the form

Relative to any 3-adapted local coframing, any closed 2-form

A(0) ^ 0o + 032 ^ 01) -- B032 ^ 00 + C100 ^ O1 + C200 ^ 192

must satisfy C1= C2-" O. Moreover, on the open set in M where the relative
invariant T is nonzero, the space cg of conservation laws is at most of dimension I.
If T 0 but U is nonzero, the space of conservation laws is trivial.

Proof. Let have the stated form. Expanding out the relation dO 0 and
reducing modulo 00 gives

0 =- dO (dA A(o + p) + B03 C102) ^ 032 ^ 01 C201 ^ 031 ^ 02 mod 0o.

Of course, now reducing modulo 032 shows that we must have C2 --0. Substi-
tuting this back into the above equation implies that there must exist functions
Bo, B1, and B2 so that

dA A( + p) + BoOo + B1 01 + B2032 B03 + C102

Substituting this back into the relation dO 0 and then reducing modulo 032 and
01 yields the relation

0 =- dO =- 2C10o ^ 02 ^ 031 mod 0)2, 01

Of course, this implies that C1= 0. Thus, the first part of the proposition is
demonstrated.

Next, let us substitute the relation C 0 into the formula for dO. This yields,
after some simplification,

0 dO =_ (A(P1 U) 2BT)02 ^ 01 ^ 00 (B1 + AH)03 ^ 01 ^ Oo mod 0)2.

In particular, it follows that we must have A(P1 U) 2BT O.
Let us now restrict attention to the open set where T is nonzero. Then our

argument so far shows that, in order to be closed, must be a multiple of the
2-form

Oo 2T(0) ^ 0o + 032 ^ 01) + (Pl U)0)2 ^ 0o.

In other words, LOo for some function L, which, in order to avoid triviality,
we may assume is nonzero. The condition dO 0 is then equivalent to dOo
-(dL/L) ^ Oo, which is a differential equation for L. Now, since o is a 2-form of
rank 2, there can be at most one 1-form 2 so that dOo -2 ^ Oo. If no such 2
exists, then clearly there is no nonzero function L which satisfies dOo -(dL/L)
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^ o. If such a does exist, then it must be closed in order for the equation
dL/L 2 to have any solutions. In any case, it is clear that there is at most a
1-dimensional space of solutions L of this equation.

Finally, suppose that T 0. Then by the definition of P1 as the coefficient of
091 in dT we must have P1 0. Then

AU =0,

and if U is nonzero then A 0.

At this stage, motivated by the problem of calculating conservation laws, we
have introduced a number of invariants of non-Goursat parabolic systems. The
first invariant q must vanish if there are to be any nontrivial conservation laws at
all. In the Monge-Ampere case, the invariants T, G, H, etc., all have geometric or
physical meaning (we have commented on T).
We will close this section with an illustration of the interpretation of these

invariants. Suppose that we define a parabolic system to be quasi-evolutionary in
case it is locally equivalent to the exterior differential system arising from a PDE
of the particular form

(11) u, F(x, t, u, ux, ux),

where Fuxx 0. (To be simply evolutionary means that F does not depend on t.)
Note that (1 1) is clearly dispersive and of Monge-Ampere type.

PROPOSITION 4. The necessary and sufficient conditions that a non-Goursat
parabolic system be quasi-evolutionary are that, first, the system must be locally
Monge-Ampere (so that So =- O) and, second, that T H O.

Here, in outline is how this proposition may be proved: For the EDS arising
from (1 1) we may take o2 dt and then, after some computation, we see that in
the structure equations for a 3-adapted coframing, we have

(12) T= , =0,
which by (10) gives G H 0. (Note that the formula we derived for dT coupled
with T 0 implies that P1 0.)

Conversely, if our system is dispersive and of Monge-Ampere type, then the
structure equations show that o2 will be integrable (i.e., 092 ^ do92 0) in case
(12) holds. As we already noted, T 0 implies that P1 0 and it can be shown
that, under these conditions, H 0 implies G 0. Thus, under the conditions of
the proposition, 092 is integrable and writing o2 eI dt singles out a "time" coor-
dinate. This is the main step in the proof of the proposition.

Further interpretations of T and H will be given in Theorems 1 and 2 in
3, and in fact Proposition 4 follows from the discussion given there.
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Appendix 1. The equivalence method. In the preceding two sections we have
made extensive use of 1. Cartan’s equivalence method to determine the invariants
of a parabolic exterior differential system. Aside from Cartan’s own exposition
[Ca2], there are several other sources for this material, notably Chern [Ch] and
Gardner [Ga]. For the convenience of the reader, however, we will now summa-
rize (without proofs) the "recipe" for the equivalence method.

Let V be an n-dimensional vector space over the reals and let G
_

GL(n, IR) be
a Lie subgroup with Lie algebra c I(V) V (R) V*. The first prolongation i

()

and the Spencer cohomology group H’I() of the subalgebra fl of gI(V) are defined
by the exact sequence

0 -o I(I) I t) V* o_ V () A2V* -- H’ 1() -o 0,

where the mapping 6 is the composition of the inclusion 9 (R) V* - V (R) V* (R) V*
with the natural skew-symmetrization mapping V (R) V* (R) V* V (R) A2V*. (The
two spaces 9t) and H’(9) depend on the way that is realized as a subalgebra
of 9I(V), not just on the abstract algebra 9.)
Throughout this appendix, we will, in fact, fix an identification of V with IR",

thought of as column vectors of height n. However, for certain purposes in this
discussion, it is important to distinguish between V and its dual vectors space V*.
Since it is more convenient to write V* than (IR")*, we maintain the abstract
notation.
A local V-coframing on an n-manifold M is a V-valued 1-form r/defined on an

open set U c M with the property that r/,: TxM V is an isomorphism for all
x U. Recalling our identification of V with IR", we may write r/in the form

where the r/ are ordinary 1-forms on U which are linearly_ independent at every
point of U. If is another local V-coframing with domain U c M, then the transi-
tion matrix from r/to /is the function g" U c U GL(V) which satisfies /= gr/.

A G-structure on a manifold M of dimension n can be defined as a collection of
local V-coframings, the union of whose domains cover M, and whose transition
matrices have values in G. In most applications of the method of equivalence, a
G-structure arises as a collection of local coframings /" TU F where the {U}
form an open cover of M and the transition matrices ga defined by

have values in G. Often the (local) coframings arise as the coframes which satisfy
some geometric properties associated to another geometric object.
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For example, in 0, we associated to each parabolic system on a 7-manifold M,
the family of 0-adapted (local) coframes, and showed that they had the property
that the transition matrix between any two of them took values in a certain
19-dimensional subgroup Go c GL(7, IR). (In fact, Go was a subgroup of the group
of lower triangular matrices.) Thus, these coframes define a G-structure on M7

which is associated to and, in fact, defines the underlying parabolic structure. In
1, we defined, for parabolic structures for which the Goursat invariant was non-
zero, the 1-adapted local coframes and noted that their transition functions lay in
a certain 16-dimensional subgroup G1 c G. Thus, the 1-adapted coframes consti-
tuted a G1-structure which was a "reduction" of the original G-structure.
A G-structure {/: TU VI A} gives rise in a natural way to the principal

right G-bundle r: P M of all G-coframes of the G-structure. This is the bundle
whose local sections with domain U are simply the local coframings r/" TU V
whose transitions to the coframings / have values in G. For each g G, the right
action Rg: P P is defined by the rule R(r/) g-r/for any local section r/.

There is a canonical V-valued 1-form 09 defined on P. It is characterized by the
property that, in the local trivialization z: r-(U) U x G associated to any sec-
tion r/of P, we have 09 z*(g-r/). Note that o9 is r-semibasic, i.e., o(v) 0 for all
vectors v TP which are tangent to the fibers of rr. It also manifestly satisfies the
G-equivariance property R*(o) -o.
Two G-structures with associated principal bundles P M and P M are equi-

valent if there is a diffeomorphism f: M M inducing a commutative diagram

e F

where F (f*)-l. It can be shown that this is equivalent to the existence of a
diffeomorphism

F" P-P

which satisfies

F*() 09.

The graph of a local equivalence between the G-structures P and P is therefore
an integral manifold of the exterior differential system on P x P defined by the
relations

co-=0.
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Of course, this problem may be treated by the general methods of the theory of
exterior differential systems. According to these methods, one determines the tor-
sion of the exterior differential system and sets this equal to zero to define the
sublocus of P P where there may be integral elements of the system. Then, one
repeats this process on this sublocus (assumed to be a submanifold), and so forth.
Having eliminated the torsion of the system at the first level, one then applies
Cartan’s test to check if the system is now in involution; if not, then one prolongs
and starts the process over.

Cartan developed a method of taking into account the special features of this
problem which are due to the built-in G-equivariance. This method, the equiva-
lence method, distinguishes G-structures (and computes their automorphism
groups) by finding the so-called "(differential) invariants" of a G-structure. (We
will be more precise about what these "invariants" are below.)

For example, when G O(n), a G-structure amounts to a Riemannian metric
and the components of the Riemann curvature tensor, viewed as functions on P,
can be combined in various ways (e.g., the scalar curvature) to give the well-
known invariants of a metric. (These are second-order invariantsmin the case of
a Riemannian metric, there are no first-order invariants.)
The equivalence method will find analogous quantities to attach to any G-

structure, providing certain nondegeneracy conditions are met. Moreover, it tries
to find these invariants by studying the possible connections (in a suitably general
sense) on a G-structure. Again, this will generalize the use of the Levi-Civita
connection in Riemannian geometry.
A pseudoconnection for a G-structure P M is given by a -valued 1-form a

=g- dgwhose restriction to each fiber is the Mauer-Cartan formmthus l- oo
for x M. By exterior differentiation of the equation

col,-,w) z*(g-r/),

we infer that

dog= -a^o2+f,

where f is a semibasic V-valued 2-form that we may therefore write as

1
fl = T(o) ^

where T is a V (R) A2V*-valued function on P.

Note that we do not require the usual equivariance condition R0*(a Adr,(a). Unless G is reduc-
tive, the equivalence method will not generally work if one imposes the equivariance condition. For
this reason, 1. Cartan used a broader notion of connection than that in current use.
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If is another pseudoconnection on P, then a is semibasic and is therefore
of the form

a s(o)

where S is a g (R) V*-valued function on P. It follows that

T=T+6S,

so that the reduced mapping

IT]: P H’
is well defined, independent of the choice of pseudoconnection a. It is easy to see
that even though the pseudoconnection a may not be Ad(G)-equivariant as is the
case for true connections, nevertheless we will have

R[T] g-1. [T],

where the action on the right-hand side is the natural action of G on H’(g).
Thus, canonically associated to the G-structure is a function

z: M --. H’ (g)/G

called the torsion of the G-structure.2 It represents the basic first-order invariant
of the G-structure.
We now want to describe the procedure of reduction which is the first of two

processes central to the method of equivalence. A submanifold W = H’() will
be said to be a G-cross-section if, for all w W, we have W c(G. w)= w and
TwWc Tw(G" w) 0 for all w W. We say that a cross-section W is of constant
type G if the G-stabilizer of w is G c G for all w W. Most of the G-cross-
sections encountered in practice are "natural" linear or affine subspaces of H’ ()
and have constant type.

In "favorable" cases for application of the method of equivalence, the image
IT] (P) will lie in a set of the form G. W where W is a G-cross-section of some
constant type G1. In this case, one can canonically define a (smooth) G-sub-
structure on M by letting P [T]-X(W). This step of passing to a canonical
substructure is known as reduction.
For example, when one considers the G-structure associated to the 0-adapted

coframes as defined in 0, the G-orbits of the points IT(u)] were of dimension 2 or

This torsion is only indirectly related to the torsion of the EDS 09 0 on P x P mentioned
above since, in the present situaton, we are only dealing with a single G-structure.
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3 and were "coordinatized" by the functions A, B, and C. The stabilizer types of
these orbits depended only on whether C was zero or not. For G-structures with
C 0 (i.e., the structures associated to non-Goursat systems), the affine subspace
W c H, l(g) defined by the equations A 0, B 0, and C 1 gave a G-cross-
section of type G1 (as defined in 1). This gave us the bundle of 1-adapted coframes
which we associated to any non-Goursat parabolic system. On the other hand,
for equations of Goursat type, we would have had C 0 and the appropriate
G-cross-section would have been the linear subspace W’ defined by the equations
A =B=C=0.
To continue with the general case, if G1 is a proper subgroup of G, then one

may begin the process again, consider the intrinsic torsion
and look for an appropriate G-cross-section.

Again, for example, when one considers the G1-structure associated to the 1-
adapted coframes of a non-Goursat system as defined in 1, the G1-orbits of the
points IT1 (u)] were of dimension 4 or 5 and were "parameterized" by the coordi-
nates So through $4. Again, the stabilizer types of these orbits depended only on
whether the coordinate So was zero or not. For Gl-structures with So 0 (i.e., the
non-Monge-Ampere equations), the appropriate cross-section would have been
the subspace defined by So 1 and $1 $2 $3 $4 0. However, it turned out
that we were only interested in Monge-Ampere systems (because of Proposition
2), so we used instead the subspace W1 defined by So $1 $2 $3 $4 0,
whose points were stabilized by the subgroup G2 as defined in {}2.

Clearly, this process can be repeated as long as we are in the "favorable" case
of being able to find a suitable cross-section and as long as the new stabilizer Gk
is a proper subgroup of the group Gk-1. However, unless one chooses one’s prob-
lem carefully, it often does not take long to either run out of favorable cases or
(more rarely) to reduce to the case where Gk Gk+l "".

Suppose that at, say, the kth stage, this process stabilizes. Then one invokes the
other main idea in the method of equivalence, that of prolonoation. Although we
did not need to get into this in this paper, we shall say a few words about how
this process goes. For convenience of notation, we relabel and set Gk G and
Pk P.
Having normalized the torsion, we may seek to normalize the pseudocon-

nection . For this we must choose a splitting j" H’I()---, V (R) A2V* of the
surjection

V ( A2V* H’ l(fl),

which, as previously noted, it may not be possible to do in a G-equivariant man-
ner. In any case, we may then choose a pseudoconnection so that T j([T]).
We then have the equation

1
do9 - ^ 09 + T((.o ^z
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where T now takes values in j(H’t(g)) c V (R) A2V*. This condition determines
up to a g(1)-valued function, and this is all the normalization that is possible at
this stage.
To see why we must use pseudoconnections, suppose, for example, that G acts

trivially on H’ l(g). Unless G is reductive, it can very well happen that there is no
G-invariant complement to 6( (R) V*) on which G acts trivially. In such cases,
there simply will not be any G-equivariant connection with the torsion normal-
ized as above.
Now, even having normalized the torsion, we will not have a unique pseudo-

connection unless the first prolongation g(1) of g is zero (as happens, for
example, in the Riemannian case). On P we therefore consider the set of all (V g)-
valued coframings of the form

c0<1) ( co ))+ S(o9
S e g() c V(R) V* (R) V*,

that is, where the first n components of co(1) are just the components of co, and the
remaining dim g components are the components of the pseudoconnection well
defined up to the addition of a term of the form S(co) where S takes values in
Since S(co) ^ c0 0, this modification does not affect the normalized torsion T;
moreover, it is the most general such modification. The set of such coframings
therefore defines a g(1)-structure on P, with an associated coframe bundle p(1)
P. Since 9(1) is an abelian group (written additively), its Lie algebra is simply
embedded into 9I(V 0) 9) as the "matrices" of the form

We may now repeat the process that we went through for our original G-struc-
ture on M, arriving at the differential invariants on the second-order frame
bundle p(1). Note that p(1) has the structure of a principal bundle over M with
structure group G(1) (1) xp G, where p is the natural representation of G on fl(1).
For the Riemannian case (1) (0) and the torsion may be normalized to zero,

giving an intrinsic connection and resulting/-structure on P (I is the group with
only the unit matrix). The torsion of this/-structure then contains the compo-
nents of the Riemannian curvature tensor as second-order differential invariants.

In general, matters are not so simple (or perhaps, in the general case, they are
sometimes more interesting?). The main "result" of the equivalence method, which
seems to have not been completely formulated and proved except in special cases,
is that the above is a finite process: after some finite sequence of applications of
the reduction and prolongation procedures, we will have, in some sense, a "com-
plete, generating" set of differential invariants. (In suitably nonsingular cases, one
can prove a form of this finiteness theorem by an application of the Cartan-
Kuranishi prolongation theorem.)
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In the present paper we only found it necessary to carry out three structure
group reductions. The first came by setting C 1 and A B 0 for disper-
sive parabolic systems. The second came for Monge-Ampere systems (those with

So 0) by setting the components So, $1, $2, $3, S, of the torsion equal to zero
(which, once So 0, is possible by the transformation rules given by equation (7)
in 2). The third reduction came by setting Ro R1 R2 R3 0 (cf. equation
(8) in 2). Fortunately, no further torsion normalization nor consideration of
higher-order frame bundles will prove necessary in this paper.

In concluding this discussion of a recipe for the equivalence method, we want
to explain what is behind the equations (7) and (8)just referred to.

First a general remark. On P we may take the exterior derivative of the
equation

1
dco -a ^ 09 +xT(co ^ 09)

to have, after simplification,

-(da + ^ ) ^ co + DT(co A co) O,

where DT is defined by

a ^ T(co ^ co)+ d T(co ^ co)

Were t a connection in the usual sense, then da + ^ a would be its curvature,
which is entirely semibasic, and DT would be the covariant derivative of the
torsion tensor T. In general, by the Maurer-Cartan equation, d + ^ t restricts
to zero on the fibers of P M and thus is in the ideal generated by the
semibasic forms. It is clear that d + ^ takes its values in I (R) V* (R) (1-forms
mod semibasic 1-forms). If we denote by A the operation "d mod semibasic 1-
forms", then the above equation allows us to solve for AT and obtain an equation
of the form

AT fl(T) + ,
where fl is a 1-form, defined mod semibasic forms, that is linear in T, and is a
1-form defined mod semibasic forms. In fact, comes from the (da + a ^ a) ^ o9

term. Now AT represents the infinitesimal variation of T along a fiber and the
part may easily be seen to be in the image of the mapping I (R) V* V (R) A2 V*.
Thus the variation of the Spencer cohomology class is given by

A[T] [fl(T)],
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and this tells us in practice what the representation of G on H’ l(g) is (of course,
we could, in principle, find this directly but, in practice, this "infinitesimal method"
is often quicker).
More importantly, in practice we will have normalized certain of the compo-

nents of l-T]. For example, for parabolic systems, part of IT] will be normalized
simply by the original structure equations (0), another part by assuming the
system is dispersive and then setting C 1, leading to the crude structure equa-
tions (1), and so forth. This means that the remaining components of IT] will
transform affine linearly (as is apparent in equations (7) and (8) in 2). This then
allows us to further restrict the structure group by requiring that these com-
ponents vanish. It is this process that is occurring in the second and third reduc-
tions above.

Appendix 2. Monge-Ampere systems. In this appendix, we want to recall the
definition and some of the special properties of Monge-Ampere equations. Partic-
ularly important for us will be their characterization in terms of special properties
Of the exterior differential systems which are used to model them. This way of
looking at Monge-Ampere equations is by no means new, having been developed
extensively, beginning in the 1920’s, by Goursat, Cartan, Lepage, and de Donder,
among others. All of what we outline below is to be found in the works of these
authors. The interested reader may consult the references for some leads into
this literature.

A partial differential equation

F(x, y, u, ux, ur, uxx, uxr, ury) 0

is rewritten as an exterior differential system on a 7-manifold M in the usual
way by introducing coordinates (x, y, u, p, q, r, s, t) in the jet manifold j2(IR2, IR),
taking M to be the hypersurface

F(x, y, u, p, q, r, s, t) 0

(assumed to be a manifold in the open set under question), and taking o to be the
Pfaffian system generated by the contact forms

00 du p dx q dy

01 =dp r dx s dy

02 dq s dx dy.

One then proceeds to study (M, o) by the methods of the theory of exterior
differential systems. Thus, the first derived system of J is generated by 00; the
Cartan system of 0o, 01, 02 consists of all of fl(M), one may introduce the in-
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variants of J by the equivalence method, and so forth. However, if the equation
is known to have a certain form, one can often simplify this process considerably.
Because of its importance in this paper, we want to explain how this goes for a
particular special case.

Classically, a Monoe-Ampere equation is defined to be one of the form

E(u,,,urr Ux2y) + Auxx + 2Buxy + Curr + D O,

where A, B, C, D, E are given functions of x, y, u, u, ur. Although it is not
obvious, the class of Monge-Ampere equations is invariant under contact trans-
formation, and hence forms a geometrically natural class of second-order partial
differential equations.

Moreover, in contrast to the general case, Monge-Ampere equations can be
modeled by an exterior differential system on a 5-manifold, and we want to briefly
explain how this goes. On the space J JI(]R2, ]R) with coordinates (x, y, u, p, q),
we introduce the 1-form

0 du p dx q dy

and 2-form

f E dp ^ dq + A dp ^ dy + B(dq ^ dy + dx ^ dp) + C dx ^ dq + D dx ^ dy,

and we denote by v the exterior differential system generated by 0 and f. It is
clear that the integral surfaces of v on which dx ^ dy v 0 are locally in one-to-
one correspondence with the solutions to the Monge-Ampere equations given
above.
The relationship between the first, more general EDS construction and this one

is that (M, ) is the first prolongation of (J,
We now want to slightly widen the notion of a Monge-Ampere equation to that

of a Monge-Ampere system.

