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1. Introduction.

The word percolation, borrowed from the Latin, refers to the seeping or oozing of a liquid

through a porous medium, usually to be strained. In this and related senses it has been

in use since the seventeenth century. It was introduced more recently into mathematics by

S. R. Broadbent and J. M. Hammersley ([BH]) and is a branch of probability theory that is

especially close to statistical mechanics. Broadbent and Hammersley distinguish between two

types of spreading of a fluid through a medium, or between two aspects of the probabilistic

models of such processes: diffusion processes, in which the random mechanism is ascribed to

the fluid; and percolation processes, in which it is ascribed to the medium.

A percolation process typically depends on one or more probabilistic parameters. For

example, if molecules of a gas are absorbed at the surface of a porous solid (as in a gas mask)

then their ability to penetrate the soliddepends on the sizes of the pores in it and their positions,

both conceived to be distributed in some random manner. A simple mathematical model of

such a process is often defined by taking the pores to be distributed in some regular manner

(that could be determined by a periodic graph), and to be open (thus very large) or closed (thus

smaller than the molecules) with probabilities p and 1 − p. As p increases the probability of

deeper penetration of the gas into the interior of the solid grows.

There is often a critical threshold for the probability at which the behavior changes

abruptly — below which the penetration is only superficial, and above which it is infinitely

deep. Such critical behavior is a very simple analogue of similar behavior in thermodynamics

and statistical mechanics that is of great theoretical and experimental, as well as mathematical,

interest. Since the critical behavior manifested in percolation shares many characteristics with

that of more complex systems and models, percolation has attracted wide interest ([G,K])

among physicists and mathematicians as one of the simplest cases in which various striking

features of critical behavior, especially scaling and universality, appear. These two terms are

central to this paper, and will be discussed more at length below. Scaling refers, in essence, to

the frequent appearance of simple power laws. The exponent in these laws is often the same

for quite different materials and models, and this is called universality.

The immediate purpose of the paper was neither to review the basic definitions of perco­

lation theory nor to rehearse the general physical notions of universality and renormalization

(an important technique to be described in Part Two). It was rather to describe as concretely

as possible, although in hypothetical form, the geometric aspects of universality, especially

conformal invariance, in the context of percolation, and to present the numerical results that

support the hypotheses. On the other hand, one ulterior purpose is to draw the attention of

mathematicians to the mathematical problems posed by the physical notions. Some precise

basic definitions are necessary simply to orient the reader. Moreover a brief description of
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scaling and universality on the one hand and of renormalization on the other is also essential

in order to establish their physical importance and to clarify their mathematical content.

These matters are all treated in Part Two. Since one of its purposes is to orient ourselves

and other inexperienced mathematicians with respect to the physical background, we have

not shrunk from the occasional doubtful utterance that shed, for us at least, some light in an

obscure corner. We urge the reader to be especially circumspect while reading §2.2. That we
are dealing there with material with which none of us has had first­hand experience is not the

least of the reasons, but it is also not the only one.

The first paragraph of Part Two is deliberately stark. We hope that the content of the

questions posed there is clear; their depth cannot be at this stage. They are central and

inaccessible, but as problems they are the source of the hypotheses of §2.4 and the experiments
described in Part Three.

The attention given to §2.2 will depend on the reader’s familiarity with the physical
concepts used. Many are fairly close to everyday experience, but there are also deep ideas

with a long history compressed into single phrases. Fortunately the section can be skipped

completely, and those with no experience with the concepts can pass directly, or at least

quickly, to §2.3 and §2.4 which are prerequisites to Part Three. §2.2 is not. Nor are the final
two paragraphs of Part Two. §2.5 is an appendix, in the context of percolation, to §2.2. The
material in §2.6 is especially difficult, but especially important because it illustrates the power
of the methods of conformal field theory for making analytic predictions. These appear to

be far less accessible to rigorous mathematical demonstration, and perhaps deeper, than more

familiar geometric predictions. The ideas of §2.6 are due to Cardy, and appear in a sequence
of papers. In spite of their lack of rigor, they appear to be of great potential, and our purpose

is simply to present them in the most accessible form we could manage.

Since only the statements of the hypotheses are strict prerequisites for it, Part Three,

far more elementary than Part Two, can be read without a thorough understanding of the

preceding part. By the same token, Part Three can be taken as nothingmore than an illustration

of what happens when mathematicians take the physical ideas of Part Two seriously, and Part

Two can be read without reference to it.

After the discussion of the general experimental procedure in §3.1, the description of the
experiments begins. It is, of course, the experiments that give substance to the paper, in which

nothing is proved mathematically. §3.2 offers a table of approximate, but statistically very
precise results obtained by simulation that serve two purposes: a verification with better data

than those of [U] of the formula of Cardy in §2.6; construction of a collection of data withwhich
the less precise data of the following sections may be compared.

The numerical investigation of conformal invariance is begun in §3.3. The data of §3.2 are
for rectangles. The interior of every parallelogram is conformally equivalent to the interior of
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an appropriate rectangle, and the conformal mapping is uniquely determined if it is insisted

that vertices be taken to vertices. Moreover the aspect ratio r of the rectangle (the quotient of

the lengths of neighboring sides) is all but uniquely determined. The only possibility is that

r be replaced by 1/r. Thus a natural first comparison to establish conformal invariance is to

compare data for parallelograms with the standard data of §3.2 for rectangles. This is done in
§3.3.

The notion of universality of §2.4 is not that of §2.2, but closely related to it; and as
remarked in [U] it is difficult to determine to what extent it was accepted in the community of

specialists. It has certainly not been exploited. Specialists are not inclined to doubt it when

questioned closely and it has been tested in a restricted form in [U]. In this paper, we content

ourselves with a single example of the general hypothesis, whose purpose is principally to

exhibit an example inwhich all symmetries are violated, and to show how tomake calculations

for it.

Thefinal three sections inPartThreeare amore adventurouspursuit of the consequences of

conformal invariance of percolation. We define percolation on a variety of Riemann surfaces:

unbounded planar domains; branched coverings of bounded planar domains; and then on

branched coverings of the Riemann sphere. We stop there, but we could have gone farther. The

principle has certainly become clear. In each case, we take an example and verify conformal

invariance for it, but for reasons that we explain the precision with which we verify this

invariance decreases. Thus the numerical evidence for conformal invariance in the generality

it is finally conceived is not so good as it could be with more painstaking experiments, but

even those performed took considerable time, and provide evidence that is positive, and in

our view convincing. Our aimwas less to achieve great precision than to assure ourselves that

even bold forms of the hypothesis of conformal invariance stood a good chance of being valid.

Although further precision is certainly desirable, it seems to us that the search for proofs can

begin with some moral certainty that the general assertions implicit (the reader will have no

difficulty in making them explicit) in the last three sections are valid.

As far as we have been able to determine the study of critical behavior and universality

in percolation is of much less practical than of theoretical importance. The paper [M] of

MacLachlan et al and that ofWong [W] suggest that in suchpractical applications of percolation

processes as the study of composite materials or the porosity of rocks the interest is less in

quantities similar to that of the theorem of §2.1 that change abruptly at the critical threshold
than in quantities such as conductivity or permeability that change continuously,althoughwith

an infinite derivative, across this threshold. The critical indices of this paper are important in

so far as they influence the equations governing these quantities, but the principal practical

problem is perhaps to reduce, geometrically or otherwise, the critical threshold, for this means
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incorporating less of a perhaps expensive additive in an inexpensive matrix. Our concerns are

theoretical and mathematical.

2. The hypotheses of universality and conformal invariance .

2.1 Basic results and questions in percolation.

A standard model of percolation is that attached to sites on a square lattice. Let L be the

graph (embedded inRd) whose set of vertices or sites is the set of integral pointsZd andwhose

edges or bonds join all pairs of nearest neighbors. Each site can be in one of two states. It can

be open and then we assign it the value 1, or it can be closed, and be assigned the value 0. A

configuration is obtained by specifying which sites are open and which are closed. Clearly the

setX of all configurations is
∏

Zd

{0, 1},

the set of functions from Z
d to {0, 1}. A site s is open for a configuration if the corresponding

function takes the value 1 at s. If 0 ≤ p ≤ 1 then we associate to p the probability on {0, 1} that
assigns the probability p to 1, and introduce the product of these probabilities on the set of all

configurations. Each site can then be regarded as an independent random variable assuming

two possible values 0 or 1. We refer to the set X with this probability measure as the model

M0 of percolation.

For many purposes it is convenient to work not with the full graph L but with the sites

{(i, j)|1 ≤ i, j ≤ n}

in a square Sn of side n and the bonds connecting them. If

Xn =
∏

Sn

{0, 1},

then configurations x ∈ Xn are determined by fixing a state for each site inSn. The probability

π(x) of x is equal to pk(1 − p)l if k sites are open for x, and l = n2 − k are closed. A typical

configuration x is shown in Figure 2.1a, in which open sites appear as black dots and closed

sites are white.
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Figure 2.1a. Configurations on the square cube S16

for percolation by sites.
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Figure 2.1b. Configurations on the square cube S16 for percolation

by bonds. Both (a) and (b) have a horizontal

crossing but no vertical one.

There are many different events in X or Xn whose probabilities are of interest in the

study of percolation. We shall return to them in §2.3. For now, in order to put the questions in
stark simplicity, we concentrate on a very special probability πh, that of a horizontal crossing.

Consider the configuration x on S16 of Figure 2.1a. This configuration admits a horizontal

crossing in the sense that it is possible to pass from the left side of the square to the right one by

moving repeatedly from one site open for x to another open site joined to it by a bond, thus to

an open immediate neighbor. It does not, however, admit a vertical crossing. The probability

πn
h(p) of a horizontal crossing is the sum of the probabilities π(x), taken over all configurations

x ∈ Xn on Sn that admit a horizontal crossing.
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Figure 2.1c. The curves πn
h(p) for n = 2, 4, 8, 16, 32, 64,

and 128. Larger slopes around pc correspond
to larger values of n.

The probability πn
h(p) clearly increases from 0 to 1 as p does. Its behavior with respect

to n is revealed by Figure 2.1c, in which the graph of the function πn
h is given for n =

2, 4, 8, 16, 32, 64, 128. It appears to be approaching a step function; this is confirmed by the

first two statements of the following theorem, whose original proof takes up most of the book

[K] of Kesten. A full account of the contributions of earlier authors can be found there. Amore

recent proof can be found in [AB].
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Theorem There exists a unique critical probability 0 < pc < 1 such that:

(1) for p < pc,

lim
n→∞

πn
h(p) = 0;

(2) for p > pc,

lim
n→∞

πn
h(p) = 1;

(3) for p = pc,

0 < lim inf
n→∞

πn
h(p) ≤ lim sup

n→∞
πn

h(p) < 1.

In spite of the difficulty and importance of the theorem, it has an obvious defect for it does

not answer the question that immediately springs to mind upon reading the final statement.

Question 1 Does

lim
n→∞

πn
h(p)

exist for p = pc?

The numerical evidence leaves no doubt that the limit, which we denote πh, exists. A

second question, far more subtle, is also strongly suggested by the numerical data. Consider

the derivative An of π
n
h(p)with respect to p at p = pc. If Figure 2.1c does not deceive then An

increases with n and approaches infinity.

Question 2 Does there exist a positive real number ν such that

lim
n→∞

An

n
1

ν

(2.1a)

exists and is different from 0?

This is a simple example of a scaling law, a notion that will be explained more generally

in the next section.

The two questions, as well as the theorem, have been formulated for the specific model

M0, but there aremany other possiblemodels. For example, in dimension two the latticeZ
2 can

be replaced by a triangular (or hexagonal) lattice in which each site has 6 (3) nearest neighbors.

Percolation by sites can also be replaced with percolation by bonds. In bond percolation all

sites are open and it is the bonds that are open with probability p. A configuration on S16 is

shown in Figure 2.1b. The definitions introduced for site percolation onM0 are applicable to

these new models. The configuration in the figure admits a horizontal crossing but no vertical

crossing. One can also study percolation on more general planar graphs, allowing in addition
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both sites and bonds to be open or closed, and probabilities that depend on the type of bond or

site. We could, for example, in bond percolation on a square lattice permit the horizontal and

vertical bonds to be open with different probabilities ph and pv . The variations are endless, but

for all models within a large class, the theorem, in an appropriate form, remains valid, and the

questions appear to continue to have an affirmative response. The critical probabilities vary

from model to model, but the evidence strongly suggests that yet another, a third, question

has an affirmative answer.

Question 3 Is the value ν independent of the model?

The number ν is known as a critical index and its independence of the model is known as

universality. For reasons not germane to this paper ν is generally believed to be equal to the

rational number 4
3
for the models of percolation in two dimensions that we study here.

The first, obvious advantage of percolationmodels is the facilitywithwhich ν can be intro­

duced. In statisticalmechanics singular behavior of quantities such as specific heat ormagnetic

susceptibility is also described by critical indices, to be discussed in the next paragraph, whose

constancy within large classes of models, thus their universality, is well established within the

limits of experimental observation. Although its sources are not understood, there is a very

powerful method, the renormalization group, for analyzing critical behavior, but the problem

of understanding the mechanism that allows the geometry to predominate and to efface the

details of the interactions and, as a consequence, to render renormalization so effective re­

mains. The missing insight can be regarded as physical or mathematical; it is not a question of

adding rigor to arguments that are otherwise persuasive. There are none.

The renormalization groupwas taken, as its name suggests, into statisticalmechanics from

the theory of quantumfields, and has therefore a conceptually very difficult historywithwhich

we are not concerned, although some attempt will be made during the course of the paper to

give the phrase somemeaning to the reader. It should then be clear to him that, contrary to the

first impression, the three questions are not at an ever increasing level of difficulty, so that an

earlier one must be answered before a later one can be posed. They must rather be answered

simultaneously.

With this in mind, our purpose, in [L1, L2] and [U], has been to introduce objects that

deserve to be called renormalizations, but that are at the same time concrete, elementary

mathematical objects amenable to rigorous mathematical investigation.

What is introduced in [L1, L2] is a sequence of continuous transformations of finite­

dimensional spaces. They are briefly reviewed in §2.3. To relate these objects to renormalization
requires hypotheses whose validity was not universally accepted. To assure ourselves that the

definitions were well­founded we examined crossing probabilities like πh for various models

of percolation in [U]. ConversationswithMichaelAizenman after the datawere in hand greatly
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clarified for us their nature. In particular he suggested that these crossing probabilities would

be conformally invariant.

Subsequent conversations with other mathematicians persuaded us that with the appear­

ance of conformal invariance percolation becomes a topic that appeals to a broader audience

than mathematical physicists and probabilists. For example, a remark of Israel Gelfand, for

which we are grateful, led to the examination of conformal invariance on compact Riemann

surfaces. Since proofs of conformal invariance will likely have to wait upon proofs of uni­

versality for percolation, and these, even if the ideas of [L1, L2] have some validity, will in

all likelihood be slow in coming, we decided to present the numerical evidence for conformal

invariance and its consequences in a form that emphasizes its mathematical appeal, and this

is the primary purpose of the present paper. No theorems are proved or implied.

As promised, we preface the numerical results with an explanation, tailored to our con­

cerns, of the terms, universality and renormalization, just invoked. Before beginning, we

would like to express our thanks to Michael Aizenman and to Thomas Spencer for their

encouragement.

2.2 Universality and the renormalization group.

Statistical mechanics and the closely related subject of thermodynamics deal, to some

extent, with objects familiar to all of us: gases, liquids, and solids; or magnets in magnetic

fields. It comes, therefore, as somewhat of a shock to learn that these substances are not so

familiar as we might think. Water vapor, water, and ice and the transitions between them are

matters of daily experience, and phase diagrams like Figure 2.2a frequently met.

They are not usually drawn to scale nor do we ask ourselves which region or values of

the pressure and temperature are accessible under normal conditions. Temperatures between

−20◦ C and 100◦ C, the boiling point of water, are the most common, except under incendiary

conditions. Because of the phenomenon of partial pressure, more familiar to us as the numer­

ator in the humidity, only the pressure of the water vapor in the ambient air affects the rate of

evaporation or thaw, so that the pertinent range of pressures is from 1. atm all the way down

to 0. atm. Thus, even though the triple pointA in Figure 2.2a is at (P, T ) = (0.006 atm, 0.◦ C),

ice does melt on the surface of ponds and puddles.
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solid liquid BCA gas T

Figure 2.2a. Qualitative phase diagram for water.

H C B T
Figure 2.2b. qualitative phase diagram for a ferro­magnet.

On the other hand, the point B, the critical point in the technical sense, is at (Pc, Tc) =

(218. atm, 341.◦C), so that no diagram drawn to scale could include the two points. The
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pressure is that found more than two kilometers under the ocean surface, not a familiar

location, and certainly not one in which we might try to boil water.

Thus the phenomena associated with the critical point, and it is for them that universality

is pertinent, are not those associated to the transition from water to ice or from water to water

vapor. They are of a different nature. If at a fixed temperature T below Tc we continuously

increase the pressure (or reduce the volume) on a closed container of water vapor then, when

the pressure is such that (P, T ) lies on the curve C, it will start to condense and we will

be able to continue to reduce the volume without changing the pressure until there is no

vapor left. At this point, continued reduction of the volume will increase the pressure, or

more kinesthetically, continued increase of the pressure will reduce the volume, which will

have decreased considerably. It is best to imagine the transition occurring in the absence of

a gravitational field, so that the difference of density does not cause, in the familiar way, the

liquid to precipitate out. Rather a kind of slush is formed during the transition, pockets of

liquid in the ambient vapor, or pockets of air in the ambient liquid.

