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1. INTRODUCTION

Suppose G is a connected reductive group over a global field F. Many of the problems of the
theory of automorphic forms involve some aspect of study of the representation p of G (A(F ))
on the space of slowly increasing functions on the homogeneous space G(F )\G(A(F )) It is
of particular interest to study the irreducible constituents of p. In a lecture [9], published
some time ago, but unfortunately rendered difficult to read by a number of small errors and
a general imprecision, reflections in part of a hastiness for which my excitement at the time
may be to blame, I formulated some questions about these constituents which seemed to me
then, as they do today, of some fascination. The questions have analogues when F' is a local
field; these concern the irreducible admissible representations of G(F).

As I remarked in the lecture, there are cases in which the answers to the questions are
implicit in existing theories. If GG is abelian they are consequences of class field theory,
especially of the Tate-Nakayama duality. This is verified in [10]. If F' is the real or complex
field, they are consequences of the results obtained by Harish-Chandra for representations
of real reductive groups. This may not be obvious; my ostensible purpose in this note is to
make it so. An incidental, but not unimportant, profit to be gained from this exercise is a
better insight into the correct formulation of the questions.

Suppose the F is the real or complex field. Let TI(G) be the set of infinitesimal equivalence
classes of irreducible quasi-simple Banach space representations of G(F') [16]. In the second
section we shall recall the definition of the Weil group W of F' as well as that of the associated
or dual group G of G and then introduce a collection ®(G) of classes of homomorphisms of

the Weil group of F' into G. After reviewing in the same section some simple properties of
the associate group we shall, in the third section, associate to each ¢ € ®(G) a nonempty
finite set I, in II(G). The remainder of the paper will be devoted to showing that these
sets are disjoint and that they exhaust II(G). For reasons stemming from the study of
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L-functions associated to automorphic forms we say that two classes in the same II, are
L-indistinguishable.

Thus if II(G) is the set of classes of L-indistinguishable representations of G(F'), then
by definition the elements of II(G) are parametrized by ®(G). It will be seen that if G is
quasi-split and G is obtained from it by the inner twisting ¢ then i defines an injection
®(G1) — P(G) and hence an injection II(Gy) < II(G). It will also be seen that for G
quasi-split the set ﬁ(G) is, in a sense to be made precise later, a covariant function of G.
These properties of II(G) provide answers to the questions of [9].

The classification of L-indistinguishable representation throws up more questions than it
resolves, since we say nothing about the structure of the sets I, themselves and hence do not
really classify infinitesimal equivalence classes. None the less we do reduce the general problem
to that of classifying the tempered representations. This is a considerable simplification. For
example, Wallach [I5] has proved that the unitary principal series are irreducible for complex
groups. From this it follows that each II, consists of a single class; so the classification is
complete in this case. Since ®(G) may, when F' is complex, be easily identified with the
orbits of the Weyl group in the set of quasi-characters of a Cartan subgroup G(C), it is
likely that the classification provided by this paper coincides with that of Zhelobenko. The
set II(G) has been described by Hirai [7, 8] for G = SO(n, 1) or SU(n,1). It is a simple and
worthwhile exercise to translate his classification into ours. In fact, the definitions of this
paper were suggested by the study of his results. It would be interesting to know if each II,,
consists of a single class when G is GL(n) and F' is R.

Important though these problems are, we do not try to decide which elements of which
II, are unitary or how the classes in a II, are unitary or how the classes in a I, decompose
upon restriction to a maximal compact subgroup of G(R).

The three main lemmas of this paper are Lemmas 3.13, 3.14, and 4.2. The first associates
to each triplet consisting of a parabolic subgroup P over R, a tempered representation of
a Levi factor of P(R), and a positive quasi-character of P(R) whose parameter lies in the
interior of a certain chamber defined by P, an irreducible quasi-simple representation of G(R).
The second lemma shows that these representations are not infinitesimally equivalent. The
third shows that they exhaust the classes of irreducible quasi-simple representations.

As we observed above, the proofs are not very difficult. Unfortunately, they rely to some
extent on unpublished results of Harish-Chandra. To prove that the sets II, are disjoint
we use results from [6], which includes no proofs. Moreover, and this is more serious, for
the proof of Lemma 4.2 we use results from [5], which has only been partly reproduced in
Appendix 3 of [16]. It contains theorems on differential equations which are used to study
the asymptotic behavior of spherical functions not only in the interior of a positive Weyl
chamber, as in [16], but also on the walls.

2. THE ASSOCIATE GROUP

We begin by recalling some of the constructions of [9]. If F' is C the Weil group W is
C*. If F'is R the Weil group W consists of pairs (z,7), z € C*, 7 € g(C/R) = {1, 0} with
multiplication defined by

(21,71)(22,72) = (2171(2’2)(17177277172)-
Here a;, ., =1iftm =1orn=1and a, ., = —1if ; = 7, = 0. For both fields we have an
exact sequence
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X

1 y F » Wr » g(F/F) —— 1

Suppose GO is a connected reductive complex algebraic group, BY a Borel subgroup of GO
and T0 a Cartan subgroup of G0 in BP. For each root @ of T° simple with respect to BP let
Xz # 0 in the Lie algebra g of G be such that
AdH(Xs) = a(t)Xs,  teTO.
Let o
A(GO, B, 70, {Xa}>
be the group of complex analytic automorphisms w of GO leaving BY and 70 invariant and
sending X3 to X5, where wa is defined by
wa(wt) = a(t).
If instead of Ba, Ta, {Xa} we choose EO, TO, {X 4} with the same properties there is a

unique inner automorphism v such that

B = (B T’ =u(T°), Xya=uv(Xa).
Then o
A(GO,EO,TO, {70/\}) = {wwwl w e A(GO, BO,TO, {Xa}) }
Suppose we have an extension

1 » G0 » G s Wr s 1

of topological groups. A splitting is a continuous homomorphism from W to G for which
the composition

~

Wg > G > We
is the identity. Each splitting defines a homomorphism of 1 of Wy into the group of
automorphism of G. The splitting will be called admissible if, for each w in W, (w)
is complex analytic and the associated linear transformation of the Lie algebra of GO is
semisimple. It will be called distinguished if there is a B%, a T°, and a collection {Xa}

such that n factors through a homomorphism of g(F/F) into A(GO BO, 70 {XA}>. Two

distinguished splittings will be called equivalent if they are conjugate under GO,

We introduce a category g( ) whose objects are extensions of the above type, with GO a con-
nected reductive complex algebraic group, together with an equivalence class of distinguished
splittings. These we call special. A homomorphism

Q: @1 — @2
of two objects in the category will be called an L-homomorphism if

G —2—— G,

NS
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is commutative, if the restriction of ¢ to G? is complex analytic, and if ¢ preserves admissible
splittings. Two L-homomorphisms will be called equivalent if there is a g € GY such that

@2 =adgo .
An arrow in our category will be an equivalence class of L-homomorphisms. For simplicity,
we do not distinguish in the notation between a homomorphlsm and its equivalence class.
For future reference we define a parabolic subgroup P of G to be a closed subgroup P such
that PO = P N G is a parabolic subgroup of G® and such that the projection P — W is
surjective.

We also remark that A(Gﬁ, Ba, Ta, {Xa}> contains no inner automorphisms. Thus if
o(F/F) — A(G%, B, 10, {X5}),
7:9(F/F) > A(Ga,FO,TO, {XIA})

are associated to two distinguished splittings of G there is a g € Ga, unique modulo the

center, such that
H=adgonoadg .
Suppose we are given a special distinguished splitting associated to the above map 7. Let
L be the group of rational characters of TO. If both variables on the right are treated as

algebraic groups

L= Hom(Tﬁ, C™).
Let conversely

L = Hom(C*,T9).
Define a pairing

LxL—7Z
by
X(/\(z)) = 2™ )‘> z e C~.

This pairing identifies L with Hom(L,Z). Associated to each root & of T0is a homomorphism
of SL(2, C) into GP. The composition

z 0 i)
z— (O 2_1) -G
factors through 70 and defines an element « of L. R o
Let A be the set of roots simple with respect to B?. Associated to G°, B, T% { X3} are

a connected reductive group G° over F', a Borel subgroup B° of G°, a Cartan subgroup 7°
in B°, and isomorphisms 7,, @ € A, of the additive group with a subgroup of B° such that

L = Hom(T, GL(1))

A:{a)aeﬁ}

and
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is the set of simple roots of T° with respect to B°. Moreover
adt(na(x)) = Na (oz(t)x), r€F, teTF).
The collection G°, B, T°, n, is determined up to canonical isomorphism by these conditions.
Any w in A(Ga, Ba, Ta, {Xa}> acts on L and L. There is a unique way of letting w act on G°
so that
wA(wt) = A(t), A€ L, teT(F),

and o

WNe () = Nya (), x € F.
The automorphism w so obtained is defined over F'. Thus

n:o(F/F) = A(G%, B, 10, {X5})
defines an element of H* (g(?/ F), Aut G0> and hence an F-form G of G°. In particular

G(F) = { g€ G°(F) | m(r)(g) = g ¥r € o(F/F) }.

Observe that the group G is quasi-split. Observe also that the data associated to two
special distinguished splittings of G are connected by a unique inner automorphism. It
follows readily that the group G, together with B, T, {n,}, is determined up to canonical
isomorphism by G.

Conversely, suppose we are given a quasi-split group G over F. Choose a Borel subgroup B
and a Cartan subgroup 7" in B all defined over F'. Interchanging the roles of L and L and of A

and 3, we pass from GG, B, and T to Ga, Ba, Ta, and {X,}. The group A(Ga, Bﬁ, Ta, {Xa}>

may be identified with the group of automorphisms of L that leave the set A invariant. Define
a homomorphism

o(F/F) - A(Gﬁ, B, 70, {Xa})
by
77(7'))\(7'(75)) = T()\(t)), ANel, te T(F).

This map allows us to define @, which again is determined up to canonical isomorphisms
by G alone.

Suppose G and G5 are two quasi-split groups over F' and ¢ : G; — G5 is an isomorphism
with ¢ ~17(v)) inner for each 7 in g(F/F). Choose g € G1(F) so that 1/ = v o ad g takes
B; to By and T; to T. Then 1)’ determines a bijection A; — A, as well as an isomorphism
¢’ Ly — Ly. These do not depend on the choice of g and determine an isomorphism
¢ : GY = GY. This isomorphism takes B? to BS, T0 to TD, and Xz, to Xg, if a; and as are
corresponding elements in A; and A,. Smce 't (1[) ) takes 17 to Ty, By to By, and is inner
it is the identity on 77. It follows readily that

(7)Y (M) = o' (m(7) A1)

Thus zZ may be extended to an isomorphism of @1 with @2 that preserves the splittings. It is
determined uniquely by the conditions imposed upon it.

These are of course the considerations which allowed us to define G in the first place. If
G1 = Gy = G then G may be realized either as G x Wr or as G9 x Wr but these two groups
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are canonically isomorphic. There are occasions when a failure to distinguish between G and
its realizations leads to serious confusion.

In general if (; is a connected reductive group over F' we may choose an isomorphism v
of G, with a quasi-split group G. The isomorphism 4 is to be defined over F and 1~ '7 (1)) is
to be inner for 7 € g(F/F). We may, taking into account the canonical isomorphisms above,
define él to be G. However, we should observe that the same difficulties are present here as
in the definition of the fundamental group; the isomorphism 1 we write G ().

There are some further observations to be made before the task of this paper can be
formulated. Let p(G) and p(G;) be respectively the sets of conjugacy classes of parabolic

~

subgroups of G and G that are defined over F. Let p(G) be the classes of parabolic subgroups
of G with respect to conjugacy under G°. We want to describe a bijection

p(G) < p(G)
and an injection R
p(G1) = p(G).
For the first we recall that for a given 7" and B and the corresponding T 6, BY we have
a bijection A <+ A. It is well known that p(G) is parametrized by the g(F/F)-invariant
subsets of A. The classes of parabolic subgroups of GO are parametrized by the subset of A.

The normalizer of PYin G is parabolic if and only if the associated subset of A is invariant
under g(F'/F'). This yields the bijection.
The injection will now be defined by

p(G1) = p(G).
Suppose P is a parabolic subgroup of G; defined over F'. I claim that here there is a g in
G1(F) such that if ¢/ =1 o ad g then P = ¢/(P;) is defined over F. The class of P depends

only on 1 and the class of P;. The required injection maps the latter class to the former. To
prove that g exists we use the following lemma.

Lemma 2.1. Let G’ and G be connected reductive groups over F. Let G be quasi-split and
let ¢ : G' — G be an isomorphism defined over F. Suppose v ~'7(v)) is inner for T € g(F/F).
If T' is a Cartan subgroup of G defined over F there is a ¢’ € G'(F) and a Cartan subgroup
T in G defined over F' such that ' =1 o ad g’ when restricted to T" yields an isomorphism
of T" with T that is defined over F.

Let G, be the derived group of G’ and let G.. be its simply connected covering group.
Define Gyer and G, in the same way. Lift ¢ to an isomorphism 9. : GL. — Gg.. Let Ty be
the inverse image of 7" in G’,.. Choose ¥ € T!.(F) with image # in T"(F) so that T, is the
centralizer of ¢ and T” the centralizer of . Set t; = s (’tv’) Since

(1) = Yo (Vi TWD)), 7 € 8(F/P),

the conjugacy class of ¢; is defined over F. By Theorem 1.7 of [T4] there is a § € Gs(F) such
that t = ad §(t;) lies in Ge(F). Let t be its projection in G(F). The centralizer T of t is
defined over F' and if ¢ is the projection of ¢’ = ¢ }(g) then ¢/ = 1) o ad g maps t' to t and
T’ to T. Since both #' and t are rational over F' the automorphism v'~!7(¢’) which is inner
commutes with ¢ and hence with all of T". It follows that v’ : T" — T is defined over F.
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We apply the lemma with G” equal to Gy and with T" equal to a Cartan subgroup 7} lying
in P;. Choose g so that if 1)’ = ¢ oad g then ¢/~17(¢’) lies in T} (F) for 7 € g(F/F). Then if

P =y'(P)
we have
T(P)=4' (') (P)) = ¢(P1) = P
and P is defined over F'. N
Let p(G) be the image of p(Gy) in p(G).

Lemma 2.2. [fﬁf O Py, and the class of Py lies in p(G1) so does the class of F?.

Choose P; in (G; that is defined over F. The parabolic subgroups of G; that are Qeﬁned
over F' and contain P; belong to different classes. So do the parabolic subgroups of G that
contain P;. We have only to verify that these sets contain the same number of elements.
Choose T7 in P; that is defined over F' and choose an isomorphism 1 of G; with a quasi-split
group G so that 1 ~17(¢) is inner and commutes with T} for all 7 € g(F/F). Let M, be a
Levi factor of P, containing 7T} and let S; be a maximal torus in the center of M;. Then
P =), M =¢(M), and S = (S1), as well as 9|g are all defined over F. Thus the
maximal split tori in S and S; have a common rank r» and P and P; are both contaiAned in
2" parabolic subgroups defined over F'. Since the number of parabolic subgroups of G that
contain P; is equal to the number of parabolic subgroups of GG that are defined over F' and
contain P the required equality follows.

The group Wp lies in G(F). Let ®(G;) be the subset of

HOngA(F) (WF, Gl)

consisting of these ¢ such that the class of any parabolic subgroup P containing ¢(Wg) lies
in p(G1) under the above injection. In particular, for the quasi-split group G

@(G) Homg (WF, G)

which is obviously a covariant functor of G.

We shall start in the next paragraph to relate ®(G) to II(G). There are some simple
properties of ®(G) to establish first. The group G(F') does not change on restriction of scalars
and neither does II(G). We had best check that this is also true for ®(G). Although there
is, in the present circumstances, only one nontrivial way to restrict scalars, namely from C
to R, I would prefer not to take this explicitly into account. R

Let E be a finite extension of F. We want first of all to define a faithful functor from G(F)
to G(F). We imbed E in F. Corresponding to this imbedding is an imbedding of Wg in Wip.
Actually there is some arbitrariness in both imbeddings. Since, up to equivalence, it has no
effect on the functor to be constructed, we ignore it. Suppose G" lies in G (E ) Choose a
distinguished splitting of G* and let 77 be the > corresponding action of W on GO, Let GO be
the set of functions h on Wy with values in GO satisfying

h(vw) = 7(v) (M(w)), veE Wpg.
Let n(v), v € W, send h to h' with
B (w) = h(wv).
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With respect to this action form the semi-direct product
It is easy to see that the given splitting of G is distinguished and that G liesin G (F'). Observe

also that there is an obvious bijection from p(G*) to p(G).

If we had chosen another distinguished splitting 7’ there would be a g € GO such that

7(w) =gn(w)g™", we Wkg.

The map h — I/ with //(w) = gh(w)g~! together with the identity on W would yield an
isomorphism between G and the group constructed by means of 77'; so we need not worry
about the arbitrariness of the distinguished splitting either.

Choose a set V' of representatives v for Wg\Wg. If w € W let

/

vw = dy(w)v', v, e V.
If & is an L-homomorphism from G/ to G} let
(1 xw) =a(w) xw, we Wg,

with respect to special distinguished splittings of GA and GA If w € Wg let a(w) be the
function in GO whose value at v € V is a(d,(w)). If h is a function in GO let A" be the
function in G defined by

W(v) =@(h(v), veV.
Define 61 and @2 as above and let ¢ be the homomorphism from the former to the latter
defined by

o(h x w) = ha(w) x w.
A little calculation, which will be left to the reader, shows that ¢ is in fact an L-homomorphism
and that its class is determined by that of ¢ alone and is independent of the auxiliary data.
The reader will also easily verify that the class determined by ¢ g01<p2 is (9.

Given ¢ we define ¢ as follows. If h x w, w € Wg, belongs to G/\ we let h be a function in
GO with A(1) = h. If
e(h xw)="h"xw
we set N
P(h xw)=h'(1) xw

The class of ¢ depends only on that of ¢. It is clear that this process inverts the operation of
the previous section. A slight variant of Shapiro’s lemma shows that the reciprocal is true.
Starting from ¢ we construct ¢; from @ we pass to ¢’. We have to show that ¢ and ¢’ lie in
the same class. We may assume that the set of representatives V' contains 1. Suppose

o(w) = hy X w
and define A in Gg by

It is easily verified that R
plg) =h¢'(g)h™", g€
Thus our functor is fully faithful. The object of G(F') corresponding to Wg is Wg.
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Suppose G is quasi-split over E and G over F' is obtained from G by restriction of scalars.
Then for any scheme Z over F

Homp(Z, Q) = Homg(Z @p E, G)

because restrictions of scalars is the right adjoint of base change. In particular if a Borel
subgroup B of G and a Cartan subgroup T" of B are given, then restriction of scalars yields

B and T in G} so G is quasi-split. We must verify that G is obtained from G/ by the functor
introduced above. o _
Let L’ be the group of functions A" on g(F/F) with values in L" satisfying

N(or)=0aN(1), o€ g(F/E),
and let A" be the set of A\’ that are zero on all but one coset of g(F/E) on which they take

values in A. All we have to do is show that L’ is isomorphic to L as a g(F/F) module in
such a way that A’ corresponds to A.

