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1. Introduction

Suppose G is a connected reductive group over a global field F . Many of the problems of the
theory of automorphic forms involve some aspect of study of the representation ρ of G

(
A(F )

)
on the space of slowly increasing functions on the homogeneous space G(F )\G

(
A(F )

)
. It is

of particular interest to study the irreducible constituents of ρ. In a lecture [9], published
some time ago, but unfortunately rendered difficult to read by a number of small errors and
a general imprecision, reflections in part of a hastiness for which my excitement at the time
may be to blame, I formulated some questions about these constituents which seemed to me
then, as they do today, of some fascination. The questions have analogues when F is a local
field; these concern the irreducible admissible representations of G(F ).
As I remarked in the lecture, there are cases in which the answers to the questions are

implicit in existing theories. If G is abelian they are consequences of class field theory,
especially of the Tate-Nakayama duality. This is verified in [10]. If F is the real or complex
field, they are consequences of the results obtained by Harish-Chandra for representations
of real reductive groups. This may not be obvious; my ostensible purpose in this note is to
make it so. An incidental, but not unimportant, profit to be gained from this exercise is a
better insight into the correct formulation of the questions.

Suppose the F is the real or complex field. Let Π(G) be the set of infinitesimal equivalence
classes of irreducible quasi-simple Banach space representations of G(F ) [16]. In the second
section we shall recall the definition of the Weil groupWF of F as well as that of the associated

or dual group Ĝ of G and then introduce a collection Φ(G) of classes of homomorphisms of

the Weil group of F into Ĝ. After reviewing in the same section some simple properties of
the associate group we shall, in the third section, associate to each φ ∈ Φ(G) a nonempty
finite set Πφ in Π(G). The remainder of the paper will be devoted to showing that these
sets are disjoint and that they exhaust Π(G). For reasons stemming from the study of
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2 ROBERT P. LANGLANDS

L-functions associated to automorphic forms we say that two classes in the same Πφ are
L-indistinguishable.

Thus if Π̃(G) is the set of classes of L-indistinguishable representations of G(F ), then

by definition the elements of Π̃(G) are parametrized by Φ(G). It will be seen that if G is
quasi-split and G1 is obtained from it by the inner twisting ψ then ψ defines an injection

Φ(G1) ↪→ Φ(G) and hence an injection Π̃(G1) ↪→ Π̃(G). It will also be seen that for G

quasi-split the set Π̃(G) is, in a sense to be made precise later, a covariant function of Ĝ.

These properties of Π̃(G) provide answers to the questions of [9].
The classification of L-indistinguishable representation throws up more questions than it

resolves, since we say nothing about the structure of the sets Πφ themselves and hence do not
really classify infinitesimal equivalence classes. None the less we do reduce the general problem
to that of classifying the tempered representations. This is a considerable simplification. For
example, Wallach [15] has proved that the unitary principal series are irreducible for complex
groups. From this it follows that each Πφ consists of a single class; so the classification is
complete in this case. Since Φ(G) may, when F is complex, be easily identified with the
orbits of the Weyl group in the set of quasi-characters of a Cartan subgroup G(C), it is
likely that the classification provided by this paper coincides with that of Zhelobenko. The
set Π(G) has been described by Hirai [7, 8] for G = SO(n, 1) or SU(n, 1). It is a simple and
worthwhile exercise to translate his classification into ours. In fact, the definitions of this
paper were suggested by the study of his results. It would be interesting to know if each Πφ

consists of a single class when G is GL(n) and F is R.
Important though these problems are, we do not try to decide which elements of which

Πφ are unitary or how the classes in a Πφ are unitary or how the classes in a Πφ decompose
upon restriction to a maximal compact subgroup of G(R).

The three main lemmas of this paper are Lemmas 3.13, 3.14, and 4.2. The first associates
to each triplet consisting of a parabolic subgroup P over R, a tempered representation of
a Levi factor of P (R), and a positive quasi-character of P (R) whose parameter lies in the
interior of a certain chamber defined by P , an irreducible quasi-simple representation of G(R).
The second lemma shows that these representations are not infinitesimally equivalent. The
third shows that they exhaust the classes of irreducible quasi-simple representations.
As we observed above, the proofs are not very difficult. Unfortunately, they rely to some

extent on unpublished results of Harish-Chandra. To prove that the sets Πφ are disjoint
we use results from [6], which includes no proofs. Moreover, and this is more serious, for
the proof of Lemma 4.2 we use results from [5], which has only been partly reproduced in
Appendix 3 of [16]. It contains theorems on differential equations which are used to study
the asymptotic behavior of spherical functions not only in the interior of a positive Weyl
chamber, as in [16], but also on the walls.

2. The associate group

We begin by recalling some of the constructions of [9]. If F is C the Weil group WF is
C×. If F is R the Weil group WF consists of pairs (z, τ), z ∈ C×, τ ∈ g(C/R) = {1, σ} with
multiplication defined by

(z1, τ1)(z2, τ2) =
(
z1τ1(z2)aτ1,τ2 , τ1τ2

)
.

Here aτ1,τ2 = 1 if τ1 = 1 or τ2 = 1 and aτ1,τ2 = −1 if τ1 = τ2 = σ. For both fields we have an
exact sequence
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1 F
×

WF g(F/F ) 1 .

Suppose Gô is a connected reductive complex algebraic group, Bô a Borel subgroup of Gô,
and T ô a Cartan subgroup of Gô in Bô. For each root α̂ of T ô simple with respect to Bô let
Xα̂ ̸= 0 in the Lie algebra ĝ of Gô be such that

Ad t(Xα̂) = α(t)Xα̂, t ∈ T ô.

Let
A
(
Gô, Bô, T ô, {Xα̂}

)
be the group of complex analytic automorphisms ω of Gô leaving Bô and T ô invariant and
sending Xα̂ to Xωα̂, where ωα̂ is defined by

ωα̂(ωt) = α̂(t).

If instead of Bô, T ô, {Xα̂} we choose B
ô
, T

ô
, {Xα∧} with the same properties there is a

unique inner automorphism ψ such that

B
ô
= ψ(Bô); T

ô
= ψ(T ô), Xψα̂ = ψ(Xα̂).

Then

A
(
Gô, B

ô
, T

ô
, {Xα∧}

)
=

{
ψωψ−1

∣∣∣∣ ω ∈ A
(
Gô, Bô, T ô, {Xα̂}

)}
.

Suppose we have an extension

1 Gô Ĝ WF 1

of topological groups. A splitting is a continuous homomorphism from WF to Ĝ for which
the composition

WF Ĝ WF

is the identity. Each splitting defines a homomorphism of η of WF into the group of

automorphism of Ĝ. The splitting will be called admissible if, for each ω in WF , η(ω)
is complex analytic and the associated linear transformation of the Lie algebra of Gô is
semisimple. It will be called distinguished if there is a Bô, a T ô, and a collection {Xα̂}
such that η factors through a homomorphism of g(F/F ) into A

(
Gô, Bô, T ô, {Xα̂}

)
. Two

distinguished splittings will be called equivalent if they are conjugate under Gô.

We introduce a category Ĝ(F ) whose objects are extensions of the above type, with Gô a con-
nected reductive complex algebraic group, together with an equivalence class of distinguished
splittings. These we call special. A homomorphism

φ : Ĝ1 → Ĝ2

of two objects in the category will be called an L-homomorphism if

Ĝ1 Ĝ2

WF

φ
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is commutative, if the restriction of φ to Gô
1 is complex analytic, and if φ preserves admissible

splittings. Two L-homomorphisms will be called equivalent if there is a g ∈ Gô
2 such that

φ2 = ad g ◦ φ1.

An arrow in our category will be an equivalence class of L-homomorphisms. For simplicity,
we do not distinguish in the notation between a homomorphism and its equivalence class.

For future reference we define a parabolic subgroup P̂ of Ĝ to be a closed subgroup P̂ such

that P ô = P̂ ∩ Gô is a parabolic subgroup of Gô and such that the projection P̂ → WF is
surjective.

We also remark that A
(
Gô, Bô, T ô, {Xα̂}

)
contains no inner automorphisms. Thus if

η : g(F/F ) → A
(
Gô, Bô, T ô, {Xα̂}

)
,

η : g(F/F ) → A
(
Gô, B

ô
, T

ô
, {Xα∧}

)
are associated to two distinguished splittings of Ĝ there is a g ∈ Gô, unique modulo the
center, such that

η = ad g ◦ η ◦ ad g−1.

Suppose we are given a special distinguished splitting associated to the above map η. Let

L̂ be the group of rational characters of T ô. If both variables on the right are treated as
algebraic groups

L̂ = Hom(T ô,C×).

Let conversely
L = Hom(C×, T ô).

Define a pairing

L× L̂→ Z

by

λ̂
(
λ(z)

)
= z⟨λ,λ̂⟩, z ∈ C×.

This pairing identifies L̂ with Hom(L,Z). Associated to each root α̂ of T ô is a homomorphism
of SL(2,C) into Gô. The composition

z →
(
z 0
0 z−1

)
→ Gô

factors through T ô and defines an element α of L.

Let ∆̂ be the set of roots simple with respect to Bô. Associated to Gô, Bô, T ô, {Xα̂} are
a connected reductive group Go over F , a Borel subgroup Bo of Go, a Cartan subgroup T o

in Bo, and isomorphisms ηα, α̂ ∈ ∆̂, of the additive group with a subgroup of Bo such that

L = Hom
(
T,GL(1)

)
and

∆ =
{
α
∣∣∣ α̂ ∈ ∆̂

}
is the set of simple roots of T o with respect to Bo. Moreover

ad t
(
ηα(x)

)
= ηα

(
α(t)x

)
, x ∈ F , t ∈ T o(F ).
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The collection Go, Bo, T o, ηα is determined up to canonical isomorphism by these conditions.

Any ω in A
(
Gô, Bô, T ô, {Xα̂}

)
acts on L and L̂. There is a unique way of letting ω act on Go

so that
ωλ(ωt) = λ(t), λ ∈ L, t ∈ T o(F ),

and
ωηα(x) = ηωα(x), x ∈ F .

The automorphism ω so obtained is defined over F . Thus

η : g(F/F ) → A
(
Gô, Bô, T ô, {Xα̂}

)
defines an element of H1

(
g(F/F ),AutGo

)
and hence an F -form G of Go. In particular

G(F ) =
{
g ∈ Go(F )

∣∣∣ τη(τ)(g) = g ∀τ ∈ g(F/F )
}
.

Observe that the group G is quasi-split. Observe also that the data associated to two

special distinguished splittings of Ĝ are connected by a unique inner automorphism. It
follows readily that the group G, together with B, T , {ηα}, is determined up to canonical

isomorphism by Ĝ.
Conversely, suppose we are given a quasi-split group G over F . Choose a Borel subgroup B

and a Cartan subgroup T in B all defined over F . Interchanging the roles of L and L̂ and of ∆

and ∆̂, we pass from G, B, and T to Gô, Bô, T ô, and {Xα}. The group A
(
Gô, Bô, T ô, {Xα̂}

)
may be identified with the group of automorphisms of L that leave the set ∆ invariant. Define
a homomorphism

η : g(F/F ) → A
(
Gô, Bô, T ô, {Xα̂}

)
by

η(τ)λ
(
τ(t)

)
= τ
(
λ(t)

)
, λ ∈ L, t ∈ T (F ).

This map allows us to define Ĝ, which again is determined up to canonical isomorphisms
by G alone.

Suppose G1 and G2 are two quasi-split groups over F and ψ : G1 → G2 is an isomorphism
with ψ−1τ(ψ) inner for each τ in g(F/F ). Choose g ∈ G1(F ) so that ψ′ = ψ ◦ ad g takes
B1 to B2 and T1 to T2. Then ψ

′ determines a bijection ∆1 → ∆2 as well as an isomorphism
ψ′ : L1 → L2. These do not depend on the choice of g and determine an isomorphism

ψ̂ : Gô
1 → Gô

2. This isomorphism takes Bô
1 to Bô

2, T
ô
1 to T ô2 , and Xα̂1 to Xα̂2 if α1 and α2 are

corresponding elements in ∆1 and ∆2. Since ψ
′−1τ(ψ′) takes T1 to T1, B1 to B1, and is inner

it is the identity on T1. It follows readily that

η2(τ)ψ
′(λ1) = ψ′(η1(τ)λ1).

Thus ψ̂ may be extended to an isomorphism of Ĝ1 with Ĝ2 that preserves the splittings. It is
determined uniquely by the conditions imposed upon it.

These are of course the considerations which allowed us to define Ĝ in the first place. If

G1 = G2 = G then Ĝ may be realized either as Gô
1×WF or as Gô

2×WF but these two groups
are canonically isomorphic. There are occasions when a failure to distinguish between G and
its realizations leads to serious confusion.
In general if G1 is a connected reductive group over F we may choose an isomorphism ψ

of G1 with a quasi-split group G. The isomorphism ψ is to be defined over F and ψ−1τ(ψ) is
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to be inner for τ ∈ g(F/F ). We may, taking into account the canonical isomorphisms above,

define Ĝ1 to be Ĝ. However, we should observe that the same difficulties are present here as

in the definition of the fundamental group; the isomorphism ψ we write Ĝ1(ψ).
There are some further observations to be made before the task of this paper can be

formulated. Let p(G) and p(G1) be respectively the sets of conjugacy classes of parabolic

subgroups of G and G1 that are defined over F . Let p(Ĝ) be the classes of parabolic subgroups

of Ĝ with respect to conjugacy under Gô. We want to describe a bijection

p(G) ↔ p(Ĝ)

and an injection

p(G1) ↪→ p(Ĝ).

For the first we recall that for a given T and B and the corresponding T ô, Bô we have

a bijection ∆ ↔ ∆̂. It is well known that p(G) is parametrized by the g(F/F )-invariant
subsets of ∆. The classes of parabolic subgroups of Gô are parametrized by the subset of ∆.

The normalizer of P ô in Ĝ is parabolic if and only if the associated subset of ∆ is invariant
under g(F/F ). This yields the bijection.
The injection will now be defined by

p(G1) ↪→ p(G).

Suppose P1 is a parabolic subgroup of G1 defined over F . I claim that here there is a g in
G1(F ) such that if ψ′ = ψ ◦ ad g then P = ψ′(P1) is defined over F . The class of P depends
only on ψ and the class of P1. The required injection maps the latter class to the former. To
prove that g exists we use the following lemma.

Lemma 2.1. Let G′ and G be connected reductive groups over F . Let G be quasi-split and
let ψ : G′ → G be an isomorphism defined over F . Suppose ψ−1τ(ψ) is inner for τ ∈ g(F/F ).
If T ′ is a Cartan subgroup of G′ defined over F there is a g′ ∈ G′(F ) and a Cartan subgroup
T in G defined over F such that ψ′ = ψ ◦ ad g′ when restricted to T ′ yields an isomorphism
of T ′ with T that is defined over F .

Let G′
der be the derived group of G′ and let G′

sc be its simply connected covering group.
Define Gder and Gsc in the same way. Lift ψ to an isomorphism ψsc : G

′
sc → Gsc. Let Tsc be

the inverse image of T ′ in G′
sc. Choose t̃

′ ∈ T ′
sc(F ) with image t′ in T ′(F ) so that T ′

sc is the
centralizer of t̃′ and T ′ the centralizer of t′. Set t̃1 = ψsc(t̃

′). Since

τ(t̃1) = ψsc

(
ψ−1
sc τ(ψsc)(t̃

′)
)
, τ ∈ g(F/F ),

the conjugacy class of t̃1 is defined over F . By Theorem 1.7 of [14] there is a g̃ ∈ Gsc(F ) such
that t̃ = ad g̃(t̃1) lies in Gsc(F ). Let t be its projection in G(F ). The centralizer T of t is
defined over F and if g′ is the projection of g̃′ = ψ−1

sc (g̃) then ψ
′ = ψ ◦ ad g maps t′ to t and

T ′ to T . Since both t′ and t are rational over F the automorphism ψ′−1τ(ψ′) which is inner
commutes with t′ and hence with all of T ′. It follows that ψ′ : T ′ → T is defined over F .

We apply the lemma with G′ equal to G1 and with T ′ equal to a Cartan subgroup T1 lying
in P1. Choose g so that if ψ′ = ψ ◦ ad g then ψ′−1τ(ψ′) lies in T1(F ) for τ ∈ g(F/F ). Then if

P = ψ′(P1)

we have
τ(P ) = ψ′(ψ′−1τ(ψ′)(P1)

)
= ψ(P1) = P
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and P is defined over F .
Let p̂(G1) be the image of p(G1) in p(Ĝ1).

Lemma 2.2. If P
∧
1 ⊇ P̂1 and the class of P̂1 lies in p̂(G1) so does the class of P

∧
1 .

Choose P1 in G1 that is defined over F . The parabolic subgroups of G1 that are defined

over F and contain P1 belong to different classes. So do the parabolic subgroups of Ĝ1 that

contain P̂1. We have only to verify that these sets contain the same number of elements.
Choose T1 in P1 that is defined over F and choose an isomorphism ψ of G1 with a quasi-split
group G so that ψ−1τ(ψ) is inner and commutes with T1 for all τ ∈ g(F/F ). Let M1 be a
Levi factor of P1 containing T1 and let S1 be a maximal torus in the center of M1. Then
P = ψ(P1), M = ψ(M1), and S = ψ(S1), as well as ψ|S1

are all defined over F . Thus the
maximal split tori in S and S1 have a common rank r and P and P1 are both contained in

2r parabolic subgroups defined over F . Since the number of parabolic subgroups of Ĝ1 that

contain P̂1 is equal to the number of parabolic subgroups of G that are defined over F and
contain P the required equality follows.

The group WF lies in Ĝ(F ). Let Φ(G1) be the subset of

HomĜ(F )(WF , Ĝ1)

consisting of these φ such that the class of any parabolic subgroup P̂ containing φ(WF ) lies
in p̂(G1) under the above injection. In particular, for the quasi-split group G

Φ(G) = HomĜ(F )(WF , Ĝ)

which is obviously a covariant functor of Ĝ.
We shall start in the next paragraph to relate Φ(G) to Π(G). There are some simple

properties of Φ(G) to establish first. The group G(F ) does not change on restriction of scalars
and neither does Π(G). We had best check that this is also true for Φ(G). Although there
is, in the present circumstances, only one nontrivial way to restrict scalars, namely from C
to R, I would prefer not to take this explicitly into account.

Let E be a finite extension of F . We want first of all to define a faithful functor from Ĝ(E)

to Ĝ(F ). We imbed E in F . Corresponding to this imbedding is an imbedding of WE in WF .
Actually there is some arbitrariness in both imbeddings. Since, up to equivalence, it has no

effect on the functor to be constructed, we ignore it. Suppose G̃∧ lies in Ĝ(E). Choose a

distinguished splitting of G̃∧ and let η̃ be the corresponding action of WE on G̃ô. Let Gô be

the set of functions h on WF with values in G̃ô satisfying

h(vw) = η̃(v)
(
h(w)

)
, v ∈ WE.

Let η(v), v ∈ WF , send h to h′ with

h′(w) = h(wv).

With respect to this action form the semidirect product

Ĝ = Gô ⋊WF .

It is easy to see that the given splitting of Ĝ is distinguished and that Ĝ lies in Ĝ(F ). Observe

also that there is an obvious bijection from p(G̃∧) to p(Ĝ).
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If we had chosen another distinguished splitting η̃′ there would be a g ∈ G̃ô such that

η̃′(w) = gη̃(w)g−1, w ∈ WE.

The map h → h′ with h′(w) = gh(w)g−1 together with the identity on WF would yield an

isomorphism between Ĝ and the group constructed by means of η̃′; so we need not worry
about the arbitrariness of the distinguished splitting either.

Choose a set V of representatives v for WE\WF . If w ∈ WF let

vw = dv(w)v
′, v, v′ ∈ V.

If φ̃ is an L-homomorphism from G̃∧
1 to G̃∧

2 let

φ̃(1× w) = ã(w)× w, w ∈ WE,

with respect to special distinguished splittings of G̃∧
1 and G̃∧

2 . If w ∈ WF let a(w) be the
function in Gô

2 whose value at v ∈ V is ã
(
dv(w)

)
. If h is a function in Gô

1 let h′ be the

function in Gô
2 defined by

h′(v) = φ̃
(
h(v)

)
, v ∈ V.

Define Ĝ1 and Ĝ2 as above and let φ be the homomorphism from the former to the latter
defined by

φ(h× w) = h′a(w)× w.

A little calculation, which will be left to the reader, shows that φ is in fact an L-homomorphism
and that its class is determined by that of φ̃ alone and is independent of the auxiliary data.
The reader will also easily verify that the class determined by φ̃1φ̃2 is φ1φ2.

Given φ we define φ̃ as follows. If h̃×w, w ∈ WE, belongs to G̃
∧
1 we let h be a function in

Gô
1 with h(1) = h̃. If

φ(h× w) = h′ × w

we set
φ̃(h̃× w) = h′(1)× w.

The class of φ̃ depends only on that of φ. It is clear that this process inverts the operation of
the previous section. A slight variant of Shapiro’s lemma shows that the reciprocal is true.
Starting from φ we construct φ̃; from φ̃ we pass to φ′. We have to show that φ and φ′ lie in
the same class. We may assume that the set of representatives V contains 1. Suppose

φ(w) = hw × w

and define h in Gô
2 by

h(v) = hv(1).

It is easily verified that

φ(g) = hφ′(g)h−1, g ∈ Ĝ1.

Thus our functor is fully faithful. The object of Ĝ(F ) corresponding to WE is WF .

Suppose G̃ is quasi-split over E and G over F is obtained from G̃ by restriction of scalars.
Then for any scheme Z over F

HomF (Z,G) = HomE(Z ⊗F E, G̃)

because restrictions of scalars is the right adjoint of base change. In particular if a Borel

subgroup B̃ of G̃ and a Cartan subgroup T̃ of B̃ are given, then restriction of scalars yields
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B and T in G; so G is quasi-split. We must verify that Ĝ is obtained from G̃∧ by the functor
introduced above.

Let L′ be the group of functions λ′ on g(F/F ) with values in L̃∧ satisfying

λ′(στ) = σλ′(τ), σ ∈ g(F/E),

and let ∆′ be the set of λ′ that are zero on all but one coset of g(F/E) on which they take

values in ∆̃. All we have to do is show that L′ is isomorphic to L̂ as a g(F/F ) module in
such a way that ∆′ corresponds to ∆.
Since we have chosen an imbedding of E in F we may take E to be F . Map F ⊗F E to

the ring R of F -valued functions a on g(F/F ) satisfying

a(στ) = σ
(
a(τ)

)
, σ ∈ g(F/E),

by

α⊗ β a : τ τ(α)β .

This is an isomorphism. Then

L̂ = HomF

(
GL(1)⊗F F , T ⊗F F

)
= HomF

(
GL(1)⊗F , F , T

)
= HomE

(
GL(1)⊗F R, T̃

)
.