At the point on the curve, where the volume, and therefore the density ρ, changes without

any change in the pressure, the isothermal compressibility

KT =
1

ρ

(

∂ρ

∂P

)

T

(2.2a)

is of course infinite. Above Tc the curveC has terminated and there is no transition from vapor

to liquid, rather there is simply a fluid that is gradually becoming denser with the increase in

pressure. In particular, at no point doesKT become infinite.

If the pressure is increased in the same way at T = Tc, the behavior can be expected to

mimic both that at T < Tc and at T > Tc. The curve given by setting T equal to a constant Tc

and lettingP vary could be replaced by other curves passing through the critical point, but it is

better to work with a fixed, simply defined curve. We observe, anticipating a later section, that

the critical behavior of percolation, in which there is only one free parameter, the probability,

is to be compared with the behavior along such a curve.

The fluid, whether a liquid or a gas, is composed of molecules that are subject to ther­

mal fluctuations, so that the density is only defined for statistically significant aggregates of

molecules. Away from the curve C a few molecules suffice (cf [P]) so that the normal or bulk

state is achieved in aggregates occupying a region whose size usually is of the order of a few

molecular diameters, thus of the order of 3 × 10−10m. On the curve itself, a bulk state is

a mixture, with regions, gaseous or liquid, visible to the naked eye, whose size, in terms of

molecular diameters, is therefore effectively infinite.

The size required in order for quantities like the density to be defined is usually, for

statistical reasons, referred to as the correlation length and denoted by ξ. It depends on
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the pressure and the temperature, ξ = ξ(P, T ), and becomes infinite at the critical point B

because, for the reasons given, it is infinite along the curve. Thus the scale on which the

thermal fluctuations occur grows as the critical point is approached, eventually reaching and

surpassing the wavelength of visible light, about 5 × 10−7m.

Although our initial discussion is for water, because it is so common, it may not be, as the

following citation suggests, the best substance with which to conduct experiments around the

critical point. For reasons described clearly and simply in [S], they are very difficult.

The optical phenomena, known as critical opalescence, that result from the increase in

correlation length are quite colorful and very famous. Unfortunately, the best photographs and

slides have never, to our knowledge, been published. We refer the reader to the cover of the

June 10, 1968 issue of Chemical and Engineering News for the only color reproduction known

to us. It would be useful, and would clear up many common misconceptions, if photographs

illustrating the brownish­orange stage of Michael Fisher’s description of critical opalescence

for carbon dioxide in [F2] were published:

“if the carbon dioxide, which is quite transparent in the visible region of

the spectrum, is illuminated from the side, one observes a strong intensity

of scattered light. This has a bluish tinge when viewed normal to the

direction of illumination, but has a brownish­orange streaky appearance,

like a sunset on a smoggy day, when viewed from the forward direction

(i.e., with the opalescent fluid illuminated from behind). Finally, when

the temperature is raised a further few tenths of a degree, the opalescence

disappears and the fluid becomes completely clear again.”

We review as briefly as we can, in a form suitable for mathematical consumption, the

conceptual conclusions from the experiments. Our discussion, which begins with scaling and

universality, is taken from [F1] and the companion survey [H] of experimental results. The

notion of renormalization had not appeared in the theory at this stage. We stress at the outset

that scaling is one conclusion from the experimental evidence, and universality a second.

Renormalization is, for the moment, a largely heuristic mathematical argument to explain

them both.

Although the details of the phase diagram varies from substance to substance, it remains

qualitatively the same, and the behavior of the correlation length ξ does not change. As far

as can be determined it behaves near the critical point like a power of the distance ρ from the

critical point

ξ ∼ ρ−ν . (2.2b)

On the curve defined by setting T equal to Tc, the parameter ρ is |P − Pc|; on that defined by
setting P = Pc it is |T − Tc|.
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The equation (2.2b) is another instance of scaling that can immediately be compared

with that of (2.1a). The correlation length is the size of the sample that is necessary for local

statistical irregularities to be disregarded, so that the substance is in a normal or bulk state. For

percolation, when the parameter p is not equal to pc this is the size at which the conclusions

of the first or the second part of the theorem take effect, thus for which πn
h(p) is very close

either to 0 or to 1. Since An is the derivative at pc this requires, according to the third part

of the theorem, that the absolute value of An(p − pc) be a number B bounded away from 0.

The smallest n at which this occurs is a candidate for the correlation length. The two relations

ξ = n and

An|p− pc| = B,

together with (2.2b) yield

|p− pc|−1 ∼ An ∼ n
1

ν = ξ
1

ν ,

or ξ ∼ |p− pc|−ν .

Although the critical exponent ν is the obvious one for percolation, and fundamental in

general, it is one of the most difficult to measure experimentally. For the liquid­gas transition

in pure fluids Fisher asserts ([F2]) that it has a value in the range 0.55 to 0.70, implicitly

suggesting that its value is independent of the fluid, thus universal. Since this is certainly not

the value 4
3 that appears to be correct for percolation, there must certainly be more than one

universality class.

Although the phenomena of universality and scaling were discovered prior to the in­

troduction of the renormalization group, it is easier to persuade the mathematical reader of

the delicacy of the notion of universality classes into which real substances and models are

supposed to fall, if it is explained immediately that they are expected to correspond to the

stable manifolds of unstable fixed points of the renormalization group transformation that has

not yet been described. Since these fixed points may not be isolated, and the transformation

may draw a point on the stable manifold of a fixed point Q very close to another fixed point

Q′ before drawing it to Q, the difficulties of classification and recognition of these classes are

formidable even at the conceptual level ([F2]). Experimental uncertainties ([H]) only increase

them.

Whether one is treating real systems or mathematical models, there are usually a number

of critical indices, some of which will be introduced explicitly later, associated to a critical

point of the system or model. It will also be explained, that within a universality class, they

have equal values. The real systems are of various types: the fluids already discussed with the

liquid­gas transition; magnetic systems, either ferromagnetic or antiferromagnetic; mixtures

of two fluids; and many others. They all presumably admit an exact, although enormously

complicated mathematical description. The best known mathematical model of a classical
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physical system is the Ising model of ferromagnetism. There are also models, like percolation,

in which a classical thermodynamic interpretation of the parameters is somewhat factitious.

The universality classes cut across the classification by these features. The principal factor is

the dimension; and certain coarse features of the local interactions, such as isotropy or lack of

it, the major secondary factor. Other possible secondary factors are noted in §2.6 of [F2].
Our principal concern is with percolation in dimension two; so the first factor is fixed.

Moreover there is no interaction present in percolation; so the second factor is absent. The

variations in lattice structure and in percolation type, whether on sites or bonds, that were

described above appear not to affect the universality class of two­dimensional percolation.

For systems or models to which the classical thermodynamic paradigm is applicable,

there are two quite different types of variables: those that in statistical mechanics appear as

parameters in the hamiltonian (strictly speaking, otherwise the temperature is not included, in

the Boltzmann constant), and in thermodynamics are applied externally and naturally subject

to the control of the experimenter, the temperature andpressure for a fluid, the temperature and

the appliedmagnetic field for a magnet; and those that it is more natural to express as amounts

per unit volume or lattice site. We refer to the first as external variables and to the second as

internal. Typical internal variables are density, entropy and magnetization per unit volume,

or in lattice models per site. They are given statistically as averages and thermodynamically

as derivatives of a function f , the free energy per unit volume or site, with respect to a dual

external variable.

There are also two types of critical indices, although they are not always clearly dis­

tinguished: those associated to thermodynamic quantities; and those that are defined at the

molecular level and usually studied optically, or at least electromagnetically. Although ana­

logues of those of the first type can also be defined for percolation, the analogues of those of

the second type are the more natural in the context of this paper. The notion of scaling is more

easily explained for the first; so we begin with them.

Since our treatment follows [F1] and [F2], it is more convenient to work with a ferrromag­

netic system. The pertinent external variables are the temperature T and the applied magentic

field H . In the phase diagram Figure 2.2b only the curve C and the point B remain. The

curve C is an interval, H = 0, T ≤ Tc, and B, the Curie point, is (Tc, 0). The liquid­gas

transition is replaced by the possibility of spontaneous magnetization alongC whose sign, but

not magnitude, depends on whether we approach C from above or below. (Strictly speaking,

the variableH is a vector, and so is the magnetization, but this is a possibility best ignored.)

If we choose as independent variables nearB the difference t = T − Tc as well as h = H ,

so that the critical point has coordinates (0, 0), then the free energy f = f(t, h) satisfies

(approximately) an equation

f(t, h) = b−df(bλ1t, bλ2h). (2.2c)
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This equation is experimental, and as explained by Fisher, was realized by B. Widom to be a

concise and illuminating manner of expressing scaling laws. The number b is to be greater

than 1 but otherwise arbitrary, and λ1, λ2 are two critical exponents in terms of which all

others can be expressed. For reasons that will be discussed later, 1/λ1 is identified with ν. The

quotientλ2/λ1 is denoted∆. We observe that the notation for critical indices is consistent from

reference to reference, so that, when Fisher ([F1,F2]) and Grimmett ([G], especially §7.1 with
which we urge the reader to compare the following discussion) use the same notation, they

are referring to analogous exponents. The integer d is the dimension. Thus for the moment it

is 3. Later, when we return to percolation, it will be 2.

There are four critical indices α, β, γ, δ associated to thermodynamic quantities. The

induced magnetization per unit volume is given by

M = ∂f/∂h.

It is in essence the ferromagnetic analogue of the density. Taking the derivative with respect to

h in (2.2c), and letting h approach 0, from above or below for the two limits may be different,

we obtain

M(t, 0±) = tβM(1, 0±), β = dν − ∆,

upon setting b−λ1 = t. Thus near the critical point, the spontaneous magnetization is (approx­

imately!) a homogeneous function of t = T − Tc.

The magnetic susceptibility or the rate of variation of M with H , an analogue of the

compressibility of equation (2.2a), is ∂M/∂h. Thus at h = 0 it is homogeneous of degree

−γ = β − ∆ as a function of t. The third critical index δ describes the behavior of M as a

function of h along the curve T = Tc or t = 0. Clearly

M(0, h) = h
1

δM(0, 1), δ = ∆/β.

Observe that the limit as t→ 0 is the same from both sides.

The specific heat is, apart from a factor, the second derivative of f with respect to t. Thus

at h = 0 it behaves like t−α with α = 2 − dν.

There are two standard critical indices defined at the molecular level, and therefore

statistically: the index ν and a second index η. Away from the critical point, correlation

functions typically decrease exponentially in space, as (very roughly) exp(−|x− y|/ξ), where
x and y are two points in space and ξ is the correlation length. At the critical point ξ becomes

infinite and this rapid decay is replaced by a slower decay |x − y|2−d−η. Thus η, in contrast

to the other indices, refers specifically to behavior at the critical point itself, rather than in a

neighborhood of it.
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To express ν and η in terms of λ1 and λ2 demands a more sophisticated discussion than

that for the other four critical indices ([F1]). The result is that

ν =
1

λ1
, η = 2 − γ

ν
= 2 + d− 2λ2

As a consequence, λ1, λ2, and all the other critical indices can be expressed in terms of ν and

η.

Scaling is a statement about a specific physical system or model. Universality, which

asserts that the critical indices are constant (or nearly so) on broad classes is a second, quite

distinct assertion. The evidence for both consists largely either of experimental data or the

results of computations for specific models.

Theoretical justification is scant. The renormalization group yields, however, some insight

into (2.2c). It is easiest to consider lattice models of ferromagnetism, in which each site of the

latticeL ⊂ Rd of §2.1 is taken to be occupied by amagnet, whosemagnetization and orientation
may or may not be sharply constrained. In the widely studied Ising model it is constrained

to take either of two opposing orientations and to be of fixed magnitude, thus effectively

to assume only the values ±1. Constraints are unimportant at the moment; it is rather the

geometry that counts. Rather than taking only simple magnets at the sites, we could also

allow some complicated system formed by a collection of mutually interacting magnets to be

the object attached to the site. Then the interaction between the objects at neighboring sites,

or more generally sites in close proximity, will be the resultant of the interaction between

the magnets in the systems attached to the two sites. The advantage of the more general

formulation is that such systems can be composed.

This is the essence of renormalization, and the expository problem at this point is to

provide the readerwith some idea of this composition, because it informs all our investigations,

but without prejudicing in any way the precise form it is to take. It is not the least of our

purposes (as in [L1, L2]) to search for novel, perhaps even mathematically more tractable

definitions of the composition.

We begin vaguely. The systems attached to the sites at the corners of a d­dimensional

cube can be fused into a single system. Starting therefore with one modelM , we can construct

a secondM ′ = Θ(M) by attaching to the site x = (x1, x2, . . . , xd) ∈ Rd the system obtained

by fusion from those at the sites

x′ = (2x1 + ǫ1, 2x2 + ǫ2, . . . , 2xd + ǫd),

the numbers ǫi each taking the values 0 and 1.
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Consider, as in §2.1 the system formed by the magnets on the sites inside a large block
Sn of side n. If n = 2m the system is obtained by starting with independent systems of side

1, putting 2d together to form a block of side 2, and then iterating the procedure m times.

Thus the model M in the bulk can be considered to be the model M (m) = Θm(M). Since

the basic assumption of statistical mechanics is that the properties of sufficiently large finite

systems are essentially those of infinite systems, we might suppose that M (m) and M (m+1)

were essentially the same; thus, thatM (m) was a fixed point of Θ.

The mappingΘ is a renormalization, so that fixed points of the (semi­)group it generates

appear to be objects of central importance. Universality can now be formulated as the assertion

that there are few fixed points of Θ pertinent to the systems of interest.

The first, obvious difficulty is that to define Θ we have had to allow our system to grow

more complex, so that a problem of closure presents itself. The second, less obvious, is that

although what may be one of the major factors responsible for universality is implicit in the

definition of Θ, nothing in the definition provides any insight into the mechanism by which

it prevails over the details of the local interaction. Namely, the propagation inM ′ = Θ(M)

is across the walls separating the 2d constituents of the composite system, and as we iterate

Θ the number and nature of the paths along which the system at one site influences those at

another depend strongly on the dimension d, and this multiplicity appears to dominate all

other factors.

In one dimension the propagation is linear, and the problems can usually be formulated in

terms ofMarkov processes, so that an analysis in terms of the renormalization group, although

instructive, is from a strictly mathematical point of view not necessary. In two and more

dimensions, it is one of the most effective methods for obtaining a handle on the qualitative

behavior of the system at a critical point, but the problem of closure becomes more severe ([F2,

§5.6]).
Although the crossing probabilities of the next section are the coordinates whose utility

in the study of renormalization we are examining, standard treatments more often use, in one

form or another, the external variables that appear in the hamiltonian. A simple example due

to Nelson and Fisher and taken from §5.2 of [F2] admits a precise definition of renormalization,
and may give the reader a clearer notion of the way it functions.

It is the Ising model in one dimension. Consider a finite collection of integers SN =

{i| −N ≤ i ≤ N}. The possible states of the model are the functions s on SN with values in

{±1}. The energy of a state is given by the hamiltonian function,

H0(s) = K0

∑

−N≤i≤N−1

sisi+1 + h0

∑

−N≤i≤N

si + C0

∑

−N≤i≤N

1.
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In statistical mechanics the free energy per site is given as the quotient

−kT ln(
∑

s

exp(− 1

kT
H0(s)))/(2N + 1)

the sumrunning over all states s. (The factork that ensures that the argument of the exponential

function is dimensionless is called the Boltzmann factor.) Emphasis is therefore often put on

the partition function

ZN (H) =
∑

s

exp(− 1

kT
H0(s)) =

∑

s

exp(−H(s)), (2.2d)

where we have set

H(s) = H(s;K, h, C) = K
∑

−N≤i≤N−1

sisi+1 + h
∑

−N≤i≤N

si + C
∑

−N≤i≤N

1,

with

K =
K0

kT
, h =

h0

kT
, C =

C0

kT
.

It is appropriate to refer to K , h, and C as the external variables. (There is, as observed, a

slight abuse of terminology here. The parameter T appears inK but not, strictly speaking, in

the original hamiltonian.) Observe that in statistical mechanics the probability of the state s is

taken to be equal to

exp(−H(s))/ZN (H).

We could fuse the systems at s2i and s2i+1 so that the system attached to the site i then

consisted of two simple magnets interacting through the energy K ′s2is2i+1, but this changes

the nature of the system, so that problems of closure arise. Rather the emphasis is put on

calculating the partition function as a function of the three external parameters. Fix the values

of the s2i so that the local state is determined at the even sites, and take the sum in (2.2d) over

the two possible values of s2i+1 at all the odd sites. If we define s
′ by s′i = s2i, the result may

be written as
∑

s′

exp(−H ′(s′)) = Z ′
N ′ , N ′ = N/2,

if a certain fuzziness at the endpoints is accepted. It can be expected to resolve itself in the

limit of large N . The problem of closure arises because the hamiltonian H ′ may be of quite

a different form than H , so that the calculation transfers us to a larger space of hamiltonians,

and no real simplification has been achieved.
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The advantage of the example (we stress that it is very unusual), achieved only at the cost

of abandoning the initial fusion and summing in an arbitrary manner over the states at the

odd­numbered sites, is thatH ′ turns out to be of the form

H ′(s′) = H(s′, K ′, h′, C′) (2.2e)

if
w′ = w2xy2/(1 + y)2(x+ y)(1 + xy)

x′ = x(1 + y)2/(x+ y)(1 + xy)

y′ = y(x+ y)/(1 + xy).