Since we have chosen an imbedding of E in F we may take E to be F. Map F ®@p E to
the ring R of F-valued functions a on g(F/F) satisfying

(o) = o(a(r)). o€ o(F/E),
by
a®pf — a:17 — 7(a)f
This is an isomorphism. Then
— Homp (GL(1)®F,F, T) — Homy, (GL(1) @ R, T)
Every 7 € g(F/F) yields by evaluation a map R — F and hence a map
Homp, (GL(1) ®r R, T) — Homp (GL(1) ®rF, f) = I

Thus every element of L yields a function on g(F/F) with values in L". The function is
easily seen to lie in L'. That the resulting map from L to L’ has the required properties is
easy to see.

If we take L to be Hom(L,Z) we may identify L with the space of functions A on g(F/F)

with values in L satisfying

AoT) = a()\(T)), occg(F/E).

A= Y (@A),
o(F/E)\a(F/F)
If 2 is an F-valued point in GL(l) then

)\(}\\(Z)) SN0 SVIES SIPYO Y H)\ ( )) = HTl{)\(T) </>\\(T)(TZ))}

because every rational character of GL(1) is defined over F'. In general we have an isomorphism

T(F) = Hompg(Spec F, T) = Hompg(Spec R, T) = T(R).

The pairing is
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Since each 7 € g(F/F) yields a map R — F, we may associate to each s € T(F) a function
7 — s(7) on g(F/F) with values in T(F). If s = A(z) then s(7) = A(7 )(7(2)). Since the

points /)\\(z) generate T(F) we have
1 ER RGIEE))S

In particular if s lies in T'(F') then s(7) = 5 is independent of 7 and lies in T'(F).

It has already been pointed out that the definition of the associated group of an arbitrary
connected reductive group (7 depends on the choice of an isomorphism ¢ : G; — G with
G quasi-split. However, composing 1) with an inner automorphism has no effect on the
construction. In particular, since ¥ ~'7(¢), 7 € g(F/F) is always supposed inner, ¢ could be
replaced by 7(1).

Lemma 2.3. Suppose ~C~;'1 and G are given over E with G quasi-split, together with an
isomorphism ¢ : G1 — G over E. Let Gy and G be obtained from Gy and G by restriction
of scalars. There is associated to ¢ an isomorphism ¢ : Gi — G over F defined up to

composition with an inner automorphism and Gy is obtained from G7 (V) by the restriction
of scalars functor from G(FE) to G(F).
Only the existence of 1) needs to be established. We imbed F in F and identify E with F
HomF(Gl ®F F, G ®F F) = HomF(G1 ®F F, G)
= HOHlE(G1 XRrp R, é)
and o o _
HomF(Gl ®F F, G1 ®F F) = HomE(G1 ®F R, Gl)
Start from the identity morphism on the left to get a morphism from G; ®r R to G,. On 1 the
other hand, if we choose a set of representatives p for g(#'/E) in g(#'/F) we may imbed F in
R by associating to o € F' the function whose value at each p is a. This yields a morphism
from Spec R to Spec F over E. _The two morphisms together yield a morphism from G, ®r R
to G1 ®g F. Composmg with w G1 ®Qp F — G we get a morphism from G; ®r R to G and

hence ¢ : G4 @p F — G.
The invariance of ®(G) under restriction of scalars is now clear. Suppose P is a parabolic

subgroup of G over F'. We may choose B and T in P. Now construct é B and T°. 0. Let
P be the parabolic subgroup of G Contamlng BY whose class corresponds to that of P. Let
N be the unipotent radical of P, N that of PO and let M = P/N, M= P/N It is easily
seen that M belongs to G(F) and that M is the associated _group of M. If P is another
parabolic subgroup in the same class as P there is a g € GO such that ng_1 P". The
1nduced map M — M is uniquely determined up to an inner automorphism by an element

of M. Thus if P" and P lie in corresponding classes in p(G) and p(G) the associated group
of M is canonically isomorphic, in the category G(F), P"/N".

Suppose ¥ : G1 = G is such that ~'7(¢) is inner for 7 € g(F/F). If P, is a parabolic
subgroup of G over F' we may always modify ¢ by an inner automorphism so that P = ¢(P;)
is defined over F'. We readily deduce the following lemma.



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 11

Lemma 2.4. Suppose Py is a parabolic subgroup of G4 over F and P1 15 a parabolic subgroup
of G1 whose class corresponds to that of P;. Then M1 Pl/Nl 15 canonically isomorphic in
the category g( ) to the associate group of M;.

Choose a splitting M, - P, defined over F' and a sphttmg Ml — P1 that carries
dlstlngulshed splittings of M1 to distinguished splittings of G1 The 1somorphlsm between

M1 and the associated group of M; depends on the choice of P, and Pl with M, and M1 as
Levi factors.

Lemma 2.5. Suppose P; and 181 are given as above with My and ]/\4\1 as Levi factors. There
15 a bijection n between the parabolic subgroups of G deﬁned over F' that contain M, as
a Levi factor and the parabolic subgroups of G1 that contain M1 as Levi factor such that
P1 =n(Py), and such that the isomorphism between M1 and the associated group of M, is
the same for all pairs Py, n(Py).

Take G quasi-split and let ¢» be an isomorphism from G; to G with ¢~!7(¢)) inner for
7 € g(F/F). We also suppose that there is a Cartan subgroup 7; in M; defined over F
such that each ~'7(¢)) commutes with the elements of 7. Then (T}), M = (M), and
P = 1(P,) are defined over F. In fact if P, is any parabolic subgroup over F' that contains
M, then P = ¢(P;) is defined over F. The definitions are such that we may prove the
assertions for G, M, P rather than Gy, My, P;. Choose a Borel subgroup B over F that is
contained in P and a Cartan subgroup T' of B that is also deﬁned over F'. Then build G BO,
70 , and {XA} We may replace G1 by G and suppose that P contains B. Since any two Lev1
factors of P are conjugate under PO (cf. [12], Theorem 7.1), we may also suppose that M
contains 7.

Let D(M) be the space of vectors in L ® R invariant under g(F/F) and orthogonal to the
roots of M. By a chamber in D(M) we mean a connected component of the complement of
the union of the hyperplanes

{aeDM) | (a,a)=0}

where @ is a root of 70 in G but not in M°. There is a bijection between chambers in
D(M) and parabolic subgroups P" of G that contain M as Levi factor. The subgroup P
corresponds to the chamber

C={aeDM)|{a,a)>0if Xzep, Xz ¢ m}.

p and m are the Lie algebras of P and M.

There is also a bijection between chambers of D(M) and parabolic subgroups of G that
are defined over F' and contain M as Levi factor. If B is the Killing form, which may be
degenerate, then C corresponds to P defined by the condition that it contain 7" and that a
root o of T in G be a root in P if and only if B(a,a) > 0 for all a in C. The bijection 7 is
the composition of P — C' — ?A.A ~

The Weyl groups Q and Q of 70 in GO and of T in G are isomorphic in such a way that
the reflections

A= A= (\a)a,
A=A — (o, \)a
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correspond Suppose P = 77(P) There is an & in €2 that takes every root of T' 0 in P’ not in
MO and every root in MON B to a root of 70 in BY. Let h in the normalizer of 70 in G0
represent & and let Py be hP h~!, and My be hMh~'. We may suppose that

Ad h(Xa) = X@(a)

if @ is a root of T0 in MO BY. If ¢ in the normalizer of T' in G(F) represents the element w
of Q corresponding to W then Py = ng ! contains B. It is clear that « is a root of T" in
Py if and only if @ is a root of 70 in PO Thus Fy and Po and hence P and P” belong to
corresponding classes in p(G) and p(G).

If we build the associate group of M starting with M, BN M, and T" we obtain M BN M
70, and the collection {Xa} where a runs over the simple roots of 7' 0 in MO with respect to
B0 N MO, This gives the 1somorphlsm of M with the associate group of M defined by P and
P. The isomorphism between M and the associated group of M defined by P and P” is more
complicated to obtain. This is not because of any intrinsic asymmetry but rather because
of the simplifying assumption that P contains B and P contains B. We have to use g to
establish an isomorphism between M and My = gMg~! that we may assume is defined over
F then bulld the associate group of M, with respect to BN My and T', obtaining thereby

Mg, BN My, T° and {Xa}, where & runs over the simple roots of 70 i in ] M0 with respect to
BN MY, and finally we have to use the isomorphism between M and M, given by h.
What has to be verified to prove the lemma is that, in the category g( ), the isomorphism

between M and ]\70 given by h is equal to the isomorphism between them as two concrete
realizations of the associate group of M. What is the latter isomorphism? The isomorphism
ad g takes M to My, BN M to B ﬂMO, T to T, and the root a of T"in M to wa. Then
the isomorphism between M and MO as realizations of the associate group takes MO to
Mg, BN M? to BN Mg, T to T9, X4 to Xaoa, respects the splittings M = M0 x Wi,
M(] M x W built into the construction, and acts trivially on Wg. It is characterized
by these properties. Since (wa)" = Ga the 1som0rphlsm given by h has all these properties
except perhaps the last. To achieve the last we exploit the circumstance that we are not
really working with isomorphisms but rather with classes of them to modify our initial choice

of h. R
The group Wr acts on Z) Singe in its action on GO it leaves FO, M?°, and B° invariant and
since the normalizer of T in B is TV, it is clear that on L

wo = ww, w € Wp.
That h can be modified in the fashion desired follows immediately from the next lemma.
Lemma 2.6. Let G, Ba, Ta, and { X5} be given. Suppose w € Q) and that on L

ww = ww, w e Wg.

Then @ is represented by an element h of the normalizer of T in GO that commutes with w
i Wg and satisfies

ad h(Xa) = X@a

if @ is simple with respect to BO.
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We ignore for the moment the last condition and simply try to find an A that represents &
and is fixed by the action of Wy on GO. The action of Wy on G° factors through g(F/F)
and it is easier to forget about Wy and deal directly with g(F/F). Start off with any A that
represents @. Then

7 —a.(h) =7(h)h!

lies in 7° and is a 1-cocycle of g(F/F) with values in TO. 1f h is replaced by sh, s € Ta, then
a,(h) is replaced by 7(s)a,(h)s™'; so our problem is to show that the class of the cocycle is
trivial. Since

(17—<h1h2) = CLT(hl)Ql (aT(hg))
it will be enough to show this for a set of generators of the centralizer Qg of o(F/F ) in Q.

Suppose A is the set of vectors in L ® R invariant under g(F/F). The group Qo acts
faithfully on A and, as is easily seen, acts simply transitively on the chambers, that is, the
connected components of the complement of the hyperplanes.

{acA|(a,a)=0}

where a is any root of 70 in GO. Each orbit O in A defines a reflection

Soza—nz—%Za
ac0

where ag is any element of O. These reflections are each given by an Wy in ﬁ() and the
collection of Wy generates ﬁo. We have to show that each &y is represented by an element of
GO that is fixed by g(F/F). Replacing GO by a subgroup if necessary, we may suppose that
O = A. Since the question only becomes more difficult if GO is replaced by a finite covering
group, we may suppose G is the product of a torus and a finite number of simple, simply
connected groups. The torus may be discarded. Let

:f[G?, Tﬁ:ﬁj—;‘6> ﬁ:ﬁﬁi’
=1 =1 =1

and

If 7(GY) = GY then

Suppose g(F/E) is the stabilizer of G? in g(F/F). Then &, commutes with g(F/F). Suppose
it is represented by h; in G which is fixed by g(F/E). Set

hj = T(hl)
where 7 is any element of g(F/F) that takes G? to Gjﬁ-. Then h; is well-defined and

h = f[hj
j=1

is fixed by g(F/F) and represents @.



14 ROBERT P. LANGLANDS

We are now reduced to a situation in which GP is simple and simply connected and o(F/F)

acts transitively on A. There are two possibilities. The group GO is of type Ay or As. In the
first case g(F'/F) acts trivially and there is nothing to prove. In the second we may take
GO to be SL(3,C), 70 to be the group of diagonal matrices, BY to be the group of upper
triangular matrices, and the collection {X5} to consist of

010 00 0
00 0], 00 1
000 000

Then A<G6, Ba, T 6, {Xa}> consists of the trivial automorphism and the automorphism

0 01 0 01
H— |0 -1 0)fH*|0 -1 0
1 00 1 00
We may take h to be
0 01
0 -1 0
1 00

Suppose W is arbitrary in Qo and is represented by an A in GO that is fixed by g(F/F). In
order to complete the proof of the lemma we have to show that there is an s in 70 that is
fixed by g(F'/F) such that

ad(hS)Xa = Xza, ae A
Let
ad h(Xa) = C(&\)X@a.
Clearly ¢(ra) = ¢(@) for T € g(F/F). We may choose d(@), @ € A, such that d(7a) = d(a)
and such that
d@)F/P] = (@).
If + in 70 satisfies

then

T€g(F/F)
is the required s.

Suppose ¢; is an automorphism of G such that ¢y 7 () is inner for all 7 € g(F/F). For
example ¢ could be defined over F. If ¥ is an isomorphism of G; with a quasi-split group
G, we define the automorphism ¢ of G' by transport of structure. We have seen already
that ¢ determines an automorphism @ of G. By transport of structure again we obtain an
automorphism @ of @1. It is easily seen that @; depends only on ¢y and not on ).

Lemma 2.7. Suppose Py is a parabolic subgroup of G over F' and ﬁl 15 a parabolic subgroup
of G whose class corresponds to that of Py. Let My be a Levi factor of P, over F' and
Ml, which we take as the associate group of My, a Levi factor of P,. Suppose g € G1(F)
normalizes M. If @1 is the restriction of Ad g to My and ¢ the associated automorphism of
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J/\/[\l, there is an element h in the normalizer of ]/\/[\1 m G? such that @y is the restriction of

Adh to M.

Suppose that g is only in G1(F) but that g~'7(g) lies in M;(F) for each 7. Then we
can still define ¢; and the lemma remains valid. We work with the weaker assumption.
The advantage is that if ¢ is an isomorphism of GG; with a quasi-split group G such that
Y l7(¢y) = adm, with m, € M(F) for each 7 then 1(g) continues to satisfy the weaker
assumption, for

(g 7 (v(9) =¥ (g 'mer(g)m; ") € M(F)
if M =1p(M;). We prove the lemma for the group G. P is replaced by P = ¢(P;) and M;
by M. g is now in G(F). We choose B and T such that B C P and T C M.
We may compose g with any element of M (F) and thus suppose that

gBNM)gt=bnM, ¢Tg'=T.
Since g is determined by these conditions modulo 7,
gr(g™) €T, 7eg(F/F).
In particulzg g represents an element w of € fixed by g(F/F). Let @ be the corresponding
element of 3.
We construct G, B?, T°, and { X3} corresponding to G, B, and T and realize @ by an h

that satisfies the conditions of the preceding lemma. If we take P to contain B it is clear

that Ad h is equal to ¢ on M.

For the next lemma we work in the category of tori over F. Suppose S is such a torus.
Then S admits by construction a special distinguished splitting. Also L is a covariant functor
of S and R

5% = Hom(L, C*)
is a contravariant functor. So is 5. ®(.9), which consists of classes of continuous homomor-
phisms of W into S , is also contravariant. We write a homomorphism ¢ as

o(w) = a(w) X w.
We compose ¢; and @9 by setting

e192(w) = ar(w)az(w) x w.
This composition is actually defined for the classes and turns ®(.S) into an abelian group.
I1(S) is the group of continuous homomorphisms of S(F') into C*. Although the following
lemma is valid over any local field, we prove it here only for the real and the complex field.

Lemma 2.8. On the category of tori over F' the group-valued functors ® and I1 are isomor-
phic.

When F'is C the lemma is particularly easy. Any homomorphism from the topological
group C* to C* may be written as

2= % Zazb — eaz—i—bx

where a and b are two uniquely determined elements of C whose difference lies in Z. If

¢ € ®(S) is a continuous homomorphism from C* to S = 59, let ¢(z) = a(z) x z, z € CX,
and

X(a(z)) = Nz
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where p and v are uniquely determined elements of L ® C whose difference lies in L. Associate
to ¢ the element of 7 of II(.S) defined by

Tt — /L(t)l/(Z) = e(“:H>+<V7ﬁ>

where H € L ® C is defined by
At)=eM) XelL.

That the map ¢ — 7 gives the required isomorphism of functors is easily seen.
Now let F be R. Let ¢ be an honest homomorphism from Wg to S. Let o(w) = a(w) X w
and L
X(a(z)) = LNz e O
If o is the nontrivial element of g(C/R) then v = opu. Let

a(l x o) =« ae S

and let

~

Ma) = €2m‘<>\0,3>’ X € L®C.
Ao 18 determined modulo L and

1
Ao+ 00X = é(u —v) (mod L).

1 and v are determined by the class of ¢ alone but \g is determined only modulo the sum of
L and

{A=cX|AeL®C}.

We write an element ¢ in S(C) as eff where H in L ® C is defined by

At) =eM) Ne L.

t lies in S(R) if and only if
H —oH € 2rilL.
Define 7 by
ﬂ_(t) _ €<A0,H—0F>+<p/2,H+oF>‘

This is permissible, for if ¢ is 1 then H € 27mi L and

o, H — o H) + <g,H+ aﬁ> - <)\0 Fodo+ g - %H> € omiZ.
On the other hand, if 7 is given extend it to a quasi-character 7’ of S(C). Let

7'('/(15) — olwa H)+ (2, H).

Define 1 and Ay by

/11:%4—)\0, UMQZg—/\O,
so that

p= 1+ O fia, =5 T o

Then
1 1
Ao+ oA = 5{/“ +opr — pg — Opo} = §{M1 +opy —opy — pe}  (mod L)
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and
M1+ O — O — fg = [t — O
All we have to do is check that p is determined by 7 alone and that \g is determined modulo

the sum of L and { A — oA | A€ L& C} by 7. R
For this we may suppose that 7 is trivial. If H € L ® C then
1= 7r/(eH+Uﬁ) _ e<u,H>+(Uu,ﬁ>
and p = 0. If A€ L and oA = A there is an H € L ® C such that
2miN = H — o H.
Thus

-~

(Ao, A\) € Z.
It follows immediately that
MEL+{A—oX| e LxC}.
There is one fact to be verified.

