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428 PHILLIP A. GRIFFITHS

Introduction
This paper closely parallels the Gergen lectures which I was fortunate to

have the opportunity to deliver at Duke University in March, 1978. My goal in
those talks was to discuss the relationship between curvature and the singular-
ities of complex-analytic varieties which was initiated in the recent work of
Linda Ness1), N. A’Campo, and R6mi Langevin), and which is somewhat
broadened and extended here. Since these lectures were intended for a general
audience, much of the first two sections of the paper is expository, covering
known material but from a viewpoint intended to serve later needs. Indeed, the
discussion of real differential and integral geometry is not logically necessary
for the eventual results on curvature and singularities, but by thinking through
this more intuitive and familiar material the extension to the complex case
should appear natural, and moreover should permit deeper appreciation of the
special features peculiar to Hermitian differential and integral geometry. In the
remainder of this introduction a somewhat more detailed account of the con-
tents of this paper will be given.

In the first section there is a discussion of Hermann Weyl’s formula for the
volume of the tube r(M) of radius r around an oriented n-manifold M in IRN.
The result is

(0.1) vol rr(M) C(n, m, k) tz(M)rm +
k=O

where rn N n, the C(n, m, k) are universal constants, and the

Ix(M) C(k, n) It I(nt)dM

are integrals over M of scalar invariants I(R) constructed from the Riemann
curvature tensor R. The point is that the right-hand side of (0.1) is an intrinsic
invariant of the induced Riemannian metric and does not depend on the particu-
lar embedding M C IRN. At one extreme/x0(M) vol (M) (as expected), while
at the other extreme I,(Rt) is zero for n odd and for n even it is the integrand
K dM in the general Gauss-Bonnet theorem

(0.2) Ct It K dM x(M)

for a closed manifold.(z) In fact, it was by using tubes (their boundary, to be
precise) that the general Gauss-Bonnet theorem was first deduced from the
formula (0.2) for oriented hypersurfaces, where K is then the Gauss-Kronecker
curvature. We have recounted this development in lb, partly because it is of
historical interest and illustrates the observation that in geometry intrinsic for-
mulas are frequently arrived at by extrinsic considerations, and partly because
the Gauss-Bonnet is certainly the most important curvature integral. In c we
show how, via the Gauss mapping, this extrinsic proof ties in with the more
modern version using characteristic classes. The first section concludes with
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the observation that, among the coefficients/zk(M), only the top one is topologi-
cally invariant.
Perhaps it should be remarked that the motivation for beginning these lec-

tures with Weyl’s formula is first of all due to the reproductive property (0.4)
below of the coefficients/xk(M) whose complex analogue will play an essential
role in our study of singularities, and secondly because the Gauss-Bonnet in-
tegrand is the first one to be investigated near a singularity.
Next we turn to integral geometry for manifolds in IRs. The starting point is

Crofton’s formula

(0.3) I n(C f) L)dL 2/(C)

expressing the length l(C) of a (piecewise smooth) curve C in IR as the average
of the number n(C f3 L) of intersections of the curve with a line. The proof is
given in a setting so that the generalizations will involve no essential new con-
cept. Technically the argument is facilitated by the use of moving frames, both
because they are geometrically natural and because by using them it is easy to
recognize the invariant density dL as being a constant expression in the dif-
ferential coefficients of a moving frame.(4 In 2b we apply Crofton’s formula to
prove a result of Fenchel-Fary-Milnor concerning the total curvature of closed
curves in IRa Because of the relationship between knots in IRa and isolated
singularities of complex-analytic curves in ts this may be considered as our
first result about curvature and singularities. Finally, in 2c we discuss a special
case of Chern’s kinematic formula6; this result states that the coefficients
(M) in Weyl’s tube formula have the reproductive property

(0.4) I tz(M f3 L)dL C iz(M)

where L varies over the affine linear spaces of dimensions (N + k n) in IRN.
In case M is a closed manifold we may use the Gauss-Bonnet formula (0.2)
together with (0.4) to interpret the curvature integral

tzg(M) IM Ik(RM)dM

as (a constant times) the average Euler characteristic of intersections M f’l L.
Alternatively, we may view (0.4) as expressing the average over linear spaces L
of the curvature integrals

tx(M f’l L) I I(RM )
L

as an integral in the curvature of M (the point is that it is not the case that
RM RMIM ). It is this viewpoint will turn out to be most relevant to our
study of singularities.
Next we turn to the complex analogue of Weyl’s formula. Section 3 begins
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with a discussion of the Hermitian differential geometry of a complex manifold
M C (12N, with special emphasis being placed on the positivity and non-degen-
eracy of the basic Chern forms c(I.) in the curvature f of M--cf. (3.7) and
(3.11). Then there follows some remarks on integration over complex-analytic
varieties. The point of this discussion is that we shall be interested in curvature
integrals near singularities, and these are not automatically convergent as are
those arising from the restriction of smooth forms in the ambient space, so it is
perhaps worthwhile to get some preliminary feeling for singular integrals on
singular varieties.
After these preliminaries we come to the volume of tube formula. The for-

mula, which is derived as in the real case, has been in the literature for some
time,7 but it does not seem to have been noticed that the coefficients have the
form

(0.5) /x(M) Ct .In c(IM) /k 6n-

where 6 is the K/ihler form on . As proved in the reference given in footnote
(7), a similar result holds for a compact complex manifold in IW, and in this
case all the coefficients (0.5) are of a topological character, in sharp contrast to
a closed real manifold in IR or S. For k 0, by the Wirtinger theorem

g0(M) Cte vol (M),

and so one way of interpreting (0.5) is an extension of the Wirtinger theorem to
volumes of tubes. Additionally, the observation that the integrands
hn-k/ Ck(fM) have definite signs and are pullbacks to M of forms on EN X

G(n, N) under the holomorphic Gauss mapping

z ---* (z, Tz(M))

enables us to prove that the integrals (0.5) are absolutely convergent near a
singularity of a complex-analytic variety and therefore to extend the tube for-
mula to this case. Section 3 concludes with an observation concerning the
growth properties of the/x(M) for an entire analytic set in (I:s.

Section 4 is devoted to complex integral geometry. Since intersection num-
bers of complex-analytic varieties meeting in isolated points are always posi-
tive, the complex analogue of Crofton’s formula (0.3) has a topological charac-
ter. Once this is properly formulated, the generalization (4.9) to intersections of
an analytic variety in the Grassmanian with a variable Schubert cycle is formal.
Applying this result to the Gaussian image of a complex manifold M C g gives
the formula

(0.6) (-1)nGt--eIMKdM=I_, n(M,H)dH

where n(M, H) is the number of points (counted with multiplicities) z M such
that the tangent plane Tz(M) lies in z + H for a hyperplane H. This application
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of integral geometry to eliminate the boundary integral in the usual Gauss-Bon-
net for open manifolds illustrates one of our guiding principles" The global enu-
merative or projective formulas of algebraic geometry remain true locally on
the average. Thus, e.g., one complex analogue of (0.3) says that for an analytic
curve C in IP the average number of intersections of C with a line is equal to
the area of C in the Fubini-Study metric. Another illustration of this principle is
the complex analogue

of the kinematic formula (0.4). The reason for (0.7) is Chern’s formula (0.4)
together with the appearance (0.5) of the Chern forms in the volume of tube
formula. However, the proof of (0.7) given in 4c uses Wirtinger-type prin-
ciples peculiar to the complex case and is therefore simpler than the proof of
(0.4). For later applications we need a variant of (0.7) when the linear spaces L
are constrained to pass through the origin, and this topic completes 4.

Finally, in section 5 we turn to the study of the curvature of complex-analytic
varieties. The basic observations are (i) that if V is an analytic variety, then
even though the curvature (e.g., the Gauss-Kronecker curvature) at the smooth
points may tend to + as z tends to a singular point, suitable curvature in-

tegrals I, P(v) will converge; and (ii) that if {Vt} (0 < It < 3) is a family of

complex manifolds approaching an analytic variety V0, then

(0.8) lim
t--0

P(l)v) # IVo P(av0);

i.e., the limit of the curvature is not equal to the curvature of limit, in contrast
to the behaviour of volume. Following some heurestic discussion in 5a, our
main general result (5.11) computes the difference of the two sides of (0.8) as an
intersection number of a subvariety A of the Grassmannian with a Schubert
cycle. In 5b this cycle A, which we call the Pliicker defect associated to the
family {Vt}, is shown to exist and the formula (5.11) derived.

It remains to interpret the intersection number in special cases, and for this
we sketch a proof of a result (5.15) of Tessier about the Milnor numbers (i
associated to an isolated hypersurface singularity. This enables us to use (5.11)
when P(I) c,() (-1)n CKdA is (a constant times) the Gauss-Bonnet
integrand, and then we deduce Langevin’s formula (cf. footnote (2))

(0.9) lim lim
--0

(-1)ncte Ivt KdA {Ix(n + + x(n)}

where Vt[e.]= {z w,. zll _< ,}, which is the result initially arousing our inter-
est in the subject. In 5c we apply the kinematic formula (0.7) to extend
(0.9) to higher codimension, thereby giving curvature formulas for all sums
{L6(k + 1) + /j,(k)}, Adding these up with alternating signs enables us to isolate the
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top Milnor number/.,(n + 1)(V0) a topological invariant of the isolated singularity,
and arrive at the formula

(O. lO) /.t(n+l)(Vo)= lim lim ( (-1)C(k’n)e
0 t--)O k=O

+ (--1)n-i.

Now the general manner in which we derived (0.10) suggests many other
numerical characters which may be associated either to singular varieties or to
a family of complex manifolds tending to a singular limit. The numbers which
are essentially new--i.e., are not expressible in terms of classical Milnor num-
bers-are associated to an isolated singularity in codimension => 2, and arise
using either the st order tangential structure as for an isolated surface singular-
ity in 4, on the higher order osculating structure as for an isolated curve singu-
larity in (3. We don’t know if any among these has topological meaning, or if
any may be used to detect the impossibility of smoothing, or indeed any futher
non-trivial applications, but it seems pretty clear that additional work in the
area is possible, and so in 5d we conclude with a few examples analogous to
(0.9), general observations, and open questions.

Footnotes

1. L. Ness, Curvature of algebraic plane curves, I. Compositio Math., vol. 35 (1977), pp. 57-
63.

2. R. Langevin, Courbure et singularities complexes, to appear in Comm. Math. Helv.
3. Throughout this paper C will denote a suitable positive constant depending only on dimen-

sions and not on the manifold in question.
4. In fact, all computations are made in the setting of moving frames, so that the present work

may be considered as a continuation of our previous expository paper in this journal (vol. 41 (1974),
pp. 775-814). There we commented that the general theory of frames associated to higher orderjets
was complicated by the presence of singularities arising from "inflectionary behaviour". In this
paper we will be eventually interested in singularities occurring already at the first order, so that its
general character may be said to be the application of frames to the metric study of complex-
analytic singularities.

5. J. Milnor, Singular points ofcomplex hypersurfaces, Annals of Math Studies #61, Princeton
Univ. Press, Chapter 10.

6. S. S. Chern, On the kinematic formula in integral geometry, J. of Math. and Mech., vol 16
(1966), pp. 101-118.
Our discussion of integral geometry has been much influenced by unpublished course notes by

Chern from a class taught at Berkeley in the spring of 1965.
7. F. J. Flaherty, The Volume ofa Tube in Complex Projective Space, Ill. Jour. Math., vol. 16

(1972), pp. 627-638.

1. Hermann Weyl’s formula for the volume of tubes
(a) Frames and derivation of the formula. We will discuss a formula of H.

Weyl<1) for the volume of the tube of radius r around an n-dimensional manifold
in IR. For this we shall use moving frames, and shall recall briefly their defini-
tion and structure equations (for more details cf. the paper quoted in footnote
(4) of the introduction).
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In IRn with orientation dX1/’" / dxN > 0, an oriented flame is given by
{x;el, ", eN} where x Rn is a position vector and el, ", en form an orient-
ed orthonormal basis. The set of these frames constitutes the frame manifold
ff(IRN), which upon choice of a reference frame may be identified with the
group E(N) of proper Euclidean motions with x corresponding to the translation
part and el, ", en to the rotation part of such a motion. Considering x and the
e as maps from o(lRN) to IRN and writing their differentials as

(1.1)

defines

dx E giei

dei , oijej, o)ij + (.Oji 0

N(N 1) N(N + 1)N+
2 2

independent/-forms oi and oij on ff(IRN) which under the above identification
are just the invariant Maurer-Cartan forms on E(N). Taking exterior derivatives
in (1.1) gives the Maurer-Cartan equations

(1.2)
d(’Di E O)j A (.Oji

d)iJ E (’Oik (.Otcj.

Now let Mn C IRN be a connected smooth manifold. Since we are primarily
interested in local questions it is convenient to assume M to be oriented and to
have a smooth boundary OM. Letting m N n be the codimension ofM we
shall use throughout this paper the index ranges

<_i,j,k<_N; <_ot,<_n;n + <_l,v<-N.

Associated to M is the submanifold (M) C (IRN) of Darboux frames defined
by the conditions: x M; el, ", en form an oriented basis for the tangent
space T,(M); and en / 1, ", eN form an oriented basis for the normal space
N(M). Since dx is tangent to M, the first equations in (1.1) and (1.2) become

(1.3)

It follows that

dx o e, i.e., o 0

I (dx, dx) a
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is the (pullback to (M) of the) first fundamental form ofM, and that {oJ} is the
connection matrix for the associated Riemannian connection.
By the first relation in (1.3) we may think of(M) as an integral manifold of

the differential system(

to, O, &o. 0

on (IR). By (1.2), the second of these equations is

0 E Oa i ogaz

which by the well-known Cartan lemma implies that

(1.4) to. ’. h.oJo, h. h..

The linear system of quadratic forms

II h0.oo0 (R) e.
is called the second fundamental form of M in N; for each unit normal

e
(II, ) h

(dx, )

gives the usual second fundamental form of the projection ofM into the " +

spanned by T( and . By the Caan structure equation, the curvature ma-
tr {} for M is given by

ft dto oy A tore

by (1.2)

by (1.4). Setting

1- R,y6toy A to6, R,z6 -R6v

it follows that the components of the Riemann curvature tensorR are given in
terms of the 2na fundamental form by
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In case M C N + is an oriented hypersurface, we choose en + to be the out-
ward normal and choose our tangent frame e, ., e. to diagonalize the sec-
ond fundamental form: thus

n
where the k are the principal curvatures. The Riemann curvature tensor is

(1.6) R0v, k,kt(- )

Letting dM w , be the volume form on M, the Gauss-Kronecker
curvature is defined by

(1.7) l,n + n,. + K dM,

which using .. + kw gives

(1.8) K

We now denote by z( the tube of radius r around M. More precisely, if
r] is the tubular neighborhood of radius r around the zero section in the
normal bundle, then there is an obvious map (exponential map)

andr( is its image, counted with whatever multiplicities arise from the focal
behaviour of the normal geodesies. To explain Weyl’s formula we shall use the
following notation due to Flanders4): Given a vector space E, we set

’t(E) (E) t(E*)

A*,*(E) A,’(E)
k,l

and make A*,*(E) into an associative algebra by the rule

(a

The diagonal @ A’(E) is then a commutatire subalgebra. Taking E T(
we may consider the curvature

R Rove A e0 @ v Ae A’(T(),

and dne the sCalar invariants I() for 21 an even integer by

I,(R) Trace (AR) (I 2k)

where AR A’(T() A’(T()*. In components

(1.9)
A,B

where A (1, "’, a,) and B (B,, ..., ,) run over index sets selected
from (1,. ., n), and
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I0 is A is not a rearrangement of B

| _+ is the sign of permutation taking ai to/3i otherwise,

and where Cte C(n, l) is a suitable constant. Setting

,(M) It(R,)dM

the formula is

(1.10) vol rr(M) C(l, n)txt(M)rm + .
/=0

0(2)

We shall sketch Weyl’s proof, deferring the detailed argument until section
3c in which the complex case will be discussed. Points in ’r(M) are

y x+ t.e..

It follows from the structure equations (1.3) and (1.4) that

dy (toe- tto.)e + (dt. + tto..)e.

with repeated indices always being summed. Letting dV denote the volume
element in IRN and dt dtn / 1/ / dtN, we infer that

where

dV= / ( (-h.t.)toz) /

’ Pl(t, h)dM dt

(1 11) Pt(t, k) (- 1)t
I! h11"1"" htmt"l"" tm.