The three parameters appearing here are given by

w = e4C , x = e4K and y = e2h.

Thus Θ appears here simply as the transformation

(K, h, C) → (K ′, h′, C′).

In order to examine the physical properties of the hamiltonians H , one can use the

correlation length ξ(H). Let f(i) be the (limit for large N of the) probability that s0 and si

have the same orientation and let ξ(H) be a measure of the width of this distribution, say the

largest value |i| such that f(i) > f0 for some constant f0. If we limit ourselves to the even

integers i, the value of ξ should not change seriously, so that partial summation over the odd

sites does not affect the correlation length. On passing from H to H ′ we relabeled, denoting

s2i be s
′
i. The result is therefore that

ξ(H ′) =
1

2
ξ(H).

The renormalization­group transformationΘ is, in this example, the process of “decimation”,

thus of removing one­half the sites, followed by a shrinking of the lattice scale, and the

replacement of H by H ′. It decreases the correlation length by the factor 1/2. The space of

models is parametrized by a subset of R3.

We have claimed that the fixed points of the mapΘ are of major interest. At a fixed point

(w, x, y) of the map Θ the hamiltonian H = H(w, x, y) would be invariant under Θ and its

correlation length would have to satisfy

ξ(H) =
1

2
ξ(H),
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so that ξ(H) = 0 or ξ(H) = ∞. For the physical reasons explained at the beginning of this
section, it is the solutions of the second type that yield critical points. They are examined in

more detail in §5.3.2 of [F2] and in [NF].
The simplicity of this one­dimensional example is misleading. For the two­dimensional

Ising model, decimation appears to require the introduction of a further variable (in addition

toK, h andC) describing the interaction of second nearest neighbors. Iterating the decimation

will require more and more variables, so that the problem of closure manifests itself clearly.

This behavior, and not that of the example, is typical. What one expects in general is that (2.2e)

will be replaced by an equation

H ′(s′) = H(s′, K ′, h′, C′) +H ′′(s′), (2f)

in whichH ′′(s′) is small, and at each step smaller, eventually becoming irrelevant.

In [L1] and [L2] the emphasis is on approximations to the “true” Θ by a collection of

increasingly complex transformations that act on finite­dimensional spaces and whose first

members permit close study. Since these approximating transformations are the reason for our

emphasis on crossing probabilities, we shall briefly describe them in the next section.

We first return briefly to the equation (2.2c) imagining ourselves at a fixed point. It will

be associated to a complicated system, so that there will be many more external variables than

merely h and T (or t) needed to determine the local interactions and therefore the free energy

per site but, typically, theywill be irrelevant. Mathematically thismeans that they are variables

along the directions in which Θ is contracting. (In the example, K is just another form of T ,

but as often happens, there is more than one supplementary relevant variable, not only h but

in addition C. The irrelevant variables, had they appeared, would be those defining H ′′.) If

we ignore these irrelevant directions then Θwill be roughly of the form

(t, h) → (2λ1t, 2λ2h).

Since renormalization obviously multiplies the free energy per site by 2d, we obtain, upon

ignoring the other, irrelevant variables, the equation

2df(t, h) = f(2λ1t, 2λ2h).

Iterating we obtain (2.2c) with b equal to a power of 2. In other words, scaling can be recovered

from renormalization group arguments. So can universality, because the two indices λ1 and

λ2 are associated to the fixed point, not to the model with which the iteration begins.

It is implicit in these equations that for

|t| + |h| = 1
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the value of f is neither very large nor very small. Both λ1 and λ2 are positive. Since f is

the free energy per site, it is clear from (2.2c) that for t and h very small, the side, b, of the

block needed in order that the total free energy be of order 1 is given by the condition that

bdf(t, h) ∼ 1, thus that b = t−λ1 or b = h−λ2 . If h ≪ t, the first condition gives the smaller

b and the relation ν = 1/λ1. For more serious demonstrations of this relation the reader is

referred to [F1].

We observe in passing that λ2 can be larger than λ1 so that we see no very strong reason

that

f(t, h) = b−df(bλ1(t+ ch), bλ2h),

with a constant cmight not be preferable to (2.2c). We have followed convention.

2.3 Crossing probabilities.

Percolation is not a model of a classical physical system with a thermodynamic interpre­

tation, and the finite models that appear later in this section are stripped of many features of

such models; so their value is uncertain. Their purpose, as we have already remarked, is to

provide a model of the dynamics of renormalization that is accessible mathematically, and that

reveals the essence of the processes involved. It is still far from certain that this purpose will

be achieved, but to defend it as a goal we cite a phrase from Fisher’s description in [F1,§1.2] of
the role of models:

“. . . the aim of the theory of a complex phenomenon should be to elucidate

which general features . . .of the system lead to the most characteristic and

typical observed properties.”

We have deleted thewords “of the Hamiltonian” because we focus on percolation, deliberately

to avoid all problems caused by the hamiltonian. Those caused by the multiple paths along

which effects are propagated in two dimensions remain, so that Fisher’s demand that initially:

“. . .one should aim at a broad qualitative understanding, successively re­

fining one’s quantitative grasp of the problem”

is met.

The rest of the paper concentrates on two­dimensional percolation. The two hypotheses

presented in section 2.4 relate the critical behavior of a large class of models. Before stating

these hypotheses we shall first introduce themodels they are likely to describe and then extend

the notion of the horizontal crossing probability πh to larger families of geometrical data.

Let G be a graph embedded in R2. As in the introduction, we refer to its vertices as sites

and to its edges as bonds. It is a periodic graph [K] if it satisfies the following conditions:
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(1) G contains no loops (in the graph­theoretical sense);
(2) G is periodic with respect to translations by the elements of a lattice L in R2 of rank two;

(3) the number of bonds attached to a site in G is bounded;
(4) all bonds of G have finite length and every compact set of R2 intersects finitely many

bonds of G;
(5) G is connected.

Let G be the set of sites of G and p : G → [0, 1] a periodic function, thus a function invariant

under the translations fromL. As before we allow each site s ∈ S to be in either state 0 (closed)
or 1 (open) and we define a measure Ps on the set {0, 1} by the equations Ps(0) = 1 − p(s)

and Ps(1) = p(s). Finally we introduce the set of configurations X on the graph G as the
product

∏

S{0, 1} and endow X with the product measure m of the various Ps. A model

M = M(G, p) is defined as the set of data {G, p,X,m}. We shall refer to these models as the
class of graph-based models. Observe that for a given G the family of possible functions p form
a compact set in some finite­dimensional space.

The modelM0 corresponds to a graph constructed of the vertices Z2 with edges between

nearest neighbors and the function p constant on all sites. The definition also includes the

models of percolation by sites on triangular and hexagonal lattices. To include models of

percolation by bonds one associates ([K]) to a graph G its matching graph G̃. The sites of G̃ are
the midpoints of the bonds of G; two distinct sites s̃1 and s̃2 of G̃ are joined if and only if the
corresponding bonds b1 and b2 of G are attached to a common site. A periodic function p on
the bonds of G leads naturally to a periodic function p̃ on the sites of G̃ and we can therefore
replace percolation by bonds on G by percolation by sites on G̃. Percolation by bonds on a
square lattice where horizontal bonds are open with probability ph and vertical ones with a

different probability pv is an example of a model for which the probability function is not

constant.

The hypothesis of universality in §2.4 has only been examined numerically for a few
models. If we were eager to be precise, we might suggest the class of graph­based models as

the appropriate class for which to formulate the hypothesis. Such precision is inappropriate at

this stage. In particular, other models will very likely fall into the same universality class.

That this is so for a model based on an aperiodic graph whose sites and bonds are

defined by a Penrose tiling on the plane is indicated by the results of [Y]. Thus the condition

of periodicity is excessively prudent. Models may also be defined without any reference

to graphs, for example by randomly placing unit disks on the plane R2 with a density δ.

If a rectangle is drawn on the plane, a horizontal crossing is a path from left to right on

overlapping disks. The density δ plays the role of the probability p that a site is open. (See [G]

for a discussion of the “snails on a lily pond”model.) The disks can be replaced by ellipseswith
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uniform random orientation or, in the limit, by segments of length one. Results of H. Maennel

for crossing probabilities in this limiting case confirm that they are the same as those ofM0.

For graph­based models the notion of a cluster for a given state is simple. It is a maximal

connected subset of the set of open sites. The universality emphasized in [U] is that of the

crossing probabilities, the probabilities of events defined by a simple closed curve C in the

plane and by arcs α1, . . . , αm, and β1, . . . , βm, as well as γ1, . . . , γn and δ1, . . . , δn of C.

Let A be a large constant and define C′ and the intervals α′
i, β

′
i, γ

′
j , and δ

′
j to be the

dilations, with respect to some fixed but irrelevant point in the plane, of C and αi, βi, γj and

δj by the factorA. In principle a given state admits a crossing insideC
′ from α′

i to β
′
i if there is

cluster for this state whose intersection with the interior of C′ intersects both α′
i and β

′
i. Since

C′ is a curve, it might not contain any sites and it is in fact necessary to replace C′, supposed

to be not too irregular, by a band, and to thicken the intervals accordingly. Then there will be

a crossing between α′
i to β

′
i if there is an open path inside C

′ from the thickening of these two

intervals. For large A the choice of band, provided it is relatively narrow, is irrelevant. We

describe specific conventions when discussing the experiments.C0??y �0??y  ����� 
0x??�0 x??�0
Figure 2.3a. Data (C, α, βγδ) defining the event E.

With appropriately chosen conventions we can therefore define

πA(C, α1, . . . , αm, β1, . . . , βm, γ1, . . . , γn, δ1, . . . , δn),
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the probability that there are crossings in the interior of C′ from α′
i to β

′
i for 1 ≤ i ≤ m but no

crossing from γ′j to δ
′
j for 1 ≤ j ≤ n. One may suppose that these conventions will be such

that they do not affect the existence or the value of the limit

lim
A→∞

πA(C, α1, . . . , αm, β1, . . . , βm, γ1, . . . , γn, δ1, . . . , δn) = π(E,M). (2.3a)

We take E as an appropriate abbreviation for the event (or rather events since we took a limit

over dilations) defined by C, αi, βi, γj and δj . The horizontal crossing probability πh defined

forM0 in the introduction is a special case of π(E,M0). The curve C is a square and only two

arcs α and β are chosen, the left and right sides.

A natural extension ([K], [AB]) of the theorem of §2.1 is that, a family of modelsM(G, p),
parametrized by the function p, is constituted by two open sets, one for which the limit (2.3a)

is always 1 and one for which it is always 0; a third subset, the set of critical probabilities,

separates the other two and is such that the limit (2.3a) (if it exists) lies in general between 0

and 1. Presumably the limit does exist even for the critical probabilities, but this has not yet

been established. The two simplest models, percolation by sites and bonds on a square lattice,

for which p varies over an interval, are critical for a single appropriate choice pc of p. Hence

the two open sets are [0, pc) and (pc, 1] and the critical subset is {pc}. For percolation by sites
the value of pc is known empirically to be 0.5927460±0.0000005 [Z]; for percolation by bonds

it is known theoretically [K] to be 1
2 .

All our numerical work, as well as the hypotheses underlying it, is predicated on the

existence of these limits, that we now take for granted. Moreover our models are from now on

supposed to be critical.

Since our investigations were initially prompted by the desire to provide empirical foun­

dations for the definitions of the finite models of [L1] and [L2], we review those definitions

briefly. We shall also need to have them at our disposal in §2.5.
LetS be a squarewhose sides have been divided in l equal intervals. There are 4l(4l+1)/2

pairs of intervals. Let P be the set of these pairs. A configuration x for this model is obtained
by specifying which pairs are connected and which ones are not. Assign them respectively

the values +1 and −1. The space A of configurations is then a set of functions from P to
{+1,−1}. (There are technical constraints on the configurations that need not be described
here.) Therefore eachelementofA is aneventE whosedefining curveC is a square. (According

to the hypothesis of conformal invariance, all crossing probabilities can be obtained from those

for this case. See §2.4)
There is a natural transformation ΘA : A × A × A × A → A that is similar to the

renormalization­group transformation Θ of §2.2. To construct ΘA one first juxtaposes four

elements of A so that they form a larger square with 2l subdivisions on its sides. These
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intervals are then fused in pairs so that each side of the larger square contains l intervals.

Finally these new intervals are connected by composing the “paths”. Suppose, for example,

that α and β are connected intervals in one of the original squares and µ and ν are also

connected in another one. If β and µ turn out to be in the interior of the larger square formed

upon juxtaposition and are coincident, then the larger intervals containing α and ν in this

square will be connected. See Figure 2.3b for an example.

Figure 2.3b. An example of the transformationΘA:
A× A×A× A→ A for a finite model.

IfX is the set of measures onA,ΘA can be used to define a mapΘX : X → X. SinceX is a

simplex in a finite­dimensional space, the question of finding fixed points ofΘX and studying

their nature is well­posed.

2.4 The two hypotheses.

AlthoughAizenmanprefers to distinguishbetween thehypothesis of universality and that

of conformal invariance, regarding the first as commonly accepted, even in the form in which

we state it, we prefer for the sake of clarity as well as for the reasons already rehearsed in [U]

to state them in a less invidious form. The purpose of [U] was to show that the probabilities

π(E,M) were independent of M , provided the model satisfied some simple conditions of

symmetry. This is a form of universality. To state the general form we observe that the group

GL(2,R) acts independently on the models and on the events. (From now on we restrict

ourselves to the class of graph­based models.)
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A model with sites {s} and bonds {b} is sent by g ∈ GL(2,R) to the model with sites

{gs} and bonds {gb}, the probability function p being transferred directly from the old sites
and bonds to the new. The lattice L defining the periodicity is then replaced by gL. The

group GL(2,R) acts on the events E as well. We shall write gE for the event obtained from

the data (C, αi, βi, γj, δj) defining E by letting g act on each element of the data: gE =

(gC, gαi, gβi, gγj, gδj). By the definitions,

π(gE, gM) = π(E,M),

since transforming simultaneously the embedding of the graph G and the curveC by the same
linear transformation does not alter π(E,M). On the other hand, the probabilities π(E, gM)

and π(gE,M) are generally quite different from π(E,M).

Hypothesis of Universality If M and M ′ are any two (graph-based) models of percolation

there is an element g in GL(2,R) such that

π(E,M ′) = π(E, gM) (2.4a)

for all events E.

Those experienced readers who feel that this hypothesis is generally accepted, and not

worth examining numerically, might ask themselves howmuch they are willing to stake on its

validity in three dimensions— life, family, career? Less experienced readers will bemore likely

to notice just how strong the statement is, and therefore to be more skeptical. We ourselves

have found an explicit enunciation a great aid to clear thinking.

In paragraph 3.4, we shall give an example of a modelM for which the matrix g of the

hypothesis has no elements equal to 0.

The hypothesis obtains its full force only in conjunctionwith that of conformal invariance.

Suppose that J is a linear transformation of the plane R2 with J2 = −I . Then J defines a
complex structure on the plane, multiplication by i being given by x → Jx. Once J is fixed,

the notion of a J ­holomorphicmap on an open subset of the plane can be introduced as well as

that of an antiholomorphicmap. If g ∈ GL(2,R) and J ′ = gJg−1, then themap φ→ g ·φ ·g−1

transforms J ­holomorphicmaps into J ′­holomorphicmaps and J ­antiholomorphicmaps into

J ′­antiholomorphic maps.

If φ is a tranformation J ­holomorphic in the interior ofC and continuous and bijective up

to its boundary, which is justC itself, then the event φE is well defined; the transformation φ is

simply applied to the data (C, αi, βi, δj, γj) definingE. Wemay also apply a transformation φ

that is antiholomorphic in the interior toE. The followinghypothesiswas in essence suggested

by Michael Aizenman.
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Hypothesis of conformal invariance For every model M there is a linear transformation

J = J(M) defining a complex structure such that

π(φE,M) = π(E,M) (2.4b)

for all events E whenever φ is J-holomorphic or J-antiholomorphic in the interior of C

and continuous (and, for the moment, bijective) up to its boundary.

To understand the nature of the hypothesis, consider the modelM0 of percolation by sites

on a square lattice. The complex structure forM0 is, if the hypothesis is correct, the usual one

defined by

J0 =

(

0 −1
1 0

)

and the associated holomorphic functions are the usual ones.

Given an event E we may choose φ so that E′ = φE is defined by the the unit circle C′

with centre at the origin and arcs on it. If for example E is defined by the horizontal crossing

of a rectangle, then the data on C′ will be four points a, b, c, and d, the images of the four

corners of the square under φ, and α′ = φ(α) will be the circular arc between a and b, and β′

the circular arc between c and d.

For numericalwork it is easier to use the inverse ofφ, a Schwarz­Christoffel transformation

ψ : w →
∫ w

0

du
√

(u2 − v2)(u2 − 1)
,

in which v is a constant of absolute value 1 that depends on the aspect ratio of the rectangle.