Lemma 2.9. The functor from ® to Il respects restriction of scalars.

We consider restriction of scalars from C to R.. Let S be a torus over C and S the torus
obtained by restriction of scalars. Then

S(R) = Homg (Spec R, S) ~ Homg(Spec C, S) = S(C).

We denote corresponding elements in S(R) and S(C) by s and 5. L is the group of functions
on g(C/R) with values in L and g(C/R) operates by right translation. If \; = A(1), Ay = A(0)

then
)\(8) = )\1(31)0'()\2(5))
If5=e"", H* € " ® C then s = ¢! with H = (H~, H") and
H+oH=2H"H), H-oH=0,

and . _ _
6([1,H~>+<17,H ) — e()\o,HfaH>+</1/2,H+UH>
if )
M:(/jug)a )\025(/7_;)0)

Thus if the quasi-character 7 of S (C) is given by p, v, the associated quasi-character m of
S(R) is given by p and A.
On the other hand let ¢ : W — S be given by ¢(z) = a(z) x z and let

X(’d(z)) — ANZEN)

S0 is the set of functions on g(C/R) with values in S°. If ¢ : w — a(w) x w is obtained from
© by the restriction of scalars functor, then

a(z) = (E(z),ii(?)), a(l X o) = (5(—1), 1).
One calculates easily the corresponding p and A\g and finds that they have the correct values.

Now take G connected and reductive. Let Zg be its center. We want to use the previous
lemma to associate to each element ¢ in ®(G) a homomorphism X, of Zg(F) into C*. Since
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Z¢q is not affected by an inner twisting, we could, but do not, suppose that G is quasi-split.
Let G,.q be the maximal torus in Z and let G be the quotient of G by Gr.q. If G.q is the
adjoint group of G we have the following diagram

Za

BN
1 —— Grad >y G ? Gss
N
Gad

in which the horizontal line is exact. A pair B, T in G determines By, Ty and B,g, Taq.
Using these to build the associate groups, we obtain

> 1

1+— GO < GO « G2 « 1
Gaa

in which the horizontal line is exact.

In particular we have a map ®(G) — ®(Graq), so that every element ¢ in ®(G) determines
a homomorphism of G,aq(F') into C*. Thus when Z is connected we are able to define x,.
In general let

M= Hom(ZG ®F, GL(1)).

M is a g(F/F) module and there is surjection 7 : L — M whose kernel is the lattice generated
by the roots. Let ( : Q — M be a surjective homomorphism of g(F'/F)-modules with @ free
over Z. Let o

L={(\p) [0 =)}
and let o

A={(a,0)|aeA}.

From L and A and the cocycle defining G we construct G. The surjection L — L obtained
by projection on the first factor yields an injection G — G and a surjection G" = @ whose
kernel is a torus over C, namely

Hom(N,C*X) = S0
if N is the kernel of L — L and S is the torus over F associated to the g(F/F)-module N.

Moreover Graq = Zz is the torus defined by Q.
There is an exact sequence

1 —— Hom(S(F),C*) —— Hom(Zg(F),C*) —— Hom(Zg(F),C*)

Every element of <I>_(G) determines an element of the middle group and hence of the last.

If 7, and @, in ®(G) have the same image in ®(G) then, after an appropriate choice of
representatives,

where a(w) € S0 and
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is an element of ®(S). Thus the images of ¥, and @, in ®(Gyaq) differ by an element in
the image of ®(.S). By the functoriality of Lemma 2.8, they determine the same element of
Hom(Zq(F),C>).

The next lemma will allow us to define x,, ¢ € ®(G); it will remain, however, to verify
that it is independent of the choice of Q.

Lemma 2.10. Suppose G and G are objects in é(F) and @ : G" — G is a surjective

morphism. Suppose that the kernel of ¢ is a torus SO in the center of G’. Then
Hom(Wr, G") — Hom(Wr, G)

18 surjective.

The assumption does not depend on the representative chosen. If 70 is a Cartan subgroup

of G then

T =57 (1°)
is a Cartan subgroup of G°. If L and I are the lattices of rational characters of 70 and 7"
then L — L is injective and the quotient is torsion-free. Let

Y € Hom(We, G).
We may assume that
»(C*) C T°.
Let R L
AMy(zx 1)) = PACIAY
where p and v lie in L® C and p—v € L. The map L — " leads to surjective maps L— L
and L ® C — C. Lift p to g and v to v in L ® C so that 1 — v lies in L.

Define @Z(z x 1) in 70 by
(e x 1) =092, ReT"

Lift ¥(1 x o) arbitrarily to ¢(1 x o) and set, in general

Y(zxo)=1¢(zx )Yl x o).
Let

Y(w1)P(wa) = a(wy, we)Y(wiws),

where a(wy,ws) is a continuous 2-cocycle on Wy with values in S0 What we have to do is
show that there is a continuous function b(w) on Wy with values in S° such that

b(s1)wr (b(ws))a(ws, ws) = blwiws).
What we do is introduce the extension K of topological groups defined by this cocycle and
show that it splits continuously. R
This is clear if FF = C; so take F' = R.. Let N be the lattice of rational characters of S°.
Consider the inverse image of C* in K. This extension of C* splits. Write an element in it
as
sxz=c¢ell xe”
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with £ in C and H in N ® C. Let

O'(BHXZ) _ eJ(H)-‘,-z;H—EV % e?

with g and v in N ® C. Applying o again we see that v = —o (). Moreover p + o(u) must
lie in N. In fact o must fix the square of any lifting of 1 x ¢ to H. Since this square is of the
form s x (—1),

emilpto(w) —

and p+ o(p) € 2N. Set
p—o(p) At o(p)
V=T 0T
and
a=y7—-0, B=7+0.
Then p=2(y+6), « — = —26 liesin N and o(a) + u =, 0(8) — o(u) = a. We replace
the original splitting over C* by

eF — 2T % e,

Since
U(ezaJrZB « ez) _ ez(a(a)—l—u)—‘rz(a(ﬂ)—a(u)) w e = 6z5+2a % %

this new splitting is respected by the action of o.

We have still to split the extension completely. Choose a representative h of 1 X o in H.
Let h? = s x (—1). Let S = e and H = H. + H_, with 0(Hy) = Hy, o(H_.) = —H_.
Replacing h by

(e H+/2 % 1)h
if necessary, we may suppose that H, = 0. Since o(s) = s, 2H lies in 2wiN. Write
H=mri(A—0o(}\))

with A € N ® C. We may modify the splitting over C* once again, replacing it by

e — ez)\+20()\) X e~
In this new splitting over C*, h? is given by

6H—7ri)\+7ri0(/\) X —1=1x —1.

We have now split the extension completely.
To show that x, is independent of @) is easy. Suppose )1, Q2 together with (i, ¢, are two
possible choices. Since we may replace the pair ()1, Q2 by @3, Q1 or @3, Q2 with

Q3 = { (p17P2) ‘ Cl(pl) = C2(p2) }

there is no harm in supposing that () is given by a surjective homomorphism £ : Q)1 — Q.
When this is so, Lemma 2.8 shows immediately that ); and ()5 give the same quasi-character
X

The following fact follows easily from the construction and Lemma 2.9.

Lemma 2.11. The map ¢ — X, respects restriction of scalars.
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Let Z be the center of GO. The action of Wr on 7 is well-defined and so is the group

~

HY(Wg, Z), where it is understood that only continuous cocycles are to be considered. If

¢ € ®(G) and o € H (Wp, Z) define oy by
ap(w) = a(w)p(w).
As is implicit in the notation and is easily verified the class of ap depends only on that of «
and ¢. Thus the group H'(Wp, 2) acts on ®(G). We should also be able to make it act in
II(G). To do this we associate to a a continuous homomorphism 7, of G(F') into C*.
Let Gger be the derived group of G, G the simply connected covering group of Gge,, and
Georaa the quotient of G by Gge;. We have

T~

1 > Ger s G > Georad — 1

Passing to associate groups we have

GO
1< G’ger < GO < G0

corad

+— 1

Suppose we have a diagram

in which the vertical and horizontal lines are exact, B and D are tori, and G(F) — G(F) is
surjective. For example if R is the kernel of G — G and

K= Hom(R ®r F, GL(1))
we could take a free g(F/F) module P that maps surjectively to K, set L equal to the group
of pairs (A, p), A € Ly, p € P, with the same image in K, and A equal to { (e, 0) ‘ a €A },

and define G by means of Z, 3, and the twisting defining GG. Passing to associate groups
yields
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1
BO
1<—ch< GO < Do ¢ 1

This diagram gives Z as the kernel of D — B0 and hence a map of H'(Wr, Z ) into the kernel
of H'(Wp, DY) — H'(Wp, BY). By Lemma 2.8 every element 8 of H(Wg, D) = &(D)
yields a quasi-character of D(F) and hence of G(F). It is trivial on B(F) and hence gives a
quasi-character of G(FA) if and only if 8 becomes zero in H'(Wp, Biﬁ). In particular every

element o of H'(Wp, Z) yields a quasi-character 7, of G(F). If G; and G, are possible

choices f01; G so is G Xg Go. Using this, one shows easily that 7, does not depend on the
choice of G.

Lemma 2.12. The map o — 7, respects restriction of scalars. If ¢’ = ap then

X:O(z) = To(2)Xp(2), z€Z(F).
The first assertion follows easily from Lemma 2.9 and the construction. Suppose G is the
group for which we are trying to prove the second assertion. Let G be quasi-split and let
1) be an isomorphism of G; and G such that ¢ ~!7(v)) is inner for 7 € g(F/F). We may so

construct GG; and G that W lifts to ¢ : Gy — G. Dy and D will be the same and

61—>D1

1o

G —— D

will be commutative. Since v restricted to Zg, is defined over F' and yields an isomorphism
of Zg, with Zg, and since

X (V(2)) = xe(2)
if ¢ € (G1) = ®(G), we need only prove the lemma for G.

If T"and T are corresponding Cartan subgroups of G and G, defined over F' and lying in
Borel subgroups over F', then

T0 . Do

[

0 7



REPRESENTATIONS OF REAL ALGEBRAIC GROUPS 23

is commutative. Thus on T'(F'), 7, is the quasi-character defined by the image of « in
H' (Wg, T0) = &(T).
Although we do not need to know it, it could be observed that T(F) — D(F) is surjective
because H* (g(F/F), TSC> = 0. Thus 7, is determined by its values on T'(F').
Now consider the objects used to define x,. We had a surjection @(@) — (I>(G') If pis

the image of @ then x,, is determined by the image of © in Cb(afad) But G = rad and, by
Lemma 2.10, ®(T) — ®(Taq) is surjective. Thus for ¢ € ®(G) there is an 77 that lies in the
image of ®(T) — ®(G) and lifts to 77 in the image of ®(T) — ®(G) such that 7j and P have the
same image in ®(Gyaa). Then y, = x,. If 7 is the image of 8 in ®(T') then, by construction
almost, X, is the restriction to Zg(F) of the quasi-character of T'(F) associated to f. Since

7/\ the center of G , is the inverse image of ZinG we may choose ' corresponding to ¢’ to
be the image of 73, 1f ~ is the image of o € H (W, Z), in H*(Wg,T%) = &(T). The lemma
now follows.

Notice that if ¢ : H — G is defined over F' and has an abehan kernel and an abelian
cokernel then we can associate to it a homomorphism @/) G— H.

3. THE DEFINITIONS

The group G(F) is a Lie group. Let g be the tensor product of its Lie algebra with C, let 2
be the universal enveloping algebra of g and let 3 be its center. A (continuous) representation
7 of G(F') on a Banach space V' will be called irreducible if V' contains no nontrivial closed
invariant subspaces; it will be called quasi-simple if the elements of 3 act on the infinitely
differentiable vectors as scalars.

Let 7 be irreducible and quasi-simple. Let K be a maximal compact subgroup of G(F)
and let p and v be irreducible representations of K on the finite-dimensional spaces X and Y.
Suppose we have K-homomorphisms ¢ and n of X and Y into V' and its dual V* respectively.
Suppose moreover that ((x) is infinitely differentiable for all x € X. Let ¥ = W, , be the
function on G(F') with values in X* ® Y™* defined by

U(g) : (x,y) = (7(g)¢(x),n(y)).

Then W is a spherical function on G(F) of type p*, v*, if u* and v* are contragredient to p,
v. If we regard the elements of 2 as left-invariant differential operators on G(F') then

Z® = k(2)V, Z e,

if 7(Z) = k(Z)I. Because 7 is quasi-simple and irreducible, 7(z) is a scalar for z € Zg(F)
and

V(g2) = m(2)¥(9)-
If G°(F) is the connected component of G(F') then
G(F) = KGO(F) = KZG( )Gder( )

(cf. [II]); so W is determined by its restriction to G9.,.(F). Notice also that if v € V, v* € V*,
and (7(g)v,v*) = 0 for all g then either v or v* is zero.
It follows from these considerations and Proposition 9.1.3.1 of [16] that

dim Homg (X, V) < oo,
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so that any representation of K occurs with finite multiplicity in V. Let Vi be the space of
K-finite vectors. Every vector in Vi is infinitely differentiable so that both 21 and K operate
on V. The representations 7 and 7/ on V' and V' are said to be infinitesimally equivalent
if the representations of the pair 2, K on V}. are algebraically equivalent. Since any two
maximal compact subgroups of G(F") are conjugate, this notion does not depend on the choice
of K. II(G) will be the set of infinitesimal equivalence classes of irreducible quasi-simple
representations of G(F'). We shall usually not distinguish between a representation and its
class.
To every ¢ in ®(G) we are going to associate a finite but nonempty set IL, in II(G) such
that the following conditions are valid.
(i) If ¢ # ' then I, and IT, are disjoint.
(ii) If = € IL, then
7(2) = xp(2)], z€ Zg(F).
(iii) If ¢’ = ap with a € H'(Wp, Z) then
= {7Ta®ﬂ' ‘ WEHW}.

(iv) If n : H — G has abelian kernel and cokernel, if ¢ € ®(G) and ¢’ = 7j(¢), then
the pullback of any 7 € II, to H(F') is the direct sum of finitely many irreducible,
quasi-simple representations, all of which lie in II,

(v) If ¢ € ®(G) and one element of II, is square integrable modulo Zg(F') then all
elements are. This happens if and only if (W) is contained in no proper parabolic
subgroup of G.

We remark that the representation 7 is said to be square integrable modulo the
center if 1 = ( ® n’ where ( is one-dimensional and where 7/, which operates on V',

is such that

v' € V' and any K-finite linear form f’ on V".
(vi) If p € ®(G) is tempered then all elements are. With respect to a distinguished
sphtting, write ¢(w) = a(w) x w. The elements of II, are tempered if and only if

2
’(W’(g)v’)) is an integrable function on Zg(F)\G(F) for any K-finite

{ | we Wg } is relatively compact in G.
m, acting on V, is said to be tempered if f( (g)v ) satisfies the weak inequality for any
K-finite v € V and any K-finite linear form f on V.

Since we can always restrict scalars, we may as well take F' to be R. Let ¢ € ®(G). Let A
be the Zariski-closure of the image of Wgr under the composition of ¢ with the homomorphism
of G into the group of automorphism of g, the Lie algebra of GO. Let B be the Zariski-closure
of the image of C*. Since the elements in the image of C* commute and are, by assumption,
semisimple they can be simultaneously diagonalized. Thus every element of B is semisimple.
The same is true for A, because A2 C B. Since A is clearly supersolvable we may apply
Theorem 5.16 of [13] to see that ¢(Wgr) normalizes a Cartan subgroup $% in GO, Since
the group of automorphisms of S0 is discrete, (C*) must centralize S0, Consequently

g(C/R) = C*\Wg acts on 59, on M = Hom(S6 C¥), on M = Hom(]\//f Z), and on M ® R.

Suppose g(C/R) fixes a point A in M @ R.. If P is the parabolic subgroup of G defined by

the condition that @ is a root of S° in PY if and only if (A, @) > 0 then (W) lies in P.
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We shall first define I, under the assumption that ¢(WWg) is contained in no proper
parabolic subgroup of G. Then if ) is fixed by g(C/R)

(N, ay=0
for all a.

Lemma 3.1. If ®(G) contains a ¢ with the property that o(WRr) is contained in no proper
parabolic subgroup of G then Gaer has a Cartan subgroup Tye, with Tye(F') compact.

We have a map G- CA}der that yields ®(G) — ®(Gqer). Replacing ¢ by its image in ®(Ger),
we may suppose that G = Gge;. Then M®R is spanned by the roots of &. Consequently
the nontrivial element ¢ in g(C/R) fixes no element of M ® R but 0 and acts as —1.

Let ¢ be an isomorphism of G with a quasi-split group G'. Choose a Borel subgroup B’ of
G’ over R and a Cartan subgroup 7" of B’. Use G', B’, and T" to build G BY and 70 as a
concrete realization of the associate group. Replacmg © by another homomorphism in the
same class we may suppose that S0 = T6 SO that M = L. There are, however, two actions
of o on L the one built into the construction of G which we denote by = a)\ and the one
defined by ¢, which we denote by X — @\ There is an @ in € such that

TN = wa)\.

Since 7 acts as —1, o commutes with @ and @. Let w be the element of €V, the Weyl group
of T, corresponding to @.

Because any two quasi-split groups differing by an inner twisting are isomorphic, we may
suppose that o acts on G'(C) in such a way that

o\oT) = U(X(t)), teT'(C),

and

ae A

Here the X/, are appropriately chosen root vectors in the Lie algebra of G. Define X_, so that
if H, = [Xa, X_4] then a(H,) = 2. The algebraic automorphism of G’ defined by ¢t — w(t),
Xo = Xy commutes with the action of o and its square is 1. It is of course inner. We use
the cocycle a1 = 1, a, = w to twist G’ and obtain G”. G” contains the Cartan subgroup 7"
obtained by twisting 7”. Since

o(X)) =X,

oo’

Awot) = o (M)
T"(R) is compact.