A,B

By Fubini’s theorem

To evaluate the inner integral we utilize Weyl’s notation {f} for the spherical

average

465)

(1.13)

where the constant C(m; l / ,
even. Setting 2k and

f(t)dt, and also his explicit evaluation (Weyl, loc. cit., page

tn tN IN<tn1" ts) C(m; ln+ l,

", l) is clearly zero unless all exponents are
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we deduce that

ez(h) (Pz(t, h))

--cte / halt311haz32tz1"" hazk-Bzk-ltzghazgBztzg

Cte Roo’" Rz_ ltz-ao

by (1.5) and a straightforward skew-symmetry argument

Cte It(RM)

by (1.9). Aside from the explicit determination of constants (a non-trivial mat-
ter!), this implies Weyl’s formula (1.10).
We remark that (1.10) may be extended to manifolds M C Su in spheres

(Weyl, loc. cir.). We also note that the fact that Pz(h) contains hz, only in the

quantities hzu h,z,u may be deduced from the observation that Pz(h) is in-

variant under substitutions hz, -- . hzgu for (g) an arbitrary proper or-

thogonal matrix.

(b) Tubes and the Gauss-Bonnet theorem. We should like to make a few
observations concerning (1.10). To begin with, as already remarked by Weyl,
the first step (1.12) expressing the volume vol rr(M) in terms of the second
fundamental form of M in RN is "elementary calculus." The deeper and more
interesting aspect, which we only outlined, is that the functions P(h) are ex-
pressible in terms of the R’s, and are therefore intrinsic invariants of the
Riemannian metric. The simplest special case of this is that of an arc C in the
(x, y)-plane: it asserts the area of a strip of width r about C depends only on the
length of C and not on its curvature. This invariance under bending may be
illustrated by considering the figures

l i’/ /////// /i///l
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The point is that the blank areaA is congruent to the doubly shaded region B.
A second remark concerns a pair of Riemannian manifolds M1 and M2 with

M1 Mg being given the product metric. Denoting by

RM, + Me. /2"2(T(Ma x

the curvature operator introduced in the formulation of (1.10), with the fairly
obvious notation we have

RM x M RM + RM
which implies that

/l RM x M2 /PRM + p RMz.

Taking traces and integrating gives the functoriality propey

(1.14) (M x M) (M) (Me).
=0

This together with the reproductive property (0.4) possibly serve to character-
e the curvature integrals (M).
The final observation is that, even ifM is a compact mangold without bound-

ary, the (M) are metric but not in general topological invariants. For example,
for small r the dominant term in Weyl’s formula is, as expected,

C vol (M)r.
On the other hand, the coecient

(IM, n 0(,

of the highest power of r does turn out to be topologically invariant. This reali-
zation was intimately connected with the discovery of the higher dimensional
Gauss-Bonnet theorem, and we should like to briefly recount this develop-
ment.( The starting point is the following theorem of H. Hopf: For
H C N a compact oriented hypersufface, we consider the Gauss map

" H S-sending each point y H to the outward unit normal p(y). HopFs result is that
the degree of this map is a constant times the Euler-Poincar characteristic
x(H).( Expressed in terms of integrals

(1.15) .f d C x(H)

where d is * (volume form on S ).
For example, using Darboux frames {y; e, ., e_ ; e} associated to H,

we have
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so that

v(y) eN,

dv O)N,o e.

E (.O(x,N e.

E hahN 00 e

where II h.NOo (R) eN is the second fundamental form of H. Thus

do-= / tON,.

Ct- KdH

where K is the Gauss-Kronecker curvature (1.8), and so by Hopf’ s theorem we
infer that

Ct- .In KdH x(H),

which is the Gauss-Bonnet theorem in this case.
Using tubes we may pass from a general Mn C IRu to a hypersurface. Name-

ly, assuming that M is oriented and compact without boundary, for sufficiently
small r0 the boundary of the tube 0(M) will be an oriented hypersurface H; for
simplicity of notation let us assume that r0 1. Expressing points y H in the
form

y x + ’, t, e,, Iltll 1,

as in the proof of Weyl’s formula, the Gauss mapping on H is given by

v(y) t. e,.

By the structure equations

(1.16) dr(y) ( . t..)e + . (dt. + t.)e..

The volume form on the unit normal sphere at x is

C (-1)"-t. dt+A.. Ad&A..Adts.

Using t. dr. 0 on H, it follows from (1.16) that
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do- A A n

P,(h, t)dM A l

where P,(h, t) is given by (1.11). Consequently

d" cte It I,,(RM)dM.

In case the codimension m is odd, we may use

x(H) x(M) x(Sm- 1)

2 x(M)

together with (1.15) to conclude that

(1.17) Cte Im I,,(RM)dM x(M).

In case m is even we simply consider M C IRN / by adding trivially an extra
coordinate to IRN, and then the argument still applies.

Setting In(RM)dM KdM, formula (1.17) is the famous Gauss-Bonnet theo-
rem. As mentioned above, we have more or less retraced its original derivation,
where it remains to show that the formula is valid for any Riemannian metric.
One way, of course, is by quoting the Nash embedding theorem. For ped-
agogical purposes it is probably better to show directly that for a 1-parameter
family of Riemannian metrics the variation of the integral

by differentiation under the integral sign and using the Chern-Weil formalism to
write

Ot (I,,(R,,M)dM)

and then applying Stokes’ theorem.(7

A concluding remark is that, like many of the most beautiful formulas of
geometry, the Gauss-Bonnet is an intrinsic relation which was however discov-
ered and first proved by extrinsic methods. Chern’s subsequence intrinsic
proof(s was based on the tangent sphere bundle rather than the extrinsic normal
sphere bundle.

(c) Gauss mapping and the Gauss-Bonnet theorem. This last observation
suggests that we consider directly the tangential Gauss mapping on M, which
will be done following some observations on Grassmannians.
We denote by Gn(n, N) the Grassmann manifold of oriented n-planes through

the origin of IRN. Note that Gn(1, N) is the sphere SN and that Gn(N n, N)
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Gl(n, N). The manifold o%0(Rn) of all oriented orthonormal bases {el, ", en}
for IRn is a fibre bundle over the Grassmannian by

{el,..., eu} {n-plane T spanned by ea,..., en},

and it is convenient to "do calculus" for Gn(n, N) up on 0(RN). For this we
note that the unit multivector e A.. A en AnlRN depends only on the n-
plane T; this mapping induces the Plucker mapping p in the following diagram

Gn(n, N) S ( --1.(9)

Considering ff0(IRN) C o(IRN) as a submanifold defined by x dx 0, the
structure equations (1.1) and (1.2) are valid. If we note that in (1.18)

(1.19) dp(T) d(el A" A en)

(-1)" o.elA’’A eA. AenAe,,

we deduce that the n(N n) forms {o,} are horizontal for the fibering 7r and
induce a basis for the cotangent space to the Grassmannian. Alternatively, the
fibre 7r-l(T) consists of all frames obtained from a fixed one by proper rotations

The subsequent change in the Maurer-Cartan matrix {rou (dei, e)} is given by

(1.20)
rOau E gatff’Otv g-1) zv

The second equation checks our remark about the horizontality of the ro,’s,
while the first one has the following interpretation: Over the Grassmannian we
consider the tautological or universal n-plane bundle

E --. Gt(n, N)

whose fibre over T is just the n-plane T. Then {o} gives a connection matrix,
called the universal connection, for this bundle,tl Its curvature matrix is
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We note that this connection is compatible with the metric, and as a con-
sequence

Now when n 2k is even, an n n skew-symmetric matrix A has a scalar
invariant called the Pfaffian Pf(A), which has the property of being invariant
under A BArB for B SO(n), and which satisfies

Pf(A) det A.

Since multiplication of forms of even degree is commutative, we may take the
Pfaffian of the curvature matrix {lz}, and define

(1.21) Pf(E) Cn J, A A 1,. lOl.,
A

This is a closed invariant n-form on the Grassmannian,(11) and (for a suitable
constant Cn) its de Rham cohomology class in the Euler class of the universal
bundle.
Returning to our even-dimensional oriented manifold Mn C IRN, the Gauss

mapping

y" M--) G(n, N)

assigns to each x M the tangent plane Tx(M) Gn(n, N). Using Darboux
frames, (1.4), and the PKicker embedding, the differential of the Gauss mapping
is given by

dy(x) d(ex A" A e.)

i.e., the differential of the Gauss mapping is just the second fundamental form
of M in IRN. Moreover, by definition

5’* E T(M),

and we infer that the Riemannian connection on M is induced from the univer-
(12)sal connection. As a consequence, y*() i and the Pfaffian form pulls

back to

A

.BRoq(XdlB R.,, ,.,,._ lf. dM
A,B

Cte I,,(RM) dM
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by (1.9). In other words, the Gauss-Bonnet integrand is induced from the uni-
versally defined form Pf(I) under the Gauss mapping, and therefore in de
Rham cohomology it represents the Euler class of the tangent bundle, which
again implies the Gauss-Bonnet theorem for submanifolds of IR. One way to
prove the Gauss-Bonnet theorem for a general compact Riemannian manifold
M is to observe that the preceding argument applies provided only that the
Riemannian connection is induced from the universal connection by a map
f: M G(n, N) with f*E T(M); that such a classifying map exists follows
from the theorem of M. Narasimhan and Ramanan, Amer. J. Math., Vol. 83
(1961), pp. 563-572. An alternate proof which has worked well in teaching dif-
ferential geometry is given at the very end of this paper.

In closing we remark that the other terms in Hermann Weyl’s formula (1.10)
are not pullbacks of invariant forms an the Grassmannian, and (as previously
noted) are of a metric rather than a topological character. We are perhaps bela-
boring this point, because the complex case will be in sharp contrast in that all
the terms turn out to be rigid.

Footnotes

1. H. Weyl, On the volume of tubes, Amer. J. of Math., vol. 61 (1939), pp. 461-472; cf. also H.
Hotelling, Tubes and spheres in n-spaces and a class of statistical problems, American J. Math.,
vol. 61 (1939), pp. 440-460.

2. A differential system on a manifold X is given by an ideal in the algebra of differential forms
which is closed under d; an integral manifold is a submanifold Y C X such that b[y 0 for all

3. Recall that

dx 2 toeandde= Z to13 e13 + Z oo,e,,

so that the normal part of

d2x is

4. H. Flanders, Development of an extended differential calculus, Trans. Amer. Math. Soc.,
vol. 57 (1951), pp. 311-326.

5. cf. C. B. Allendoerfer, The Euler number ofa Riemannian manifold, Amer. J. Math., vol. 62
(1940), pp. 243-248; and C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Rieman-
nian polyhedra, Trans. Amer. Math. Soc., vol. 53 (1943), pp. 101-120. When n 2 so that M is a
surface, we have In(RM) CeR1212, which implies that/z2(M) is a constant times the classical Gauss-
Bonnet integral

6. Recall that the degree is the number of points, counted with --. signs according to orienta-
tions, in y-l(e) for a general value e Ss- 1. This result is an immediate consequence of Hopf’s
theorem about the number of zeros of a vector field (cf. H. Hopf, Vektorfelder in Mannigfaltigkei-
ten, Math. Ann. vol. 96 (1927), pp. 225-250.)

7. Actually, this program will be discussed in some detail at the very end of the paper---cf.
section 5d.
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8. S. S. Chern, A simple intrinsic proofofthe Gauss-Bonnet theoremfor Riemannian manifolds,
Ann. of Math., vol. 45 (1944), pp. 747-752.

9. The top mapping between frame manifolds is

{.., e,," "}--> {" ", e,,..}

where I (ia, ", in) runs over increasing index sets and ei eq / / %.
10. More precisely, in 0(lRN) G(n, N) the bundle r*E has the global frame

and is therefore trivial; {to} is the connection matrix relative to this frame of the pullback to
0(IRu) of a connection in E G(n, N). In the future we will generally omit such laborious descrip-
tions of where various differential forms are defined.

11. A basic fact is that any invariant form b on G(n, N) is closed. Indeed, b is an expression with
constant coefficients in the {to,} and is invariant under o, --> to g, for (g,) SO(N n). It

follows that b is a polynomial in the quantities to,/ o,, and hence has even degree. In

particular &b 0. Similar remarks will apply in the complex case.

12. Writing ds to], the Riemannian connection matrix {to} is uniquely characterized by

0, + o, 0 and do o8/

2. Integral geometry for manifolds in IRN
(a) Crofton’s formula in the plane. The first result in integral geometry1)

deals with the average of the number n(L q C) of intersections of variable line
L with a piecewise smooth arc C in the ordinary Euclidean plane

By average we mean with respect to the (suitably normalized) invariant mea-
sure dL on the space (n(1, 2) of all lines in the plane, and the result is given by
Crofton’ s formula

(2.1) j" n(L N C)dL 2/(C)

where l(C) is the length of the arc C. To prove this we will find an explicit
formula for dL and then iterate the integral on the left in (2.1). Moving frames
will facilitate the computation, since the to and tou are a basis for the invariant
Maurer-Cartan forms on the Euclidean group and consequently dL may be
written as a constant expression in them.
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Explicitly, we consider the manifold -(IR2) of all frames {x; el, e.} as a
bundle over G(1, 2) by the mapping

line L through x and{X; el, e}
in the direction el

The fibre consists of all flames {x*; e*, e} where

X* X-t- hel

e ---e, e ___ez.

Taking the plus signs for a moment, it follows from the structure equations (1. l)
and (1.3) that

0)’12 0)12"

Consequently 0)2*/ 0)1"2 0)2/ (-D12, and since the conditions that a line remain
fixed are given by

(0 6012 O
wc may take our invariant measure to bc

dL 0)2/ 0)12"

Here it is understood that the corresponding density Io2/ ox21 is to be inte-
grated; when this is done we may forget about the choice of -+ sign above.

Now we consider the bundle B-v- C whose fibre over x C consists of all
lines passing through x. There is an obvious map

F" B --) ((1, 2),

and the image F(B) is the set of lines meeting C and counted with multiplicities.
It follows that
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(2.2) I n(LCqC)dL= I F*(o)2/ (-O12),

and we shall evaluate the right hand side by integration over the fibre. For this
it is convenient to parametrize C by arc length; i.e., to give C by a vector-
valued function x(s) where x’(s)l] 1. The Fr6n6t frame is defined by

dx * *(.O le

de* * *0.) 12e2

where o* ds and O*lZ (s)ds with (s) being the curvature. (z) The fibre
7r-l(x(s)) consists of lines whose frames are {x; e, e} where

x x(s)

el= cos0e* + sin0e

e2 -sin 0 e*l + cos 0 e*z
as pictured by

Using (0, s) as coordinates on B (and dropping reference to F*), we have

O01 (dx, el) cos 0 ds,

019. (de1, ez)

(-sin 0 e*l + cos 0 e, ez)dO mod ds

dO mod ds.

Thus dL cos 0 dO/ ds, and the right hand side of (2.2) is(a)

Ic (I0 ,cos OldO)ds=2 le ds

2/(C),
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completing the proof of Crofton’s formula (2.1).
For future reference we note that the central geometric construction in

the argument is the incidence correspondence I c IR2 ((1, 2) defined by
{(x, L) x L}. There are two projections

I

IR (1, 2)

and B rSI(C). The basic integral in Crofton’s formula is

c
(),(dL),

and as will emerge later the main ingredient which enables us to systematically
evaluate such integrals is invariance under a suitably large group (cf. sections
4a and 4b).)

Finally we remark that on general grounds we may easily deduce that

n(L t C)dL is first of all additive in C, and then by passing to the limit that it

is an integral

Ic f(x, K(s),

of some function of the curvature and its derivativesindeed, any Euclidean
invariant is of this general type. The main geometric point is that the average

n(L C)dL is a bending invariant, and therefore does not involve the curva-

ture and its derivatives.

(b) Application of Crofton’s formula to total curvature. Of course there are
Crofton formulas existing in great generality5); here we should like to observe
that (2.1) remains valid in the elliptic non-Euclidean case. Explicitly, let C be a
curve lying in the unit 2-sphere S and denote by G(2, 3) the great circles on S
parametrized by the planes H through the origin IRa. Then we claim that the
relation

(2.3) r J n(H 0 C)dH l(C)

is valid.
For the proof we consider the fibration

o%0(IR) Grt(2, 3)

given by

{el, ez, ea} el / ez
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where el/k e. is the plane spanned by el and e.. We have encountered this map
in section ld above, and from the discussion there it follows that the invariant

me.asure on G(2, 3) is

dH to13 /k

If C is given parametrically by the unit vector e(t), then we attach to C the
Fr6n6t frame {el, e, e} where

e*l e,

de] tO*l.e z,*" i.e., to] 0

de$ * * + oo*--60 12e 23 3.