Definition. A Monge-Ampere system is an exterior differential system v given
on a 5-manifold J, where v is locally generated by a 1-form 0 and 2-form f
satisfying the conditions

(i) 0 ^ (d0)2 : 0;
(ii) dO and f are linearly independent mod 0.
While it is not difficult to give examples of Monge-Ampere systems which are

not globally equivalent to the ones which arise from Monge-Ampere equations,
at the local level there is no difference, as the following proposition shows.

PROPOSITION. Any Monge-Ampere system is locally equivalent to one induced
by a Monge-Ampere equation.
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Proof. By the Pfaff-Darboux theorem, we may locally find coordinates (x, y,
u, p, q) on J such that

0 du p dx q dy.

Since {dx, dy, O, dp, dq} forms a coframing, we may write

f E dp ^ dq + A dp ^ dy + B(dq ^ dy + dx ^ dp) + C dx ^ dq + D dx ^ dy

+ G(dx ^ dp + dy ^ dq) + ^ O,

where A, B, C, D, E, G are functions and is a 1-form. Setting

’=-GdO- ^ 0

we see that 0 and f’ locally generate the exterior differential system , while
clearly

0 f’ O, dx ^ dy v 0

defines a partial differential equation of Monge-Ampere type.

We want to explain one aspect of the basic geometry of Monge-Ampere sys-
tems, a classification into types which corresponds to the classification of second-
order partial differential equations into hyperbolic, elliptic, and parabolic types.

First, relative to any choice of generators (0, f) of , we define a quadratic
form in two variables Q(, r/) by

0(, n)o ^ (dO) ( 0 + n)" ^ O.

We may write

where f and. gare functions on the domain of the local generators (0, f).
Now, if (0, f) is another set of local generators of o as above, then we have

=aO

t bf + c dO + ^ O,

where a :/: 0, b :A 0, and c are functions and e is a 1-form. The corresponding
quadratic form is given by

Q(, rl) Q( + (c/a)rl, (b/a)rl).
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Thus, the sign of the discriminant

A =e-f2

is independent of the choice of local generators, and we say that the system is
(i) hyperbolic if A < 0;

(ii) elliptic if A > 0;
(iii) parabolic if A 0.

Since

A (AC- DE B2)

for the EDS arising from a Monge-Ampere PDE, our terminology agrees with
the classical one.

Finally, in this paper we are concerned with parabolic Monge-Ampere systems,
and we show how to choose generators of such a system in a form that makes
contact with Proposition 1 in 2 above. To do this, we choose generators (0o, f)
so that Q(, r/)= 2. (The above transformation rule for the quadratic form Q
clearly implies that this can be done.) This translates into the equations

dOo ^ f ^ Oo =f2 ^ 00 =0.

From the second equation, we see that t2 mod 00 is decomposable; consequently
there exist 1-forms 01, 092 such that

f 01 ^ 09
2 mod 00.

From the first equation, we infer that there exist 1-forms co 1, 02 so that

dO0 -01 ^ 091 02 A 092 mod 00.

From 00 ^ (d0o)2 # 0 we know that 00, 01, 02, 091, 092 is a local coframing. Then
is generated algebraically by

0o, dOo, f 01 ^ 0)2

and this choice of notation aligns with that in the proof of Proposition 1.

3. Normal forms for parabolic Monge-Ampere systems admitting a conservation
law

Parabolic Monge-Ampere systems. Since the local structure of parabolic
Monge-Ampere systems is not entirely clear, we will give a discussion of their
representation in local coordinates. For this purpose, we will make the following
general definition. (The reader should compare the discussion in the proof of
Proposition 1 in 2 above.)
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Definition. A parabolic Monge-Ampere system on a 5-manifold M5 is a differ-
ential system J on M with the property that M can be covered by open sets U on
which there exist coframings (called O-adapted coframings) ]2 (0o, 01, 02, co 1, 032)
which satisfy the conditions that dOo -01 ^ 031 02 ^ (/)2 mod 00, and that J
restricted to U is generated by 00, dO0, and fl 01 ^ 032.
The following result gives a local description of all of the parabolic Monge-

Ampere systems in the real-analytic case. Presumably, this result is also true
without the hypothesis of real-analyticity, but our proof uses the Cartan-Kihler
theorem in an essential way.

THEOREM 1. Let J be a real-analytic, parabolic Monge-Ampere system on a

manifold Ms. Then J is locally equivalent to the Monge-Ampere system generated
by a (parabolic) quasi-linear equation of the form

Uxx + 2B(x, y, u, ux, uy)uxy + (B(x, y, u, u, uy))2u + D(x, y, u, u, u) O.

Conversely, for any functions B and D of x, y, u, ux, and uy, the above equation
describes a parabolic Monge-Ampere differential system.

Proof. Suppose that is a parabolic Monge-Ampere system on Ms. Let ]2

(0o, 01, 02, co 1, 032) be a 0-adapted coframing for on an open set U in M.
The first step in the proof is to construct a Frobenius system ff of rank 3 on U

which has the property that J is contained in the ideal generated by . (This
step requires the use of the Cartan-K/ihler theorem, hence the assumption of
real-analyticity.) Let bl and bE be coordinates on IR2 and let X U x IRE. Define
the following 1-forms on X"

111 --031 -F" bl O + b202

03212 -- b201

Note that, modulo the r/, all of the forms on U may be written as linear combina-
tions of 0 and 02. In particular, there are formulas of the form

d03 =_ T101 ^ 02

d032= T201 ^ 02

dO1 =- Ta01 ^ 02

dO2 T401 ^ 02

While the analogous result for hyperbolic Monge-Ampere systems was apparently known to Lie,
we have not been able to find this statement for the parabolic case in the literature.
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where, of course, the functions T depend on the variables b and b2 as well.
Using these formulas, it is easy to see that the following structure equations hold:

dr/o -=0

drl =- A 01 r- f12 A 02

drl2 =- 2 A 01

mod r/o, r/x,//2,

where

fix =- dbx (T + bx T3 + b2 T4)02

f12 =- db2- T2 + b2T3)02

Clearly, E+ (0o, 0x, 02, 0-} 1, 0-}2, 1, 2) is a coframing of the 7-manifold X.
Let o be the differential system generated by the two 5-forms

Yx --dr/x A r/o A qx A //2 ---(1 A 0 -- 2 A 02) A //0 A 1 A //2

Y2 "-dr/2 A r/O A ql A q2 (2 A 01) A /’]0 A 1 A 2"

Take the independence condition to be the 5-form f 0o A 0x A 02 A (_D A 0.}2.
Then any integral of (J, f) is described locally as the graph of a mapping (bx, bz):
U ]R2 where the functions bx and b2 satisfy the condition that the rank-3 sys-
tem generated by the 1-forms {0o, o + bxOx + b202, (-D2 -t- b201} should be a
Frobenius system.
Now, examining the formulas for the generators Y in terms of the coframing

E+, it is immediate that the reduced Cartan characters are (s}, s;, s2, s3, s4, ss)
(0, 0, 0, 0, 2, 0). Moreover, it is also easy to see that the space of integral elements
of (o, f) at each point is of dimension 8 4s. Hence, Cartan’s Test is satisfied,
and the system (o, f) is involutive. Since we have assumed the original system J
to be real-analytic, it follows that the desired integral manifolds exist and (locally)
depend on two functions of four variables. This completes the first step. (See
Chapter III in [BCG3] for a discussion of the Cartan characters and Cartan’s
test.)

Fix a point rn U. Applying the construction from the first step, choose a
rank-3 Frobenius system in a neighborhood of rn with generators of the form
rio 0o, rll o9 + bx O1 + b202, and q2 (D2 -I- b201. Let u, x, and y denote three
independent first integrals of g on a neighborhood of m. We assume (as we
clearly may) that 0o A dx A dy :/: O.

Since 0o lies in and hence is a linear combination of du, dx, and dy, we may
divide the 0i by an appropriate nonzero function so as to arrange that

00 du p dx q dy
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for some functions p and q on a neighborhood of m. Now, 00 is a contact form on
U, so it follows that the functions x, y, u, p, and q are independent on a neighbor-
hood of m. Restricting this neighborhood if necessary, we may assume that these
five functions actually form a local coordinate system.
Now, clearly there are functions A, B, C, D, E, and F on a neighborhood of m

so that

01 ^ 0)2 E dp ^ dq + A dp ^ dy + B dq ^ dy + C dx ^ dq + D dx ^ dy

+ F dx ^ dp mod 0o.

However, by construction, we have both (01 ^ 0)2) ^ dOo ^ 00 0 and (01 ^ 0)2)
^ dx ^ dy ^ 0o 0. The reader may easily calculate that these equations force
E 0 and F B. Thus, we may assume that

01 ^ 0)2 A dp ^ dy + B(dq ^ dy + dx ^ dp) + C dx ^ dq + D dx A dy.

Since the form on the left-hand side of this equation is decomposable, it follows
that AC- B2 0. Now, it is not difficult to show that, by slightly rearranging
the variables if necessary, we may assume that A 0. Replacing 0)2 and 02 by
A0)2 and A-102, respectively, we may clearly arrange that A 1 and hence that
C=B2.

It is now clear that the integral manifolds of (00, dOo, 01 ^ 0)2) may be
described locally near m as the "graphs" of the form u f(x, y), p fx(x, y), and
q fr(x, y), where f is a function of x and y which satisfies the quasi-linear para-
bolic differential equation

fx, + 2B(x, y, f, f,, fr)fx, + (B(x, y, f, f,, fr))2fr, + D(x, y, f, fx, fr) O.

The converse is easy and is left to the reader. El

Note that a corollary of Theorem 1 is that any real-analytic parabolic Monge-
Ampere system is locally contact equivalent to a quasi-linear parabolic equation.
A "count of functions" shows that the contact equivalence classes of parabolic

Monge-Ampere systems depend on two functions of 5 variables. Thus, the "nor-
mal form" described in Theorem 1 is likely to be optimal. Certainly, there will not
be changes of variables which allow one to normalize the functions B and D
much further.

However, in the case that we know more about the invariants of the parabolic
Monge-Ampere system, we can considerably tighten the normal form of Theorem
1. As a sample of the sort of result we have in mind, we present the following
theorem.

THEOREM 2. Let be a parabolic Monge-Ampere system on a manifold Ms.
Suppose that the relative invariant T vanishes identically. Then, the function H
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defined by equation (10) in 2 is a relative invariant. On the open set where H is
nonzero, is locally equivalent to the Monge-Ampere system generated by a (para-
bolic) quasi-linear equation of the form

Uxx + 2UUxr + u2uyy + D(x, y, u, Ux, ur) O.

On any open set where the relative invariant H vanishes identically, je is locally
equivalent to the Monge-Ampere system generated by a (parabolic) quasi-linear
equation of the form

uxx + D(x, y, u, ux, ur) O.

Proof. Let be a 3-adapted local coframe. Since T vanishes identically, we
know that the function P1 must also vanish identically. The structure equations
(9) and (10) in the preceding section show that we have congruences of the form

do)2 =- 200 ^ (GO1 + H0)1) mod 0)2

dOo =- -01 ^ 0)1 mod 0)2, 190

dO1 -02 ^ 0)1 mod 0)2, 00 01

Under a frame rotation in the group G3 we may verify that H arH, and thus
H is a relative invariant. Suppose that H -: 0. Upon dividing 0)2 by -2H and
replacing 0)1 by 0)1 (G/H)01, the above equations simplify to

d0)2 _= _00 ^ 0)1 mod 0)2

dOo =- -01 ^ 0)1 mod 0)2, t90

dO _02 ^ 0)1 mod 0)2, 00 01

These congruences imply that the system generated by {0)2, 00 01 is a Pfaffian
system of the type described by Goursat’s Normal Form Theorem. (cf. page 54 in
[BCGa]). According to this result, there exist local coordinates (x, y, Vo, vl, v2) in
a neighborhood of any point so that

0)2 2(dy- vo dx)

0o 2(dvo v dx)- #(dy- Vo dx)

01 2(dr1 v2 dx) x(dvo vl dx) v(dy Vo dx)

for some functions 2 0, #, x, and v. Clearly, by scaling in the coframe, we may
assume that 2 1. Set u Vo, p vl-/ZVo, and q #. Then 0o du-p dx-
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q dy. Since 00 is a contact form, it follows that the functions (x, y, u, p, q) are
independent and hence form a local coordinate system on a neighborhood of any
point in their domain.
Now, the system J is generated by 00, dOo and 0t ^ 092. It follows by a short

calculation that, setting D q(p + uq) v2, the system J is generated by the 1-
form 00 and the two 2-forms dO0 and

Y (dp + u dq + D dx) ^ (dy u dx).

The normal form in the first part of the theorem now follows immediately.
Now let us assume, instead, that H vanishes identically. If G were nonzero on

an open set, then the Cartan system of the 1-form 0)2 would clearly be (0)2, 00, 0t },
and hence this latter system would be completely integrable. However, the con-
gruence dot --02 ^ 0) mod 0o, 0t, 0)2 shows that this is not the case. Thus, G
vanishes identically. It then follows by Goursat Normal Form that there must
exist local coordinates (x, y, Vo, vt, v2) so that

0)2 dy

0o 2(dvo v dx)- # dy

Ot 2(dvt v2 dx)- to(dro v dx) v dy,

where : 0, 2 0, #, x, and v are functions on the domain of the local coordi-
nates. Again, we may assume that 2 1. Setting Vo u, v p, # q, and
D -v2, we see that is locally generated by the 1-form 00 du p dx q dy
and the two 2-forms dOo and

Y (dp + D dx) ^ dy.

The second half of the theorem is now obvious.

It may be worth remarking that, for an equation of the first type, the Goursat
relative invariant is proportional to C Dq uDp- (p + uq) while, for an equa-
tion of the second type, it is proportional to C Dq. Note also that it is precisely
the non-Goursat equations of the second type which can be locally placed in the
"quasi-evolutionary" form

ut F(x, t, u, Ux, Uxx).

That is, for dispersive parabolic systems we have introduced a sequence of relative
invariants

So, T,H
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where T becomes a relative invariant only when So 0 and H becomes a relative
invariant only when SO T O. As stated in Proposition 4 in 2, those systems
which can locally be put in the above evolutionary form are precisely those for
which So T H 0. In 5 below we shall completely analyze conservation
laws for classical evolution equations.

Equations admitting a conservation law. We now want to describe a method of
"constructing" all of the non-Goursat parabolic equations which admit at least
one conservation law. The result of this discussion is Theorem 3 which, roughly
speaking, says that the set of local contact equivalence classes of such equations
"depends" on one function of five variables. Since contact equivalence classes of
parabolic equations locally depend on one function of six variables,2 and since
the condition to be non-Goursat is open, we may say that the dispersive parabolic
systems admitting a conservation law are "transcendental codimension 1" among all
such systems.

Suppose that J is a non-Goursat Monge-Ampere system on M7 which admits
a nontrivial conservation law. Let be a nonzero closed 2-form representing this
conservation law. Then on the third-order frame bundle -", the 2-form can be
expanded in the form

=A(0) ^0o+O92 ^ 01) + B0)2 ^0o,

where A and B are functions on if" with B -(D1 + fl)A. We have already seen
that there cannot be any open set where A vanishes but does not. Thus, we
shall restrict attention to the open set where A is nonzero and, accordingly,
assume henceforth that A 4: 0.

Referring to the transformation laws given at the beginning of 2, under a
frame rotation in the group G3 we have

A arA

B ar2 2abr2.

It follows that we may make a frame adaptation, depending on the particular
conservation law , in order to have

A= 1, B 0.

It follows that, on any open set where is nonzero, there exists a 3-adapted
coframe in which q has the expression

(I) (D ^ 00 "]" 0)2 ^ 01.
That is, second-order equations are given by hypersurfaces in open sets U c J2(]R2, JR) - ]R and

therefore are locally parametrized by one arbitrary function of seven variables. However, parabolic
equations are hypersurfaces in U c V, where V is the hypersurface in J2(IR2, IR) given by rt 0;
as such, parabolics depend on one arbitrary function of six variables.
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Now, the Cartan system of the 1-form 0o is the rank-5 system {0o, 0x, 02,
o1, o2}. Since the system is Frobenius, the 7-manifold M can be covered by
open sets U on which there exist submersions a: U a(U)c IRs whose (con-
nected) fibers are the leaves of in U. The l-form 0o is well defined up to a
multiple on a(U). Moreover, because tI) is a closed 2-form and is expressed in
terms of the 1-forms in , it follows that there is a well-defined 2-form Y on a(U)
which satisfies a*(Y)
The differential system J on a(U) generated by {0o, dOo, T} is clearly a para-

bolic Monge-Ampere system, and the submersion a: U a(U) is easily seen to be
locally isomorphic to the first prolongation of

Thus, in order to classify the non-Goursat parabolic systems which admit a
conservation law, it suffices to consider parabolic Monge-Ampere systems J on
5-manifolds which can be generated by a contact form 00 and a closed non-
degenerate 2-form T.

THEOREM 3. Let J be a parabolic Monoe-Ampere system on a 5-manifold M
which is non-Goursat and which admits at least one nontrivial conservation law.
Then M can be covered by open sets U on which there exists a local coordinate
system (x, t, Uo, ul,//2) and a function f so that {0, dO, duo A dx + dut A dt}
where

0 duo 2f dx u2 dt 2(du u2 dx).

Conversely, if f is any function on an open set U IRs endowed with coordinates
(x, t, Uo, u, u2) so that 0 defined by the above formula satisfies 0 ^ (d0)2 4: 0, then
the system {0, dO, duo ^ dx + dul ^ dr} is a parabolic, non-Goursat, Monoe-
Ampere system on U which admits a conservation law. Moreover, the Monoe-Ampere
invariant T vanishes if and only if f is at most quadratic in u2.

Proof. As we have already seen, a parabolic Monge-Ampere system J on Ms

admits a conservation law if and only if it can be generated algebraically by a set
{0, dO, Y} where 0 is a contact form and Y is a closed, nondecomposable 2-form
which satisfies the conditions:

0 ^ (y)2 0 ^ dO ^ Y O.

By Darboux’s theorem, it is always possible to choose local independent func-
tions x, t, Uo, and u so that

Y =duo ^ dx + dul ^ dt.

(The ambiguity in the choice of such functions is parameterized by the pseudo
group of local symplectic transformations.) Since 0 ^ (y)2 0, it follows that 0
is in the linear span of the 1-forms {dx, dr, duo, dua }. By making the choice of
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symplectic coordinates x, t, Uo, and ul sufficiently generic, we may assume that
0 ^ dx ^ dt ^ dul v O, so by rescaling 0 we may write 0 in the form

0 duo Pl dx P2 dt P3 du

for some local functions px, P2, and P3. Since 0 is a contact form, at least one of
the functions p has its differential independent from {dx, dr, duo, dux }. Again, by
making a suitably generic choice of local symplectic coordinates, we may assume
that the 1-forms {dx, dr, duo, du, dp2 ) are linearly independent. Let us rename P2
as u2. For reasons which will become clear in a moment, we will also write p3 o
and pl + u2p3 2f. Then 0 takes the form

0 duo 2f dx u2 dt g(du u2 dx),

where f and g are (at the moment) arbitrary functions of the five coordinate func-
tions (x, t, Uo, ut, u2).
Expanding the condition 0 ^ dO ^ f 0 in coordinates yields

0 2(df-g du2) ^ duo ^ du ^ dt ^ dx.

It follows that g must be the partial derivative of f with respect to u2. This
establishes the first part of the theorem.
To establish the converse, suppose that f is a function on U c IR5 endowed

with the coordinates (x, t, Uo, u, u2) and that f satisfies the open condition that,
with 0 defined as above, one has 0 ^ (d0)2 0. Then the system 0 {0, dO, Y},
where f duo ^ dx + dUl ^ dt, is easily shown to satisfy the necessary condi-
tions to be a parabolic Monge-Ampere system on U. Namely, 0 is a contact form,
dO and Y are linearly independent modulo 0, and the following two identities
hold:

0 ^ (y)2 0 A dO ^ Y O.

It remains to show that this system is not of Goursat type. To see this, first
note that

Y (dul u2 dx) ^ (dt + f’ dx)mod 0,

where we have written f’ to denote the partial derivative of f with respect to u2.
It can be shown by straightforward calculation that the condition that 0 have
nonvanishing Goursat invariant is simply that the rank-3 Pfaftian system ’(0, du u2 dx, dt + f’ dx} not be completely integrable. However, since

d(du gl2 dx) -du2 ^ dx 0 mod /’,

it follows that t’ is not integrable.
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Finally, an easy computation shows that the first derived system /" of .I/is

spanned by 0 and

co dt + f’ dx + f"(du u2 dx),

where f" denotes the second derivative off with respect to//2. One then computes
that

dO =- A du ^ dx )dco =- B dul ^ dx + f" du2 ^ du u2f" du2 ^ dx
mod 0, (.I)

where A 4- 0 and f" is the third derivative of f with respect to/./2. It follows that
the Cartan system of //’ is of rank 4 if and only if f"=_ O. However, by the
structure equations, the vanishing of T is exactly the condition that the Cartan
system of //’ have rank 4.