Every τ ∈ g(F/F ) yields by evaluation a map R → F and hence a map

HomE

(
GL(1)⊗F R, T̃

)
→ HomE

(
GL(1)⊗F F , T̃

)
= L̃∧.

Thus every element of L̂ yields a function on g(F/F ) with values in L̃∧. The function is

easily seen to lie in L′. That the resulting map from L̂ to L′ has the required properties is
easy to see.

If we take L to be Hom(L,Z) we may identify L with the space of functions λ on g(F/F )

with values in L̃ satisfying

λ(στ) = σ
(
λ(τ)

)
, σ ∈ g(F/E).

The pairing is

⟨λ, λ̂⟩ =
∑

g(F/E)\g(F/F )

〈
λ(τ), λ̂(τ)

〉
.

If z is an F -valued point in GL(1) then

λ
(
λ̂(z)

)
= z⟨λ,λ̂⟩ = z

∑⟨λ(z),λ̂(τ)⟩ =
∏

λ(τ)
(
λ̂(τ)(z)

)
=
∏

τ−1

{
λ(τ)

(
λ̂(τ)(τz)

)}
because every rational character of GL(1) is defined over F . In general we have an isomorphism

T (F ) = HomF (SpecF , T ) = HomE(SpecR, T̃ ) = T̃ (R).

Since each τ ∈ g(F/F ) yields a map R → F , we may associate to each s ∈ T (F ) a function

τ → s(τ) on g(F/F ) with values in T̃ (F ). If s = λ̂(z) then s(τ) = λ̂(τ)
(
τ(z)

)
. Since the

points λ̂(z) generate T (F ) we have

λ(s) =
∏

τ−1
{
λ(τ)

(
s(τ)

)}
.
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In particular if s lies in T (F ) then s(τ) = s̃ is independent of τ and lies in T̃ (E).
It has already been pointed out that the definition of the associated group of an arbitrary

connected reductive group G1 depends on the choice of an isomorphism ψ : G1 → G with
G quasi-split. However, composing ψ with an inner automorphism has no effect on the
construction. In particular, since ψ−1τ(ψ), τ ∈ g(F/F ) is always supposed inner, ψ could be
replaced by τ(ψ).

Lemma 2.3. Suppose G̃1 and G̃ are given over E with G̃ quasi-split, together with an

isomorphism ψ̃ : G̃1 → G̃ over E. Let G1 and G be obtained from G̃1 and G̃ by restriction

of scalars. There is associated to ψ̃ an isomorphism ψ : G1 → G over F defined up to

composition with an inner automorphism and Ĝ1 is obtained from G̃∧
1 (ψ̃) by the restriction

of scalars functor from Ĝ(E) to Ĝ(F ).

Only the existence of ψ needs to be established. We imbed E in F and identify E with F

HomF (G1 ⊗F F ,G⊗F F ) = HomF (G1 ⊗F F ,G)

= HomE(G1 ⊗F R, G̃)

and
HomF (G1 ⊗F F ,G1 ⊗F F ) = HomE(G1 ⊗F R, G̃1).

Start from the identity morphism on the left to get a morphism from G1 ⊗F R to G̃1. On the
other hand, if we choose a set of representatives ρ for g(F/E) in g(F/F ) we may imbed F in
R by associating to α ∈ F the function whose value at each ρ is α. This yields a morphism
from Spec R to Spec F over E. The two morphisms together yield a morphism from G1⊗F R

to G̃1 ⊗E F . Composing with ψ̃ : G̃1 ⊗E F → G̃ we get a morphism from G1 ⊗F R to G̃ and
hence ψ : G1 ⊗F F → G.

The invariance of Φ(G) under restriction of scalars is now clear. Suppose P is a parabolic

subgroup of G over F . We may choose B and T in P . Now construct Ĝ, Bô, and T ô. Let

P̂ be the parabolic subgroup of Ĝ containing Bô whose class corresponds to that of P . Let

N be the unipotent radical of P , N̂ that of P ô, and let M = P/N , M̂ = P̂ /N̂ . It is easily

seen that M̂ belongs to Ĝ(F ) and that M̂ is the associated group of M . If P∧ is another

parabolic subgroup in the same class as P̂ there is a g ∈ Gô such that gP̂ g−1 = P
∧
. The

induced map M̂ →M∧ is uniquely determined up to an inner automorphism by an element

of M
ô
. Thus if P

∧
and P lie in corresponding classes in p(Ĝ) and p(G) the associated group

of M is canonically isomorphic, in the category Ĝ(F ), P∧/N∧.

Suppose ψ : G1
∼−→ G is such that ψ−1τ(ψ) is inner for τ ∈ g(F/F ). If P1 is a parabolic

subgroup of G1 over F we may always modify ψ by an inner automorphism so that P = ψ(P1)
is defined over F . We readily deduce the following lemma.

Lemma 2.4. Suppose P1 is a parabolic subgroup of G1 over F and P̂1 is a parabolic subgroup

of Ĝ1 whose class corresponds to that of P1. Then M̂1 = P̂1/N̂1 is canonically isomorphic in

the category Ĝ(F ) to the associate group of M1.

Choose a splitting M1 → P1 defined over F and a splitting M̂1 → P̂1 that carries

distinguished splittings of M̂1 to distinguished splittings of Ĝ1. The isomorphism between

M̂1 and the associated group of M1 depends on the choice of P1 and P̂1 with M1 and M̂1 as
Levi factors.
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Lemma 2.5. Suppose P1 and P̂1 are given as above with M1 and M̂1 as Levi factors. There
is a bijection η between the parabolic subgroups of G1 defined over F that contain M1 as

a Levi factor and the parabolic subgroups of Ĝ1 that contain M̂1 as Levi factor such that

P̂1 = η(P1), and such that the isomorphism between M̂1 and the associated group of M1 is

the same for all pairs P̂1, η(P 1).

Take G quasi-split and let ψ be an isomorphism from G1 to G with ψ−1τ(ψ) inner for
τ ∈ g(F/F ). We also suppose that there is a Cartan subgroup T1 in M1 defined over F
such that each ψ−1τ(ψ) commutes with the elements of T . Then ψ(T1), M = ψ(M1), and
P = ψ(P1) are defined over F . In fact if P 1 is any parabolic subgroup over F that contains
M1 then P = ψ(P 1) is defined over F . The definitions are such that we may prove the
assertions for G, M , P rather than G1, M1, P1. Choose a Borel subgroup B over F that is

contained in P and a Cartan subgroup T of B that is also defined over F . Then build Ĝ, Bô,

T ô, and {Xα̂}. We may replace Ĝ1 by Ĝ and suppose that P̂ contains B̂. Since any two Levi

factors of P̂ are conjugate under P ô (cf. [12], Theorem 7.1), we may also suppose that M̂

contains T̂ .
Let D(M) be the space of vectors in L⊗R invariant under g(F/F ) and orthogonal to the

roots of M̂ . By a chamber in D(M) we mean a connected component of the complement of
the union of the hyperplanes {

a ∈ D(M)
∣∣ ⟨a, α̂⟩ = 0

}
where α̂ is a root of T ô in Gô but not in M ô. There is a bijection between chambers in

D(M) and parabolic subgroups P
∧
of Ĝ that contain M̂ as Levi factor. The subgroup P

∧

corresponds to the chamber

C =
{
a ∈ D(M)

∣∣ ⟨a, α̂⟩ > 0 if Xα̂ ∈ p̂, Xα̂ /∈ m̂
}
.

p and m̂ are the Lie algebras of P̂ and M̂ .
There is also a bijection between chambers of D(M) and parabolic subgroups of G that

are defined over F and contain M as Levi factor. If B is the Killing form, which may be
degenerate, then C corresponds to P defined by the condition that it contain T and that a
root α of T in G be a root in P if and only if B(a, α) ⩾ 0 for all a in C. The bijection η is

the composition of P → C → P
∧
.

The Weyl groups Ω̂ and Ω of T ô in Gô and of T in G are isomorphic in such a way that
the reflections

λ→ λ− ⟨λ, α̂⟩α,
λ̂→ λ̂− ⟨α, λ̂⟩α̂

correspond. Suppose P
∧
= η(P ). There is an ω̂ in Ω̂ that takes every root of T ô in P

ô
not in

M ô and every root in M ô ∩ Bô to a root of T ô in Bô. Let h in the normalizer of T ô in Gô

represent ω̂ and let P̂0 be hP∧h−1, and M̂0 be hM̂h−1. We may suppose that

Adh(Xα̂) = Xω̂(α̂)

if α̂ is a root of T ô in M ô ∩Bô. If g in the normalizer of T in G(F ) represents the element ω
of Ω corresponding to ω̂ then P0 = gPg−1 contains B. It is clear that α is a root of T in

P0 if and only if α̂ is a root of T ô in P̂0. Thus P0 and P̂0 and hence P and P∧ belong to

corresponding classes in p(G) and p(Ĝ).
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If we build the associate group of M starting with M , B ∩M , and T we obtain M̂ , B̂ ∩ M̂ ,
T ô, and the collection {Xα̂} where α̂ runs over the simple roots of T ô in M ô with respect to

Bô ∩M ô. This gives the isomorphism of M̂ with the associate group of M defined by P and

P̂ . The isomorphism between M̂ and the associated group of M defined by P and P∧ is more
complicated to obtain. This is not because of any intrinsic asymmetry but rather because

of the simplifying assumption that P̂ contains B̂ and P contains B. We have to use g to
establish an isomorphism between M and M0 = gMg−1 that we may assume is defined over
F , then build the associate group of M0 with respect to B ∩M0 and T , obtaining thereby

M̂0, B̂ ∩ M̂0, T
ô, and {Xα̂}, where α̂ runs over the simple roots of T ô in M ô with respect to

Bô ∩M ô
0 , and finally we have to use the isomorphism between M̂ and M̂0 given by h.

What has to be verified to prove the lemma is that, in the category Ĝ(F ), the isomorphism

between M̂ and M̂0 given by h is equal to the isomorphism between them as two concrete
realizations of the associate group of M . What is the latter isomorphism? The isomorphism
ad g takes M to M0, B ∩M to B ∩M0, T to T , and the root α of T in M to ωα. Then

the isomorphism between M̂ and M̂0 as realizations of the associate group takes M ô to

M ô
0 , B

ô ∩M ô to Bô ∩M ô
0 , T

ô to T ô, Xα̂ to Xω̂α̂, respects the splittings M̂ = M ô ×WF ,

M̂0 = M ô
0 ×WF built into the construction, and acts trivially on WF . It is characterized

by these properties. Since (ωα)∧ = ω̂α̂ the isomorphism given by h has all these properties
except perhaps the last. To achieve the last we exploit the circumstance that we are not
really working with isomorphisms but rather with classes of them to modify our initial choice
of h.

The group WF acts on L̂. Since in its action on Gô it leaves P
ô
, M ô, and Bô invariant and

since the normalizer of T ô in Bô is T ô, it is clear that on L̂

wω̂ = ω̂w, w ∈ WF .

That h can be modified in the fashion desired follows immediately from the next lemma.

Lemma 2.6. Let Ĝ, Bô, T ô, and {Xα̂} be given. Suppose ω̂ ∈ Ω̂ and that on L̂

wω̂ = ω̂w, w ∈ WF .

Then ω̂ is represented by an element h of the normalizer of T ô in Gô that commutes with w
in WF and satisfies

adh(Xα̂) = Xω̂α̂

if α̂ is simple with respect to Bô.

We ignore for the moment the last condition and simply try to find an h that represents ω̂
and is fixed by the action of WF on Gô. The action of WF on Gô factors through g(F/F )
and it is easier to forget about WF and deal directly with g(F/F ). Start off with any h that
represents ω̂. Then

τ → aτ (h) = τ(h)h−1

lies in T ô and is a 1-cocycle of g(F/F ) with values in T ô. If h is replaced by sh, s ∈ T ô, then
aτ (h) is replaced by τ(s)aτ (h)s

−1; so our problem is to show that the class of the cocycle is
trivial. Since

aτ (h1h2) = aτ (h1)ω̂1

(
aτ (h2)

)
it will be enough to show this for a set of generators of the centralizer Ω̂0 of g(F/F ) in Ω̂.
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Suppose A is the set of vectors in L ⊗ R invariant under g(F/F ). The group Ω̂0 acts
faithfully on A and, as is easily seen, acts simply transitively on the chambers, that is, the
connected components of the complement of the hyperplanes.{

a ∈ A
∣∣ ⟨a, α̂⟩ = 0

}
where α̂ is any root of T ô in Gô. Each orbit O in ∆̂ defines a reflection

SO : a→ a− ⟨a, α̂0⟩
|O|

∑
α̂∈O

α

where α̂0 is any element of O. These reflections are each given by an ω̂0 in Ω̂0 and the

collection of ω̂0 generates Ω̂0. We have to show that each ω̂0 is represented by an element of
Gô that is fixed by g(F/F ). Replacing Gô by a subgroup if necessary, we may suppose that

O = ∆̂. Since the question only becomes more difficult if Gô is replaced by a finite covering
group, we may suppose Gô is the product of a torus and a finite number of simple, simply
connected groups. The torus may be discarded. Let

Gô =
r∏
i=1

Gô
i , T ô =

r∏
i=1

T ôi , Ω̂ =
r∏
i=1

Ω̂i,

and

ω̂ = ω̂∆̂ =
r∏
i=1

ω̂i.

If τ(Gô
i ) = Gô

j then
τ(ω̂i) = ω̂j.

Suppose g(F/E) is the stabilizer of Gô
1 in g(F/F ). Then ω̂1 commutes with g(F/F ). Suppose

it is represented by h1 in Gô
1 which is fixed by g(F/E). Set

hj = τ(h1)

where τ is any element of g(F/F ) that takes Gô
1 to Gô

j . Then hj is well-defined and

h =
r∏
j=1

hj

is fixed by g(F/F ) and represents ω̂.
We are now reduced to a situation in which Gô is simple and simply connected and g(F/F )

acts transitively on ∆̂. There are two possibilities. The group Gô is of type A1 or A2. In the
first case g(F/F ) acts trivially and there is nothing to prove. In the second we may take
Gô to be SL(3,C), T ô to be the group of diagonal matrices, Bô to be the group of upper
triangular matrices, and the collection {Xα̂} to consist of0 1 0

0 0 0
0 0 0

,
0 0 0
0 0 1
0 0 0

.
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Then A
(
Gô, Bô, T ô, {Xα̂}

)
consists of the trivial automorphism and the automorphism

H →

0 0 1
0 −1 0
1 0 0

tH−1

0 0 1
0 −1 0
1 0 0

.
We may take h to be 0 0 1

0 −1 0
1 0 0

.
Suppose ω̂ is arbitrary in Ω̂0 and is represented by an h in Gô that is fixed by g(F/F ). In

order to complete the proof of the lemma we have to show that there is an s in T ô that is
fixed by g(F/F ) such that

ad(hs)Xα̂ = Xω̂α̂, α̂ ∈ ∆̂.

Let
adh(Xα̂) = c(α̂)Xω̂α̂.

Clearly c(τ α̂) = c(α̂) for τ ∈ g(F/F ). We may choose d(α̂), α̂ ∈ ∆̂, such that d(τ α̂) = d(α̂)
and such that

d(α̂)|g(F/F )| = c(α̂).

If t in T ô satisfies
α̂(t) = d(α̂)−1, α̂ ∈ ∆̂,

then
s =

∏
τ∈g(F/F )

τ(t)

is the required s.
Suppose φ1 is an automorphism of G1 such that φ−1

1 τ(φ1) is inner for all τ ∈ g(F/F ). For
example φ1 could be defined over F . If ψ is an isomorphism of G1 with a quasi-split group
G, we define the automorphism φ of G by transport of structure. We have seen already

that φ determines an automorphism φ̂ of Ĝ. By transport of structure again we obtain an

automorphism φ̂1 of Ĝ1. It is easily seen that φ̂1 depends only on φ1 and not on ψ.

Lemma 2.7. Suppose P1 is a parabolic subgroup of G1 over F and P̂1 is a parabolic subgroup

of Ĝ whose class corresponds to that of P1. Let M1 be a Levi factor of P1 over F and

M̂1, which we take as the associate group of M1, a Levi factor of P̂1. Suppose g ∈ G1(F )
normalizes M1. If φ1 is the restriction of Ad g to M1 and φ̂1 the associated automorphism of

M̂1, there is an element h in the normalizer of M̂1 in Gô
1 such that φ̂1 is the restriction of

Adh to M̂1.

Suppose that g is only in G1(F ) but that g−1τ(g) lies in M1(F ) for each τ . Then we
can still define φ̂1 and the lemma remains valid. We work with the weaker assumption.
The advantage is that if ψ is an isomorphism of G1 with a quasi-split group G such that
ψ−1τ(ψ) = admτ with mτ ∈ M(F ) for each τ then ψ(g) continues to satisfy the weaker
assumption, for

ψ(g−1)τ
(
ψ(g)

)
= ψ

(
g−1mττ(g)m

−1
τ

)
∈M(F )

if M = ψ(M1). We prove the lemma for the group G. P1 is replaced by P = ψ(P1) and M1

by M . g is now in G(F ). We choose B and T such that B ⊆ P and T ⊆M .
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We may compose g with any element of M(F ) and thus suppose that

g(B ∩M)g−1 = b ∩M, gTg−1 = T.

Since g is determined by these conditions modulo T ,

gτ(g−1) ∈ T, τ ∈ g(F/F ).

In particular g represents an element ω of Ω fixed by g(F/F ). Let ω̂ be the corresponding

element of Ω̂0.
We construct Ĝ, Bô, T ô, and {Xα̂} corresponding to G, B, and T and realize ω̂ by an h

that satisfies the conditions of the preceding lemma. If we take P̂ to contain Bô it is clear

that Adh is equal to φ̂1 on M̂ .
For the next lemma we work in the category of tori over F . Suppose S is such a torus.

Then Ŝ admits by construction a special distinguished splitting. Also L̂ is a covariant functor
of S and

S ô = Hom(L̂,C×)

is a contravariant functor. So is Ŝ. Φ(S), which consists of classes of continuous homomor-

phisms of WF into Ŝ, is also contravariant. We write a homomorphism φ as

φ(w) = a(w)× w.

We compose φ1 and φ2 by setting

φ1φ2(w) = a1(w)a2(w)× w.

This composition is actually defined for the classes and turns Φ(S) into an abelian group.
Π(S) is the group of continuous homomorphisms of S(F ) into C×. Although the following
lemma is valid over any local field, we prove it here only for the real and the complex field.

Lemma 2.8. On the category of tori over F the group-valued functors Φ and Π are isomor-
phic.

When F is C the lemma is particularly easy. Any homomorphism from the topological
group C× to C× may be written as

z = ex → zazb = eaz+bx

where a and b are two uniquely determined elements of C whose difference lies in Z. If

φ ∈ Φ(S) is a continuous homomorphism from C× to Ŝ = S ô, let φ(z) = a(z)× z, z ∈ C×,
and

λ̂
(
a(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩

where µ and ν are uniquely determined elements of L⊗C whose difference lies in L. Associate
to φ the element of π of Π(S) defined by

π : t→ µ(t)ν(t) = e⟨µ,H⟩+⟨ν,H⟩

where H ∈ L̂⊗C is defined by

λ(t) = e⟨λ,H⟩, λ ∈ L.

That the map φ→ π gives the required isomorphism of functors is easily seen.

Now let F be R. Let φ be an honest homomorphism from WR to Ŝ. Let φ(w) = a(w)×w
and

λ̂
(
a(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩, z ∈ C×
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If σ is the nontrivial element of g(C/R) then ν = σµ. Let

a(1× σ) = α, α ∈ S ô.

and let
λ̂(α) = e2πi⟨λ0,λ̂⟩, λ0 ∈ L⊗C.

λ0 is determined modulo L and

λ0 + σλ0 ≡
1

2
(µ− ν) (mod L).

µ and ν are determined by the class of φ alone but λ0 is determined only modulo the sum of
L and

{λ− σλ | λ ∈ L⊗C}.
We write an element t in S(C) as eH where H in L̂⊗C is defined by

λ(t) = e⟨λ,H⟩, λ ∈ L.

t lies in S(R) if and only if

H − σH ∈ 2πiL̂.

Define π by

π(t) = e⟨λ0,H−σH⟩+⟨µ/2,H+σH⟩.

This is permissible, for if t is 1 then H ∈ 2πiL̂ and

⟨λ0, H − σH⟩+
〈
µ

2
, H + σH

〉
=

〈
λ0 + σλ0 +

µ

2
− σµ

2
, H

〉
∈ 2πiZ.

On the other hand, if π is given extend it to a quasi-character π′ of S(C). Let

π′(t) = e⟨µ1,H⟩+⟨µ2,H⟩.

Define µ and λ0 by

µ1 =
µ

2
+ λ0, σµ2 =

µ

2
− λ0,

so that
µ = µ1 + σµ2, λ0 =

µ1

2
− σµ2

2
.

Then

λ0 + σλ0 =
1

2
{µ1 + σµ1 − µ2 − σµ2} ≡ 1

2
{µ1 + σµ2 − σµ1 − µ2} (mod L)

and
µ1 + σµ2 − σµ1 − µ2 = µ− σµ.

All we have to do is check that µ is determined by π alone and that λ0 is determined modulo
the sum of L and {λ− σλ | λ ∈ L⊗C} by π.

For this we may suppose that π is trivial. If H ∈ L̂⊗C then

1 = π′(eH+σH) = e⟨µ,H⟩+⟨σµ,H⟩

and µ = 0. If λ̂ ∈ L̂ and σλ̂ = λ̂ there is an H ∈ L̂⊗C such that

2πiλ̂ = H − σH.

Thus
⟨λ0, λ̂⟩ ∈ Z.



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 17

It follows immediately that

λ0 ∈ L+ {λ− σλ | λ ∈ L⊗C}.
There is one fact to be verified.

Lemma 2.9. The functor from Φ to Π respects restriction of scalars.

We consider restriction of scalars from C to R. Let S̃ be a torus over C and S the torus
obtained by restriction of scalars. Then

S(R) = HomR(SpecR, S) ≃ HomC(SpecC, S̃) = S̃(C).

We denote corresponding elements in S(R) and S̃(C) by s and s̃. L is the group of functions

on g(C/R) with values in L̃ and g(C/R) operates by right translation. If λ1 = λ(1), λ2 = λ(σ)
then

λ(s) = λ1(s̃)σ
(
λ2(s̃)

)
.

If s̃ = eH
∼
, H∼ ∈ L̃∧ ⊗ C then s = eH with H = (H∼, H

∼
) and

H + σH = 2(H∼, H
∼
), H − σH = 0,

and
e⟨µ̃,H

∼⟩+⟨ν̃,H∼⟩ = e⟨λ0,H−σH⟩+⟨µ/2,H+σH⟩

if

µ = (µ̃, ν̃), λ0 =
1

2
(µ̃− ν̃, 0).