Then o. +-[[e’(t)[[dt is
_

the element of arc length, and o*ia *(t)o*i where

* is essentially the curvature. As before we have a diagram

B --) G(2, 3)

C

where B C C G(2, 3) is the incidence manifold {(e, H) e C H), and the

left hand side of (2.3) is a constant times I. [0913 / 0923]. TO iterate the integral

we parametrize all great circles passing through e(t) by frames {e, e,
where

el e
e =cos0e + sin0e

ea sin0e+cos0e.
As before

1(,013 / (.0231 [Ix’(t)ll jcos O] dO/X dr,

and (2.3) follows, where the constant r is determined by taking C to be a great
circle.
As an application of (2.3) we give what is the first relation between curvature

and singularities. Recall that if f(zl, z) 0 defines a complex analytic curve V
passing through the origin in , then setting S {]Zll / ]z2l } the inter-
section V V f3 S defines a closed curve in the 3-sphere whose knot type
reflects the topological structure of the isolated singularity which V has at the
origin6). We shall be concerned with the total curvature of a closed curve C in
IR and shall prove the following results:) The total curvature satisfies
(2.4) I1 ds 2

with equality if and only if C is a convex plane curve (FencheO; and if C is
knotted then
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(2.5) | KI ds >- 47r
!

(Fary-Milnor).

Proof. We give C parametrically according to arc length by x(s), and con-
sider the Gauss map

y C-- S

defined by y(s) x’ (s). Now, and this is the main geometric point, for any great
circle H, n(H f3 y(C)) is just the number of times that the tangent line to C lies
in a 2-plane parallel to H. Equivalently, if we choose coordinates (Xl, x2, x3) so
that/4 is the (xa, x)-plane, then n(I-I N y(C)) is just the number of critical val-
ues of the height function x3(s) on C. This is always an even number _> 2, and if
n(/4 C) y(C)) is equal to 2 on an open set of great circles then C is unknotted.
Indeed, for a generic choice of/4 with n(/4 y(C)) 2 and constants ca and cz
corresponding to the maximum and minimum of the height function; the planes

23 C C2 -< C--< C

will meet the curve in exactly two points, and C is the boundary of the disc
obtained by joining these points by a straight line

Now the length of the Gaussian image y(C) is just the total curvature, as
follows from the Fr6n6t equations

y(s) ea(s)

dea(s) ooa ez(s),

o (s)ds.
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Then from (2.3)

I }xlds rln(Hf’lY(C))dH,
and Fenchel’ s inequality is a consequence ofn(H f’l y(C)) -> 2, while if / I"1as <
4"rr then n(H N 7r(C)) 2 on an open set of great circles and we obtain the Fary-
Milnor theorem.

It remains to examine the case of equality in (2.4). We shall first show that
the 2nd associated curve s)

Y2" CG(2,3)

which assigns to each point of C its osculating 2-plane must be constant. Recall
that either x’(s) / x"(s) O, in which case C is a plane curve, or else in a
neighborhood where x’(s) / x"(s) 0 we may define the Fr6nt frame
{x(s); el(s), e2(s), e(s)} so that the Fr6nt equations

(2.6)

are valid, where

dX el dS

del K e ds

de -tee1 ds + 7" ez ds

des= " e ds

X / X"
(s) +__ 0

is curvature and z(s) is the torsion. The associated curve is given by

yz(s) el e,

and either this curve is a constant in which case C lies a translate of the corre-
sponding 2-plane, or else we have in a neighborhood of some point s0

dvO
ds

r e e

by (2.6). Taking X(So) to be the origin and our coordinate axes to be the e,(so), C
is given parametrically by

s + .., (s. + .., (s. + (s.(s. o,

where the dots denote terms of order 4. Setting

f,(s) x. x
s

-(So) -.- S2
,,(So) -5- +
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the function f,(s) has for sufficiently small e 0 two critical values 0, S corre-
sponding to the two roots of

( s
0 f(s) s Z(So)-- er(So) + O(s).

We note that s is approximately equal to 2e(so)/r(so). Since

and

f(s) sT"(So)- ere(So) + O(s)

f’(o) -,(So) o,
f’(2e,(So)/r(So)) e,(So) 0

we may assume that both these critical values are non-dengenerate. In sum-
mary, we have shown that in a neighborhood where (s)r(s) 4: O, slight per-
turbations of the osculating 2-planes give height functions having two local non-
degenerate critical values in addition to the absolute maximum and minimum.
Thus n(H 71 y(C)) -> 4 on an open set and so equality cannot hold in (2.4).
Now we have proved that C is a plane curve, and a similar argument shows

that either r’ (s) -= 0, in which case C is a circle, or r’ (s) 0 in which case C is a
general convex plane curve. Q.E.D.

(c) The kinematicformula. We shall discuss briefly the reproductive proper-
ty (0.4) of the curvature integrals in Weyl’s tube formula (0.10). For this it is
useful to pretend for a moment that we don’t know Weyl’s formula but do know
the Gauss-Bonnet theorem (1.17), and pose the following question: Suppose
that Mn C IRN is a compact manifold and L t(N k, N) varies over the
Grassmannian of affine (N k)-planes in IRN. Outside a set of measure zero in
(m(N k, N) the intersection M fq L will be a smooth manifold of dimension
n k in L IR ,ta) and we may ask for the average

x(M L)dL

of the Euler characteristics of these intersections.
By the Gauss-Bonnet theorem this question is equivalent to determining the

average

(2.6) I (f , I’ (Rt ))dL
where I, (Rt r ) is the Gauss-Bonnet integrand for M L. According to two
of our general principles, the expression for (2.6) should first of all be local---
i.e., should be valid for a small piece of manifold as well as a global compact
one--and secondly should be expressed as an integral over M of a polynomial
of degree n k in the entries of the curvature matrix Rt of M. Recalling our
discussions at the beginning of l(b) and the end of 2(a), we may give an
heuristic argument for the existence of a formula of the type
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as follows: the left hand side of (2.7) may first of all be given as an integral over
M of an expression in the second fundamental form of M. Secondly, since the
left hand side is invariant under isometric deformations ofM (i.e., bending), the
same will be true of the expression in the second fundamental form, which must
then be a polynomial in the curvature RM of M.
Of course this is not a proof, but it can be developed into one, as will be done

in 4(c) for the complex case. The point we should like to emphasize is that the
polynomials I,_ k(RM) are forced onto us in response to the question about
expressing the average (2.6) as an integral over M, and there they turn out to be
the same as those appearing in the formula for the volume of tubes. Unfortu-
nately we do not know a direct way of establishing a link between these two.(1)

A final remark is that the general reproductive property (0.4) may be deduced
from the special case (2.7) when n k dim (M N L), this in the obvious
way by expressing the left hand side of (0.4) as an interated integral of
/zk (M f-I L C) L’)’s where dim (M N L C) L’) k.
The formula (2.7) is a special case of the general kinematic formula of Chern

and Federer (cf. the references in footnote (6) of the introduction). This deals
with the following question: Given a pair of manifolds Mi (i 1, 2) of dimen-
sions ni with n + n2 -> N, as g E(N) varies over the Euclidean group, express
the average of the Euler characteristics

M1 n gM2)dg

in terms of invariants of the M. Here dg is the kinematic density, i.e., the bi-
invariant measure on E(N). Formulas of this general sort originated with
Blaschke (cf. the references cited in(5) of this section) and are among the deep-
est results in integral geometry. Their extension to the complex case in being
done by Ted Shifrin in his Berkeley thesis.
A final remark is this: On M, C IRN the Gauss-Bonnet integrand In(RI)dM is

invariant under reversal of orientation. This is a reflection of the topological
invariance of the Euler characteristic, and is proved by noting that both the
Pfaffian Pf(R) and volume form dM change sign under reversal of orientation,
so their product remains invariant. On the other hand the Pontrjagin forms
change sign under reversal of orientation, reflecting the fact that the signature is
an invariant of oriented manifolds. Consequently the simple-minded average11)

Pontn (RM z)dL O.

On the other hand, since the Pontrjagin numbers are cobordism invariants, in
case M is compact the absolute value
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Pontn k(RM L)
f- L

will be a constant independent of L.

Proof. A pencil IL,I of affine (N k)-planes is given by choosing a fixed
(N k 1)-plane K, a fixed (N k + 1)-plane K’, and then ILtl is the family of
(N k)-planes containing and contained in ’. For example, a pencil of lines
in R is given by fixing a point p and plane P with p P, and then taking all
lines in P passing through p.

In any pencil ILt the parameter space is the real projective line S and decom-
poses into disjoint connected intervals/[a, b] {a -< <- b} such that the
M N Lt are non-empty for /[a, b]. A chain will be given by a sequence of
pencils Lz together with intervals liar, bt] in their parameter space such that

MfqL;z MLa +)al+

Since any two L, L’ R(N k, N) for which M L and M L’ are non-
empty may be connected by a chain, it will suffice to establish the invariance of
(2.8) when L varies in such an interval/[a, b] in a pencil.
Now we may assume that the axis r Lt of the pencil meets M trans-

versely and that the Lt which are tangent are simply tangent away from . For
e > 0 sufficiently small, the disjoint union

/f/= U (M n
a+<_t<_b-

will be a smooth manifold with boundary and the invariance of (2.8) results
from the cobordism between M La + and M N Lb- Q.E.D.
Now we may obviously ask whether, for a general manifold Mn C R, we

may express the average

Pont- I(RM n L)
f- L

dL
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as a curvature integral over M, and which might allow us to prove by local
methods the cobordism invariance of the Pontrjagin numbers?

Footnotes

1. The basic reference is the wonderful book, Introduction to Integral Geometry, Paris, Her-
mann, 1953, by L. A. Santal6.

2. The Gauss-mapping in this case is y(s) el(s), and K(s) is the Jacobian of y.
3. The angular integral goes from 0 to 7r, since we want to count each line only once.
4. cf. S. S. Chern, On integral geometry in Klein spaces, Ann. of Math., vol. 43 (1942), pp. 178-

189. This paper isolated the group-theoretic notion of incidence which is ubiquitous in integral
geometry.

5. cf. the recent book by L. Santal6, Integral Geometry and Geometric Probability, Addison-
Wesley, Reading, Mass. (1976).

6. cf. Milnor’s book referred to in footnote (5) of the Introduction.
7. In addition to the reference in footnote (5) of the Introduction, cf. S. S. Chern and R. Lashof,

On the total curvature of immersed manifolds, Amer. J. Math., vol. 79 (1957), pp. 306-318.
8. The first associated curve is the Gauss mapping; it is always defined for smooth curves,

whereas the 2nd associated curve is only defined under certain restrictions to be specified.
9. The measure zero set is the "dual variety" M* consisting of all L which are tangent to M. The

complement R(N k, N) M* will decompose into connected open sets on which X(M q L) is
constant.

10. Except, of course, that arising from considering orthogonally invariant polynomials in ten-
sors having the symmetries of the Riemann curvature tensor.

11. Similarly, in Crofton’s formula (2.1) the average of the intersection numbers of L and C is
zero.

3. Hermitian differential geometry and volumes of tubes in the complex case
(a) Frames and Chern forms for complex manifolds in (EN. We begin by dis-

cussing moving frames in Hermitian geometry. The complex frame manifold
(u) consists of all frames {z; Ca, ", eN} where z ([N is a position vector
and the {ei} give a unitary basis for (u. The structure equations

(3.1)

dei o e, .Oij -t’- (ji 0

together with the integrability conditions

doi oj / (.Oji

(3.2)

k

hold as in the real case. The forms o are horizontal and of type (1, 0) for the
fibering

(([N) ..._> ([N
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given by {z; el, ", eN} Z, and

x/-1

is (the pullback to ((N) of) the standard Kihler form on N. It will sometimes
be convenient to write

/-1
oo (dz, eO, o (dei, e), d 2

(dz, dz),

etc.
We shall also be interested in the submanifold ff0((N) c ((N) of unitary

frames {el, ’’, eN} centered at the origin. The structure equations (3.1) and
(3.2) are valid on ff0(N) by setting z dz 0. The Grassmannian of complex
n-planes through the origin in N will be denoted by G(n, N); as in 1c there is a
fibering

o%o((N) G(n, N)

given by

7r(el,"" ", eN) el /" / e,

where el/ / en denotes the n-plane spanned by el, ", en. With the usual
ranges of indices

<_i,j<_N; <_c,B<_n; n+ <_l,v<_N

the forms o, are horizontal for this fibering and of type (1, 0) for the usual
complex structure on G(n, N). Indeed, setting A {t: I/I < ) the general holo-
morphic mapping A G(n, N) is given by the span of holomorphic vectors f(t)
wherefl(t)/. /fn(t) O. If{e(t); e,(t)} is any C moving frame lying over
this holomorphic curve in G(n, N), then

e(t) A(t) f(t),

and from gf(t) 0 we deduce that

(3.3)

oo ar(a-a)r
Y

where q q’ + q/’ denotes the type decomposition of a 1-form q into the
coefficients of dt and dt respectively. The first equation in (3.3) checks our
claim about the o, having type (1, 0), and the second has this interpretation:
Over the Grassmannian we consider the universal n-plane bundle
E -- G(n, N); this is a holomorphic vector bundle having an Hermitian metric
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induced from that on ([N, and hence there is a unique Hermitian connection D
with the properties

D" g, and D is compatible with the metric.1

The second property in (3.3) together with o + h 0 exactly imply that
{o} gives the connection matrix of the (pullback to o0(N) of) the universal
bundle.
The curvature matrix 12E {f} is, by the Cartan structure equation,

(3.4)

where we have used the second equation in (3.2). Setting

det (hi + X/-127r IE) = hn-kck(E)

defines the basic Chern forms C(OE), which are given explicitly by

(3.5)
A,B

A,B

These are closed forms on G(n, N), and in de Rham cohomology they define the
Chern classes ck(E) H(G(n, N)). In particular the top Chern class c,(E) is
represented by

c,(f)
X/’

det (ao).2-

We remark that under the obvious embedding

we have

j" G(n, N)----> GR(2n, 2N)

(3.6) j, pf(dp)

where Pf(dp) is the Pfaffian in the curvature matrix @ on G(2n, 2N) as defined
by (1.15). This is straightforward to verify from the definitions.()

The formula (3.5) suggests that the Chern forms have sign properties in the
holomorphic case. For example, suppose that

f: S ---> G(2, n + 2)

is a holomorphic mapping of a complex surface into the Grassmannian, and
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denote by IE the curvature form of the bundle E S induced from the univer-
sal 2-plane bundle over G(2, n + 2) (in other words, drop the f*’s).
Then there is the inequality

(3.7) c2(2E) >- 0,

with equality holding if, and only if, either i)fmaps S to a curve or ii) E S
has a trivial sub-line bundle (i.e., the planes f(z) ( have a fixed line in
common).

Proof.

c(a) (
We have from (3.4)

1

N/-I )227r
((’01g A 03. A 02 A 032 (./)l/Z A 2. A o2 A

where

A,/" (fllg A 602/, (.02g A (.01/, A/’,.

Since the A,/" are (2, 0) forms it follows that c2() -> 0 with equality holding if,
and only if, A, 0 for all/x _< v.
Now recalling the basic isomorphism(a)

T(G(n, N))- Hom (E, N/E),

the differential off is

f,:Tz(S) Hom (2, Cw + 2/([22).

Indeed the matrix representing f, ("0)is

and writing

we deduce that the non-vanishing of

Atzv (A11gA22v A2gA21v A21tzA12v + A22taA11v)dz1 A dg2

is independent of the bases for T(S), (E2, and (E + z/(E2. In particular we need
not restrict ourselves to unitary bases for the last two vector spaces in order to
investigate the meaning of the equations A,/" 0 for all/z, v.
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For this reason, it will be convenient to use the manifold of all flames {Vl, V,
", Vn / z} for " / z. This is a complex manifold fibering holomorphically over

G(2, n + 2), and the structure equations

dvi Z Oo v.

dO 0 / 0

are valid as before, but where the {0} are now holomorphic differentials. In this
setting our problem is to determine the meaning of the conditions

Ag 01/x/ 02t, 02g 01v 0

for all , .
As observed above, the tri-linear algebra data relevant to analyzing the dif-

ferential f, is that of a linear map

A 2 Hom (2, n + 2/2).