For a square, one can clearly take v =
√
−1. In the arguments of §2.6 the disk is replaced by

the upper half­plane, and in §3.5 the hypothesis is implicitly reformulated for all unbounded
regions.

If M and M ′ are related by the first hypothesis then J(M ′) = gJ(M)g−1. Denote the

identity transformation by I . The set of linear transformations

H(J) = {aI + bJ ∈ GL(2,R)|a2 + b2 6= 0}

is the centralizer of J in GL(2,R), and is of index two in

H ′(J) = {h ∈ GL(2,R)|hJh−1 = ±J}.

The group H determines H ′ but only determines J itself up to sign. If J = J(M) we write

H(J) = H(M) and H ′(J) = H ′(M). It is clear that the element g that appears in the
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hypothesis of universality is not uniquely determined, at best the class gH ′(M) is determined.

As we shall observe explicitly later, there is in fact no further ambiguity, so that the two

hypotheses together imply that the image under

ψ : M →
∏

E

π(E,M) (2.4c)

of the set of all models in the product, over all events E, of the interval [0, 1] (a very, very large

set) is a small subset that may be identified with the upper half­plane. Each model of the class

defined in §2.3 corresponds to point in the upper­half plane. All the crossing probabilitiesπ(E)

of models corresponding to the same point are identical. Thus universality and the orthogonal

invariance ofM0 reduce an apparently infinite­dimensional continuum of possibilities for the

image of ψ to a two­dimensional continuum. Without orthogonal invariance, this continuum

would already be three­dimensional; so universality is the determining factor.

Those who have read §2.2 will notice that the universality of that section is quite different
from that of this paragraph. Universality in §2.2 is that of critical exponents and they could

all be expressend in terms of λ1 and λ2 that can themselves be interpreted as the logarithms of

the dominant eigenvalues of the Jacobian matrix of a suitable renormalization transformation

at a fixed point. This fixed point is not usually regarded as existing in a physical sense, and is

therefore treated as a somewhat spectral object. The assumption implicit in the finite models

mentioned in §2.3 is that the fixed point itself, at least for percolation, is a real physical and
mathematical object whose coordinates are the crossing probabilities, so that not only the

critical indices but also these probabilities are universal. They and not the critical indices are

the objects of principal interest in this paper. Nevertheless, although – mathematically – the

point and its coordinates have to be studied before the eigenvalues of a transformation fixing

it, it is the critical indices whose universality is to be explained and that have attracted the

most attention from physicists so far. It is by no means certain that for other problems than

percolation there will be useful analogues of the crossing probabilities of §2.3, and even less
clear that they will be physically significant.

Althoughwe do not want the renormalization group to intrude too obstreperously on the

discussion, we repeat, in order that there be no misunderstanding, that the crossing probabil­

ities are not to be interpreted as coordinates of the model at a critical value of the parameters

but as those of the fixed point to which it is attracted. This is what permits the image of the

map ψ to be of such a small dimension.

To be concrete the image (2.4c) is obtained as the collection

ψ : M →
∏

π(E, g−1M0), g ∈ GL(2,R),
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whereM0 is a given model, and the half­plane is identified with H(M0)\GL(2,R). Observe

that the actionofGL(2,R)on this homogeneous space is to the right and is givenon coordinates

by

π(E,M) → π(gE,M).

The image (2.4c) can be identified with the set of all possible groups H(M), thus with the set

of all translation­invariant conformal structures on the plane up to orientation.

In a certain sense the hypothesis of universality is subsumed under that of conformal

invariance, because the relation (2.4a) may be written

π(E,M ′) = π(g−1E,M),

and g−1 is a translation­invariant conformal map from the structure defined by H(M ′) to

that defined byH(M), thus, in general, between two different conformal structures. The two

hypotheses are thus fused into one if the equation

π(E,M ′) = π(φE,M)

is supposed valid for any map φ that is defined on the interior of the curve C determining E

and continuous up to its boundary, and takes the conformal structure attached toM ′ to that

attached toM .

Since H ′(M0) contains the reflections in both axes as well as the permutation of the two

axes, it must be the orthogonal group, and we can identify the image (2.4c) with the upper

half­plane in such a way thatM0 corresponds to the point i. The action ofGL(2,R) is then
(

a b
c d

)

: z → az + c

bz + d
,

when ad− bc is positive, and is
(

a b
c d

)

: z → az̄ + c

bz̄ + d

otherwise. Let R be the group of four matrices
(

±1 0
0 ±1

)

and S the group generated by R and the matrix
(

0 1
1 0

)

.

A simple calculation shows that the points invariant under R are the points on the imaginary

axis, and that the only point invariant under S is the point i itself.

In [U] we studied only models that obviously yielded points invariant under R, and

thus were implicitly confining ourselves to a one­dimensional curve, the imaginary axis, in an

otherwise two­dimensional family.
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2.5 More critical indices for percolation.

As we saw in §2.2 it is natural in models and systems with a thermodynamic significance
to emphasize the way in which the internal variables depend on the external ones, and thus to

introduce the critical indices α, β, γ and δ. Once we pass to other coordinates, or other models

in which there is no natural choice of coordinates, it is no longer clear which are the principal

critical indices.

The abstract possibility of blowing up or contracting the ill­defined space in which Θ

operates creates even more ambiguity. Suppose, for example, that in some rough sense Θ

operates in the neighborhood of a fixed point as

Θ : (t1, t2, t3, . . .) → (2λ1t1, 2
λ2t2, 2

λ3t3, . . .),

and that only λ1 and λ2 are positive, so that only the first two coordinates are relevant. If

we allow ouselves that freedom, then blowing up, as usual in algebraic geometry, so that

(t1, t2/t1, t3, . . .) or (t1/t2, t2, t3, . . .) become the coordinates, we replace λ2 by λ2 − λ1 or λ1

by λ1 − λ2, creating two fixed points from one, and perhaps changing the number of unstable

variables.

For percolation itself, our preferred coordinates are the numbers π(E,M) defined by

crossing probabilities. These permit readily, as we saw in §2.1, the introduction of the critical
index ν. Although the critical indices α, β, γ, and δ can be defined directly within percolation

([G]), that they are indeed the analogues of those of §2.2 is best seen as in [E2,§2] by treating
percolation as the limit of an Ising model in a weak field. They do not have an obvious

interpretation in terms of the crossing probabilities that are in this paper the primary objects.

This can perhaps be forgiven if we can at least interpret η, which we recall refers to

behavior at criticality, in terms of crossing probabilities. To this end we borrow some standard

conjectures from [G, Chap. 7], and use freely the notions of conformal invariance developed in

Part Three. We work with the modelM0 at p = pc.

Let P (r) be the probability at p = pc that the origin is open and the cluster containing it

also contains a point at a distance at least r from the origin. It is believed [G, (7.10,7.11)] that

P (r) ∼ r−1/ρ, ρ = 48/5. (2.5a)

If z is a point in the lattice Z2 let τ(0, z) be the probability that the origin 0 is occupied and the

cluster containing it also contains z. It is further suggested that

τ(0, z) ∼ |z|−η, η = 5/24. (2.5b)

This is the η that we want to define as a crossing probability.
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Let d be large but small in proportion to |z|, and for simplicity take z = (x, 0)with x > 0.

Since we shall be applying the notions of conformal invariance we treat z as a point in the

complex plane. To estimate the probability P (z, d) that 0 is occupied and that the cluster

containing it meets the disk of radius d about z, we apply a conformal transformation φ that

takes this disk to the exterior of a circle of radiusR, and has derivative equal to 1 at the point 0.

(It is natural to assume that conformal invariance is applicable to events involving points only

if the scale at the points is preserved.) Since the scale is preserved at 0, conformal invariance

suggests that

P (z, d) ∼ P (R) ∼ R−1/ρ.

At this level of argument, it is not worthwhile to search for the precise formula for φ. The

approximation

φ : w → xw

x− w
(2.5c)

is sufficient. It takes the origin to the origin, and the circle of radius d about x to the circle

with center on the real line that contains both−x(x+ d)/d and x(x− d)/d. Thus x2/d is a fair

approximation to R, and

P (x, d) ∼
(

x2

d

)−5/48

.

Thus

P (x, d) ∼ τ(0, z)/d−5/48.

Now choose two large numbers d1 and d2, small in proportion to x, and consider the

probability P (z, d1, d2) that there is a cluster that meets both the disk of radius d1 about 0 and

the disk of radius d2 about z. Symmetry suggests that

P (z, d1, d2) ∼
(

x2

d1d2

)−5/48

.

On the other hand the mapping (2.5c) takes the region outside the two disks about 0 and

z to the annular region between two circles of radii about d1 and x
2/d2 and with centers close

to 0. We conclude that the probability of a crossing from one side to another of an annulus

with center 0 and radii r1 < r2 is approximately

(

r2
r1

)−5/48

.



Conformal invariance in two­dimensional percolation 34

This relation is confirmed by numerical simulations that we do not present and that weremuch

less systematic than those of Part Three. It yields a definition of η in terms of the crossing

probabilities for an annulus. �����!
Figure 2.5. The map used to define the exponent η

in the finite models. (the radial scale of the second
drawing is logarithmic.)

In the numerical studies ([L2]) of finite models, no attempt has been made to determine

an approximate value for η. The procedure that might be used is clear. Suppose that, as in

§2.3, we define the finite model by a decomposition of the sides of a square into l intervals of
equal length. The map Θ was defined by juxtaposing four such squares into a 2 × 2 array.

If m and n are two integers, we can also juxtapose mn squares to form an m × n array. The

definition of Θ can be extended to give crossing probabilities between intervals of length 1/l

in the resulting rectangle of base n and heightm.

The function

exp(
2π(z + 1)

m
) (2.5d)

takes the rectangle of base {0, n} and side {0, im} to the annulus of radii exp(2π/m) and

exp(2π(n + 1)/m). Provided m > 1 the annulus is thus represented as the glueing of mn

conformally distorted squares, as in Figure 2.5, and the definition of Θ could be mimicked to

define at a finite level the probability of crossing an annulus.
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2.6 Conformally invariant fields and percolation.

In response to Aizenman’s suggestion of conformal invariance Cardy [C4] proposed, on

the basis of the theory of conformally invariant fields, a formula for the horizontal crossing

probability πh(r) on rectangles of aspect ratio r. In other words, if one takes E to be defined

by a rectangular curveR of width a and height b such that r = a/b and by opposing horizontal

sides α, β with no excluded crossings, then a formula for π(E,M0) can be obtained that is

confirmed by the numerical results of [U] and of §3.2 below. The coincidence of the predicted
values with those found by simulation is the strongest evidence yet for conformal invariance.

We stress nonetheless that the conformal invariance for eventsE other than those defined by a

single pair of intervals is not yet, even conjecturally, a consequence of the theory of conformally

invariant fields.

To give two intervals on the simple closed curve C is to give four points z1, z2, z3, and

z4 in clockwise order. The first two are the endpoints of α and the last two the endpoints of

β. There is a conformal (holomorphic) map of the interior of C to the unit disk that takes C

to the circumference and z1, z2, z3, z4 to four points w1, w2, w3, w4. The map is not uniquely

determined, for it can be followed by any conformal automorphism of the disk. Only the

cross­ratio
(w4 − w3)(w2 − w1)

(w3 − w1)(w4 − w2)

is uniquely determined. It is a real number between 0 and 1. Thus we may choose, and it is

convenient to do so, the four points wi so that w1 = w0 = exp(iθ0), w2 = w̄0, w3 = −w0,

and w4 = −w̄0. Then the cross­ratio is sin2(θ0). Observe that 0 ≤ θ0 ≤ π
2 or π ≤ θ0 ≤ 3

π 2.

Interchanging α and β if necessary, we usually assume the first alternative.

If E is the event defined by the rectangle R, α, and β, then Cardy’s formula for π(E,M0)

is

π(E,M0) =
3Γ( 2

3 )

Γ( 1
3
)2

sin
2

3 (θ0) 2F1(
1

3
,
2

3
,
4

3
, sin2(θ0)). (2.6a)

This is a function that equals 0 when θ0 = 0 and 1 when θ0 = π
2 , as it should.

In this paragraph we review the essential ideas of the derivation, which is not rigorous.

Although the lattice models of statistical mechanics, their scaling limits, and conformally

invariant field theories are objects that can be introduced in strictly mathematical terms, they

arise, as we saw in §2.2, in a physical context rich in experience and inspiration whose sources
of insight are unfamiliar to the mathematician, and of difficult access, so that, intimidated and

sometimes at sea, he hesitates to apply his usual criteria. Our presentation of the ideas leading

to Cardy’s formula (2.6a) suffers from the attendant ambivalence; the authors have not all

persuaded themselves that they fully comprehend to what extent the arguments are formal,
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inspired by the physical and historical connotations of the symbols, and to what extent they

involve precisely defined mathematical entities. As stressed in the introduction, this section is

not necessary to the understanding of Part Three.

In planar lattice models of statistical mechanics such as the Ising model a state s, before

passage to the bulk limit, is described by its values at the sites of the lattice that lie in some large

square. The interaction between the various points determines the energy H(s) of the state,

and its Boltzmann weight exp(−βH(s)). The constant β, in essence the inverse temperature,

may for our purposes be taken equal to 1. The very important partition function is

Z(β) =
∑

s

exp(−βH(s)).

It is used in particular to normalize the Boltzmann weights and thereby define a measure on

the set of states,

µ(s) =
exp(−βH(s))

Z(β)
.

The natural functions of which to take expectations E(f) are those that depend on the values

s(P ) of the state at a finite number of points. For such a function one can expect that E(f)

continues to exist in the bulk limit.

The passage from the probabilistic concepts of statistical mechanics to a field theory

can be presented rigorously as an analogue of that from a one­parameter semigroup to the

associated infinitesimal generator ([GJ]); in practice, however, it is a much more adaptable and

unconstrained mechanism.

For percolation, the procedure, quite apart from questions of the existence or nature of

limits, does not appear promising. A state s is determined by the occupied sites; the others are

unoccupied. If their number isN(s) then

H(s) = {− ln p+ ln(1 − p)}N(s)

and the Boltzmann weight is

exp(−H(s)) =
( p

1 − p

)N(s)
.

The value of the partition function is (1 − p)−N ifN is the total number of sites in the square,

and the probability of s is pN(s)(1 − p)N−N(s).

These are the probabilities familiar from percolation, in which the value of the states at

the sites are independent of each other. Thus if fP is a function of states given by

fP (s) = f(s(P )),
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the function f being a function on the set of possible values, then for r sites different from each

other

E(fP1
fP2

. . . fPr
) = E(fP1

)E(fP2
) . . .E(fPr

) = E(f)r.

Passing formally to operators and to limits, we see that

E(fP1
fP2

. . . fPr
) = 〈 |φ(P1)φ(P2) . . . φ(Pr)| 〉,

if φ(P ) = φ is constant and simply equal to a scalar E(f) operating on a space of dimension

one. Such trivial operators will not help in finding a formula for ηh, but these considerations

do suggest that the central charge c is 0 for percolation.

The statistical mechanics of lattices in a half space, or any bounded region, has, however,

features that differentiate it from the theory in the full space. Boundary conditionshave amuch

stronger effect; so familiar uniqueness theorems forGibbs states and correlation functions need

no longer apply. The consequences may continue to manifest themselves in the scaling limit.

Cardy had pointed out in [C1] that at criticality and in two dimensions the limit could continue

to exhibit conformal invariance, although of a somewhat different nature than for the scaling

limit of bulk theories. In [C2] and [C3] he examined the effect of modification of the boundary

conditions at the surface on the correlation functions in the interior.

From the principles [BPZ] that prescribe the behavior of conformally invariant fields in

the full plane, we cite two. The first, a global principle, is that, if P is treated as a complex

parameter z, the correlation functions

〈 |φ(P1) . . . φ(Pr)| 〉

may be treated as analytic functions of z1, . . . , zr and of their complex conjugates z̄1, . . . , z̄r

and as such transform in a prescribed way under holomorphic (and antiholomorphic) maps

w(z). The simplest relation appears for the fields called primary:

〈 |φ(z1, z̄1) . . . φ(zr, z̄r)| 〉 =
∏

w′(zi)
hiw̄′(z̄i)

h̄i〈 |φ(w1, w̄1) . . . φ(wr, w̄r)| 〉,

where the hi and h̄i are known as the conformal dimensions of the field φi(zi, z̄i).

At each point P = z, we may consider the algebras of formal holomorphic and antiholo­

morphic vector fields defined in a complement of the point (more precisely central extensions,

the Virasora algebras, of these two algebras). The second principle is that there is an action of

these algebras on the spaces underlying the fields and on the fields of operators themselves.

There are conditions of compatibility, but they are subtle.

Conformally invariant fields are introduced in order to describe the asymptotic behavior at

large differences of correlation functions of field theories, either on a lattice or in the continuum,
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in the sense of [GJ], so that it is perhaps ingenuous to expect them to have the same kind of

operator significance. They are defined by Laurent series in which the individual coefficients

are meaningful objects; thus they can be integrated against a limited class of functions on

appropriate curves surrounding the point under consideration. Since the theory is conformally

invariant, one could pass to the Riemann sphere and take this curve to be the image of a straight

line in the plane, thereby recovering more familiar objects, but this seems to us to do violence

to the spirit of the subject.