For the sake of explicitness, we note that the condition that 0 ^ (d0)2 0 (i.e.,
that 0 be a contact form on U) is equivalent to the (open) condition on f that
Df 4= 0 where

Df (u2f’- 2f)Uo- u2 -U-7- 2 -7 + u2-o Ou:

_
f, Of’ Of+ 2f’ aUo

It is worth remarking that, in arriving at the normal form of Theorem 3, we
essentially made one "generic" choice of symplectic coordinates with respect to
the symplectic form Y. Thus, once a conservation law has been chosen for a given
parabolic Monge-Ampere system, the ambiguity in the normal form is that of a
choice of symplectic coordinates. Now, it is well known that the local symplecto-
morphisms in four dimensions depend on one function of four variables, the so-
called "generating function" of the canonical transformation. Thus, the normal
form is determined up to a choice of one function of four variables. Since the set
of allowable functions f in the normal form depends on one function of five
variables, it follows that, even up to equivalence, the set of pairs (J, Y) depends
essentially on one function of five variables.

4. Multiple conservation laws. We now want to study the parabolic equations
whose space of conservation laws ff is of dimension greater than 1. By Proposi-
tion 3 in 2, such equations would have to satisfy T 0 and U 0. Before begin-
ning a further analysis of these systems, we examine the geometric meaning of the
conditions T U 0.
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PROPOSITION 1. Let J be a parabolic Monge-Ampere system on a 7-manifold M.
Then the system V" {0o, 01, a 1, 092 } defined relative to any 3-adapted coframin9
is a Frobenius system. Let V c M be any open set for which there exists a submer-
sion r: V --, N4 whose fibers are the leaves of " restricted to K Then the vanishin9
of T and U on V is the necessary and sufficient condition that there exist a rank-2
subbundle S AZ(N) whose sections pull back via tr to be linear combinations of the
2-forms

"0 O0 A 092

Y1 O0 A (.D --01 /k (.02

Proof. That the system V" is well defined on M and completely integrable
follows immediately from the structure equations on the third-order frame bundle
". Moreover, these structure equations also imply that, for fo and Y1 as defined
in the proposition,

dYo) _(o + 2p (’)frO) _[_ ( --2TOo A O1 A 02 );i \(P U)Oo ^ o ^ o
It follows that there is a well-defined "push-down" of the span of the forms Yo
and Y1 onto the leaf space of ff if and only if T 0 and U P1. However, by
definition, P1 is the coefficient of o2 in dT; thus T 0 implies P1 0. It follows
that the "push-down" exists if and only if T and U vanish identically on V. El

Henceforth in this section, we will assume that T and U vanish identically.
Let us say that an open set V = M is admissible if the leaf space of V" restricted

to V is Hausdorff. Clearly, M can be covered by admissible open sets. Since our
arguments are local, we may as well assume that M itself is admissible and that
there exists a smooth submersion tr: M N4 whose fibers are the leaves of V’.

PROPOSITION 2. Suppose that is a (non-Goursat) parabolic Monge-Ampere
system on M7 and that satisfies T U O. Let tr: M N4 be the submersion of
M onto a 4-manifold N whose fibers are the leaves of ff, and let S A2(N) denote
the "push-down" of the space spanned by the forms Yo and Y1. Then the space cg of
conservation laws for ; on M is isomorphic to the space of those sections of S over
N which, when reoarded as 2-forms, are closed.

Proof. It follows from Proposition 3 in 2 and Proposition 1 above that the
space of conservation laws is the space of linear combinations AY + BYo which
are closed forms.

With Proposition 2 in mind, we make the following definition.

Definition. A parabolic structure on a 4-manifold N is a (smooth) rank-2 sub-
bundle S = A2(N) with the property that it can be generated locally by a pair of
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nonzero 2-forms Yo and Y which satisfy the conditions (Yo)2 Yo A Y 0
while (Y1)2 is nonzero. We say that S is non-Goursat if the rank-2 Pfaffian system
associated to the decomposable 2-form Yo is nonintegrable.

Since N is a 4-manifold, there is a natural conformal quadratic form Q on
A2(N). A parabolic structure is given by a rank-2 subbundle S c A2(N) such that
QIs has rank equal to 1. Denoting by L c S the null line subbundle for Q, the
dispersive or non-Goursat condition is that the 2-plane field determined by L
should be nonintegrable.

Proposition 2 implies that a non-Goursat parabolic Monge-Ampere system
on M7 which satisfies T U 0 induces a parabolic structure S on the leaf
space N of the Frobenius system V. It is easy to see from the structure equations
(see below) that S is non-Goursat. Conversely, we claim that a non-Goursat para-
bolic structure S on a 4-manifold N determines a non-Goursat parabolic Monge-
Ampere system on an appropriate 7-manifold M.
To see this, suppose that a parabolic non-Goursat structure S c A2(N) has

been specified and let Yo and Y1 be local generators for S which satisfy the
algebraic conditions as above. Since Y 0 while Yo # 0, it follows that, locally,
there exist 1-forms ql and/]2 so that Yo r/ ^/’]2. Since Y1 ^ Yo 0, it follows

)2that there exist 1-forms r/3 and r/4 so that Y1 r/3 ^ r/1 + r/4 ^ r/2 Since
0, it follows that (q , q2, r/3, q) is a local coframing of N.
The hypothesis that S be non-Goursat is that the system {ql, r/2} be non-

integrable. In particular, we may assume, by a change of basis, that dr/1 ^
-0 while dq2 ^ r/1 ^ q2 is nonvanishing. By scaling the generators appropri-
ately, we may even assume that dq2 -= r/3 ^ q, mod r/l, q2.
Now introduce a new variable q and let 0 q2 qr/1. Then on the 5-manifold

N x IR, it is easy to see that 0 is a contact form and that the differential system
generated by {0, dO, Y} is a (non-Goursat) parabolic Monge-Ampere system.
(Basically, it is a partial prolongation of the differential system 5e generated on N
by the sections of S.)
For all practical purposes, the system 6e is the "complete deprolongation" of

the original parabolic system J. Calculating with 5e is generally simpler than
calculating with the original system because the calculations only involve the four
"essential" variables.

A handy algorithm. Since we are going to present several examples below, we
want to streamline the process of computing the conservation laws. As it stands,
computing 6e for a given non-Goursat parabolic system requires that we set up
the coframe bundle over a 7-manifold M, compute the structure reduction to
3-adapted coframes and then apply the above discussion. However, it is not really
necessary to go through such a roundabout process. We are now going to explain
a simple way of computing the "deprolongation" of a parabolic system without
setting up the equivalence problem.

First, note that the system //1 {0o, 01, 02, 0-)2} is well defined relative to any
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0-adapted coframing. This system is not completely integrable however, since we
have dO2 -3 A 601 mod ’.
The derived system of /’x, denoted ’2, is therefore well defined. The structure

equations of a 1-adapted coframe show that for any such eoframing, ’2 {00,
01, (D2 }. Moreover, in any 1-adapted coframing,

dOo O

dO =_ -02 ^ 09

clo =- (SoOa + So ^ O

mod 0o, 01, co2

It follows that the Monge-Ampere invariant So vanishes if and only if the derived
system of ’2 has rank 2.

Accordingly, let us assume that J is Monge-Ampere. Then the derived system
of ’2, denoted ’3, is of rank 2. Moreover, relative to any 2-adapted coframing,
’3 {0o, o92 }. Indeed, in any 2-adapted coframing,

dOo =_ -01 ^ 091
d092 =_ 2(R309 TO2) ^ 01

mod 00, (.02.

It follows that the derived system of ’3 has rank 1 if and only if T vanishes.
Accordingly, let us assume that T does vanish. Then, in any 3-adapted co-

framing, o92 spans the derived system of ’3. Moreover in any 3-adapted co-
framing, the Cartan system of //3 is g" {co2, 0o, co :, 0 }.

Finally, consider the space e of 2-forms which are quadratic in and which
are congruent to zero modulo the systems ’a and J’= {0o, 01}. Relative to a
3-adapted coframing, such a 2-form is of the form

(I) A092 A 00 + Bl091 ^ 0o + B2092

^ 01 + COo ^ 01.

The condition that d@ 0 mod 00, 01 implies that B B2. Set B B1 B2. It
is easy to see now that we have dO 0 mod 092, 0o. Moreover, the condition that
d@ 0 mod 092, 01 forces C 0. Thus, these two conditions reduce us to a sub-
space 6e c Y’ which is the set of linear combinations of two 2-forms. By our
earlier calculations, this space 6e is well defined in the leaf space of X if and only
if the invariant U vanishes.

Thus, to recapitulate, the following algorithm will compute the space 6e
without (direct) recourse to the equivalence method.

First, write down the rank-4 system l relative to any O-adapted coframing.
Next, compute the first, second, and third derived systems of /ll, labelin9 them
//l2, /la, and /14, respectively. Each of these derived systems must have rank one
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less than the preceding one or else de is not a Monge-Ampere system with T O.
Let be the Caftan system of /3. Let denote the space of 2-forms which are
quadratic in Y and are congruent to zero modulo /l3 and f= {0o, 01 }. Finally,
let 6’ c denote the subspace consisting of those forms which satisfy dO =-
0 mod 0o, 01 and dO =_ 0 mod 092, 01. This is the desired space, and "pushes
down" to the leaf space of ff if and only if U also vanishes.
The upshot of all this is that the handy algorithm gives us a simple method of

computing a 2-dimensional span of 2-forms in which all of the conservation laws
lie. (In fact, they are precisely the closed 2-forms in the span of these two.) We will
now apply this several times in the following examples.

Example 1 (continued). We return to the case of the heat equation shrinking
curves on Riemannian surfaces begun in 0. Keeping the notations of that exam-
ple, we know that any conservation law is of the form

W Air/1 ^ (r/2 u2 dt) + dt ^ (r/21 u2r/1 u3 dt)] + B[_dt ^ (r/2 u2 dt)]

+ (quadratic terms in J)

A(r/1 ^ r/2 "- dt/x r/21) + B(dt ^ r/E + (quadratics).

Rather than go through the equivalence method to eliminate the "quadratics", we
shall apply the above algorithm.
To begin with, it is easy to see that //3 (r/2, dr} with Cartan system cg(’3)

{r/2, dt, r 1, r/21}, and that

f’ (r/2 U2 dt, r/21 U2r/1 //3 dt}.

It follows that the space e consists of the set of 2-forms of the form

Br/2 A dt + Al(r/2 U2 dt)/x r/1 + A2(r/21 U2r/1) /k dt + C(r/2 u2 dt)

A (r/21 U2r/1 U3 dt).

The condition dO 0mod 0o, 01 yields A A2. Let us denote this common
function by A. Then the formula for simplifies to

Br/2 A dt + A(r/2 A r/1 d- r/21 A dt) + C(r/2 u2 dt) A (r/21 U2r/1 U3 dt).

The condition that dO 0 mod 0)2, 01 then implies that C 0. Hence, the space
6e consists of the 2-forms of the form

A(r/2 A r -" r/21 A dr) + Br/2 A dr.

That is, 6e is spanned by the 2-forms Yo r/2 A dt and fl =/’/2 A r/1 "" r/21 A dt.
Note that these are well defined on the 4-manifold N F x ]R.
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(In hindsight, it is clear that we could have begun with these forms, since these
are the 2-forms which vanish on the "graph" in F IR of any solution of the heat
equation shrinking curves on the Riemannian surface.)
Now let us compute the conservation laws. The formula for dO becomes

dO dA ^ (/2 A /1 -" /21 ^dt) AKrlt ^ I2 ^ dt + dB ^ 112 ^ dt

--Br]21 A 1 A dt.

Reducing first modulo/’/2 and then by dt shows that there must exist functions Ao
and A2 so that

dA Aor/2 + A2 dt Brll.

Substituting this back into the formula for dO shows that there must exist
functions Bo and B2 so that

dB Bor/2 + B2 dt + Aor/2 + (A2 + AK)rl.

Now, computing d(dA) 0 mod r/2, dt yields that Ao 0. Thus, dA A2 dt
Bt/1. Using this simplification, computing d(dA) 0 mod dt yields B Bo 0.
Substituting these relations into the above formula for d(B) yields A2 -AK.
Consequently, dA -AK dr, and hence d(dA)= -A dK ^ dr. Of course, this
latter equation implies either that A 0 (in which case, there are no conservation
laws) or else that dK 0, i.e., that the metric on the surface has constant Gauss
curvature.

Thus, the final result of our calculations is that the parabolic system which
represents the heat equation shrinking curves on a Riemannian surface either has
no conservation laws (if the surface does not have constant Gauss curvature) or
else has a 1-dimensional space of conservation laws represented by

e-rt(rll ^ ?’12 + dt ^ 21)

if the Gauss curvature K is constant. (Note that this matches the above formula
for with A e-rt and B 0. For comparison with the formulas in 1, note
that, according to (9) in 1, one has, in general, that B -(D1A + flA). Since, in
this example, D1A 0 and fl 0, this is in accord with the general theory.)
When K :/: 0 is constant, we see that tI)= (-1/K)d(e-rtq21), and this has the

interpretation that, for any solution F of the heat equation shrinking a curve on
such a surface, the integral

remains constant.
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When K 0 and S is the flat xy-plane, the conservation law has the following
meaning: We use coordinates (x, y, 0) in F so that

r] /k 1"]2 dx /x dy

/’]21 -" dO
dx ^ dy + dt ^ dO

d -(x dy y dx) + dO

If Ft c ]E2 is in a family of curves evolving according to the equation

(1) tOE-- xN
Ot

and with fixed endpoints, then the actual conservation law is given by

In particular, if F is an embedded closed curve with enclosed area At we obtain

dAt
dt

so

A Ao 2m.

This "conservation law" was discussed by Gauge and Hamilton [GH] in connec-
tion with the problem of studying the PDE (1). In [Gr], it is proved that such a Ft
shrinks to fixed point Po (Xo, Yo) in finite time to Ao/2rc.
An open question has been whether Xo and Yo may be expressed as an integral

around Ft of some expression in the components of the position vector and their
derivatives. In other words, does there exist a formula

(2) Xo frt F(x, y, x’, y’, X(k), y(k), t) ds

and similarly for yo? We are thus asking whether Po is some sort of generalized
"center of mass" knowable from local information along Ft? The answer is no,
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since if this were the case then (2) would give a second independent conservation
law for (1), and we have proved that there is exactly one such law up to constant
multiples.

Example 4: Linear parabolics.
form

Consider a linear parabolic equation of the

ut A(x, t)uxx + B(x, t)ux + C(x, t)u,

where we assume that A is positive everywhere. It is not difficult to see that by
changing the independent variable x and appropriately rescaling u, we can locally
arrange that the equation simplifies to ut u,, + Cu.
We want to compute the space of conservation laws for this equation. Let p

stand for u; then the solutions of this equation are the integral manifolds of the
following pair of 2-forms on IR4:

Yo (du p dx) ^ dt

Y =(du-Cudt)^dx+dp^dt

(this result could also have been obtained by computing the deprolongation of
the "natural" system on IR7 associated to this equation). A conservation law will
then be represented by a closed 2-form of the form

A((du Cudt) ^ dx + dp ^ dt) + B(du p dx) ^ dt.

We have

dO dB ^ (du p dx) ^ dt B dp ^ dx ^ dt + dA

^ ((du- Cu dt) ^ dx + dp ^ dt)- AC du ^ dt ^ dx.

Reducing modulo dr, we see that dA =_ 0 mod du, dx, dr. Reducing modulo du-
p dx Cu dt, we see that B -(A + pA). Substituting this back into the for-
mula for @, we see that the coefficient of the dp ^ du ^ dt term is -2A. Thus,
we must have A 0. Substituting this back into the formula, we finally get that

0 dO (A + A,,x + CA)du ^ dx ^ dt.

Thus, the space c of conservation laws for this equation is isomorphic to the
space of 2-forms of the form

O -A(du p dx) ^ dt + A((du Cu dt) ^ dx + dp ^ dt),

where A is a function of x and which satisfies the "backwards" equation At +
Ax + CA 0. In particular, note that c is infinite-dimensional.



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS II 605

Example 5: Two conservation laws. In this example, we exhibit a parabolic
structure on IR4 which admits a 2-dimensional space of conservation laws and no
more.

Let N be the simply connected Lie group of dimension 4 which possesses a
basis (092, 0o, 0)1, 01) of left-invariant 1-forms which satisfy the structure equations

do)2 --01 A 00 do) 0

dOo -01 ^ o91 dO1 =0.

Clearly, N is diffeomorphic to IR4. Let S c A2(N) be the rank-2 subbundle for
which the forms Yo 00 ^ 0)2 and Y1 0o ^ 091 + 01 ^ 0)2 give a basis for the
sections. Then S clearly satisfies our hypotheses to be a non-Goursat parabolic
structure on N. We are going to show that S admits a 2-dimensional space of
conservation laws. Set

A(Oo ^ 091 + 01 ^ 0)2) -I- BOo ^ 0)2,

and assume that dO 0. It is easy to compute that

dO dA ^ (0o ^ 0)1 + 01 ^ 0)2)
__
dB ^ Oo ^ 0)2 BO ^ 0)1 ^ 0)2.

In particular, if dO 0, it follows that dO ^ (.D2 dA ^ 0o ^ 0)1 ^ 0)2 0, SO dA
must be a linear combination of 00, 0)1, and 0)2. Moreover, when we substitute
such a combination for dA into the equation dO 0, we find that the coefficient
of o91 must be -B. Thus, there exist functions Ao and A2 SO that

dA AoOo + A20)2 B0)

Substituting this back into dO 0 yields that there must exist functions Bo and
B2 so that

dB BoOo + B20)2 + AoO + A20)

Now, we compute that

0 d(dA)

dAo ^ Oo + dA2 ^ 0)2_ Ao01 ^ 091 -A201 ^ Oo

-(BoOo + B20)2 + Ao01) ^ 0)1.

Of course, reducing modulo 00 and 0)2 implies that Ao 0. The formula now



606 BRYANT AND GRIFFITHS

simplifies to

0 dA2 A 002- A201 A 00 --(BoOo + B2002) A 001.

Reducing this modulo 002 shows that Bo A2 0. Finally, substituting this back
into the above equation shows that B2 0 as well. The equations now reduce to
dA -B00 and dB 0. Of course, these equations are compatible, and they
possess a 2-dimensional space of solutions (A, B). Thus, the space of conservation
laws for the parabolic system 6e {To, T } is of dimension 2.

Example 6: Three conservation laws. In this example, we exhibit a parabolic
structure on IR4 which admits a 3-dimensional space of conservation laws and no
more. (By Theorem 1 below, no equation can admit more than three conservation
laws unless it is linear.)

Let N be the simply connected Lie group of dimension 4 which possesses a
basis (002, 00 0)1, 01 of left-invariant 1-forms which satisfy the structure equations

d002= -200 ^ Oo d00x=-0x ^0o

dOo -Ox ^ 00x dOx O.

(Since N is solvable and simply connected, it is diffeomorphic to IR4.) Let S c
A2(N) be the rank-2 subbundle for which the forms Yo 0o ^ 002 and Yx 0o ^00x + 0x ^ 002 give a basis for the sections. The structure equations on N imply
that S is a non-Goursat parabolic structure on N.
We are going to show that S admits a 3-dimensional space of conservation

laws. Set

A(Oo ^ 00x + Ox ^ 002) -F" BOo ^ 002,

and assume that d 0. It is easy to compute that

O=dO

=dA ^ (Oo ^ 00x +Ox ^002)+2AOx ^co ^0o

+ dB A t90 A 002__ BOx A 00x A 002.

Reducing first modulo 0o and then modulo 002 shows that there must exist
functions Ao and A2 so that

dA AoOo + A2 002 B00 + 2AOx.

Substituting this back into the formula for dO yields that there must exist
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functions Bo and B2 so that

dB BoOo + B20)2 + Ao01 + A20)

Now, we compute that

0 d(dA)

dAo ^ Oo + dA2 ^ 0)2- Ao01 ^ 0)1_ 2A20)1 ^ 0o

-(BoOo + B22 + Ao01) ^ 0)1 + B01 ^ Oo + 2(Ao0o + A20)2- B0)1) ^ 01.

Reducing this modulo 00 and 0)2 yields Ao B. The formula now simplifies to

0 (B20)2 + A20)1) A 190 + dA2 ^ 0)2 2A20)1 ^ 0o- (BoOo + B20)2) A 0)1

+ 2A20)2 A 01

Reducing this modulo 0)2 yields Bo A2. Substituting this back into the above
equation yields

0 (dA2 2A201 + B2(0) 00)) ^ 0)2.

Thus, there must exist a function A3 so that

dA2 2A201 B2(0) 00) + A30)2.

Meanwhile, we have the formula dB B20)2 + B01 + A2(0) + 0o). Differentiating
this relation and reducing modulo 0)2 yields the relation

0 d(dB) -4B20) ^ 0o.

Thus, B2 0. Substituting this back into d(dB) 0 yields A3 0. Setting A2 C,
we get the final formulas

dA 2AO + B(Oo -0)1)+ C0)2

dB B01 + C(Oo + 0)1)

dC 2C01.

This is a Frobenius system. Thus, the space of conservation laws of 6e has
dimension equal to 3, as promised.
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Four conservation laws imply linearizability. At this juncture, we have found
examples of parabolic systems with dim equal to 0, 1, 2, 3, or oo. We will now
prove the following theorem.