Denote by (tl, t2) coordinates on 2 and think of A as being given by a
pencil A(t) Altl + A2t2 of 2 X n matrices. We may consider the 2 x 2 minors
of A(t) as giving

2 A(t) 22 2,

and we shall first assume that 2 A(t) O. For example, supposing that the
initial minor is non-zero we shall prove that A34 # 0. Effectively, we are then in
the case n 2 which we also assume in order to simplify notation.
Now 2 A(t) 2 2 22 is a quadratic function having two roots, which

we may take to be t 0 and t2 0 (the case of a double root must be treated
separately). Then A1 and A2 are both 2 x 2 matrices of rank one, and ff either

ker A1 ker A2 # 0, or

imA imA2#0

we deduce that 2 A(t) 0 for all t. It follows that we may choose a basis
Vl, v2, v3, v4 for 4 SO that v, v2 is a basis for 2 C 4 and

Then

AlV v3, Air2 0

A2v2 /)4, A2v -0.

013 dl, 024 dz2 023 014 0

and

A34 dz / dz2.
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The case of a double root is similar to an argument we are about to give, and
will therefore be omitted.
Now suppose that/2 A(t) O. Then for all t, the linear transformation

A(t) (2 (n + 2/(I2

has a kernel containing a non-zero vector v(t). If the line (v(t) is not constant in
t, then we may choose Vl, v2 so that Alv2 0 A2vl. Then the vectors Alvl and
A2v2 are proportional modulo Vl, v2 since otherwise we would not have
/V A(t) O. It follows that we may choose a frame {vl, v2, ", vn / .} so that

AlVl 1)3, A2V2 v3, and AlV2 A2Vl O.

Then 013 dzl, 023 dz2, and all other 0., 0; thus

A33 2013 / 023 2 dgl/ dg2

is non-zero.
In case v(t) vl is constant in t, we will have the two cases"

Alv2 and A2v2 independent modulo vl, v2

Alv2 proportional to A2v2 modulo vl, v2.

In the first case we may choose a local frame so that

dr1 011Vl -" 012v2

dr2 021V -1- 022V2 - 023V3 - 024/)4

where 023/ 024 0. From

0 dO13 012 / 023, 0 dO14 012 / 024

we deduce that 012 0. Then dr1 =-0 modulo Vl, which says exactly that the
line vi C z is constant in z. Finally, in the second case we may choose a
local frame so that

dvi 011v1 -- 012v2

dr2 021/)1 + 022v2 -- 023v3,

from which it follows that the rank of f, is one and so f(S) is a curve in
G(2, n + 2). Q.E.D.
We will apply (3.7) to the holomorphic Gauss mapping. Suppose that
M C s is a complex manifold and denote by if(M) the manifold of Darboux
frames {z; el, ", eN} defined by the conditions

z. M; el," ", en give a unitary basis for Tz(M); and en + 1,

", eN give a unitary basis for the normal space Nz(M).

We may think of (M) C (s) as an integral manifold of the differential sys-
tem to, 0, and then (3.1) and (3.2) become
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dz , o, e

Setting do, 0 in the first equation of (3.1) gives

o A o O,

which again by the Cartan lemma implies that

The first and second fundamental forms of M C N are defined by

I o(R)o3

The other part of the first equation in (3.1) is

(3.8) &o, ’, oe A oe, oe + &an O.

It is well known that given a K/ihler metric I there is a unique matrix {o} of 1-
forms satisfying (3.8), which is then the connection matrix for the canonical
Hermitian connection in the holomorphic tangent bundle T(M). The curvature
matrix "M {"o/3} is

Setting

it follows that
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As in the real case we may consider the holomorphic Gauss mapping

y M----) G(n,N)

with y*E T(M). The Hermitian connection and curvature are induced from
those in E G(n, N). There is a commutative diagram

m.

G(n, N)

G(2n, 2N)

where YR is the usual real Gauss mapping, and we deduce from (3.6) and the
discussion at the end of c that the Gauss Bonnet integrand is

y*Pf((P) y*c,(l)) c,(1); i.e.,

(3.10) Ce KdM C,(M).

NOW a natural question is whether the Gaussian image y(M) has dimension n,
and using (3.7) we shall prove:
For S C (" + a complex-analytic surface

(3.11) c2(1s) >- 0

with equality holding only if (i) S is a plane, (ii) S is a developable ruled sur-
face; (4) or (iii) S is a cone.

Proof. We shall adhere to the notations in the proof of (3.7). If c2(1t) 0
and alternative ii) holds, then we may choose a local moving frame {el, e; ea,., e, + .} so that

de1 (.Ollel, and thus 0.112 (121 0,

From

de2 (.022e2 + (.o23e3 + (.o24e4.

(023 h213(.01 -+- h223(.02 and

we deduce that (.023 h223(.02 Similarly (.024 h224(.02, and it follows that the
Gaussian image T(S) is a curve. The fibres of T:S 7(S) are defined by
o2 0; these are curves along which

dz (.o el, del 0911 el.

We infer that these fibres are straight lines.
If alternative (ii) in (3.7) holds, then we may choose a moving flame so that
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de1 o)11 el (-012 e2

de2 o)21 el 0922 e2 -I- 092a e3.

As before, from o h21a091 -t- h22a092 and h21a h123 0 we have oa t9 oz.
From exterior differentiation of 0)13 0,

0 &o13 (.012/ 0)23

which implies that o o-oz. The fibres of 3’ are then defined by (02 0, and
along these curves dz o)1 el, de o11 e as before.
Thus in both cases the fibres of the Gauss map are lines, and consequently S

is a ruled surface. As such, it may be given parametrically by

(t, x) v(t) + Xw(t)

where v(t), w(t) are holomorphic vector-valued functions and h is a linear pa-
rameter on the line Lt. This representation is unique up to a substitution

as depicted by

f(t) v(t) + h(t)w(t)

(t) (t) w(t)

The Gauss map is

y(t, X) (v’ + hw’)/k w

and this map is degenerate exactly when v’/ w and w’/ w are proportional.
If w’/ w 0 so that w’ cw, then i,’ ’w + gaw and we may make ri,’ 0
by solving ’ + c 0. In this case S is a cone (including the special case of a
cylinder). If w’/ w 0, then

v’ / w r w’ / w.

Under the above substitution (and taking # w),
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3’A= v’Aw+ hw’Aw

(X+r)w’Aw,

so that setting X + r 0 gives v’ A w 0. Thus w =/3v’ and taking =/3-1

we may assume w v’. Then S is given by

(t, X) v(t) + hv’(t),

and is a developable ruled surface. Q.E.D.

(b) Remarks on integration over analytic varieties. We now discuss some
matters related to integration on analytic varieties. Let V be an n-dimensional
analytic variety defined in an open set U C N. The set of singular points V
forms a proper analytic subvariety, and the complement V* V V is a com-
plex manifold which is open and dense in V. We denote by A(U) the C dif-
ferential forms of degree q having compact support in U. The basic fact is that
the linear function

(3.12) Tv(a) [ a, A"(U),
3v

defines a closed, positive current of type (n, n). Essentially this means that
the integral (3.12) is absolutely convergent, and that Stokes’ theorem

v
d O, an- l( U),

is valid. We shall also use the result that if {Vt} is a family of varieties depending
holomohically on parameters (in a sense to be made precise in 5b when
needed), then

also depends holomohically on (all we use is that it depends continuously).
In somewhat more detail, if

2 & A d

is the standard Kfihler form on g, and if for any index set I {i, ., i} we
denote by

* 2 (&l A dq) A. A
2 (&*n A

the Euclidean measure on the corresponding C CN, then

n #i= n
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and, for any affine n-plane L in N

Euclidean measure on(3.13) n!

(to see this choose orthonormal coordinates so that L is a translate of ([;’9. Two
important consequences of (3.13) are: (i) For any complex manifold M

(3.14) n! b’ vol (M)

is the Euclidean volume of M (Wirtinger theorem), and (ii) for any a A"(
there is an estimate

in the sense that for all complex n-planes L

where the function on the Grassmannian is bounded. The fact that (3.12)
defines a current is then equivalent to the finiteness of the volume

<n Cl B[Z,]

of analytic varieties in the e-ball B[z, e] around singular points z V,. Similar-
ly, Stokes’ theorem follows from the usual version for manifolds together with
the fact that the (2n 1)-dimensional area of the boundary 0 T,(V,) of the e-tube
around the singular points tends to zero as e 0.

Later on we shall be examining more delicate integrals / where is not
jv

the restriction of a form in U (such as a curvature integral), or may be the
restriction of a form but one having singularities on V. To obtain some feeling
for these We shall examine one of the latter types here. With the notations

-1dc

4

w d dc log ilzll
{z e v: ilzll r}

o, d r]- o], o r,

we shall prove the formula(

(3.15) r Oe
m.

[rl [O] [O,rl

Geometrically, if we consider the residual map

CN {0} IPN
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defined by z 0z, then to is the pullback of the standard Kfihler form on pN-
and as such has a singularity at origin. To prove (3.15) we note that

d 2
(dz, dz) =dd ilzll

dc log I[zll z 4 {(z, dz)-dz, z)

{ (z,z)(dz, dz)- (dz, z)(z, dz) )
If we define

(3.16) r d log I1 11
then d ton, and by Stokes’ theorem the right hand side of (3.15) is|
Now, for any fixed t, on O V[t] we have

0 (dz, z) + (z, dz)

which implies that on 0 V[t]

t2n

Then

"= r." d II=ll A
9V[t] V[t]

t2n fV[tl
proving (3.15).
As a consequence the function

(V, r)

vol V[r]

is an increasing function of r, and the limit

/,(V) lim /x(V, r)
r-+0
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exists and is called the Lelong number of V at the origin. We shall now prove
that

(3.17) /x(V) Cte mult0 (V)

is a (constant times) the multiplicity of V at the origin.(r For this we let

E c IpN-1

be the closure of the incidence correspondence

{(L,z)’L IPu-a,z u-- {0},Z L}.

Then E --0 {U is the blow-up of Gu at the origin, and E N- is the total
space of the universal Hopf line bundle. The closure of V {0} in E gives the
proper transform of V; since the fibre 9 & N- of g over the origin is
the limiting position of chords 0z (z V), the intersection

T= 9 N-1

is the tangent cone to V at the origin. We denote by r] {(L, z) ilzll r} the
tubular neighborhood of radius r around the zero section and set

r] 9 r]

r] (- r].

We note that Or] Or] and that the difference

0r] 0r] 0r[r]

where Fir] is the locus where all lines 0z, for 0 < ilzll < r and z V, meet the
sphere of radius r

T

On E we consider the (2n 1) form (3.16). Clearly w is a smooth form on E, and
d log Ilzll is a 1-form whose restriction to every complex line {re’. z} is dO. It
follows then from the argument principle and Wirtinger theorem that
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while by Stokes’ theorem

Cte deg T

Ct--emulto(V),

7 )iT[r] 9Q .If[r] (’on

which tends to zero as r ---> 0, thus proving (3.17).
We note the general principle, already familiar from the use of polar coordi-

nates in elementary calculus, that blowing up frequently simplifies singular in-
tegrals.

In the next section we shall be considering varieties Vt acquiring an isolated
singularity at the origin and shall show that suitable curvature integrals

lim
0 2k

exist and have limits as e---> 0, and shall eventually give geometric inter-

pretations of these. For k n the above limit is
e2,

vol V0[e], which then

tends to multo(V0) as e -- 0.

(c) Volume of tubes in the complex case. We shall now derive the formula
for the volume of the tube around a complex manifold M, C U. Proceeding as
in the real case, we let N[r] denote the ball of radius r around M embedded as
zero cross-section in its normal bundle, and by z(M) the image (counting multi-
plicities) of the map

N[r] --> ([N,

Points in the image are

w z + Z t, e., litll-< r,

and from the structure equations (3.1) and (3.2)

dw (to. + tgto..)e. + (dt. + t(o.)e.

with repeated indices being summed. Setting

d to + t,to, toe t,h,(o

(recall that II h,oto (R) e, is the 2nd fundamental form ofM C U), the
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Kfihler form on (IN pulled back to N[r] becomes

b=
/-1 (

The volume form on ([N is

N

We shall iterate the volume integral on N[r]; thus setting

we find

(z, r) j
Itll

O(z, t)

vol rr(M) I qt(z, r).

To evaluate the right hand side we fix z, assume as we may that our moving
frame has been chosen so that o.(z) 0 (this is convenient but not essential),
and set

dt dtn + A A diN
o o, A Aro.

h(t).

h(t)Ao-
k! det(h(t),)

where A (o1, o, Ok) and D (31, ", 3k) are index sets selected from
(1, ., n). Denoting by A the index set complementary to A,

A 49. +- h(t)AOOAO A
A,D

13 B,C

where it is understood that the summation is over index sets having the same
number of elements. It follows that

\

For/x (/zl, ",/xk) with/xl <- <-/x we set t. t., h.k; then
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I tflt C(m, k)m + 9k

Ikll r

where rn N- n. Indeed, the unitary group U(m) acts irreducibly on the
space Symk((Em*) of homogeneous polynomials of degree k in tn + 1, ", tN; it
leaves invariant the inner product

(t, t)= I
where do- is the invariant volume on the sphere, as well as the inner product
induced from the standard one on (m. It follows from Schur’s lemma that these
two inner products are proportional. Setting

dM A %/--1
(to, A tb,)

we deduce that

where

i Pk(M)rm + 2 dM
k=O

Pk(’M)- cte

cte

since h,u
C ,g, R,:,I,I... R,,

by (3.9). Observe that this step is easier than in the real case where skew-
symmetry conditions intervene. More importantly, using

we deduce that

where

4)= 2

P(tq)dM C(tqM) A 49"-

Ck(’M) cte Z A

is, by (3.5), the kth basic Chern polynomial in the curvature matrix f of M.
Summarizing, we have arrived at our desired result:

(3.18) vol rr(M) C(k, n, m)/z(m+ k) Ck("M) i 6n- k.
k=O
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We should like to make a few observations concerning this formula. The first
is that an analogous result holds for a complex manifold Mn C IPu (8), more
precisely, the formula is

(3.19) vol rdM)
/=0

where

C(k, n, m)r2(m + ) I P(ft, 6)/ 6"-

Pk(12M, 6) C(1, k) C,(M) /k dp- t.
/=0

In case M is compactmi.e., is a projective algebraic varietymthe integrals in
(3.19) depend only on the tangential Chern classes cq(M) Hq(M) and hyper-
plane class H(M). So we conclude that, just as the Wirtinger theorem
(3.14) implies that the volume of M is equal to (a constant times) its degree

M
", the formula (3.19) implies that the volume of the tube is again of a topo-

logical character--as noted above, this is in strong contrast to the real case.
The second remark concerns the volume of the tube near a singularity of an

analytic variety V, C ([N. Setting B[r] {[Izl] <- r}, we suppose given an analyt-
ic variety in B[ 1 + ] for some > 0 and denote by V that part of the variety in
the unit ball. Then we claim that the integrals9

V
CK(-V*) / +n- tc

converge, and consequently the volume of the tube around a singular variety is

finite. To establish this, let

FCV G(n,N)

be the closure of the graph of the Gauss map

7 V* -- G(n, N).

It is easy to see that F is an analytic variety of pure dimension n, and that the
projection

is an isomorphism on that part F* lying over V*. In general there will be blow-
ing down over the singular set of V, since for z0 V the fibre 7r-l(z0) C G(n, N)
is the limiting position of tangent planes Tzt)(V*) along all analytic arcs {z(t)} C
V* with lim z(t) zo. Now the forms b"- / c(O) are well-defined on

t--0

U X G(n, N), and hence by (3.12) are integrable over the smooth points of F.
But then since
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we conclude that

c(flv,)A dpn-= f C(E)Adpn-
J*

converges as asserted.
We remark that, upon approaching a singular point z V, as noted above

the Gauss mapping may or may not extend according as to whether or not the
tangent planes T,(V*) have a unique limiting position for all arcs z(t) in V*
which tend to z. Thus when dim V 1 it always extends, and in this case it may
or may not happen that the Gaussian curvature K(z(t)) -o as z(t) -- z. In
fact the Gaussian curvature remains finite if, and only if, z is an ordinary singu-
larity of V.
Now we assume that V is smooth except possibly at the origin. Then we will

prove that the function

(-1) I c(tv) A n-(3,20) Ik(U, r) r2n- 2k
[r]

is an increasing function of r(1). For this we use the notations of section (b)
above. By (.6) the differential form (-l) c(f,) is C, closed, and non-nega-
tive on V* V {0}. Since o d de log iiz[i is the pullback of the Kfihler form
on IPN- 1,

(3.21) (-1)k ck(l)v) A on- >- O.
[p,r]

On the other hand, setting

de I1 11 A
we have from d o and Stokes’ theorem that

(- 1) I ck(t]v) A on (- 1) c(lv) A
v[p,r] V[r]

(-) c(a) A
ov[p]

But on the sphere Ilzll

’Ok

and therefore

Ck(’N) A "Ok t2n- 2k
v[t] v[t]

t2n 2k c(t2v) A (bn- .
It]
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Combining this with (3.21) and (3.22) gives our result.
Now suppose that V C N is an entire analytic set. It is by now well-estab-

fished that the function/z0(V, r) gives the basic analytic measure of the growth
of V, playing to some extent a role analogous to the degree of an algebraic
variety in projective space.11) It may be that in more refined questions the
function k(V, r) should also be used as growth indicators, especially since they
appear in the growth of the currents T,(V) obtained by the standard smoothing
of the current Tv defined by (3.12).