There is an isomorphism 7 of G” with G such that £ = n~'o(n) is inner. We may suppose
that n(7") = T is a Cartan subgroup of G over R for which the compact part of T'(R) has
maximal dimension. What we have to do to show that T'(R) is compact is to show that &,
which normalizes T, actually centralizes T”, for then n : T” — T is defined over R. We use
an idea that can be found in many places. If £ € T7”(C) and A is a rational character of 7"

then \(o(t)) = o(A(¢)™"). Thus
A(o€(®) = (M) = (€MD) = €A (0(8)) = A(go(?))
and {0 = o€, Since o =1, &2 = 1.
Suppose « is a root of 7" and {& = —a. Consider the subgroup H” of G” that is generated
by 7"(C) and the one-parameter subgroups exp 2 X", exp zX"” , z € C. H" is invariant under

1
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o and £ and H = n(H") is defined over R. I claim that Hy. is isomorphic to SL(2) over R
and that Ty, the inverse image of T" in Hg. is the Cartan subgroup whose set of real points
is noncompact. This clearly contradicts the definition of 7" and shows that (o # —a« for

all a. To prove the assertion about H,., we start from the observation that we may choose
X! and X" so that [ X/ X" | = —H! with a(H!) = 2 and so that o(X/”) = X”_. Then
o(X",) =X/, Let &(X) =aX",, £&(X”,) =0X!. Then

l[aX” ,bX"| = —H/;
so ab = 1. However the relation £0(€) = 1 shows that a@ = bb = 1. Recall that, on C, ¢ is
complex conjugation. Choose s in T7”(C) such that
a(s)ra(s) = a.
Replacing 1 by n o ad s, we suppose that a = b = 1. Set
Ho =n(Hy), Xo=n(X7), X_o=-n(X]).

Then
0(Xa) = n(€0(X7)) = n(X2) = Xa,
o(X_ o) =X_4,
o(H,) = H,.

Thus H,, X,, X_, span a Lie algebra that, together with the action of ¢ on it, is isomorphic
to the Lie algebra of SL(2). Since H, lies in the Lie algebra of T, this gives the required
assertion.

Let M” be the lattice of rational characters of T”. Since « + £« is different from 0 for all
a there is a point H in the dual of M” ® R such that

(a+E&a,H) = (o, H+EH) #0

for all a. But & fixes H + £H and therefore fixes the chamber in which it lies. Since & is inner
this is possible only if £ centralizes T".

The lemma proved, we return to the original G and . Although it is not important,
we choose for the sake of definiteness an isomorphism 1 of G with a quasi-split group G’,
with ¢~'o() inner, choose B’ and T”, construct G°, BY, T0 accordingly, and take the
associate group to be G =GO x Wr. We ixlso suppose that ¢(Wgr) normalizes 7°. 0. Write
o(w) = a(w) x w. If z € C* then a(z) € T°. Let

X(a(z)) — NN
If A — &\ denotes the action of o on L defined by ¢ then v = ou, p = ov. Also if
a=a(l xo), R
)\(aa(a)) = )\(a(—l)) = (—1)“"“).
If (o, \) = 0 for all roots « then A is a rational character of G0 and we may define A(a).

Notice in particular that (o, /):) = 0 for all roots a if A = &A. The next lemma is critical.

Lemma 3.2. Suppose h = a X w, with w =1 X o, lies in CA}, normalizes Ta, and hao = —al
for every root &. Then ac(a) € T® and, if § is one-half the sum of the positive roots with
respect to any order,

Mao(a)) = (=1)*Vi(a) = (~1)¢*Vii(a)
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if i = X+ R

Of course an h satisfying the conditions of the lemma does not always exist. When it does
a is any element of the normalizer of TY in G° that takes positive roots to negative roots.

That ao(a) € T and that 2§ = 6 — hd is clear. If s € T and h is replaced by sh then
ac(a) is replaced by

sh(s)ao(a)

where h(s) = hsh™!. Since fi(a) becomes

fi(sa) = A()hA(s)fi(a)
and N N N

A(sh(s)) = A(s)hA(s)
we are free to replace h by sh. Thus we may suppose that a € G or, more simply, that
G, and hence GO is semisimple. Since it only makes the matter more difficult we may then
replace G By G.q and GO by Gad, which is simply connected. Then the whole situation
factors and we may finally assume that GO is simple and simply connected.

Suppose B\ is the largest root with respect to the given order [2]. Then a(X ) = 77X = with

n = +1. If o acts trivially on GO then n = 1. In general I claim that if
B=> n@a
acA
is the expression of B as a sum of simple roots and if ¢ is one-half the sum of those n(a) for

which @ # 0@ and (@, 0Q) # 0 then n = (—1). This statement is not true for 3 alone but
for any positive root
/\ _ Z m /\ /\

fixed by o. Of course n(a@) is to be replaced by m( ) and i by n(7), where

o(X5) = n(7)X5.

We prove it by induction on m = Y m(a).

If m = 1 then ¢ = 0; but by construction n(y) = 1. Suppose m > 1, so that 7 is not
simple. Choose a simple root & such that (7, ay) > 0. If ay = oay, then (7, Q) = (7, ay). If
Q1 = A, then 3 =7 — @ is also a root and

X5 = [Xa,, X5;
so n(3) = n(3). Moreover () = ((7). If @, # @y and (Qy,0,) =0theny =4 —a; — ay is a
root. The integers ¢(7) and ¢(7) are equal. Since
X = [Xal, [Xa2,X§]} - [XaQ, Xa, X,
n(7) =n(7). If (ay,a3) # 0 then @ = 4, + A, is a root and
Xz = [Xa,, Xa,;
so n(@) = —1. If ¥ = @ we are done. Otherwise 5 =7 — @ is a root, £(3) = £(7) + 1, and

1(7) = —n(7) because
X5 = [Xa, X3).
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Since (Zi’\ ,a) = 0 for all positive roots, every root perpendicular to ZB’\ is a linear combination
of simple roots perpendicular to it. Let H? be the connected subgroup of G corresponding
(@,p) = O} H = H° x Wr C G is also an associate

to the Lie algebra generated by {

group and we may assume the lemma has been proved for it. Let J 0 he the group corresponding
to the Lie algebra generated by Xz, X_5. J 0 is also invariant under Wx. The groups H° and
JO commute with each other. Let ay be an element of H° normalizing 70 and taking positive
roots in HO to negative roots. Let as be an element of JO normahzmg 70 and taking B to
—j. a; fixes 3. Thus if @ is positive and (@ ﬁ) > 0, then (a0, 5) > 0 and a;@ is positive.
But (a0, B) = —(a, 5) < 0 80 aza is negative. The product ajas takes every positive root to

a negative root and we may take a = ajas. Since ay centralizes Ha, a; X (1 x0)in H takes
every positive root to its negative.
By induction

Maro(m)) = (~1)°1§"™
if I'y = {a >0 ’ (v, 5) =0 } J0 is covered by SL(2,C). We may suppose that

01 00
(0 0)_>X37 (1 o)%X—E'

Then the action of ¢ lifts to conjugation by

Since we may take a, to be the image of

(40)
(V7
0 (—1)t)

Aazo(a)) = (~1)EDED,
To prove the lemma we have to show that

(BAY= Y (. A)  (mod 2).

a>0
(@, B)#0
a#f

a>0, (a, B} # 0, and if o # [ then f{a, B} — «v is also a positive root and is different from
«. Thus the right side is ¢/(3, \) if

(=2 Y @B =g Sl B) p 1= (.5~ 1=3n@ -1

a>0 a>0
a#f

(orB)#0
It would be enough to show that ¢ = ¢ (mod 2).

aso(ay) is the image of

Thus
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To finish up we make use of some standard facts [2]. The order h of a Coxeter element is
¢+ 1. If o acts trivially then £ = 0. But if o acts trivially then a itself must take every root
to its negative. This forces ¢ + 2 to be even ([2], p. 173). If o does not act trivially the roots

are all of the same length. There is an « in A such that («, 5) = (8,a) =1 ([2], p. 165).
Since (26, @) = 2
a(ao(a)) = (-1,

However h acts on the Lie algebra of Ga, and
hMXa) =cX a, WX a)=dXa, h([Xs X 5]) =—[Xa X al
This forces cd to be 1; so
a(ac(a))Xs = h*(Xa) = Xa
and ¢ — (' is even.
There is another lemma to be verified before we can define II,.

Lemma 3.3. Suppose ¢ € O(G), o(Wr) is contained in no proper parabolic subgroup of @,
©(Wr) normalizes T°, and

X(gp(z)) = z<“’X>E<Z”X>, z e C~.

Then (u, @) is different from 0 for all roots a. Moreover o(Wr) normalizes no other Cartan
subgroup of G°.

Suppose (u, @) = 0. X5 is fixed by ¢(z), z € C*. Let h = p(1 x o) and set
U= Xz + h(Xa).

Then hU = U. Let b be the space of vectors H in the Lie algebra of T for which a(H)=0.
Then b + CU is the Lie algebra of a Cartan subgroup of GY normalized by o(Wr). It is
however, clear that the action of ¢ on the roots does not take every root to its negative. This
we know is incompatible with the assumption that ¢(Wg) is contained in no proper parabolic
subgroup of G. Thus (u, @) is never 0 and the centralizer of p(C*) in the Lie algebra of GO
is exactly the Lie algebra of TO. The second assertion of the lemma follows.

If n € G° and

¢ w — np(w)n™?
satisfies the conditions of the lemma, with pu, v replaced by p/, v/, then n must normalize 70
and ¢/ = nu, v' = nv. Consequently the orbit of ;1 under the Weyl group is determined by

the class of ¢ alone. Since p — v € L and

the number (u, @) is real for all @. Since it is different from 0, we may choose ¢ in its class so

that (u,a) >0 for all @ € A. This done, the only way we may modify ¢ is to replace it by

¢ w — sp(w)s

with s € 7°. ~ ~
We have observed that if (a, \) = 0 for all roots «, we may define A(a), where (1 x o) =
a x (1 x o). Choose \g € L ® C such that

X(a) _ eZwi(Ag,X)
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for such . Ao is determined modulo
L+Y Co+{A-GA[AeL®C}

a€A
or, since a = (o — 7av) /2,

L+{A—-3A|XelL®C}.
We know that (i, @) is real and different from 0 for all . Let

1
0= 3 Z Q@
(1,0)>0

and set iy = pu— 06, vy =0y =v+9. Then uy —vy =pu—v—290 € L, because p —v € L. If
Nel then, by Lemma 3.2,

emiln—v) X(aa(a)) _ em(25,i>+(Ao+a0,X>;

SO
No+dr="1""" (mod L).

Thus
~ 1 . 1 ~ ~
(@) = 5(# —op, Q) = 5(#1 —v1,@) + (0, )
=N+, a)+ (§,a) =1
modulo Z and (u, @) is integral. If (i, @) > 0 then
(pa, @) = (p, @) — (6, @) = (u, @) =1 2 0.

Let S be a Cartan subgroup of G over F' for which S(R) N Gyer(R) is compact. We may
choose the isomorphism ¢ of G with G’ so that ¢(S) = T'. The isomorphism allows us to
identify L, the lattice of rational characters of 1" ', with the lattice of rational characters of S.
Then the semi-direct product T° x g(C/R) with ¢ acting on T° as & becomes the associate
group of S. As in the proof of Lemma 2.8, p1, v1, and ¢ then define a homomorphism x of
S(R) into C*. However since 1) is not uniquely determined, 11, 4 and \g are only determined
modulo the action of the Weyl group. Although the elements of the Weyl group of S may be
represented by elements of G(C) their action on S is defined over R. If we replace 4, v and
Ao by wp, wyy = dwpy, and whg, which is congruent to Ag modulo {\ —aA | A€ L® C},
then y is replaced by x': t — X(w_l(t)). Let X, be the set of these quasi-characters x. X,
is determined by the class of ¢ alone.

To verify that the sets II,, which we shall soon define, are disjoint and exhaust the classes
of representations of G(R) that are square-integrable modulo the center, we shall need the
following lemma.

Lemma 3.4. Suppose G has a Cartan subgroup S over R such that S(R) N Gaer(R) s
compact and X is an orbit of the Weyl group in the set of quasi-characters of S(R). Then
there is a unique ¢ € ®(G) such that o(WRr) is contained in no proper parabolic subgroup of

G and such that X = X,.

We have first to observe that an h in G that satisfies the conditions of Lemma 3.2 exists.
Let ¢ be an isomorphism of G with a quasi-split group G’ such that ) ~'o(¢) is inner. If B’
and 7" are chosen as usual, we may suppose that 1(S) = T7". We have to show that there is
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an element & of the Weyl group of T such that @Woa = —a for all &. This is equivalent to
showing that there is an element w of the Weyl group of 7" such that woa = —« for all a. w
and @ will then be corresponding elements. Let ¢o(¢~!) = adn, with n in the normalizer of
T’, then
—¢Ha) = o (V) =y (Yo (¥ oa) = ¢~ (noa)

and noa = —a. We take w to be the element of the Weyl group represented by n.

Let @ be the action on T0 L and L determined by such an h. We regard T0 with the
action @, as the connected component of the associate group of S. If y € X choose W1, V1
and Ay so that

X(t) _ e(Ao,H75ﬁ>+(u1/2,H+Eﬁ)
if t = eff lies in S(R). Given X, p, v1, and )y are determined modulo the action of the
Weyl group. Also 1 — v1 € L and, since 7o = —a,

(=1, @) = (p — o, @) = 2(u, @)
is real. Choose an order on the roots so that (1, @) > 0 if @ is positive; let 6 be one-half the
sum of the positive roots o with respect to this order, and set y = py + 9, v = opu. Since the
0 which arise in this way differ by an element of the Weyl group that fixes i, the orbit of
i, v, and A\g under the Weyl group is determined by X, alone. The various u are certainly
nonsingular. To be definite choose the unique one that is positive with respect to B
If ¢ is normalized in the way described earlier, it is clear that X = X, only if

X(cp(z)) = z<“’x>3<”’x>, z e C~.
Fix an h = b x (1 x o) satisfying the conditions of Lemma 3.2 and choose a representative \g.
If X =X, and ¢ gives rise to this particular Ay then ¢(1 x ¢) = a x (1 x ¢) with a = sb,
s€T° and
200D = R(a) = A(s)A(D)
if (a, /):) =0 for all . An s in T° satisfying this condition always exists. We will be able to
extend ¢ to Wg if

~ ~

)\(aa(a)) = TN
for all \. By Lemma 3.2 the left side is

627ri<5,i>+2m'<,\0+5,\0 )

Since
Hr—
2
it equals the right side. As for the uniqueness, if X(s) = 1 whenever (oz,X) = 0 then, in
particular, A(s) = 1 when oA = A and s = t(t~1) with ¢ € T0. Then sh = tht~'. Choosing
a different representative for )y forces the same kind of change in s; so the class of ¢ is
determined uniquely by X.
Suppose gp(WR) is contained in a parabolic subgroup P of G. Then w(Wr) is contained

= )\0 + 5)\0 (HlOd L)

in a Levi factor M of P and normalizes a Cartan subgroup of M°. But y is regular; so 70
is the only Cartan subgroup centralized by gp(CX) and therefore the only Cartan subgroup

normalized by ¢(Wg). P must then contain T0. Since (1 X o) takes each root to its negative,
Pis G.
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Suppose S and S’ are two Cartan subgroups of G such that S(R) N Gae(R) and S’(R) N
Gaer(R) are compact. There is a g € G(C) such that ad g(S) = S’". The restriction of ad g to
S is defined over R and

X, = {Xoadg ‘ XEX;}.
If g € G(R) then g = g1go where g; lies in GY_.(R) and g5 lies in the normalizer of S. If
Q) is the Weyl group of S and €2; consists of those elements in {2 with a representative in

GY..(R), the connected component of Gger(R), and w is the image of gy in Q then g — Qyw
is a well-defined map of G(R) into Q;/€Q. The inverse image of ; in G(R) is

Go(R) = S(R)Gg:(R) = S(R)G°(R) = Za(R)Gyer(R).

If x € X, and p is defined above, choose an order on the roots so that (u1,@) > 0 if « is
positive and let § be one-half the sum of the roots positive with respect to this order. By
Harish-Chandra’s theory of the discrete series there exists for each such pair x, 0 a unique
irreducible representation my(x,d) of Go(R), square-integrable modulo the center, whose
character on the set of regular elements in S(R) is

sgnwy (ws)e’
(@) Z g X(A&)

wH—H)

wEN
Here s = ef? is a regular element in S(R) and
A(s) = H (1 — e H)),
(6,a)>0
¢(G), which is £1, depends on G alone.
It is clear that, if x € X, X’ € X, the representations mo(x, §) and my(’, ') are equivalent
if and only if ¢ = ¢ and there is an w € ; such that § = wd’ and
X'(s) = x(ws)
for all s € S(R). If g € G(R) has image Qyw in Q;\$Q, my = mo(x,0), and
mo(h) = mo(ghg™), h € Go(R),
then 7, = mo(x’,¢') with wé’ = § and x’(s) = x(ws). Thus the representations
W(Xa 5) = Ind(G<R)> GO(R>7 WO(X) 5))
are irreducible. We set
I, ={m(x,d) | x € X, }.
If the image of G(R) in €2;\{2 has e elements, then II, contains
[Q : Ql]/e

classes.
Before explaining why conditions (i) to (vi) are, insofar as they apply to the II, already
defined, fulfilled, we verify a simple lemma.

Lemma 3.5. The restriction of an irreducible quasi-simple representation m of G(R) to

GS..(R) is infinitesimally equivalent to the direct sum of finitely many irreducible representa-
tions of GY..(R).
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Let 7 act on V. Let K be a maximal compact subgroup of G(R) and let K° be KNGY_ (R).
Since 7(z) is a scalar for z € Zg(R) and since

K1 Ko(K N Za(R)) | < oo

every irreducible representation of K occurs with finite multiplicity in the restriction of 7 to
Ky. Let p be an irreducible representation which actually occurs and gy, ..., g, be a complete
set of representatives for the cosets of Zg(R)GY..(R) in G(R). If £ is the character of p let
U; be the range of the projection

By= [ &(kyn(g; kg, dk.

Ko
U; is finite-dimensional. Let £ be

£(k)m(k) dk

Ko

If U is a closed nonzero subspace of V' invariant under GY_(R) then U N (Z i Uj) is not

zero. If it were
0 =m(g;)E;U = Em(g;)U
for each 7. But V is contained in the closure of

> wlg)U

and EV # 0. As a consequence, among the closed nonzero subspaces of V' invariant under
GY..(R) there is at least one minimal one . The representation of G (R) on W is
irreducible.

Choose a maximal collection hy, ..., hy from {gi,..., g} such that

i=1
is dense in V' and therefore contains all K-finite vectors. The lemma follows.
If Q9(G) is the group of elements in the Weyl group of S that can be realized in G(R)
then the character of 7(x, d), which certainly exists as a distribution, is given on the regular
elements of S(R) by the function

() Y el

)eé(wH—H)

It follows that the sets II, that have been defined so far are disjoint.