Thus if the quasi-character π̃ of S̃(C) is given by µ̃, ν̃, the associated quasi-character π of
S(R) is given by µ and λ0.

On the other hand let φ̃ : WC → S̃∧ be given by φ̃(z) = ã(z)× z and let

λ̂
(
ã(z)

)
= z⟨µ̃,λ̂⟩z⟨ν̃,λ̂⟩.

S ô is the set of functions on g(C/R) with values in S̃ ô. If φ : w → a(w)×w is obtained from
φ̃ by the restriction of scalars functor, then

a(z) =
(
ã(z), ã(z)

)
, a(1× σ) =

(
ã(−1), 1

)
.

One calculates easily the corresponding µ and λ0 and finds that they have the correct values.
Now take G connected and reductive. Let ZG be its center. We want to use the previous

lemma to associate to each element φ in Φ(G) a homomorphism Xφ of ZG(F ) into C×. Since
ZG is not affected by an inner twisting, we could, but do not, suppose that G is quasi-split.
Let Grad be the maximal torus in Z and let Gss be the quotient of G by Grad. If Gad is the
adjoint group of G we have the following diagram

ZG

1 Grad G Gss 1

Gad

in which the horizontal line is exact. A pair B, T in G determines Bss, Tss and Bad, Tad.
Using these to build the associate groups, we obtain
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1 Gô
rad Gô Gô

ss 1

Gô
ad

in which the horizontal line is exact.
In particular we have a map Φ(G) → Φ(Grad), so that every element φ in Φ(G) determines

a homomorphism of Grad(F ) into C×. Thus when ZG is connected we are able to define χφ.
In general let

M = Hom
(
ZG ⊗ F ,GL(1)

)
.

M is a g(F/F ) module and there is surjection η : L→M whose kernel is the lattice generated
by the roots. Let ζ : Q→M be a surjective homomorphism of g(F/F )-modules with Q free
over Z. Let

L =
{
(λ, p)

∣∣ η(λ) = ζ(p)
}

and let
∆ =

{
(α, 0)

∣∣ α ∈ ∆
}
.

From L and ∆ and the cocycle defining G we construct G. The surjection L→ L obtained

by projection on the first factor yields an injection G→ G and a surjection G
∧ → Ĝ whose

kernel is a torus over C, namely

Hom(N̂ ,C×) = S ô

if N is the kernel of L→ L and S is the torus over F associated to the g(F/F )-module N .
Moreover Grad = ZG is the torus defined by Q.

There is an exact sequence

1 Hom
(
S(F ),C×) Hom

(
ZG(F ),C

×) Hom
(
ZG(F ),C

×) .

Every element of Φ(G) determines an element of the middle group and hence of the last.
If φ1 and φ2 in Φ(G) have the same image in Φ(G) then, after an appropriate choice of
representatives,

φ2(w) = a(w)φ1(w)

where a(w) ∈ S ô and
ψ(w) = a(w)× w

is an element of Φ(S). Thus the images of φ1 and φ2 in Φ(Grad) differ by an element in
the image of Φ(S). By the functoriality of Lemma 2.8, they determine the same element of
Hom

(
ZG(F ),C

×).
The next lemma will allow us to define χφ, φ ∈ Φ(G); it will remain, however, to verify

that it is independent of the choice of Q.

Lemma 2.10. Suppose G
∧
and Ĝ are objects in Ĝ(F ) and φ̂ : G

∧ → Ĝ is a surjective

morphism. Suppose that the kernel of φ̂ is a torus S ô in the center of G
ô
. Then

Hom(WF , G
∧
) → Hom(WF , Ĝ)

is surjective.
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The assumption does not depend on the representative chosen. If T ô is a Cartan subgroup
of Gô then

T
ô
= φ̂−1(T ô)

is a Cartan subgroup of G
ô
. If L̂ and L

∧
are the lattices of rational characters of T ô and T

ô

then L̂→ L
∧
is injective and the quotient is torsion-free. Let

ψ ∈ Hom(WF , Ĝ).

We may assume that
ψ(C×) ⊆ T ô.

Let
λ̂
(
ψ(z × 1)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩

where µ and ν lie in L⊗C and µ− ν ∈ L. The map L̂→ L
∧
leads to surjective maps L→ L

and L⊗C → C. Lift µ to µ̃ and ν to ν̃ in L⊗C so that µ̃− ν̃ lies in L.

Define ψ̃(z × 1) in T
ô
by

λ̂
(
ψ̃(z × 1)

)
= z⟨µ̃,λ̂⟩z⟨ν̃,λ̂⟩, λ̂ ∈ L

∧
.

Lift ψ(1× σ) arbitrarily to ψ̃(1× σ) and set, in general

ψ̃(z × σ) = ψ̃(z × 1)ψ̃(1× σ).

Let
ψ̃(w1)ψ̃(w2) = a(w1, w2)ψ̃(w1w2),

where a(w1, w2) is a continuous 2-cocycle on WF with values in S ô. What we have to do is
show that there is a continuous function b(w) on WF with values in S ô such that

b(s1)w1

(
b(w2)

)
a(w1, w2) = b(w1w2).

What we do is introduce the extension K of topological groups defined by this cocycle and
show that it splits continuously.

This is clear if F = C; so take F = R. Let N̂ be the lattice of rational characters of S ô.
Consider the inverse image of C× in K. This extension of C× splits. Write an element in it
as

s× z = eH × ex

with x in C and H in N ⊗C. Let

σ(eH×z) = eσ(H)+zµ+zν × ez

with µ and ν in N ⊗C. Applying σ again we see that ν = −σ(µ). Moreover µ+ σ(µ) must
lie in N . In fact σ must fix the square of any lifting of 1× σ to H. Since this square is of the
form s× (−1),

eπi(µ+σ(µ)) = 1

and µ+ σ(µ) ∈ 2N . Set

γ =
µ− σ(µ)

4
, δ =

µ+ σ(µ)

4
and

α = γ − δ, β = γ + δ.
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Then µ = 2(γ + δ), α− β = −2δ lies in N and σ(α) + µ = β, σ(β)− σ(µ) = α. We replace
the original splitting over C× by

ez → ezα+zβ × ez.

Since
σ(ezα+zβ × ez) = ez(σ(α)+µ)+z(σ(β)−σ(µ)) × ez = ezβ+zα × ez

this new splitting is respected by the action of σ.
We have still to split the extension completely. Choose a representative h of 1× σ in H.

Let h2 = s × (−1). Let S = eH and H = H+ + H−, with σ(H+) = H+, σ(H−) = −H−.
Replacing h by

(e−H+/2 × 1)h

if necessary, we may suppose that H+ = 0. Since σ(s) = s, 2H lies in 2πiN . Write

H = πi
(
λ− σ(λ)

)
with λ ∈ N ⊗C. We may modify the splitting over C× once again, replacing it by

ez → ezλ+zσ(λ) × ez.

In this new splitting over C×, h2 is given by

eH−πiλ+πiσ(λ) ×−1 = 1×−1.

We have now split the extension completely.
To show that χφ is independent of Q is easy. Suppose Q1, Q2 together with ζ1, ζ2 are two

possible choices. Since we may replace the pair Q1, Q2 by Q3, Q1 or Q3, Q2 with

Q3 =
{
(p1, p2)

∣∣ ζ1(p1) = ζ2(p2)
}

there is no harm in supposing that Q1 is given by a surjective homomorphism ξ : Q1 → Q2.
When this is so, Lemma 2.8 shows immediately that Q1 and Q2 give the same quasi-character
χφ.

The following fact follows easily from the construction and Lemma 2.9.

Lemma 2.11. The map φ→ χφ respects restriction of scalars.

Let Ẑ be the center of Gô. The action of WF on Ẑ is well-defined and so is the group

H1(WF , Ẑ), where it is understood that only continuous cocycles are to be considered. If

φ ∈ Φ(G) and α ∈ H1(WF , Ẑ) define αφ by

αφ(w) = α(w)φ(w).

As is implicit in the notation and is easily verified the class of αφ depends only on that of α

and φ. Thus the group H1(WF , Ẑ) acts on Φ(G). We should also be able to make it act in
Π(G). To do this we associate to α a continuous homomorphism πα of G(F ) into C×.

Let Gder be the derived group of G, Gsc the simply connected covering group of Gder, and
Gcorad the quotient of G by Gder. We have

Gsc

1 Gder G Gcorad 1

.

Passing to associate groups we have
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Gô
sc

1 Gô
der Gô Gô

corad 1

Suppose we have a diagram

1

B

1 Gsc G̃ D 1

G

1

in which the vertical and horizontal lines are exact, B and D are tori, and G̃(F ) → G(F ) is
surjective. For example if R is the kernel of Gsc → G and

K = Hom
(
R⊗F F ,GL(1)

)
we could take a free g(F/F ) module P that maps surjectively to K, set L̃ equal to the group

of pairs (λ, p), λ ∈ Lsc, p ∈ P , with the same image in K, and ∆̃ equal to
{
(α, 0)

∣∣ α ∈ ∆
}
,

and define G by means of L̃, ∆̃, and the twisting defining G. Passing to associate groups
yields

1

Bô

1 Gô
sc G̃ô Dô 1

Gô Ẑ

1

This diagram gives Ẑ as the kernel of Dô → Bô and hence a map of H1(WF , Ẑ) into the kernel
of H1(WF , D

ô) → H1(WF , B
ô). By Lemma 2.8 every element β of H1(WF , D

ô) = Φ(D)

yields a quasi-character of D(F ) and hence of G̃(F ). It is trivial on B(F ) and hence gives a
quasi-character of G(F ) if and only if β becomes zero in H1(WF , B

ô). In particular every

element α of H1(WF , Ẑ) yields a quasi-character πα of G(F ). If G̃1 and G̃2 are possible
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choices for G̃ so is G̃1 ×G G̃2. Using this, one shows easily that πα does not depend on the

choice of G̃.

Lemma 2.12. The map α → πα respects restriction of scalars. If φ′ = αφ then

χ′
φ(z) = πα(z)χφ(z), z ∈ Z(F ).

The first assertion follows easily from Lemma 2.9 and the construction. Suppose G1 is the
group for which we are trying to prove the second assertion. Let G be quasi-split and let
ψ be an isomorphism of G1 and G such that ψ−1τ(ψ) is inner for τ ∈ g(F/F ). We may so

construct G̃1 and G̃ that ψ lifts to ψ̃ : G̃1 → G̃. D1 and D will be the same and

G̃1 D1

G̃ D

ψ̃

will be commutative. Since ψ restricted to ZG1 is defined over F and yields an isomorphism
of ZG1 with ZG2 and since

χφ
(
ψ(z)

)
= χφ(z)

if φ ∈ Φ(G1) = Φ(G), we need only prove the lemma for G.

If T̃ and T are corresponding Cartan subgroups of G̃ and G, defined over F and lying in
Borel subgroups over F , then

T̃ ô Dô

T ô Ẑ

is commutative. Thus on T (F ), πα is the quasi-character defined by the image of α in

H1(WF , T
ô) = Φ(T ).

Although we do not need to know it, it could be observed that T̃ (F ) → D(F ) is surjective

because H1
(
g(F/F ), Tsc

)
= 0. Thus πα is determined by its values on T (F ).

Now consider the objects used to define χφ. We had a surjection Φ(G) → Φ(G). If φ is

the image of φ then χφ is determined by the image of φ in Φ(G
∧
rad). But G

ô

rad = T
ô

rad and, by
Lemma 2.10, Φ(T ) → Φ(T rad) is surjective. Thus for φ ∈ Φ(G) there is an η that lies in the
image of Φ(T ) → Φ(G) and lifts to η in the image of Φ(T ) → Φ(G) such that η and φ have the
same image in Φ(Grad). Then χφ = χη. If η is the image of β in Φ(T ) then, by construction
almost, χη is the restriction to ZG(F ) of the quasi-character of T (F ) associated to β. Since

Z
∧
, the center of G

ô
, is the inverse image of Ẑ in G

o
we may choose η′ corresponding to φ′ to

be the image of γβ, if γ is the image of α ∈ H1(WF , Ẑ), in H
1(WF , T

ô) = Φ(T ). The lemma
now follows.
Notice that if ψ : H → G is defined over F and has an abelian kernel and an abelian

cokernel then we can associate to it a homomorphism ψ̂ : Ĝ→ Ĥ.
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3. The definitions

The group G(F ) is a Lie group. Let g be the tensor product of its Lie algebra with C, let A
be the universal enveloping algebra of g and let Z be its center. A (continuous) representation
π of G(F ) on a Banach space V will be called irreducible if V contains no nontrivial closed
invariant subspaces; it will be called quasi-simple if the elements of Z act on the infinitely
differentiable vectors as scalars.
Let π be irreducible and quasi-simple. Let K be a maximal compact subgroup of G(F )

and let µ and ν be irreducible representations of K on the finite-dimensional spaces X and Y .
Suppose we have K-homomorphisms ζ and η of X and Y into V and its dual V ∗ respectively.
Suppose moreover that ζ(x) is infinitely differentiable for all x ∈ X. Let Ψ = Ψζ,η be the
function on G(F ) with values in X∗ ⊗ Y ∗ defined by

Ψ(g) : (x, y) →
〈
π(g)ζ(x), η(y)

〉
.

Then Ψ is a spherical function on G(F ) of type µ∗, ν∗, if µ∗ and ν∗ are contragredient to µ,
ν. If we regard the elements of A as left-invariant differential operators on G(F ) then

ZΦ = κ(Z)Ψ, Z ∈ A,

if π(Z) = κ(Z)I. Because π is quasi-simple and irreducible, π(z) is a scalar for z ∈ ZG(F )
and

Ψ(gz) = π(z)Ψ(g).

If Go(F ) is the connected component of G(F ) then

G(F ) = KGo(F ) = KZG(F )G
o
der(F )

(cf. [11]); so Ψ is determined by its restriction to Go
der(F ). Notice also that if v ∈ V , v∗ ∈ V ∗,

and
〈
π(g)v, v∗

〉
= 0 for all g then either v or v∗ is zero.

It follows from these considerations and Proposition 9.1.3.1 of [16] that

dim HomK(X, V ) <∞,

so that any representation of K occurs with finite multiplicity in V . Let VK be the space of
K-finite vectors. Every vector in VK is infinitely differentiable so that both A and K operate
on VK . The representations π and π′ on V and V ′ are said to be infinitesimally equivalent
if the representations of the pair A, K on V ′

K are algebraically equivalent. Since any two
maximal compact subgroups of G(F ) are conjugate, this notion does not depend on the choice
of K. Π(G) will be the set of infinitesimal equivalence classes of irreducible quasi-simple
representations of G(F ). We shall usually not distinguish between a representation and its
class.
To every φ in Φ(G) we are going to associate a finite but nonempty set Πφ in Π(G) such

that the following conditions are valid.

(i) If φ ̸= φ′ then Πφ and Π′
φ are disjoint.

(ii) If π ∈ Πφ then
π(z) = χφ(z)I, z ∈ ZG(F ).

(iii) If φ′ = αφ with α ∈ H1(WF , Ẑ) then

Π′
φ =

{
πα ⊗ π

∣∣ π ∈ Πφ

}
.
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(iv) If η : H → G has abelian kernel and cokernel, if φ ∈ Φ(G) and φ′ = η̂(φ), then
the pullback of any π ∈ Πφ to H(F ) is the direct sum of finitely many irreducible,
quasi-simple representations, all of which lie in Πφ′ .

(v) If φ ∈ Φ(G) and one element of Πφ is square integrable modulo ZG(F ) then all
elements are. This happens if and only if φ(WF ) is contained in no proper parabolic

subgroup of Ĝ.
We remark that the representation π is said to be square integrable modulo the

center if π = ζ ⊗ π′ where ζ is one-dimensional and where π′, which operates on V ′,

is such that
∣∣∣f ′(π′(g)v′

)∣∣∣2 is an integrable function on ZG(F )\G(F ) for any K-finite

v′ ∈ V ′ and any K-finite linear form f ′ on V ′.
(vi) If φ ∈ Φ(G) is tempered then all elements are. With respect to a distinguished

splitting, write φ(w) = a(w) × w. The elements of Πφ are tempered if and only if{
a(w)

∣∣ w ∈ WF

}
is relatively compact in Ĝ.

π, acting on V , is said to be tempered if f
(
π(g)v

)
satisfies the weak inequality for any

K-finite v ∈ V and any K-finite linear form f on V .
Since we can always restrict scalars, we may as well take F to be R. Let φ ∈ Φ(G). Let A

be the Zariski-closure of the image ofWR under the composition of φ with the homomorphism

of Ĝ into the group of automorphism of ĝ, the Lie algebra of Gô. Let B be the Zariski-closure
of the image of C×. Since the elements in the image of C× commute and are, by assumption,
semisimple they can be simultaneously diagonalized. Thus every element of B is semisimple.
The same is true for A, because A2 ⊆ B. Since A is clearly supersolvable we may apply
Theorem 5.16 of [13] to see that φ(WR) normalizes a Cartan subgroup S ô in Gô. Since
the group of automorphisms of S ô is discrete, φ(C×) must centralize S ô. Consequently

g(C/R) = C×\WR acts on S ô, on M̂ = Hom(S ô,C×), on M = Hom(M̂,Z), and on M ⊗R.

Suppose g(C/R) fixes a point λ in M ⊗R. If P̂ is the parabolic subgroup of Ĝ defined by

the condition that α̂ is a root of S ô in P ô if and only if ⟨λ, α̂⟩ ⩾ 0 then φ(WR) lies in P̂ .
We shall first define Πφ under the assumption that φ(WR) is contained in no proper

parabolic subgroup of Ĝ. Then if λ is fixed by g(C/R)

⟨λ, α̂⟩ = 0

for all α̂.

Lemma 3.1. If Φ(G) contains a φ with the property that φ(WR) is contained in no proper

parabolic subgroup of Ĝ then Gder has a Cartan subgroup Tder with Tder(F ) compact.

We have a map Ĝ→ Ĝder that yields Φ(G) → Φ(Gder). Replacing φ by its image in Φ(Gder),

we may suppose that G = Gder. Then M̂ ⊗R is spanned by the roots of α̂. Consequently
the nontrivial element σ in g(C/R) fixes no element of M ⊗R but 0 and acts as −1.

Let ψ be an isomorphism of G with a quasi-split group G′. Choose a Borel subgroup B′ of

G′ over R and a Cartan subgroup T ′ of B′. Use G′, B′, and T ′ to build Ĝ, Bô and T ô as a
concrete realization of the associate group. Replacing φ by another homomorphism in the

same class, we may suppose that S ô = T ô, so that M̂ = L̂. There are, however, two actions

of σ on L̂, the one built into the construction of Ĝ, which we denote by λ̂→ σλ̂, and the one

defined by φ, which we denote by λ̂→ σλ̂. There is an ω̂ in Ω̂ such that

σλ̂ = ω̂σλ̂.
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Since σ acts as −1, σ commutes with σ and ω̂. Let ω be the element of Ω′, the Weyl group
of T ′, corresponding to ω̂.

Because any two quasi-split groups differing by an inner twisting are isomorphic, we may
suppose that σ acts on G′(C) in such a way that

σλ̂(στ) = σ
(
λ̂(t)

)
, t ∈ T ′(C),

and
σ(X ′

α) = X ′
σα, α ∈ ∆′.

Here the X ′
α are appropriately chosen root vectors in the Lie algebra of G. Define X−α so that

if Hα = [Xα, X−α] then α(Hα) = 2. The algebraic automorphism of G′ defined by t→ ω(t),
Xα → Xω(α) commutes with the action of σ and its square is 1. It is of course inner. We use
the cocycle a1 = 1, ασ = ω to twist G′ and obtain G′′. G′′ contains the Cartan subgroup T ′′

obtained by twisting T ′. Since

λ(ωσt) = σ
(
λ(t)

)−1

T ′′(R) is compact.
There is an isomorphism η of G′′ with G such that ξ = η−1σ(η) is inner. We may suppose

that η(T ′′) = T is a Cartan subgroup of G over R for which the compact part of T (R) has
maximal dimension. What we have to do to show that T (R) is compact is to show that ξ,
which normalizes T ′′, actually centralizes T ′′, for then η : T ′′ → T is defined over R. We use
an idea that can be found in many places. If t ∈ T ′′(C) and λ is a rational character of T ′′

then λ
(
σ(t)

)
= σ

(
λ(t)−1

)
. Thus

λ
(
σξ(t)

)
= σ

(
λ(ξt)−1

)
= σ

(
ξ−1λ(t)−1

)
= ξ−1λ

(
σ(t)

)
= λ

(
ξσ(t)

)
and ξσ = σξ. Since ξσ = 1, ξ2 = 1.

Suppose α is a root of T ′′ and ξα = −α. Consider the subgroup H ′′ of G′′ that is generated
by T ′′(C) and the one-parameter subgroups exp zX ′′

α, exp zX
′′
−α, z ∈ C. H ′′ is invariant under

σ and ξ and H = η(H ′′) is defined over R. I claim that Hsc is isomorphic to SL(2) over R
and that Tsc, the inverse image of T in Hsc is the Cartan subgroup whose set of real points
is noncompact. This clearly contradicts the definition of T and shows that ξα ̸= −α for
all α. To prove the assertion about Hsc, we start from the observation that we may choose
X ′′
α and X ′′

−α so that [X ′′
α, X

′′
−α] = −H ′′

α with α(H ′′
α) = 2 and so that σ(X ′′

α) = X ′′
−α. Then

σ(X ′′
−α) = X ′′

α. Let ξ(X
′′
α) = aX ′′

−α, ξ(X
′′
−α) = bX ′′

α. Then

[aX ′′
−α, bX

′′
α] = −H ′′

α;

so ab = 1. However the relation ξσ(ξ) = 1 shows that aa = bb = 1. Recall that, on C, σ is
complex conjugation. Choose s in T ′′(C) such that

α(s)−1α(s) = a.

Replacing η by η ◦ ad s, we suppose that a = b = 1. Set

Hα = η(H ′′
α), Xα = η(X ′′

α), X−α = −η(X ′′
α).

Then
σ(Xα) = η

(
ξσ(X ′′

α)
)
= η(X ′′

α) = Xα,

σ(X−α) = X−α,

σ(Hα) = Hα.
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Thus Hα, Xα, X−α span a Lie algebra that, together with the action of σ on it, is isomorphic
to the Lie algebra of SL(2). Since Hα lies in the Lie algebra of T , this gives the required
assertion.