Footnotes

1. A good reference for general material on complex manifolds is S. S. Chern, Complex Mani-

folds Without Potential Theory, van Nostrand, 1968.
2. cf. the last section in S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. of

Math., vol. 47 (1946), pp. 85-121.
3. This is just another way of saying that the n x (N n) matrix of forms {o,} gives a basis for

the (1, 0) tangent space to G(n, N).
4. A ruled surface is the locus of1 straight lines Lt in n / 2; the tangent lines to a curve in " /

form a developable ruled surface; and finally a cone consists of 1 lines through a fixed point,
possibly at infinity. We note the following global corollary of (3.11), which was pointed out to us by
Joe Harris: If S C IPN is a smooth algebraic surface which is not a plane, then the Gaussian image of
S is two-dimensional.

5. P. Lelong, Fonctions plurisousharmoniques et formes differentielles positiv, Paris, Gordon
Breach, 1968.

6. This is the basic integral formula in holomorphic polar coordinates (these coordinates essen-
tially amount to the standard Hopf bundle over IPN- 1).

7. P. Thie, The Lelong number ofpoints ofa complex analytic set, Math. Ann., vol. 172 (1967),
pp. 269-312.

8. cf. the reference cited in footnote (7) of the introduction.
9. Recall that V* V Vs is the manifold of smooth points on V.
10. By closer examination of the behaviour near a singularity it seems likely that this remains

true with no assumptions about the singularities of V.
11. cf. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans (, Bull. Soc. Math.

France, vol. 100 (1972), pp. 353-408.

4. Hermitian integral geometry
(a) The elementary version of Crofton’s formula. We shall first take up the

complex analogue of (2.1). Let C be an analytic curve defined in some open set
in 2. Denote by (, n) the Grassmannian of complex affine k-planes in n, so
that (1, 2) is the space of complex lines in the plane. For each line L the
analytic intersection number #(L, C) is defined and is a non-negative integer.
By a basic fact in complex-analytic geometry, this is also the geometric number
of intersections n(L fq C) of the line L with the curve C. The point is that since
complex manifolds are naturally oriented the geometric and topological inter-
section numbers coincide. We will prove that

(4.1) n(L f) C)dL vol (C)
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where dL is a suitably normalized invariant measure on (1, 2).
In fact, we will give three quite different proofs of (4.1). The first will be a

direct computation using frames analogous to the proof of (2.1). The remaining
two will be based on general invariant-theoretic principles, and will generalize
to give proofs of our two main integral-geometric formulas below.

Proof #1. Associated to C is the manifold if(C) of Darboux frames
{z*; e, e} where z* C and e Tz,(C) (cf. the discussion in 3(a)). The
structure equations are

dz* * *Olel

de le + *lze*z
We observe that and are forms of type (1, 0), and that writing h
the Khler form (= volume form) and st Chern form in the tangent bundle are
given respectively by

-1
2

A

-1c(Oc)
2

w]z A &]z

4 K’

where K -41hi is the Gaussian curvature of the Riemann surface C.
Associated to a line L (1, 2) are the frames {z; e, e} where L is the line

through z in the direction el. Recalling the structure equations (3.1), we infer as
h the real case that

dL C o2 A 52 A 6012 A (.12.

Proceeding as we did there, set

B {(z, L):z L} C (E x ((1, 2)

so that we have a diagram

B --- 0(1,2)

C

The left hand side of (4.1) is [ F* dL, and we shall evaluate this integral by

integration over the fibres of r. Fixing z C, the lines through z may be given
parametrically by
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el

e2

where A (Ai) U(2). From

and

(-012

we deduce that

Z.Z*

0) (dZl, e) A21(o]

(de1, e)

=- dA1121 - dA1222 mod o* and &*.

F*(dL) dp / tO(A, dA)

where tO(A, dA) is a 2-form on U(2). The integral of tO over the fibre 7r-l(z) is a
constant independent of z, and this implies (4.1).

Proof #2. This is based on the Wirtinger theorem (3.14), and the analytic
curve C will appear only at the very end.
We begin by defining the incidence correspondence

IC 2 x (1,2)
to be {(z, L) z L}. The two projections

I
7/’1 j 7"/"2

2 (1, 2)

have respective fibres 7/’-l(z) {lines through z}, and zr-l(L) {points on the
line L}. Clearly I is a 3-dimensional complex manifold, and zr dL is a positive
(2, 2) form on I. Integration over the fibres of the first projection gives

(’W1):(’W dL)

with the properties(a)" i) ( is a (1, l) form on C, and (ii) d) is invariant under the
group of unitary motions z --) Az + b, A U(2). It follows easily that ( is a
constant multiple of the standard Kfihler form
Now setting B T/"I(C) and using (4.2) and r dLIB F* dL

IB F* dL Ic (7rl), (F* dL)

Ct’ vol (C)
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by the Wirtinger theorem. Q.E.D.
Note that this same argument fails in the real case due to

("JT1) , (T dL) O,

expressing the fact that a real line has no natural orientation and so appears
twice, with opposite orientations, in zcl(z). The point is that in the real case we

must evaluate I n(L N C)dL as I, IF* dL[, but because everything is oriented

the absolute value signs disappear in the complex case.

Proof #3. In anticipation of later needs we shall prove an analogue of (4.1)
for a complex analytic curve C in the complex projective space IPn, where C is
considered as the image of a Riemann surface with smooth boundary under a
holomorphic mapping. Denoting by 0 the Kihler form of the Fubini-Study met-
tic on IPn and IP* the space of hyperplanes H in IP, the result we shall prove is

fp n(HfqC)dH=lo"(4.3)
"

For the proof we denote points of IP by Z- [z0, ", z], hyperplanes
H Pn* by H [h0," ", hn], and set

= hz, and

L H, zI I<H,
Then o =dd log IlZll and the 1-form

nI-I dc log

is smooth in IP’ H and satisfies drm o there. Along H it has a singularity,
which in a normal disc {Itl < e} looks up to a C term like

X//-1 (dt d)d log
Itl 4

1
2

where re. It follows that "0/is integrable on IP and satisfies the equation
of currents(a)

(4.4)
zr zr

where Tn is the current defined by integration over H. Assuming H meets C at a
finite number of interior points, by (4.4) and Stokes’ Theorem
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o #(H, C) + H.(4.5)
zr

Ignoring momentarily questions of convergence, we integrate (4.5) over IPn*
and interchange an order of integration to obtain

o #(H, C)dH +
71" C

where

77" tI’ "IT lpn,

is the average of r//. We claim that

(4.6) n 0,

which will certainly prove (4.3).
Now (4.6) can be proved by direct computation, but here is an alternative

invariant-theoretic argument. We may consider as a current T on IW by

"On A a dH, a Azn l(Ipgt).

Since the unitary group U(n + 1) acts transitively on IPn* and satisfies

g* dH dH

g*’H-- TgH

for g U(n + 1), we deduce that T, is an invariant current. But it is well
known (and easily proved) that the invariant currents on any compact symmet-
ric space are just the harmonic forms,(4) and since the degree of is odd we
conclude that 0.

Finally, the justification of the interchange of limits follows by a standard
(and not particularly delicate) argument.

(b) Crofton’s formula for Schubert cycles. One generalization of (4.1) deals
with the intersection of Schubert cycles with an analytic subvariety V in the
Grassmannian G(n, N). Recall that a flag F in U is an increasing sequence of
subspaces

(0) W0 C W C C WN_ C WN l_,N.

The unitary group U(N) acts transitively on the manifold F(N) of all flags. For
each flag F and sequence of integers a (al, ", an) the Schubert cycle Ea(F)
is defined by

(4.7) Xa(F) {T _. G(n, N)" dim T fq WN-n +i-a, >- i}.

Thus E(F) is the set of n-planes which fail to be in general position with respect
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to the flag F in the amount specified by (4.7). The Schubert cycle forms an
irreducible analytic variety of complex codimension lal a in the Grass-
mannian, and clearly

g Z.(F) X.(gF), g U(N).

Up to a constant there is a unique invariant measure on the space of Schubert
cycles with fixed index sequence a; for simplicity of notation we shall write a
general Schubert cycle as E with d denoting the invariant measure.
We recall from section 3(a) the curvature matrix f (fo) of the universal

n-plane bundle E G(n, N). A fundamental result(5) is that the de Rham co-
homology of the Grassmannian is represented by the invariant polynomials
P(12) in the curvature matrix, and moreover these are just the polynomials in
the basic Chern forms ce(f) defined by (3.5). In particular, the fundamental
class of each Schubert cycle Ea(F) is represented by a polynomial
which clearly does not depend on the particular choice of flag. For any closed
algebraic subvariety V c G(n, N) of dimension [a the intersection relation

(4.8) Iv Pa(f) # (V,

is valid. We wish to prove that (4.8) is also true locally on the average. More
precisely, we will prove that for V c G(n, N) a piece of analytic variety of pure
dimension d [aI, we have Crofton’s formula (I):

(4.9) Iv Pa(’E)= f# (V, ,a)

Proof. This is formally the same as our third proof of (4.1). For each flag
F F(N) there is a (2d 1) form rF,a which satisfies,(n)

i) "OF, is integrable on G(n, N) and C on the complement of
ii) the equation of currents

d’OF,a Pa(I"E) TXa(F)
is valid; and
iii) for any unitary transformation g U(N),

gF,a g*TIF,a"

The formula (4.9) is of a local character and so we may assume V is a complex
manifold with smooth boundary. Then for any F F(N) such that a(F) meets
V at a finite number of interior points, by property (ii) and Stokes’ theorem

fV Pa(’E) # (V, Xa(F)) + Iov TF’a"

Averaging this formula over U(N), we are reduced to showing that the average
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is zero. But by the third property, for g U(N)

g*q q

and, as in the previous argument, a is an invariant current of odd degree and is
therefore identically zero. Q.E.D.
As an example, suppose we consider the sequence (k, 0, ., 0); the corre-

sponding Schubert cycle will be denoted by Xk. For k n it is determined by a
hyperplane H IPu 1,, and is described by

(4.10) 2;, {T G(n, N); T C/.
In general, the polynomial corresponding to the Schubert cycle Xk is
(- 1) c(fl) where c(12) is the kth basic Chern form given explicitly by (3.5).
As an application of (4.9), we consider a complex manifold M C (I2N and con-

sider its image under the holomorphic Gauss mappingr

y" M---> G(n, N).

We recall from section 3(a) that

T(M) y’E;

fM
and therefore (4.9) implies that

and

(4.11) IM Pa(M) f# (y(M), Xa) d ,a

for any codimension n Schubert cycle Xa. In particular, taking a n(H) we
infer from (4.10)

number of points z M where the tangent
(4.12) # (y(M), Xn(H))

plane Tz(M) lies in z + H

n(M, H)

where the last equality is a definition. Since by (3.10)

(--1)n Cn(nm) Cte K dM

is the Gauss-Bonnet integrand, we have arrived at what might be called the
average Gauss-Bonnet theorem

(4.13) (-1),cte IM KdM In n(M, H) dH

where the integrand on the right is given by (4.12).
To interpret this equation we recall the usual form

(4.14) cte IM KdM=x(M) + IOM kg
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of the Gauss-Bonnet theorem for a manifold with boundary. Here, x(M) is the
topological Euler characteristic and kg is the generalized "geodesic curvature".
In case M is compact the boundary integral is out and by Hopf’ s theorem x(M)
is (-1)n times the number of zeroes of a generic section of T*(M). Now each
linear function

H(z) hi zi

gives on ([N the 1-form

qn hi dzi,

and by (4.12) n(M, H) is just the number of zeroes of ton. Consequently we may
think of the right hand side of (4.13) as the average number of zeroes of 1-forms

(c) The second Crofton formula. Considering still a complex mani-
fold M C {N we now wish to know about the intersections of its Gaussian
image with Schubert cycles a of codimension n- k < n. For a general
atone (N k) plane L (N k, N) the intersection M q L will be a complex
manifold of dimension n k, and (4.11) applies to give

AL

Here, y(M r3 L) is the Gaussian image of the intersection M r) L (not the Gaus-
sian image of M along M Iq L), and 12t A L is the curvature of M rq L (not the
curvature of M restricted to M rq L). Averaging both sides of (4.15) over
(N- k, N) gives

(4.16) I ( ItL Pa(ftz))dL II # (/(M fq L), ,a) d ,a dL.

It is clearly desirable to express the left hand side of (4.16) as a curvature
integral on all of M, and for the basic Chern forms this is accomplished by the
Crofton formula (II):

(4.17)

Before embarking on the proof we remark that (4.17) should be considered
deeper than (4.9) in that the curvature of a variable intersection M q L is being
related to the curvature of M. Moreover, as it stands (4.17) does not appear to
have an obvious real analogue in terms of Pontryagin classes.
The reason why (4.17) holds is related to Chern’s general kinematic formula

discussed in 2(c), especially the reproductive property which we recall is the
following: For M C IRN an oriented real manifold and t (R(N k, N) the
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Grassmannian of oriented affine (N- k) planes,

(4.18) f ( L
I(R L)) dL Ct-e I I(RM)

where the It(R) are the curvature polynomials (1.9) appearing in Hermann
Weyl’s tube formula (1.10). In the complex case we have seen in (3.18) that the
integrals in the tube formula are just those on the right hand side of (4.17), and
consequently this result is the complex analogue of Chern’s formula (4.18).
Now presumably the real proof could be adapted to give (4.17). However, it

is convenient to take advantage of properties peculiar to the complex case, and
so we shall give an argument along the lines of the second proof of (4.1). The
following notations and ranges of indices will be used:

G(l, N) Grassmann manifold of ’s through the origin in CN;

((l, N) Grassmannian of affine/-planes in (IN;

0(1, N) flag variety of pairs {z, L} ([U X ((l, N) where z L; note that

(l, N) (N G(l ,N)

where {z, L} maps to (z, L-z) with L_ denoting the translate of L
by -z;

(l, m, N) set of triples {z, S, L} CN dT(l ,N) 0(m, N) where

zSCL;

U--> ((1, m, N)is the universal vector bundle with fibre S_ over {z, S, L};
and

1 <-a,b, <-n-k; <_a,<_n; <-A,B<-N-k; <i,j,k<_N
(4.19)

n-k+ l<_r,s<_N-k;n+ l<_lz, v<_N;N-k+ l<_p,o-<N.

To each frame {z; ea, ..., eN} (GN) we associate the point {z, S, L}
((n k, N k, N) where

S-z e A A e,_ , L-z ea A A eN-k"

Setting

’ab Z 09ar / YObr
r

we have from (3.4) and (3.5)

(4.20)

Then

c,_ ,(lv) C det mod OOap ap

dL Cte A A do A A axo
0 A,O
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q c,_ k(IIv) / dL

is a well-defined differential form of type (/9, p) on (n k, N k, N) where

p n + k(N- k).

We now denote points in (n, N) by {z*, T} and consider the incidence cor-
respondence

IC(;(n,N) ((n- k,N- k,N)

defined to be {z*; T; z, S, L} where

z=z*, SCT

Recall that T, S, L are affine n, n k, and N k planes all passing through z,
and so in general dim (T fq L) n k. The picture for N 3, n 2, k 1 is

S

Consider now the projection

,n" I--- (n,N)
onto the first factor. The typical fibre F may be identified as follows: In [U we
fix a (12" and consider all flags S C L where dim S n k, dim L N k, and
S C (I;". This is F, which is itself fibered according to

G(N- n,N- n + k)F--G(n- k,n)

by {S, L} S. It follows that dim F k(N- k), and consequently the fibre
integral

q 7r.q’
is a form of type (n, n) on ((n, N) v G(n, N). It seems possible that, for
dL suitably normalized,

(4.21) q bk/ cn- (tE)

where fie is the curvature in the universal bundle E---> G(n, N), but we are
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unable to establish (4.21). As will seen below, (4.17) would be an immediate
consequence of this result.
What we will do is prove enough of (4.21) for our purposes. Namely, on
u G(n, N) there is an intrinsic differential ideal 8 # defined as follows: Over
{z, T} we consider frames {z; el," ", eN} where T-z el/k. /k en. Then the
forms

o, do, (/x n + 1,.. ", N)

generate an intrinsic differential ideal , and we shall prove that

(4.22) c,_ () modulo #.