THEOREM 1. Let J be a parabolic system on a 7-manifold M. Suppose that
dim c > 4. Then o is contact-equivalent to the exterior differential system arising

from a linear parabolic partial differential equation.

By Proposition 2 and the ensuing discussion, we are reduced to considering a
non-Goursat, Monge-Ampere parabolic structure on a 4-manifold N. We shall
investigate the implications on the structure equations of a system for which
dim c > 2, 3, or 4. The last case will clearly put the most conditions on the
system, and these conditions will suffice to give the proof of the linearization
result.
The calculations done in the course of the proof will then be utilized to derive a

normal form for those parabolic systems for which dim c 3. Although we are
able to say "how many" systems there are with dim 2, we do not yet have a
complete normal for such systems. However, see below for a "rough" normal
form.

Proof. We will use coframings {tt)2, 00, (.01, 01 on N, where the conditions
that define these coframings will be given momentarily. The assumptions dim c
> 2, 3, 4 will lead to successive adaptations of these coframings.
The notation is chosen for the following reason: The original parabolic system
was given on a 7-manifold M on which we have defined the class of 3-adapted

coframings. Under the projection g’M N and after our frame adaptations on
N, the frames {to2, 00, ta x, 0x } will pull back to that part of a 3-adapted coframing
{0o, 0x, 02, 03, co x, co2 } on M that is indicated by the notation (thus g*(ta2) co2,
etc.).
On N, we choose two linearly independent closed 2-forms Y1, Y2 in the

parabolic structure and a function L such that

-" Y LY2

is decomposable. Since the parabolic system on N is assumed to be non-Goursat,
it follows that dO is not a multiple of the 2-form f.

(Proof. Writing f r/x ^ r/2, if df ^ f, then dr/x ^ r/2- r/x ^ dr/2 o ^
r/1 ^ r/2, which gives dr/x ^ r/x ^ r/2 0 or dr/x 0 mod r/l, r/2, and similarly for
r/2. This contradicts the nonintegrability of the Pfaffian system {r/x, r/2}.)
We now set f Y2 and choose our coframing on N so that

’) 0 A (.02

"f=0o^+Ot^o2.
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Using f ^ Y 0 and Y ^ Y -0, it is easy to see that this may be done. The
Pfaffian system {0o, to2) is nonintegrable, and therefore its first derived system
has rank 1 (the only possibilities are rank 1 and rank 2). Choosing to2 as a
generator for this system, we have

dto2 -= 0 }(3)
dOo --= MOl ^ to

mod 00, (.02

for some nonzero function M. Since

Y o ^ t mod to2

we infer that the flag

is well defined. Allowable frame changes preserving these coframing adaptations
(especially the expressions for f and Y) are of the form

(4)

t2 /" 0 0 0 tt)2

o b r- O 0 t9o
tb c r 0 to

01 * c’ b r-1 01

It follows that

/r r-lM,

and since M - 0, we may further adapt the coframings so as to have M -1,
which we do. It follows that the remaining allowable coframe changes in (4)
satisfy r 1. Now, from equations (3), it follows that there exists a 1-form k so
that

d(f)=d(Oo^eo2)=-01 ^to ^m2+ ^Oo^tO2.

Using this and the relations

dY d( + LY) 0

dY2 dY O,

we infer that

O=df+dL^Y=^go^eO2+(dL+eu1) ^(19o ^to+/t ^to2).
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Wedging this latter equation first with 0o and then with 092 shows that there must
be a congruence of the form

dL + ta =- 0 mod 0o, 0)2.

It follows that we may now further restrict our coframings by requiring that

(5) tal -dL.

The remaining admissible changes of coframing are then

(6)

2 1 0 0

/o b 1 0
th 0 0 1

x sOb

0 ta2

0 (I)

1 Oi

(The "0" in the bottom row results from Y Y.)
We will now deduce restrictions on the structure equations of any such

coframing. From (3) and (5), we have

dta2 p A (,02 -t" (GOx + Htax) ^ Oo

dOo= fl ^ ta + o ^ Oo-Ox ^tax

dOx tr ^ (02 + ) ^ 0 Jl- e ^ 0) "t- ^ 01

where , fl, y, e, b, p, and tr are (so far) nonuniquely defined 1-forms and G and H
are functions. From dYx dY 0 we deduce the relations

(0 "t- p) ^ 00 ^ ta2 0

1 ^ O0 ^ ta2 + (, fl) A (1) ^ (1)2 " (0 Jr" HO1) A 00 A tal + ( 4i- D) ^ O1 ^ ta2

Wedging the second equation with (02 we see that

+ HOx =- 0 mod 0o, tax, 0)2.

Now, in dOo, we may absorb all of the ta2-terms into fl ^ ta2, and thus, we may
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assume that

0 -Fro1- HO

p ROo + Fro + H01

for some functions F and R. This makes fl well defined modulo tO2, and the
second closure condition simplifies to

(y R01) ^ Oo + (e fl) ^ to + (q + Fta1) ^ 01= O mod to2.

By absorbing all of the to2-terms in dO1 into tr ^ 02, we may assume that this
equation holds identically, not just modulo to2. This then gives

y ^ Oo + e ^ ta1+ ^ 01= R01 ^ Oo + fl ^ ta1-Fro ^ 01.

The above structure equations now become

dta2 (ROo + Fro + H01) ^ e
2 + (GO1 + Hto1) ^ 0o

dOo fl ^ ta2 (Fro + Hgl) ^ go 191 ^
dta =0

dO1 =tr A tO2+tiAra1+R01 ^ Oo-Fta ^01.

Under a frame change of the form (6), we have

H=+bd

F ff + 2b + b2d

R=R-sG.

It follows that G is an invariant. We shall see below that if dim > 3, then
necessarily G 0 and then each of H and R becomes an invariant.
We will now proceed to the relevant calculations. Suppose that

(I) AY + Bf

is a closed 2-form. This is an overdetermined system of four linear equations for
the two unknown functions A and B. By assumption/construction, we know that
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(A, B) (1, 0) and (A, B) (L, 1) give two linearly independent solutions. In gen-
eral, we have, for the exterior derivative of O,

dO=dB^Oo^raZ+Bd(Oo^raZ)+dA^(Oo ^tot+Oi ^ra2)

=dB ^ Oo ^ o)2 + B((-(Fra + HOt) ^ Oo-Ot ^co ^ raz

--Oo ^ (Fra + HOt) ^ ra2)+ dA ^ (o ^ rat + 0t ^ ra2)

=dB ^ Oo ^ ra2 + (Bra + dA) ^ (0o ^ to + Ot ^ to:z).

The vanishing of dO is therefore equivalent to the existence of functions Ao, A2,
Bo, and B2 so that

dA AoOo + A2ra2 Bra

dB BoOo + B2ra2 + A2ra + AoO

This is an overdetermined system of linear differential equations for A and B. It
is the integrability implications of assuming that this system has at least four
linearly independent solutions that we shall be investigating.

Taking the exterior derivative of both sides of the equations dA AoO0 + A2ra2

Bra and reducing modulo 00 and (/)2 gives

0 =- -2AoOt ^ ta mod 0o, (-02,

which implies

Thus

dA A2ra2 Bra

dB BoOo + B2ra2 + A2ra

Repeating this calculation, but now only reducing modulo (/)2 gives

(AEH + Bo)ra ^ Oo + A2GOt ^ 0o 0 mod (/)2,

which implies

A2G A2H + Bo O.
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The case G :/: O. This is the general case; as Example 5 above shows, it may
occur for a parabolic system with exactly two conservation laws. Since G 0, the
last two equations above imply that

.42 Bo =0.

From d(dA)= 0 we then get B2 --0, which implies that B must be constant. It
now follows easily that (I) is a linear combination (with constant coefficients) of
fl and I’. In particular, dim 2.

The case G 0. Then we still have

(7) Bo -A2H.

From d(dA) 0, we now have

(dA2 + A2RO0 + A2HO + (A2F + B2)tal) ^ to2 0,

and thus there is a function C so that

(8) dA2 Co)2 A2(RO0 d- Fta + HO1)- B2ta

Since G 0, it follows that H is an invariant (as is R), and we shall investigate
dH. From d(dta2) =_ 0 mod to2, we have

(dH- 2H201) ^ ta ^ 00 -= 0 mod 0)2

which implies that

dH H2ta2 + HoOo + Hl ta + 2H201

for some functions Ho, Hi, and H2. Next, the identity d(dB) 0 mod ta2 expands
to

(2B2H + A2(R + 2HF H1))ta ^ Oo =- 0 mod 0)2,

which implies

(9) 2B2H + A2(R + 2HF- Hi)= O.

Now, under a change of flame of the form (6), we have

H1 =/l + 22b

F F / 2Hb.
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The subcase H v O.
coframings so that

Under the assumption that H # 0, we may adapt our

H1 2HF + R.

Then (9) simplifies to 2B2H 0, so B2 0. Our equations now simplify to

dA A2to2 Bto

dB A2(e HOo).

Taking the exterior derivative of these equations, we infer that there is an
equation of the form

dA2 A2b

where is a 1-form computed in terms of the coframing only (i.e., in this coframe,
it is the same for all solutions of the conservation law equations). Combining
everything gives

B 0 0 to HOo B
A2 0 0 A2

This system of total differential equations can have at most a 3-dimensional space
of solutions, and hence we see that, in the case where G 0 and H :/: 0, we must
have dim ff < 3. We will return to this case following completion of the analysis
when dim > 4.

The subcase H 0. We now suppose that H 0. Suppose first that R were
nonzero. Then (9) would imply that A2 0, and then from (7) and (8) we would
be able to conclude that Bo B2 0, which would in turn imply that B is a
constant and that dA -Bta1. It would, of course, then follow that dim 2.

Thus, if we are to have dim > 3 in this subcase, we must assume that R 0,
which we do from now on. With G H R 0, the structure equations take the
form

dto2 Fro A (_02

dOo=fl ^ to2-Fro ^ go-01 ^to

dO1 a ^ o
2 .+ fl A tl) --Fro ^ 01.
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We will show that these equations may be "integrated" leading to a linear para-
bolic partial differential equation.
We begin by setting to dx. From dto2 ^ to2 0, we infer that there exist

functions f and such that to2 e dt. Then

dto2 df A (.O2 Fro ^ 0}2 Fe" dx ^ dr,

which gives

(dr- F dx) ^ dt O,

implying

df =- F dx mod dr.

It follows that f f(x, t) is a function of x and and that F fx.
Next, we have

d(eJ’Oo) eS( ^ to2 Fro ^ Oo 01 ^ to 1) + (F dx + ft dt) ^ eJ’Oo

(eY- fOo) ^ (2__ (eY01) ^ o}1

^ dt-l ^ dx,

where/ eX e’fOo and/ eYOt. Since

^ dt 01 ^ dx d(e’Oo)

is closed and of maximal rank, it follows from Darboux’s Theorem that there
exist functions p and q such that

01 A dx A dt dp A dx + dq A dt.

By elementary linear algebra (in the form of Cartan’s Lemma), there are functions
Sl, $2, and sa, so that

Moreover, from d(e’Oo + p dx + q dt) O, it follows that

eSOo du p dx q dt



616 BRYANT AND GRIFFITHS

for some function u. This gives

01 e-Y(dp + sl dx + S2 dt)

0o ^ 09
2 (du- p dx) ^ dt

0 A 0) -" 01 A (_02= e-Y(du-q dt) ^ dx + (dp + sl dx) ^ dt

e-y du ^ dx + dp ^ dt + (sl + e-Yq) dx ^ dt.

From the structure equations,

dO1 (F01 + fl) ^ dx mod dt

(Fe-y dp + fl) ^ dx mod dt.

But also, by differentiating the above expression for 01,

dO1 =- -e-Y(F dx) ^ (dp / sl dx) + e-" dsl ^ dx mod dt

(Fe-y dp + e-y dsl) ^ dx mod dt.

Comparing these formulas for dO1 mod dt, we see that

dsl =- eYfl mod dx, dt

=- e-Y(e2Yfl) mod dx, dt

_= e-Y(/ + eYfOo) mod dx, dt

e-Y( dq / f du) mod dx, dt

d(fe-Yu e-Yq) mod dx, dt,

and then

sl fe-Yu e-Yq + h,

where h h(x, t). Combining everything gives

0 A (.02 (du p dx) A dt

0 /k (.D + 01 /k (.I)2 e-y du ^ dx + dp ^ dt + (e-Yfu + h) dx ^ dt.
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Now the first of these two 2-forms vanishes on a surface of the form (x, t, u(x, t),
p(x, t)) with dx ^ dt v 0 if and only if p(x, t) Ux(X, t), and the vanishing of the
second 2-form as well is equivalent to the condition that u(x, t) satisfy the partial
differential equation

e-Yu, u,cx + (fe-Y)u + h.

Replacing h by e-Sh, this equation can be rewritten in the form

(10) ut eux + flu + h.

We have thus shown that a parabolic exterior differential system on a 7-
manifold M for which dim > 4 is contact-equivalent to the prolongation of a
Monge-Ampere exterior differential system on the 4-manifold N associated to
the partial differential equation (10). In any case, we have completed the proof
of Theorem 1. E!

By adding to u a solution of the inhomogeneous equation (10), we may reduce
to

u eYtX’uxx + fu,

which, by setting u eYv, gives

(11) vt (e’v)

We note that (11) is determined by one arbitrary function of two variables, which
confirms our "dimension count" for parabolic systems with at least four indepen-
dent conservation laws.

Parabolic systems with two conservation laws. In this section, we will derive a
normal form for parabolic systems which admit two conservation laws. For tech-
nical reasons which will become apparent during this discussion, it is helpful to
restrict our attention to the real-analytic case.
As we have already seen, any parabolic system on a 7-manifold which admits

more than one conservation law can be canonically "deprolonged" (at least lo-
cally) to a parabolic structure on a 4-manifold N. Therefore, it suffices to consider
the case of parabolic structures S c A2(N). We have the following theorem.

THEOREM. Let N be a 4-manifold and suppose that there are two closed, real-
analytic 2-forms T and 2 defined on N which are everywhere linearly independent
and which #enerate a parabolic structure S on N. Without loss of #enerality, we
may assume that T ^ T = O. Then every point of N has a neithborhood U on
which there exist coordinates (x, y, z, w) and functions Z and W satisfyin# the par-
tial differential equation

(Z + W,)2 4(ZW, ZwW)
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so that

T dz ^ dx + dw ^ dy

-Y2 dZ ^ dx + dW ^ dy.

Conversely, given any two functions Z and W on an open set U in (x, y, z, w)-space
which satisfy the above differential equation as well as an open condition on their
first derivatives which ensures that Y1 and Y2 as defined above are linearly indepen-
dent, the system S c A2(U) which they generate is a parabolic structure on U which
admits two conservation laws. Moreover, if Z and W satisfy a further open condi-
tion on their second derivatives, the system S will be non-Goursat.

Proof. Let S c A2(N) be a parabolic structure on the 4-manifold N. The crux
of our proof (and the one place where we will need the assumption of real-ana-
lyticity) is in showing that every point of N lies in an open set on which there
exists a foliation - which is simultaneously Lagrangian for each of the 2-forms

Let us assume for the moment that such a foliation " exists on a neighbor-
hood of some point p N. Then there are independent functions x and y on a
neighborhood U of p such that the leaves of restricted to U are given by
equations of the form (x, y) (Xo, Yo). It follows that

Y Yo 0 mod dx, dy.

Let o c f*(U) denote the ideal generated by dx and dy. It is easy to see that the
complex (o, d) is locally exact in degrees above 1. Since each Y is a closed 2-form
in o (after restriction to U), it follows that there exist functions z, w, Z, and W
so that

Y d(z dx + w dy) dz ^ dx + dw ^ dy

Y2 d(Z dx + W dy) dZ ^ dx + dW ^ dy.

Since Y ^ Y 0, it follows that (x, y, z, w) forms a coordinate system on some
neighborhood of p.
Now, the condition that {Y, Y2 } generate a parabolic system on N is equiva-

lent to there being a function L so that

Y2 A Y, LY2 A Y2 and Y1 A Y --L2Y2 A Y2.

Since Y ^ 2 (Zz + W,)/2Y ^ Y and Y2 ^ Y2- (ZzWw- ZwWz)YI ^ ,
it follows that the necessary and sufficient condition that these two closed 2-forms
generate a parabolic system is that, first, the partial differential equation given in
the statement of the theorem be satisfied and, second, that Z and W satisfy the
open condition which ensures that Y and Y2 be linearly independent.
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It remains to prove the existence of the desired local Lagrangian foliations. We
will show that, in fact, given any real-analytic parabolic structure S c A2(N) on a
4-manifold N, there always exists a covering of N by open sets U on which there
exist S-Lagrangian foliations.
To see this, first note that the hypothesis that S define a real-analytic parabolic

structure on N implies that N can be covered by open sets U on which there exist
real-analytic coframings (//1, /12, //3, //4) so that S restricted to U is generated by
the pair of 2-forms {/it ^/13 +/12 A /14, /11 ^ /12).
For any functions a and b on U, the forms//1 + a//2 and//4 a//3 + b//2 clearly

generate a rank-2 Pfaffian system with the property that

//1 A /I
3 - //2 A /14 //1 ^ /12 0 mod/it + a/12,/14 a/1

a + b/12.

Thus, it suffices to show that a and b can be chosen so that the Pfaffian system
(//t + a/12,//4_ a//3+ b/12} is completely integrable. This is where the Cartan-
Kihler theorem is needed.

Let X U x IR2 and let a and b be regarded as coordinates on the lR2-factor.
Consider the exterior differential system generated on X by the two 4-forms

O1 d(/1i + a/12) ^ (//1 _[_ a/12) A (/14 a/1a + b/12)

I)2 "--d(//4- a//3 + b//2) A (//1 + a//2) A (//4_ a//3 + b//2).

It is easy to see that there are 1-forms and fl on X which satisfy da mod/1i
and fl db mod//i so that

)1 0 ^ //2 ^ (//1 _. a/12) A (//4 a//3 + br/2)

02 (-- ^//3 + fl ^/12) ^ (//t + a/12) ^ (//4_ a/1a +

Of course, it immediately follows that the system generated by (R)t and 02 with
independence condition f =//1 ^//2 ^//3 ^//, is in involution with Cartan char-
acters given by (st, s2, s3, s4) (0, 0 2, 0).
By the Cartan-K/ihler theorem there are integral manifolds of this system with

independence condition passing through every point of X. Of course, any such
integral manifold may be regarded locally as the graph in X of two functions a
and b on an open set in U which have the property that

0 d(//t + at/z) ^ (//t + a//2) ^ (//,, a//3 + b//2)

0 d(//4 a//a + b//2) ^ (//t + a//2) A (//’ a//3 + b//2).

In other words, the Pfatiian system {/it + a//2,//a,_ a//3 + b//2} is completely inte-
grable, as desired. El
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Note that the choice of a local Lagrangian foliation for a parabolic system S
depends on the choice of two functions of 3 variables. It is easy to see that, once
the Lagrangian foliation is chosen, the choice of the functions x, y, z, w, Z, and W
as described in the proof of the theorem depend only on choices of functions of 2
variables. Thus, the ambiguity in the choice of the normal form has the generality
of functions of 3 variables. However, going the other way, once the coordinates
have been established, the choice of the functions Z and W is subject to a single
first-order partial differential equation plus some open conditions. It follows that
the set of such choices is locally parametrized by a choice of one function of 4
variables. (For example, one may choose Z arbitrarily and then solve the resulting
first-order partial differential equation for W by the method of characteristics.)
Thus, it is reasonable to say that the equivalence classes of local parabolic systems
with two conservation laws "depend" on one function of 4 variables.

Discussion. In partial differential equations, the concept of a PDE system de-
fined by conservation laws has great importance [La]. For PDE’s with indepen-
dent variables x, y and dependent variables u, v a system defined by conservation
laws is of the form

(*) F Gr O,

where F, G are lR2-valued functions of (x, y, u, v). Here, of course,

F(x, y, u, V)x Fx + Fuux + Fvvx

and similarly for G, and we assume that the-vectors

everywhere span IR2. Clearly (.) is equivalent to the condition that the lR2-valued
2-form

T dF ^ dy + dG ^ dx

vanish on graphs (x, y) (x, y, u(x, y), v(x, y)). By a change of independent and
dependent variables we may assume that

F= G=
U

and then

Y--
Y2
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where Y1 and 2 are given in the above theorem with z, w replacing u, v. In
order that the exterior differential system generated by (,), which is the same
as

Y =0, dx ^ dy vO,

define a parabolic system, the condition is

(U. + V.)2 4(Uu Vo Uv V).

The theorem thus states that any parabolic EDS having two independent conser-
vation laws is locally equivalent to the exterior differential system arising from a
parabolic PDE system defined by conservation laws.