In two dimensions a simple choice of half space is the upper half­plane, with the real

axis as boundary, and in this context there are further principles [C3, pp. 584­585] that are

not at all obvious, at least to us; indeed we are not at all confident that we have adequately

comprehended Cardy’s views. The principles need nevertheless to be stressed.

A first, patent, principle is that the relevant algebra is not the sum of the holomorphic and

antiholomorphic algebras, but the diagonal algebra contained therein, for the real axis, as the

boundary of the region, must be left invariant.

Secondly, there are two pertinent classes of boundary conditions with quite different

properties, those that are translation invariant, thus homogeneous on the entire boundary, and

those that are homogeneous on both sides of 0 (so that scaling is still meaningful) but differ

from one side to the other.

For those that are homogeneous on the entire line, it appears not unreasonable to expect

that theunderlying spaces aredirect sumsof irreducible representations of theVirasoro algebra,

although the possibility of imposing different homogeneous boundary conditions may entail

a rich variety of sectors in these sums. We do not yet understand to what extent other

representations than the trivial one are necessary for percolationwith homogeneous boundary

conditions (whatever these might be!). For a boundary condition with a transition at 0 the

representations of the Virasoro algebra need not be irreducible. The vacuum associated to

these boundary conditions is not translation invariant, and thus is not annihilated by L−1.

It appears that the sector (or theory, or,more concretely, theunderlyingHilbert space−−−
it is amatter of terminology)defined by such boundary conditions can be obtained from the full

homogeneous sector by applying an operatorφ = φ(0). Oncewe have identified the boundary

operators, and persuaded ourselves of the conformal invariance, so that the operators depend

on a parameter z, they can be used to insert boundary conditions at several points.

We have already remarked that the first representation of theVirasoro algebra that appears

in the study of percolation is the trivial representation. Useless though it appears to be for the

study of correlation functions, it did yield immediately the value 0 for the central charge c.

The primary boundary operator φ(0) acting on the vacuum | 〉 will yield the vacuum
φ(0)| 〉 associated to the boundary conditions, and φ(0)| 〉will be the highest­weight vector of
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a representation of the Virasoro algebra. According to the results of [RW1, RW2] and authors

there cited, an example of a representation that has the trivial representation as a quotient but

for which the highest­weight vector is not translation invariant is obtained by dividing the

Verma module with parameters c = 0 and h = 0 by the submodule with parameters c = 0

and h = 2. Since this is the submodule generated by the null vector corresponding to the root

h1,2 =
((m+ 1) − 2m)2 − 1

4m(m+ 1)
= 0, m = 2,

of the Kac determinant formula, Cardy writes φ1,2 rather than φ.

This argument, however, is far from satisfactory, for we have not even been precise about

the nature of the boundary conditions. Cardy’s argument draws onmore sources. In particular,

it exploits a common, but entirely factitious, device for introducing boundary conditions into

percolation by treating it as a degenerate case of the q­state Potts model. The device has the

additional advantage that the crossing probabilities appear as correlation functions.

Recall [W] that the Potts is a lattice model, in which there are q ≥ 1 possible values σ for

a state at each site of a square lattice. The hamiltonian is

H(σ) =
∑

x,y

1 − δσx,σy
.

The sum runs over all pairs of nearest neighbors inside a large square laid over the lattice.

Observe that the extra term 1 does not affect the Boltzmannweights. In contrast to percolation,

when q > 1 there is a genuine energy of interaction.

Let B be the set of nearest­neighbor bonds. The partition function for free boundary

conditions is obtained by summing

exp(−βH(σ)) =
∏

{x,y}∈B

(e−β + (1 − e−β)δσx,σy
).

Setting p = 1 − e−β we may write this as

(1 − p)d,

with d equal to the number of bonds joining two sites with σx 6= σy . We may also write it as a

sum over the subsets x ofB,

∑

pB(x)(1 − p)B−B(x)
∏

{x,y}∈x

δσx,σy
. (2.6b)
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The integer B is the total number of bonds and B(x) the number of bonds in x.

Each subset x of B decomposes the set S of sites into clusters, two points lying in the

same cluster if they can be joined by a sequence of bonds in x. The product

∏

{x,y}∈x

δσx,σy

is 0 or 1, and is 1 if and only if σ is constant on each cluster. We write x → A if A is the family

of clusters determined by x. The clusters in A are denoted A1, . . . , Ar. The integer r is equal

to the number N(A) of clusters in A. The sum (2.6b) is also equal to a sum over all possible

decompositions into clusters,

∑

A

∑

x→A

pB(x)(1 − p)B−B(x)
∏

i

∏

{x,y}∈Ai

δσx,σy
.

Taking the sum over all states, we find, as in [E1, §2.2], that the partition function with free
boundary conditions is equal to

Zf =
∑

A

∑

x→A

pB(x)(1 − p)B−B(x)qN(A). (2.6c)

To examine the effect of boundary conditionswe consider a rectangle, imposing boundary

conditions on the left and right sides but leaving the top and bottom free. Supposewe demand

that σ take only the value α on the left side and only the value β on the right side. Then

the partition function is Zα,β and it is obtained from (2.6c) on replacing N(A) by the number

N ′(A) of clusters that do not intersect the left or right sides. Moreover, if α 6= β then all

families of clusters with a member that meets the left and right sides are excluded from the

sum. Consequently the difference

Zα,α − Zα,β α 6= β, (2.6d)

is equal to the sum of the expression

∑

x→A

pB(x)(1 − p)B−B(x)qN ′(A).

over those families of clusters that do contain amember that intersects both sides of the square.

In particular, setting formally q = 1 we obtain the sum over all subsets x of the set of

bonds that admit a horizontal crossing of

pB(x)(1 − p)B−B(x).
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When p is the critical probability for bond percolation this is the probability of a horizontal

crossing, thus in essence πh.

We have progressed in two ways. First of all, the crossing probability πh has been

identified as a difference of partition functions, and thus, as we shall see, as a difference of

correlations. Secondly there is a free parameter q and with a little bit of courage, we can

transfer results for q > 1 to q = 1. That the condition α 6= β can not be realized for q = 1 will

trouble only the fainthearted, for it will never explicitly enter our manipulations of (2.6d).

What is relevant in (2.6d) is that the expression is a linear combinationofpartition functions

with boundary conditions that change at four points, the four corners of the rectangle, from

fixed to free. Although the transition from partition functions to correlation functions appears

to be more a matter of intuition than of logic, persuasive only after much experience with the

passage from lattice models to operators, it does appear rather explicitly in Cardy’s reflections

[C3, pp. 584­585] for the case of a transition from a homogeneous condition σ(x) = α to the

condition σ(x) = α for x < 0 and σ(x) = β for x > 0. The corresponding operator is denoted

somewhat informally as φα,β or φα,β(0). We suppress from the notation that there is also a

jump in the boundary conditions at∞, and of course admit the possibility that α signifies a
free boundary condition, as well as a definite value of the spin or other variable.

In the context of conformally invariant theories it is possible to use the transformation

w = ln z to replace the upper half­plane, with the point 0 on the boundary distinguished, by

the strip 0 ≤ ℑw ≤ π. Translation­invariant boundary conditions are transferred to boundary

conditions equal on both sides, and translation invariant with respect to the strip. Boundary

conditions with a jump are transferred to boundary conditions different on both sides of

the strip, but translation invariant with respect to it. Experience with limits of standard

lattice models, above all the Ising model, makes clear that calculating partition functions

and correlation functions, or rather their limits, on such strips with boundary conditions at

ℑw = 0 and ℑw = π is above all a matter of calculating the eigenvector vα,β associated to the

smallest eigenvalue of the transfer matrix associated to these conditions. If | 〉 is the eigenvector
associated to equal homogeneous boundary conditions and φα,β is an operator taking | 〉 to the
eigenvector vα,β then a correlation function

〈 |φ1 . . . φr| 〉

is replaced by

〈 |φ∗α,βφ1 . . . φrφα,β | 〉 = 〈 |φβ,αφ1 . . . φrφα,β | 〉. (2.6e)

However we have implicitly allowed a jump in the boundary conditions at 0 and at∞, so that,
indicating the dependence of one of the operators on the point 0 and the other on the point∞,
this equation might be rewritten as

〈 |φβ,α(∞)φ1 . . . φrφα,β(0)| 〉. (2.6f)
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Transforming back to the upper half plane, and allowing insertions of modifications at

several, say four, points, one of which may be at infinity, we obtain, for r = 0,

〈 |φα,β(z1)φβ,γ(z2)φγ,δ(z3)φδ,α(z4)| 〉. (2.6g)

If r > 0 it is less clear where to insert the operators in (2.6e), but r = 0 is the pertinent value

of r for this is the value for which (2.6e) is a partition function. Although the modification

in the boundary values was taken to be from one prescribed value to another and not from

a prescribed value to free boundary conditions, the same arguments are valid in both cases.

It is the transition from free to fixed, φf,α, and from fixed to free, φα,f , that appear in (2.6d)

because the one pair of sides on which the boundary conditions are fixed are separated by the

other sides on which they are free.

Cardy [C1, C2, C3, C4] does not find the operators φα,f directly. Rather he argues first (for

q > 1 but also by extrapolation for q = 1) that the operator φα,β associated to the transition

from one fixed boundary condition to another, different, fixed condition is the primary field

φ1,3, and then that the operator­product expansion of φα,f (z)φf,β(w), which would be

φα,f (z)φf,β(w) ∼ δα,β1 + φα,β

implies that

φα,f = φ1,2.

Since his final argument is somewhatmore convincing forunitary theories than for non­unitary

theories, it is again best to regard it as extending to q = 1 by extrapolation.

The identification of the operators φα,β appeals to experience with specific models that,

like the operator­product expansion itself, may be unfamiliar to the mathematician; so we

observe that the numbers π(E,M) are, by their very definition, invariant under dilations of

the data defining E. In particular, if (2.6g) is to represent a probability of crossing between

intervals defined by z1, z2, z3, and z4 then it must be homogeneous of degree 0 in the vector

(z1, z2, z3, z4). Since the operator φα,f (z) = φf,α(z) is primary it is homogeneous of some

degree h, and hmust be 0.

Although, in principle, any positive real number h is a possible degree of homogeneity,

those that occur most commonly are those associated to reducible Verma modules, and these

are given by the Kac formula, which at c = 0 becomes

hp,q =
1

24
((3p− 2q)2 − 1),

where p and q are positive integers. The simplest choices of p and q that give h = 0 are

p = q = 1, which leads to the trivial representation, and p = 1, q = 2, that yield φα,f = φ1,2.
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To complete the derivation of Cardy’s formula, we use the ideas of [BPZ] as presented

in [SA] to find the differential equation satisfied by (2.6g). The null vector v1,2 in the Verma

module with parameter c = 1 − 6/m(m+ 1) is

(L2
−1 −

1

3
(4h1,2 + 2)L−2)|h1,2〉. (2.6h)

where |h1,2〉 is the highest weight vector of the Verma module. For c = 0 andm = 2, h1,2 = 0.

Moreover, according to formula (4.6.21) of [SA], to find the differential equations satisfied by

(2.6g) we replace L−k in (2.6h) by

L−k = −
3

∑

i=1

1

(zi − z4)k−1
∂i,

an expression that the relation h1,2 = 0 has made much simpler than it would otherwise be.

The translation invariance permits the replacement of

−
3

∑

i=1

∂i

by ∂4, so that the differential equation satisfied by (2.6g) is

(

∂2
4 +

2

3
(

1

z3 − z4
∂3 +

1

z2 − z4
∂2 +

1

z1 − z4
∂1)

)

〈. . .〉 = 0. (2.6i)

If we set

z =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
,

then conformal invariance implies that (2.6g) is a function g of z alone.

With a little effort we infer from (2.6i) that g satisfies the equation

z(1 − z)2g′′ + 2z(z − 1)g′ +
2

3
g′ − 2

3
z2g′ = 0,

or upon simplification

z(1 − z)g′′ +
2

3
(1 − 2z)g′ = 0.

This is a degenerate hypergeometric equation with two solutions g ≡ 1 and

g(z) = z
1

3 2F1(
1

3
,
2

3
,
4

3
; z). (2.6j)
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To determine which linear combination of these two solutions is pertinent to our problem,

we take z1, z2, z3, and z4 in decreasing order to be the images of the four vertices of the

rectangle in clockwise order, starting with the lower left corner. If r is the aspect ratio of the

rectangle then z → 0 when r → ∞ and z → 1 when r → 0. Thus the solution yielding the

crossing probability πh(Rr,M0)must be a constant times (2.6j). The identity

3Γ( 2
3)

Γ( 1
3
)2
z

1

3 2F1(
1

3
,
2

3
,
4

3
; z) = 1 − 3Γ( 2

3)

Γ( 1
3
)2

(1 − z)
1

3 2F1(
1

3
,
2

3
,
4

3
; 1 − z)

implies that the constant must be

3Γ( 2
23 )

Γ( 1
3
)2

in order that the function have the correct behavior at z = 1. This is the formula (2.6a) of

Cardy in a different notation (and for the upper half­plane rather than the unit disk.)

3. The experiments

3.1 Experimental procedure.

In order to provide some evidence for the hypotheses of universality and conformal

invariance, we performed several simulations. Although several artifices had to be used in

the various cases, the basic method is the same throughout: (i) draw the curve C defining the

event E on the lattice, (ii) assign randomly to each site of the lattice lying inside the curve

a state (open with probability pc, closed with probability (1 − pc)) and (iii) check whether

the various crossings defining the event E exist or not. These three steps are repeated till the

desired sample size is reached. The estimated value of π(E), denoted π̂(E), is then the ratio

of the number of configurations satisfying the conditions of E to the sample size.

For the above experimental procedure, the statistical errors are the easiest to assess. The

sample size for all our experiments was at least 105, and very often larger. For an estimated

value π̂ ∼ 0.5, this leads to a statistical error of∆π̂ ∼ 3 × 10−3. For the largest π̂ measurable

(∼ 0.999) or the smallest (∼ 0.001), the error is ∼ 2 × 10−4. (All statistical errors are taken to

represent a 95% confidence interval.)

The systematic errors are of various origins. Probably the least important source is

the random number generator. We used in most of the experiments the linear congruential

generator xi+1 = (axi + c)modm, with a = 142412240584757, c = 11, m = 248. It is of

maximal periodm. We believe it to be satisfactory.

A second source is the “value” of the probability pc appearing in the statement of the

theorem of §2.1. This critical value pc is awell­defined concept only for percolation phenomena
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on an infinite lattice. But all our simulations are carried on finite lattices! The solution to this

difficulty calls for a compromise. Indeed, on the one hand, lattices have to be chosen large

enough to give a good approximation of the infinite case. On the other hand, a larger lattice

requires a better approximation for pc. (Recall that the slope of πh around pc increases with

the size of the lattice, as depicted in Figure 2.1c.) The most suitable approximation depends,

as discussed in [Z] and [U], on the size of the lattice; one could even imagine that it is different

for rectangles containing the same number of sites but with distinct aspect ratios r. All the

experiments but onewere conducted at pc = 0.59273with the curvesC containing from 40,000

to 200,000 sites. The only experiment that used a different pc was a repetition of the principal

experiment of [U] where we measured the universal functions ηh, ηv and ηhv to be defined

below. As these data together with Cardy’s prediction are to be used as yardsticks for the

new experiments, we felt that measuring them on a larger lattice was appropriate. For that

experiment on a larger lattice, we used pc = 0.5927439. The six first digits in pc were definitely

necessary to achieve the desired precision. The results are discussed in paragraph 3.2.

Another important source of systematic errors is the convention of crossings on finite

lattices. The curve C is to be drawn in the plane containing the lattice. We chose to define

a crossing from the interval α to β on C as starting from a site inside C joined to a neighbor

by a bond intersecting the image of α of the lattice. Similarly the crossing must end at a site

inside C such that one of the attached edges intersect the image of β. Note that we might

well have defined the crossing as starting from an open site outside the curve C with one

attached edge intersecting the interval in question. Hence the convention used introduces a

systematic error. Moreover, one can imagine easily that sliding rigidly a rectangle on a square

lattice by a fraction of the mesh might add a whole line or column to the set of inner sites, thus

changing the estimate π̂. For reasons described in [U], the attendant error for rectangles is

commensurate with 2
nπ

′ where π′ stands for the derivative of π with respect to the aspect ratio

r and n is the linear dimension of the rectangle. For a square containing 200 × 200 sites, the

error on π̂h turns out to be∼ 5× 10−3, larger than the statistical error introduced by a sample

of 100,000 configurations. We were on the whole content if the results obtained by simulation

were consistent with those predicted by universality and conformal invariance within five

parts in one thousand.

For the final experiments on conformal invariance, it grew slightly larger than one part

in one hundred. This is not surprising in view of further specific sources of systematic errors,

due to penetrating angles, branch points, and unbounded regions, that will be discussed as

they arise. It does nevertheless make further experiments desirable.