Assuming this result for a moment, we will complete the proof of (4.17). For
this consider M as embedded in (n, N) n x G(n, N) by the refined Gauss
mapping

z {z, Tz(M)}.

Using Darboux frames we see that M is an integral manifold of the differential
system #, so that by (4.22) and (4.2) (cf. footnotez)

( c"-(u) *
f_I(M

((N-k,N)( fMnL Cn-k(u))dL.
Now M L is mapped into (n k, N k, N) by z {z, Tz(M L), L} for
generic L, and so

M 7) L
Cn k(U) (M L

Cn k(M L)"

Combining with the previous step gives (4.17).
Turning to the proof of (4.22), we first note that the form $ on N G(n, N)

is invariant under the group of transformations

{z, T} {gz + b, gT}

where g U(N) and b u. It follows that O is determined by its value at one
point, say {0, "}. If we write the (1, 0) cotangent space at this point as
V W,<) then

(4.23)
(APV @ A’II?) @ (An- "W ( An -’).

P,q
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We will first show that under the decomposition (4.23),

(4.24) (AV (R) AIT) @ (A"-W (R) A"-).
To verify this apply the automorphism z* pz to CN. The Maurer-Cartan
forms , (de,, e) and volume form on G(N- k, N) are preserved, while

(dz*, e,) po,. From (4.20) we ier that

which implies

On the other hand, if , p,,
from which we conclude that $ $,, thus establishing (4.24).

In terms of a frame {0; e, ., eN} lying over the fixed point and using the
index range (4.19), $ is a sum of terms

where P is a homogeneous polynomial of degree k and Q is one of degree n k.
When the frame undergoes a rotation

e ge, e, h,e

for unitary matrices g and h,

From the theory of unitary invariants it follows that is expressible in terms
of the quantities

(4.25)

co A o A8 A, and

Of course we would like to show that is a constant multiple of (61 + 62)k A
det 1", which would prove (4.21). To establish (4.22) we observe that modulo
the differential ideal # {co,, dco,} the list (4.25) reduces to the quantities.
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we use here that o/x, o mod toy). It follows that

(4.26) q Ct%b{/ P,_ (f) modo

where Pn- k(l)) is homogeneous of degree n k and invariant under

Appealing again to the theory of unitary invariants (cf. footnote (5)) we deduce
that P,_ () is a polynomial in c(2), ., c,_ (f).
To determine which polynomial we may argue as follows: In G(n, N) x

G(n k, N k, N) we consider that part I0 of the incidence correspondence
lying over z 0. Denoting by the pullback to G(n k, N k, N) of the
fundamental class of G(n- k, N) and by Cn-k(U) the Chern class of
U---> G(n k,N- k,N),

Cn- k(O) / H2(n k + k(N- k))(/0)"

Under the projection Io--- G(n, N), the Gysin image

r.(Cn-(U) / ) H2‘n- k)(G(n, N))

is expressible as a polynomial in c(E), ., cn-(E), and this polynomial is
just Pn- whose determination is consequently a topological question. Since
our argument that Pn- CCn- (E) is messy and we have no need for the
explicit form of the result the argument will be omitted.
We observe that since any polynomial in the quantities (4.25) gives an in-

variant differential form on G(n, N), an invariant-theoretic proof of (4.2 l) will
require use of the additional property dO 0. For example, let us examine the
terms 4) / 4- which might appear in . Since by the structure equations
(3.2)

dba + -&b,
we deduce that

(4.27)

Writing

d(ch//k h- l) (’0 "-[- ) / (11 --1 / (2--1--1) (1(2 (k- 1)(1)

d(Q(12,t)) 0

q=( t=0
c61/ b2- t/ Q(llz))+ (other terms)

it follows recursively from (4.27) and dq 0 that
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and therefore

q Cbk/ P(12o) + (other terms).

It seems possible that further additional argument might eliminate the "other
terms" thereby leading to a proof of (4.21).

(d) The third Crofton formula. For applications to the study of isolated sin-
gularities we shall require a variant of (4.17) where the linear spaces are con-
strained to pass through the origin. Letting Mn C N be a complex manifold not
passing through the origin and setting

/-1
,o log Ilzll

the formula to be established is the Crofton formula III

where L0 varies over the Grassmannian G(N k, N) of N- k’ s through the
origin on (N.
The proof of this result is a little long and will be given in several steps. We

note that the result is easy when n k 0; the left hand side is the average of
the number #(M N Lo) of intersection points of M with linear spaces through
the origin of complementary dimension, and the right hand side is the volume of
the image of M under the residual mapping

r M--> IPN-1

The equality is then a consequence of the usual Crofton’s formula for
/f/= 7r(M). In general the idea will be to deduce (4.28) from the analogue of
(4.17) for c IPN- a. The difficulty is that the two metrics in the tangent
bundle ofM induced from M (N and M IPN will not coincide, and it is a
priori possible that an additional invariant, such as the angle between the posi-
tion vector z M and tangent n-plane Tz(M), could enter into the right hand
side of (4.28).

(i) Over pN-1 we consider the manifold o(N) of unitary frames
{Zo, ", ZN- 1} for N where Zo lies over the point 2,0 zr(Zo) pu- . On
o((N) the structure equations

dZ OZ, 0 + 0 0
.ik 0

dOij Oik A Okj
k=O

are valid, and

27r J=
0oj A o
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is the pullback to 0() of the standard form o
2

0 log[z[[
on IPN 1--for a proof cf. the reference given in footnote(4) of the introduction.
Now let//C IPN be a complex manifold. For a point Z0 /9/we recall

that the projective tangent space to/f/at 20 is the pn obtained as the limitingZ0
position of chords o as 2 M tends to 0. We define (2f/) C 0() to be
the flames {Z0, ", ZN- 1} where

and

,n span P"0

The picture for an analytic curve in IW is

We shall use the range of indices

n;

0 <-a, b <- n;

Since on

O<-i,j <-N 1

n- <=p, o<=N 1

dZo =- {Z0, ", Z.},

it follows that (/) C ’0(([N) is an integral manifold of the differential system

00o 0.

As a consequence we have

2zr
0o,/k 0o, and

0 dOoo 0o,/k

which by the Cartan lemma implies

(4.29)

The second fundamental form of/f/c IPN is defined to be
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II kooOo,Oot (R) Zo.
From the structure equations

dOo 0oo A 0o + 0o A 0

0o, A 0, $,0oo,

and we infer that

6, 0, 8,0oo -is the connection matrix for the Hermitian connection associated to the metric

487

ds 0o0o

on/f/. The curvature matrix is

which, upon setting

27/"
0 003/ A 0o

and using (4.29), gives

(4.30) 0o A 0o + 8 0 k,ro[coOor A 0o.
As a check on signs and constants, the holomorphic sectional curvature in the
direction Z1 is the coefficient of 0oa A 0o in qh, which by (4.30) is

2 Z Ik1101 z,
as it should be.
The Chern forms of C N- are as usual defined by

det(hS+ -1 )= c()h_ g

2 o

Although we shall not need it, the quantities

() ACn

are the coefficients in the expansion of the volume of the tube of radius r around
inPN- . Also, by exact analogy with (4.17) it may be proved that (cf. 3(c))
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n J
where L 7r(L0) varies over the Grassmannian of IPN k 1’ s in IPN 1o We may
view (4.31) as a local averaged version of the usual adjunction formulas in
algebraic geometry.

(ii) Retaining the preceding notations, we consider the vector bundle F
whose fibre over 2o is the (n + 1)-plane spanned by Zo, ", Z,. The associated
projective bundle is the bundle of tangent projective spaces to/f/c IPN 1, and
we have the Euler sequence

where H* /f/is the universal line bundle with fibres Z0, and T(/) is the
holomorphic tangent bundle. The connection matrix for the Hermitian con-
nection in F is

0. (dz., z),

and the curvature matrix is

0 dO 0 A 0

0ao A

From 00o 0 it follows that

Ooo 0 0o., and

lO"=- OoAOo.

Using (4.31) we will prove that

(4.32) Cn- k(Oa n r) dL Ct Cl(OM) / on- 1.
nL =o

Proof. According to (4.30) the relation between the curvature matrices
=andO=Ois

0oz 0o + z 0 + Oz
(4.33)

O -- kavoooOo A 0o.

We will show that
k

(4.34) ck(O) A o" k Cl(c(O) A oo"- ), Ct 1,
/=0

which when combined with (4.31) will establish (4.32).
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For k we have (4.33)

c() (n + 1)0 + c1(O)

which trivially implies (4.34). For k 2, which is the crucial case, we have
from (4.33)

c2()/ to"- c2(O)/ to"- + Cto,, + L(O)to,

where L(O) is linear in the entries of O. From (4.30) we deduce that L(O) is a
linear combination of the expressions

where repeated indices will now be summed. From the theory of unitary in-
variants (cf. the reference in footnote) of 4) we infer that L(O) is a linear
combination of the two expressions

B the smmetr k k these are both equal, and since

2 0 2 (kvokOov A 0o).
k

L(O)" Cc(O) A "- .
This establishes (4.34) for k 2, and the general argument is similar. We note
again the essential role played by the symmetry of the second fundamental
form.
We also remark that, by the discussion in 3(c), the formula (4.32) extends to

the case where c N- may have singularities; the point is that both sides
are defined as the corresponding integrals over smooth points and these in-
tegrals are absolutely convergent.

(iii) Now let M C N {0} be a complex manifold with residual image in
N- 1. Over M we consider the usual Darboux frames {z, e, ., eN}, and over

we have the frames {Z0,’’ ", ZN-} () where Z0 ez/ z]]. Over
smooth points of we have z A e A A e, 0 and the two sets of vectors
{z, e, ., e,} and {Z0, ", Z,} both span the fibre of the bundle F at Z. The
pair of exact sequences

0H*F T()H*0
(4.35)

O T(M) F Q O

contains the relationship between the bundles T(M) and T(), both of which
are complex-analytically isomorphic to the holomorphic tangent bundle of M
but which have quite different metrics. By (4.32) we have averaging formulas
for the Chern forms c(O) of F, and we want to use these to deduce averaging
formulas for the Chern forms c() of T(.
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For this we decompose

into its tangential part

Z Z "4r Zn

and normal part

Zt Z a,e,

Zn E z.e..

We may consider zn as a holomorphic section of the line bundle Q in (4.35), and
the curvature matrix for this line bundle is the (1, 1) form

(4.36) q -0c] log iiz.ii
Setting z, zn we obtain a unitary frame {el, ", e,; z.} for F. The

Chern form c(O) may be computed using this frame, as well as the previous
one {Z0, ", Z,}. The curvature matrix of F in the first frame will be denoted
by

To compute it we use the second fundamental form of T(M) in F--the point is
that we know the curvature matrix of T(M) and qY of Q, and want to deter-
mine from these and the second fundamental form the curvature matrix of F.
Summing repeated indices the second fundamental form of T(M) C F is given
by the vector of (1, 0) forms

It follows that

co,,. (de,,

12.. - co,. A d,.

(to check signs, recall that curvatures decrease on sub-bundles and increase on
quotient bundles). There are similar formulas for 1],. and 12.,. From (4.37) we
infer that

(4.38) cI(OM) Cl(’M) + IM
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Using this we will prove (4.28) when n k 1; i.e., when the intersections
M f3 L0 have complex dimension one.
Now (4.38) is valid for any complex manifold in (Iu {0}, and applying it to
M f3 L0 and integrating gives

(4.39) IM f) Lo
Cl(M f) L) fM f-) Lo

cI(OM fq L) fM f- Lo
M f3 Lo"

We now average both sides of (4.39) over Lo G(N- n + 1, N) and use
(4.32) to obtain

(4.40) I ( fM c io Cl(UCi)) dL fM cI(OM) / ("on-1

+ Cm fu on I( IU o
Xlru c I) dL"

We must examine the term on the far right.
In s {0} x G(N n + l, N) we consider the incidence correspondence

I= {z, L0) :z L0}

(actually, I should be considered in IPN X G(N n + 1, N)). The fibre of
rr: I-- [u {0} is Iz G(N n, N 1), and so rr,(dLo) is an (n 1, n 1)
form on Cu {0}. Since this form is the pullback of a form on pu- and is
unitarily invariant, it is a multiple of o" 1. We may then write

(4.41) dLo
where is a form on I which restricts to the fundamental class on each fibre Iz.
Here we are using that the cohomology of I is additively isomorphic to
H,(IpN- 1) (R) H*(G(N n, N 1)), and in this decomposition the cohomology
class of dLo appears in H2n 1) (ipN- 1) () H*(G(N n, N 1)). Now we de-
note by z,,(Lo) the normal vector for M f3 L0 C L0 at z. Since

Tz(M f) Lo) T(M) fq Lo
it follows by an easy invariant-theoretic argument that

log IlzdLo)l[ c’- log Ilznll.
Combining this with (4.41) and (4.40) gives

O log IIz.(Lo)ll

cte IM --0 log iiz.ii ,--1
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Cte JM I3’MA(Dtt-I"

By computing a standard example we may check that the constant is one. Com-
bining with (4.40) we conclude that

which establishes (4.28) when n k 1.
The argument for general k is similar using all the equations (4.32) and (4.34)

and will not be given in full detail now.

Appendix to sections 2 and 4. Some general observations on integral geome-
try. Upon scanning sections 2 and 4 on integral geometry the reader may sus-
pect that the various Crofton formulas are different manifestations of the same
basic phenomenon, and we want to explain that now. Given a connected Lie
group G and closed subgroups H and K we denote left cosets by : gH and
x g’K. We assume given an incidence correspondence

I C G/H x G/K
which is invariant under the action of G. In practice I will be the union of G-
orbits but in general will not be acted on transitively by G.11 Denoting by
and rr2 the respective projections of I onto G/H and G/K the basic operation in
integral geometry is

(4.42) -- (rrl),(vr)
where is a differential form on G/K. If we denote the right side of (4.42) by
I(), then I() takes invariant forms to invariant forms and all of our
integral-geometric formulas arise by evaluating I() over suitable submanifolds
of G/H. Here are some illustrations.

Example 1. Suppose that G E(n) is the real Euclidean group and

G/H IRn is Euclidean space

G/K IRn* is the space of affine hyperplanes.

The incidence correspondence is

I {(x, :): x

Given a curve C in IR" and taking Id:l to be the invariant volume on INn*,
Crofton’s formula (2.1) is just the evaluation of

(4.43) fc I()l"
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Note the integration of densities, since without absolute values the result would
be zero.
Here is a proof of (2.1) which illustrates the general principles of integral

geometry: By the G-invariance of and the incidence correspondence I, the
integral in (4.43) is a G-invariant density on C. According to the theory of mov-
ing frames12 this density is expressible in terms of the basic invariants which
describe the position of C in G/H (in this case arclength, curvature, torsion,

.). Moreover, and this is the main point, it is visibly clear that if two curves
C and C; osculate tofirst order at some x0 IR"13, then the densities II()1 on
C and C’ agree at this point. It follows that II()1 is a constant multiple of
arclength ds, which implies (2.1).

In general the order of contact necessary to determine I() at some point
gives a first idea of what sort of formula we will obtain.

Example 2. The Crofton formulas (2.3) and (4.1) may be similarly formu-
lated. In fact (4.1) is easier, since in the complex case there is no problem with
orientations and we may use the following argument: taking G to be the group
of complex Euclidean motions and

G/K= I,,

G/H "*,

and taking b and 4* to be the respective K/ihler forms on tI;" and "* and
(I/n!) 4*" the volume form, we deduce that

I() (rl).(r*)
is a G-invariant (1, 1) form on (I;n. It follows trivially from Schur’s lemma that
I() is a multiple of 4). For a holomorphic curve C in n, by the Wirtinger
theorem (3.19)

d vol (C)

is the area of C, and by evaluating a constant we have proved (4.1).