Let M ′′ be the lattice of rational characters of T ′′. Since α+ ξα is different from 0 for all
α there is a point H in the dual of M ′′ ⊗R such that

⟨α + ξα,H⟩ = ⟨α,H + ξH⟩ ≠ 0

for all α. But ξ fixes H + ξH and therefore fixes the chamber in which it lies. Since ξ is inner
this is possible only if ξ centralizes T ′′.
The lemma proved, we return to the original G and φ. Although it is not important,

we choose for the sake of definiteness an isomorphism ψ of G with a quasi-split group G′,
with ψ−1σ(ψ) inner, choose B′ and T ′, construct Gô, Bô, T ô accordingly, and take the

associate group to be Ĝ = Gô ×WR. We also suppose that φ(WR) normalizes T ô. Write
φ(w) = a(w)× w. If z ∈ C× then a(z) ∈ T ô. Let

λ̂
(
a(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩.

If λ̂ → σλ̂ denotes the action of σ on L̂ defined by φ then ν = σµ, µ = σν. Also if
a = a(1× σ),

λ̂
(
aσ(a)

)
= λ̂

(
a(−1)

)
= (−1)⟨µ−ν,λ̂⟩.

If ⟨α, λ̂⟩ = 0 for all roots α then λ̂ is a rational character of Gô and we may define λ̂(a).

Notice in particular that ⟨α, λ̂⟩ = 0 for all roots α if λ̂ = σλ̂. The next lemma is critical.

Lemma 3.2. Suppose h = a× w, with w = 1× σ, lies in Ĝ, normalizes T ô, and hα̂ = −α̂
for every root α̂. Then aσ(a) ∈ T ô and, if δ is one-half the sum of the positive roots with
respect to any order,

λ̂
(
aσ(a)

)
= (−1)⟨2δ,λ̂⟩µ̂(a) = (−1)⟨δ−hδ,λ̂⟩µ̂(a)

if µ̂ = λ̂+ hλ̂.

Of course an h satisfying the conditions of the lemma does not always exist. When it does
a is any element of the normalizer of T ô in Gô that takes positive roots to negative roots.
That aσ(a) ∈ T ô and that 2δ = δ − hδ is clear. If s ∈ T ô and h is replaced by sh then

aσ(a) is replaced by
sh(s)aσ(a)

where h(s) = hsh−1. Since µ̂(a) becomes

µ̂(sa) = λ̂(s)hλ̂(s)µ̂(a)

and
λ̂
(
sh(s)

)
= λ̂(s)hλ̂(s)

we are free to replace h by sh. Thus we may suppose that a ∈ Gô
ss or, more simply, that

G, and hence Gô, is semisimple. Since it only makes the matter more difficult we may then
replace G By Gad and Gô by Gô

ad, which is simply connected. Then the whole situation
factors and we may finally assume that Gô is simple and simply connected.
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Suppose β̂ is the largest root with respect to the given order [2]. Then σ(Xβ̂) = ηXβ̂ with

η = ±1. If σ acts trivially on Gô then η = 1. In general I claim that if

β̂ =
∑
α̂∈∆̂

n(α̂)α̂

is the expression of β̂ as a sum of simple roots and if l is one-half the sum of those n(α̂) for

which α̂ ̸= σα̂ and (α̂, σα̂) ̸= 0 then η = (−1)l. This statement is not true for β̂ alone but for
any positive root

γ̂ =
∑

m(α̂)α̂

fixed by σ. Of course n(α̂) is to be replaced by m(α̂) and η by η(γ̂), where

σ(Xγ̂) = η(γ̂)Xγ̂.

We prove it by induction on m =
∑
m(α̂).

If m = 1 then l = 0; but by construction η(γ̂) = 1. Suppose m > 1, so that γ̂ is not simple.
Choose a simple root α̂1 such that (γ̂, α̂1) > 0. If α̂2 = σα̂1, then (γ̂, α̂2) = (γ̂, α̂1). If α̂1 = α̂2

then γ̂ = γ̂ − α̂1 is also a root and

Xγ̂ = [Xα̂1 , Xγ̂];

so η(γ̂) = η(γ̂). Moreover l(γ̂) = l(γ̂). If α̂1 ̸= α̂2 and (α̂1, α̂2) = 0 then γ̂ = γ̂ − α̂1 − α̂2 is a

root. The integers l(γ̂) and l(γ̂) are equal. Since

Xγ̂ =
[
Xα̂1 , [Xα̂2 , Xγ̂]

]
=
[
Xα̂2 , [Xα̂1 , Xγ̂]

]
,

η(γ̂) = η(γ̂). If (α̂1, α̂2) ̸= 0 then α̂ = α̂1 + α̂2 is a root and

Xα̂ = [Xα̂1 , Xα̂2 ];

so η(α̂) = −1. If γ̂ = α̂ we are done. Otherwise γ̂ = γ̂ − α̂ is a root, l(γ̂) = l(γ̂) + 1, and

η(γ̂) = −η(γ̂) because
Xγ̂ = [Xα̂, Xγ̂].

Since (β̂, α̂) ⩾ 0 for all positive roots, every root perpendicular to β̂ is a linear combination
of simple roots perpendicular to it. Let H ô be the connected subgroup of Gô corresponding to

the Lie algebra generated by
{
Xα̂

∣∣∣ (α̂, β̂) = 0
}
. Ĥ = H ô×WR ⊆ Ĝ is also an associate group

and we may assume the lemma has been proved for it. Let J ô be the group corresponding to
the Lie algebra generated by Xβ̂, X−β̂. J

ô is also invariant under WR. The groups H ô and

J ô commute with each other. Let a1 be an element of H ô normalizing T ô and taking positive

roots in H ô to negative roots. Let a2 be an element of J ô normalizing T ô and taking β̂ to

−β̂. a1 fixes β̂. Thus if α̂ is positive and (α̂, β̂) > 0, then (a1α̂, β̂) > 0 and a1α̂ is positive.

But (a2α̂, β̂) = −(α̂, β̂) < 0 so a2α̂ is negative. The product a1a2 takes every positive root to

a negative root and we may take a = a1a2. Since a2 centralizes H ô, a1 × (1× σ) in Ĥ takes
every positive root to its negative.

By induction

λ̂
(
a1σ(a1)

)
= (−1)ΣΓ

(α,λ̂)
0
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if Γ0 =
{
α > 0

∣∣∣ ⟨α, β̂⟩ = 0
}
. J ô is covered by SL(2, C). We may suppose that(
0 1
0 0

)
→ Xβ̂,

(
0 0
1 0

)
→ X−β̂.

Then the action of σ lifts to conjugation by(
1 0

0 (−1)l

)
.

Since we may take a2 to be the image of (
0 1

−1 0

)
a2σ(a2) is the image of (

(−1)l+1 0

0 (−1)l+1

)
.

Thus
λ̂
(
a2σ(a2)

)
= (−1)(l+1)⟨β,λ̂⟩.

To prove the lemma we have to show that

l⟨β, λ̂⟩ ≡
∑
α>0

⟨α,β̂⟩≠0
α ̸=β

⟨α, λ̂⟩ (mod 2).

α > 0, ⟨α, β̂⟩ ≠ 0, and if α ̸= β then β⟨α, β̂⟩ − α is also a positive root and is different from

α. Thus the right side is l′⟨β, λ̂⟩ if

l′ =
1

2

∑
α>0
α ̸=β

⟨α,β̂⟩≠0

⟨α, β̂⟩ = 1

2

∑
α>0

⟨α, β̂⟩

− 1 = ⟨δ, β̂⟩ − 1 =
∑

n(α̂)− 1.

It would be enough to show that l = l′ (mod 2).
To finish up we make use of some standard facts [2]. The order h of a Coxeter element is

l′ + 1. If σ acts trivially then l = 0. But if σ acts trivially then a itself must take every root
to its negative. This forces l′ + 2 to be even ([2], p. 173). If σ does not act trivially the roots

are all of the same length. There is an α in ∆ such that ⟨α, β̂⟩ = ⟨β, α̂⟩ = 1 ([2], p. 165).
Since ⟨2δ, α̂⟩ = 2

α̂
(
aσ(a)

)
= (−1)l−l

′
.

However h acts on the Lie algebra of Gô, and

h(Xα̂) = cX−α̂, h(X−α̂) = dXα̂, h
(
[Xα̂, X−α̂]

)
= −[Xα̂, X−α̂].

This forces cd to be 1; so
α̂
(
aσ(a)

)
Xα̂ = h2(Xα̂) = Xα̂

and l − l′ is even.
There is another lemma to be verified before we can define Πφ.
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Lemma 3.3. Suppose φ ∈ Φ(G), φ(WR) is contained in no proper parabolic subgroup of Ĝ,
φ(WR) normalizes T ô, and

λ̂
(
φ(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩, z ∈ C×.

Then ⟨µ, α̂⟩ is different from 0 for all roots α̂. Moreover φ(WR) normalizes no other Cartan
subgroup of Gô.

Suppose ⟨µ, α̂⟩ = 0. Xα̂ is fixed by φ(z), z ∈ C×. Let h = φ(1× σ) and set

U = Xα̂ + h(Xα̂).

Then hU = U . Let h be the space of vectors H in the Lie algebra of T ô for which α̂(H) = 0.
Then h + CU is the Lie algebra of a Cartan subgroup of Gô normalized by φ(WR). It is
however, clear that the action of σ on the roots does not take every root to its negative. This
we know is incompatible with the assumption that φ(WR) is contained in no proper parabolic

subgroup of Ĝ. Thus ⟨µ, α̂⟩ is never 0 and the centralizer of φ(C×) in the Lie algebra of Gô

is exactly the Lie algebra of T ô. The second assertion of the lemma follows.
If n ∈ Gô and

φ′ : w → nφ(w)n−1

satisfies the conditions of the lemma, with µ, ν replaced by µ′, ν ′, then n must normalize T ô

and µ′ = nµ, ν ′ = nν. Consequently the orbit of µ under the Weyl group is determined by
the class of φ alone. Since µ− ν ∈ L and

⟨µ− ν, α̂⟩ = ⟨µ− σµ, α̂⟩ = 2⟨µ, α̂⟩
the number ⟨µ, α̂⟩ is real for all α̂. Since it is different from 0, we may choose φ in its class so

that ⟨µ, α̂⟩ > 0 for all α̂ ∈ ∆̂. This done, the only way we may modify φ is to replace it by

φ′ : w → sφ(w)s−1

with s ∈ T ô.
We have observed that if ⟨α, λ̂⟩ = 0 for all roots α, we may define λ̂(a), where φ(1× σ) =

a× (1× σ). Choose λ0 ∈ L⊗C such that

λ̂(a) = e2πi⟨λ0,λ̂⟩

for such λ̂. λ0 is determined modulo

L+
∑
α∈∆

Cα + {λ− σλ | λ ∈ L⊗C}

or, since α = (α− σα)/2,
L+ {λ− σλ | λ ∈ L⊗C}.

We know that ⟨µ, α̂⟩ is real and different from 0 for all α. Let

δ =
1

2

∑
⟨µ,α̂⟩>0

α

and set µ1 = µ− δ, ν1 = σµ1 = ν + δ. Then µ1 − ν1 = µ− ν − 2δ ∈ L, because µ− ν ∈ L. If

λ̂ ∈ L̂ then, by Lemma 3.2,

eπi⟨µ−ν,λ̂⟩ = λ̂
(
aσ(a)

)
= eπi⟨2δ,λ̂⟩+⟨λ0+σλ0,λ̂⟩;
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so

λ0 + σλ0 ≡
µ1 − ν

2
(mod L).

Thus

⟨µ, α̂⟩ = 1

2
⟨µ− σµ, α̂⟩ = 1

2
⟨µ1 − ν1, α̂⟩+ ⟨δ, α̂⟩

≡ ⟨λ0 + σλ0, α̂⟩+ ⟨δ, α̂⟩ = 1

modulo Z and ⟨µ, α̂⟩ is integral. If ⟨µ, α̂⟩ > 0 then

⟨µ1, α̂⟩ = ⟨µ, α̂⟩ − ⟨δ, α̂⟩ = ⟨µ, α̂⟩ − 1 ⩾ 0.

Let S be a Cartan subgroup of G over F for which S(R) ∩Gder(R) is compact. We may
choose the isomorphism ψ of G with G′ so that ψ(S) = T ′. The isomorphism allows us to
identify L, the lattice of rational characters of T ′, with the lattice of rational characters of S.
Then the semidirect product T ô × g(C/R) with σ acting on T ô as σ becomes the associate
group of S. As in the proof of Lemma 2.8, µ1, ν1, and λ0 then define a homomorphism χ of
S(R) into C×. However since ψ is not uniquely determined, µ1, ν1 and λ0 are only determined
modulo the action of the Weyl group. Although the elements of the Weyl group of S may be
represented by elements of G(C) their action on S is defined over R. If we replace µ1, ν1 and
λ0 by ωµ1, ων1 = σωµ1, and ωλ0, which is congruent to λ0 modulo {λ− σλ | λ ∈ L⊗C},
then χ is replaced by χ′ : t→ χ

(
ω−1(t)

)
. Let Xφ be the set of these quasi-characters χ. Xφ

is determined by the class of φ alone.
To verify that the sets Πφ, which we shall soon define, are disjoint and exhaust the classes

of representations of G(R) that are square-integrable modulo the center, we shall need the
following lemma.

Lemma 3.4. Suppose G has a Cartan subgroup S over R such that S(R) ∩ Gder(R) is
compact and X is an orbit of the Weyl group in the set of quasi-characters of S(R). Then
there is a unique φ ∈ Φ(G) such that φ(WR) is contained in no proper parabolic subgroup of

Ĝ and such that X = Xφ.

We have first to observe that an h in Ĝ that satisfies the conditions of Lemma 3.2 exists.
Let ψ be an isomorphism of G with a quasi-split group G′ such that ψ−1σ(ψ) is inner. If B′

and T ′ are chosen as usual, we may suppose that ψ(S) = T ′. We have to show that there is
an element ω̂ of the Weyl group of T ô such that ω̂σα̂ = −α̂ for all α̂. This is equivalent to
showing that there is an element ω of the Weyl group of T ′ such that ωσα = −α for all α. ω
and ω̂ will then be corresponding elements. Let ψσ(ψ−1) = adn, with n in the normalizer of
T ′, then

−ψ−1(α) = σ
(
ψ−1(α)

)
= ψ−1

(
ψσ(ψ−1)σα

)
= ψ−1(nσα)

and nσα = −α. We take ω to be the element of the Weyl group represented by n.

Let σ be the action on T ô, L̂, and L determined by such an h. We regard T ô, with the
action σ, as the connected component of the associate group of S. If χ ∈ X choose µ1, ν1
and λ0 so that

χ(t) = e⟨λ0,H−σH⟩+⟨µ1/2,H+σH⟩

if t = eH lies in S(R). Given X, µ1, ν1, and λ0 are determined modulo the action of the
Weyl group. Also µ1 − ν1 ∈ L and, since σα̂ = −α̂,

⟨µ1 − ν1, α̂⟩ = ⟨µ1 − σµ1, α̂⟩ = 2⟨µ1, α̂⟩
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is real. Choose an order on the roots so that ⟨µ1, α̂⟩ ⩾ 0 if α̂ is positive; let δ be one-half the
sum of the positive roots α with respect to this order, and set µ = µ1 + δ, ν = σµ. Since the
δ which arise in this way differ by an element of the Weyl group that fixes µ1, the orbit of
µ, ν, and λ0 under the Weyl group is determined by Xφ alone. The various µ are certainly
nonsingular. To be definite choose the unique one that is positive with respect to Bô.

If φ is normalized in the way described earlier, it is clear that X = Xφ only if

λ̂
(
φ(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩, z ∈ C×.

Fix an h = b× (1× σ) satisfying the conditions of Lemma 3.2 and choose a representative λ0.
If X = Xφ and φ gives rise to this particular λ0 then φ(1× σ) = a × (1× σ) with a = sb,
s ∈ T ô, and

e2πi⟨λ0,λ̂⟩ = λ̂(a) = λ̂(s)λ̂(b)

if ⟨α, λ̂⟩ = 0 for all α. An s in T ô satisfying this condition always exists. We will be able to
extend φ to WR if

λ̂
(
aσ(a)

)
= eπi⟨µ−ν,λ̂⟩

for all λ̂. By Lemma 3.2 the left side is

e2πi⟨δ,λ̂⟩+2πi⟨λ0+σλ0,λ̂⟩.

Since
µ1 − ν1

2
≡ λ0 + σλ0 (mod L)

it equals the right side. As for the uniqueness, if λ̂(s) = 1 whenever ⟨α, λ̂⟩ = 0 then, in

particular, λ̂(s) = 1 when σλ̂ = λ̂ and s = tσ(t−1) with t ∈ T ô. Then sh = tht−1. Choosing
a different representative for λ0 forces the same kind of change in s; so the class of φ is
determined uniquely by X.

Suppose φ(WR) is contained in a parabolic subgroup P̂ of Ĝ. Then φ(WR) is contained

in a Levi factor M̂ of P̂ and normalizes a Cartan subgroup of M ô. But µ is regular; so T ô

is the only Cartan subgroup centralized by φ(C×) and therefore the only Cartan subgroup

normalized by φ(WR). P̂ must then contain T ô. Since φ(1×σ) takes each root to its negative,

P̂ is Ĝ.
Suppose S and S ′ are two Cartan subgroups of G such that S(R) ∩Gder(R) and S ′(R) ∩

Gder(R) are compact. There is a g ∈ G(C) such that ad g(S) = S ′. The restriction of ad g to
S is defined over R and

Xφ =
{
χ ◦ ad g

∣∣∣ χ ∈ X ′
φ

}
.

If g ∈ G(R) then g = g1g2 where g1 lies in Go
der(R) and g2 lies in the normalizer of S. If

Ω is the Weyl group of S and Ω1 consists of those elements in Ω with a representative in
Go

der(R), the connected component of Gder(R), and ω is the image of g2 in Ω then g → Ω1ω
is a well-defined map of G(R) into Ω1/Ω. The inverse image of Ω1 in G(R) is

G0(R) = S(R)Go
der(R) = S(R)Go(R) = ZG(R)Go

der(R).

If χ ∈ Xφ and µ1 is defined above, choose an order on the roots so that ⟨µ1, α̂⟩ ⩾ 0 if α is
positive and let δ be one-half the sum of the roots positive with respect to this order. By
Harish-Chandra’s theory of the discrete series there exists for each such pair χ, δ a unique
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irreducible representation π0(χ, δ) of G0(R), square-integrable modulo the center, whose
character on the set of regular elements in S(R) is

ε(G)
∑
ω∈Ω1

sgnωχ(ωs)eδ(ωH−H)

∆(s)
.

Here s = eH is a regular element in S(R) and

∆(s) =
∏

⟨δ,α̂⟩>0

(1− e−α(H)).

ε(G), which is ±1, depends on G alone.
It is clear that, if χ ∈ Xφ, χ

′ ∈ Xφ′ , the representations π0(χ, δ) and π0(χ
′, δ′) are equivalent

if and only if φ = φ′ and there is an ω ∈ Ω1 such that δ = ωδ′ and

χ′(s) = χ(ωs)

for all s ∈ S(R). If g ∈ G(R) has image Ω1ω in Ω1\Ω, π0 = π0(χ, δ), and

π′
0(h) = π0(ghg

−1), h ∈ G0(R),

then π′
0 = π0(χ

′, δ′) with ωδ′ = δ and χ′(s) = χ(ωs). Thus the representations

π(χ, δ) = Ind
(
G(R), G0(R), π0(χ, δ)

)
are irreducible. We set

Πφ =
{
π(χ, δ)

∣∣ χ ∈ Xφ

}
.

If the image of G(R) in Ω1\Ω has e elements, then Πφ contains

[Ω : Ω1]/e

classes.
Before explaining why conditions (i) to (vi) are, insofar as they apply to the Πφ already

defined, fulfilled, we verify a simple lemma.

Lemma 3.5. The restriction of an irreducible quasi-simple representation π of G(R) to
Gσ

der(R) is infinitesimally equivalent to the direct sum of finitely many irreducible representa-
tions of Go

der(R).

Let π act on V . Let K be a maximal compact subgroup of G(R) and let Ko be K∩Go
der(R).

Since π(z) is a scalar for z ∈ ZG(R) and since[
K : K0

(
K ∩ ZG(R)

)]
<∞

every irreducible representation of K0 occurs with finite multiplicity in the restriction of π to
K0. Let ρ be an irreducible representation which actually occurs and g1, . . . , gr be a complete
set of representatives for the cosets of ZG(R)Go

der(R) in G(R). If ξ is the character of ρ let
Uj be the range of the projection

Ej =

∫
K0

ξ(k)π(g−1
j kgj) dk.

Uj is finite-dimensional. Let E be ∫
K0

ξ(k)π(k) dk.
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If U is a closed nonzero subspace of V invariant under Go
der(R) then U ∩

(∑
j Uj

)
is not

zero. If it were
0 = π(gj)EjU = Eπ(gj)U

for each j. But V is contained in the closure of∑
π(gj)U

and EV ̸= 0. As a consequence, among the closed nonzero subspaces of V invariant under
Go

der(R) there is at least one minimal one W . The representation of Go
der(R) on W is

irreducible.
Choose a maximal collection h1, . . . , hl from {g1, . . . , gr} such that

l∑
i=1

π(hi)W

is direct. Each π(h1)W is invariant and irreducible under Go
der(R). Moreover

l⊕
i=1

π(hi)W

is dense in V and therefore contains all K-finite vectors. The lemma follows.
If Ω2(G) is the group of elements in the Weyl group of S that can be realized in G(R)

then the character of π(χ, δ), which certainly exists as a distribution, is given on the regular
elements of S(R) by the function

ε(G)
∑
Ω2(G)

sgnωχ(ωs)eδ(ωH−H)

∆(s)
.

It follows that the sets Πφ that have been defined so far are disjoint.
Suppose π is an irreducible quasi-simple representation of G(R) on V that is square-

integrable modulo the center. By the previous lemma the restriction of π to G0(R) is the
direct sum of finitely many irreducible quasi-simple representations, each of which is clearly
square-integrable modulo the center. Let π0 be one of them and let π0 act on V0 ⊆ V . By
the theory of the discrete series, G has a Cartan subgroup S over R, so that S(R) ∩Gder(R)
is compact and there is a χ and a δ such that π0 is π0(χ, δ). By Lemma 3.4 there is a φ such
that χ ∈ Xφ. If g1, . . . , gr are a set of representatives for G0(R)\G(R) then

V ⊇
r⊕
i=1

π(g−1
i )V0

because the representations h→ π(gihg
−1
i ) are inequivalent. If gjg = hjgi and

v =
⊕

π(g−1
i )vi

then
π(g)v =

⊕
π(g−1

j )v′j

with v′j = π(hj)vi. Mapping v to the function on G(R) whose value at hgi, h ∈ G0(R) is
π(h)vi we obtain an infinitesimal equivalence of π with π(χ, δ). This shows at least that (v)
will be a consequence of (i) and that the union of the sets Πφ will contain all classes that are
square-integrable modulo the center.
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Suppose η : H → G has abelian kernel and cokernel and φ′ = η̂(φ) where φ ∈ Φ(G) and

φ(WR) is contained in no proper parabolic subgroup of Ĝ. Then φ′(WR) is contained in no

proper parabolic subgroup of Ĥ. It follows from the preceding lemma that the restriction of
any irreducible quasi-simple representations π of G(R) to H(R) is, infinitesimally, the direct
sum

⊕
πi of finitely many irreducible quasi-simple representations of H(R), for the map

Ho
der(R) → G0

der(R) is surjective. If π is square-integrable modulo the center so is each πi.
We consider the restriction of π(χ, δ). π(χ, δ) restricted to G0(R) is the sum⊕

Ω1\Ω2(G)

π0(ω
−1χ, ω−1δ)

and π0(ω
−1χ, ω−1δ) restricted to H0(R) is irreducible. It is clearly equal to π0(ω

−1χ′, ω−1δ′)
if χ′ is the quasi-character s → χ

(
η(s)

)
on the inverse image of S(R) in H(R) and if δ′ is

the pullback of δ. It is also easy to see that Xφ′ =
{
χ′
∣∣ χ ∈ χφ

}
. Thus π(χ, δ) restricted to

H(R) is ⊕
Ω2(H)\Ω2(G)

π(ω−1χ′, ω−1δ′)

with χ′ ∈ Xφ′ and condition (iv) is satisfied.
Condition (ii) is clear when the center of G is connected. In the general case it follows

from (iv) and the definition of χφ. Condition (iii) is clear when Gder is simply connected. In
the general case it follows from (iv) and the definition of πα.