Suppose 7 is an irreducible quasi-simple representation of G(R) on V that is square-
integrable modulo the center. By the previous lemma the restriction of 7 to Go(R) is the
direct sum of finitely many irreducible quasi-simple representations, each of which is clearly
square-integrable modulo the center. Let my be one of them and let my act on Vj C V. By
the theory of the discrete series, G has a Cartan subgroup S over R, so that S(R) N Gge(R)
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is compact and there is a x and a  such that g is (), d). By Lemma 3.4 there is a ¢ such
that x € X,.. If ¢1,..., g, are a set of representatives for Go(R)\G(R) then

Vo rle o
=1

because the representations h — 7(g;hg; ') are inequivalent. If gjg = hjg; and

U= @7(9;1)%
w(g)v = Prlg; ")y

with v} = 7(h;)v;. Mapping v to the function on G(R) whose value at hg;, h € Go(R) is
m(h)v; we obtain an infinitesimal equivalence of m with 7(x, ). This shows at least that (v)
will be a consequence of (i) and that the union of the sets II, will contain all classes that are
square-integrable modulo the center.

Suppose 1 : H — G has abelian kernel and cokernel and ¢’ = 7j(¢) where ¢ € ®(G) and
w(WR) is contained in no proper parabolic subgroup of G. Then ¢’ (WRr) is contained in no

then

proper parabolic subgroup of H. Tt follows from the preceding lemma that the restriction of
any irreducible quasi-simple representations m of G(R) to H(R) is, infinitesimally, the direct
sum @ m; of finitely many irreducible quasi-simple representations of H(R), for the map
HY (R) — GY.,.(R) is surjective. If 7 is square-integrable modulo the center so is each ;.
We consider the restriction of 7(x,d). 7m(x, ) restricted to Go(R) is the sum

@ mo(w ™y, w™6)
01\22(G)
and mo(w ™y, w™td) restricted to Hy(R) is irreducible. It is clearly equal to mo(w ™1y, w™1d")
if y' is the quasi-character s — x((s)) on the inverse image of S(R) in H(R) and if ¢ is
the pullback of é. It is also easy to see that X, = { X’ ‘ X € Xy }- Thus 7(x, 6) restricted to

H(R) is
@ W(wflx/, wflél)
Q2(H)\22(G)
with x’ € X and condition (iv) is satisfied.
Condition (i7) is clear when the center of G is connected. In the general case it follows
from (7v) and the definition of x.,,. Condition (i7i) is clear when Gy, is simply connected. In
the general case it follows from (iv) and the definition of 7.

If the quasi-simple irreducible representation 7 is square-integrable modulo the center and
if ¢ is the quasi-character of G,,q(R) defined by

m(z) =((2)I, z€ Ga(R),
then 7 is tempered if and only if ¢ is a character. This is so if and only if (u, H) is purely

imaginary whenever H € L ® C satisfies cH = H and (o, H) = 0 for all a. On the
other hand, if ¢(w) = a(w) x w then { a(w) | w € Wg } is relatively compact if and only if
{a(z) |z € C*} is. This is so if and only if

O N X(a<z)) _ Z<H,X>E<5u,i> _ em,zXﬁEX)
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is a character of C* for each X that is, if and only if (u, H) is purely _imaginary when
H € L ®C satisfies 7H = H. Any such H is a sum of terms of the form T\ + T 7\ where A
is either a root @ or satisfies («, )\> =0 for all .. If X = & then

2N+ TN = (z — T)a.
Since (u, @) is real, (u, ZA + EE/):) is purely imaginary. If («, /):> =0 for all & then GA = oA,
Condition (vi) is now clear.

Before completing the definition of the sets II,, we remind ourselves of some properties of
induced representations. Suppose P is a parabolic subgroup of G over R, N its unipotent
radical, and M = P/N. Suppose p is an irreducible quasi-simple representation of M(R) on
a Banach space V. Lifting, we may also treat p as a representation of P(R). If p € P(R) let
dp(p) be the square root of the absolute value of the determinant of the restriction of Ad p to

the Lie algebra of N. Let I(V') be the space of continuous functions on G(R) with values in
V' that satisfy
¢(pg) = or(p)p(p)e(9), p € P(R).
I(V') is a Banach space; let I, be the representation of G(R) on it by right translations.
There is a quasi-character ¢, of Zg(R) such that I,(2) is the scalar (,(z) when z € Zz(R)
and a unique positive real-valued quasi-character £, of G(R) such that ‘Cp )| = & (2) if
z € Zg(R). There is also a quasi-character ¢/, of Zy/(R) such that p(z) is the scalar (z) if

z € Zy(R) and a positive quasi-character £/, of M(R) such that C/’)(z)‘ =¢,(2) if 2 € Za(R).

Cp is the restriction of () to Zg(R). If 7 is an irreducible quasi-simple representation of G(R)
we may also define & and (/.

Suppose p* is a quasi-simple irreducible representation of M(R) on V* and there is an
M (R)-invariant bilinear form

(v,0%) = (v,v") € C
on V x V*. We may introduce I(V*), I,., and the bilinear form

(p,0) = /<90 W(k)) dk

on I(V) x I(V*). It is known to be G(R)-invariant. Any K-finite continuous linear form on

V) 1s of the form ¢ — (¢, 1) for a suitable ¢ in I(V*). We want to investigate the function
<[ 9)p, ¢> for K-finite ¢ and .

Let X be the lattice of rational characters of P and Y the lattice of rational characters
of M;aa. There is an injection X — Y that leads to isomorphisms X ® R = Y ® R,
X ®C =Y ®@C. We identify these two spaces. If D(P) is the set of invariant elements of
X @R, then every A = > x;\; in D(P), \; € X, z; € R defines a positive quasi-character my

of M(R) by H|
= Ai(g)

7 is a representation on C. If P is minimal over R, we take 7} to be 7, ! and ¢ and v to be
identically 1 on K and set

" ge MR).

oa(9) = (I, (9)¢. ¥)-

As usual = is the function ¢q.
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Recall that if 7 is a quasi-simple, irreducible representation of G(R) on W that is square-
integrable modulo the center, and v and v are K-finite vectors in W and its dual, then
(m(g)u,v) is bound by a constant times .(¢)Eg(g).

We now prove an easy sequence of lemmas. G is a reductive linear group over R. There
is a hermitian form on the underlying real vector space that is invariant under K and with
respect to which G(R) is selfadjoint. Every g € G(R) is a product g = kh where k € K and
h is selfadjoint and positive with respect to the given form. Let ¢(g) be the norm of log h.
We choose an abelian subgroup A of G(R) every element of which is selfadjoint and positive
and which is maximal with respect to this property. A is then connected and G(R) = KAK.
If P is a given parabolic subgroup over R we may, and do, take A in P(R).

If we choose ¥ : G = G’ where G’ is quasi-split and ¥~ (3)) is inner, if B’ and T” have
the usual significance, and if P’ = ¢(P) contains B" and ¢(A) C T" as we may suppose, then
X ® R may be regarded as a subspace of L ® R. Let D™ (P) be the set of A € D(P) such
that (A, @) > 0 if a is a root of 77 in N' = ¢)(N). Let E+(P) be its closure. If P is minimal
let AT(P) be the set of a in A such that a(a) > 1 if « is a root of T" in N'.

Lemma 3.6. Let P be minimal over R. There is an integer d and a constant ¢ such that
dr(a) < ema()dp' (@) (14 ((a))”
ifa€ AY(P), e D' (P).

The group G(R) = P(R)K. Write g = p(g)k(g). p(g) is not uniquely determined but
7 (p(9)) and 6p(p(g)) are and

on(@) = [ e(p(ka)) s (k)

By Lemma 3.3.2.3 of [16]
T (p(ka)) < ma(a).
Thus
dr(a) < ma(a)do(a) < ema(a)p! (a) (1 + ()"
The last inequality is a consequence of Theorem 8.3.7.4 of [16].

Lemma 3.7. For each \ € E+(P) there is a positive constant c(\) such that
a(a) = c(A)mi(a)dp' (a)
for all a € AT(P).

To prove this we remind ourselves of an integration formula (cf. [4]). Let P be for the
moment any parabolic subgroup over R. Let N be the unipotent radical of a parabolic
subgroup over R opposed to P. G(R) is again P(R)K and we write g = p(g)k(g). If f is
any continuous function on K N p(R)\K then, with a suitable choice of the Haar measure on
N(R),

_ 2 ( (= N\ =
(3.1) [ s [ 5h(om) s (k) am
Take P to be minimal over R, take

f(k)=4dp (p(ka))ﬂ,\ (p(ka)) )
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and write p(7) = p1, k(7)) = k. Then

kia = p;laa ' na

and
op (p(kla»ﬂ (p(k’la))
equals
(55 (o) (o) How(@)maa) H{ o (pa 7)) ma (o 7a) }.
Consequently
ox(a) = dp(a)m(a) e {5 (p1 77)\ )}{(5p( (a~ na))wk(p(a—lﬁa))} dm.

Substitute ana~! for m to obtain
s arm@) [ {3 o) (o) H{or (o) ma () s ()}

All we have to do is show that for a given A € E+(P) the integral is bounded below by a
positive constant as a varies over AT(P). If U is a relatively compact subset of N(R) so is

U aUa™ ',
a€A+(P)

Since the integrand is continuous and positive, the required estimate is certainly valid.

We shall eventually have to make use of a well-known result of Bhanu-Murty-Gindikin-
Karpelevich. If P; is a parabolic subgroup of GG over R that contains the minimal P we may
set P| = (P;), N =(N;). Suppose P; is opposed to P and N is its unipotent radical. If
(A, @) > 0 whenever « is a root of 7" in | then

(3.2) /N(R) 5 (p(m))ma (p()) dit < oo

If P and By are two parabolic subgroups of G over R and P D P, then D(P) C D(F5).
Also if € is any positive quasi-character of G(R) there is a A in D(G) such that £ = .

Lemma 3.8. Suppose P is a parabolic subgroup of G over R. Suppose p and p* are two
irreducible quasi-simple representations of M(R) on V' and V* respectively. Suppose that there
is a nontrivial M (R)-invariant pairing V x V* — C. Let K’ be the projection of K N P(R)
on M(R) and suppose that for any two K’-finite vectors v and v* there is a constant ¢ such

that
(<p(m

Suppose &, = my with \ € E+(P). If P contains the minimal Py then A € E+(P0) and for
any two K-finite ¢ and ¢ in I(V') and 1(V*) there is a constant ¢ such that

’( (9)p, )| < corlg), g€ GR).

<€ (m)Zy(m), me M(R).

As usual we suppose that ¢(P) = P’ and ¢ (F}) contain B’. If a is a root of 7" in N}
that is also a root in N’ then (A, @) > 0. If « is a root in V] but not in N’ then (A, @) = 0.

Consequently \ € E+(P0).
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If k€ K, g € G(R) write kg = pk1, p € P(R), k; € K, and let m be the projection of p
on M(R). Then

(1(0)o.0) = [ otha) () di = [ (3po)ot)ein), 0(0)) i

There are functions ¢; in I(V'), functions ¢; in I(V*), and continuous functions a;, b; on K

such that
p(hk) = _ai(k)pi(h), w(hk) =3 bj(k)w;(h)
for h € G(R) and such that ¢;(1), ¢;(1) are K'-finite. Then

(5p(p)p(p) k), (k) (k) = bp(p Zak (k1)b; (k) (p(m)@i(1), 15(1)).

There is therefore a constant ¢ such that
(6P} (), 0(R)) | < cdp(p)ma(m)Zns(m).

We may lift M to a Levi factor of P, chosen so that M(R) is selfadjoint with respect to
the given hermitian form. Then K N M(R) is a maximal compact subgroup of M (R) and
KN M(R)=KnP(R). The function p,(g) is given by

/K5PO (po(kg))ﬂ(po(k?g)) dk :/ {/}mM(R) Opy (pO(ng))ﬂ(pO(Uk’g))du}dk'

K
Set p(kg) = p =nm, n € N(R); then
ukg = unutumk;

and unu~! € N(R) C Ny(R). B} = Py M is a minimal parabolic subgroup of M over R.
Write um = poko, po € Pj(R), ko € KN M(R). Then

dp, (po(ukg)) = dp(m)dp (po).
Because A € D(P)
A (po(ukg)) = m\(m).

Pa(g) = /K(Sp(m)ﬂ,\(m){/KﬂM(R) 5p6(p0)du} dk.

/K 5 (m)s () Zar (m) k.

Since dp(p) = dp(m), the lemma follows.

Corollary 3.9. Assume in addition that A € D(G) C D(P). Then

[(1,(9)0, 9| < ema(9)Z3(9)
One has only to observe that when A € D(G)
Pr(9) = m(9)Ec(9)-

We shall have to make use of some results from [6] that are considerably more serious
than those of the preceeding lemmas. We recapitulate them in the form we require. Two

Thus

The right side is
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conjugacy classes p and p’ of parabolic subgroups of G over R are said to be associate if we
can find P € p, P’ € p’ such that P and P’ have a common Levi factor. Given P and the
Levi factor M, for which M (R) is selfadjoint, we may, with no loss of generality, assume that
it is the common factor, for we may replace P’ by a conjugate.

If p is a quasi-simple irreducible representation of M (R) we may define I, with respect
to P or to P’. To distinguish the two possibilities we write I}, I” ". To apply the results of
[6] we take p to be square-integrable modulo the center. It then satisfies the conditions of
Lemma 3.8. In fact, we may suppose, since it is only the infinitesimal equivalence class of p
and I, that interests us, that V' is a Hilbert space and that 7r;1 ® p is unitary. Then we take
V* to be the dual space to V and p* to be the representation contragredient to p. If (u,v) is
the inner product on V' then

(p,9) = /K(go(k), W(k)) dk

is an inner product on I(V). If we assume in addition, as we must, that p satisfies the
condition of the corollary, then 7' (g)1,(g) is unitary with respect to this inner product.

For a general quasi-simple irreducible p, the elements of 3 operate on the infinitely dif-
ferentiable vectors in (V') as scalars. Moreover the restriction of [ f to K contains any
irreducible representation of K with finite multiplicity. Exploiting, for example, the fact that
the characters of irreducible quasi-simple representations of G°(R) are functions, one sees that
1 f admits a finite composition series. Our present stronger assumptions on p, which imply
the existence of an inner product on (V') with respect to which the operators I,(g) differ by
a scalar from a unitary matrix, allow us to conclude that I, is infinitesimally equivalent to
the direct sum of finitely many irreducible quasi-simple representations. From Lemma 8 and
Theorem 3 of [6], we conclude that if [ f and [/ 5/ have an irreducible constituent in common
then the classes of P and P’ are associate.

If P and P’ have the common Levi factor M, then, by computing the character, one
sees that I” and IZ" are infinitesimally equivalent ([6], §11). By Lemma 12 of [6], the
representations [ f and [ 5 are infinitesimally equivalent if and only if there is an A in the
normalizer of M in G(R) such that p' and m — p(hmh™') are infinitesimally equivalent.
What does not appear so clearly in [6] is that if [ f and [ 5 have an irreducible constituent in
common, then there is an A in the normalizer of M in G(R) such that p’ and m — p(hmh™")
are infinitesimally equivalent.

This is an important point. We shall return to it after some considerations that are,
unfortunately, only implicit in [6]. We take up once again the assumptions of Lemma 3.8.
Suppose ¢ € V* is K N M(R) finite. If ¢ € I(V) is K-finite then p(k) € V is K N M(R)
finite for all k € K and { ¢(k) } k € K } spans a finite-dimensional subspace of V. There is
therefore a constant ¢ such that

[(pm)ek), )| < ema(m)Zni(m)
for all m € M(R) and all k € K. Suppose ¢ € I(V), » € V* and
[(pm)eh), )|
(3.3) sup

km TA(M)ZEn(m)

= llelly < oo
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If U is a compact subset of G(R) and p(kg) = n(kg)m(kg) then
{m(kg) | ke K,ge U}
is relatively compact. Set m; = m(kg), k1 = k(kg), and let my € M(R); then

<P my mml) (k1) ¢>’

‘<p o(kg), p(ma)1 ‘ = 6p(m1)
which is bounded by
ema(my tmmy) 2 (my tmmy) < dma(m)Za(m).

For the last inequality see Proposition 8.3.7.2 of [16].
It follows easily from these considerations that if f € C*(G(R)), if ||¢/|l¢ < oo, and

w—/ F(9)1,(9)¢" dg

then
(3.4) lim[7,(9) = I,(h)el|,, =
Notice in particular that if ¢ is K-finite there is an f such that

= 1,(f)e-
Ifp € V* let 1(V, 1)) be the set of all ¢ € (V) satisfying (3.3]) and (3.4). If v is a compactly
supported measure on M(R) and

o = / myep dv

then I(V,4") 2 I(V,%). In particular I(V, w) is the same for all nonzero K N M (R) finite
vectors 1. If I(V,) contains the K-finite vectors then the restriction of I, to I(V,) is
infinitesimally equivalent to 1.

Lemma 3.10. Suppose p satisfies the conditions of Lemma 3.8 with A € D(P)*. Suppose M
is a Levi factor of P with M(R) selfadjoint and PN P = M. If N is the unipotent radical of
P,y eV* and p € [(V,1)) then

/N . (plra).v)an

15 absolutely convergent.

We may take g = 1. Write m = nmk, n € N(R), m € M(R), k € K. Then
(), 0)| = p(m) | (p(m) o k), ¥)| < cdp(m)ma(m)Znr(m).

We have seen that if Py C P is minimal then

/ 57, (po())a (o () d0

N(R)
is finite; it equals

/N(R) /KmM(R) Op, (po(umu™)) mx (po(umu™)) d.
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Since po(unu~t) = po(um) we may proceed as in the proof of Lemma 3.8 to see that this
double integral equals

[ artmma(m)Zas(m) dn.

NR)
The lemma follows.
We set

/(R)@(ﬁg),@ dn = M(p,¥; g).

N
It is clear that

M (.15 gh) = M(L,(h)p, 1 g)
and that
M (i, p(m)ih, g) = 05*(m)M (g, b;m ™ g).
Let Vi be the space of vectors ¢ in V* for which I(V, 1)) contains the K-finite vectors. V'
is invariant under M(R). If ¢ is K-finite

b= M(e,9,1)

is a K N M (R)-finite linear form on V. There is therefore a K N M (R)-finite vector M (p)
in V' such that
M(e,,1) = (M(p),v)
for ¢ € Vi
The map p x W — pn of P(R) x N(R) into G(R) is a diffeomorphism of P(R) x N(R)
with an open subset of G(R). If f is an infinitely differentiable complex-valued function on
N(R) with compact support X and v € V is K-finite, define ¢ € I(V) by

p(pm) = f(@)or(p)p(p)v.
The set
V={meMR)| NRmKNX +#o}
is compact. If m € M(R) and mk = nymum, ny € N(R), m;y € M(R), n € X then
m = mymg with my € Y. Thus if ¢ is K N M (R)-finite

(p(m)p(k), ¥)

Given ¢ we can clearly choose v and f such that M (g, v, 1) # 0. If d in C(g(R)) is a
sufficiently close approximation to the delta-function and ¢" = I,(d)¢ then M(¢', 9, 1) is also
not zero. Since ¢’ € I(V,1) we have the following lemma.