The events studied in [U] were defined by a rectangular curve C. We chose the collection

of intervals in four different ways. First of all, α could be the left side of the rectangle and β

the right, which yielded the probability πh(M) of a horizontal crossing, or α the lower side
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and β the upper, which yielded the probability πv(M) of a vertical crossing. We also studied

the probability πhv(M) of simultaneous horizontal and vertical crossings. The difference

πh(M) − πhv(M) provides an example of an event with a horizontal crossing but no vertical

one. In the notation of §2.3, the intervals α, δ, β, γ are then the left, upper, right and lower
sides, respectively. For a little variety the probability πd(M) of a crossing from the upper half

of the left side to the right half of the bottom side was also studied. In these functions there

is an implicit variable r, the aspect ratio of the rectangle, that we took to be the quotient of

the length of the horizontal side by that of the vertical side. Taking M to be M0 we obtain,

as explained in [U], four universal functions, ηh = πh(M0), ηv = πv(M0), ηhv = πhv(M0)

and ηd = πd(M0) of r. The probabilities of similar events will be measured in some of the

following experiments.

If the hypothesis of universality holds, the functions ηh(r) and ηv(r) are not independent.

This can be seen by the following duality argument. We draw a rectangle on a triangular

lattice. There will be a horizontal crossing (on open sites) if and only if there is no vertical

crossing on closed sites. This is consistent with the theorem of §2.1 only if pc = 1
2 for this

model (denotedM ) and then

πh(r,M) + πv(r,M) = 1

for all r. Of course, the argument could have been made for any closed curve C, disjoint

intervals α and β, and the two disjoint intervals δ and γ of their complement. The relation

would then be

πα↔β + πδ↔γ = 1

where πα↔β stands for the probability of a crossing from α to β. Universality then implies

that this relation holds for any model. This is a handy test of simulations. Observe that,

for the modelM0, the complementarity of horizontal crossings on open sites and of vertical

crossings on closed sites does not hold for individual configurations. Every experiment mea­

suring simultaneously πh(M) and πv(M) on other models M , such as M0, for which this

complementarity does not hold for direct reasons serves as a check on universality.

In the tables, the results of the experiments are presented together with either Cardy’s

prediction when it is applicable or by values for rectangles inferred by interpolation from

the experimental results of the next section. Cardy’s prediction will be denoted by πcft for

conformal field theory and the estimated values for rectangles, as well as values calculated

from them using interpolation, by π̂�.
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3.2 Experimental verification of Cardy’s formula.

The goal of the first experiment is twofold: to verify again Cardy’s prediction for the

function πh(r) on M0 and to obtain values of πhv(r,M0) suitable for comparison in other

experiments. A similar experiment was performed and reported in [U] before Cardy proposed

his formula. Here we increase the number of sites inside the rectangles from the approximately

40,000 used in [U] to 1,000,000 and the sample size to 106 configurations. For the reasons

explained above, pcwas taken to be 0.5927439. (This value compares well with the conclusions

of Ziff [Z] that came to our attention after the first version of the paper was prepared.) The

results, tabulated in Table 3.2, are a replacement for those of Table III of [U] and are suitable

for calculating the values π̂�
hv by interpolation.
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Table 3.2
π̂h, π̂v, π̂hv onM0 for various values of the aspect ratio r
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width height r r−1 πcft
h π̂h π̂v π̂hv

1000 1000 1.000 1.0000 0.5000 0.5001 0.4999 0.3223
1025 975 1.051 0.9512 0.4740 0.4743 0.5257 0.3211

1050 950 1.105 0.9048 0.4480 0.4484 0.5516 0.3180
1080 930 1.161 0.8611 0.4226 0.4230 0.5768 0.3127

1105 905 1.221 0.8190 0.3970 0.3974 0.6026 0.3055
1135 880 1.290 0.7753 0.3695 0.3696 0.6301 0.2950

1160 860 1.349 0.7414 0.3473 0.3475 0.6522 0.2854

1190 840 1.417 0.7059 0.3235 0.3236 0.6762 0.2733
1220 820 1.488 0.6721 0.3003 0.3004 0.6994 0.2600

1250 800 1.562 0.6400 0.2777 0.2779 0.7217 0.2458
1285 780 1.647 0.6070 0.2541 0.2543 0.7453 0.2297

1315 760 1.730 0.5779 0.2330 0.2333 0.7666 0.2144
1350 740 1.824 0.5481 0.2111 0.2117 0.7883 0.1976

1385 725 1.910 0.5235 0.1929 0.1935 0.8065 0.1826
1420 705 2.014 0.4965 0.1731 0.1736 0.8265 0.1657

1455 685 2.124 0.4708 0.1542 0.1546 0.8450 0.1490
1490 670 2.224 0.4497 0.1389 0.1392 0.8606 0.1351

1530 655 2.336 0.4281 0.1236 0.1239 0.8761 0.1210

1570 640 2.453 0.4076 0.1093 0.1096 0.8905 0.1077
1610 620 2.597 0.3851 0.09402 0.09424 0.9055 0.09299

1650 605 2.727 0.3667 0.08201 0.08212 0.9176 0.08132
1690 590 2.864 0.3491 0.07104 0.07120 0.9286 0.07065

1735 575 3.017 0.3314 0.06053 0.06082 0.9390 0.06047
1775 565 3.142 0.3183 0.05314 0.05332 0.9463 0.05309

1820 550 3.309 0.3022 0.04459 0.04478 0.9549 0.04465
1870 535 3.495 0.2861 0.03669 0.03689 0.9629 0.03682

1915 520 3.683 0.2715 0.03016 0.03037 0.9695 0.03031

1965 510 3.853 0.2595 0.02523 0.02542 0.9744 0.02539
2015 495 4.071 0.2457 0.02009 0.02033 0.9796 0.02032

2065 485 4.258 0.2349 0.01651 0.01670 0.9832 0.01669
2115 470 4.500 0.2222 0.01281 0.01286 0.9869 0.01285

2170 460 4.717 0.2120 0.01020 0.01022 0.9895 0.01022
2225 450 4.944 0.2022 0.00805 0.00807 0.9918 0.00807

2280 440 5.182 0.1930 0.00627 0.00634 0.9936 0.00634
2340 425 5.506 0.1816 0.00447 0.00453 0.9954 0.00453

2400 415 5.783 0.1729 0.00334 0.00340 0.9966 0.00340

2460 405 6.074 0.1646 0.00247 0.00258 0.9975 0.00258
2520 395 6.380 0.1567 0.00179 0.00190 0.9982 0.00190

2585 385 6.714 0.1489 0.00126 0.00135 0.9987 0.00135
2650 375 7.067 0.1415 0.00087 0.00093 0.9991 0.00093

2720 370 7.351 0.1360 0.00065 0.00072 0.9993 0.00072
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If one uses s = ln r instead of r, the function ln(πh/(1−πh)) is odd because of the relation

πh+πv = 1. The estimated values of this function (dots) are plotted against Cardy’s prediction

(continuous line). The values π̂v were used for r < 1. For s ∼ 0., the measured values of

ln(πh/(1 − πh) carry a statistical error of ∼ 4 × 10−3 and for |s| ∼ 2. this error increases to

2 × 10−2. These errors are too small to be indicated in Figure 3.2, being in the worst situation

approximately the size of the dots themselves.
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7.5 ln �h(1� �h) s = ln r
Figure 3.2. Comparison of 81 measured values of 1nπh/(1 − πh)

(dots) with Cardy’s prediction (curve).

A glance at Table 3.2 shows that the difference π̂h − πcft
h is positive for all r. Though it is

always ≤ 6 × 10−4 and smaller than the statistical error, a systematic error is suggested. Ziff

([Z]) gave an heuristic description of the “good” value of pc for the square using finite­size

scaling arguments and simulations. For other curves C, including rectangles of large or small

aspect ratio, the “best” values of pc for finite lattices are not available. It may be that the values

of pc are different for the measurements of πh and of πv on the same rectangle, and that this

is the source of the error. Observe finally that, with this size of lattice, a change of a few units
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in the sixth digit of pc could account for the discrepancies between π
cft
h and π̂h. Despite the

systematic error, the agreement is remarkable andwe shall compare the results of the following

experiments with πcft instead of π̂� when the former is applicable.

3.3 Parallelograms.

This second experiment investigates the hypothesis of conformal invariance for simple

curves C, namely parallelograms. The model is againM0. One obvious consequence of the

conformal hypothesis is that the relative orientation of the square lattice and of the parallelo­

gram C should be irrelevant in the measurement of π(E). This rotational symmetry is to be

contrasted with the obvious finite group of symmetries ofM0. Stronger consequences of full

conformal invariance can be tested by comparing the simulations on a parallelogram that is

not rectangular with the simulations on a rectangle.

Any parallelogram can be obtained from the square P0 by applying an element g of

GL(2,R). If we take the square to be that defined by the points (0, 0), (1, 0), (1, 1), (0, 1) and

g to be
(

a b
c d

)

then P = gP0 is given by (0, 0), (a, c), (a+ b, c+ d), (b, d). We stress that g is not conformal.

If, for example, πh(P,M) is the probability of a horizontal crossing for large dilations of

P with respect to the modelM then

πh(P,M0) = πh(P0, g
−1M0) (3.3a)

may be thought of as a coordinate of the model g−1M0, that defined by a horizontal crossing

of dilations of P0. With our identification of the image of ψ with the upper half­plane, the

point g−1M0 corresponds to
ai+ c

bi+ d
=
a− ci

b− di
.

If we identify in the natural way R2 with the complex numbers, this is (unfortunately) the

complex conjugate of the quotient of the vertical by the horizontal side of P .

To verify conformal invariance by simulation, we use the conformal map ϕ sending the

unit circle to P , and w0, whose value will depend on P , to (0, 0), the point −w̄0 to (a, c), the

point−w0 to (a+b, c+d), and w̄0 to (b, d). There will be exactly one rectangle P1 with vertices

(0, 0), (h, 0), (h, v), (0, v) that is conformally equivalent to P together with its vertices, or to

the unit circle together with the specified four vertices. With r = h/v, conformal invariance

entails the relations

πh(P,M0) = ηh(r); πv(P,M0) = ηv(r); πhv(P,M0) = ηhv(r).
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Thus, in effect, given a parallelogram we find, in two steps a conformal map that takes its

interior to the interior of a rectangle and takes vertices to vertices and sides to sides. Since the

intermediate curve is a circlewith four distinguishedpoints,we have a choice. We can compare

π̂h(P,M0) and π̂v(P,M0) with Cardy’s predictions, or we can compare them with the values

for πh(P1,M0) and πv(P1,M0) interpolated from those given in Table 3.2 of the previous

section. We prefer to compare with Cardy’s predicted values. For π̂hv(P,M0) however, we

have only the second alternative.

The values of πd(P,M0) can also be predicted by Cardy’s formula, but only after they are

precisely defined. They can be defined as the probability of a crossing between the upper half

of the left side of P to the right half of the bottom side. If, on the other hand, α and β are

the images of the upper half of the left side of P1 and the right half of the bottom side, they

can also be defined as the probability of a crossing from α to β. Both definitions were used,

according to the whim of the individual experimenter, and we shall distinguish them as the

first and second definitions.

Although superfluous we provide in Figure 3.3 some curves in the upper half­plane

on which conformal invariance implies that the three functions πh(P0,M), πv(P0,M), and

πhv(P0,M), taken as functions of z = ψ(M), are constant.
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Figure 3.3. Two parallelograms with vertices (0, 1, τ1 + 1, τ1)
and (0, 1, τ2 + 1, τ2)will have the same πh if and only if

τ1 and τ2 lie on the same curve.
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To obtain these curves we employ the Schwarz­Christoffel transformation,

ϕ : w →
∫ w

0

(u2 − w2
0)

α−1(u2 − w̄2
0)

−α du =
1

w

∫ 1

0

(u2 − ǫ21)
α−1(u2 − ǫ22)

−α du,

with

ǫ1 =
w0

w
, ǫ2 =

w̄0

w
.

It maps the circle to a parallelogram with vertices, in clockwise order, ϕ(w0), ϕ(w̄0), ϕ(−w0),

ϕ(−w̄0). The interior angle at the vertex ϕ(w0) isαπ. It does not matter that the parallelogram

is not in standard position.

Fixing w0 and letting α vary from 0 to 1, we obtain one of the curves in Figure 3.3 as the

collection of points

z =
ϕ(w0) − ϕ(w̄0)

ϕ(w0) − ϕ(−w̄0)
.

As parameters for a parallelogram, we can take α and w0, or more conveniently α and

the quotient r of the lengths of the two sides. To conform with the notation of [U] we take

r = 1/|z|. The data in Table 3.3 are from sixteen sets of experiments, corresponding to four
values of α: 1/2, 3/8, 1/4, 1/8. In addition we chose four positions for the parallelogram, one

in which a side was parallel to the imaginary axis (labelled as the case θ0), and then rotations

of this clockwise through angles θ1 = π/12, θ2 = π/6, and θ3 = π/4. Conformal invariance

entails, as observed, rotational invariance, so that the rotation of the parallelogram should not

affect the result. In each experiment there were eleven values for r, chosen so that the values of

π̂h were about the same in each experiment and covered a representative range. The data are

divided into four sets, each corresponding to a given value of α. In each set the values of the

various crossing probabilities for different values of θ are listed in adjacent columns to facilitate

visual comparison. The probabilities πd are those given by the first definition. The sample size

was 100,000. The lengths of the sides were then chosen so that there would be about 40000

sites inside the parallelogram. As we observed in [U] and section 3.1, with this number of sites

an error of about five parts in a thousand is to be expected. There appears to be a systematic

error of this order in the data. For example the experimental values corresponding to the true

value πcft = .5 are largely less than .5. When the parallelogram is not a rectangle with sides

parallel to the axes, the collection of sites within the parallelogram has an irregular boundary.

We were not able to find a method for accounting systematically for the errors resulting from

the anfractuosities.

The measurements π̂h, π̂v, π̂hv and π̂d for all values of the angle at the vertex α, of the

angle of rotation θ and of the ratio r agree with the corresponding πcft(E) or π̂�
hv within the

statistical errors and limitations due to the finiteness of the lattices. Examining the rows at
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which πcft(E) = .5, we see that the worst discrepancies are .0045 for α = 1/2, .0024 for

α = 3/8, .0039 for α = 1/4, and .0057 for α = 1/8. As α grows smaller, the parallelogram

grows more skew, and the finite size of our lattices less and less tolerable. For a given number

of lattice points and sufficiently smallα the simulations no longermake any sense, but α = 1/8

yields acceptable results.
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Table 3.3 Part I
π̂h, π̂v, π̂hv on parallelograms with angle απ
and with one side inclined at an angle θi

to the imaginary axis

α = 1/2

ratio π̂h(θ0) π̂h(θ1) π̂h(θ2) π̂h(θ3) πcft
h π̂v(θ0) π̂v(θ1) π̂v(θ2) π̂v(θ3) πcft

v

3.0000 .0627 .0609 .0608 .0619 .0617 .9396 .9377 .9382 .9357 .9383

2.3258 .1242 .1231 .1239 .1239 .1249 .8759 .8752 .8739 .8730 .8751
1.9041 .1973 .1927 .1920 .1922 .1943 .8066 .8065 .8035 .7998 .8057

1.4848 .3049 .3008 .2975 .3002 .3013 .7018 .6974 .6972 .6978 .6987
1.2198 .3984 .3978 .3951 .3968 .3977 .6061 .6034 .5996 .5979 .6023

1.0000 .5028 .4987 .4978 .4975 .5000 .5008 .4999 .4974 .4955 .5000
0.8198 .6020 .6039 .5996 .6030 .6023 .3987 .3946 .3933 .3902 .3977

0.6735 .7006 .6986 .6968 .7012 .6987 .3006 .2977 .2986 .2952 .3013
0.5252 .8074 .8050 .8078 .8057 .8057 .1940 .1919 .1926 .1907 .1943

0.4300 .8763 .8743 .8744 .8731 .8751 .1253 .1235 .1220 .1227 .1249

0.3333 .9388 .9373 .9388 .9385 .9383 .0605 .0620 .0599 .0603 .0617

ratio π̂hv(θ0) π̂hv(θ1) π̂hv(θ2) π̂hv(θ3) π̂�
hv π̂d(θ0) π̂d(θ1) π̂d(θ2) π̂d(θ3) πcft

d

3.0000 .0623 .0605 .0605 .0615 .0616 .1484 .1469 .1415 .1456 .1469

2.3258 .1213 .1201 .1210 .1208 .1223 .2044 .2048 .2035 .2037 .2055
1.9041 .1861 .1818 .1813 .1805 .1837 .2503 .2474 .2507 .2453 .2496

1.4848 .2636 .2597 .2564 .2589 .2606 .2934 .2947 .2906 .2947 .2942
1.2198 .3069 .3061 .3016 .3027 .3057 .3167 .3161 .3119 .3158 .3165

1.0000 .3248 .3216 .3194 .3179 .3223 .3200 .3232 .3228 .3185 .3244

0.8198 .3061 .3035 .3025 .3004 .3057 .3156 .3135 .3172 .3099 .3165
0.6735 .2603 .2574 .2584 .2559 .2606 .2944 .2938 .2922 .2893 .2942

0.5252 .1836 1809 .1819 .1798 .1837 .2500 .2491 .2470 .2498 .2496
0.4300 .1223 .1206 .1190 .1201 .1223 .2043 .2021 .2012 .2004 .2055