If the quasi-simple irreducible representation π is square-integrable modulo the center and
if ζ is the quasi-character of Grad(R) defined by

π(z) = ζ(z)I, z ∈ Grad(R),

then π is tempered if and only if ζ is a character. This is so if and only if ⟨µ,H⟩ is purely
imaginary whenever H ∈ L̂ ⊗ C satisfies σH = H and ⟨α,H⟩ = 0 for all α. On the
other hand, if φ(w) = a(w)× w then

{
a(w)

∣∣ w ∈ WR

}
is relatively compact if and only if{

a(z)
∣∣ z ∈ C×} is. This is so if and only if

z = ex → λ̂
(
a(z)

)
= z⟨µ,λ̂⟩z⟨σµ,λ̂⟩ = e⟨µ,zλ̂+xσλ̂⟩

is a character of C× for each λ̂, that is, if and only if ⟨µ,H⟩ is purely imaginary when

H ∈ L̂⊗ C satisfies σH = H. Any such H is a sum of terms of the form xλ̂+ xσλ̂ where λ̂

is either a root α̂ or satisfies ⟨α, λ̂⟩ = 0 for all α. If λ̂ = α̂ then

xλ̂+ xσλ̂ = (x− x)α̂.

Since ⟨µ, α̂⟩ is real, ⟨µ, xλ̂+ xσλ̂⟩ is purely imaginary. If ⟨α, λ̂⟩ = 0 for all α then σλ̂ = σλ̂.
Condition (vi) is now clear.

Before completing the definition of the sets Πφ, we remind ourselves of some properties of
induced representations. Suppose P is a parabolic subgroup of G over R, N its unipotent
radical, and M = P/N . Suppose ρ is an irreducible quasi-simple representation of M(R) on
a Banach space V . Lifting, we may also treat ρ as a representation of P (R). If p ∈ P (R) let
δP (p) be the square root of the absolute value of the determinant of the restriction of Ad ρ to
the Lie algebra of N . Let I(V ) be the space of continuous functions on G(R) with values in
V that satisfy

φ(pg) = δP (p)ρ(p)φ(g), p ∈ P (R).



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 35

I(V ) is a Banach space; let Iρ be the representation of G(R) on it by right translations.
There is a quasi-character ζρ of ZG(R) such that Iρ(z) is the scalar ζρ(z) when z ∈ ZG(R)

and a unique positive real-valued quasi-character ξρ of G(R) such that
∣∣ζρ(z)∣∣ = ξρ(z) if

z ∈ ZG(R). There is also a quasi-character ζ ′ρ of ZM(R) such that ρ(z) is the scalar ζ ′ρ(z) if

z ∈ ZM (R) and a positive quasi-character ξ′ρ of M(R) such that
∣∣∣ζ ′ρ(z)∣∣∣ = ξ′ρ(z) if z ∈ ZG(R).

ζρ is the restriction of ζ ′ρ to ZG(R). If π is an irreducible quasi-simple representation of G(R)
we may also define ξ′π and ζ ′π.

Suppose ρ∗ is a quasi-simple irreducible representation of M(R) on V ∗ and there is an
M(R)-invariant bilinear form

(v, v∗) → ⟨v, v∗⟩ ∈ C

on V × V ∗. We may introduce I(V ∗), Iρ∗, and the bilinear form

⟨φ, ψ⟩ =
∫
K

〈
φ(k), ψ(k)

〉
dk

on I(V )× I(V ∗). It is known to be G(R)-invariant. Any K-finite continuous linear form on
I(V ) is of the form φ→ ⟨φ, ψ⟩ for a suitable ψ in I(V ∗). We want to investigate the function〈
Iρ(g)φ, ψ

〉
for K-finite φ and ψ.

Let X be the lattice of rational characters of P and Y the lattice of rational characters
of Mrad. There is an injection X → Y that leads to isomorphisms X ⊗ R

∼−→ Y ⊗ R,
X ⊗C

∼−→ Y ⊗C. We identify these two spaces. If D(P ) is the set of invariant elements of
X ⊗R, then every λ =

∑
xiλi in D(P ), λi ∈ X, xi ∈ R defines a positive quasi-character πλ

of M(R) by

πλ(g) =
∏
i

∣∣λi(g)∣∣xi , g ∈M(R).

πλ is a representation on C. If P is minimal over R, we take π∗
λ to be π−1

λ and φ and ψ to be
identically 1 on K and set

ϕλ(g) =
〈
Iπλ(g)φ, ψ

〉
.

As usual ΞG is the function ϕ0.
Recall that if π is a quasi-simple, irreducible representation of G(R) on W that is square-

integrable modulo the center, and u and v are K-finite vectors in W and its dual, then〈
π(g)u, v

〉
is bound by a constant times ζ ′π(g)ΞG(g).

We now prove an easy sequence of lemmas. G is a reductive linear group over R. There
is a hermitian form on the underlying real vector space that is invariant under K and with
respect to which G(R) is selfadjoint. Every g ∈ G(R) is a product g = kh where k ∈ K and
h is selfadjoint and positive with respect to the given form. Let l(g) be the norm of log h.
We choose an abelian subgroup A of G(R) every element of which is selfadjoint and positive
and which is maximal with respect to this property. A is then connected and G(R) = KAK.
If P is a given parabolic subgroup over R we may, and do, take A in P (R).

If we choose ψ : G
∼−→ G′ where G′ is quasi-split and ψ−1σ(ψ) is inner, if B′ and T ′ have

the usual significance, and if P ′ = ψ(P ) contains B′ and ψ(A) ⊆ T ′ as we may suppose, then
X ⊗R may be regarded as a subspace of L⊗R. Let D+(P ) be the set of λ ∈ D(P ) such

that ⟨λ, α̂⟩ > 0 if α is a root of T ′ in N ′ = ψ(N). Let D
+
(P ) be its closure. If P is minimal

let A+(P ) be the set of a in A such that α(a) ⩾ 1 if α is a root of T ′ in N ′.
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Lemma 3.6. Let P be minimal over R. There is an integer d and a constant c such that

ϕλ(a) ⩽ cπλ(a)δ
−1
P (a)

(
1 + l(a)

)d
if a ∈ A+(P ), λ ∈ D

+
(P ).

The group G(R) = P (R)K. Write g = p(g)k(g). p(g) is not uniquely determined but
πλ
(
p(g)

)
and δP

(
p(g)

)
are and

ϕλ(a) =

∫
K

δP
(
p(ka)

)
πλ
(
p(ka)

)
dk.

By Lemma 3.3.2.3 of [16]
πλ
(
p(ka)

)
⩽ πλ(a).

Thus
ϕλ(a) ⩽ πλ(a)ϕ0(a) ⩽ cπλ(a)δ

−1
P (a)

(
1 + l(a)

)d
.

The last inequality is a consequence of Theorem 8.3.7.4 of [16].

Lemma 3.7. For each λ ∈ D
+
(P ) there is a positive constant c(λ) such that

ϕλ(a) ⩾ c(λ)πλ(a)δ
−1
P (a)

for all a ∈ A+(P ).

To prove this we remind ourselves of an integration formula (cf. [4]). Let P be for the
moment any parabolic subgroup over R. Let N be the unipotent radical of a parabolic
subgroup over R opposed to P . G(R) is again P (R)K and we write g = p(g)k(g). If f is
any continuous function on K ∩ p(R)\K then, with a suitable choice of the Haar measure on
N(R),

(3.1)

∫
K

f(k) dk =

∫
N(R)

δ2P
(
p(n)

)
f
(
k(n)

)
dn

Take P to be minimal over R, take

f(k) = δP
(
p(ka)

)
πλ
(
p(ka)

)
,

and write p(n) = p1, k(n) = k1. Then

k1a = p−1
1 aa−1na

and
δP
(
p(k1a)

)
πλ
(
p(k1a)

)
equals {

δ−1
P (p1)π

−1
λ (p1)

}{
δP (a)πλ(a)

}{
δP
(
p(a−1na)

)
πλ
(
p(a−1na)

)}
.

Consequently

ϕλ(a) = δP (a)πλ(a)

∫
N(R)

{
δ−1
P (p1)π

−1
λ (p1)

}{
δP
(
p(a−1na)

)
πλ
(
p(a−1na)

)}
dn.

Substitute ana−1 for n to obtain

δ−1
P (a)πλ(a)

∫
N(R)

{
δ−1
P

(
p(ana−1)

)
π−1
λ

(
p(ana−1)

)}{
δP
(
p(n)

)
πλ
(
p(n)

)
πλ
(
p(n)

)}
dn.
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All we have to do is show that for a given λ ∈ D
+
(P ) the integral is bounded below by a

positive constant as a varies over A+(P ). If U is a relatively compact subset of N(R) so is⋃
a∈A+(P )

aUa−1.

Since the integrand is continuous and positive, the required estimate is certainly valid.
We shall eventually have to make use of a well-known result of Bhanu-Murty-Gindikin-

Karpelevich. If P1 is a parabolic subgroup of G over R that contains the minimal P we may
set P ′

1 = ψ(P1), N
′
1 = ψ(N1). Suppose P 1 is opposed to P and N1 is its unipotent radical. If

⟨λ, α̂⟩ > 0 whenever α is a root of T ′ in N ′
1 then

(3.2)

∫
N1(R)

δP
(
p(n)

)
πλ
(
p(n)

)
dn <∞.

If P and P0 are two parabolic subgroups of G over R and P ⊇ P0 then D(P ) ⊆ D(P0).
Also if ξ is any positive quasi-character of G(R) there is a λ in D(G) such that ξ = πλ.

Lemma 3.8. Suppose P is a parabolic subgroup of G over R. Suppose ρ and ρ∗ are two
irreducible quasi-simple representations of M(R) on V and V ∗ respectively. Suppose that there
is a nontrivial M(R)-invariant pairing V × V ∗ → C. Let K ′ be the projection of K ∩ P (R)
on M(R) and suppose that for any two K ′-finite vectors v and v∗ there is a constant c such
that ∣∣∣〈ρ(m)v, v∗

〉∣∣∣ ⩽ cξ′ρ(m)ΞM(m), m ∈M(R).

Suppose ξ′ρ = πλ with λ ∈ D
+
(P ). If P contains the minimal P0 then λ ∈ D

+
(P0) and for

any two K-finite φ and ψ in I(V ) and I(V ∗) there is a constant c such that∣∣∣〈Iρ(g)φ, ψ〉∣∣∣ ⩽ cϕλ(g), g ∈ G(R).

As usual we suppose that ψ(P ) = P ′ and ψ(P ′
0) contain B′. If α is a root of T ′ in N ′

0

that is also a root in N ′ then ⟨λ, α̂⟩ ⩾ 0. If α is a root in N ′
0 but not in N ′ then ⟨λ, α̂⟩ = 0.

Consequently λ ∈ D
+
(P0).

If k ∈ K, g ∈ G(R) write kg = pk1, p ∈ P (R), k1 ∈ K, and let m be the projection of p
on M(R). Then〈

Iρ(g)φ, ψ
〉
=

∫
K

〈
φ(kg), ψ(k)

〉
dk =

∫
K

〈
δP (p)ρ(p)φ(k1), ψ(k)

〉
dk.

There are functions φi in I(V ), functions φj in I(V
∗), and continuous functions ai, bj on K

such that
φ(hk) =

∑
ai(k)φi(h), ψ(hk) =

∑
bj(k)ψj(h)

for h ∈ G(R) and such that φi(1), ψj(1) are K
′-finite. Then〈

δP (p)ρ(p)φ(k1), ψ(k1), ψ(k)
〉
= δP (p)

∑
i,j

ak(k1)bj(k)
〈
ρ(m)φi(1), ψj(1)

〉
.

There is therefore a constant c such that∣∣∣〈δP (p)ρ(p)φ(k1), ψ(k)〉∣∣∣ ⩽ cδP (p)πλ(m)ΞM(m).
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We may lift M to a Levi factor of P , chosen so that M(R) is selfadjoint with respect to
the given hermitian form. Then K ∩M(R) is a maximal compact subgroup of M(R) and
K ∩M(R) = K ∩ P (R). The function φλ(g) is given by∫

K

δP0

(
p0(kg)

)
πλ
(
p0(kg)

)
dk =

∫
K

{∫
K∩M(R)

δP0

(
p0(ukg)

)
πλ
(
p0(ukg)

)
du

}
dk.

Set p(kg) = p = nm, n ∈ N(R); then

ukg = unu−1umk1

and unu−1 ∈ N(R) ⊆ N0(R). P ′
0 = P0 ∩M is a minimal parabolic subgroup of M over R.

Write um = p0k0, p0 ∈ P ′
0(R), k0 ∈ K ∩M(R). Then

δP0

(
p0(ukg)

)
= δP (m)δP ′

0
(p0).

Because λ ∈ D(P )
πλ
(
p0(ukg)

)
= πλ(m).

Thus

ϕλ(g) =

∫
K

δP (m)πλ(m)

{∫
K∩M(R)

δP ′
0
(p0)du

}
dk.

The right side is ∫
K

δP (m)πλ(m)ΞM(m) dk.

Since δP (p) = δP (m), the lemma follows.

Corollary (Corollary 3.9). Assume in addition that λ ∈ D(G) ⊆ D(P ). Then∣∣∣〈Iρ(g)φ, ψ〉∣∣∣ ⩽ cπλ(g)ΞG(g).

One has only to observe that when λ ∈ D(G)

ϕλ(g) = πλ(g)ΞG(g).

We shall have to make use of some results from [6] that are considerably more serious
than those of the preceeding lemmas. We recapitulate them in the form we require. Two
conjugacy classes p and p′ of parabolic subgroups of G over R are said to be associate if we
can find P ∈ p, P ′ ∈ p′ such that P and P ′ have a common Levi factor. Given P and the
Levi factor M , for which M(R) is selfadjoint, we may, with no loss of generality, assume that
it is the common factor, for we may replace P ′ by a conjugate.
If ρ is a quasi-simple irreducible representation of M(R) we may define Iρ with respect

to P or to P ′. To distinguish the two possibilities we write IPρ , I
P ′
ρ . To apply the results of

[6] we take ρ to be square-integrable modulo the center. It then satisfies the conditions of
Lemma 3.8. In fact, we may suppose, since it is only the infinitesimal equivalence class of ρ
and Iρ that interests us, that V is a Hilbert space and that π−1

λ ⊗ ρ is unitary. Then we take
V ∗ to be the dual space to V and ρ∗ to be the representation contragredient to ρ. If (u, v) is
the inner product on V then

(φ, ψ) =

∫
K

(
φ(k), ψ(k)

)
dk

is an inner product on I(V ). If we assume in addition, as we must, that ρ satisfies the
condition of the corollary, then π−1

λ (g)Iρ(g) is unitary with respect to this inner product.
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For a general quasi-simple irreducible ρ, the elements of z operate on the infinitely dif-
ferentiable vectors in I(V ) as scalars. Moreover the restriction of IPρ to K contains any
irreducible representation of K with finite multiplicity. Exploiting, for example, the fact that
the characters of irreducible quasi-simple representations of Go(R) are functions, one sees that
IPρ admits a finite composition series. Our present stronger assumptions on ρ, which imply
the existence of an inner product on I(V ) with respect to which the operators Iρ(g) differ by
a scalar from a unitary matrix, allow us to conclude that Iρ is infinitesimally equivalent to
the direct sum of finitely many irreducible quasi-simple representations. From Lemma 8 and
Theorem 3 of [6], we conclude that if IPρ and IP

′

ρ′ have an irreducible constituent in common
then the classes of P and P ′ are associate.
If P and P ′ have the common Levi factor M , then, by computing the character, one

sees that IPρ and IP
′

ρ′ are infinitesimally equivalent ([6], §11). By Lemma 12 of [6], the

representations IPρ and IPρ′ are infinitesimally equivalent if and only if there is an h in the

normalizer of M in G(R) such that ρ′ and m → ρ(hmh−1) are infinitesimally equivalent.
What does not appear so clearly in [6] is that if IPρ and IPρ′ have an irreducible constituent in

common, then there is an h in the normalizer of M in G(R) such that ρ′ and m→ ρ(hmh−1)
are infinitesimally equivalent.
This is an important point. We shall return to it after some considerations that are,

unfortunately, only implicit in [6]. We take up once again the assumptions of Lemma 3.8.
Suppose ψ ∈ V ∗ is K ∩M(R) finite. If φ ∈ I(V ) is K-finite then φ(k) ∈ V is K ∩M(R)
finite for all k ∈ K and

{
φ(k)

∣∣ k ∈ K
}
spans a finite-dimensional subspace of V . There is

therefore a constant c such that∣∣∣〈ρ(m)φ(k), ψ
〉∣∣∣ ⩽ cπλ(m)ΞM(m)

for all m ∈M(R) and all k ∈ K. Suppose φ ∈ I(V ), ψ ∈ V ∗, and

(3.3) sup
k,m

∣∣∣〈ρ(m)φ(k), ψ
〉∣∣∣

πλ(m)ΞM(m)
= ∥φ∥ψ <∞.

If U is a compact subset of G(R) and p(kg) = n(kg)m(kg) then{
m(kg)

∣∣ k ∈ K, g ∈ U
}

is relatively compact. Set m1 = m(kg), k1 = k(kg), and let m2 ∈M(R); then∣∣∣〈ρ(m)φ(kg), ρ(m2)ψ
〉∣∣∣ = δP (m1)

∣∣∣〈ρ(m−1
2 mm1)φ(k1), ψ

〉∣∣∣
which is bounded by

cπλ(m
−1
2 mm1)ΞM(m−1

2 mm1) ⩽ c′πλ(m)ΞM(m).

For the last inequality see Proposition 8.3.7.2 of [16].
It follows easily from these considerations that if f ∈ C∞

c

(
G(R)

)
, if ∥φ′∥ψ <∞, and

φ = Iρ(f)φ
′ =

∫
G(R)

f(g)Iρ(g)φ
′ dg

then

(3.4) lim
g→h

∥∥Iρ(g)φ− Iρ(h)φ
∥∥
ψ
= 0.
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Notice in particular that if φ is K-finite there is an f such that

φ = Iρ(f)φ.

If ψ ∈ V ∗ let I(V, ψ) be the set of all φ ∈ I(V ) satisfying (3.3) and (3.4). If v is a compactly
supported measure on M(R) and

ψ′ =

∫
M(R)

ρ(m)ψ dv

then I(V, ψ′) ⊇ I(V, ψ). In particular I(V, ψ) is the same for all nonzero K ∩M(R) finite
vectors ψ. If I(V, ψ) contains the K-finite vectors then the restriction of Iρ to I(V, ψ) is
infinitesimally equivalent to ψ.

Lemma 3.10. Suppose ρ satisfies the conditions of Lemma 3.8 with λ ∈ D(P )+. Suppose M
is a Levi factor of P with M(R) selfadjoint and P ∩ P =M . If N is the unipotent radical of
P , ψ ∈ V ∗, and φ ∈ I(V, ψ) then ∫

N(R)

〈
φ(ng), ψ

〉
dn

is absolutely convergent.

We may take g = 1. Write n = nmk, n ∈ N(R), m ∈M(R), k ∈ K. Then∣∣∣〈φ(n), ψ〉∣∣∣ = δP (m)
∣∣∣〈ρ(m)φ(k), ψ

〉∣∣∣ ⩽ cδP (m)πλ(m)ΞM(m).

We have seen that if P0 ⊆ P is minimal then∫
N(R)

δP0

(
p0(n)

)
πλ
(
p0(n)

)
dn

is finite; it equals ∫
N(R)

∫
K∩M(R)

δP0

(
p0(unu

−1)
)
πλ
(
p0(unu

−1)
)
dn.

Since p0(unu
−1) = p0(un) we may proceed as in the proof of Lemma 3.8 to see that this

double integral equals ∫
N(R)

δP (m)πλ(m)ΞM(m) dn.

The lemma follows.
We set ∫

N(R)

〈
φ(ng), ψ

〉
dn =M(φ, ψ; g).

It is clear that
M(φ, ψ; gh) =M

(
Iρ(h)φ, ψ; g

)
and that

M
(
φ, ρ(m)ψ, g

)
= δ−2

P (m)M(φ, ψ;m−1g).

Let V ∗
0 be the space of vectors ψ in V ∗ for which I(V, ψ) contains the K-finite vectors. V ∗

0

is invariant under M(R). If φ is K-finite

ψ →M(φ, ψ, 1)
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is a K ∩M(R)-finite linear form on V ∗
0 . There is therefore a K ∩M(R)-finite vector M(φ)

in V such that
M(φ, ψ, 1) =

〈
M(φ), ψ

〉
for ψ ∈ V ∗

0 .
The map p× n → pn of P (R)×N(R) into G(R) is a diffeomorphism of P (R)×N(R)

with an open subset of G(R). If f is an infinitely differentiable complex-valued function on
N(R) with compact support X and v ∈ V is K-finite, define φ ∈ I(V ) by

φ(pn) = f(n)δP (p)ρ(p)v.

The set
Y =

{
m ∈M(R)

∣∣ N(R)mK ∩X ̸= ∅
}

is compact. If m ∈ M(R) and mk = n1m1n, n1 ∈ N(R), m1 ∈ M(R), n ∈ X then
m = m1m2 with m2 ∈ Y . Thus if ψ is K ∩M(R)-finite∣∣∣〈ρ(m)φ(k), ψ

〉∣∣∣ ⩽ cπλ(m1)ΞM(m1) ⩽ c′πλ(m)ΞM(m).