Lemma 3.11. If¢ € V* is K N M(R)-finite there is a ¢ € 1(V, 1) such that

M(p,1,1) # 0.

If M(R) is selfadjoint and A C P(R) then A C M(R). Let A(P) be the centralizer of
M(R) in A and let AT (P) consist of those a in A(P) for which a(a) > 1 if «v is a root of T”
in N'. We say that a — oo in AT(P) if a(a) — oo for all such a.

Lemma 3.12. Suppose that ¢ € (V') and ¢ € I(V*) are K-finite. If m € M(R) is fized,
then

< ema(my)Zp(my) < dma(m)Zp(m).

(p(am)p, v) = 5 @ { G ()M (,6(1),m) + o(ma(@) }

as a — oo in AT(P).
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Since ‘C,;(a)} = mx(a) the error term is smaller than the principal term if M (¢, ¥(1),m) # 0.
Replacing ¢ by I,(m), we suppose m = 1. ¢ may no longer be K-finite.

(L(a)p, ) = /K (p(ka), (k) dk.

The integrand is clearly a function on K N P(R)\K. Choose P and N as in the previous
lemma and write m = nmk, n € N(R), m € M(R), k € K. Applying (3.1) we see that the
integral is equal to

/N - p(m)(p(ka),(k)) dm.

1 1 1 1

aa"'ma the intergrand is

dp(m)dp(a)dp(m) <p(m71am1)go(k1), w(k»

1

Let a 'na = nymyky. Since ka = m~'n""ma = m~n~

If we substitute ana~"! for @ so that @ = nym k1, ana™

PGl [

N(R)
All we have to do is show that

lim 5P(m>5P(m1)<p(m71m1)90(k1>7 ¢(k)> dn = M(% ¥(1), 1)-

= nmk the integral becomes

5 (m)3p (i ) p(m ™"y Yok ). (k) dr

In a moment we shall show that we may take the limit under the integral sign. Since
ana~! — 1, we may suppose that n — 1, m — 1, k — 1. The integrand approaches

5P(m1)<0(m1)80(k1)a ¢(1)> = <90(ﬁ)’ ¢(1)>

and the lemma follows.
The integral is dominated by a constant times

Sp(m)dp(my)ma(m ™ mi) =y (m™ my).
Choose Py C P such that Py(R) 2 A and such that P, is minimal over R. As usual let
Py = Py M. Since
Em(m™tmy) = / dp; (P (um™"ma)) du,
KNM(R)
it is enough to show that the integral of
(5p(m)(5p(m1)7r,\(m’1m1)(5pé (pf)(um’lml))
is uniformly small on the complement of a large compact set in N(R) x (K N M(R)).
Choose a Py C P that is opposed to Fy so that
A C Py(R)N Py(R) = My(R) C M(R).

Write an element of No(R) as Tip = ngmoko, no € No(R), mo € My(R), ko € K. If f is a
function on K N My(R)\K then

/K J(k)dk = /NO(R) 62, (mo) f (ko) .
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If Ny = NoN M then No(R) = Ny(R)N(R). Let 7y = mijmy; let ) = namav, no € N(R),
me € M()(R), ke KN N(R), let Uﬁﬂ)—l = ngmgkg, nsg € N()(R), ms € M()(R), ]{73 € K. We
may suppose

Mmoo = MaoMms, ]{30 = ]{Zgu.
Then the integral is equal to

/ / m2m3 f(k’gl))dﬁl dﬁg
NO

1

Replacing 7, by anja™! so that ngmgkg = vania~ v~ we obtain

P a)/ / 83, (moms) f (ksv) dmy dig,.
No(R) /N(R)
On the other hand, if m = nmk

/K F(k)dk = /N n 5123(m){ /K . f(uk)du}dﬁ.

1

Replacing m by ana™", we obtain

where nmk is now ana™
Thus

/ 5,%,(m){ / } _ 52 (mams) f (ksv) diiy d.
N(R) KmM(R N(R)

If X is a compact set in IV, ( (R)

) with complement CX, then
N(R ) ‘ e P(R)X}

is also compact. If f is positive

/C ) 5;(m){ /K . f(uk)du} i < /C 88 (mama) (k) i .

Take f to be the function
05" (a)my (a)mr (po(ka))dp, (po(ka)).

= nmk, then uka = um~'n"'an and

63 (m) f(uk) = dp(m)dp(my)ma(m ™" my)dp (ph(um™ amy))

if m = nymyk;. Observe that

If ana™!

and that, more generally,

for all m in M(R).
To finish the proof of the lemma, we show that

55 (mams) f (ksv)
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is dominated on No(R) by an integrable function that is independent of a. Let vijo~! =
namaky, ng € No(R), my € My(R), ks € K. Since ksva = mg ' ng'ang and mg = myms,
O, (mam) f (ksv) = 0y (m2)dp, (mgma)my(mz 'ma)
msy does not depend on n;. Consider the function
5 p, (Mamy)ma(mz 'my)

on N(R). Replacing m; by v~'7,v we may, for the present purposes, suppose that v = 1.
There is a § in D' (FPy) such that

op,(m) =ms(m), m e My(R).
There is a 8, 1 > 8 > 0, such that § — S\ also lies in D" (F). Let « =1 — . By Lemma 13

of [T
Ts-pa(ms) <1, man(my'ma) < 1.
By the formula of Bhanu-Murty-Gindikin-Karpelevich [3], the function
To+6x(1Ma4)

is integrable on N(R). It does not depend on a. Since the transformation 7; — v=1mv is
unimodular, it remains only to observe that, by the same formula,

2 —
// Oy (M) iy < oo.
No(R)

We still suppose that A € D(PT). The space I(V, ) is the same for all nonzero K N M (R)-
finite 1. Denote it by Io(V') and provide it with the norm

lolly + supl|(k)||.
keK

This norm depends in no essential way on 1. The subspace
L(V)={¢e (V)| M(p,1b,g)=0forall gcGR)}

is also independent of ¢. It is closed and G(R)-invariant. The quotient J(V') = Io(V) /I (V)
is not zero. Let .J, be the representation of G(R) on it. When we want to indicate the
presence of P we write J f instead of J,.

Lemma 3.13. The representation J, is irreducible.

Suppose I5(V) is a closed invariant subspace of Iy(V') and I,(V) € L(V) C Ih(V). If

v* € V*is K N M(R)-finite then the function
o — M(p,v", 1)
on Iy(V) is continuous. If it vanishes on all K-finite functions in I5(V') it vanishes identically
on I5(V). Then
0= M(Ip(g)go,v*, 1) = M(p,v",9)

for all p € Io(V). This is impossible unless v* = 0. On the other hand, there is a K-finite
function ¢ in I(V*) that is not zero but is orthogonal to I5(V). Then {1,(g)p, I-(k)¢) =0

for all g € G(R) and all k € K. If ¢ in I,(V) is K-finite we may apply Lemma 3.12 to see
that

M(p,0(k),1) =0

1(2018) T have been unable to make sense of this reference. (R.L.)
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for all k. This in turn implies that (k) = 0 for all k, which is a contradiction. The lemma
follows.

Lemma 3.14.

(a) Suppose p and p' satisfy the conditions of Lemma 3.8 with respect to P and P’
respectively. Suppose A € DY (P) and X' € D*(P'). If JI and Jf‘fl are infinitesimally
equivalent there is an h € G(R) such that P' = hPh™', M’ = hMh™, and such that
m — p'(hmh™1) is infinitesimally equivalent to p.

(b) Suppose p satisfies the conditions of Lemma 3.8 with respect to P and X € DT (P).
Suppose p' satisfies the conditions of Corollary 3.9 with respect to P'. If P # G, then
J;D 18 infinitesimally equivalent to no constituent of 15/.

We may certainly suppose that P and P’ both contain Py minimal over R, that A C Fy(R),
and that M(R) and M'(R) are selfadjoint.

If 7 and 7" are two irreducible quasi-simple representations of G(R) on W and W',
respectively, then 7 and 7" are infinitesimally equivalent if and only if for any K-finite vector
w € W and any K-finite linear form f on W there are a K-finite w’ € W’ and a K-finite
linear form f’ on W’ such that

f(m(g)w) = f'(«'(g)w')
for all g € G(R). If S(m) is the set of all v € D(Fp) such that for any K-finite f and w there
is a constant ¢ such that

] f(ﬂ(a)w)‘ < o0y (a)m, (a)
on AT(P,) then
S(m) = S(x").
S(m) is a convex set. We introduce the Killing form B(u,v) on L ® R. It is positive
semidefinite. If S(7) is not empty there is a unique point v(7) in its closure such that
B(v(r),v(r)) = inf{ B(v,v) | v € S(7) }.
If wis J} there is a K-finite ¢ in Io(V') and a K-finite ¢ in I(V*) such that

f(m(9)w) = (L(9)p, %)
for all g. By Lemmas 3.6 and 3.8, the closure of S(7) contains A.

We may choose a K-finite ¢ in I(V*) such that 1 is orthogonal to I;(V) and such that
(1) # 0. We may also choose a K-finite ¢ in (V') such that M(p,1,1) # 0. Applying
Lemma 3.12 to this pair we see that if v = A+ p belongs to S(7) then p(a) > 1if a € AT(P).
Since A € DT(P), B(\, p) is then nonnegative and

B(v,v) = B(A,A) + 2B\, ) + B(u, p1) = B(A, A).

Thus v(7) = A.
If p' satisfies the conditions of Lemma 3.9 and 7’ is a constituent of [ 5’ then we can find
¢ and v’ such that
F'(w(gw') = (T (9)¢' ¥').
It follows readily from Lemma 3.6 and Corollary 3.9 that A lies in the closure of S(n’). Since
N € D(G) =D*(G), BN, N)=0and v(r') = X.
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If P and P’ contain Py, D™(P) and D*(P’) are disjoint unless P = P’. This gives the
second part of the lemma and half of the first. We now suppose that P = P', M = M’ and
show that if J" and J 5’ are infinitesimally equivalent then so are p and p'.

Let ¢ in I(V*), with ¢(1) # 0, be K-finite and orthogonal to I;(V'). Let ¢ lie in I4(V') but
not in /;(V') and be K-finite. Then there exist ¢’ and v’ that satisfy analogous conditions
with respect to p’ such that

(Lo(g)e, ) = (L (9)¢".¥).
Applying Lemma 3.12 we see that
(p(m)M (), (1)) = (M (), p*(m™ (1))
= M(p,p"(m™ ") (1)1) = M(p,9(1)m)
is equal to
(P (m)M (&), ¢'(1)).
Since M () # 0, it follows that p and p’ are infinitesimally equivalent.
There is a point mentioned earlier that remains to be settled. We have to show that
if p and p’ satisfy the conditions of Lemma 3.9 with respect to P and [ ;D and [ 5 contain
infinitesimally equivalent irreducible constituents then there is an A in the normalizer of M

in G(R) such that p’ and m — p(hmh™') are infinitesimally equivalent.
We have defined the quasi-character 7, on M(R) for v € D(P). The same formula

m(g) = H\Ai(g) "

if x = x;\; serves to define it for v € D(P) ® C. Set p, = m, ® p. All the representations
p, act on the same space. Take v in iD(P) and consider the functions

f7(9) = (In,(9)p, )

where ¢ € I(V) and ¢ € I(V*) are K-finite. Let h run over a set of representatives for the
normalizer of M in G(R) modulo M (R). If v does not lie in a certain finite set of hyperplanes
the quasi-characters ¢} : a — p,(hah™) of A(P) are distinct and if fp is defined as in [6]
then, by Theorem 5 of that paper

fom) =Y " 65(m)

where
0y (am) = G ()0 (m), a € A(P).
By Lemma 3.12 and by Lemma 9 of [6], #7(m) has the form
07 (m) = (pu(m) My (), (1))
where M, (p) lies in V. M,(¢) is a meromorphic function of v in a neighborhood of iD(P)
and its singularity can be killed by a product of linear factors. Let p" be the representation

m — p,(hmh™"). Since I,, and I, are infinitesimally equivalent there are a @M and a "
such that

(I (9)e,0) = (Ly(g)eh vt).
It follows that 6} is of the form

(phm) ML (), NE(W) )
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where M"(p), Ni(yp) are K N M(R)-finite vectors in V and V*. They too are meromorphic
in a neighborhood iD(P) and their singularities can be killed by a product of linear factors.
Let A1,..., A be a basis for D(P). If a = (aq,...,a,) is an r-tuple of non-negative integers

set .
= H{log T (m) .
i=1

Let {h} be a set of representatives for the normalizer of M in G(R) modulo the group of
those ¢ in the normalizer for which p? : m — p(gmg™1) is equivalent to p. If the reader is
willing to admitf] that, for a fixed m, f4%(m) depends continuously on v € iD(P), he can

conclude that
Z Z Caf < m)gh, n >

where the sum on a is finite and ¢ and wg are K N M (R)-finite vectors in V' and V*.

If M is also a Levi factor of P’ then a similar result holds for f2,(m). Since not all of the
functions f2,(m) can vanish identically, we conclude that from a nonzero matrix coefficient
of any irreducible constituent of 1 f we can retrieve at least one nonzero matrix coefficient of
one of the representations p”. This yields the required assertion.

We are now in a position to complete our definition of sets II,. Let P be minimal among
the parabolic subgroups of G containing ¢(Wgr). The group G may be represented as a
semi-direct product GO x Wr. Since C* C Wr acts trivially we may divide out by it to
obtain the algebraic group GO x g(C/R). The image of P is also algebraic and we may
use the theorem that any two maximal fully reducible subgroups in an algebraic group are
conjugate to conclude that p(Wgr) is contained in a Levi factor M of P. By assumption the
class of P lies in p(G). Let P be a parabolic subgroup of G over R whose class corresponds

to that of P. Since ©(WR) is contained in no proper parabolic subgroup of M the earlier
definition, together with Lemma 2.4, associates to ¢ a finite set II,(P, P) in II(M).

Suppose (W) is contained minimally in both P and P. Then
(PNPMN 2 (PP nP)N
and the right side is a parabolic subgroup of GO ([I], Proposition 4.4). The right side is the
connected component of the left. Since the left contalns ©(Wr) which projects onto WR, it is

a parabolic subgroup of G Since it is contained in P and contains ©(WR) it is equal to P. By
the same proposition P’ contains a maximal reductive subgroup of Po. Reversing the roles
of the two groups we see that P contains a maximal reductive subgroup of P Since any
two maximal reductive subgroups of PV or of P have the same dimension, P and P’ have
a common maximal reductive subgroup. As before, we can divide G by C* C G=0Gx Wr
to obtain an algebraic group. C* is contained in PNP" and the quotient of pnp" by C*
is an algebraic group. Take a max1mal reductlve subgroup in it which contains the image of

©(Wr). Let its inverse image in PNP" be M. M contains ©(Wr) and therefore prOJects
onto Wg. Since [12] any two maximal reductive subgroups of the quotient of pnp" by C*

2The author leaves him to struggle with his conscience.
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are conjugate, M contains a Levi factor of PO and of P'. Thus M itself is a Levi factor of P
and of P

Since the set IL,(P, P) does not depend on M we may, for our purposes, fix M and let P
which does affect IL,(P, P) vary over the parabohc subgroups of G with M as Levi factor.
Since the pair (M, P) together with the set I, (P, P) is determined only up to conjugacy we
may assume that M too is fixed. It will be supposed that M(R) is selfadjoint, although this
is not important.

If D(M) is the space introduced in the proof of Lemma 2.5 and M is a Levi factor of P

then D(M) = D(P). Let A = A (P, P) in D(M) be defined by the condition that
(2)] = ma(2)

if p € I, (P, P) and z € Zy(R). We observe next that P and P may always be so chosen
that A\, (P, P) e E+(P). In fact, if we vary P and P simultaneously as in Lemma 2.5 we
may let P vary over all parabolic subgroups of G with M as Levi factor without affecting
I, (P, P) or Ao (P, P). For at least one such P, Ao(P, P) e E+(P), the closure of the chamber
corresponding to P. From now on we only consider pairs P, P for which o(P, P)e D' (P).
There is, moreover, a unique parabolic subgroup P of G over R such t that P, O M and
Ao (P, P) € DT (P;). P, contains P and there is a unique P, containing P such that P, and
Pl lie in corresponding classes.

We can characterize 161 in terms of M and go(WfL)\ alone, without reference to P and P. For

this we shall have to take cognizance of the way M is identified with the associate group of
M. We recall that we choose an isomorphism ¢ of G with a quasi-split group G’, containing
B’ and T, so that ¢y"'o (1)) is inner and so that w( ) 2 B"and M’ = (M) 2 T". We then
use G, B', and T" to construct GO, BY, T0 and G = GO x Wr. Conjugating M and P, and
therefore also ¢, but that does not matter, we arrange that P D BY and that M D T0. The
construction of G is such that this M can be trivially identified with the associate group of
M. We may also suppose that p(C*) C 70 x C*.

Now that everything is explicit, let us recall how the restriction of (;, p € I, (P, ﬁ), to
the connected component of M,,q(R) is determined by ¢. We write ¢(w) = a(w) x w with
respect to the splitting GO x Wr. As before let @ be the action of o € g(C/R) on Ta, L, and
L determined by . Choose p and ¥ = o in L ® C such that

X(a(z)) = Nz wA)
Any s in the connected component of M,,q(R) may be written as s = efl. where H =6H
liesin L ® C and (o, H) = 0 if a is a root of 7" in M’. Then
C;,(S) — (/2 HATH) _ (uH)

Write = py + po where Gy = pq, ops = —pus. Because p(Wg) is contained in no proper
parabolic subgroup of M, {uy, @) = 0 if @ is a root of T° in M. Since p— T = 25 lies in L,
<:U’27H> = </L27ﬁ> = <5/L27aﬁ> = _<N27H>

and (us, H) is purely imaginary. A similar calculation shows that

Re(un, H) = (Re iy, H).
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Thus

p

C/(S)‘ _ 6<RBM1=H> <Reu1,H+H H‘)\

if Rep; = > z;A;. It follows that if A = A\, (P, P) then \ = Re p1. Thus P; is determined by
the condition that & is a root of T0 in PY if and only if (Re yup,a) = 0.