A normal form for parabolic systems with three independent conservation laws.
We now want to further analyze the case where dim ff 3. The conclusion is
given at the end of this subsection. Examining the proof of Theorem 1, we see
that this case can only arise when, in our previous notation, we have G 0 and
H :-0, so we make these assumptions. Since G 0, we know that H and R are
now invariants. The structure equations are

do)2= (ROo + F0) + H01) ^ 0)2 -- H0) ^ 0o

dOo= fl ^ 0)2_(F0)l + H01) ^ Oo_01 ^0)1

(in fact, to -dL)

dO "-tr /x 0)2 4i- A 0)1 -JI- RO /k 00 --F0) m 01

Admissible changes of coframing are given by (6) above and under such a change,
we have

F=F+ 2bH

The "pseudoconnection" forms fl and a appearing in the structure equations are
not unique, but rather are determined up to substitutions

(12)
fl.__fl + p0)2

a - a + p0)1 + q0)2.
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As before, we will consider the differential dH. Since H : 0, it is natural to modify
our notation so that we consider d(log H) instead of dH. Now, we have already
seen that dH 2H201 mod to2, 0o, ta 1. It follows that we may write

dH H(H2e2 + HoOo + Htta + 2HOt)

for some functions Ho, Ht, and H2. It is easy to show that, under a flame change
of the form (6), we have

Ho Ho

(13) HI H + 2bH

H2 H2 + 2sH + bHo.

With these formulas in hand, we are now ready to return to the calculation of
the conservation laws. As before, conservation laws are given by 2-forms

I) AT + B

which satisfy

d(I) 0.

By construction, (A, B) (1, 0) and (A, B) (L, 1) are solutions, and, by assump-
tion, there will be a third solution linearly independent from these two. (Since
H 0 we have already seen that there can be at most one such "extra" conserva-
tion law.)

In addition to dH, we will need to consider dA and dB. From the preceding
considerations, we know that

dA AoOo + A2to2 Bta

dB BoOo + B2to2 + A2to + AoO

dA2 C(J92 A2(RO0 + Fro + HOi)- B2to

where

2B2H + A2(R + 2HF- HH)= O.

Now, we have

0 d(dA) -2AoO ^ to mod 0o, (2)2,
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which, of course, implies that Ao 0. Substituting this back into the equation for
dA, we have

0 d(dA) =- (A2H + Bo) ^ Oo mod (/)2,

which implies that Bo =-A2H. Thus, the first two of the above equations
simplify to

dA A2to2 Bta

dB -A2HO0 + B2to2 + A2to 1.

Next, turning to the relation 2B2H -I- A2(R + 2HF HH) 0, since H : 0, we
may determine b in (13) so that

R HH 2HF,

and this implies that we must have B2 0.
If, for the moment, we write, for any function f,

df fto + f2ta2 + fOo + fxOi,

then the partial differential equation system for A includes the equations

Aa + A2 A A (A) AzH (A) 0.

Of course, this is highly overdetermined.
At this stage, we have further reduced the structure group so that the admissible

changes of coframing are given by

(14)

(2 1 0 0 0

/o 0 1 0 0 0o
tb 0 0 1 0 oJ

t) s 0 0 1

The "pseudoconnection" form fl is now reduced to a linear combination of (./)2, 00
ta l, and 0a. By (12), we may eliminate its to2 component, so that fl 0 mod 0o,
(o i, O
Now we go back and use this information in d(dB) 0 to infer that

(C(ro HOo) + A2H( H20o)) ^ o
2 0,

which now implies

(15) C(ro* HOo) + AzH(fl- HOo)= 0
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by our choice of ft. Since H - 0, this gives

A2(fl H20o) ^ (tox HOo) O.

Now, if (fl- H20o)A (tO- HOo)4: 0, then we would have A2 0. From the
formula for dA2, this forces C B2 0 and, since Bo -A2H, we would also
have Bo 0. But then, the equations

dA BtO

dB =0

imply that the space of conservation laws has dimension 2. Thus, when dim cg 3
we must have

(fl H20o) ^ (tO1 HOo) O,

which implies that there is some function Z so that

H20o Z(tO HOo).

Going back to (15), we obtain C A2HZ, which implies

dA2 -A2(-ZHtO2 + FtO + H(H 2F)0o + HOa).

In particular, since A2 is not identically zero, we see that the 1-form

I[t= --ZHtO2 + FtO H(H 2F)0o + HOx

must be closed. Referring to (14), and the definition of Z, we see that under a
change of coframing,

Z=Z-2s.

Clearly, we may choose s so as to make Z 0, thereby reducing the structure
group to the identity. It follows that

FtO + H(Hx 2F)0o + HOi.

Setting E A2, we have the system of total differential equations

dA EtO2 BtO

(16) dB E(tO HOo)

dE -E(FtO + H(H 2F)0o + HOx),
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and the structure equations for the coframing become

dto2 (H(Ht 2F)0o + Fto + HOt) ^ to2 + Hto ^ Oo

dOo HOo ^ o-(Fo + HOt) ^ Oo-Ot ^ o

dto =0

dot tr ^ 0
2 -- H200 A tO + H(H 2F)O ^ Oo FtO ^ Or.

The 1-form tr is a linear combination of {(./)2, 0, (I)1, 01 )" We write (16) as

(17) d B 0 0 tot + Vo B
E 0 0 vt E

where

Vo HOo

v -Fto H(Ht 2F)0o HOt.

Denote by x the 3-by-3 matrix of 1-forms in (17). The condition that our system
have three independent conservation laws is equivalent to the complete inte-
grability of the system (17), and this is expressed by the equation

Explicitly, this is

dtO2 --v A (.02 "-F" F0 A

dvo -vt ^ (Vo + tot)

dvt =0.

Observing that

tot ^ tO2 ^ Vo ^ vt tOt ^ tO2 ^ (-HO0) ^ (-HOt) :A O,

we see that (tOt, 0)2, 110, 111) is a coframing of a 4-dimensional Lie group. Elemen-
tary considerations show that on any simply connected region, we may choose
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local coordinates (x, y, u, p) with p 0 so that

(.02 p-l (dy u dx)

Vo p-1 (du p dx)

vl p-1 dp.

In terms of these coordinates, we may integrate the system (17) to get the 3-
parameter family of explicit solutions

A Co + ClX -dr- c2Y

B cl "At- C2U.

Now we can solve for 0o and 01 in terms of the Lie coframing as follows:

Oo (- 1/H)vo

01 (- 1/H)vl (1/H)(H1 2F)vo (F/H)to

Let us write 1/H Ip2 for some unknown function I. This leads us to write

f Oo ^ to2 Ip2( 1/p)(du p dx) ^ (- 1/p)(dy u dx)

I(du p dx) ^ (dy u dx)

and

Y--o A (.01 --O A (/)2

Ip(du p dx) ^ dx (I dp J(du p dx) K dx) ^ (dy u dx)

Ip du ^ dx (I dp J(du p dx) K dx) ^ (dy u dx),

where J and K are the appropriate combinations of p, H, F, and
Now the conditions on I, J, and K are that the three 2-forms

(o Y, 1 f + xY and (I)2 U’ -Jr" yY

should all be closed. Straightforward expansion of the equations do -dt
d2 0 then yield the following results:
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1. I is a function of {x, y, u} alone;
2. J -(I, + ulv + pI);
3. K -M 2p(I, + uI) p2I, where M is a function of {x, y, u} alone;
4. Ixx + 2ulxy + u2Iyy Mu.
Conversely, if these four conditions are satisfied, then dOo dO1 dO2 0,

so the parabolic system generated by {f, Y} has a 3-dimensional space of conser-
vation laws.
We can even explicitly solve the condition (4) by writing

M F..,,x 2F.,,, + 2F, + 2u(F..,,,- F.,,) +

where F is an arbitrary function of x, y and u with F... - 0. Thus, these systems
depend on the choice of one arbitrary function of three variables, thus confirming
the "count" for such systems described in the introduction.

Discussion. In the preceding section we have locally identified parabolic
systems having two independent conservation laws with systems arising from
parabolic PDE’s defined by a system of conservation laws. Among these is the
remarkable class of (nonlinear) parabolic systems admitting exactly three inde-
pendent conservation laws. These are defined in (x, y, u, p) space by the EDS

(R)1 (du p dx) ^ (dy u dx) 0

I)2 p du ^ dx (dp L dx) ^ (dy u dx) O,

where L L(x, y, u, p) is a suitable function. We first note that for any L the
system 191 t92 0 is parabolic, since

The condition that this system admit three conservation laws is an overdeter-
mined system of partial differential equations on L. In the course of the above
discussion, we have integrated these equations, expressing L in terms of an arbi-
trary function F(x, y, u). In fact, in the above notation, noting that

f I(R), Y =-- 102 mod (R),

we have L K/I. In particular, noting the above formulas for K and I, we see
that Lw,v 0, so that L has an expression of the form

L Ao(x, y, u) + A (x, y, u)p + A2(x, y, u)p2

The remaining equations on L allow us, via (1-4) above, to express Ao, A1, A2
rationally in terms of an arbitrary function F(x, y, u) and its derivatives.
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Since H 1lip2 0, no such parabolic system can be equivalent to a quasi-
evolutionary PDE, which is perhaps one reason that the expression for L is some-
what complicated.
Taking F u3 gives an explicit example of a parabolic PDE admitting exactly

three independent conservation laws:

Uxx + 2UUx, + u2uyy - 2ur(Ux + uur) O.

This equation has the 4-parameter group of symmetrices

xax +b,

ycy +d,

u --, (c/a)u.

5. Conservation laws for parabolic evolution equations. If one comes to the
study of conservation laws from the perspective of partial differential equations
given in traditional form, then in most direct terms the issue is this: Given an
explicit PDE

(1) F(x, y, u, ux, uy, ux, uy, ury O,

how can one in practice determine the conservation laws? The long answer, given
in the previous sections, is to

(i) write (1) as an exterior differential system,
(ii) calculate the invariants C, So, T, U,... of the EDS by the procedure given

in 2-3,
(iii) in terms of these invariants, one may then determine how many indepen-

dent conservation laws there are.
A shorter answer is to apply the "handy algorithm", which not only gives the

dimension of the space of conservation laws, but also gives their expression. The
question still remains, however, of more directly giving formulas for the conserva-
tion laws in terms of F, at least for interesting special classes of equations.

In this section we shall show how to do this for equations

(2) ut F(x, u, Ux, ux)

of classical evolutionary type with time-translation symmetry. The reader might
compare our treatment with that of Mikhailov et al [MSS], where a result (their
Lemma 2.1) similar to Proposition 1 below is obtained.

The invariants are given by complicated algebraic expressions in F and its derivatives (e.g., see
the formula given in 0 for the Goursat invariant C), in much the same way and for a similar reason
that the formula for the Gaussian curvature of a metric ds a(x, y) dx + 2b(x, y) dx dy + c(x, y) dy
is given by a complicated formula in the derivatives of its coefficients.
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We shall treat first a special case before dealing with the general equation (2).

Example 7: (Burger-type equations). Burger’s equation

(3) ut Uxx + 2UUx (Ux + U2)x

has been studied by a number of authors (see Vinogradov [Vi-l). It is known (loc.
cit.) that the only local conservation laws are constant multiples of the obvious
one

q9 u dx + (ux + u2) dt.

We shall easily derive this result by applying the handy algorithm. For the first
part of the calculation, it will be clearer to consider the slightly more general case
of an evolution equation in divergence form

(4) ut (f(u, ux))x.

In this calculation, we shall assume that fv(u, p) v 0 so as to avoid the trivial
case of a first-order equation. In the space with coordinates (x, t, u, p) we set

0o du p dx

and consider the pair of 2-forms

Y du ^ dx + df ^ dt Oo ^ dx + df ^ dt

=Oo ^ dt.

Integral surfaces of the exterior differential system f Y 0 on which dx ^
dt v 0 are locally in one-to-one correspondence with solutions to (4).

According to the handy algorithm, conservation laws are given by linear
combinations AY + Bf which satisfy

(5) 0.

We note that dY 0 and that the values (A, B)= (1, 0) correspond to the
obvious conservation law

q9o u dx + f(u, p) dt.

As noted above, dY 0, and we shall first show that

dx
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Proof

d= -dp ^ dx ^ dt=dx ^ dp ^ dt

df ^ dt f dp ^ dt + f du ^ dt

f dp ^ dt + f(Oo + p dx) ^ dt

1 f Oo ^ dt mod dxdp ^ dt = df ^ dt--

= fmod dx,

from which the result follows.
The equation (5) now gives

(6) dA +
f j ^ Y + dB--Bdx Aft=0.

We shall successively reduce (6) modulo dt, dx, 0o, and dp to reach our conclu-
sion. For any function C we write

dC CoOo + C dx + C2 dt + C3 dp.

Reducing (6) modulo dt gives

dA ^ Oo A dx=_O mod dt

=h3 =0.

Next, reducing (6) modulo dx and using A3 0 gives

-fvAo dp A Oo ^dt + B3 dp ^ Oo A dt--0 mod dx

= B3 fvA0

Similarly, we find

(7)

Af dx ^ dp ^ dt + B dx ^ dp ^ dt =-0 mod 0o

B



CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL SYSTEMS II 631

At this stage we have

B dx
dA Ao0o + A2 dt.

Then taking exterior derivatives and reducing modulo 0o and dt gives

(2Ao + .fj B) dp ^ dx O mod Oo, dt

1
=*" A 2 f-B.

At this juncture, the analysis breaks into the two cases fp, 0, fp, 4: 0. We
shall restrict to the former case since it includes Burger’s equation, and the latter
case will be imbedded in our analysis of the general evolution equation (2). With
this assumption we obtain Ao 0 and

B
dA -T dx + A2 dt

A A(x, t) is a function of x, alone.

Reducing (6) modulo dp, we have

dA +
fv J ^ (O ^ dx + fdu ^ dt)+ dB--fvvB dx ^ Oo ^ dt=-Omod dp

= (A dx + A2 dt
f I ^ (0 ^ dx + f.(Oo + p dx) ^ dt) + A f dx ^ Oo ^ dt

0 mod dp

=:. (A2 f.A B) dx ^ Oo ^ dt =- 0 mod dp

L
=:" B A2 -b LB

using (7).
For Burger’s equation,

f(u, p) p + u2
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and we have

A3 A0 =0

B1 A2 2uA.

But A OA/Ox and A2 OA/Ot are functions of x, alone, as then are B and
B OB/Ox. From the third equation we have Aa 0, which by the second equa-
tion gives B 0. Then A2 0 and A must be a constant.

Remark. More generally, if

f(u, p) p + 9(u),

then the above analysis and conclusion (A must be constant and B 0) applies
unless g’(u)= C is constant. In this case the original equation is linear and the
conservation laws are given by solutions to the "backwards" linear equation

Axe, + A CAx.

The general evolution equation. We now turn to analysis of the general evolu-
tionary equation (2). Our first result is the following.

PROPOSITION 1. If the equation

u, F(x, u, Ux, uxx), F#O,

has a nontrivial conservation law, then F is linear fractional in the variable Uxx,2 i.e.,

In the appendix to this section we shall show that the equation

a(x, u, ux) + b(x, u, ux)u,,
(i) u,

c(x, u, u,) + e(x, u, ux)uxx

is locally contact equivalent to an equation in simpler form:

(ii) vt F(y, v, vr)(v. + A(y, v, vr)), F 4: O.

The linearization of (i) in its highest order terms cannot be accomplished by a classical gauge transfor-
mation

’v v(x, u)
y

In other words, there are fewer equivalence classes of equations admitting a conservation law than it
might appear from a classical perspective.
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F is of the form

(8) F(x, u, ux, ux)
a(x, u, ux) + b(x, u, u)uxx
c(x, u, ux) + e(x, u, u)u

We shall give the proof below. Assuming this result, we restrict to the open set
where ae bc # O. By reversing if necessary, we may assume that ae bc < O,
which is the condition that the initial value problem be well posed for increasing
time. Next, we may clearly scale a, b, c, e simultaneously so as to have

ae bc 1,

which we shall suppose from now on.
Initially, the problem has been posed in a 5-dimensional space with variables

(t, x, u, p, r) (recall the classical convention that p u and r u). Under the
assumption that F has the form (8) we may reduce to a 4-dimensional space, as
follows: In the space with coordinates (t, x, u, p), we consider the pair of 2-forms

(9)
T (du p dx) ^ (c dx + e dp) + (a dx + b dp) ^ dt

f (du p dx) ^ dt,

where a, b, c, e are the given functions of (x, u, p). The integral surfaces of the
exterior differential system

(10) f= T=0,

on which dx ^ dt # 0, are locally in one-to-one correspondence with the solu-
tions to the PDE of Proposition 1, with F of the form (8). This EDS has a
symmetry vector field given by T c3/t3t, and we shall show that the reduced
EDS (which "lies" on a 3-dimensional space) has a canonical G-structure where

G= rn +1 0
n 0 +e

The invariants or "curvatures" of this G-structure will be labelled

W, G, Y, E, Ro.

These invariants can be given explicitly as algebraic expressions in the functions
a, b, c, e and their derivatives. We will then show that:
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(i) If W is nonzero then there can be at most one conservation law, and there
is an explicit formula for it if it exists. Indeed, if there is a conservation law,
then the PDE turns out to be locally contact equivalent to an equation

(11) u, (h(x, u, u)) Cu

where h(x, u, p) is an arbitrary function and C is a constant. The conserva-
tion law is

q9 eCt(u dx + h(x, u, u,) dt).

(ii) If W is zero and G is nonzero, then there cannot be any conservation law.
(iii) If W and G both vanish and Z is nonzero, then there can be at most two

conservation laws, and the form of these can be determined. In fact, the
general form of such an equation is

2ut uZ(Uxx + go(x, u) + 2gl(x, U)Ux + gz(x, U)Ux),

where go, g l, g2 are all expressed in terms of one arbitrary function m(x, u)
of two variables, one arbitrary function f(x) of one variable, and a number
of constants Co. In fact

g2(x, u) m,,(x, u)

f(x)
g(x, u) m,,(x, u) + u-T

The expression for go(X, u) is more complicated and will be given later.

Thus, evolution equations with one conservation law depend on one arbitrary
function of three variables, those with two conservation laws depend on one
arbitrary function of two variables (plus some "lower-dimensional" stuff), and we
shall see below that those having three conservation laws are linearizable and
depend on one arbitrary function of one variable.

(iv) If W, G and Z all vanish but E does not, there can be at most one conser-
vation law; the condition that this happen and the form of the conserva-
tion law can be determined.

(v) If W, G, Z and E all vanish but Ro does not, then there is no conservation
law.

(vi) Finally, if W, G, Z, E and Ro all vanish, then the equation is linearizable
and the space of conservation laws is infinite dimensional.

This analysis has the following corollary.

COROLLARY. If an evolution equation (2) has three independent conservation
laws, then it is linearizable.
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This corollary also follows from the normal form given in {}4 of parabolic sys-
tems having three independent conservation laws; such equations have a nonzero
relative invariant (called G in {}4) which clearly vanishes for equations of the form
ut F(x, t, u, ux, Uxx).

Before turning to the proofs, we remark that the interesting equation

u, uZ(Ux + u),

which arises independently from applied mathematics and from geometry, will be
seen to have exactly two independent conservation laws.

Proof of Proposition 1.
the 1-forms

In the space with variables (t, x, u, p, r, s) we introduce

Oo du p dx F(x, u, p, r) dt

01 dp r dx s dt

0)2 dt

0)1 dx.

We claim that any conservation law is given by a closed 2-form of the form

(I)--AI0) A 00 +A20)2 A 0 + B0)2 A 00 + COO A 01.

Proof. From the general theory we know that any conservation law is repre-
sented by a closed 2-form that satisfies the following.

(i) is in the algebraic ideal generated by 00, 01, 02,
(ii) For a 3-adapted coframing, is in the algebraic ideal generated by 00 and

0)2.
(iii) is quadratic in the differentials dx, dr, du, dp, dq (where dq dF for

evolution equations)--i.e., is semibasic relative to the mapping M
JI(IR2, ]R) induced by the inclusion M c J2(IR2, IR) followed by the projec-
tion J2(]R2, JR)--4 JI(R2, R).

From (iii) we infer that does not involve 02, 03, and is therefore of the above
form except that possibly there may be an additional term Do ^ 0t, since it is
not obvious that the 1-forms 0o, 0t, e2, e given above are part of a 3-adapted
coframing. But in the successive coframe adaptations given in 1 and 2, the 00
remains unchanged up to multiples, and the 02 is arranged so as to first have the
characteristics defined intrinsically on integral manifolds by 0)2 0 (this elimi-
nated being able to add an e term to e2) and then to have &o2 as simple as
possible. Since 02 dt for our present coframings, both these conditions are sat-
isfied and so condition (ii) is a posteriori satisfied.
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The argument is now similar tombut somewhat more complicated thanmthat
given in the above analysis of Burger-type equations. We compute dO and reduce
modulo 00 and 01 to have

0 dO (A1Fr A2) dr ^ dt ^ dx mod 00, 01,

which implies that we must have A2 FrA1 for any conservation law. We now
set A1 A so that

O=A(0) ^00+F,0)2^01)+B0)2^00+C00^01.

Next we compute dO and reduce modulo 01, 092, yielding

0 dO =- (dA + C dr) ^ dx ^ du mod 01, 0)2.