Given ψ we can clearly choose v and f such that M(φ, ψ, 1) ̸= 0. If d in C∞
c

(
g(R)

)
is a

sufficiently close approximation to the delta-function and φ′ = Iρ(d)φ then M(φ′, ψ, 1) is also
not zero. Since φ′ ∈ I(V, ψ) we have the following lemma.

Lemma 3.11. If ψ ∈ V ∗ is K ∩M(R)-finite there is a φ ∈ I(V, ψ) such that

M(φ, ψ, 1) ̸= 0.

If M(R) is selfadjoint and A ⊆ P (R) then A ⊆ M(R). Let A(P ) be the centralizer of
M(R) in A and let A+(P ) consist of those a in A(P ) for which α(a) ⩾ 1 if α is a root of T ′

in N ′. We say that a→ ∞ in A+(P ) if α(a) → ∞ for all such α.

Lemma 3.12. Suppose that φ ∈ I(V ) and ψ ∈ I(V ∗) are K-finite. If m ∈ M(R) is fixed,
then 〈

Iρ(am)φ, ψ
〉
= δ−1

P (a)
{
ζ ′ρ(a)M

(
φ, ψ(1),m

)
+ o
(
πλ(a)

)}
as a→ ∞ in A+(P ).

Since
∣∣∣ζ ′ρ(a)∣∣∣ = πλ(a) the error term is smaller than the principal term ifM

(
φ, ψ(1),m

)
̸= 0.

Replacing φ by Iρ(m), we suppose m = 1. φ may no longer be K-finite.〈
Iρ(a)φ, ψ

〉
=

∫
K

〈
φ(ka), ψ(k)

〉
dk.

The integrand is clearly a function on K ∩ P (R)\K. Choose P and N as in the previous
lemma and write n = nmk, n ∈ N(R), m ∈M(R), k ∈ K. Applying (3.1) we see that the
integral is equal to ∫

N(R)

δ2P (m)
〈
φ(ka), ψ(k)

〉
dn.

Let a−1na = n1m1k1. Since ka = m−1n−1na = m−1n−1aa−1na the intergrand is

δP (m)δP (a)δP (m1)
〈
ρ(m−1am1)φ(k1), ψ(k)

〉
.

If we substitute ana−1 for n so that n = n1m1k1, ana
−1 = nmk the integral becomes

δ−1
P (a)ζ ′ρ(a)

∫
N(R)

δP (m)δP (m1)
〈
ρ(m−1m1)φ(k1), ψ(k)

〉
dn.
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All we have to do is show that

lim
a→∞

∫
N(R)

δP (m)δP (m1)
〈
ρ(m−1m1)φ(k1), ψ(k)

〉
dn =M

(
φ, ψ(1), 1

)
.

In a moment we shall show that we may take the limit under the integral sign. Since
ana−1 → 1, we may suppose that n→ 1, m→ 1, k → 1. The integrand approaches

δP (m1)
〈
ρ(m1)φ(k1), ψ(1)

〉
=
〈
φ(n), ψ(1)

〉
and the lemma follows.

The integral is dominated by a constant times

δP (m)δP (m1)πλ(m
−1m1)ΞM(m−1m1).

Choose P0 ⊆ P such that P0(R) ⊇ A and such that P0 is minimal over R. As usual let
P ′
0 = P0 ∩M . Since

ΞM(m−1m1) =

∫
K∩M(R)

δP ′
0

(
p′0(um

−1m1)
)
du,

it is enough to show that the integral of

δP (m)δP (m1)πλ(m
−1m1)δP ′

0

(
p′0(um

−1m1)
)

is uniformly small on the complement of a large compact set in N(R)×
(
K ∩M(R)

)
.

Choose a P 0 ⊆ P that is opposed to P0 so that

A ⊆ P 0(R) ∩ P0(R) =M0(R) ⊆M(R).

Write an element of N0(R) as n0 = n0m0k0, n0 ∈ N0(R), m0 ∈ M0(R), k0 ∈ K. If f is a
function on K ∩M0(R)\K then∫

K

f(k) dk =

∫
N0(R)

δ2P0
(m0)f(k0) dn0.

If N
′
0 = N0 ∩M then N0(R) = N

′
0(R)N(R). Let n0 = n′

0n1; let n
′
0 = n2m2v, n2 ∈ N ′

0(R),
m2 ∈M0(R), k ∈ K ∩N(R); let vn1v

−1 = n3m3k3, n3 ∈ N0(R), m3 ∈M0(R), k3 ∈ K. We
may suppose

m0 = m2m3, k0 = k3u.

Then the integral is equal to∫
N

′
0(R)

∫
N(R)

δ2P0
(m2m3)f(k3v)dn1 dn

′
0.

Replacing n1 by an1a
−1 so that n3m3k3 = van1a

−1v−1 we obtain

δ−2
P (a)

∫
N

′
0(R)

∫
N(R)

δ2P0
(m2m3)f(k3v) dn1dn

′
0.

On the other hand, if n = nmk∫
K

f(k) dk =

∫
N(R)

δ2P (m)

{∫
K∩M(R)

f(uk)du

}
dn.
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Replacing n by ana−1, we obtain

δ−2
P (a)

∫
N(R)

δ2P (m)

{∫
K∩M(R)

f(uk)du

}
dn

where nmk is now ana−1.
Thus∫

N(R)

δ2P (m)

{∫
K∩M(R)

f(uk)du

}
dn =

∫
N

′
0(R)

∫
N(R)

δ2P (m2m3)f(k3v) dn1 dn
′
0.

If X is a compact set in N
′
0(R)×N(R) = N0(R) with complement CX, then

Y =
{
n ∈ N(R)

∣∣∣ n ∈ P (R)X
}

is also compact. If f is positive∫
CY
δ2P (m)

{∫
K∩M(R)

f(uk)du

}
dn ⩽

∫
CX
δ2P0

(m2m3)f(k3v) dn1 dn
′
0.

Take f to be the function

δ−1
P (a)π−1

λ (a)πλ
(
p0(ka)

)
δP0

(
p0(ka)

)
.

If ana−1 = nmk, then uka = um−1n−1an and

δ2P (m)f(uk) = δP (m)δP (m1)πλ(m
−1m1)δP ′

0

(
p′0(um

−1am1)
)

if n = n1m1k1. Observe that
δP (a) = δP0(a)

and that, more generally,
δP0(m) = δP (m)δP ′

0

(
p′0(m)

)
for all m in M(R).
To finish the proof of the lemma, we show that

δ2P (m2m3)f(k3v)

is dominated on N0(R) by an integrable function that is independent of a. Let vn1v
−1 =

n4m4k4, n4 ∈ N0(R), m4 ∈M0(R), k4 ∈ K. Since k3va = m−1
0 n−1

0 an0 and m0 = m2m3,

δ2P0
(m2m3)f(k3v) = δ2P ′

0
(m2)δP0(m3m4)πλ(m

−1
3 m4)

m2 does not depend on n1. Consider the function

δP0(m3m4)πλ(m
−1
3 m4)

on N(R). Replacing n1 by v−1n1v we may, for the present purposes, suppose that v = 1.
There is a δ in D+(P0) such that

δP0(m) = πδ(m), m ∈M0(R).

There is a β, 1 > β > 0, such that δ − βλ also lies in D+(P0). Let α = 1− β. By Lemma 13
of [4],1

πδ−βλ(m3) ⩽ 1, παλ(m
−1
3 m4) ⩽ 1.

1(2018) I have been unable to make sense of this reference. (R.L.)



44 ROBERT P. LANGLANDS

By the formula of Bhanu-Murty-Gindikin-Karpelevich [3], the function

πδ+βλ(m4)

is integrable on N(R). It does not depend on a. Since the transformation n1 → v−1n1v is
unimodular, it remains only to observe that, by the same formula,∫

N
′
0(R)

δ2P ′
0
(m2) dn

′
0 <∞.

We still suppose that λ ∈ D(P+). The space I(V, ψ) is the same for all nonzero K ∩M(R)-
finite ψ. Denote it by I0(V ) and provide it with the norm

∥φ∥ψ + sup
k∈K

∥∥φ(k)∥∥.
This norm depends in no essential way on ψ. The subspace

I1(V ) =
{
φ ∈ I0(V )

∣∣M(φ, ψ, g) = 0 for all g ∈ G(R)
}

is also independent of ψ. It is closed and G(R)-invariant. The quotient J(V ) = I0(V )/I1(V )
is not zero. Let Jρ be the representation of G(R) on it. When we want to indicate the
presence of P we write JPρ instead of Jρ.

Lemma 3.13. The representation Jρ is irreducible.

Suppose I2(V ) is a closed invariant subspace of I0(V ) and I1(V ) ⫋ I2(V ) ⫋ I0(V ). If
v∗ ∈ V ∗ is K ∩M(R)-finite then the function

φ→M(φ, v∗, 1)

on I0(V ) is continuous. If it vanishes on all K-finite functions in I2(V ) it vanishes identically
on I2(V ). Then

0 =M
(
Iρ(g)φ, v

∗, 1
)
=M(φ, v∗, g)

for all φ ∈ I2(V ). This is impossible unless v∗ = 0. On the other hand, there is a K-finite
function ψ in I(V ∗) that is not zero but is orthogonal to I2(V ). Then

〈
Iρ(g)φ, Iρ∗(k)ψ

〉
= 0

for all g ∈ G(R) and all k ∈ K. If φ in I2(V ) is K-finite we may apply Lemma 3.12 to see
that

M
(
φ, ψ(k), 1

)
= 0

for all k. This in turn implies that ψ(k) = 0 for all k, which is a contradiction. The lemma
follows.

Lemma 3.14.

(a) Suppose ρ and ρ′ satisfy the conditions of Lemma 3.8 with respect to P and P ′

respectively. Suppose λ ∈ D+(P ) and λ′ ∈ D+(P ′). If JPρ and JP
′

ρ′ are infinitesimally

equivalent there is an h ∈ G(R) such that P ′ = hPh−1, M ′ = hMh−1, and such that
m→ p′(hmh−1) is infinitesimally equivalent to ρ.

(b) Suppose ρ satisfies the conditions of Lemma 3.8 with respect to P and λ ∈ D+(P ).
Suppose ρ′ satisfies the conditions of Corollary 3.9 with respect to P ′. If P ̸= G, then
JPρ is infinitesimally equivalent to no constituent of IP

′

ρ′ .
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We may certainly suppose that P and P ′ both contain P0 minimal over R, that A ⊆ P0(R),
and that M(R) and M ′(R) are selfadjoint.
If π and π′ are two irreducible quasi-simple representations of G(R) on W and W ′,

respectively, then π and π′ are infinitesimally equivalent if and only if for any K-finite vector
w ∈ W and any K-finite linear form f on W there are a K-finite w′ ∈ W ′ and a K-finite
linear form f ′ on W ′ such that

f
(
π(g)w

)
= f ′(π′(g)w′)

for all g ∈ G(R). If S(π) is the set of all ν ∈ D(P0) such that for any K-finite f and w there
is a constant c such that ∣∣∣f(π(a)w)∣∣∣ ⩽ cδ−1

P0
(a)πν(a)

on A+(P0) then
S(π) = S(π′).

S(π) is a convex set. We introduce the Killing form B(µ, ν) on L ⊗ R. It is positive
semidefinite. If S(π) is not empty there is a unique point ν(π) in its closure such that

B
(
ν(π), ν(π)

)
= inf

{
B(ν, ν)

∣∣ ν ∈ S(π)
}
.

If π is JPρ there is a K-finite φ in I0(V ) and a K-finite ψ in I(V ∗) such that

f
(
π(g)w

)
=
〈
Iρ(g)φ, ψ

〉
for all g. By Lemmas 3.6 and 3.8, the closure of S(π) contains λ.
We may choose a K-finite ψ in I(V ∗) such that ψ is orthogonal to I1(V ) and such that

ψ(1) ̸= 0. We may also choose a K-finite φ in I0(V ) such that M(φ, ψ, 1) ̸= 0. Applying
Lemma 3.12 to this pair we see that if ν = λ+µ belongs to S(π) then µ(a) ⩾ 1 if a ∈ A+(P ).
Since λ ∈ D+(P ), B(λ, µ) is then nonnegative and

B(ν, ν) = B(λ, λ) + 2B(λ, µ) +B(µ, µ) ⩾ B(λ, λ).

Thus ν(π) = λ.
If ρ′ satisfies the conditions of Lemma 3.9 and π′ is a constituent of IP

′

ρ′ then we can find
φ′ and ψ′ such that

f ′(π′(g)w′) = 〈Iρ′(g)φ′, ψ′〉.
It follows readily from Lemma 3.6 and Corollary 3.9 that λ′ lies in the closure of S(π′). Since
λ′ ∈ D(G) = D+(G), B(λ′, λ′) = 0 and ν(π′) = λ′.
If P and P ′ contain P0, D

+(P ) and D+(P ′) are disjoint unless P = P ′. This gives the
second part of the lemma and half of the first. We now suppose that P = P ′, M =M ′ and
show that if JPρ and JP

′

ρ′ are infinitesimally equivalent then so are ρ and ρ′.
Let ψ in I(V ∗), with ψ(1) ̸= 0, be K-finite and orthogonal to I1(V ). Let φ lie in I0(V ) but

not in I1(V ) and be K-finite. Then there exist φ′ and ψ′ that satisfy analogous conditions
with respect to ρ′ such that 〈

Iρ(g)φ, ψ
〉
=
〈
Iρ′(g)φ

′, ψ′〉.
Applying Lemma 3.12 we see that〈

ρ(m)M(φ), ψ(1)
〉
=
〈
M(φ), ρ∗(m−1)ψ(1)

〉
=M

(
φ, ρ∗(m−1)ψ(1)1

)
=M

(
φ, ψ(1)m

)
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is equal to 〈
ρ′(m)M(φ′), ψ′(1)

〉
.

Since M(φ) ̸= 0, it follows that ρ and ρ′ are infinitesimally equivalent.
There is a point mentioned earlier that remains to be settled. We have to show that

if ρ and ρ′ satisfy the conditions of Lemma 3.9 with respect to P and IPρ and IPρ′ contain
infinitesimally equivalent irreducible constituents then there is an h in the normalizer of M
in G(R) such that ρ′ and m→ ρ(hmh−1) are infinitesimally equivalent.
We have defined the quasi-character πν on M(R) for ν ∈ D(P ). The same formula

πν(g) =
∏
i

∣∣λi(g)∣∣xi
if x =

∑
xiλi serves to define it for ν ∈ D(P )⊗C. Set ρν = πν ⊗ ρ. All the representations

ρν act on the same space. Take ν in iD(P ) and consider the functions

f ν(g) =
〈
IPν (g)φ, ψ

〉
where φ ∈ I(V ) and ψ ∈ I(V ∗) are K-finite. Let h run over a set of representatives for the
normalizer ofM in G(R) moduloM(R). If v does not lie in a certain finite set of hyperplanes
the quasi-characters ζνh : a → ρν(hah

−1) of A(P ) are distinct and if fP is defined as in [6]
then, by Theorem 5 of that paper

f νP (m) =
∑
h

θνh(m)

where
θνh(am) = ζνh(a)θ

ν
h(m), a ∈ A(P ).

By Lemma 3.12 and by Lemma 9 of [6], θν1(m) has the form

θν1(m) =
〈
ρν(m)Mν(φ), ψ(1)

〉
where Mν(φ) lies in V . Mν(φ) is a meromorphic function of ν in a neighborhood of iD(P )
and its singularity can be killed by a product of linear factors. Let ρhν be the representation
m → ρν(hmh

−1). Since Iρν and Iρhν are infinitesimally equivalent there are a φhν and a ψhν
such that 〈

Iρν (g)φ, ψ
〉
=
〈
Iρhν (g)φ

h
ν , ψ

h
ν

〉
.

It follows that θνh is of the form 〈
ρhν(m)Mh

ν (φ), N
h
ν (ψ)

〉
where Mh

ν (φ), N
h
ν (ψ) are K ∩M(R)-finite vectors in V and V ∗. They too are meromorphic

in a neighborhood iD(P ) and their singularities can be killed by a product of linear factors.
Let λ1, . . . , λr be a basis for D(P ). If a = (a1, . . . , ar) is an r-tuple of non-negative integers

set

la(m) =
r∏
i=1

{
log πλi(m)

}ai .
Let {h} be a set of representatives for the normalizer of M in G(R) modulo the group of
those g in the normalizer for which ρg : m → ρ(gmg−1) is equivalent to ρ. If the reader is
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willing to admit2 that, for a fixed m, f νP (m) depends continuously on ν ∈ iD(P ), he can
conclude that

f oP (m) =
∑
h

∑
a

la(m)
〈
ρh(m)φha, ψ

h
a

〉
where the sum on a is finite and φha and ψha are K ∩M(R)-finite vectors in V and V ∗.

If M is also a Levi factor of P ′ then a similar result holds for f oP ′(m). Since not all of the
functions f oP ′(m) can vanish identically, we conclude that from a nonzero matrix coefficient
of any irreducible constituent of IPρ we can retrieve at least one nonzero matrix coefficient of

one of the representations ρh. This yields the required assertion.

We are now in a position to complete our definition of sets Πφ. Let P̂ be minimal among

the parabolic subgroups of Ĝ containing φ(WR). The group Ĝ may be represented as a
semidirect product Gô×WR. Since C

× ⊆ WR acts trivially we may divide out by it to obtain

the algebraic group Gô × g(C/R). The image of P̂ is also algebraic and we may use the
theorem that any two maximal fully reducible subgroups in an algebraic group are conjugate

to conclude that φ(WR) is contained in a Levi factor M̂ of P̂ . By assumption the class of P
lies in p̂(G). Let P be a parabolic subgroup of G over R whose class corresponds to that of

P̂ . Since φ(WR) is contained in no proper parabolic subgroup of M̂ the earlier definition,

together with Lemma 2.4, associates to φ a finite set Πφ(P, P̂ ) in Π(M).

Suppose φ(WR) is contained minimally in both P̂ and P̂ . Then

(P̂ ∩ P∧)N̂ ⊇ (P ô ∩ P ô
)N̂

and the right side is a parabolic subgroup of Gô ([1], Proposition 4.4). The right side is the
connected component of the left. Since the left contains φ(WR) which projects onto WR, it is

a parabolic subgroup of Ĝ. Since it is contained in P̂ and contains φ(WR) it is equal to P̂ . By

the same proposition P
ô
contains a maximal reductive subgroup of P ô. Reversing the roles

of the two groups we see that P ô contains a maximal reductive subgroup of P
ô
. Since any

two maximal reductive subgroups of P ô or of P
ô
have the same dimension, P ô and P

ô
have a

common maximal reductive subgroup. As before, we can divide Ĝ by C× ⊆ Ĝ = Gô ×WR

to obtain an algebraic group. C× is contained in P̂ ∩ P∧
and the quotient of P̂ ∩ P∧

by C×

is an algebraic group. Take a maximal reductive subgroup in it which contains the image of

φ(WR). Let its inverse image in P̂ ∩ P∧
be M̂ . M̂ contains φ(WR) and therefore projects

onto WR. Since [12] any two maximal reductive subgroups of the quotient of P̂ ∩ P∧
by C×

are conjugate, M̂ contains a Levi factor of P ô and of P
ô
. Thus M̂ itself is a Levi factor of P̂

and of P
∧
.

Since the set Πφ(P, P̂ ) does not depend on M̂ , we may, for our purposes, fix M̂ and let P̂ ,

which does affect Πφ(P, P̂ ), vary over the parabolic subgroups of Ĝ with M̂ as Levi factor.

Since the pair (M,P ) together with the set Πφ(P, P̂ ) is determined only up to conjugacy we
may assume that M too is fixed. It will be supposed that M(R) is selfadjoint, although this
is not important.

2The author leaves him to struggle with his conscience.
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If D(M) is the space introduced in the proof of Lemma 2.5 and M is a Levi factor of P

then D(M) = D(P ). Let λ = λφ(P, P̂ ) in D(M) be defined by the condition that∣∣∣ζ ′ρ(z)∣∣∣ = πλ(z)

if ρ ∈ Πφ(P, P̂ ) and z ∈ ZM(R). We observe next that P and P̂ may always be so chosen

that λφ(P, P̂ ) ∈ D
+
(P ). In fact, if we vary P and P̂ simultaneously as in Lemma 2.5 we

may let P vary over all parabolic subgroups of G with M as Levi factor without affecting

Πφ(P, P̂ ) or λφ(P, P̂ ). For at least one such P , λφ(P, P̂ ) ∈ D
+
(P ), the closure of the chamber

corresponding to P . From now on we only consider pairs P , P̂ for which λφ(P, P̂ ) ∈ D
+
(P ).

There is, moreover, a unique parabolic subgroup P1 of G over R such that P1 ⊇ M and

λφ(P, P̂ ) ∈ D+(P1). P1 contains P and there is a unique P̂1 containing P̂ such that P1 and

P̂1 lie in corresponding classes.

We can characterize P̂1 in terms of M̂ and φ(WR) alone, without reference to P and P̂ . For

this we shall have to take cognizance of the way M̂ is identified with the associate group of
M . We recall that we choose an isomorphism ψ of G with a quasi-split group G′, containing
B′ and T ′, so that ψ−1σ(ψ) is inner and so that ψ(P ) ⊇ B′ and M ′ = ψ(M) ⊇ T ′. We then

use G′, B′, and T ′ to construct Gô, Bô, T ô and Ĝ = Gô ×WR. Conjugating M̂ and P̂ , and

therefore also φ, but that does not matter, we arrange that P̂ ⊇ Bô and that M̂ ⊇ T ô. The

construction of Ĝ is such that this M̂ can be trivially identified with the associate group of
M . We may also suppose that φ(C×) ⊆ T ô ×C×.

Now that everything is explicit, let us recall how the restriction of ζ ′ρ, ρ ∈ Πφ(P, P̂ ), to
the connected component of Mrad(R) is determined by φ. We write φ(w) = a(w)× w with
respect to the splitting Gô×WR. As before let σ be the action of σ ∈ g(C/R) on T ô, L, and

L̂ determined by φ. Choose µ and ν = σµ in L⊗C such that

λ̂
(
a(z)

)
= z⟨µ,λ̂⟩z⟨ν,λ̂⟩

Any s in the connected component of Mrad(R) may be written as s = eH , where H = σH

lies in L̂⊗C and ⟨α,H⟩ = 0 if α is a root of T ′ in M ′. Then

ζ ′ρ(s) = e⟨µ/2,H+σH⟩ = e⟨µ,H⟩.