0.3333 .0601 .0616 .0596 .0600 .0616 .1463 .1471 .1466 .1432 .1469
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Table 3.3 Part I (continued)
α = 3/8

ratio π̂h(θ0) π̂h(θ1) π̂h(θ2) π̂h(θ3) πcft
h π̂v(θ0) π̂v(θ1) π̂v(θ2) π̂v(θ3) πcft

v

2.8661 .0615 .0611 .0603 .0600 .0608 .9396 .9386 .9393 .9394 .9392

2.2727 .1190 .1201 .1182 .1181 .1191 .8789 .8824 .8798 .8814 .8809

1.8428 .1920 .1929 .1907 .1911 .1939 .8051 .8070 .8061 .8051 .8061
1.4333 .3061 .3073 .3081 .3088 .3078 .6939 .6929 .6919 .6921 .6922

1.2092 .3955 .3945 .3950 .3918 .3962 .6021 .6029 .6010 .6012 .6038
1.0000 .5012 .4991 .5017 .4984 .5000 .5008 .4986 .4976 .4982 .5000

.8270 .6042 .6045 6035 .6041 .6038 .3975 .3965 .3946 .3941 .3962

.6977 .6910 .6928 .6924 .6920 .6922 .3045 .3050 .3069 .3015 .3078

.5427 .8091 .8062 .8072 .8056 .8061 .1939 .1920 .1914 .1912 .1939

.4400 .8809 .8829 .8810 .8821 .8809 .1200 .1198 .1186 .1173 .1191

.3489 .9394 .9383 .9377 .9381 .9392 .0612 .0598 .0580 .0572 .0608

ratio π̂hv(θ0) π̂hv(θ1) π̂hv(θ2) π̂hv(θ3) π̂�
hv π̂d(θ0) π̂d(θ1) π̂d(θ2) π̂d(θ3) πcft

d

2.8661 .0612 .0608 .0601 .0597 .0607 .2046 .2023 .2038 .2041 .2048
2.2727 .1164 .1177 .1156 .1155 .1169 .2829 .2817 .2821 .2780 .2817

1.8428 .1814 .1818 .1794 .1803 .1834 .3477 .3484 .3490 .3491 .3487
1.4333 .2633 .2636 .2638 .2639 .2645 .4137 .4095 .4145 .4116 .4129

1.2092 .3035 .3037 .3030 .3013 .3052 .4346 .4343 .4396 .4399 .4402
1.0000 .3231 .3224 .3225 .3204 .3223 .4477 .4526 .4437 .4504 .4511

.8270 .3064 .3046 .3044 .3039 .3052 .4394 .4390 .4388 .4371 .4402

.6977 .2615 .2611 .2636 .2597 .2645 .4138 .4096 .4096 .4078 .4129

.5427 .1835 .1809 .1805 .1799 .1834 .3520 .3439 .3503 .3442 .3487

.4400 .1175 .1171 .1162 .1151 .1169 .2847 .2833 .2795 .2794 .2817

.3489 .0609 .0594 .0576 .0569 .0607 .2051 .2033 .2011 .1993 .2048
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Table 3.3 Part II
α = 1/4

ratio π̂h(θ0) π̂h(θ1) π̂h(θ2) π̂h(θ3) πcft
h π̂v(θ0) π̂v(θ1) π̂v(θ2) π̂v(θ3) πcft

v

2.3899 .0655 .0635 .0645 .0677 .0658 .9331 .9340 .9345 .9329 .9342

1.9885 .1189 .1177 .1177 .1216 .1191 .8803 .8794 .8812 .8782 .8809

1.6354 .1985 .1959 .2016 .2050 .2006 .7971 .7971 .8003 .7968 .7994
1.3443 .3073 .3041 .3059 .3090 .3072 .6900 .6912 .6935 .6885 .6928

1.1674 .3965 .3926 .3939 .3972 .3961 .6007 .6019 .6017 .6009 .6039
1.0000 .4971 .4961 .5000 .5031 .5000 .4970 .4994 .5007 .4963 .5000

.8566 .6046 .6033 .6045 .6059 .6039 .3920 .3957 .3935 .3924 .3961

.7439 .6889 .6913 .6923 .6941 .6928 .3059 .3050 .3040 .3030 .3072

.6115 .7971 .7971 .7986 .8020 .7994 .1998 .1997 .2019 .1988 .2006

.5029 .8803 .8786 .8811 .8807 .8809 .1210 .1174 .1182 .1182 .1191

.4184 .9342 .9336 .9356 .9342 .9342 .0636 .0653 .0638 .0655 .0658

ratio π̂hv(θ0) π̂hv(θ1) π̂hv(θ2) π̂hv(θ3) π̂�
hv π̂d(θ0) π̂d(θ1) π̂d(θ2) π̂d(θ3) πcft

d

2.3899 .0651 .0631 .0640 .0671 .0656 .3112 .3022 .3054 .3106 .3089
1.9885 .1163 .1154 .1150 .1189 .1169 .4049 .3973 .4035 .4061 .4044

1.6354 .1859 .1847 .1898 .1922 .1890 .4953 .4958 .4973 .5037 .4984
1.3443 .2630 .2608 .2637 .2637 .2641 .5666 .5706 .5710 .5712 .5707

1.1674 .3037 .3023 .3016 .3048 .3052 .5994 .5961 .5994 .6008 .6026
1.0000 .3190 .3206 .3216 .3212 .3223 .6116 .6089 .6105 .6134 .6150

.8566 .3024 .3051 .3021 .3033 .3052 .5988 .5968 .6015 .5961 .6026

.7439 .2628 .2615 .2607 .2610 .2641 .5674 .5702 .5687 .5657 .5707

.6115 .1877 .1875 .1895 .1867 .1890 .4962 .4953 .4993 .4949 .4984

.5029 .1184 .1147 .1155 .1156 .1169 .4016 .4013 .4009 .4017 .4044

.4184 .0633 .0649 .0634 .0648 .0656 .3049 .3025 .3067 .3074 .3089
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Table 3.3 Part II (continued)
α = 1/8

ratio π̂h(θ0) π̂h(θ1) π̂h(θ2) π̂h(θ3) πcft
h π̂v(θ0) π̂v(θ1) π̂v(θ2) π̂v(θ3) πcft

v

1.7926 .0605 .0607 .0582 .0610 .0611 .9378 .9374 .9383 .9373 .9389

1.5342 .1221 .1231 .1224 .1213 .1238 .8747 .8754 .8763 .8744 .8762
1.3429 .2087 .2078 .2065 .2062 .2081 .7878 .7892 .7901 .7876 .7919

1.2097 .2999 .2929 .2971 .2947 .2971 6998. .7035 .7014 .7004 .7029
1.1047 .3853 .3870 .3852 .3851 .3893 .6088 .6099 .6065 .6087 .6107

1.0000 .4967 .5002 .4984 .4943 .5000 .4987 .4990 .4969 .4966 .5000
0.9053 .6080 .6084 .6079 .6064 .6107 .3851 .3895 .3875 .3855 .3893

0.8266 .7005 .6995 .7006 .6981 .7029 .2943 .2955 .2970 .2909 .2971

0.7446 .7878 .7885 .7893 .7860 .7919 .2097 .2087 .2098 .2049 .2081
0.6518 .8765 .8761 .8756 .8735 .8762 .1235 .1229 .1240 .1201 .1238

0.5579 .9404 .9391 .9391 .9372 .9389 .0606 .0613 .0605 .0597 .0611

ratio π̂hv(θ0) π̂hv(θ1) π̂hv(θ2) π̂hv(θ3) π̂�
hv π̂d(θ0) π̂d(θ1) π̂d(θ2) π̂d(θ3) πcft

d

1.7926 .0601 .0604 .0578 .0608 .0610 .5687 .5691 .5668 .5725 .5708

1.5342 .1193 .1202 .1199 .1185 .1213 .7020 .7034 .6987 .7038 .7021

1.3429 .1945 .1939 .1932 .1928 .1952 .7878 .7801 .7804 .7772 .7819
1.2097 .2593 .2543 .2577 .2553 .2581 .8273 .8202 .8239 .8192 .8236

1.1047 .2999 .3013 .2994 .2997 .3028 .8470 .8450 .8414 .8415 .8452
1.0000 .3203 .3218 .3195 .3180 .3223 .8530 .8522 .8518 .8507 .8533

.9053 .2987 .3006 .2999 .2984 .3028 .8456 .8451 .8424 .8441 .8452

.8266 .2558 .2558 .2568 .2514 .2581 .8228 .8226 .8214 .8193 .8236

.7446 .1957 .1941 .1957 .1917 .1952 .7834 .7805 .7810 .7801 .7819

.6518 .1205 .1203 .1211 .1175 .1213 .6996 .7039 .7029 .6957 .7021

.5579 .0602 .0611 .0601 .0593 .0610 .5654 .5695 .5666 .5666 .5708

3.4 Striated models.

By numerical simulation we showed in [U] that the four functions πh, πv , πhv and πd

coincided for the six followingmodels: percolation by sites and by bonds on square, triangular

and hexagonal lattices. This gives some support to the hypothesis of universality. Because of

the symmetry of these regular lattices, the matrix g predicted by the hypothesis is diagonal in

all six cases. This need not to be so, as the following example shows.

If we restrict ourselves to percolation by sites, it is pretty clear that, within the limits of

experimental observation, the most general case can be obtained by choosing on the lattice
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L = Z2 probabilities p(s) that depend on the position of s modulo some sub­lattice NL,

where N is a very large integer. This is certainly convenient for simulations. In particular to

obtain a model that does not yield a point on the imaginary axis, we can deliberately skew

the usual model by insisting that the probabilities be close to 0 along some band athwart the

lattice and otherwise, as far as conditions of periodicity permit, close to 1. This we call a

striated model. The hypothesis of universality implies that any model M , and in particular

any striated model, corresponds to a point in the upper half­plane, and that, once this point

is known, all probabilities π(E,M) can be calculated from those for percolation by sites on

a square lattice. Since in the eyes of many of our colleagues, universality even in the form

proposed in the hypothesis is a commonplace, widely accepted and well understood, we have

confined ourselves here to the examination of a single example. It illustrates adequately the

hypothesis, and the calculation of an approximation to the associated matrix g is a useful

exercise.

The band is constructed by periodicity from a rectangle with 6 × 4 sites, as in Figure 3.4.

The points on the band are (0, 0), (1, 0), (1, 1), (2, 1), (3, 2), (4, 2), (4, 3), and (5, 3). Thus

N = 12. (The bands are depicted by black squares in Figure 3.4.) All other points are off the

bands. The probability p1 on the bands is one­fifth the probability p2 off the bands. Simulation

and the technique of [U] yield a value p2 = 0.84928 for the critical probability. The band forms

an angle whose tangent is 2/3with the x­axis and we can expect that the model corresponds to

a dilation of one axis of the modelM0 followed by a rotation of approximately this angle, for

what we have done is to hinder percolation perpendicular to the band, and to foster it parallel

to the band. Thus the model presumably behaves like site­percolation on a rectangular lattice

in which the basic rectangle has its long side parallel to the band.
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Figure 3.4. Definition of a striated model. Black sites (tiles)
are open with probability p1 and white ones with

probability p2 = 5p1.

According to the hypothesis of universality there will be a matrix g such that

π(E,M) = π(E, gM0), (3.4a)

for all events E. To calculate an approximation to g we consider first the events defined by

a horizontal crossing of a rectangle Rr of aspect ratio r with sides parallel to the coordinate

axes. It is clear from our discussion of conformal invariance for parallelograms that, modulo

the group of linear conformal transformations acting on the right and the group

{(

±1 0
0 ±1

)}

(3.4b)
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acting on the left, there is at most one matrix g such that

πh(Rr,M) = πh(Rr, gM0) = πf (g−1Rr,M0) (3.4c)

for all r, or even for two values of r. We repeat that the second equality is formal. We take, to

be precise, g−1 in the form
(

a sin θ 0
−a cos θ 1

)

,

with 0 ≤ θ ≤ π. The angle θ is the interior angle of the parallelograms g−1Rr and the right

side of (3.4c) is calculated from Cardy’s formula by the methods described in §3.3. The matrix
g itself is then a scalar multiple of

(

1 0
a cos θ a sin θ

)

,

Equally useful is the relation

πv(Rr,M) = πv(Rr, gM0) = πv(g
−1Rr,M0). (3.4d)

Universality affirms that for the given striated modelM a matrix g can be found such that

(3.4a) is satisfied for all events E. The equations (3.4c) and (3.4d) are particular cases of (3.4a)

that almost suffice to determine g. In Table 3.4a we give the left side of (3.4c) and (3.4d) for

41 values of r, or rather values obtained for the left side by simulation. The method of least

squares was then used to find values of a and θ that minimized the difference between the

two sides of (3.4c) or (3.4d), the right side being determined as described in §3.3. The values
obtained are:

â = 0.7538 θ̂ = 0.2643π.

Let ĝ be the associated matrix. For each value of r, the two parameters â and θ̂ are used to

calculate, from Cardy’s formula, the aspect ratios r0 of the rectangles such that the numbers

πcft
h and πcft

v appearing in the row of Table 3.4a labeled by r are hypothetically equal by

universality (assuming ĝ is the matrix appearing in (3.4a)) to πh(Rr0
,M0) and πv(Rr0

,M0).
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Table 3.4a
Data for calculating the matrix ĝ of the striated model
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r r0 π̂h πcft
h π̂v πcft

v

0.6070 0.3873 0.9058 0.9045 0.0965 0.0955
0.6400 0.4116 0.8885 0.8880 0.1146 0.1120

0.6721 0.4356 0.8716 0.8711 0.1302 0.1289
0.7059 0.4613 0.8546 0.8527 0.1492 0.1473

0.7414 0.4887 0.8344 0.8327 0.1699 0.1673
0.7753 0.5153 0.8147 0.8131 0.1881 0.1869

0.8190 0.5502 0.7891 0.7874 0.2148 0.2126

0.8611 0.5845 0.7641 0.7623 0.2388 0.2377
0.9048 0.6206 0.7378 0.7361 0.2672 0.2639

0.9512 0.6599 0.7114 0.7083 0.2933 0.2917
1.000 0.7018 0.6801 0.6793 0.3228 0.3207

1.051 0.7467 0.6521 0.6492 0.3534 0.3508
1.105 0.7948 0.6210 0.6181 0.3832 0.3819

1.161 0.8457 0.5893 0.5867 0.4145 0.4133
1.221 0.9007 0.5562 0.5543 0.4458 0.4457

1.290 0.9651 0.5188 0.5185 0.4816 0.4815
1.349 1.021 0.4909 0.4891 0.5133 0.5109

1.417 1.086 0.4594 0.4570 0.5455 0.5430

1.488 1.155 0.4271 0.4252 0.5770 0.5748
1.562 1.229 0.3957 0.3938 0.6086 0.6062

1.647 1.313 0.3606 0.3607 0.6396 0.6393
1.730 1.395 0.3302 0.3309 0.6692 0.6691

1.824 1.490 0.3003 0.2998 0.7008 0.7002
1.910 1.576 0.2750 0.2738 0.7277 0.7262

2.014 1.681 0.2463 0.2453 0.7546 0.7547
2.124 1.792 0.2204 0.2183 0.7836 0.7817

2.224 1.894 0.1961 0.1963 0.8059 0.8037

2.336 2.008 0.1758 0.1742 0.8277 0.8258
2.453 2.127 0.1538 0.1538 0.8477 0.8462

2.597 2.274 0.1326 0.1319 0.8695 0.8681
2.727 2.407 0.1159 0.1147 0.8855 0.8853

2.864 2.547 0.0990 0.0991 0.9010 0.9009
3.017 2.703 0.0846 0.0842 0.9158 0.9159

3.142 2.830 0.0744 0.0737 0.9269 0.9263
3.309 3.001 0.0618 0.0616 0.9396 0.9384

3.495 3.191 0.0512 0.0505 0.9497 0.9495

3.683 3.382 0.0410 0.0413 0.9590 0.9587
3.853 3.556 0.0346 0.0344 0.9661 0.9656

4.071 3.778 0.0279 0.0273 0.9734 0.9727
4.258 3.969 0.0230 0.0223 0.9780 0.9777

4.500 4.217 0.0174 0.0172 0.9830 0.9828
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The ambiguity entailed by multiplication by the matrices (3.4b) implies that the value

θ̂ = π − 0.2643π is also possible; it leads to the same values of the right sides. Thus a second

experiment is required to eliminate it.

Once estimates for a and θ have been obtained, then for any parallelogram P predicted

values of πh(P,M), πv(P,M), and of πhv(P,M) can be calculated from the right side of (3.4a)

and Cardy’s formula or by interpolation from Table 3.2, as in the section on parallelograms.

As a first choice we took P = ĝRr0
, because, for example, we expect that

πh(gRr0
,M) = πh(Rr0

,M0) = ηh(r0).

One interior angle of the parallelogram ĝRr0
would then be equal to 0.3502π.

The results appear in Table 3.4b, in which the variable r0 is the free variable. Thus

the coordinates of the vertices of the parallelograms on the striated lattice actually used are

calculated from it. They are (0, 0), (0, b), (c, d) and (c, b+ d), where the integers b, c, d assume

the values in the table. The values of r0 are given in the table; the ratio of the sides of the

parallelogram gRr0
are then r = B̂r0 with

B̂ =

√

(1 + â2 cos2 θ̂)

â sin θ̂
= 2.016.

It is clear from this table that of the two possibilities for g modulo the group (3.4b) we have

chosen the correct one, for otherwise therewouldbe no agreement between the values obtained

by simulation and the predicted values.