P1 is therefore determined by ¢ alone. P is then any parabohc subgroup of G over R
containing M whose class corresponds to that of P1 P and P are then any pair with P C P,
P - P1 whose classes correspond. Choose a Levi factor M; of P; over R that contains M.
PN M, = P'is a parabolic subgroup of M. If p € II,(P, ]3) we may consider the irreducible
constituents of / 5 ', a representation of M;(R). Let IT), be the set formed by the infinitesimal
equivalence classes of these constituents as p varies over II,(P, ﬁ) We have to observe
that IT;, C II(M;) is independent of the choice of P and P. Since IT, is not affected if we

simultaneously conjugate P’ and IL,(P, ﬁ) with an element of M;(R), we need only check
that II}, is independent of P. But if we change P then, by Lemma 2.5, we may change P and
hence P’ so that IL,(P, ﬁ) is not affected. Since I " and ]f/ are infinitesimally equivalent if
P and P are two parabolic subgroups of M; with M as Levi factor, the set H:O does depend
only on ¢. ~

We have normalized ¢ so that ]31 contains B?. Suppose ¢’ is normalized in the same way
and gives rise to the same ﬁl. We shall need to know that if IT/, and H;, have an infinitesimal
equivalence class in common then ¢ and ¢’ determine the same element of ®(G). If I}, and
IT, have an element in common then, as we can see from our review of the results of [€],
the images o(WRr) and ¢'(Wr) may be supported to lie in the same ]\7 no proper parabolic
subgroup of which contains either of them. We may choose, tentatlvely, the same P and P for
both of them. Then there are a p in I, (P, P)and a g/ in (P, P) and a g in the normalizer
of M in M;(R) such that p is equivalent tom — p'(gmg~ ) If ¢y is the restriction of ad g
to M and 121\1 the associated automorphism of M then, by condition (iv),

115, (o (P, P) = {m — p(gmg™") | p € I, (P, P) }

By Lemma 2.7, there is an h in the normalizer of M in M; 0 such that on M the operator ad h
is equal to 1. We may replace ¢ by ad h o . Then I o(P, P) and IL, (P, P) have an element
in common; so ¢ and ¢ belong to the same class in <I>(M1) and hence in ®(G).

We are now able to introduce II, in general. II, consists of the classes Jfl, p € II,.
By Lemma 3.14, together with the preceding discussion, these sets are disjoint. The other
conditions on the sets II, are built into their definition.

4. EXHAUSTION
It remains to prove the following proposition.
Proposition 4.1. The sets 11, ¢ € ®(G), ezhaust II(G).

We agree to call an infinitesimal equivalence class essentially tempered if it is a constituent
of some I, where p satisfies the conditions of Corollary 3.9 and is square-integrable modulo
the center. To prove the proposition, we have only to prove the following lemma.
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Lemma 4.2. If 7 is an irreducible quasi-simple representation of G(R), there is a parabolic
subgroup P of G over R and an essentially tempered representation p of M(R), M = P/N,
such that X € DY (P) and such that 7 is infinitesimally equivalent to .J,.

A has the same meaning as in Lemma 3.8. Notice that, by Lemma 3.14, p and P are
uniquely determined by 7. The lemma reduces the problem of classifying the classes of
irreducible quasi-simple representations of G(R) to that of classifying the classes of essentially
tempered representations of the various M (R).

Let 7 be given. The first, the easy, step is to find P. Let m act on V. If g € G(R) and v*
lies in the dual space of V' define 7*(g)v* by

<v,7r*(g)v*> = <7r(g_1)v,v*>.
If f € CX(G) define 7*(f)v* by
(0 (1) = [ Ha)mlg o.v)
G(R)

It is clear that

=@ <1l [ |f)into)] do
G(R)
It is also clear that every K-finite vector v* is a finite linear combination
v = Y
Let V* be the set of all v* for which

lim ‘
g—h

=0

™ (g)v* — 7 (h)v*

for all h. Since V* contains all vectors of the form 7*(f)v*, it contains all K-finite vectors.
The representation 7* on V* is continuous and the pairing (v, v*) — (v, v*) is G(R)-invariant.

Let X be a finite collection of classes of irreducible representations of K. Let V(X)
and V*(X) be the direct sum of the subspaces of V' and V* transforming according to the
representations in X. Consider the function ¥ from G(R) to the dual W (X) of V(X) @ V*(X)
defined by

U(g) :u®v— (r(g)u,v).

Choose a parabolic subgroup Py of G minimal among those defined over R. We suppose

that A C Py(R). D(F,) and the Lie algebra 2 of A are in duality over R in such a way that

mx(exp H) = eMH),

It will be convenient to shuck some of our earlier notation, which is not always appropriate
to our present purposes. Write D(Fy) = Do+ D, where Dy is orthogonal to 24N gqer and D is
orthogonal to AN gaq. D has as basis the roots a, . .., a, of A simple with respect to Py(R).
The Killing form B(u, ) is nondegenerate on D and zero on Dy. Define f,..., 5, in D by

B(O{i,ﬁj) = 61]
By Theorem 9.1.3.2 of [16] there is a countable subset L(m, X) in D(Py) ® C such that in

the interior of AT = A*(F) an expansion

(4.1) U(a) = e O 3 py ()
AeL(m,X)
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is valid. ¢ is one-half the sum of the roots of A positive with respect to Py and taken with
multiplicity. a = el and py, is a polynomial function of H with values in W (X) that does not
vanish identically.

If X and p belong to D(Fy) ® C we write A > p if

ReA=Reu + inai
i=1
with z; > 0. Let E(m, X) be the set of A maximal in L(m, X) with respect to this order. As
in [I6], E(m, X) is finite. There is a simple fact to be verified.

Lemma 4.3. The set E(m, X) is the same for all X for which W(X) is not zero.

If X and Q) are two finite collections of classes of irreducible representations of K we may
also introduce a function ¥ with values in the dual W(X,9)) of V(X) @ V*(2) by
U(g):u®v— (r(g)u,v).

Thus ¥ also admits an expansion of the form . We introduce E(7, X,%)) and show that
it is the same for all X and ) for which V(X) # 0 and V*(2)) # 0.

It is clear that if X; C X5 then every element of F(m,X;,9)) is dominated by an element
of B(m,%X,,9). If V(X) is different from 0 then every K-finite vector in V' is a finite sum

with u; € V(X), X; € ), the universal enveloping algebra of g. If

flg) = (m(g)u,v)
then
(m(g)m(X)u,v) = X f(9).
If u e V(X), v e V) then (m(g)m(X)u,v) is a coordinate of the W (X,))-valued func-
tion X ¥(g). It follows from Theorem 9.1.2.9 of [16] that every exponent in the expansion of
(m(g)m(X)u,v) is dominated by an element of E(m, X,9)). This if V(X;) # 0 and V(X5) # 0
then every element of E(m,X,,%)) is dominated by an element of E(m, X5,2)) and conversely.

The two sets are therefore the same.
We define a double action w — 7 (k1)wre(k2) of K on W(X,9Q) by

T1(k)wre (k) tu®@v — w(ﬂ(kfl)u ® ’/T*(k'g)v).

We may interchange the roles of V' and V* and of X and %), replacing = by 7*. If w, the
element of the Weyl group of A that takes positive roots to negative roots, is represented by
k € K, then

(u, 7 (a)v) = (m(a " u,v) = <7T(w(a_1))7r(k:)u,7r*(k)v>.
Thus ¥(a) is replaced by
Tl(k_l)\ll(w(a_l))Tg(k)
and
E(,9,%) = {—w(\) | A e B(r, x,9) }.
It follows that F(7*,X,9)) is also independent of ).

We all also need some simple geometric lemmas. We recall that B(a;, o) < 0 if ¢ # j and
that B(f;, ;) > 0 for all i and j. If F'is a subset of {1,...,7} let Dp be the subspace of D
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spanned by {3; |i € F}. Ifi € F let 87 = 3;; if i € F let B be the orthogonal projection
of 3; on the orthogonal complement of Dy. Define af" by

B(Ozf,ﬁf) = (523
If i ¢ F then of = a;. If i € F then

ozf = q; + Z Cik Qg
k¢ F
If £ is not in F' then
0= B(a),8) = (i, ) + cir

{ay |k ¢ F} is abasis for the orthogonal complement of Dy and B(ay, ay) < 0 if k # £.
Since {ﬁ,f } k ¢ F} is the dual basis, B(3f", 8[') > 0. Therefore 3} is a linear combination
of the ay, with nonnegative coefficients. Since B(ay, ar) < 0, B(ay, ) < 0 for k ¢ F and
cir. = 0. Thus if ¢ and 7 belong to F' and i # j

B(af, ozf) = B(a} ,a;) = By, aj) + ZcikB(ak,aj) < 0.
k¢ F
The inequality B(a], af) <0 is also valid if one of i and j does not lie in F'.
For each F' let ex be the characteristic function of

{AGD(PO)‘B(%F,)\)>O, ieF, B(BF,)) <0, z‘ng}.

Lemma 4.4. If A € D(P,) then

> er(M) =1
F
Suppose B(a;, A) > 0 for all i. Then B(af,\) > 0 for all i and all F. Since the basis
{8} is dual to {a'} and B(a]",af) < 0 for i # j, 5 is a linear combination of the o]
with nonnegative coefficients and B(3f,\) > 0 for all i and F. Thus er()\) = 0 unless
F={1,...,r} when er(\) = 1. Thus all we have to do is show that ep is a constant.
A hyperplane defined by an equation B(al’,\) = 0 or B(8,\) = 0 for some i and F
will be called special. If A is any point in D(F) and if B(a;, 1) > 0 for all ¢, then for any

sufficiently small positive real number a

er(A) = ep(A —ap)
for all F'. Moreover \ — au lies in no special hyperplane. To show that er is a constant we
have to show that it is constant on the complement of the special hyperplanes. For this we
have only to verify that it is constant in a neighborhood of a point Ay lying in exactly one

special hyperplane.
For this we may disregard all those F' which lie neither in

51:{F B(af,)\o):OforsomeieF}

nor in

ng{F‘B( iF,)\O):Oforsomez'géF}.

The sets S; and Sy are disjoint. F' = {1,...,r} does not belong to S;. We can introduce
a bijection between S; and S;. If F} € S and ozZF with ¢ € F} is orthogonal to Ay set
Fy, = Fy — {i}. o™ and $* both lie in the space spanned by {Bj } je R } and are both
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orthogonal to { B; ‘ j €k } Thus they are multiples of each other and Fy € S,. It is clear
that F; — F5 is a bijection. Since

1= B(aflv 1) = B(Ozfl,@l&),

ol is a positive multiple of 572, We have relations
0452 = afl +CjO{Z-F1, j € Fy,
B* =B +diB>, j ¢ Fu.
Near g

sign B(B]2,\) =sign B(B]*,\), j ¢ Fi,

signB(an,)\) = SignB(a?,)\), J € F.

Moreover, either B(al*,\) > 0 or B(8?,\) < 0 but not both. Thus ep, + €p, is constant
near \g. The lemma follows.
If X € D(B) let F'= F(\) be the unique subset of {1,...,r} such that

B(af,A\) >0, i€k,

B(Bf,\) <0, i¢F
Let A’ be the projection of A on the sum of Dy and Dgr. Then B(a;, A\°) > 0 for all i
and B(a;, A\°) > 0 if i € F. This is clear because B(a;, \°) = 0 if i ¢ F and B(a;, \°) =
B(af,A\%) = B(af,\) ifi € F. Let A=\ + A'. Then

)\1 = szaz
i¢F
Notice that
bi=B(B;,\') = BB, \') = B(B],)) < 0.

Lemma 4.5. Suppose \ and p lie in D(Fy) and

)\04—20104@- =1’ +v+ Z d;a.
i=1 JEF (1)
Suppose ¢; <0, v € D, B(oy,v) =0ifi & F(u), and B(Bi,v) = 0 ifi € F(u). Then \° = p°.
Certainly \° — u® € D. If i € F(u) then
(4.2) B(Bi, A\’ — u°) = —¢; + B(B;,v) = 0.
If i ¢ F(u) then
B(ai, A\’ — %) = B(a;, A\) > 0.

Ifi¢ F(u)
B = Z €5
JEF ()
with e; > 0; so
BB, X —p°) 20

Moreover
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and
a; = B(fi, 8;)/B(B;, ;) 2 0
For (4.2)) we conclude that

B(Bi, \° — p°) = B8], \° — p°) = 0.
The lemma follows.
Corollary 4.6. If A = p then \° = p°.
If A > p then

)\+iciai_ﬂ
=1
A=A\ + Z bi;

igF(\)

W= M+Zda]

JEF(p

with ¢; < 0. Since
with B; <0 and

the corollary follows.

Since the set E(m, X) is the same for all X with W(X) # 0 we may denote it by E(m).

Consider

L(m,X)={ A | A=ReXN, XN € L(r,X) }
and

E%m)={ A’ | A=ReX,\N € E(n) }.

Suppose p° lies in Lo, X). There isa )N € E(r) such that X = p/; then A = Re N > pu =
Rey/ and \° = p°. Thus L°(7, X) has a maximal element A\’ and \° € E°(w). We fix such a
A% once and for all. Since \° lies in the closure of DT (F) there is a unique P containing P
such that A\’ € D*(P). This will turn out to be the P which appears in Lemma 4.2.

To obtain the representation p we have to apply some results that appear in an unpublished
manuscript of Harish-Chandra [5] but, to the best of my knowledge, nowhere else.

D(F) is the sum of Dy = D(P) and its orthogonal complement Dy. A is a product A; A,,
where A; = A(P) = { et ‘ H1D, } and Ay = { et ‘ H1D, } Let Ly(m, X) be the projection
of L(m,X) on D; ® C. The first result we need from [5] is that ¥(a) = ¥ (a1, as) = ¥(ef' ay)
admits an expansion

(4.3) e M) N gy, (Hy,ag)e )
MEL (W,%)

valid for a; in the interior of A7 = A*(P). ¢x(H,,ay) is a polynomial function of H; whose
coefficients are analytic functions of ay. The degrees of these polynomials are bounded. If
a=el € AT = AT (P,) then

(4.4) Or(Hy, az)eM =5 Zp o A—8H)

where the sum is taken over all A € L(m, X) whose projection on D; ® C is A;.
To exploit this expansion we have to generalize some considerations to be found in §9.1.2
of [16]. The generalization being quite formal, we shall be as sparing as possible with proofs.
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Choose a Levi factor M of P over R such that M(R) is selfadjoint. Let p, m, n, £ in g
be the complexifications of the Lie algebras of P(R), M(R), N(R), and K and let B, 90,
M, and KR be their universal enveloping algebras. Let q be the orthogonal complement of m
in €N gger- As on p. 269 of [16], but with a different result, we define Q to be the image of
the symmetric algebra of q in 2.

Note that

dimq =dimg — dimp = dimn
and that
dimg = 2dimq + dimm.

Let K3 = KN M(R). It is a maximal compact subgroup of M(R). Let U be a compact
subset of M (R) with U = KU = UK;. As m varies over U the eigenvalues of ad m in the
orthogonal complement of m in gqe, lie in compact subset of C*, say

N

=<2 <R }
Let AT (R) be the set of all @ in A; such that a(a) > R for every root of A; in n. If m = mya,
my € U, a € Af (R) the centralizer of m in g lies in m. Moreover

(4.5) g=adm(q) dmeq.
To see this one has only to verify that
adm(q) N (m+q) =0.

Since m and q are invariant under K; and M (R) = K;AK; we may suppose that m;, and
hence m, lies in A. Suppose X lies in the above intersection. Let 6 be the automorphism of
G(C) such that 6(g~!) is the conjugate transpose of g with respect to the hermitian form
introduced earlier. # is a Cartan involution. Let H lie in the Lie algebra of A; and set

Xy = (ad H)*X.
Then Xy € € and ad m(Xp) € £. Consequently
adm(Xy) = 60(adm(Xp)) =adm ™ (Xp)

and

ade(XH) = XH-
Since ad m has only positive eigenvalues and since its centralizer in g is m, this equation
implies that Xz € m. Thus

(ad H)*X = ad H(Xp) = 0.

However, ad H is semisimple; so Xy = 0. Since H was arbitrary in the Lie algebra of A;, X
lies in m. Since both m N q and m N adm(q) must be zero, X is zero.
The relation (4.5) yields an isomorphism

A~adm(Q) @M ~>QM Q.

If X € A we let X, be the corresponding element on the right. The function ¥ restricted
to M(R) yields a function on M(R) with values in W (X). If X € 9t we denote the result
of applying X to this function at the point m by W(m, X). The actions 7, and 75 of K on
W (X) yield actions of £. Let X — X~ be the involution of ¢ defined by X~ = —-X, X € £.
If X €A and

Xpn=) Xi®Y,0Z
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then
m) = mi(Z7)W(m, Y)m(Z)).
Let P = §(P). Then P is defined over R and P N P = M. Moreover
g=n+m+q
and o
2A = NMA.
If X = ZYzZza Yz c m, ZZ € Q then
X,, = Z 1QY;® Z.
Suppose X € . Let X = 0(X), X € n. Then
Y=X+X
lies in q. Let X/ = adm(X), X = 6(X’) and
Y =X +X =X +0(adm(X)).
Since o
adm(Y) = X'+ adm(X) = X' + 6(ad 6(m)(X))
we have
0({adm —adf(m)}X) ="~ admy,

We are still assuming that m = mya, m; € U, a € AT (R); the restriction of ad m — ad #(m)
to n is therefore invertible. Let § be the ring of functions generated by the matrix coefficients

of its inverse. § does not contain 1. Replacing X by {adm —adf(m } X we see that

X:Zfimadm i+Zgz~m

with f;, ¢; in § and XZ-, Z; in Q. Then
=) fmX;01e1+) gmlele

One proves more generally by induction on the degree that
(4.6) Xp=Xo+ Y _ film)X

where f; € F, X; € Q@ M ® Q and where Xy € M @ Q ~ M is uniquely defined by the
condition that X — X, € n2l.

Notice that as a function of a € A an element of § is a linear combination of products
of the functions {a(a) — ofl(a)}_l, a a root of A; in n with coeflicients that are analytic

functions of m;. Moreover {a(a) — ofl(a)}f1 admits an expansion.
(4.7) 3 e~ (@) H)
n=0
for a = e in A (R).
If X € D, the centralizer of K in 2, and if M(X) is the linear transformation of W (X)
adjoint to the operator
u®@v— m(X)u®uv
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on V(%) ® V*(X) then
XV =M(X)U.