This implies that A is a function only of the variables (x, t, u, p, r) and that C
-A. (and of course C is a function of (x, t, u, p, r) also).
Having determined that A does not depend on higher-order jets, we may set

dA Ao du + A dp + A2 dt + A3 dx C dr

and reduce dO modulo 0)z dt to obtain

0 dO =_ (dC + A1 dx) ^ (du-p dx) ^ (dp-r dx)mod dt,

which clearly implies that C is a function only of the variables (x, t, u, p). In
particular, from C -A, we see that A,r 0, i.e., A must be linear in r. Next we
reduce dO modulo dp and dx to get

0 dO =_ (dB + C ds + s dC) ^ dt ^ du mod dp, dx

B + Cs function of x, t, u, p,

and we may set

dB Bo du + B1 dp + B2 dt + B3 dx C ds s dC.

Finally, working modulo cubic terms in dx, dt, du, dp, we find that the B’s drop
out and

0 dO (AF,, 2CF) dr ^ dt ^ (dp r dx) mod A3 {dx, dt, du, dp},

which implies that AFar 2CF. When coupled with C -A, and the fact that A
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is linear in r, this identity yields the relation

(A2F) 0.

This easily implies that F is linear fractional in r with coefficients being functions
of (x, t, u, p). Elementary arguments then show that since F does not depend on t,
we may assume that the coefficients in the linear fractional expression also have
no t-dependence. 121

We now turn to analysis of the evolution equation

a(x, u, Ux) + b(x, u, Ux)Uxx
c(x, u, Ux) + e(x, u, Ux)Ux

where ae- bc 1. To set this up, we work in the space N with variables
(t, x, u, p) and let be the differential ideal generated by the pair of 2-forms Y
and f given by (9) above. We set T c3/dt and consider the coframing

2 =dt

O0 du p dx

l c(x, u, p) dx + e(x, u, p) dp

Oi a(x, u, p) dx + b(x, u, p) dp.

This coframing satisfies the following geometric properties:
(i) is generated by 0-0 ^ 2 and 0 ^ + ^ 2;

(ii) 2 0 defines the characteristic foliation on integral surfaces of o on which
1 ^ 2 0, and moreover 2(T) 1;

(iii) O-o(T) :(T) I(T) 0;
(iv) dO-o =- - ^ 1 mod o.
Over N we consider the principal G-bundle of all coframings whose smooth sec-
tions satisfy (i)-(iv). Since any two coframings defined over the same open set are
easily seen to be related by

(12)

092 1 0 0 0 2
0o 0 0 0 o
o9 0 m + 1 0 i
01 0 n 0 --V 1

we see that G is the group of matrices of the form
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m +1
n 0 +

#0,

where the sign is the same on 1 and e. We shall carry out the equivalence
method for this G-structure (cf. Appendix 1 in 2).
Now it is easy to see that up on the principal G-bundle space we have structure

equations of the form

io fl 0 0 ^ o PO ^ OQ

dO 0 o 01 QO ^ 1

where P and Q are functions on the coframe bundle and , fl, ? are pseudoconnec-
tion forms (not uniquely defined). The point here is that any 00 ^ 091 or 0o ^ 01
terms in de and dO1 may be absorbed using the pseudoconnection forms. To
find out how P and Q vary on the fibers, we compute

O=d2Oo= -d ^ 0o- ^ o ^0o-01 ^ fl ^ Oo

=:,d=-^o9i+fl^Olmod00.

Similarly,

0 d2fD --= -(dP P + fl) ^ 01 ^ 091 mod 0o

0 d20i =- -(dQ + 27) ^ 01 ^ o9 mod 0o,

from which we conclude that

dP =- Po- fl]
dQ =- 2

mod 0o, o9 l, 0i.

It follows that there is a principal subbundle on which P Q 0, and whose
group consists of the matrices

0 +1
0 0 +

On this reduced frame bundle there is now a unique choice of such that the
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structure equations take the form

dco 0 0 0 ^ co (Zoo + W01) ^ 0o
dO 0 0 e Oi Rcol ^ Oo

for some functions Z, W, and R on the reduced coframe bundle. The point here is
that we have used the previous ambiguity in e up to multiples of 0o to eliminate
any 0o ^ 01 terms in dO1. Since e is uniquely defined by geometric properties, it
follows that it is a connectionmnot just a pseudoconnection--whose curvature is
given by

de EOo ^ (D -]- GOo ^ 01 + Z0)1 A 191

for some other functions E and G.

Proof. From the structure equations above, 0 d20o -de ^ Oo + 01
dco mod e enables us to solve for the coefficient of 091 ^ 01 in de.

Further differentiation of the structure equations yields equations of the form

dZ Ze + Zo Z1 Y 091
dW 2We Wo Y W1 01

It follows that R and Z2/W are absolute invariants. Moreover, if Z is nonzero we
may reduce coframes completely by requiring that Z 1; if W is nonzero we
may reduce by requiring that W 1. However, we will not proceed this way
but rather will go directly to our search for conservation laws.
We are looking for closed 2-forms

AT + Bf.

Calculation of dY and df (cf. the above analysis of Burger-type equations) gives
that

d (dA Ae + Bo91 + ARc.o2) ^ T + (dB Be) ^
imposing the condition dO 0 gives that there are expressions

dA Ae + (A2 AR)c.o2 + AoO0 Boo

dB Be + B2o)2 + BoOo + A2o) + Ao01.
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Next we have

0 d2A =- (AZ + 2Ao)o9 ^ 0 mod 0o, o92,

1
Ao --AZ.Using this we then calculate

0 d2A

dA2-A2o- ARo--ZA2 0o+(RB+B2-ARt)cot-AEO ^o92

1
+ --AZ1-AE +-BZ + Bo ^ Oo

(1+ --AY-AG+BW 01 ^0o,

which implies the equations

(13)
(1)3Bo= E +-Z1 A--BZ

The equation d2A 0 above also gives

( 1 )dA2 =- A2 + ARo -ZA2 0o (RB + B2 AR1)o91 + AE01 mod o92,

which implies

( 1 )dA2 A2 + Co2 + ARo --ZA2 0o -(RB + B2 AR1)o91 + AE01

for some function C. We now proceed to analyze cases, following the numbering
given at the beginning of this section.

Case (i). W O. From (13) any conservation law must be of the form

MEW(Oo ^ co + O, ^ co2) + (G + Y/2)Oo ^ 0923.
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Denote by doo the 2-form in brackets. Since W : 0 we have that doo ^ doo 4: 0,
and consequently

ddoo # ^ doo

for a unique 1-form (wedging with a nondegenerate 2-form on a 4-manifold gives
an isomorphism from the space of 1-forms to the space of 3-forms). Clearly,/ is
an expression in the invariants of the EDS and their covariant derivatives. The
condition that there be a conservation law is

(14) d#=0.

In fact, writing M e- for some unknown function g, the condition ddo 0
gives d9 #. Thus, the space of conservation laws is of at most dimension 1
and is equal to 1 exactly when the equation (14) (which is an expression in the
invariants of the EDS) is satisfied.
We will now derive the normal form (11). For this we see that taking W 1

and replacing 01 by 01 + (G + Y/2)Oo gives a canonical section of the original
coframe bundle such that

do M(Oo ^ 0)1 + 01 ^ (D2).

The action by the time-translatiori symmetry induces a representation on the
space of conservation laws, so that

expt*r(do) eC’do

for some constant C. Taking the t-dependence out of M, we have a new coframing
so that

do eC’(Oo ^ 1 +-01 ^ 2), 2 0)2 dt,

where 0-o, 1, 1 are defined on (x, u, p) space. Since do is closed, we obtain

d- -CO-0 A 1

d(Oo ^ o.

It follows that there are (possibly new) coordinates x, u, p and a nonzero function
f(x, u, p) such that

0--o ^ 1 du ^ dx = -0 f(x, u, p)(du p dx)
1 (f(x, u, p))-I dx
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(recall that dOo -Or ^ t, so that the Pfaff-Darboux theorem applies). Since
dot -C du ^ dx, we see that there is a function h(x, u, p) so that 0t dh-
Cu dx. Thus the system is generated by the pair of 2-forms (du p dx) ^ dt and
du ^ dx + (dh Cu dx) ^ dt, and hence represents the equation (11).
By calculation, one finds that hp f2 and that the invariant W vanishes if and

only if f f,, 2f2 0, which is the condition that f be linear fractional in p. In
summary, the equation,

ut (h(x, u, Ux))x Cu

where h is not linear fractional in ux, describes all of the equations in Case (i) for
which there is a conservation law.

Case (it). W 0 and G v O. Since I4/" 0 implies Y 0, we see from (13) that
in this case there are no conservation laws.

Case (iii). W G O, Z v O. This case is the most difficult, and the analysis
will be broken into several steps.

Step 1. We shall show that an equation with the invariant W 0 and Z :/: 0 is
contact equivalent to one of the form

(15) u, uZ(u + a(x, u, u)).

Proof. We can uniquely adapt coframes so that Z -1, which then gives
from the structure equation that

do (D A t90

It follows that there exist functions u and x with u :/: 0 such that

(.D U-1 dx,

where x is unique up to a change of variables of the form X X(x), and the
corresponding U is given by U u/X’(x) so that dX/U dx/u. Next, we infer
from d(u- dx) u- dx ^ u- du co ^ 00 that

0o u-t(du p dx)

for some function p. Finally, from

dOo -0t ^ co mod 0o

we have that t, x, u, p form a local coordinate system and that

0 dp + g(x, u, p) dx + h(x, u, p)Oo.
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Now

f 0o ^ dt u-l(du-p dx) ^ dt

Y 00 A 091 "t- 01A 602

U-2 du A dx + (dp + g(x, u, p) dx) ^ dt mod f

so that Y 0, dx ^ dt v O, defines the PDE

U-2Ut Uxx "- g(X, U, Ux).

Step 2.
form

Next we shall show that if the invariant G vanishes, then g is of the

(16) g(x, u, p) go(x, u) + 2gl(x, p)p + g2(x, u)p2,

i.e., is at most quadratic in p.

Proof. We have

Oo u-l(du p dx)

0) U-1 dx

01 dp + g(x, u, p) dx + uh(x, u, p)Oo

(this is a different h than in the previous step). Then

dOo -o ^ 0o 01 ^ 091 =:,. o u-1 du + h(x, u, p) dx + k(x, u, p)Oo

for some function k(x, u, p). Next

1
dO1 -0 ^ 01 mod Oo =*" h -(p p/u).

Then the structure equation dO1 -o ^ 01 + ROo ^ 091 for some R implies that

1
k ;(uopp- 3).

Finally, recalling that G is the coefficient of 00 ^ 01 in the curvature d0, the van-



644 BRYANT AND GRIFFITHS

ishing of G is equivalent to

0 d ^ 0) d(kOo) ^ 0)

du dx
=dk ^ ^U U

1
2u(#,,,_ dp ^ du ^ dx).

Thus, 9vvv # 0 and the general form of an evolution equation with W G 0,
Z#0is

(17) 2u, u2(uxx + go(x, u) + 2gl(x, u)ux + g2(x, u)u).

It remains to derive the conditions on the three functions gi so that there do, in
fact, exist conservation laws.

Before continuing this analysis, we want to pause and analyze a particular
interesting equation of the above type.

Example 8. Curvature heat flow. In Example 1 in 0, we introduced the heat
flow equation for a curve F on a Riemannian surface. In case F is a closed convex
plane curve, we may use the method of support functions to give F by giving the
curvature as a function of the angle that the tangent line makes with, say, the
x-axis. Calling the curvature u and the angle x, the resulting PDE for the curva-
ture heat flow evolution of the curve is

(18) ut u2(uxx + u).

We shall show that this equation has exactly two independent conservation laws.

Proof. Following our usual notation, we have

f- Oo ^ dt (0o du p dx)

Y--00 A 0) - 01 A 0)2

du ^ dx + u2(dp + u dx) ^ dt.

The EDS

f= T =0, dx ^ dt

clearly defines the equation (18). We look for closed 2-forms

(I) AT + B.
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This gives

0 dO =_ dA ^ du ^ dx mod dt

and straightforward calculation gives that

0 dO (u2 dA + (B + 2upA) dx) ^ (dp + u dx) ^ dt mod 00

=> dA A2 dt + AoOo u-2(B + 2upA) dx

for functions Ao and A2. Then we obtain

0 dO [dB (u2Ao + 2uA) dp (u3Ao + 3u2A + A2) dx] ^ Oo ^ dt

dB B2 dt + BoOo + (u3Ao + 3u2A + A2) dx + (u2Ao + 2uA) dp.

With these expressions for dA and dB, the equation dO 0 is an identity. We
must now impose the integrability conditions d2A d2B O.

First we have

0 d2A =- -2u-I(uAo + 2A)dp ^ dx mod 0o, dt,

which implies that Ao -(2/u)A. Then the formula for d2A simplifies to

0 d2A =- 2u-2Bo du ^ dx mod dt,

which implies that Bo 0. Summarizing,

d(u2A) u2A2 dt B dx

dB B2 dt + (u2A + A2) dx.

Thus u2A is a function of x and alone, as are u2A2, B, B2, and u2A + A2. This
easily implies that A2 0, and hence that u2A and B are functions of x alone.
Hence B2 0 and the above equations reduce to

d(u2A) B dx

dB u2A dx.

In turn this implies that we must have A u-2f(x) and B -f’(x) for some f(x)
satisfying

f (x) + f(x) O
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Thus the space of conservation laws has dimension 2 with basis

(I)0 U-2 COS X Y "]- sin x f

(I) U-2 sin x Y cos x t2.

The undifferentiated conservation laws are

q)0
COS X

dx (sin x u + cos x ux) dt

sin x
U
--dx + (cos x u sin x ux) dt.

These correspond to the differentials of the coordinate functions, which must
have tpo q91 0 for fixed since the curve remains closed under time evolution.
Our result implies that there are no other local conservation laws, beyond

these two obvious ones. As will be seen below, if we pass to the integrable exten-
sion obtained by adjoining the "primitives" of qo and qh, then we obtain a new
conservation law, which is essentially the one we have already found for equation
(18).

Step 3. We return to our analysis of equation (17). Setting

" U-2 du ^ dx + [dp + (go + 2glp + g2P2) dx] ^ dt,

where gi gi(x, u),

f (du p dx) ^ dt,

and

AY + Bf,

we are studying the conditions on the coefficients go, gl, g2 that the equation

d=0

have two independent solutions in the space of functions A, B. This is a set of four
linear equations in two unknowns, hence overdetermined, and we may expect
that the assumption of a 2-dimensional solution space will impose very stringent
conditions on the 9. We will first determine the condition that there exist 1-forms
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such that

(19)
dA vllA + v12B

dB Y21A + v22B.

Then the condition that we have two independent conservation laws is that the
matrix v Ilvll be integrable, i.e., satisfies dv v ^ v.
The method of calculation is the one we have used repeatedly in computation

of examples and analysis of previous cases: We introduce new functions for the
derivatives of A, B, and the g and determine the conditions on these new functions
that there exist solutions to d(I)= 0. With these conditions inserted, we then
repeatedly impose the integrability equations of equality of mixed partials. Our
calculations were actually carried out by Maple 4.2, and we shall only list the
steps, not writing out in full gory detail some of the lengthy intermediate expres-
sions that arise.

First, the equation dO 0 will be satisfied exactly when there are functions Ao,
A2, Bo, and B2 so that we have the formulas

dA u2A2 dt + Ao(du p dx) + ((Pg2 + gl)A B) dx

dB Bz dt + Bo(du p dx) + [(go + 2glp + g2p2)Ao + A2 + (Pg2 + gl)B

+ (go,,,- gl,- g + P(gl,. g2,x 2gig2)- Pzg22)A] dx

+ (Ao ezA)dp.

This says in particular that A A(t, x, u) does not depend on p. The condition
d2A 0 now gives successively

Ao g2A

and

Bo (gl,u g2,x)A + g2B

dA2 C dt + A2(g2 2/u) du + (91 A2 B2/u2) dx

for some function C. One observes that equations of the form (19) are beginning
to emerge.
We next turn to the condition d2B 0. This implies first that

A2 gog2,u + g2go,u + go,.. + g2,xx) gl,xu gig1,, uA + (91,. g2,x)uB"
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At this stage we have dA =vllA + vI2B. Moreover, we may go back to d2A 0
using the above expressions for Ao and A2. The result is

0 d2A E dx ^ dt + E2 du ^ dt,

where E is an expression of the form Ex B2 QxA Q2B where Q1 and Q2
are certain (rather ungainly) polynomials in u and the functions # and their first
and second derivatives, and

E2 ---(u2F2 + Ft)A + FtB,

where

F 3u2gl,u -t- u3gl,uu- 3u2g2,x- uag2,xu,

and F2 is a similar (but larger) expression. Now E and E2 must both vanish. The
vanishing of E gives us an equation of the form B2 QIA + Q2B. Thus, we
finally have (19) where the vj are expressed in terms of the g and their first and
second derivatives. From the above formula for E2, we see that we must have

F F2 --0

or else the ratio [A :B] will be determined, and there will be at most one conser-
vation law.

Step 4. It remains to impose the integrability conditions and then integrate
the resulting equations (19). This will be done by first going back to complete the
analysis of the condition d2B 0. Before doing this we note that F 0 is simply

[u3(g.,u g2,x)-lu O.

This equation may be solved by introducing arbitrary functions m(x, u) and f(x)
and setting

(20)
g(x, u) m,,(x, u)

g (x, u) mx(x, u) + u-2f(x).

Future expressions will be in terms of go(x, u), m(x, u) and f(x).
Maple now gives that

0 d2B G du ^ dt + G2 du ^ dt + G3 dx ^ dr,

where
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G F2A

G2 FaA + u2F2B

G3 FsA + u2F4B,

and where F2, F3, F4, F5 are complicated differential polynomials in go, m, and f
(this is the same f2 as abovemby construction we have F1 0).
Now, we must have G G2 --Ga 0. If we did not have F2 ---F3 F,

F5 0, then the vanishing of the Gi will impose at least one linear relation be-
tween A and B. Since we are assuming that there are two linearly independent
conservation laws, it follows that we must have F2 F3 F, F5 0. This is a
system of partial differential equations for the functions go(X, u), re(x, u) and f(x).
We will not give the details of the analysis of this system, just the conclusion. It
turns out (after much Maple calculation) that these equations are satisfied if and
only if there exists a constant Co and function n(x) such that the equations

H u-2Co

2nxf + 4nfx fx 0

23u-2f mx 2u-2fm m + m.go + go,. 0

are satisfied. At this stage, once f is chosen, we may solve the first equation for n
by simple integration. In fact, it has a first integral

_f2 + 2ff,x 4f2n C1.

Once n is known, the second equation (which is first-order and linear in go) can
be solved once m is chosen by using the method of characteristics to obtain an
expression for go in terms of m,, mu and functions of x above. In fact, the reader
will note that this equation has an integrating factor as well. However, this is
not a satisfactory final form, and we will not insist on it. It is enough to know
that the equations have solutions depending on one arbitrary function of two
variables (re(x, u)) and a certain number of arbitrary functions of one variable
plus constants.
Going back to the expressions for dA and dB and using the above equations,

we have

dA [(2f/u f Co) dt + (mx + flu) dx + mu duJA + [-dx 2f dt]B

dB [(fx 2fn 2ffx/U2 + 2f3/u4) dt + (fZ/u4 n + f/u2) dx 2flu3 du]A

+ [-(2f/uz f + Co) dt + (m flu2) dx + m. du]B.

Inspection of the form of these relations suggests that we define new functions
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a, b by the rules

a Ae-(m-ct)

b (B f/u2A)e--cO.

Indeed, with the help of Maple we find that the above integrable system for A
and B is equivalent to the integrable system

db (2fn f) dt + n dx -f. dt ]

where f and n are related by the above ODE. (Note, in particular, that this
system does not involve u at all.)
To proceed further we observe that we have some freedom of choice in our

x-coordinate. Indeed, as noted in Step 1, we may change x by any function X(x)
with X’ -# 0, and then the corresponding U is determined by requiring that u-1 dx
U-1 dX. From (17) we may calculate how 01 and 92 transform, and then from

(20), we deduce that the quantity

Q f(x) dx2

is invariant under admissible coordinate change. If Q 0 then f 0. The differ-
ential equation relating f and n then degenerates to an identity and we have

Of course, in this case, this means that a and b are functions of x alone, that
b -a’, and that a is a solution of the ODE a" na O.

If, on the other hand, Q # 0, then we introduce a new coordinate X such that
Q _(dX)2. Relabeling, we may thus assume that f is constant. Of course, by
the ODE relating f and n, this implies that n is also constant. We then have a
matrix equation of the form

The matrix r/= lit/jill will be of the form

rl rio(dx + 2f dt),

where r/o is a constant matrix. In this case, (21’) may be integrated by simple
exponentiation.
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We see no particular advantage to writing this process out explicitly, but rather
note in conclusion that the result will be to express A and B in terms of the
arbitrary function rn(x, u) and a number of constants.

In this way we have given a prescription for all evolutionary equations with
two conservation laws together with a prescription for those conservation laws,
all of this in terms of the arbitrary function m(x, u) together with a small amount
of additional "lower-dimensional" data.

In closing the discussion of this case we note that the time-translation 1-param-
eter group acts by a 2-dimensional representation on the space of conservation
laws with

Trace 2Co

Determinant C -f2 2ffxx + 4f2n

=c-c.
In particular, the eigenvalues may be purely imaginary, so that even after a con-
tact transformation the equation cannot be put in divergence form

u, (h(x, u, ux)) Cu.

A specific example of this phenomenon is

U U2(Uxx 31- U) 31- 2Ux.