Example 3. This gives the method for establishing the reproductive proper-
ty (0.4). Again G is the Euclidean group acting now on IRN, and we first take

G/K Ouc(n k, N k, N)

to be the triples (x, S, L) where

x IRN, S is an (n k)-plane, L is

an (N- k)-plane, and x S c L;

this is a flag manifold. Secondly, we take

G/H (n(n, N)
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to be the pairs (x*, T) where

x* IR, T is an n-plane,

and x* T.

The incidence correspondence is (cf. Figure 8 in section 4c)

(4.44) I {((x*, T), (x, S, L)): x x*, S C T}.

We note that I is not a single G-orbit since the planes T and L will have an
invariant, namely their "angle."
Now we assume that n k is even and denote by U --> G(n k, N k, N)

the universal bundle with fibre S_, and by

zr: OR(n k, g k, N) -- (R(N k, N)

the projection (x, S, L) L onto the Grassmannian of affine (N k)-planes in
IR. For we take

(4.45) IPf(U) /k zc*dL

where Pf(U) is the Pfaffian (1.21) of U and dL is the invariant volume on

G(n k, N). For M C IRs a manifold we let

M= {(x, T):xM and T= T(M)}

be its Gaussian image in (n, N) and

{(x, T); (x, S, L): x M, T T(M), S C T}

the inverse image of M in the incidence correspondence (4.44). Then by in-
tegration over the fibre

(4.46) IM [I(O)1 ; O’

and we shall outline how (4.46) implies (0.4).
At a general point of /we have

dim(T(M) L) n+ (N-k)-N= n- k=dimS

so that

S T(M) fq L Tz(M fq L).

By iteration of the integral on the right hand side of (4.46),

dL

where Pf(IIM c i) is the Pfaffian in the curvature matrix fM n ,, and is therefore
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the Gauss-Bonnet integrand for M N L. It is important to note that Pf(fl c L)
is invariant under reversal of orientation of M C) L, and so the absolute value
sign in (4.45) only pertains to dL.

We have now evaluated / as being the left hand side of (0.4). As for

IM II()[, it is clearly a second order invariant of M C IRN, and hence is ex-

pressed as the integral in some universal polynomial of degree 2(n k) in the
second fundamental form of M. The main step is to show, by an argument using
Meusnier’s theorem, that this polynomial has the same invariance properties as
those in Weyl’s tube formula (1.10); the details are given in the reference cited
in footnote 6 of the introduction.

Example 4. The same procedure as in example 3 may be used in the com-
plex case, only the argument is simpler since we may take

P c,_ (lv) / dL

without absolute value signs, and then

I() (Trl).(Tr*)
is a G-invariant closed (n, n) form on 0(n, N), which we may seek to determine
without reference to any complex manifold M C u. This is the procedure fol-
lowed in our proof of (4.17).

Example 5. Here we take G U(N), G/K to be the manifold F(N) of all
flags Wo WI C WN N, and G/H the Grassmannian G(n, N). Then,
for a sequence a (al, ", a,) of integers as in section 4(a), we let

I G(n, N) F(N)

be defined by the Schubert conditions

I {(T, F): T a(F)}.

Taking dF the invariant volume on F(N) we have that

I() (Trl),(Tr*dF)
is an invariant form on G(n, N).
The determination of I() brings out one of the salient features of Hermitian

integral geometry. Namely, since the invariant differential forms on G(n, N)
are isomorphic to the cohomology, the form I() is uniquely specified by its
cohomology class, and consequently the determination of the mapping

I() is a purely topological question. In the case at hand

I() P(f),

and this implies the formula (4.9).
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Footnotes

1. We recall that for V W a surjective proper mapping of complex manifolds with generic
fibre of dimension k, integration over the fibre gives a map

rr," Ac + k. + k)(V) Ac("q)(W)

with the defining property

(4.2) q/ rr*) zr.Ik/ /, 1 A*(W).
V W

It follows that 7r. commutes with 0 and c5, and also preserves positive forms. We shall also have
occasion to use integration over the fibre when V is singular, but the extension to these cases will be
obvious.

2. The point is that, by Schur’ lemma, any Hermitian form on s which is invariant under the
unitary group must be a multiple of the standard one. As much more sophisticated use of invariant

theory occurs in section 4(c) below--cf, the discussion pertaining to the reference cited in footnote
10.

3. cf. the reference given in footnote 5 of section 3.
4. cf. footnote 11 in section for an argument which covers all the cases we shall use in this

paper.
5. Once we know that, by averaging, the deRham cohomology of G(n, N) is isomorphic to the

cohomology computed from the complex of invariant forms, the argument goes as follows: The
invariant forms are exterior polynomials in the quantities to,, bv which are invariant under

to, -- gto,vh,, where g and h are unitary matrices. Using the h’s, we deduce that only the

expressions

appear; in particular, the invariant forms are all of even degree. Using the g’s, any invariant form is
a polynomial in the elementary symmetric functions of (II). By direct integration one finds that
c(fE) is Poincar6 dual to

6. cf. W. Stoll, Invariant Forms on Grassmann Manifolds, Annals of Math. Studies no. 89,
Princeton University Press, (1977). The form r/F.a may also be constructed by applying standard
potential theory to the Grassmannian to solve the equation of currents (ii).

7. As we saw in (3.11), aside from a few special cases the Gaussian image y(M) may be expected
to have dimension n.

8. cf. footnote 2 in section 1.
9. We note that V T0(s) * N, and W Tn(G(n, N)) n N-n,; cf. footnote

3 in section 3.
10. H. Weyl, The Classical Groups, Princeton University Press, 1939.
11. In the reference cited in footnote4) of section 2, cosets : and x are defined to be incident ifgH

and g’K have in common a left coset relative to H tq K. This notion is not sufficiently broad to
cover the examples we have in mind.

12. cf. the recent works, Gary Jensen, Higher Order Contact ofSubmanifolds ofHomogeneous
Spaces, Lecture Notes in Math, no. 610, Springer-Verlag (1977); Mark Green, The moving frame,
differential invariants, and rigidity theorems for homogeneous spaces, to appear in Duke Math. J.

13. This means that C and C’ pass through x0 and have the same tangent line there.

5. Curvature and Piiicker Defects
(a) Gauss-Bonnet and the Pliicker paradox. To obtain an heuristic idea of
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what is to come, let us consider a family of complex-analytic curves {Vt} de-
fined in some open set U C 2 and parametrized by the disc B {t" It < 1}.
For example, we may think of Vt as defined by f(x, y; t) 0 where f is holo-
morphic in U B. We will also assume that V is smooth for t 0 while V0 has
one ordinary double point at the origin, as illustrated by the following figure

f(x, y; t) x yz

By shrinking U slightly if necessary, we may consider all of the Vt as Riemann
surfaces with boundary; this is clear for 0, while V0 is the image of a smooth
Riemann surface 0 (possibly disconnected as in the above example) under a
holomorphic immersion which identifies two points. Note that the boundaries
OVt 0 Vo as 0, and that the Euclidean metric on induces metrics on all
the Vt including 9o. By the usual Gauss-Bonnet theorem (cf. (4.14))

Iv KdA=x(Vt)+ Io kods(5.1)
2r v

where ko is the geodesic curvature. This formula holds for any metric on a
Riemann surface with boundary and is therefore valid for 0 and for 0
with 0 in place of V0. Since there are no singularities near the boundary

lim f kods= f kods.
OVt OVo

On the other hand, since the topological picture near the origin is
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where the vanishing cycle 8t Hl(Wt) shrinks to a point as O, we have

x(V,) X(Vo) 2, t o.

Ir KdA 2.(5.2) lim KdA
2rrt-0 2zr

On the other hand, it is clearly the case that for W C U a compact region not
containing the double point

lim Iv KdA .fv KdA
t--* O W V W

Setting Vt[] Vt B[0, ] where B[0, ] is the e-ball around the origin, we
deduce a special case of the theorem of Langevin(1

(5.3) lira lira
1 l KdA 2.

0 0 2r Jvt[l

This result establishes in principle the basic link between curvature and singu-
larities.
We note that (5.3) has the following consequence due to Linda Ness2: Since,

by the discussion in section 4(b) (which in this case is quite obvious), the areas

(5.4) dA 0()
jvt[]

tend uniformly to zero, we deduce that there must be points p V where the
Gaussian curvature K(pt) -- -o. Moreover, because K _< 0 we may use (5.4) to
estimate the size of the region where K _< C < 0. It will be more conve-
nient for us to do this indirectly using the theory of currents.
These considerations are closely related to the HOcker paradox, which arose

in the very early days of algebraic geometry and brought into clear focus the
necessity for exercising caution in treating singularities. Suppose that C c IW
is an algebraic plane curve given in affine coordinates byf(x, y) 0 wherefis a
polynomial of degree d. The dual curve C* c IW* is defined to be the set of
tangent lines to C; i.e., the image under the Gauss mapping

T: C--> Ip2..

It is again an algebraic curve of some degree d*, called the class of C, and the
dual of C* is again C.
To compute d* we recall that the degree of any algebraic curve is the number

of its intersections with a general line. By projective duality a line in IW* is
given by the pencil pl(p) of lines L through a fixed point p in IW. We may
choose our coordinates so that p [0, 0, 1] is the point at infinity along the y-
axis and such that the line at infinity is not tangent to C. The pencil P(p) then
consists of the vertical lines in the affine plane 2, and the class d* is just the

It follows that
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number of vertical tangents to the finite curve f(x, y) O. Finally, again by
general position we may assume that each such vertical tangent is simple (i.e.,
is not a flex-tangent). Now the tangent to C at a smooth point (x, y) is vertical if

(x, y) O,
Oy

and so it would appear that d* is just the number of solutions to the simultane-
ous polynomial equations

{5.5) f(x, y) O, Of (x, y) O,
Oy

which according to Bezout’s theorem would give

d* d(d- 1).

ff this were correct, then by double duality

d= d*(d* 1)

d(d- 1)(d- d- 1)

which is a contradiction if d -> 3.
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Of course the point is that our computation of d* is correct only when C is
smooth. Put differently, the number of solutions to the equations (5.5) gives the
degree of the algebraic dual d’, defined as the set of lines which intersect C
multiply in less than d distinct points. In case pl, ", Pm are the singular points
of C, then ff is reducible and in fact

C* + le1(pl) +""" + mel(pm)

where the/x, are positive integers and

d(d- 1)- d* + /Xl +’’’ +

Now suppose that {Ct} is a family of curves parametrized by the disc and with
Ct smooth for #- 0 while Co has singular points pl, ", Pro. Then Ot C for
# 0 while clearly lim (7 70. It follows that

t--)0

(5.6) lim C--C*0 + /1Pm(p1)+’’" + mPl(Pm);
t--0

i.e., when the curves Ct acquire a singularity their Gaussian images are not
continuous in and the discrepancy

lim y(Ct) y(Co) I,.iPl(Pi)
O

may be called the Plticker defect associated to the situation. It is this Pliicker
defect which explains the phenomenon (5.2) and which will be systematized in
the following discussion.

(b) The Pliicker defect and Langevin’sformula. Suppose now that {Vt}t e B is
a family of n-dimensional analytic varieties defined in a neighborhood of an
open set U c (N with Vt smooth for # O. More precisely, we should be given
a neighborhood W of U and an analytic subvariety

XCBW

such that for # 0 the intersection X. ({t} W) is smooth. We define Vt by

x. ({t} u)= {t} v,
and will assume that the boundaries (9 Vt Vt N O U are smooth for t # O. De-
note by V the smooth points of V0 and consider the graph

F* {(p, yt(P)) X G(n, N)}

of the Gauss mappings

Yt: Vt --> G(n, N)

for 0 together with

70: V*o G(n, N).
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The closure F of F* is an analytic subvariety of X x G(n, N), and the projec-
tion

7r F-- B

has fibres 7r-(t) Ft the Gaussian images Tt(Vt) for 0, while the fibre Fo is
generally not the closure To(W;). Writing

(5.7) F0 v(V) +

defines A as an analytic subvariety of G(n, N), one possibly having a boundary
corresponding to the points of Vs q 0U, and one whose irreducible com-
ponents generally have multiplicities. We shall call A the Pliicker defect(4) asso-
ciated to the family {Vt} e B"

It is also possible to define A as a current Ta by the formula

(5.8) Ta(a)= lim I’ Y(a)-I" y’g(a)
0

where a is a C form on G(n, N). Clearly this is just the current associated to
the variety defined by (5.7). With this definition one may prove directly that Ta
is a positive current of type (n, n), which is closed in case V0 has isolated interi-
or singularities. Moreover, by taking a smaller class of "test forms" a we may
refine the data of the Pliicker defect.
Another possibility is to define A by using resolution of singularities. (5) By

successively blowing up X beginning along the singular locus of V0 we arrive at

2 _B

where 7r-l(t) Vt for # 0 and where 7r-1(0) is a divisor with normal crossings.
We may even assume that the Gauss mappings

Tt: 6-1(t) G(n, N)

are defined for all including O. Writing

7r-’(O) 9o + tXlDa +’’" + t.mDm
where lY0 is the proper transform of V0 (so that 1?0 ---> V0 is a desingularization),
it follows that

Iy0(f’0) yo(V*o), and
(5.9) !

[.A PtlT0(Ol) +""" + PtmTo(Om).

Each of the characterizations (5.7)-(5.9) of the PRicker defect turns out to be of
use.
Now let a (a l, ", a) be any sequence of integers with

lal-- a n
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representing a codimension n Schubert condition on G(n, N) and denote by
Pa(fE) the corresponding polynomial in the curvature representing the co-
homology class dual to the fundamental cycle of Za. Then, from 3(b)

lirn

On the other hand, for - 0

Pa(E)= IVo
Pa(V) fVt Pa(vt)

where D,vt is the curvature matrix in the tangent bundle of Vt, while by the
discussion of 3(c) for 0 the integral

converges and is equal to

P(n)"
V*o(o)

From this together with (5.8) we infer that

lim I Pa(ft)= I Pa(f0)+ I Pa().
t-O

We may evaluate the term on the far right by the first Crofton formula (4.9) and
obtain

(5.10)
t---01im fvt Pa(vt)= fVo Pa(v) + f# (A, a)da

This is our main general result expressing the difference between the limit of
the curvature and the curvature of the limit. It is clear that there is an analogous
result for a family of either analytic or algebraic varieties in IPN.

In case Vo has only isolated interior singularities, A is an algebraic variety in
G(n, N), the intersection number # (A, a) is constant for all Schubert cycles
in the family, and (5.10) becomes our

For a family of complex-analytic varieties Vt acquiring

(5.11) t-01im fvt Pa(vt) IVo Pa(v) + # (A, Xa)

where A is the Pliicker defect. Note that if we combine (5.11) with the Crofton
formula (4.9) we obtain

(5.12) t---01im f #((Vt) a)da f # (y(V0), a)da + # (A, a)

Main Formula (I).
an isolated singularity
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For example, suppose that we consider the basic Schubert cycle 2;’*; then

(- 1)’Ct KdA

is the Gauss-Bonnet integrand (we use dA instead of dVt), and (5.11) is

(5.13) lim Ct- Iv KdA Ct- Ivt-*0
KdA + (-1)’* # (A,

If we assume that the origin is the only isolated singularity of V0 and set Vt[.]
ilzll _< then by the discussion in section 3(c)

KdA 0

which, when combined with (5.13) gives

(5.14) lim lim Cte | KdA (-1)’*# (A, X’*).
0 0 Jvt[]

Now suppose that V0 c En + is a hypersurface with an isolated singularity
at the origin. If V0 is given by an analytic equation f(za, ", z’* / 1) 0, then
setting Vt {f(z) t} embeds V0 in a family {Vt} with Vt smooth for # 0. By
(4.10) the Schubert cycles 2;’* are in one-to-one correspondence with the hy-
perplanes H through the origin, and by (4.12)

#(T(V), H) {number of times the tangent plane to V is parallel to H}.