A € D; was fixed some time ago. There is at least one \Y € L;(m, X) with Re A} = \°.
Fix such a \?. If m € M(R) we write m = kjaky with ki, ks in K| and a in A. We write
a=ayas, a; = e’ and set

®(m) = €</\?_6’H>7'1(k2_1>¢,\9 (Hy, a)mo(ky ).
Because of the uniqueness of the expansion (4.3]), ® is well-defined. The elements of R MR R
acton ®. X ® Y ® Z sends ® to &’ with
' (m) =1 (Z27)P(m, Y ) (X7).
Let X € © and let X be defined as in (4.6)); then Xy € R ® M ® K and
(4.8) Xo® = M(X)®.
To see this we start from the equation XW(m) = M(X)U(m). If we set ms = kjasks and
O, (H1,ma) = 71 (ky ) on, (Hy az)mo (ki)
the function M (X)W (m) has an expansion
> M(X)$a, (H,my)e 1),
AleLl(ﬂ',X)
The function X ¥ (m) is equal to

XoU(m) + Y fi(m)X;¥(m).
X and the X; are acting as elements of 8 ® 9t ® K. Because of (4.7)) each f;(m) has an

expansion
E —(p1,H1)
€ (mQ) €

1
valid for my € U, a; € A (R), where U is a compact set in M(R) and R = R(U) is chosen
as before. u; runs over the projections on D; of sums of positive roots of A in n. The sums
are not empty and p; is never zero. We may, for convergence offers no difficulty (cf. 16),
apply X; to ¥ term by term, expand the product f;(m)X;¥(m) formally, add the results,
and then compare coefficients of the exponentials e‘*1=%#1) on both sides of the equation.

We are interested in the terms corresponding to AJ. If we incorporate the exponential, the
term on the right is M (X)®(m). At first sight the term on the left seems more complicated.
Suppose, however, that p; is the projection on D; of a sum of positive roots of A in n, v lies
in Ly (m,X), and v; — py = A}, Let A} be the projection of X in L(r, X) and let A = Re \;
let 11 be the projection of v/ and let v = Rer’. Then

Re )\ = \°
and, if as before we define v° to be the projection of v on the sum of Dy and Drp,), then

Rel/1:V+ Z CjOéj:l/O—f-ibiOéi—f— Z cjaj
1 )

JEEXN) = JEF(A
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with b; < 0. Also

Z d;o + Z ;0
JEF(A)
with d; > 0. Moreover, at least one d;, Wlth i € F(N), is positive. We have

0+ Z =\ + Z
JEF(N)
It follows from Lemma 4.5 that ° = \°. By the very choice of \°, 1? is therefore equal to \°.
However if i € F(\) then
B(ﬁl, VO — )\0) = dl — bl
Since this is positive for at least one i, % # A\°. This is a contradiction. The term on the left
in which we are interested is therefore Xo®(m). The relation follows.
® contains 3. As a linear space 2 is a sum

M+ 09+ NMn + nNin
and
3 C M+ ndn.

Thus if X € 3 = 35 then X, belongs to 9 and in fact to 35,. The map X — X, is an
injection of 3¢ into 3, and turns 3, into a finite 3-module. Notice also that M (X) is a
scalar m(X)I if X € 3¢.

According to the restriction of ® to A has an asymptotic expansion S_ py(H)e* =%
where A runs over those elements of L(m, X) whose projection on D; ® C is \Y. Suppose v/ is

one of the indices for this sum. Let v = Re?’ and define 1° as before. We can again apply
Lemma 4.5 to see that v* = A°. Thus if F = {i | B(a;, A°) > 0} then F = F(v) and

(4.9) Re{B(ﬁ;, V>} <0, i¢F.

In spite of the fact that ® is not an eigenfunction of 3, but only of the image of 35 in 3/
the considerations of §9.1.3 of [16], and hence those of its appendix as well as those of [5], may
be applied to it. We do not want to apply them to obtain an asymptotic expansion, which we
already have; we want to apply a further result (Theorem 4) of [5] that in conjunction with
and Lemma 3.7 easily implies the existence of a constant ¢ and an integer d such that

(4.10) W@l(m)”@( H (1 +4(m ) o (m)Zp(m)
for all m. d; is the projection of § on D;.
We had fixed X but we may let it grow without changing A\°. Thus

(m)(u®@v) = ®(m;u,v)
is defined for all K-finite p € V, v € V*.

Lemma 4.7. Suppose v in V* is K-finite. If the function <I>(m; 7(k)u, v) vanishes identically
inm and k for some nonzero K—ﬁm’te u in V' then it vanishes identically for all such u.

The function ¢(m) = <7T >, m = aime, a; = et € Ay, my = kiasks, ay € As, k,
ko € K, admits an asymptotlc expansion 3 ay, (m;u, v)eM =) with

axo(m; u, v)eM0H) — & (m, u, v).
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Suppose X € 2 and write

For this we have to constrain ms to vary in some compact set U and a; to vary in A{(R),
R = R(U). Then

(r(m)m(X)u, v) = Xo(m) = Xog(m) + 3 _ fi(m)Xié(m).

The symbol X ¢(m) denotes the value of X applied to the function ¢(g) = <7r(g)u, v> at the
point m. X, and X; are applied as elements of R ® M ® K.
The considerations used to prove the equality (4.8) show that if &' = 7(X)u then

ayo(m;u',v) is the coefficient of eM=0M) i the expansion of Xyp(m).
Xo=) 10Y;® Z

with Y; € M, Z; € K. Applying Z; we replace the coefficient ayo(m, u,v) by ayo (m, 7(Z;)u, v).
If CID(m, m(k)u, v) = 0 for all m and k, this is zero. If the coefficient is zero before Y is applied
it is zero after. Since every K-finite vector in V is of the form 7(X)u, X € 2, the lemma
follows.

There is certainly at least one K-finite v in V*, which we fix once and for all, such that
®(m;u,v) is not zero for all K-finite .

Let ¥ be the Banach space of continuous functions § on M (R) for which
[6(m)]
d—1

|10]} = sup < 0.

(1 -+ £m) ™m0 (m)Zas(m)
If m € M(R) let r(m)0 be the function whose value at m; is
O(myim)
Let 20 be the space of all 6 in ¥ for which
n}LI?no“r(m)Q —r(mo)d|| =0
for all mg. If uw € V' is K-finite then
0y : m — s, (m)P(m;u,v)

lies in 2T because of (4.10)). Let U be the closed subspace of 20 generated by the functions
7(m)0,.

Lemma 4.8. The representation v of M(R) on U admits a finite composition series.

Let U, be the space of functions in U of the form
0=r(f)0 = / f(m)r(m)6'dm
M(R)
with f € C’go(m(R)) If X € 3¢ <= 3 and 6 € Y, then
(4.11) X0 =m'(X)0
if m/(X) =m(X’), where X’ is the element of 3;, defined by
X (m5,6)(m) = 75, (m) X'9(m).
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If K, =KnNM(R), if ¢; and @ are two continuous functions on K7, and if 6 € U, let
bmiprea) = [ [ orlhb(hima)oa(h) d b
K JK,

If (k) = ¢1(kky ") and @h(k) = @2(ky 'k) then

H(klmk‘g, ©1, (,02) - 9(m7 Qpllv (70/2)
If 6 = r(mq)6, then

O(m, @1, p2) = m5,(m) // ©1 (k1)@ (kymmaka; u, v)pa(ke) dky dksy

= 75, (m // ©1(k1)® mmh (ko )u, 7 (ky ) )@2(]?2) dky dks
= 75, (m)®(mmy, v, v)
with
u :/wg(kg)w(kg)udkg, U’:/gol(kl)w*(kll)vdkl.

In particular, if ' = 0 then 0(m, ¢1, v3) = 0 for 6 = r(m4)0, and hence, by continuity, for any
0 in *V,. There is a closed subspace of finite codimension in the space of continuous functions
on K7, invariant under left and right translations, such that v = 0 whenever ¢ lies in this
subspace. Factoring out the subspace, we may regard ; as varying over a finite-dimensional
space. Let X; be a finite set of classes of irreducible representations of K;. For other, more
obvious, reasons, if 6 is constrained to lie in the subspace U(X;) of Y, spanned by vectors
transforming according to one of the representations in X;, then ¢, may be regarded as
varying over a finite-dimensional space. Using and a simple variant of Proposition
9.1.3.1 of [16], we conclude that the space of functions m — 6(m; 1, @), where 6 € B(X,)
and ¢, and s are continuous functions on K7, is finite-dimensional. Since ¢, and ¢ may be
allowed to approach the delta-function, we conclude that B(X;) itself lies in this space and is
finite-dimensional. Since Uy is dense in ¥ every irreducible representation of K; occurs with
finite multiplicity in 0.
To complete the proof we need a well-known fact, which we state as a lemma.

Lemma 4.9. Let X — m/(X) be homomorphism of 3¢ — 3 into C. There are only a
finite number of infinitesimal equivalence classes of quasi-simple irreducible representations T
of M(R) such that

7(X) =m(X)I
for X € 3¢.

Since there are only a finite number of ways of extending m to a homomorphism of 3, into
C, it is enough to prove the lemma for G = M; that is, we may assume that m’ is already
given on 3,; and that

for all X € 3.

Let 7 act on W. We saw in Lemma 3.5 that the restriction of 7 to the connected
component M°(R) is the direct sum of finitely many irreducible representations. Let 79
acting on W° C W, be one of them. Because of Theorem 4.5.8.9 of [16], there are only finitely
many possibilities for the class of 7°.
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Suppose W’ is the space of all functions ¢ on M (R) with values in W© satisfying

p(mom) = 7°(mo)p(m), mo € M°(R).
M(R) acts on W’ by right translations. There is an M (R)-invariant map from W' to W
given by

p— D Tlg ely).
MO(R)\M(R)

We shall verify that W’ admits a finite composition series

0=WoCW1 CWoC---CW,=W"

Then 7 must be equivalent to the representation of M (R) on one of the quotients W;_1\W;.
From this the lemma follows.
To show the existence of a finite composition series all we have to do is show that if

0=Wo CWiC - CW, =W
is any chain of M (R)-invariant subspaces then n < [M(R) : M°(R)]. We could instead work
with spaces of K-finite vectors invariant under the pair K, M. If K° = K N M°(R) then W’
admits a composition series of length [M(R) : M°(R)] with respect to the pair K%, 9. Any

chain invariant with respect to this pair, and, a fortiori, any chain invariant with respect to
K, 9, has therefore length at most [M(R) : M°(R)].

We return to the proof of Lemma 4.8. Let 7y, ..., 75 be the classes corresponding to the
given homomorphism m’. Choose for each i an irreducible representation o; occurring in the
restriction of 7; to K;. Set Xy = {o1,...,04}.

Suppose 0" C U’ are closed M (R)-invariant subspaces of 2J. Let o be a representation
of K occurring in 20° = U"\%Y'. Let 2(c) be the space of all vectors in 2J° transforming
according to 0. 20(o) is finite-dimensional. Among the nonzero subspaces of 20(c) obtained
by intersecting it with a closed M (R) -invariant subspace of 20°, there is a minimal one
20 (0). Let 20 be the intersection of all closed invariant subspaces of 20° that contain 23’ (o).
Let 20" be the closure of the sum of all closed invariant subspaces of 20’ that do not contain
0 (). Then 20" C W’ and the representation of M(R) on 20"\’ is irreducible. Since it
must be one of 7,..., 7, it contains one of oy, ..., 0.

Suppose we have a chain of closed M (R)-invariant subspaces

0cY, ¢--- Y, =7.

Since one of oy, ..., 0, is contained in the representation of K7 on the quotient of the successive
subspaces, n < dimU(X;). On the other hand, if these quotients are not irreducible the
chain can be further refined. The lemma follows.
As before let P = 0(P). Let 4 be the space of continuous functions ¢ on G(R) with values

in U which satisfy the following two conditions:

(i) If m € N(R) then ¢(7g) = ¢(g).

(ii) If m € M(R) then p(mg) = 7T(;11 (m)r(m)p(g).
The representation of G(R) on 4 by right translations is the induced representation I,,ﬁ CItis
easily seen that every representation of K occurs with finite multiplicity in I” and that

IP(X) =m(X)I, 1€ 3q.
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Thus ITF admits a finite composition series. We now show that 7 is infinitesimally equivalent
to a subrepresentation of I”. For this we have only to define an injection of the K-finite
vectors in V' into 4 which commutes with the action of K and i1.
Recall that the vector v was fixed. Suppose u is K-finite. If k; € K; then
O (mky !, m(kik)u,v) = ®(m, w(k)u,v).
We define ¢, in i by
(4.12) pu(Mmk) : my — w5, (m1)® (mam, 7(k)u, v).

The map u — ¢, is by our choice of v, an injection; it clearly commutes with the action of
K. To verify that it commutes with the action of 2 we have only to check that

Orxyu(l) = <Irﬁ(X>Q0u>(1)'

Set ¢, = ¢ and Yr(xyu = ¢’. Then p(m) = ®(m;u,v) and ¢'(m) = ®(m,7(X)u,v).
Recall that if X is defined as in (4.6) and equals

21®Y2®Zi
then

p'(m) =Y Yigi(m).
On the right Y; is applied to a function of m and
¢i(m) = ®(m, (Z;)u,v).
X was so chosen that
X - vz end
It is clear that if Y € n and v is K-finite in 4 then
IF(Y)(1) = 0.
Thus _ _ B _
IP(X)p(1) =D 1P (Z)p(1) = I (Yo)prizou(1).
A close examination of the definition ([#12) shows that I”(Y;)@x(zyu(1) is the function
m — Yip;(m).

There must be an irreducible constituent p of the representation r on ¥ such that = is
infinitesimally equivalent to a subrepresentation of 5 . This p is the representation figuring
in Lemma 4.2, which we are still in the process of proving. We must show that p is essentially
tempered. Accepting this for the moment, we show that 7 is infinitesimally equivalent to the
representation J f .

An easy computation (for a special case, see Chapter 5 of [16]) shows that I and I” have
the same character and therefore the same irreducible constituents.

Let p act on W. JI" was introduced as the representation on the quotient Io(W)/I;(W).
All we have to do is verify that m cannot be a constituent of the restriction of / ,f to I1(W).

The A = A\(p) that figures in Lemma 3.8 is \. If 7 is a constituent of the restriction of I f
to I;(W) then, by Lemma 3.12,

(4.13) (m(am)u,v) = 0(0p" (a)mx(a))
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if m is fixed in M(R) and a — oo in A*(P). However, Theorem 3 of [5] assures us that the
expansion converges decently for fixed ay (cf. [16]), Appendix 3). We conclude from
and Lemma A.3.2.3 of [16] that the terms of with Re\; = A% This certainly
contradicts the choice of \°.

We apply Lemma A.3.2.3 in the following manner. Choose \? € L; (7, X) with Re \Y = A%,
Let ay be fixed. If a; = ef* lies in A; then dp(ay) = eV, Thus

> on(Hia)e I = o))

MELq(7,X)

as a; — oo in AT = AT (P). If € > 0 we can choose R > 0 and a finite subset S of L;(, X)
so that if (o, H) > R+ eB(Hy, Hy) when « is a root of A; in n then

D o (Hy,ag)eM 0 < e

)\1€L1(7T,x)
and
Z b, (Hl,a2)€<)\1_)\?’Hl> <e.
A1 ¢S
Then

> o (Hy,az)e™ | < 2.
A ES

Lemma A.3.2.3 then implies that

‘%?(Hh@) < 2e

for all Hy. Since € is arbitrary QD)\(l)(Hl, as) = 0.
It remains to show that p is essentially tempered. Any K;j-finite linear form on U is a
linear combination of the functionals

0 — 0(my, 1, p2)
where m; € M(R) and ¢1, @9 are continuous functions on K;. Thus

‘f(r(m)@)‘ <c(1+ E(m))d_lm\o(m)EM(m).

A similar inequality is valid for the representation p. Set p/ = 7T;01 ® p. If we W is K;-finite
and f is a K;-finite linear form on W, an inequality

f(p’(m)w)) <c(l+ ﬁ(m))d_

1—
Em(m)

is satisfied.
To finish up we have only to prove the following lemma, in which we replace M by G and
p by m in order to allow the symbols p, M, and P to take on a new meaning.

Lemma 4.10. Suppose that m and 7 are quasi-simple irreducible representations of G(R)
on the Banach spaces V' and V* and that there is a nontrivial G(R)-invariant bilinear pairing
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(u,v) = (u,v) of V.x V* into C. Suppose there is an integer d such that for every K-finite

u and v an inequality
.
(m(g)u,v)| < c(1+(9)) Eclg)

is satisfied. Then there is a parabolic subgroup P of G over R and a unitary representation p
of M(R), square-integrable modulo the center, such that 7 is a constituent of If.

We start from the expansion and show that if Ay € L(m, X) then Re B(5;, o) < 0 for
all 4. If not, there is a linear combination § = Y b;3; with positive coefficients such that
Re B(B, Ag) > 0. Choose Hj in the Lie algebra of A so that (A, Hy) = B(, ) for all \. Then
eflo lies in the interior of A*. Taking Lemma 3.6 and the assumption of the lemma into
account, we see that for H in a small neighborhood of H

> pa(tH)e Ao ) = o(1)

AEL(m,X)

as t — oo. Applying Lemma A.3.2.3 as before we conclude that py,(H) = 0, a contradiction.
Let
E\) = {i|ReB(6;,\) =0}.
Let FE be maximal in the collection of E()A). P will be defined by demanding that P O Py, a
fixed parabolic subgroup minimal over R, and that D(P) be spanned by Dy and { 5; | i € E }.

This decided, we turn to the expansion (4.3). There is at least one A} in L;(m, X) with
Re)\) = 0. We fix it and define the function ®(m) as before. If \; € L(m, X) then
Re B(B;, A1) < 0 for ¢« € E. This allows us to argue as before and to show that the new ®
satisfies (4.8).

It satisfies a much improved form of ([4.10). If A € L(mr, X) has projection A; in L;(m, X)
and Re A\; = 0 then, by the maximality of E, B(f;, ) < 0 for ¢ ¢ E. Since the set E(r) is
finite there is a u € D(Fy) such that B(f;, u) =0 for i € E and B(f;, ) < 0 for i ¢ E and
such that

B(Biot) > Re B(5:, \)
if A € L(m, X) and the real part of the projection of A on D(P) ® C is zero. Theorem 4 of [5]
implies that there are an integer d and a constant ¢ such that

(1.14) i @)[#(0)]| < (1 + 1)) Zu(a)e

for a = e in A*(P}), where P} = Py M. Using this inequality instead of (4.10)) we proceed
as before to define p. 7 is then a constituent of [ f . Since it follows easily from (4.14)) that p
is square-integrable modulo the center, the lemma is proved.
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