Write µ = µ1 + µ2 where σµ1 = µ1, σµ2 = −µ2. Because φ(WR) is contained in no proper

parabolic subgroup of M̂ , ⟨µ1, α̂⟩ = 0 if α̂ is a root of T ô in M ô. Since µ− σµ = 2µ2 lies in L,

⟨µ2, H⟩ = ⟨µ2, H⟩ = ⟨σµ2, σH⟩ = −⟨µ2, H⟩
and ⟨µ2, H⟩ is purely imaginary. A similar calculation shows that

Re⟨µ1, H⟩ = ⟨Reµ1, H⟩.
Thus ∣∣∣ζ ′ρ(s)∣∣∣ = e⟨Reµ1,H⟩ = e⟨Reµ1,H+H⟩/2 =

∏
i

∣∣λi(s)∣∣xi
if Reµi =

∑
xiλi. It follows that if λ = λφ(P, P̂ ) then λ = Reµ1. Thus P1 is determined by

the condition that α̂ is a root of T ô in P ô
1 if and only if ⟨Reµ1, α̂⟩ ⩾ 0.

P̂1 is therefore determined by φ alone. P1 is then any parabolic subgroup of G over R

containing M whose class corresponds to that of P̂1. P and P̂ are then any pair with P ⊆ P1,



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 49

P̂ ⊆ P̂1 whose classes correspond. Choose a Levi factor M1 of P1 over R that contains M .

P ∩M1 = P ′ is a parabolic subgroup of M1. If ρ ∈ Πφ(P, P̂ ) we may consider the irreducible
constituents of IP

′
ρ , a representation of M1(R). Let Π′

φ be the set formed by the infinitesimal

equivalence classes of these constituents as ρ varies over Πφ(P, P̂ ). We have to observe

that Π′
φ ⊆ Π(M1) is independent of the choice of P and P̂ . Since Π′

φ is not affected if we

simultaneously conjugate P ′ and Πφ(P, P̂ ) with an element of M1(R), we need only check

that Π′
φ is independent of P̂ . But if we change P̂ then, by Lemma 2.5, we may change P and

hence P ′ so that Πφ(P, P̂ ) is not affected. Since I
P ′
ρ and IP

′

ρ are infinitesimally equivalent if

P ′ and P
′
are two parabolic subgroups of M1 with M as Levi factor, the set Π′

φ does depend
only on φ.

We have normalized φ so that P̂1 contains Bô. Suppose φ′ is normalized in the same way

and gives rise to the same P̂1. We shall need to know that if Π′
φ and Π′

φ′ have an infinitesimal
equivalence class in common then φ and φ′ determine the same element of Φ(G). If Π′

φ and
Π′
φ′ have an element in common then, as we can see from our review of the results of [6],

the images φ(WR) and φ
′(WR) may be supported to lie in the same M̂ , no proper parabolic

subgroup of which contains either of them. We may choose, tentatively, the same P and P̂ for

both of them. Then there are a ρ in Πφ(P, P̂ ) and a ρ′ in Πφ′(P, P̂ ) and a g in the normalizer
of M in M1(R) such that ρ is equivalent to m→ ρ′(gmg−1). If ψ1 is the restriction of ad g

to M and ψ̂1 the associated automorphism of M̂ then, by condition (iv),

Πψ̂1(φ)
(P, P̂ ) =

{
m→ ρ(gmg−1)

∣∣∣ ρ ∈ Πφ(P, P̂ )
}
.

By Lemma 2.7, there is an h in the normalizer of M̂ in M ô
1 such that on M̂ the operator adh

is equal to ψ̂1. We may replace φ by adh ◦φ. Then Πφ(P, P̂ ) and Πφ′(P, P̂ ) have an element
in common; so φ and φ′ belong to the same class in Φ(M1) and hence in Φ(G).
We are now able to introduce Πφ in general. Πφ consists of the classes JP1

ρ , ρ ∈ Π′
φ.

By Lemma 3.14, together with the preceding discussion, these sets are disjoint. The other
conditions on the sets Πφ are built into their definition.

4. Exhaustion

It remains to prove the following proposition.

Proposition 4.1. The sets Πφ, φ ∈ Φ(G), exhaust Π(G).

We agree to call an infinitesimal equivalence class essentially tempered if it is a constituent
of some Iρ where ρ satisfies the conditions of Corollary 3.9 and is square-integrable modulo
the center. To prove the proposition, we have only to prove the following lemma.

Lemma 4.2. If π is an irreducible quasi-simple representation of G(R), there is a parabolic
subgroup P of G over R and an essentially tempered representation ρ of M(R), M = P/N ,
such that λ ∈ D+(P ) and such that π is infinitesimally equivalent to Jρ.

λ has the same meaning as in Lemma 3.8. Notice that, by Lemma 3.14, ρ and P are
uniquely determined by π. The lemma reduces the problem of classifying the classes of
irreducible quasi-simple representations of G(R) to that of classifying the classes of essentially
tempered representations of the various M(R).
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Let π be given. The first, the easy, step is to find P . Let π act on V . If g ∈ G(R) and v∗

lies in the dual space of V define π∗(g)v∗ by〈
v, π∗(g)v∗

〉
=
〈
π(g−1)v, v∗

〉
.

If f ∈ C∞
c (G) define π∗(f)v∗ by〈

v, π∗(f)v∗
〉
=

∫
G(R)

f(g)
〈
π(g−1)v, v∗

〉
dg.

It is clear that ∥∥π∗(f)v∗
∥∥ ⩽ ∥v∗∥

∫
G(R)

∣∣f(g)∣∣∥∥π(g)∥∥ dg.
It is also clear that every K-finite vector v∗ is a finite linear combination

v∗ =
∑
i

π∗(fi)v
∗
i .

Let V ∗ be the set of all v∗ for which

lim
g→h

∥∥π∗(g)v∗ − π∗(h)v∗
∥∥ = 0

for all h. Since V ∗ contains all vectors of the form π∗(f)v∗, it contains all K-finite vectors.
The representation π∗ on V ∗ is continuous and the pairing (v, v∗) → ⟨v, v∗⟩ is G(R)-invariant.

Let X be a finite collection of classes of irreducible representations of K. Let V (X)
and V ∗(X) be the direct sum of the subspaces of V and V ∗ transforming according to the
representations in X. Consider the function Ψ from G(R) to the dual W (X) of V (X)⊗V ∗(X)
defined by

Ψ(g) : u⊗ v →
〈
π(g)u, v

〉
.

Choose a parabolic subgroup P0 of G minimal among those defined over R. We suppose
that A ⊆ P0(R). D(P0) and the Lie algebra A of A are in duality over R in such a way that

πλ(expH) = e⟨λ,H⟩.

It will be convenient to shuck some of our earlier notation, which is not always appropriate
to our present purposes. Write D(P0) = D0 +D, where D0 is orthogonal to A∩ gder and D is
orthogonal to A∩ grad. D has as basis the roots α1, . . . , αr of A simple with respect to P0(R).
The Killing form B(µ, ν) is nondegenerate on D and zero on D0. Define β1, . . . , βr in D by

B(αi, βj) = δij.

By Theorem 9.1.3.2 of [16] there is a countable subset L(π,X) in D(P0)⊗C such that in
the interior of A+ = A+(P0) an expansion

(4.1) Ψ(a) = e−⟨δ,H⟩
∑

λ∈L(π,X)

pλ(H)e⟨λ,H⟩

is valid. δ is one-half the sum of the roots of A positive with respect to P0 and taken with
multiplicity. a = eH and pλ is a polynomial function of H with values in W (X) that does not
vanish identically.

If λ and µ belong to D(P0)⊗C we write λ ≻ µ if

Reλ = Reµ+
r∑
i=1

xiαi
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with xi ⩾ 0. Let E(π,X) be the set of λ maximal in L(π,X) with respect to this order. As
in [16], E(π,X) is finite. There is a simple fact to be verified.

Lemma 4.3. The set E(π,X) is the same for all X for which W (X) is not zero.

If X and Y are two finite collections of classes of irreducible representations of K we may
also introduce a function Ψ with values in the dual W (X,Y) of V (X)⊗ V ∗(Y) by

Ψ(g) : u⊗ v →
〈
π(g)u, v

〉
.

Thus Ψ also admits an expansion of the form (4.1). We introduce E(π,X,Y) and show that
it is the same for all X and Y for which V (X) ̸= 0 and V ∗(Y) ̸= 0.
It is clear that if X1 ⊆ X2 then every element of E(π,X1,Y) is dominated by an element

of E(π,X2,Y). If V (X) is different from 0 then every K-finite vector in V is a finite sum∑
π(Xi)ui

with ui ∈ V (X), Xi ∈ Y, the universal enveloping algebra of g. If

f(g) =
〈
π(g)u, v

〉
then 〈

π(g)π(X)u, v
〉
= Xf(g).

If u ∈ V (X), v ∈ V ∗(Y) then
〈
π(g)π(X)u, v

〉
is a coordinate of the W (X,Y)-valued func-

tion XΨ(g). It follows from Theorem 9.1.2.9 of [16] that every exponent in the expansion of〈
π(g)π(X)u, v

〉
is dominated by an element of E(π,X,Y). This if V (X1) ̸= 0 and V (X2) ̸= 0

then every element of E(π,X1,Y) is dominated by an element of E(π,X2,Y) and conversely.
The two sets are therefore the same.

We define a double action w → τ1(k1)wτ2(k2) of K on W (X,Y) by

τ1(k1)wτ2(k2) : u⊗ v → w
(
π(k−1

1 )u⊗ π∗(k2)v
)
.

We may interchange the roles of V and V ∗ and of X and Y, replacing π by π∗. If ω, the
element of the Weyl group of A that takes positive roots to negative roots, is represented by
k ∈ K, then 〈

u, π∗(a)v
〉
=
〈
π(a−1)u, v

〉
=
〈
π
(
ω(a−1)

)
π(k)u, π∗(k)v

〉
.

Thus Ψ(a) is replaced by
τ1(k

−1)Ψ
(
ω(a−1)

)
τ2(k)

and
E(π∗,Y,X) =

{
−ω(λ)

∣∣ λ ∈ E(π,X,Y)
}
.

It follows that E(π∗,X,Y) is also independent of Y.
We all also need some simple geometric lemmas. We recall that B(αi, αj) ⩽ 0 if i ̸= j and

that B(βi, βj) ⩾ 0 for all i and j. If F is a subset of {1, . . . , r} let DF be the subspace of D
spanned by {βi | i ∈ F}. If i ∈ F let βFi = βi; if i ∈ F let βFi be the orthogonal projection of
βi on the orthogonal complement of DF . Define α

F
i by

B(αFi , β
F
j ) = δij.

If i /∈ F then αFi = αi. If i ∈ F then

αFi = αi +
∑
k/∈F

cikαk.
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If k is not in F then
0 = B(αFi , β

F
k ) = (αi, β

F
k ) + cik.{

αk
∣∣ k /∈ F

}
is a basis for the orthogonal complement of DF and B(αk, αl) ⩽ 0 if k ̸= l.

Since
{
βFk
∣∣ k /∈ F

}
is the dual basis, B(βFk , β

F
l ) ⩾ 0. Therefore βFl is a linear combination

of the αk with nonnegative coefficients. Since B(αi, αk) ⩽ 0, B(αi, β
F
k ) ⩽ 0 for k /∈ F and

cik ⩾ 0. Thus if i and j belong to F and i ̸= j

B(αFi , α
F
j ) = B(αFi , αj) = B(αi, αj) +

∑
k/∈F

cikB(αk, αj) ⩽ 0.

The inequality B(αFi , α
F
j ) ⩽ 0 is also valid if one of i and j does not lie in F .

For each F let εF be the characteristic function of{
λ ∈ D(P0)

∣∣∣ B(αFi , λ) > 0, i ∈ F, B(βFi , λ) ⩽ 0, i /∈ F
}
.

Lemma 4.4. If λ ∈ D(P0) then ∑
F

εF (λ) = 1.

Suppose B(αi, λ) > 0 for all i. Then B(αFi , λ) > 0 for all i and all F . Since the basis
{βFi } is dual to {αFi } and B(αFi , α

F
j ) ⩽ 0 for i ̸= j, βFi is a linear combination of the αFj

with nonnegative coefficients and B(βFi , λ) > 0 for all i and F . Thus εF (λ) = 0 unless
F = {1, . . . , r} when εF (λ) = 1. Thus all we have to do is show that εF is a constant.
A hyperplane defined by an equation B(αFi , λ) = 0 or B(βFi , λ) = 0 for some i and F

will be called special. If λ is any point in D(P0) and if B(αi, µ) > 0 for all i, then for any
sufficiently small positive real number a

εF (λ) = εF (λ− aµ)

for all F . Moreover λ− aµ lies in no special hyperplane. To show that εF is a constant we
have to show that it is constant on the complement of the special hyperplanes. For this we
have only to verify that it is constant in a neighborhood of a point λ0 lying in exactly one
special hyperplane.

For this we may disregard all those F which lie neither in

S1 =
{
F
∣∣∣ B(αFi , λ0) = 0 for some i ∈ F

}
nor in

S2 =
{
F
∣∣∣ B(βFi , λ0) = 0 for some i /∈ F

}
.

The sets S1 and S2 are disjoint. F = {1, . . . , r} does not belong to S2. We can introduce
a bijection between S1 and S2. If F1 ∈ S1 and αFi with i ∈ F1 is orthogonal to λ0 set
F2 = F1 − {i}. αF1

i and βF2
i both lie in the space spanned by

{
βj
∣∣ j ∈ F1

}
and are both

orthogonal to
{
βj
∣∣ j ∈ F2

}
. Thus they are multiples of each other and F2 ∈ S2. It is clear

that F1 → F2 is a bijection. Since

1 = B(αF1
i , βi) = B(αF1

i , β
F2
i ),

αF 1
i is a positive multiple of βF2

i . We have relations

αF2
j = aF1

j + cjα
F1
i , j ∈ F2,

βF2
j = βF1

j + djβ
F2
i , j /∈ F1.



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 53

Near λ0

signB(βF2
j , λ) = signB(βF1

j , λ), j /∈ F1,

signB(αF2
j , λ) = signB(αF1

j , λ), j ∈ F2.

Moreover, either B(αF1
i , λ) > 0 or B(βF2

i , λ) ⩽ 0 but not both. Thus εF1 + εF2 is constant
near λ0. The lemma follows.

If λ ∈ D(P0) let F = F (λ) be the unique subset of {1, . . . , r} such that

B(αFi , λ) > 0, i ∈ F,

B(βFi , λ) ⩽ 0, i /∈ F.

Let λ0 be the projection of λ on the sum of D0 and DF . Then B(αi, λ
0) ⩾ 0 for all i

and B(αi, λ
0) > 0 if i ∈ F . This is clear because B(αi, λ

0) = 0 if i /∈ F and B(αi, λ
0) =

B(αFi , λ
0) = B(αFi , λ) if i ∈ F . Let λ = λ0 + λ1. Then

λ1 =
∑
i/∈F

biαi.

Notice that
bi = B(βi, λ

1) = B(βFi , λ
1) = B(βFi , λ) ⩽ 0.

Lemma 4.5. Suppose λ and µ lie in D(P0) and

λ0 +
r∑
i=1

ciαi = µ0 + ν +
∑
j /∈F (µ)

djαj.

Suppose ci ⩽ 0, ν ∈ D, B(αi, ν) = 0 if i /∈ F (µ), and B(βi, ν) ⩾ 0 if i ∈ F (µ). Then λ0 ≻ µ0.

Certainly λ0 − µ0 ∈ D. If i ∈ F (µ) then

(4.2) B(βi, λ
0 − µ0) = −ci +B(βi, ν) ⩾ 0.

If i /∈ F (µ) then
B(αi, λ

0 − µ0) = B(αi, λ
0) ⩾ 0.

If i /∈ F (µ)

βFi =
∑
j /∈F (µ)

ejαj

with ej ⩾ 0; so
B(βFi , λ

0 − µ0) ⩾ 0.

Moreover
βFi = βi −

∑
j∈F (µ)

ajβj

and
aj = B(βi, βj)/B(βj, βj) ⩾ 0.

For (4.2) we conclude that

B(βi, λ
0 − µ0) ⩾ B(βFi , λ

0 − µ0) ⩾ 0.

The lemma follows.

Corollary 4.6. If λ ≻ µ then λ0 ≻ µ0.
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If λ ≻ µ then

λ+
r∑
i=1

ciαi = µ

with ci ⩽ 0. Since

λ = λ0 +
∑
i/∈F (λ)

biαi

with B1 ⩽ 0 and

µ = µ0 +
∑
j /∈F (µ)

djαj

the corollary follows.
Since the set E(π,X) is the same for all X with W (X) ̸= 0 we may denote it by E(π).

Consider
L0(π,X) =

{
λ0
∣∣ λ = Reλ′, λ′ ∈ L(π,X)

}
and

E0(π) =
{
λ0
∣∣ λ = Reλ′, λ′ ∈ E(π)

}
.

Suppose µ0 lies in L0(π,X). There is a λ′ ∈ E(π) such that λ′ ≻ µ′; then λ = Reλ′ ≻ µ =
Reµ′ and λ0 ≻ µ0. Thus L0(π,X) has a maximal element λ0 and λ0 ∈ E0(π). We fix such a
λ0 once and for all. Since λ0 lies in the closure of D+(P0) there is a unique P containing P0

such that λ0 ∈ D+(P ). This will turn out to be the P which appears in Lemma 4.2.
To obtain the representation ρ we have to apply some results that appear in an unpublished

manuscript of Harish-Chandra [5] but, to the best of my knowledge, nowhere else.
D(P0) is the sum of D1 = D(P ) and its orthogonal complement D2. A is a product A1A2,

where A1 = A(P ) =
{
eH
∣∣ H⊥D2

}
and A2 =

{
eH
∣∣ H⊥D1

}
. Let L1(π,X) be the projection

of L(π,X) on D1 ⊗C. The first result we need from [5] is that Ψ(a) = Ψ(a1, a2) = Ψ(eH1 , a2)
admits an expansion

(4.3) e−⟨δ,H1⟩
∑

λ1∈L1(π,X)

ϕλ1(H1, a2)e
⟨λ1,H1⟩

valid for a1 in the interior of A+
1 = A+(P ). ϕλ(H1, a2) is a polynomial function of H1 whose

coefficients are analytic functions of a2. The degrees of these polynomials are bounded. If
a = eH ∈ A+ = A+(P0) then

(4.4) ϕλ(H1, a2)e
⟨λ1−δ,H1⟩ =

∑
pλ(H)e⟨λ−δ,H⟩

where the sum is taken over all λ ∈ L(π,X) whose projection on D1 ⊗C is λ1.
To exploit this expansion we have to generalize some considerations to be found in §9.1.2

of [16]. The generalization being quite formal, we shall be as sparing as possible with proofs.
Choose a Levi factor M of P over R such that M(R) is selfadjoint. Let p, m, n, k in g

be the complexifications of the Lie algebras of P (R), M(R), N(R), and K and let P, M,
N, and K be their universal enveloping algebras. Let q be the orthogonal complement of m
in k ∩ gder. As on p. 269 of [16], but with a different result, we define Q to be the image of
the symmetric algebra of q in A.

Note that
dim q = dim g− dim p = dim n

and that
dim g = 2dim q+ dimm.



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 55

Let K1 = K ∩M(R). It is a maximal compact subgroup of M(R). Let U be a compact
subset of M(R) with U = K1U = UK1. As m varies over U the eigenvalues of adm in the
orthogonal complement of m in gder lie in compact subset of C×, say{

z

∣∣∣∣ 1

R
⩽ |z| ⩽ R

}
.

Let A+
1 (R) be the set of all a in A1 such that α(a) > R for every root of A1 in n. If m = m1a,

m1 ∈ U , a ∈ A+
1 (R) the centralizer of m in g lies in m. Moreover

(4.5) g = adm(q)⊕m⊕ q.

To see this one has only to verify that

adm(q) ∩ (m+ q) = 0.

Since m and q are invariant under K1 and M(R) = K1AK1 we may suppose that m1, and
hence m, lies in A. Suppose X lies in the above intersection. Let θ be the automorphism of
G(C) such that θ(g−1) is the conjugate transpose of g with respect to the hermitian form
introduced earlier. θ is a Cartan involution. Let H lie in the Lie algebra of A1 and set

XH = (adH)2X.

Then XH ∈ k and adm(XH) ∈ k. Consequently

adm(XH) = θ
(
adm(XH)

)
= adm−1(XH)

and
adm2(XH) = XH .

Since adm has only positive eigenvalues and since its centralizer in g is m, this equation
implies that XH ∈ m. Thus

(adH)3X = adH(XH) = 0.

However, adH is semisimple; so XH = 0. Since H was arbitrary in the Lie algebra of A1, X
lies in m. Since both m ∩ q and m ∩ adm(q) must be zero, X is zero.

The relation (4.5) yields an isomorphism

A ≃ adm(Q)⊗M⊗Q ≃ Q⊗M⊗Q.

If X ∈ A we let Xm be the corresponding element on the right. The function Ψ restricted
to M(R) yields a function on M(R) with values in W (X). If X ∈ M we denote the result
of applying X to this function at the point m by Ψ(m,X). The actions τ1 and τ2 of K on
W (X) yield actions of k. Let X → X∼ be the involution of k defined by X∼ = −X, X ∈ k.
If X ∈ A and

Xm =
∑

Xi ⊗ Yi ⊗ Zi

then
XΨ(m) =

∑
τ1(Z

∼
i )Ψ(m,Yi)τ2(Z

∼
i ).

Let P = θ(P ). Then P is defined over R and P ∩ P =M . Moreover

g = n+m+ q

and
A = NMQ.
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If X =
∑
YiZi, Yi ∈ M, Zi ∈ Q then

Xm =
∑

1⊗ Yi ⊗ Zi.

Suppose X ∈ n. Let X = θ(X), X ∈ n. Then

Y = X +X

lies in q. Let X ′ = adm(X), X
′
= θ(X ′) and

Y ′ = X ′ +X
′
= X ′ + θ

(
adm(X)

)
.

Since
adm(Y ) = X ′ + adm(X) = X ′ + θ

(
ad θ(m)(X)

)
we have

θ
({

adm− ad θ(m)
}
X
)
= Y ′ − admY.

We are still assuming that m = m1a, m1 ∈ U , a ∈ A+
1 (R); the restriction of adm− ad θ(m)

to n is therefore invertible. Let F be the ring of functions generated by the matrix coefficients

of its inverse. F does not contain 1. Replacing X by
{
adm− ad θ(m)

}−1
X, we see that

X =
∑

fi(m) adm(Xi) +
∑

gi(m)Zi

with fi, gi in F and Xi, Zi in Q. Then

Xm =
∑

fi(m)Xi ⊗ 1⊗ 1 +
∑

gi(m)1⊗ 1⊗ Zi.

One proves more generally by induction on the degree that

(4.6) Xm = X0 +
∑
i

fi(m)Xi

where fi ∈ F, Xi ∈ Q⊗M⊗Q and where X0 ∈ M⊗Q ≃ MQ is uniquely defined by the
condition that X −X0 ∈ nA.
Notice that as a function of a ∈ A+

1 an element of F is a linear combination of products

of the functions
{
α(a)− α−1(a)

}−1
, α a root of A1 in n with coefficients that are analytic

functions of m1. Moreover
{
α(a)− α−1(a)

}−1
admits an expansion.