We shall sketch the proof of the following result of Tessier: (6)

For sufficiently small and H generic,

(5.15) # (y(Vt), H) # (y(Vo), H) + {/x(’*+ 1>

__
[(n>}

where t(i) is the ith Milnor number of Vo.
Proof. We recall(z) that for e, t sufficiently small and n -> 2, Vt[e] has the

homotopy type of a wedge of n-spheres; the number of these is the top Milnor
number (n / a). The remaining Milnor numbers are defined by:/z("- k / a) top
Milnor number of L N V0 where L is a generic (;N- k through the origin in N,
and where we agree to set/x(a) mult0(V0) and/x() 1. Choose a generic
linear coordinate system (z1," ", z’*, u) such that the hyperplanes parallel to H
are given by u constant. The projection

u’V---,.
fibres Vt by varieties Vt,,, of dimension n 1, and the critical values//1, ", //K

correspond exactly to tangent hyperplanes Hu parallel to H. We may assume
that each Hu is simply tangent, and thus by Lefschetz theory(8) as u ux the
Vt,,, acquire an ordinary double point with there being a single vanishing cycle
5 H,_ l(Vt,0). The picture in the (real) (t, u) plane is something like
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where D is the discriminant curve of points (t, u) such that Vt,u is singular. The
picture in the complex u-plane is

where the ux(t) are the intersections ofD with the vertical line constant. It
follows that the Euler characteristics are related by

(5.16) x(Vt) x(Vt,o) + (-1)

On the other hand, Vt Vt[e] and Vt,o Vt,0[e] may be assumed homotopic for
e, sufficiently small while

x(Vt[e]) + (-1)"/("+ 1)

x(Vt,o[e]) + (-I)n-

Together with (5.16) this implies that

which proves (5.15).
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As a consequence of (5.15),

lim # (T(Vt), H)dH t" # (y(V0), H)dH + tz("+ 1) + /.(.),

which when combined with (5.12) and (5.14) gives Langevin’s theorem (0.9)

(5.17) lim lim Cte [ KdA (-1)"{/TM + 1) + /z(,)}.
e--) O t--* v

(c) Extension to higher codimension and isolation ofthe top Milnor number.
Even though our main formula (5.11) is fairly general in scope, it is clearly of
the same character as the special case (5.17). The extension to higher codi-
mension is perhaps more novel, relying as it does on the formula (4.28) instead
of the simpler Crofton formula (4.9).
As above we assume given {Vt} where Vt is smooth for # 0 while V0 has an

isolated singularity at the origin. For a generic linear space L G(N k, N),
the intersections Vt D L will be transverse and therefore smooth for # 0
while V0 D L C L will have an isolated singularity at the origin. We may define
the corresponding Plficker defect AL, which is then an analytic subvariety of
G(n k, L) G(n k, N k). By (5.8) and (5.15)

(5.18) lim cn-k(12vt n L)= c-k(fv0 n )
Jvt f- L JVo f-I L

+ {p("- + ) + t("- )}.

For : 0 the Crofton’s formula (III) (4.28) gives

(5.19) I ( jt c (fvt n )) dL C fv cn (fv) / t"

To evaluate the right hand side we use the

LEMMA: For O and tO a closed (n k, n k) form on Vt,

(520). fv b/ fv
Proof. Referring to the notation in the proof of (3.15), we set

o- / de log Ilzllz/ to- 1.

Then do- tO/ to, while on the boundary OV[]

d log

(cf. the computation following (3.16)). By Stokes’ theorem, which may be ap-
plied since V is smooth for 0,

t[e] Vt[d
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.2k Vt[e]

q A
t[]

since d de ilzll Q.E.D.
Combining (5.19) and (5.20) gives

(5.21) cn k(lv, r L) dL
e2tie] f-) L

On the other hand it is not difficult to show that

c,_ (fv,) A 6

lim Iv Cn (12Vo ) 0
0 o[e] r L

uniformly in L, so that combining (5.18)-(5.21) we obtain the extension of (5.11)
to arbitrary codimension

(5.22) lim lim
(- 1)" eCCe

e2
c,_ (fv,) A b {/x(" + 1)

__
/./,(rt k)}.

Note that for k n the left hand side is

Ce IV bn multo(Vo)lira lim
e20 0 t[e]

by (3.17), while/x() +/x() is also equal to mult0(V0) by our conventions. Adding
up the formulas (5.22) with alternating signs telescopes the right hand side and
gives for the top Milnor number n /, /2, / "(V0) the formula

(5.23) (n + 1)(W0) lim lim (_ 1)
C(k, n)

e-.O 0 k=
c,_ (fv,) A 6]

-at- (--1)n -1

where the C(k, n) are suitable positive constants.(9)

(d) Further generalizations and open questions. Due to the rather general
approach we have taken in discussing curvature and singularities (e.g., (5.11)),
in addition to the Milnor numbers (5.23) several other numerical characters are
suggested which one may associate to a family of complex manifolds Vt C (N
acquiring an isolated singularity. Those which are essentially new arise only in
higher codimension, and may or may not be of higher order depending on
whether dim Vt <- IN/2]. We shall illustrate some of the possibilities by dis-
cussing the two simplest cases.

(i) Suppose that {St} is a family of surfaces given in some open set in 4 with
St being smooth for # 0 while So has an isolated singularity at the origin. The
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Pliicker defect A is then an algebraic surface in the Grassmannian G(2, 4).
Recall that G(2, 4) has dimension four, and that there are two families of Schu-
bert cycles in the middle dimension which may be described as follows"

for a hyperplane H, E(H) is the set of

2-planes T such that T C H (cf. (4.10));

for a line L, E,(L) is the set of

2-planes T such that L C T.

The first intersection number #(A, H) describes the limit of the number 8 of
critical values in a pencil of sections

C,t St (h + H);

as such it has to do with the number of vanishing cycles in the pencil ]Cx,tlx and
therefore with the Milnor number of So (cf. the proof of (5.15)). The formula

(5.24) lim lim Cte I C2(’St)
0 0 JSt[]

is a consequence of (5.14) and is of the same character as (5.17).
Consideration of the other Schubert cycle EI,I(L) leads to the following geo-

metric interpretation: Under a generic projection (4
__

3, S goes to a surface
S’ having a finite number 5’ of isolated singularities, and for generic L this
number is # (A, EI,(L)). In a manner similar to (5.24) we infer from (5.14) that

(5.25) lim lim
’-0 t--*0

c--e I,t, {c(Sa,)- c(a,)} ’
Based on the following analogy it seems possible that some variant of 5’ will
have topological meaning: For a smooth algebraic surface W C IW the Chern
numbers c and c2 may both be calculated from the degree, so that e.g., c c2
is determined by c2. But for a non-degenerate smooth surface W C I these
two numbers are independent in the sense that neither one determines the oth-
er. Thus it seems reasonable that, at least for those surfaces So c ([;4 which are
limits of smooth surfaces, the independent numbers cz and c c can be local-
ized to yield two distinct invariants.

(ii) Suppose now that {Ct} is a family of curves in an open set in 1I;3 tending to
a limit curve Co having an isolated singularity at the origin. The Gaussian im-
ages yt(C) c G(1, 3) IW give a family of analytic curves in the projective
plane with

lim y,(C,) A + y0(C0)
t--*0

where the algebraic curve A is the Plticker defect. Recalling that Ct-e,K dA is the
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pullback under yt of the standard Kfihler form on IP2, we infer as in (5.14) that

lim lim Ct- KdA # (A, H),(5.26)
0 0 Jct[d

and this number 8 has the following interpretation: A generic pencil of plane
sections Dt,x Ct f3 (h + H) represents Ct as a d mult0(C0)-sheeted covering
of a disc in the )t-plane having 8 branch points.
Now, assuming that Co is non-dengenerate, we may consider the second or-

der Gauss map

which assigns to each z Ct the osculating 2-plane. (11) As before we may de-
fine the 2nd order Pliicker defect A* by

lim y(Ct) y(Co) + A*,
t--0

and the letting Ct-e K*dA denote the pullback under y of the K/ihler form on
IW* we infer the formula

(5 27) lim lim Cte K*dA # (A* L*)
Jct[e]

where L* C IP2. is a generic line. The number 8" on the right hand side of (5.27)
has the following geometric interpretation: Under a generic linear projection
a 2 the curve Ct projects onto a plane curve C, and 8" is the number of
flexes of C[e] as e, 0.

Perhaps the general thrust of the discussion may be summarized as follows:
In a family of global smooth algebraic varieties Vt c IPN tending to a singular
variety V0, some of the projective characters may jump in the limit at 0(lz).

This jump is measured by the intersection number of Schubert cycles with the
Plticker defect A (and its higher order analogues A*, etc.), and by the analytic
Pliicker formulas(13 may be expressed as a difference

lim Iv {curvature form}-Iv {curvature form}.
t--*O

Moreover, in case V0 has an isolated singularity this whole process may be
localized around the singular point, so that the correction factor which must be
subtracted from the PlUcker formulas for Vt to obtain those for V0 is(a4

lira lim | {curvature form}.
0 JVt[e]

Finally, and most importantly, certain combinations of these expressions will
have intrinsic meaning for V0, and may even yield topological invariants of the
singularity as was the case in (5.23).
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(iii) We will conclude with some observations about curvature integrals in
the real and complex cases. In real differential geometry one generally encoun-
ters two types of curvature integrals, illustrated for a Riemannian surface by
the two expressions

(5.28) Is KdA, .ts IK]dA

In general the first type includes characteristic classes and Weyl’s coefficients
(1.10), and reflects intrinsic metric properties of the manifold which may even
be of a topological nature. The second type usually describes extrinsic proper-
ties of the manifold in Euclidean space. For a complex manifold M, C
because of sign properties such as

(_ 1)kcc(t) / n-k _> 0

the distinction between the two types of curvature integrals illustrated in (5.28)
seems to disappear, and the situation may be said either to be simpler or more
rigid, depending on one’s viewpoint.

Finally, along similar lines it would seem interesting to try and draw con-
clusions on the curvature of real algebraic curves acquiring a singularity. For
example, one might examine the real curves Ct,IR IR C where Ct c is
defined by f(x, y) with f(x, y) being a weighted homogeneous polynomial
having real coefficients. Superficial considerations suggest that the curvature of
Ct,R in IR tends to , while on the Riemann surface Ct the geodesic curvature
of the (purely imaginary) vanishing cycles remains bounded.

(iv) This paragraph is an afterthought. Upon reviewing the preceeding dis-
cussion about "topologically invariant curvature integrals associated to a sin-
gularity" it seems to me that some clarification is desirable.
To begin with let us consider the pedogogical question of how one might best

prove the Gauss-Bonnet theorem

(5.29) ct-e l KdM x(M)

in a course on differential geometry. Chern’s intrinsic proof (cf. footnote (8) in
section 1) is probably the quickest but in my experience leaves some mystery
as to the origin of his formulas. The Allendoerfer-Weil proof (cf. footnote (5) in
section 1) is intuitively appealing and explains the origin of the formula, but
relies on either the Nash embedding theorem or an unpleasant construction to
show that the left hand side of (5.29) is independent of the metric. Finally, the
proof by characteristic classes, interpreting the Gauss-Bonnet integrand as a
de Rham representative of the Euler class of the tangent bundle, is conceptually
satisfying but involves establishing a fairly elaborate machine. The following
proof, in four steps, represents a compromise"

a) Prove (5.29) for oriented real hypersurfaces using the Hopf theorem, as
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was done in section l(b), where KdM is the Gauss-Kronecker curvature.
b) Using a) and the tube construction, deduce (5.29) for submanifolds

mn C IRu aS was also done in section l(b), this step explains the origin of the
Gauss-Bonnet integrand.

c) Following the discussion in l(c), use the Gauss mapping

y M-- GR(n, N)

to show that Cm KdM y*Pf(l).) is induced from a closed form on the Grass-
mannian.

d) Finally, to show that the left hand side of (5.29) is independent of the
Riemannian metric g on M, we proceed as follows: Denote by I {0 -< s <- 1}
the interval and suppose that {M} is a 1-parameter family of manifolds in IRu

given by a mapping

f M I--- IRN

where f: M {s} ]Ru is a smooth embedding with image Ms. Define

y:M I GR(n N)

by T(x, s) Te(x.s)(Ms) and set

y*Pf(l)) W/ ds

where and q do not involve ds. Then IM x {s} is the Gauss-Bonnet in-
tegrand C KsdMs for the metric gs on M, and, using (x, s) as product coordi-
nates on M x I, from

0 y*Pf(n)

Os
Ads- dx / ds

we deduce that, with the obvious notation,

(5.30)
o, ,
Os

It follows that

by Stokes’ theorem. Now, and this is the point, a simple local calculation
shows that depends only on the family of metrics gs, and consequently the
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formula (5.30) can be established for a general 1-parameter family of metrics
which need not come from embeddings in IRN. Since any metric can be con-
nected by a linear homotopy to one coming from such an embedding, we have
thus established (5.29) for any metric. The point is that, just as the expressions
in Weyl’s tube formula turn out to be intrinsic invariants of the induced metric
and therefore have meaning for any Riemannian manifold, the same will be true
for the variation (5.30) of the Gauss-Bonnet integrand.
An interesting question is whether we can use a similar argument to establish

the topological invariance of the top Milnor number/x" + of a hypersurface
V0 c Cn / having an isolated singularity at the origin. This is especially in-
triguing since the example of Briancon and Speder (cf. Tessier, loc. cit.) shows
that the lower Milnor numbers may not be topologically invariant. Suppose
then that {Vt,s} is a family of complex-analytic hypersurfaces parametrized by
h I where A is the disc {Itl < 1} and I is the real interval {0 _< s --- 1}, and
where Vt,s is smooth for 0 while V0, has an isolated singularity at the origin.
We assume that, for fixed s, the V,s fill out a neighborhood U of the origin, and
setting U* U- {0} define

3/: U* I (E" +1 X G(n, n + 1)

by y(z, s) (z, Tz(Vt,s)) where z Vt,s (t #-0). For any invariant curvature
polynomial Pk(IlE) on G(n, N) we set

on U* x I, so that

y*(bn-k A P(OE)) A ds

dp Vt,s 49"- /k P()vt,)"
Since this form is closed, as in (5.30) we deduce that

0
s dT

so that for # 0

0 ( )Iv pk(.Vt,s)/n_k=(5.31)
t,s[ OV ,s[e]

Observe that the right hand side of (5.31) is defined also for O.
If we now let be the form arising from c(O), then (5.23) together with

the topological invariance of the Milnor numbers suggests that

2(n k)
k 0 V0,s[e]

On the other hand, since the lower Milnor numbers are not topologically in-
variant, we will not have

(5.33) lim ez(,
O.
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One way in which this makes sense is for the individual forms qk to have a
singularity at the origin ofjust the right order to prevent (5.33) from holding (cf.
the proof of (3.17) in 3(b)), but in the alternating sum

(-1)
2(n k)

k

cancellation occurs in the highest order term. If this were the case, then there
would be a procedure for looking into the topological invariance of other curva-
ture integrals. We note in closing that the question is purely one on the singular
varieties V0,s and might be examined by blowing up the origin in a fashion simi-
lar to how (3.17) was established.

Footnotes

1. cf. the references cited in footnote 2 of the introduction.
2. cf. the reference cited in footnote of the introduction.
3. There is a discussion of the Plticker formulas in the paper cited in footnote 4 of the in-

troduction.
4. The motivation for this terminology is given by the discussion at the end of the preceeding

section 5(a).
5. H. Hironaka, Resolution ofsingularities ofan algebraic variety over a field ofcharacteristic

zero, Annals of Math., vol. 79 (1964).
6. B. Tessier, Introduction to equisingularity problems, Proc. Symposia in Pure Math., vol. 29

(1975), pp. 593-632; this paper contains an extensive bibliography on singularities.
7. Milnor numbers were introduced in Milnor’s book cited in footnote 5 in the introduction.

There is an extensive bibliography on material pertaining to Milnor numbers given in Tessier’s
article referred to in footnote 6 above.

8. Of course the classic source is S. Lefschetz, L’Analysis situs et la gomtrie algObrique,
Gauthier-Villars, Paris, (1924). A recent paper which in fact is pertinent to our present study is A.
Landman, On the Picard-Lefschetz transformations, Trans. Amer. Math. Soc., vol. 181 (1973), pp.
89-126.

9. As noted in 3(a) (cf. (3.7)) the differential forms cn- k(flv,) have the positivity property

which is consistent with the positivity of the right hand side of (5.22). We may ask if the more subtle
positivity

lim lim
(- 1)kC(k’ n) tk

--*0

is valid?
10. Of course it may happen that A is degenerate, but in view of (3.11) it would seem that this

should be considered an exceptional occurrence.
11. In this discussion, , does not denote the pullback of forms.
12. e.g., the degree will not, but the class will.
13. cf. the discussion in the reference cited in footnote 4 of the introduction.
14. G. Laumon, Degrd de la varidtd duale d’une hypersurface singularitids isolds, Bull. Soc.

Math. France (1976), pp. 51-63.
15. cf. The Fenchel-Fary-Milnor theorem in 2(b) the reference cited in Footnote 7 there.
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