Thus, the general evolutionary equation with two conservation laws is not obtained
by imposing one further conservation law on the general equation with one conser-
vation law.

Case (iv). W G Z 0, E 0. Just prior to the analysis of Case (i) we
have found the consequences of d2A 0. Assuming only that W G 0, we
shall find the consequences of d2 d2Z d2B 0. First, we have

0 d2o -(dE E + (Z2 - Zo)01) A o) A 00

Similarly,

0 d2Z

dE Ee + EoOo + El co -(Z2 -- Zo)01

(arZo 2Zo. Z(E + Z)) ^ Oo + (clZ Z. (Zz + Zo)O) ^
2Zoo + Z200 -F-(Zal-F Z(E + Zl))Co

(dZl Z + ZaOo + Z4co + (Z2 -- Zo)01
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for suitable functions Z2, Z3 and Z,. Next, assuming these equations, we have

0-d2B

=_ E + -Z* Ro + -ZR A 2(E + Z1)B 2ZA2 co ^0o mod dt

1
Z4 Ro + ZR A 2(E + Z1)B 2ZA2 0= El-I-- -If now Z 0 then this last equation simplifies to

(E Ro)A 2EB.

Thus, if E : 0 the ratio A" B is determined, and there can be at most one conser-
vation law. Although we shall not do so here, in this case, as in Case (i), the form
of the equation can be determined.

Case (v). W G Z E 0, Ro # 0. In this case the last equation above
gives RoA 0, and hence there are no conservation laws.

Case (vi). W G Z E Ro 0. In this case dz 0, and writing dk
we may replace 00 and 0t by e-kOo and e-k01 to have 0 (by our hypotheses,
the curvature of dcz vanishes, so the connection is fiat, and we can change to a
frame in which 0). The structure equations then simplify to

d0o 01 ^ oo

do21 0

dO Rco ^ 0o

We may then find a function x such that co dx, and then dR R1 co implies
that R R(x). Next, the structure equations imply that d(co ^ 0o) 0. It follows
that

0o ^ O9 =du ^ dx

for some function u, and hence 0o du-p dx for some function p. The first
structure equation gives that 01 dp H dx for some function H, and then the
third structure equation gives

-dH ^ dx R(x) dx ^ du

=:, d(H- R(x)u) ^ dx 0

= H R(x)u + T(x)
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for some function T(x). This finally gives

f Oo ^ (02 (du p dx) ^ dt

du ^ dx + (dp- (R(x)u + T(x))dx) ^ dt

so that the original partial differential equation is contact equivalent to the linear
equation

ut uxx R(x)u T(x).

Of course, by replacing u by u + S(x) where S" RS T, we get an equivalent
equation with T 0. Thus, the equation in this case actually depends on only
one function of one variable.

Appendix: An example of contact equivalence. As mentioned on a number of
occasions, in this paper we are considering exterior differential systems up to
contact equivalence--i.e., diffeomorphism of the underlying manifold preserving
the differential ideal. Thus the two PDE’s (i) and (ii) given in footnote (2) above
are contact equivalent.
From the point of view of traditional PDE, one might say that this fact is

interesting but not useful in that the solution to (i) may develop a singularity in
finite time whereas (ii) has long time solutions. Of course, this is true, but from a
geometric point of view, one should distinguish between singularities which arise
as intrinsic properties of the contact-equivalence class of an equation and those
which are due to singularities of the contact transformation used to put a given
equation in a particularly nice form. The constant coefficient case considered
below gives a concrete illustration of this phenomena.
We consider the evolution equation

(i) u,
a(x, u, ux) + b(x, u, u)uxx
c(x, u, ux) + e(x, u, u,,)ux,

PROPOSITION. This equation is locally contact equivalent to an equation

(ii) v, F(y, v, vy)(vyr + A(y, v, vr)), F > 0.

Proof. We retain the notations 2 =dt, o du p dx, 1 c(x, u, p) dx +
e(x, u, p) dp and 01 a(x, u, p) dx + b(x, u, p) dp with

do -1 ^ 1 mod o
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used above. We shall locally determine a change of coframing

o b 1 0

01 cOa

such that

(iii) do91 ^ 091 0 (i.e., o is integrable)

(iv) d(Oo ^ 091) O.

The first equation is

d( + bo) ^ (1 + bo)= O,

which (since we are in 3-space) is a single first-order PDE for the unknown func-
tion b. It is well known (via the method of characteristics) that such an equation
has local solutions. Similarly, the second equation is

d(aO-o ^ 1)= O,

which again is a single first-order PDE for the function a, and hence will have
local solutions.
From (iii) there are functions f and y with f : 0 such that

091 f dy.

From (iv) there is another function v such that 00 ^ o91 dv ^ dy, and hence
there is yet a third function q so that 0o f-l(dv q dy). Since 0o ^ dOo # O, we
see that (y, v, q) forms a local coodinate system, and the transformation

(x, u, p) (y, v, q)

is a contact transformation since 0o pulls back into a multiple of 00. Now we have

dOo _f-1 dq ^ dy mod 0o

= 01 ^fdymodOo,

where the second congruence is by the structure equation dOo -01 ^ 091 mod 00
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which is preserved by our change of coframing. It follows that

01 f-2(dq + A dy + BOo)

f Oo ^ dt f-l(dv q dy) ^ dt

Y 00 ^ (.o -Ji.- 01 ^ 092 dv ^ dy + f-2(dq + A dy) ^ dt

and f Y 0, dy ^ dt 0 is just the quasi-linear PDE (ii) with F f-2 > 0.

Suppose now that a, b, c, e are constants. We shall show that there is a (global)
contact transformation (x, u, p) (X, U, P) which converts

(i)’ ut
a + buxx
c + euxx

into the linear constant coefficient PDE

(ii)’

Proof. Set

dX c dx + e dp

dP a dx + b dp.

Then the 1-form

du- p dx + P dX

is closed since bc ae 1, and thus there is a function U such that

dU P dX du p dx.

By inspection, X and P are linear in x, p while U is quadratic in x and p and
linear in u, implying that (x, u, p) (X, U, P) is a contact transformation defined
on all of (x, u, p) space. By construction

(dU P dX) ^ dt

dU ^ dX + dP ^ dt

so that equation (i)’ is transformed into equation (ii)’.
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This discussion illustrates the essential use of the full symmetry group in the
theory of exterior differential systems, going beyond the changes of dependent
and independent variable of classical PDE, and even beyond the more recently
fashionable gauge transformations. Unless we use the full group of contact trans-
formations, it looks as though we have many more classes of evolution equations
admitting a conservation law than is actually the case.

6. Integrable extensions of parabolic systems. In this section, we will intro-
duce and develop the beginnings of a structure theory for a wide generalization of
the notion of conservation law, which we shall call inteorable extensions. This
generalization has been considered before in other contexts and is closely related
to the notion of "pseudopotentials" as defined by Estabrook and Wahlquist [EW],
a concept they developed in the course of their work on the K dV equation.

In fact, the conservation laws we have been studying up to this point are often
called local conservation laws in the literature, meaning that they are defined as
1-forms on some suitable space ofjets of solutions of the equation.

If a given parabolic equation does admit a local conservation law, there is a
process of "adjoining a potential" associated to this conservation law to create an
extended system, which is also parabolic. This extended system may also admit
conservation laws, even an infinite number of them. These new conservation laws
are often called nonlocal conservation laws.

Before giving a general discussion, we shall illustrate this phenomenon for
Burger’s equation, recovering in the process the famous Hopf-Cole transforma-
tion.

Example 7 (continued): The Hopf-Cole transformation. We saw in 5 that the
exterior differential system corresponding to Burger’s equation

ut uxx + 2uux (Ux + U2)x

admits a single conservation law. Namely, in the 4-space with coordinates (x, t, u,
p), the system J is generated by the 2-forms

(du p dx) ^ dt

T du ^ dx + d(p + U2) A dt,

and T is (up to constant multiples) the only closed 2-form which is a linear
combination of f and T.
Of course, T dv where

v u dx + (p + u2) dt.

The form v is closed on every integral manifold of our system, and this suggests
that, corresponding to each solution u of Burger’s equation, there should be a
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"potential" function v (uniquely determined up to an additive constant) so that

dv u dx + (p + u2) dt.

We are now going to see what happens if we regard v as a new coordinate and
make the above relationship a part of our differential ideal: We will augment our
given ideal by adding the 1-form where

dv v dv u dx (p + u2) dt.

Then the system + generated by and ff becomes the Monge-Ampere form of
the exterior differential system for the equation

v v, + (v).
The system + has its invariants T and U equal to 0. Thus, we can deprolong it
to a system 6e defined on ]R4 with coordinates (x, t, v, u) with generators

f’ (dr u dx) ^ dt

Y’ dv ^ dx + (du + u2 dx) ^ dt.

Now, we can compute the conservation laws for 6. We find that the space of
conservation laws is of infinite dimension. Of course this implies by our struc-
ture theory that the equation vt vxx + (vx)2 must be linearizable by a contact
transformation.

Here is how this computation goes: After applying the standard technique, the conservation laws
are found to be represented by 2-forms of the form

AT’ + Bt’

where A and B satisfy the condition that there exist functions A2 and B so that

dA A2 dt + A dv + (Au B) dx

dB B2 dt + B dv + (A2 + Au Bu) dx + A du.

Now, if we regard A and B as new variables and set dA A dv (Au B) dx and fl dB
B dv (Au Bu) dx A du, then we see that the conservation laws correspond to the integral mani-
folds of the system

( ^ dt, ^ dx + ^ dr}.

The system - is closed under exterior differentiation and it is easy to see that, with the independence
condition dx ^ dt O, this system is involutive with characters (s, s, s, s) (2, 0, 0, 0). Of course,
this means that the space of integral manifolds is of infinite dimension.
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Indeed, one can see by inspection that the above equation for v is equivalent to

(eV)t (eV)xx.

It follows that u vx (log(w)) where w is a positive solution of the classical
heat equation, i.e., wt wx.
Of course, this representation of the solutions of Burger’s equation is well

known. In fact, the introduction of the function v is known as the Hopf-Cole
transformation in the literature on Burger’s equation. More generally, in 2.1.4
of [MSS], it is pointed out that all of the "integrable" evolutionary parabolic
equations (which the authors classify) can be linearized by adjoining potentials,
possibly in sequence. Our point here is that the discovery of this linearizing
transformation is a natural consequence of interpreting a conservation law as a
potential, together with our general linearization result.

This idea of adjoining a potential has been considerably generalized. Perhaps
the most famous example of this generalization is the so-called B/ickland trans-
formation for the sine-Gordon equation ut sin u. Recall that, if u(x, t) is any
solution of this equation, then, for any constant 2 0, the overdetermined system

Vx u + (22-1) sin(v + u)/2

v, -u, + (22)sin(v u)/2

is compatible and each of the solutions v(x, t) is also a solution of the sine-Gordon
equation.

Estabrook and Wahlquist [EW] interpreted this fact as follows: Consider, on
IR5 with coordinates (x, t, u, p, q), the differential system dr generated by the 1-
form 0 du p dx q dt and the 2-form f (dp sin u dt) ^ dx. The integral
manifolds of (dr, dx ^ dt) are then locally the graphs of solutions of the sine-
Gordon equation. Now, the 1-form on ]R6 ]R5 x ]R defined by

k dv (p + (2/2) sin(v + u)/2) dx + (q (22) sin(v u)/2) dt

has the (easily verified) property that dq is in the algebraic ideal dr+ generated by
d and q. Thus, if N2 = IR5 is an integral manifold of dr, then dq 0 mod on
N x IR = IR6. Hence, N x IR is foliated by integral manifolds of dr+.

Motivated by comparing how the function v was introduced in the example of
Burger’s equation and how v is introduced in the example of sine-Gordon, Es-
tabrook and Wahlquist decided to call the v in the sine-Gordon example a "pseu-
dopotential". Considering that we used a (local) conservation law to generate the
potential in Burger’s equation and that this led us to construct new, nonlocal
conservation laws, we are tempted to regard "pseudopotentials" as a generaliza-
tion of (local) conservation laws. From the point of view of generalized symme-
tries, this notion has, of course, already been developed extensively. In particular,
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the reader may want to compare the work of Bluman [B1] and Krasilshchik and
Vinogradov [KV] with our treatment.

For reasons stemming from certain similarities with (differential) Galois theory,
we prefer to call constructions of this nature integrable extensions. The precise
definition of the concept as we shall use it is as follows.

Definition. Given an exterior differential system with independence condition
(o, f) on a manifold Mm, an integrable extension o (P, or, ’-) of (o, f) over M is
a smooth manifold pm+r together with a submersion tr: P M and a differential
ideal on P with the properties that, first, contains a*(o) and that, second,
there exists a Pfaffian system of rank r on P which is transverse to the fibers of
cr and so that, alTebraically, - is generated by and

Locally, an integrable extension - of a system can be described by adding
to the generators for " a set of r 1-forms qP (1 < p < r) which are linearly inde-
pendent on the fibers of tr and which satisfy the differential conditions

The reason that this is called an integrable extension is clear: If N c M is an
integral manifold of o, then the system ff restricted to cr-l(N) becomes a Frobenius
system. There is an r-parameter family of integral manifolds of Y- lying over each
integral manifold of o.
We say that the extension is flat if P can be covered by open sets on which

the complement /" c - can be chosen to be an integrable (i.e., Frobenius) system.
Clearly, all fiat extensions of the same extension degree r (=dimension of the
fibers of tr) are locally equivalent.
One way of generating local integrable extensions, directly generalizing what

we did in the case of Burger’s equation, is to take a differential system o which
admits r conservation laws represented by closed 2-forms Y1, f, consider r
new variables pP, and define dp v, where vp is a (locally defined) 1-form
which satisfies dv To. We shall call this construction an extension by conserva-
tion laws.
The interesting question is whether this is essentially the only type of integrable

extension. It is easy to see that the sine-Gordon example given above is not an
extension by conservation laws, but the sine-Gordon example is hyperbolic and
our main interest in this paper is the parabolic case.

The classification of inteorable extensions. We will now specialize to the case of
a non-Goursat parabolic system. Our main result in this section is the following
one which shows that, except in the case of those Monge-Ampere systems with T
and U equal to zero, the integrable extensions are easily classified.

THEOREM 1. Let be a non-Goursat parabolic system on M7, and let o<> be
its infinite prolonoation on M<5. Let (P, tr, ’-) be an integrable extension of
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o<> over M. If d is not of Monge-Ampere type, then o is fiat. If d; is of
Monoe-Ampere type, then locally o# can be regarded as the prolonoation of an inte-
grable extension over the underlyin9 contact 5-manifold and the local structure
equations of P can be written in the form

de AP(co A 0o + (/)2 A 01) -" B’o2 A 0o mod 11, ".

If the Monge-Ampere invariant T of d; is nonzero and admits a conservation law,
then locally there is a unique nonflat inteorable extension 1 of d: of fiber dimen-
sion 1 and all nonflat extensions of of hioher fiber dimension are flat extensions

of gx. If the Monge-Ampere invariant T of J is nonzero and does not admit a
conservation law, or else if T vanishes but U does not, then o is fiat.

Proof. First, choose an <>-coframing (co 1, co2; 0o, 01, ...) of M<> which sat-
isfies the structure equations

dO =- --Ok+l ^ o Ok+2 A co2 mod Ok (=0o, Ok).

(Such a coframing was constructed in {}1.) By the integrable extension hypothesis,
it is possible to choose a complement to J in -- with local generators qo
(1 < p < r) so that, for some p and q sufficiently large, the structure equations of
the following form are valid:

More explicitly, there exist 1-forms rp (which are linear combinations of the ,
the 09 i, and the Ok) SO that

p--1 p

j=O j=O O<i<j<q

Taking the exterior derivative of both sides and reducing modulo (R)p, the , and
the "quadratic ideal" (000)2 yields the congruence

o (0.+^ )+ )^ ^o o).0 --(ap_xo91 + b-i A co2 (b;co2 (Op+l + 0,+2 A

It follows that apP_l bpp. If p 1, this says that, with a slight relabeling, the
structure equations assume the form

aq,, -o; ^ o + ,o, ^ Oo + A"(o ^ Oo + o ^ Ol)+ X cO, ^ o.
O < <j< q

On the other hand, if p > 2, the relation a-i b shows that d’ can be
rewritten in the form
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p -2 p -1

j=0 j=0 O<i<j<q

+ g_(o ^ o_ + o ^ o).

Since dOp_2 091 ^ Op_ + 092 ^ Op mod (R)p-2, it follows that, by modifying
and b/’ for 0 < < p 2 and the appropriate c as well and by possibly raising q,
we may rewrite the structure equations in the form

p-2

d(lp a_lop_2) --q); A ( ap_lOp_2) q); A (ap_lOp_2) + E a;091 A Oj
=o

p-1

+ E b;’ ^ o+ E o, ^ o.
j=O O < <j<q

Thus, replacing each ,P by ,"- aPp_l Op_2, we reduce p by one. (Some care is
necessary here. The point is that the terms tph ^ 0p-2, when expanded in terms of
the new local coframing, consist of terms which are either in the ideal generated
by the , are quadratic in the Ok, or else are of the form co ^ 0p-2. Redistributing
them as appropriate does not raise p.) Note that the operation of modifying the

affects the choice of the splitting (which is spanned by the ), but of course
it does not affect the ideal ft.

If p- 1 > 2, this construction can be repeated. In fact, by repeating this con-
struction at most p- 2 times, we reduce to the case where p 1. Thus we may
assume that we have chosen generators so that the structure equations have
the form

d’ --qg; ^ + A’(o91 ^ Oo + co2 ^ 01)+ B’o9 ^ Oo + cO, ^ Oj.
O < <j<q

It is important to remark that the space spanned by the which satisfy these
equations is a canonically defined complement to J in -.
We will now derive further limitations on the c. Let s > 0 be the largest

integer so that there exists a nonzero ce. so that + j s. For each k > 0 let
denote the aloebraic ideal generated by 1, r, 00, 01, and all of the quadratic
terms 0 ^ 0j where i+ j < k. Expanding d(d@’) 0 and reducing modulo
yields the relations

E
i+j=s-1

i<j

c[(-o,/ ^ o)) ^ 0- o, ^ (-o/ ^ o)] o

E c[(-o,/ ^ o,+ ^ o)) ^ 0- o, ^ (-o/ ^ 0+ ^ o)] o,
+j
i<j
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where the congruences are modulo 0o and 01. The second of these two relations
uncouples into the relations

E ^ + 0, ^ E ^ + 0, ^ 0,
+j =s +j
i<j i<j

where, again, the congruences are taken modulo 0o and 01. For s > 3, these rela-
tions imply that c 0 for all + j s, contradicting our choice of s. Moreover,
when s 3 these relations imply that c’2 c3. Now, writing Cf in place of c,
we have d(qp) in the form

d’ -qg’ ^ t + A(09 ^ 0o + 092 ^ 01)+ B092

^ 0o

+ COo ^ O1 + C’Oo ^ 02 + C’(Oo ^ O + O ^ 0).

Now, the terms C must all vanish. To see this, let us suppose that the forms
(0o, 01, 02, 092, 091, 03, 04) satisfy the structure equations of a 1-adapted coframing
as defined in 2. A short calculation shows that

d(d’) 2C01 ^ 03 ^ 091 mod 1, Cr, 0o, 092, 01 ^ 02.

Of course, this implies that C 0. Now substituting this back into the calcula-
tion for d(dO’), the formula simplifies to show that

d(d@p) =_ -(C091 AP) A 02 A 01 mod ql, @r, 0o, 092.

Of course, this implies that A- C09 0 mod 0o, 01, 02, 092. However, since

S003 + $1 091 + $3092, this clearly implies that A’So 0 and C A’S1.
Now suppose that we are on the open set where So # 0. Then we must have
p 0 and hence C 0. The formula for d(d’) now simplifies to

d(d@p) =-(-C02 + BP091) ^ o92 ^ 01 mod @1, @, 00.

Of course, this implies that B C 0. But now we have

d(p) 0 mod 1,..., ,
so the extension Y- is flat. Thus, we have shown that, on the open set where o is
not of Monge-Ampere type, any integral extension must be fiat.

Let us restrict to the case of a Monge-Ampere system and suppose that the
-coframing we chose was 3-adapted. The structure equations for the @ now
reduce to

d, _(p ^ t + At,(091 ^ 0o + o92 ^ 01) + Bt’092 ^ 0o

+ CPlO0 A 01 + CO0 A 02
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In particular, coupled with the structure equations of a 3-adapted coframe, these
equations imply that the Pfaffian system spanned by the (r + 5) 1-forms k 1,

Cr, 0o, 01, 02, co 1, co2 form a Frobenius (i.e., completely integrable) system. It
follows that locally there is a submersion of P onto a smooth manifold Q of
dimension (r + 5) so that the system og" is the pull-back of the 1-forms on Q.
Moreover, from the formulas for dv, we see that the rank-r system spanned
by the /P is well defined on Q. Moreover, Q has a natural smooth submersion
to the underlying 5-manifold on which the Monge-Ampere system is defined.
Thus, we may clearly disregard any of the extra prolongation variables and regard
oj- on P as an integrable extension of a parabolic Monge-Ampere system on a
5-manifold.
Now, we easily compute that

d(d) -Co91 A 02 A 01 mod 1, r, 0o, o2,

so we must have C 0. Moreover, the formula for d(d’) now simplifies further
to show that

d(dd/’) (dA’ --A’( + P)+ Aaq + B’co1- Ct02) ^ co2 ^ 01

x mod 1, if’, 0o

It follows that there are functions Ag, A, and A, so that

d A( + p)- Ao’ + ag0o + 0 + a- Bo

+ C02 mod 1, ff.