(4.7)
∞∑
n=0

e−(2n+1)⟨α,H⟩

for a = eH in A+
1 (R).

If X ∈ D, the centralizer of K in A, and if M(X) is the linear transformation of W (X)
adjoint to the operator

u⊗ v → π(X)u⊗ v

on V (X)⊗ V ∗(X) then
XΨ =M(X)Ψ.

λ0 ∈ D1 was fixed some time ago. There is at least one λ01 ∈ L1(π,X) with Reλ01 = λ0.
Fix such a λ01. If m ∈ M(R) we write m = k1ak2 with k1, k2 in K1 and a in A. We write
a = a1a2, a1 = eH1 , and set

Φ(m) = e⟨λ
0
1−δ,H⟩τ1(k

−1
2 )ϕλ01(H1, a2)τ2(k

−1
1 ).



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 57

Because of the uniqueness of the expansion (4.3), Φ is well-defined. The elements of K⊗M⊗K
act on Φ. X ⊗ Y ⊗ Z sends Φ to Φ′ with

Φ′(m) = τ1(Z
∼)Φ(m,Y )τ2(X

∼).

Let X ∈ D and let X0 be defined as in (4.6); then X0 ∈ K⊗M⊗ K and

(4.8) X0Φ =M(X)Φ.

To see this we start from the equation XΨ(m) =M(X)Ψ(m). If we set m2 = k1a2k2 and

ϕλ1(H1,m2) = τ1(k
−1
2 )ϕλ1(H1, a2)τ2(k

−1
1 )

the function M(X)Ψ(m) has an expansion∑
λ1∈L1(π,X)

M(X)ϕλ1(H,m2)e
⟨λ1−δ,H⟩.

The function XΨ(m) is equal to

X0Ψ(m) +
∑

fi(m)XiΨ(m).

X0 and the Xi are acting as elements of K ⊗M ⊗ K. Because of (4.7) each fi(m) has an
expansion ∑

µ1

εµ1(m2)e
−⟨µ1,H1⟩

valid for m2 ∈ U , a1 ∈ A+
1 (R), where U is a compact set in M(R) and R = R(U) is chosen

as before. µ1 runs over the projections on D1 of sums of positive roots of A in n. The sums
are not empty and µ1 is never zero. We may, for convergence offers no difficulty (cf. 16),
apply Xi to Ψ term by term, expand the product fi(m)XiΨ(m) formally, add the results,
and then compare coefficients of the exponentials e⟨λ1−δ,H1⟩ on both sides of the equation.

We are interested in the terms corresponding to λ01. If we incorporate the exponential, the
term on the right is M(X)Φ(m). At first sight the term on the left seems more complicated.
Suppose, however, that µ1 is the projection on D1 of a sum of positive roots of A in n, ν1 lies
in L1(π,X), and ν1 − µ1 = λ01. Let λ

0
1 be the projection of λ′ in L(π,X) and let λ = Reλ′;

let ν1 be the projection of ν ′ and let ν = Re ν ′. Then

Reλ01 = λ0

and, if as before we define ν0 to be the projection of ν on the sum of D0 and DF (ν), then

Re ν1 = ν +
∑
j /∈F (λ)

cjαj = ν0 +
r∑
i=1

biαi +
∑
j /∈F (λ)

cjαj

with bi ⩽ 0. Also

µ1 =
r∑
i=1

diαi +
∑
j /∈F (λ)

ejαj

with di ⩾ 0. Moreover, at least one di, with i ∈ F (λ), is positive. We have

ν0 +
r∑
i=1

(bi − di)αi = λ0 +
∑
j /∈F (λ)

(ej − cj)αj.
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It follows from Lemma 4.5 that ν0 ≻ λ0. By the very choice of λ0, ν0 is therefore equal to λ0.
However if i ∈ F (λ) then

B(βi, ν
0 − λ0) = di − bi.

Since this is positive for at least one i, ν0 ̸= λ0. This is a contradiction. The term on the left
in which we are interested is therefore X0Φ(m). The relation (4.8) follows.

D contains Z. As a linear space A is a sum

M+ nM+Mn+ nMn

and
Z ⊆ M+ nMn.

Thus if X ∈ Z = ZG then X0 belongs to M and in fact to ZM . The map X → X0 is an
injection of ZG into ZM and turns ZM into a finite Z-module. Notice also that M(X) is a
scalar m(X)I if X ∈ ZG.

According to (4.4) the restriction of Φ to A has an asymptotic expansion
∑
pλ(H)e⟨λ−δ,H⟩

where λ runs over those elements of L(π,X) whose projection on D1 ⊗C is λ01. Suppose ν
′ is

one of the indices for this sum. Let ν = Re ν ′ and define ν0 as before. We can again apply
Lemma 4.5 to see that ν0 = λ0. Thus if F =

{
i
∣∣ B(αi, λ

0) > 0
}
then F = F (ν) and

(4.9) Re
{
B(βiF , ν)

}
⩽ 0, i /∈ F.

In spite of the fact that Φ is not an eigenfunction of ZM but only of the image of ZG in ZM
the considerations of §9.1.3 of [16], and hence those of its appendix as well as those of [5], may
be applied to it. We do not want to apply them to obtain an asymptotic expansion, which we
already have; we want to apply a further result (Theorem 4) of [5] that in conjunction with
(4.9) and Lemma 3.7 easily implies the existence of a constant c and an integer d such that

(4.10) πδ1(m)
∥∥Φ(m)

∥∥ ⩽ c
(
1 + l(m)

)d
πλ0(m)ΞM(m)

for all m. δ1 is the projection of δ on D1.
We had fixed X but we may let it grow without changing λ0. Thus

Φ(m)(u⊗ v) = Φ(m;u, v)

is defined for all K-finite µ ∈ V , v ∈ V ∗.

Lemma 4.7. Suppose v in V ∗ is K-finite. If the function Φ
(
m; π(k)u, v

)
vanishes identically

in m and k for some nonzero K-finite u in V then it vanishes identically for all such u.

The function ϕ(m) =
〈
π(m)u, v

〉
, m = a1m2, a1 = eH1 ∈ A1, m2 = k1a2k2, a2 ∈ A2, k1,

k2 ∈ K1, admits an asymptotic expansion
∑
aλ1(m;u, v)e⟨λ1−δ,H1⟩ with

aλ01(m;u, v)e⟨λ
0
1−δ,H1⟩ = Φ(m,u, v).

Suppose X ∈ A and write

Xm = X0 +
∑

fi(m)Xi.

For this we have to constrain m2 to vary in some compact set U and a1 to vary in A+
1 (R),

R = R(U). Then〈
π(m)π(X)u, v

〉
= Xϕ(m) = X0ϕ(m) +

∑
i

fi(m)Xiϕ(m).
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The symbol Xϕ(m) denotes the value of X applied to the function ϕ(g) =
〈
π(g)u, v

〉
at the

point m. X0 and Xi are applied as elements of K⊗M⊗ K.
The considerations used to prove the equality (4.8) show that if u′ = π(X)u then

aλ01(m;u′, v) is the coefficient of e⟨λ
0
1−δ,H1⟩ in the expansion of X0ϕ(m).

X0 =
∑

1⊗ Yj ⊗ Zj

with Yj ∈ M, Zj ∈ K. Applying Zj we replace the coefficient aλ01(m,u, v) by aλ01
(
m,π(Zj)u, v

)
.

If Φ
(
m,π(k)u, v

)
= 0 for all m and k, this is zero. If the coefficient is zero before Yj is applied

it is zero after. Since every K-finite vector in V is of the form π(X)u, X ∈ A, the lemma
follows.
There is certainly at least one K-finite v in V ∗, which we fix once and for all, such that

Φ(m;u, v) is not zero for all K-finite u.
Let T be the Banach space of continuous functions θ on M(R) for which

∥θ∥ = sup

∣∣θ(m)
∣∣(

1 + l(m)
)d−1

πλ0(m)ΞM(m)
<∞.

If m ∈M(R) let r(m)θ be the function whose value at m1 is

θ(m1m)

Let W be the space of all θ in T for which

lim
m→m0

∥∥r(m)θ − r(m0)θ
∥∥ = 0

for all m0. If u ∈ V is K-finite then

θu : m→ πδ1(m)Φ(m;u, v)

lies in W because of (4.10). Let V be the closed subspace of W generated by the functions
r(m)θu.

Lemma 4.8. The representation r of M(R) on V admits a finite composition series.

Let V0 be the space of functions in V of the form

θ = r(f)θ′ =

∫
M(R)

f(m)r(m)θ′dm

with f ∈ C∞
c

(
m(R)

)
. If X ∈ ZG ↪→ ZM and θ ∈ V0 then

(4.11) Xθ = m′(X)θ

if m′(X) = m(X ′), where X ′ is the element of ZM defined by

X(πδ1ϕ)(m) = πδ1(m)X ′ϕ(m).

If K1 = K ∩M(R), if φ1 and φ2 are two continuous functions on K1, and if θ ∈ V0 let

θ(m;φ1, φ2) =

∫
K1

∫
K1

φ1(k1)θ(k1mk2)φ2(k2) dk1 dk2.

If φ′
1(k) = φ1(kk

−1
1 ) and φ′

2(k) = φ2(k
−1
2 k) then

θ(k1mk2;φ1, φ2) = θ(m,φ′
1, φ

′
2).
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If θ = r(m1)θu then

θ(m,φ1, φ2) = πδ1(m)

∫∫
φ1(k1)Φ(k1mm1k2;u, v)φ2(k2) dk1 dk2

= πδ1(m)

∫∫
φ1(k1)Φ

(
mm1, π(k2)u, π

∗(k−1
1 )v

)
φ2(k2) dk1 dk2

= πδ1(m)Φ(mm1, u
′, v′)

with

u′ =

∫
φ2(k2)π(k2)u dk2, v′ =

∫
φ1(k1)π

∗(k−1
1 )v dk1.

In particular, if v′ = 0 then θ(m,φ1, φ2) = 0 for θ = r(m1)θu and hence, by continuity, for any
θ in V0. There is a closed subspace of finite codimension in the space of continuous functions
on K1, invariant under left and right translations, such that v′ = 0 whenever φ1 lies in this
subspace. Factoring out the subspace, we may regard φ1 as varying over a finite-dimensional
space. Let X1 be a finite set of classes of irreducible representations of K1. For other, more
obvious, reasons, if θ is constrained to lie in the subspace V(X1) of V0 spanned by vectors
transforming according to one of the representations in X1, then φ2 may be regarded as
varying over a finite-dimensional space. Using (4.11) and a simple variant of Proposition
9.1.3.1 of [16], we conclude that the space of functions m→ θ(m;φ1, φ2), where θ ∈ V(X1)
and φ1 and φ2 are continuous functions on K1, is finite-dimensional. Since φ1 and φ2 may be
allowed to approach the delta-function, we conclude that V(X1) itself lies in this space and is
finite-dimensional. Since V0 is dense in V every irreducible representation of K1 occurs with
finite multiplicity in V.

To complete the proof we need a well-known fact, which we state as a lemma.

Lemma 4.9. Let X → m′(X) be homomorphism of ZG ↪→ ZM into C. There are only a
finite number of infinitesimal equivalence classes of quasi-simple irreducible representations τ
of M(R) such that

τ(X) = m(X)I

for X ∈ ZG.

Since there are only a finite number of ways of extending m to a homomorphism of ZM into
C, it is enough to prove the lemma for G =M ; that is, we may assume that m′ is already
given on ZM and that

τ(X) = m′(X)I

for all X ∈ ZM .
Let τ act on W . We saw in Lemma 3.5 that the restriction of τ to the connected

component M0(R) is the direct sum of finitely many irreducible representations. Let τ 0,
acting on W 0 ⊆ W , be one of them. Because of Theorem 4.5.8.9 of [16], there are only finitely
many possibilities for the class of τ 0.

Suppose W ′ is the space of all functions φ on M(R) with values in W 0 satisfying

φ(m0m) = τ 0(m0)φ(m), m0 ∈M0(R).

M(R) acts on W ′ by right translations. There is an M(R)-invariant map from W ′ to W
given by

φ→
∑

M0(R)\M(R)

τ(g−1)φ(g).
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We shall verify that W ′ admits a finite composition series

0 = W0 ⫋ W1 ⫋ W2 ⫋ · · · ⫋ Wn = W ′.

Then τ must be equivalent to the representation of M(R) on one of the quotients Wi−1\Wi.
From this the lemma follows.

To show the existence of a finite composition series all we have to do is show that if

0 = W0 ⫋ W1 ⫋ · · · ⫋ Wn = W ′

is any chain of M(R)-invariant subspaces then n ⩽
[
M(R) :M0(R)

]
. We could instead work

with spaces of K-finite vectors invariant under the pair K, M. If K0 = K ∩M0(R) then W ′

admits a composition series of length
[
M(R) :M0(R)

]
with respect to the pair K0, M. Any

chain invariant with respect to this pair, and, a fortiori, any chain invariant with respect to
K, M, has therefore length at most

[
M(R) :M0(R)

]
.

We return to the proof of Lemma 4.8. Let τ1, . . . , τs be the classes corresponding to the
given homomorphism m′. Choose for each i an irreducible representation σi occurring in the
restriction of τi to K1. Set X1 = {σ1, . . . , σs}.
Suppose V′′ ⫋ V′ are closed M(R)-invariant subspaces of V. Let σ be a representation

of K occurring in W0 = V′′\V′. Let W(σ) be the space of all vectors in W0 transforming
according to σ. W(σ) is finite-dimensional. Among the nonzero subspaces of W(σ) obtained
by intersecting it with a closed M(R) -invariant subspace of W0, there is a minimal one
W′(σ). Let W′ be the intersection of all closed invariant subspaces of W0 that contain W′(σ).
Let W′′ be the closure of the sum of all closed invariant subspaces of W′ that do not contain
W′(σ). Then W′′ ⫋ W′ and the representation of M(R) on W′′\W′ is irreducible. Since it
must be one of τ1, . . . , τs, it contains one of σ1, . . . , σs.
Suppose we have a chain of closed M(R)-invariant subspaces

0 ⫋ V1 ⫋ · · · ⫋ Vn = V.

Since one of σ1, . . . , σs is contained in the representation ofK1 on the quotient of the successive
subspaces, n ⩽ dimV(X1). On the other hand, if these quotients are not irreducible the
chain can be further refined. The lemma follows.

As before let P = θ(P ). Let U be the space of continuous functions φ on G(R) with values
in V which satisfy the following two conditions:

(i) If n ∈ N(R) then φ(ng) = φ(g).
(ii) If m ∈M(R) then φ(mg) = π−1

δ1
(m)r(m)φ(g).

The representation of G(R) on U by right translations is the induced representation IPr . It is

easily seen that every representation of K occurs with finite multiplicity in IPr and that

IPr (X) = m(X)I, I ∈ ZG.

Thus IPr admits a finite composition series. We now show that π is infinitesimally equivalent

to a subrepresentation of IPr . For this we have only to define an injection of the K-finite
vectors in V into U which commutes with the action of K and U.

Recall that the vector v was fixed. Suppose u is K-finite. If k1 ∈ K1 then

Φ
(
mk−1

1 , π(k1k)u, v
)
= Φ

(
m,π(k)u, v

)
.

We define φu in U by

(4.12) φu(nmk) : m1 → πδ1(m1)Φ
(
m1m,π(k)u, v

)
.
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The map u→ φu is by our choice of v, an injection; it clearly commutes with the action of
K. To verify that it commutes with the action of A we have only to check that

φπ(X)u(1) =
(
IPr (X)φu

)
(1).

Set φu = φ and φπ(X)u = φ′. Then φ(m) = Φ(m;u, v) and φ′(m) = Φ
(
m,π(X)u, v

)
.

Recall that if X0 is defined as in (4.6) and equals∑
1⊗ Yi ⊗ Zi

then
φ′(m) =

∑
Yiφi(m).

On the right Yi is applied to a function of m and

φi(m) = Φ
(
m,π(Zi)u, v

)
.

X0 was so chosen that

X −
∑

YiZi ∈ nA

It is clear that if Y ∈ n and ψ is K-finite in U then

IPr (Y )ψ(1) = 0.

Thus
IPr (X)φ(1) =

∑
IPr (Yi)I

P
r (Zi)φ(1) =

∑
IPr (Yi)φπ(Zi)u(1).

A close examination of the definition (4.12) shows that IPr (Yi)φπ(Zi)u(1) is the function
m→ Yiφi(m).
There must be an irreducible constituent ρ of the representation r on V such that π is

infinitesimally equivalent to a subrepresentation of IPρ . This ρ is the representation figuring
in Lemma 4.2, which we are still in the process of proving. We must show that ρ is essentially
tempered. Accepting this for the moment, we show that π is infinitesimally equivalent to the
representation JPρ .

An easy computation (for a special case, see Chapter 5 of [16]) shows that IPρ and IPρ have
the same character and therefore the same irreducible constituents.
Let ρ act on W . JPρ was introduced as the representation on the quotient I0(W )/I1(W ).

All we have to do is verify that π cannot be a constituent of the restriction of IPρ to I1(W ).

The λ = λ(ρ) that figures in Lemma 3.8 is λ0. If π is a constituent of the restriction of IPρ
to I1(W ) then, by Lemma 3.12,

(4.13)
〈
π(am)u, v

〉
= o
(
δ−1
P (a)πλ0(a)

)
if m is fixed in M(R) and a→ ∞ in A+(P ). However, Theorem 3 of [5] assures us that the
expansion (4.3) converges decently for fixed a2 (cf. [16]), Appendix 3). We conclude from
(4.13) and Lemma A.3.2.3 of [16] that the terms of (4.3) with Reλ1 = λ0. This certainly
contradicts the choice of λ0.

We apply Lemma A.3.2.3 in the following manner. Choose λ01 ∈ L1(π,X) with Reλ01 = λ0.
Let a2 be fixed. If a1 = eH1 lies in A1 then δP (a1) = e⟨δ,H1⟩. Thus∑

λ1∈L1(π,X)

ϕλ1(H1, a2)e
⟨λ1−λ01,H1⟩ = o(1)
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as a1 → ∞ in A+
1 = A+(P ). If ε > 0 we can choose R > 0 and a finite subset S of L1(π,X)

so that if ⟨α,H1⟩ ⩾ R + εB(H1, H1) when α is a root of A1 in n then∣∣∣∣∣∣
∑

λ1∈L1(π,X)

ϕλ1(H1, a2)e
⟨λ1−λ01,H1⟩

∣∣∣∣∣∣ ⩽ ε

and ∣∣∣∣∣∣
∑
λ1 /∈S

ϕλ1(H1, a2)e
⟨λ1−λ01,H1⟩

∣∣∣∣∣∣ ⩽ ε.

Then ∣∣∣∣∣∣
∑
λ1∈S

ϕλ1(H1, a2)e
⟨λ1−λ01,H1⟩

∣∣∣∣∣∣ ⩽ 2ε.

Lemma A.3.2.3 then implies that ∣∣∣ϕλ01(H1, a2)
∣∣∣ ⩽ 2ε

for all H1. Since ε is arbitrary φλ01(H1, a2) = 0.
It remains to show that ρ is essentially tempered. Any K1-finite linear form on V is a

linear combination of the functionals

θ → θ(m1, φ1, φ2)

where m1 ∈M(R) and φ1, φ2 are continuous functions on K1. Thus∣∣∣f(r(m)θ
)∣∣∣ ⩽ c

(
1 + l(m)

)d−1
πλ0(m)ΞM(m).

A similar inequality is valid for the representation ρ. Set ρ′ = π−1
λ0 ⊗ ρ. If w ∈ W is K1-finite

and f is a K1-finite linear form on W , an inequality∣∣∣f(ρ′(m)w
)∣∣∣ ⩽ c

(
1 + l(m)

)d−1
ΞM(m)

is satisfied.
To finish up we have only to prove the following lemma, in which we replace M by G and

ρ by π in order to allow the symbols ρ, M , and P to take on a new meaning.

Lemma 4.10. Suppose that π and π∗ are quasi-simple irreducible representations of G(R)
on the Banach spaces V and V ∗ and that there is a nontrivial G(R)-invariant bilinear pairing
(u, v) → ⟨u, v⟩ of V × V ∗ into C. Suppose there is an integer d such that for every K-finite
u and v an inequality ∣∣∣〈π(g)u, v〉∣∣∣ ⩽ c

(
1 + l(g)

)d
ΞG(g)

is satisfied. Then there is a parabolic subgroup P of G over R and a unitary representation ρ
of M(R), square-integrable modulo the center, such that π is a constituent of IPρ .

We start from the expansion (4.1) and show that if λ0 ∈ L(π,X) then ReB(βi, λ0) ⩽ 0 for
all i. If not, there is a linear combination β =

∑
biβi with positive coefficients such that

ReB(β, λ0) > 0. Choose H0 in the Lie algebra of A so that ⟨λ,H0⟩ = B(β, λ) for all λ. Then
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eH0 lies in the interior of A+. Taking Lemma 3.6 and the assumption of the lemma into
account, we see that for H in a small neighborhood of H0∑

λ∈L(π,X)

pλ(tH)et⟨λ−λ0,H⟩ = o(1)

as t→ ∞. Applying Lemma A.3.2.3 as before we conclude that pλ0(H) = 0, a contradiction.
Let

E(λ) =
{
i
∣∣ ReB(βi, λ) = 0

}
.

Let E be maximal in the collection of E(λ). P will be defined by demanding that P ⊇ P0, a
fixed parabolic subgroup minimal over R, and that D(P ) be spanned by D0 and {βi | i ∈ E}.
This decided, we turn to the expansion (4.3). There is at least one λ01 in L1(π,X) with

Reλ01 = 0. We fix it and define the function Φ(m) as before. If λ1 ∈ L1(π,X) then
ReB(βi, λ1) ⩽ 0 for i ∈ E. This allows us to argue as before and to show that the new Φ
satisfies (4.8).
It satisfies a much improved form of (4.10). If λ ∈ L(π,X) has projection λ1 in L1(π,X)

and Reλ1 = 0 then, by the maximality of E, B(βi, λ) < 0 for i /∈ E. Since the set E(π) is
finite there is a µ ∈ D(P0) such that B(βi, µ) = 0 for i ∈ E and B(βi, µ) < 0 for i /∈ E and
such that

B(βi, µ) ⩾ ReB(βi, λ)

if λ ∈ L(π,X) and the real part of the projection of λ on D(P )⊗C is zero. Theorem 4 of [5]
implies that there are an integer d and a constant c such that

(4.14) πδ1(a)
∥∥Φ(a)∥∥ ⩽ c

(
1 + l(a)

)d
ΞM(a)e⟨u,H⟩

for a = eH in A+(P ′
0), where P

′
0 = P0 ∩M . Using this inequality instead of (4.10) we proceed

as before to define ρ. π is then a constituent of IPρ . Since it follows easily from (4.14) that ρ
is square-integrable modulo the center, the lemma is proved.
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