Substituting this back into the formula for d(dp’) yields the formula

d(d@’) 2C 0o ^ 02 ^ co mod @1,..., , co2, 0o ^ 01.

Hence, C must also vanish.
Now, we deal with the case where the Monge-Ampere invariant T is nonzero.

Substituting the relations C’ 0 back into the structure equations, we compute
that

d(d!pv) =. (AP(P1 U) 2BPT)02 ^ 01 ^ 0o

(A + A’H)co ^ 01 ^ Oo mod 1,..., , 092.

In particular, it follows that we must have A’(P1- U)- 2B’T 0. Thus, the
structure equations for dp must have the form

d,p D[2T(co ^ Oo + co2 ^ 01) + (P1 U)co2 ^ 0o] mod pl,..., r.
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If all the Dp are zero, then the extension is flat and we are done. Thus, we may
suppose that at least one of the Dp is nonzero. For convenience, let us set

W 2T(co ^ 0o + co2 ^ 01) + (P1 U)c2 ^ 0o.

It is then possible to make a change of basis in the so that

forl <p<r

while dq qJ mod ql, qr. It follows that there exist 1-forms for 1 < p < r
so that

forl < p < r.

However, taking the exterior derivative of these equations and reducing modulo
ffl ff’ yields

^ q Omod 1,..., ,.
Since W ^ W 0 mod 1, @,, it follows that we must have P 0 mod 1,

@". Of course, this implies that dq= 0 mod ql, qr-1 for 1 < p < r. In
other words, the system ’ spanned by the first (r 1) of the @P is itself Frobenius.
Thus, the dimension r extension of J is actually a dimension-1 extension of a flat
dimension (r 1) extension of o.

Let us now restrict to a leaf L of ’. Then all of the for p < r vanish.
Writing q and q9 for " and qgf, respectively, we have the remaining structure
equation

^ +V.

Differentiating this equation and reducing modulo now yields 0 q9 ^ W +
dW mod .
Now, q and dW are defined on the manifold M and, by hypothesis, is lin-

early independent from all of the forms on M. Thus, the relation dt -q
q mod q cannot have a solution unless there exists a 1-form 2 on M which
satisfies dq -2 ^ q. Thus, we will have a contradiction unless such a 2 exists.
In particular, unless such a 2 exists, every integrable extension of J must be fiat.
(Note, by the way, that if such a 2 does not exist, then no multiple of W can be
closed and the space of conservation laws of is trivial.)

Therefore, let us suppose that a 1-form 2 exists on M so that dq

Because q is not decomposable, this 2 is unique and hence is well defined on M.
Substituting this back into our relation, we see that (2- q)^
Again, since W ^ W 0 mod @, it follows that q9 2 mod . Thus, the structure
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equation has become

Differentiating and using the relation dq -2 ^ q now yields d2 ^ @ 0. How-
ever, since is linearly independent from the forms on M, this can only be true if
d2 0. Thus, locally, we may set 2 L-1 dL for some nonzero function L on M
and rewrite the structure equation in the form d(Lp) LW.
Of course this implies that Lq is a conservation law for . In particular, we

have shown that, unless o admits a conservation law, then any integrable exten-
sion of is fiat.

Let us now continue and replace W by Lq, so that q is a closed 2-form on M
which represents the conservation law for (which is unique up to constant
multiples). Our arguments so far have shown that any nonflat extension has local
structure equations of the form

d@ 0
mod

d@r---qg^@’+qj

Differentiating this last equation yields q9 ^ W 0 mod ,1, @r. Again, since
(q ^ q) 0 mod 1, @,, it follows that q9 0 mod @1, . Of course, this
means that the equations above simplify to

Now let # be a local 1-form on M satisfying d/ q. The system {1,...,
@ #} is then completely integrable, and it is easy to show that there are locally
defined functions pl, p, so that the system is generated by the 1-forms dp1,

dp"-1, dp + # and the system Y’ is generated by the 1-forms dpl, dp
Of course, this is precisely the statement that the integrable extensions are fiat
extensions of a unique nontrivial extension of rank 1.

Finally, assume that T vanishes but U does not. In this case, the invariant P1
vanishes and the relation that we derived above now shows that A’U 0. Of
course, this implies that Ap is zero, so the structure equations now simplify to

dllp =- BP(.o2 A 00 mod 1,..., @r.

If all of the B are identically zero, then clearly the extension is flat, so there is
nothing to prove. If at least one of the Bp is nonzero, it then follows that the Cartan
system of is the system C() {@1,..., @,, 092, 0o}. Since the Cartan system
of any Pfaffian system is completely integrable, this would, in particular, imply
that dOo 0 mod C(). However, the structure equation dOo -01 ^ 091 mod 0
clearly contradicts this. Thus, the proof of Theorem 1 is complete. El
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In view of Theorem 1, it follows that the only remaining case in the problem of
classifying the possible integrable extensions of d is the case where the invariants
T and U vanish. The classification in this case is rather subtle, and we have not
completed it. We will content ourselves with showing that, in this case, there can
be nontrivial integrable extensions even when there are no local conservation
laws.
One general method of constructing integrable extensions can be described as

follows: Let P M be a principal right G-bundle over a manifold M and let @ be
a connection on P, regarded as a g-valued 1-form on P. Let be the differential
ideal on M generated by the components of the corresponding curvature 2-form
q d + (1/2) [, ]. Then clearly defines an integrable extension of .
The case of extensions by conservation laws is covered by the case where G is

an abelian group. If G is nonabelian, then it may well happen that J has no
conservation laws.

It remains to be seen if one can construct such a connection for which the ideal
3 is a non-Goursat parabolic system. In the following example, we analyse the
possibilities for the simple group SO(3). (We chose the Lie group SO(3) because
of its simplicity. The group SL(2, IR) would have worked equally well and the
results for this group are very similiar to those for SO(3), with obvious modifica-
tions made to take into account the slightly more complicated orbit structure of
the adjoint representation of SL(2, IR).)

Example 9: SO(3)-connection extensions. We want to understand the SO(3)-
connections 0 over a 4-manifold M such that the ideal generated by the 2-form
components of the curvature of is a non-Goursat parabolic system. We also
want to find examples for which this parabolic system does not have any conser-
vation laws.

Let be an SO(3)-valued 1-form on a 4-manifold M. For simplicity in the
discussion below, we shall assume that M is simply connected.
We may write in the form

0 --3 (2 103 0 --1
--2 (gl 0

where the 0q are ordinary 1-forms. The curvature of ct is d + 0t ^ . It is of
the form

0 --(I)3 (I)2 1(I)3 0 --(I)

--(I)2 (I) 0

where the 2-forms Oi are given by the formulas
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O --d -F o2 A o3

(I)2 do2 + o3 A 0

3 --do3 + o A 02

Let denote the ideal in 2(M) which is generated by the 2-forms Oi. We want
to determine conditions on so that this ideal is a non-Goursat parabolic system
on M.
Now, the ideal depends only on the gauge-equivalence class of . Indeed, any

gauge-equivalent connection will be of the form

g-1 dg+

for some smooth function g: M SO(3). The corresponding curvature will be
g-10g, the components of which clearly generate the same ideal as the com-

ponents of O.
Our assumption is that the ideal be a non-Goursat parabolic system, and

hence that it is generated locally by a pair of 2-forms. This implies that there is a
unique linear relation among the Oi. Since, under the adjoint action, SO(3) acts
transitively on lines in o(3) IR3, it follows that we may choose a gauge-equiva-
lent connection so that this relation takes the form O3 0. The remaining
forms O1 and O2 are linearly independent, though they have a linear combination
(unique up to multiples) which is decomposable.

Again appealing to our knowledge of the adjoint action of SO(3), we may
arrange that (t2)2 0. Of course, by the parabolic assumption, we must then
have ^ # 0, though the parabolic assumption will also imply that 2 ^
O1 0. These normalizations determine uniquely in the gauge equivalence class
of 0 up to a finite group Ez x 7z2. (The assumption that M be simply connected
ensures that this normalization can be done globally on M.) Since we will be
working with this connection for some time, we will simply rename it to be 0.

According to these normalizations, it follows that one may locally choose a
coframing ((02, 00, (01, 01) ofM4 so that we have equations of the form

dl + o2 ^ oa O1 0o ^ (01 + 01 ^ (02

do2 + o3 A 0 (I)2 00 ^ (02

da+l ^2-0a-0.

First, we rule out the possibility that 01 ^ 02 "-0 on any open set in M. Sup-
pose, to the contrary, that this is the case. Then 03 df for some function f and
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so the connection generated by the above formula with

cosf sinf 01-sinf cosf 0
0 0 1

will satisfy 3 0 and 1 ^ 2 0. Thus, our ideal J will be generated by 1
d and (I)2 d2. Now, by our hypothesis that these forms generate a parabolic
system, we clearly cannot have either tit or t2 vanishing on an open set. Let us
then restrict our attention to the dense open set on which neither nor 2 is
zero. Then we may write t2 hl, where h is a nonzero function. Our ideal is
now generated in this open set by dl and d2 d(h)= dh ^ ti + h dtt. Of
course, since the parabolic ideal d; (di, dh ^ + h d} can contain only
one nonzero decomposable 2-form up to multiples, it follows that this must be

dh ^ . Moreover, since wedges with anything in the ideal to give zero, it
follows that we must have dh ^ ^ dt 0. However, this implies that dfl
-dh ^ di satisfies dl’ ^ 1 0, and we clearly have d ^ dh 0. These com-
bine to imply that dfl is a multiple of dh ^ . In particular, the form is
integrable, contrary to our assumption that the ideal be a non-Goursat para-
bolic system.

Henceforth, we shall restrict our attention to the dense open set on which
(X A 52 is nonzero.

Since z ^ (x2 is a nonzero, closed, decomposable 2-form, every point lies in a
simply connected open set, say U, on which there exist independent functions x
and y so that A tx2 dx A dy. Moreover, there clearly must exist a function z
on U so that tx3 dz X dy, and there must also exist an SL(2, lR)-valued func-
tion A on U so that

Now, by construction, dczl + a ^ (x2 is a nondegenerate 2-form on U. Since
t, 52, and (x3 (and hence, ) can be expressed in terms of the functions x, y, z,
and the components of A, it then follows that the map

(x, y, z, A): U ]R3 x SL(2, IR)

must be an immersion since the rank of its differential must be at least 4. This
mapping is almost canonical; it depends on the choice of the functions x and y,
which are determined up to a unimodular change of coordinates in two variables,
and the choice of z, which is determined up to an additive constant. We are now
going to show that the image of this mapping is an integral manifold of a certain
natural exterior differential system on X6 ]R3 x SL(2, IR).
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Indeed, let us regard x, y, and z as coordinates on the IRa-factor of X6 and
A: X6 --, SL(2, IR) as the projection on the second factor. Let 1, z2, and tx3 be
defined as 1-forms on X6 by the above formulas and set

dAA- Il 3I2 1

Then the 1-forms 0q and n define a coframing of X6 satisfying the structure
equations

dz xl A 1 + 7[3 ^ tx2 dl 3 A 2

dz2 2 A t 7 A 2 dn2 2n2 A 1

do3 gl A 02 d3 21 ^ 3"
Let us define the 2-forms

D1 --dZl + tX2 A tX3 "-7 A tX --(73 --(X3) A tX2

(I)2 do2 + (x3 A O (72 + tX3) A tX 7 A tX2

Let ( denote the differential ideal on X generated by the 4-forms

Y1 ((I)2)2-- 2(2 + 03) A n ^ 1 ^
’2--(I)1 ^ (I)2 (2 -[- (Z3) A (3- 3) A O ^ 02

and consider the independence condition given by the 4-form ((I)l)2-- 2n

The immersions (x, y, z, A): U X6 constructed above are clearly integral mani-
folds of (, ^ 1). Conversely, on any integral manifold of ((, tI) ^ ,1), the
2-forms and "2 generate a parabolic system. (As we shall see below, the extra
condition that this ideal be non-Goursat is a "higher" independence condition on
integral manifolds of (X’, ^ 1).)
Now, the independence condition implies that, on an integral manifold N4 c X

of (, ), the 1-forms CZl, 2, n, and n3-3 are linearly independent. The van-
ishing of Y: on N implies that 7g2 + (X3 is a linear combination of 1, cz2, and zl,
and the vanishing of "e2 on N implies that 2 -" (X3 is a linear combination of
02, and n3-3. Of course, these two conditions together imply that, on N, the
1-form nz + 3 must be a linear combination of 1 and 2. In other words, the
3-form Yo (n2 + 3) ^ ^ 2 also vanishes on N. Note that Y and "2 are
multiples of Yo.
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Thus, let - denote the exterior differential system generated by Yo (2 "- t3)

^ ^ 2 and dYo 2r2 ^ ^ ^ 2. We are then interested in the integral
manifolds of (Y-, ^ ). On every integral manifold of (Y’, ), we have rela-
tions of the form

n2 - 03 Pil -F p202

2 P3l + P42 + PsrI,

and it easily follows that there is a 5-parameter family of integral elements of this
system at every point of X. Moreover, the reduced characters are easily seen to be
(s, s, s, s, s)= (0, 0, 1, 1, 0). It follows by Cartan’s Test (see [BCG3]) that
this system is involutive and that the integral manifolds depend on one function
of three variables.

It remains to be explained how the condition of being non-Goursat is coded
into this formulation. To see this, note that on an integral manifold on which the
above relations hold, we will have

while

(I)2 p202 A t 1 A t2 --(1 d" p2tl) A 02,

d@2 -t3 A @1 "-(P4- P2)l A t A t2 -+- 3 A (pszl + (Pl --Pa)I) A t2

It follows that d@2 is a multiple of @2 if and only if we have P2P5 (Pl P3) 0.
Since P2P5- (Pl -Pa): 0 is an open condition and the system is involutive, it
follows that the generic integral manifold of (’, @1 ^ @1) will determine a non-
Goursat parabolic structure.

Thus, the space of gauge-diffeomorphism classes of local SO(3)-connections
over open sets in IR’ whose curvature generates a non-Goursat parabolic system
o depends locally on one function of 3 variables. (It is possible to avoid the use of
the Cartan-K/ihler theorem in the above proof, but at the cost of some clarity.)
Clearly, given such an , the corresponding connection on the trivial principal
SO(3)-bundle over M defines an integrable extension of of rank 3 over M4.
Note that, in the case of a non-Goursat integral, the common divisor of (I)2

00 ^ 092 and dtI)2 is o2. Of course, this implies that t2 spans the first derived
system of {zrl + p201, 2} {00, c02}. The induced non-Goursat parabolic system
will be of quasi-evolutionary type if and only if this first derived system is com-
pletely integrable, i.e., if and only if 02 ^ do2 0. Since, on any integral we have

02 A d02 2 A 0 ^ 02 ---p57i A l A 02

it follows that the corresponding system represents a quasi-evolutionary system if
and only if ps 0. This represents an extra equation and it is not hard to carry
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out the Cartan-K/ihler analysis to show that such a system can always be put in
the normal form

z- dx + w dt

O2 7, dt

3 df x dt,

where f is an arbitrary function of x and satisfying fx > 0. This normal form is
unique up to choices involving functions of one variable. Thus, the quasi-evolu-
tionary equations which can arise as curvature ideals of SO(3)-connections de-
pend locally on one function of two variables.

Moreover, by applying the handy algorithm, it is easy to show that none of
these systems ever have any conservation laws. Thus, we have constructed para-
bolic systems which have nontrivial integrable extensions, but no conservation
laws, as desired.

Example 10. We shall study the modified reaction-diffusion equation

(1) u, um(Uxx -- U),

where m : 0 is a parameter. The standard reaction-dffusion equation is the case
m 2 studied in Example 8. We shall prove the following.

PROPOSITION. (i) The equation (1) has exactly two independent conservation
laws.

(ii) If we consider the integrable extension corresponding to these two conserva-
tion laws, then the new system has no conservation laws unless m 2, and in that
case it has exactly one conservation law.

This is an example of a well-known phenomenon: Many interesting equations
come with parameters, and the imposition of conservation laws will put (alge-
braic) conditions on those parameters.

Proof. The beginning of the argument is essentially the same as that for
Example 8 in 5 (our equation reduces to (18) there when m 2). We set U u"
and

f (du p dx) ^ dt

Y =du ^ dx + U(dp + u dx) ^ dt

A’f + Bf,
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and shall determine the conditions on A, B that dO 0. Now

dO dA ^ du ^ dx + U dA ^ dp ^ dt+
mAU
u

du ^ dp ^ dt + Uu dA ^ dx

^ dt + (mAU + AU) du ^ dx ^ dt + dB ^ du ^ dt- p dB ^ dx ^ dt

-B dp ^ dx ^ dt.

Setting

dA A2 dt + Ao(du-p dx) + A1 dx + A3 dp

dB B2 dt + Bo(du p dx) + BI dx + B3 dp

and substituting into dO 0 gives

0 (uUAo + mAU B3u)/u du ^ dp ^ dt

+ (A2 + uUAo + mAU + AU Bt) dt ^ du ^ dx + A3 dp ^ du ^ dx

+ (-UAoP + UA uUAa + pB3 + B)dx ^ dp ^ dr,

which implies

A3=0

B A2 + uUAo + mAU + AU

1
A (uB + pAUm)

U
B3 --(uA0 + mA).

u

We now substitute these expressions into the formulas for dA, dB and impose the
integrability condition d2A 0. This gives

0 d2A -2(Ao + mA/u) dp ^ dx mod(du p dx), dr,

which implies Ao -mA/u. Substituting this into the expression for dA gives
0 d2A -Bo/U du ^ dx mod dt, which implies that Bo 0. This simplifies the
formula for d2A so that we have

0 d2A dA2 ^ dt (B2/U), dt ^ dx (mA2/u), dt ^ du.
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Thus, there is some function C so that

dA2 C dt (mA2/u) du (B2/U) dx.

We are now ready to turn to the consequences of d2B 0. We have

0 d2B -(mA2/u du ^ dx + (C + UA2) dt ^ dx + dB2 ^ dt.

Since we are assuming that we are not in the linear case, we know that m g: 0, so
A2 0. By our formula for dA2, this then gives C B2 0.

Collecting everything, we have

clA -(mA/u) elu (n/u) ,ix

dB AU dx,

which is the same as the integrable system

d(A U) B dx

dB AU dx.

The solutions of this system are given by

1
A (Co cos x + c sin x)

B Co sin x- c cos x,

where Co and C are arbitrary constants. This proves that (1) has exactly two
independent conservation laws when m 4: 0. It follows that we may choose

o --csX y + sin x f
U

sin x
1 Y cos x f

U

as a basis for the space of conservation laws.
We now turn to the integrable extension corresponding to @o and @1. For this

we first find 1-forms tpo and q91 with dtpo o and dip1 1, and then introduce
new variables z and w and consider the system generated by

Zo dz q9o

Z dw (91
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With v du/U we have

rpo v cos x dx + (p cos x + u sin x) dt

q91 v sin x dx + (p sin x u cos x) dt.

However, rather than use Zo and Z1, it turns out to be more convenient to intro-
duce a new variable r and consider the system generated by

00 sin x dz cos x dw u dt

0t=cosxdz+sinxdw-vdx-pdt

02 (1/U)(du p dx) (r + u) dt

03 (1/U)(dp r dx).

The linear combinations sin xO0 + cos xO and -cos xO0 + sin xOt recover Zo
and xt, and clearly 02 03 0 defines the equation (1). The reason for choosing
this basis is that if we now set

091 dx

(_D2 U dt

then we have

dOo 01 A O) 02 A 032 mod 0o

dot -02 A 031 193 A 032 mod 0o, 01.

Thus, we have the beginning of a 1-adapted basis for a parabolic system in the
7-dimensional space with variables (z, w, x, t, u, p, r), and we can seek to deter-
mine the conservation laws of this system.
To carry this out, we shall work directly with the general form

alp=A(03 ^ 00 + 032 ^ 0t + B032 ^ O0 + CtO0 ^ Ot +C200^02

of the conservation laws, rather than trace through the coframe adaptations
necessary in order to be able to apply the handy algorithm. Calculation gives

00 /x dO =-(C2/U)(sin2x + COS2 X)du ^ dz ^ dx ^ dw mod 032

so that we must have C2 O. Then we find that

dO (dA + (mA/u) du + B03 C102) A 0)2 A 01 mod 0o,
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so that we must have

dA -(mAu) du- BeD + C102 + BoOo + B101 + B2fD2

for some functions Bo, B1, and B2. Substituting this, we obtain, after a straight-
forward calculation, that

dO ^ 092 A 01 -(1/u)(mAU- 2Clu)du ^ dx ^ dz ^ dt ^ dw

so that we must set

mAU
2u

Finally, we find that

mAU
(m 2) du ^ dz ^ dw mod dt, dx

4U2

Thus, except when m 2, the system has no conservation laws. In the case m 2,
we already know from Example 8 that there is exactly one conservation law,
corresponding to the linear area contraction for the heat flow shrinking plane
curves. E!
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