Table 3.4b
π̂h, π̂v, π̂hv for a parallelogram P = ĝRr0

on the striated model

b c d r0 π̂h πcft
h π̂v πcft

v π̂hv π̂�
hv

300 539 274 1.000 0.5039 0.5000 0.4983 0.5000 0.3229 0.3223

390 736 374 1.050 0.4772 0.4746 0.5209 0.5254 0.3195 0.3211

380 754 383 1.104 0.4537 0.4487 0.5498 0.5513 0.3195 0.3180
372 776 394 1.160 0.4254 0.4229 0.5751 0.5771 0.3133 0.3128

362 794 403 1.220 0.3989 0.3974 0.5977 0.6026 0.3044 0.3056
352 815 414 1.288 0.3726 0.3701 0.6259 0.6299 0.2961 0.2953

344 833 424 1.348 0.3503 0.3477 0.6461 0.6523 0.2855 0.2856
336 855 435 1.416 0.3259 0.3237 0.6726 0.6763 0.2734 0.2734

328 877 446 1.488 0.3015 0.3003 0.6948 0.6997 0.2591 0.2600
320 898 456 1.561 0.2788 0.2781 0.7173 0.7219 0.2453 0.2461

312 923 469 1.646 0.2581 0.2545 0.7427 0.7455 0.2320 0.2299
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Table 3.4c
π̂h, πv, πhv for a parallelogram with interior angle 3π/8 on the striated model

b c d r r0 π̂h πcft
h π̂v πcft

v π̂hv π̂�
hv

362 601 444 1.000 1.000 0.5022 0.5000 0.4956 0.5000 0.3211 0.3223
344 630 466 1.105 1.111 0.4474 0.4452 0.5508 0.5548 0.3162 0.3174

329 660 488 1.210 1.224 0.3985 0.3959 0.5999 0.6041 0.3048 0.3051

312 695 514 1.343 1.367 0.3440 0.3409 0.6527 0.6591 0.2827 0.2822
292 743 549 1.534 1.573 0.2774 0.2747 0.7212 0.7253 0.2451 0.2401

270 803 593 1.793 1.852 0.2069 0.2051 0.7909 0.7949 0.1933 0.1927

As a further verificationwe examined the probabilities likeπh(ĝP,M) for a parallelogram

P of interior angle 3π/8, and with one pair of opposite sides vertical. One interior angle of

the parallelogram ĝP is then very close to 0.2974π. The values r in Table 3.4c are the ratios of

sides of ĝP . The values r0 are the aspect ratios of rectangles conformally equivalent to P , and

are used to calculate the predicted values given in Table 3.4c.

As for the previous experiment with parallelograms, a systematic error can be seen: for

example, in bothTable 3.4b and3.4c thevalue π̂h is always larger thanπ
cft
h . Still thediscrepancy

is in the third significant digit and comparable to the error due to the finiteness of the lattice

(see §3.1); so the agreement is satisfactory. The only differences greater than .005 are those at

row (344, 833, 424) in Table 3.4b and at row (312, 695, 514) in Table 3.4c, where differences of

.0058 and .0064 are found. The anfractuosities at the boundary of P may again have played a

role.

3.5 Exterior domains.

Once the notion of conformal invariance has appeared in a convincing manner in the

study of percolation in simply­connected bounded planar regions, many other questions arise.

First of all there is no reason to confine oneself to simply connected regions, nor, apart from

experimental inconvenience, to bounded regions. Even the notion of crossing probability can

be considerably extended.

Limitations on memory force the simulations to be confined to a bounded region, and

when examining unbounded regions it is necessary either to devise an experiment that is

not sensitive to the inevitable hole at infinity, or to estimate the error it causes. Moreover

the boundaries of unbounded regions, such as the exterior of a convex polygon, usually have

angles that penetrate the region, and these are the source of substantial errors in the simulation.
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Examining percolation by bonds on a square lattice,we saw in [U] that an indeterminacy of

the order of the lattice mesh led to an indeterminacy of about 1/d in the crossing probabilities,

if d is the diameter of the finite lattice. This is to be expected by Cardy’s formula, at least for

πh. A modification of the order of 1 in the endpoint zi of α or β entails a change in wi and

thus in the cross­ratio of about 1/d. If, however, zi were the vertex of a penetrating wedge

with exterior angle απ, then near wi the function ϕ behaves like (w−wi)
α and its inverse like

(z− zi)
1/α. Consequently, if for example α = 1.5, an indeterminacy of say .01 is magnified to

one of .012/3 ∼ .05, and the data cease to be persuasive.

In order to avoid problems with penetrating angles, we have confined ourselves to exper­

iments with circles. The obvious question is whether percolation in the interior of the circle

is equivalent to percolation in the exterior, thus whether crossing probabilities are invariant

under the map z → 1/z. Since this takes the bounded domain |z| ≤ 1 to the unbounded

domain |z| ≥ 1, we are immediately confronted with the impossibility of treating all lattice

points in the exterior domain.

Take a circleC of radius 1 centred at the origin, and let α be the arc ofC from 3π
4 to

5π
4 and

β its reflection in the axis of ordinates. Conformal invariance implies that the probability of a

crossing from α′ = Aα to β′ = Aβ in the exterior ofC′ = AC should be close to .5 forA large.

Experiments can, however, only be carried out on finite lattices. We can take, for example,

percolation inside the annulus formed by two circles, the inner one having radius A and the

outer a radius as large as time and the machines available allow, and estimate the probability

within this annulus of a crossing from α′ to β′. The results are disappointing. For an inner

radius of 100 and an outer radius of 1000 the probability is about .431. With the same outer

radius and inner radii of 50 and 25 the probabilities become about .457 and .468, in every case

far short of the expected .5, although the value is seen to improve with increasing ratio of the

two radii. It is also clear, however, that to achieve an adequate value of the ratio and of the

inner radius would put impossible demands on machine memory. Therefore it is necessary

either to exploit methods of extrapolation or to devise other experiments to test conformal

invariance under inversion.
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Figure 3.5a. Possible crossings for πint
h and πext

h .

The most direct is to take the two concentric circles of radii r1 < r2 and to divide each into

four arcs of equal length symmetric about the axes. We consider only crossingswithin dilations

of the annulus, and we introduce the probability πint
h of a crossing from the left interior arc to

the right interior arc, as well as the probability πext
h of a crossing from the left exterior arc to the

right exterior arc. (See Figure 3.5a.) The two probabilities πint
v and πext

v are defined similarly.

Conformal invariance under z → 1/z implies that all four are equal in the limit of large r1 and

fixed r2/r1. We also introduce π
int
hv and π

ext
hv .

Table 3.5. π̂h, π̂v , π̂hv for an annulus and a cylinder

π̂h π̂v π̂hv

interior .4316 .4306 .2539

exterior .4356 .4348 .2586

cylinder .4424 .4399 .2637
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The data for r1 = 100 and r2 = 1000 are given in Table 3.5. The sample size was 100,000.

As the difference between the values for the interior arcs and those for the exterior is in all

three cases less than .005, they confirm the conformal invariance. As a supplemental test of

their reliability, we examined, again for themodelM0, crossings on a rectangle with horizontal

side equal to 122 ∼ A ln( r1

r2

) and vertical side equal to 332 ∼ 2Aπ, A = 53 but with periodic

boundary conditions in the vertical direction. Let α, β, γ and δ be the intervals [y = 1, y = 83],

[y = 167, y = 249] [y = 84, y = 166], and [y = 250, y = 332] on the left side. Then we

define πl
h as the probability of a crossing from α to β in a vertically periodic geometry. Two

possible paths are indicated in Figure 3.5b. We define the other probabilities, for example πl
v ,

in a similar fashion.

If we extend the hypothesis of conformal invariance to assert that crossing probabilities

on an annulus should be equal (for the modelM0 on which we have chosen to focus) to those

on a conformally equivalent cylinder then, apart from the approximations inherent in the use

of finite lattices, these crossing probabilities should be equal to the corresponding probabilities

for crossings between the internal and external intervals of the annulus. The results are also

included in Table 3.5 as line cylinder. The discrepancies are larger than .01 and therefore

disappointing, but tolerable especially in view of the small inner radius r1. Recall that a

systematic error ∼ 5 × 10−3 is to be expected on a square of 200 × 200 sites! (See §3.1.) In
addition, a cylinder with the given dimensions is conformally equivalent to an annulus whose

radii are in the ratio 10.06.

α

β

Figure 3.5b. Two possible paths for π1
h.

In yet another test we examined the same probabilites for a vertical side equal to 240 and

a horizontal side equal to 202. This correspond to an annulus whose outer and inner radii have

a ratio of 198.0, and thus to an outer radius that is virtually infinite. The results π̂l
h = .5003,
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π̂l
v = .4990, and π̂l

hv = .3224, are, as they should be, very close to those that appear in the first

line of Table 3.2 and that are familiar from experiments on the square.

In spite of the difficulties created by the hole, it is nonetheless important, especially for

§3.7, to estimate, by simulation and without recourse to a conformally equivalent cylinder,
crossing probabilities in exterior domains. To do so we do not use extrapolation but take

advantage in another way of conformal invariance. For example, if we have an annulus

bounded by circles of radii r1 and r2 then we introduce a second independent disk of radius

r2 with independent probabilities for occupancy of the lattice points it contains, except at the

boundary. To obtain an admissible path for a given configuration of open and closed sites we

start from the inner interval α, or as usual from a point in a band about α, but when we arrive

at an open site with a neighbor outside the larger disk, we open the corresponding site on the

second disk, and then move as far as possible through it on open sites, allowing ourselves to

return under the same conditions to the original annulus, and indeed to pass back and forth

between the annulus and the supplementary disk arbitrarily many times in the effort to reach

the second interval β on the inner boundary of the annulus.

Thus, in effect, we perform a roughly conformal glueing of the annulus and the disk in

order to obtain on the Riemann sphere the exterior of the inner circle. With a sample of 100,000

configurations the probability πh for radii of 70 and 350 was estimated to 0.5078 and for

radii of 100 and 600 it was found to be 0.5013. These values can be regarded as encouraging

confirmations of the technique, although the first is somewhat high, differing from .5 by more

than our benchmark of .005.

3.6 Branched percolation.

If we apply the map w = z2 to a region D in the z­plane containing the origin, then this

region is realized as a branched covering of a region D′ in the w­plane. We can introduce

crossing probabilities forD in the usual way; we can also lift the percolating lattice fromD′ to

D and calculate crossing probabilities with respect to it. The most general form of conformal

invariance implies that they are the same.
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Figure 3.6a. A two­fold covering of the square lattice and the
image of a parallelogram by the map z → z2.

The lattice in D is best viewed, as in Figure 3.6a as a two­fold covering of the lattice in

D′, each site inD′, except those at the branch point, being covered by two sites. As the broken

vertical line suggests, the points at the origin on the two sheets are to be identified. The image

in thew­plane of the the parallelogram of aspect ratio 2.224 and interior angles 3π/8 and 5π/8

is shown in Figure 3.6b, in which the fine line is the branch cut. It is clear from the appearance

of the parabolic arc, that the upper and lower sides of the parallelogram are horizontal. The

left and right sides are therefore not vertical. The double covering of the same curve appears

in Figure 3.6a. Horizontal crossings are from the sites marked by small squares on one sheet

to those on the second sheet. Vertical crossings are from circular sites to circular sites. As

indicated a site can be both circular and square. A site is taken to be square if it is joined to a

neighbor by a bond that passes through the image of a horizontal side. The circular sites are

introduced in a similar fashion.
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2 4

-2

2

4

Figure 3.6b The projection of the image of the parallelogram
drawn in Figure 3.6a.

Since the problem is not in principle affected by a shift of the lattice, one could suppose

that the sites are never at the branch point. This is not, however, alwayswise. At a branch point

the effect observed in the previous section is even more exaggerated since the number α that

appears there is now 2, so that an indeterminacy of .01 could be magnified to .1. Nonetheless,

to our astonishment, on choosing the square lattice such that the branch point is a site, which

will then have eight neighbors rather than four, we obtained simulated values remarkably

close to the true values, perhaps as a result of an implicit overcompensation. The difference

between simulated and predicted values is rarely more than .002. Other choices for the branch

point, for which the data are not included, turned out to be far less felicitous.



Conformal invariance in two­dimensional percolation 72

The results, all for regions D in the form of parallelograms, are presented in Table 3.6,

which is self­explanatory. Experiments were performed for four values α of the interior angles

of the parallelograms, and four values of the aspect ratio. The region D′ always contained

more than 200,000 sites, occasionally many more. In these experiments the second definition

of the probabilities πd was used. (See §3.3.) The probabilities πd̄ are those for a crossing

between the two intervals complementary to those defining πd. Thus the sum of π̂d and π̂d̄ is

expected to be 1 by duality and universality. Observe that the extreme value for π̂�
hv is larger

than πcft
h and thus is spurious. Of course this is not a weakness of the present experiment but

a consequence of the experiment of §3.2 where the values of π̂h and π̂hv for extreme values of

r carry important statistical and systematic errors.

Table 3.6
π̂h, π̂v, π̂hv, π̂d, π̂d̄ for the image of parallelograms by the mapping z → z2

r φ πcft
h π̂h π̂v π̂�

hv π̂hv πcft
d π̂d π̂d̄

1.000 π/2 .5000 .4996 .4995 .3223 .3210 .3244 .3237 .6757
1.488 π/2 .3002 .3018 .7018 .2600 .2615 .2939 .2972 .7065
2.244 π/2 .1389 .1401 .8616 .1325 .1359 .2157 .2167 .7836
3.309 π/2 .0446 .0450 .9556 .0447 .0449 .1254 .1275 .8750
1.000 3π/8 .5000 .5018 .5020 .3223 .3237 .3244 .3262 .6762
1.488 3π/8 .2895 .2908 .7117 .2534 .2548 .2904 .2914 .7082
2.224 3π/8 .1259 .1266 .8733 .1232 .1235 .2062 .2080 .7929
3.309 3π/8 .0368 .0369 .9627 .0369 .0368 .1141 .1157 .8840
1.000 π/4 .5000 .5027 .5030 .3223 .3255 .3244 .3280 .6776
1.488 π/4 .2491 .2500 .7522 .2262 .2269 .2754 .2760 .7260
2.224 π/4 .0840 .0842 .9156 .0833 .0833 .1706 .1713 .8265
3.309 π/4 .0169 .0177 .9832 .0170 .0177 .0774 .0794 .9222
1.000 π/8 .5000 .5021 .5029 .3223 .3246 .3244 .3254 .6767
1.488 π/8 .1404 .1422 .8605 .1364 .1381 .2168 .2193 .7832
2.224 π/8 .0188 .0193 .9814 .0170 .0193 .0817 .0830 .9191
3.309 π/8 .00096 .00106 .9990 .00103 .00106 .0185 .0188 .9805

3.7 Percolation on compact Riemann surfaces.

Any compact Riemann surface S can be realized as a branched covering of the projective

line P, thus ofCwith the point at infinity added. Combining the constructions for unbounded

domains together with those for branched coverings, we can introduce percolation on the

surface. Various crossing probabilities can be introduced. In particular each state s yields a

topological space, Xs, formed by all bonds and the open sites and imbedded in S, and thus a

homomorphismH1(Xs) → H1(S) from the first homology group of Xs to that of S. We can

ask for the probability, always at criticality, that a given subgroup Z of H1(S) is contained in

the image, and expect that the response depends only on the conformal class of S.
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We implicitly define percolation as being with respect to the modelM0 that defines the

standard conformal structure on P and thus on S. Other choices of model and conformal

structure would be possible. It is a matter of compatibility.

It is possible to define a Riemann surface otherwise than as a branched covering. For

example, an elliptic curve can be obtained as the quotient of C by a lattice L = Z + Zω, and

the percolation can be introduced directly on the surface as the percolation by sites on aL (in

the limit a → 0) but with periodic boundary conditions. Conformal invariance implies that

the probabilities on the torus

S1 = C/(Z + Zω) (3.7a)

and on the branched covering S2 of the x­plane defined by

y2 =

4
∏

i=1

(x− ωi) (3.7b)

are the same provided the two curves are isomorphic.

To define the percolation on (3.7a) we took ω = i, and used a square lattice of mesh 1
500 .

The elliptic curve S2 will be conformally equivalent to S1 if the points ωi lie on the corners of

a square. We took the lattice defining the percolation to be the usual square lattice of mesh

1, and ωi to be the four corners of a square with center 0 and sides of length 282 parallel to

the two axes. The branch cuts were along the two horizontal lines and were treated as for

branched percolation. The infinite parts of the lattices on the two sheets were handled as for

exterior domains by means of a rough glueing along circles of radius 399.

The elements ofH1(S1) are naturally labeled by pairs of integers (m,n), and (m,n) and

(−m,−n) generate the same subgroup. It is easy to persuade oneself that only primitive

elements, those for which the greatest common divisor of m and n is 1, appear as generators

of subgroups Z that occur with positive probability. We label such subgroups by a generator.

Besides subgroups with one generator, the trivial subgroup 0 and the full subgroup H = H1

may occur.
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Figure 3.7a. A possible crossing on the elliptic curve S2 for
π(0, 1). (The “×”s are the branchpoints, the straight lines
between them cuts; the dashed line indicates where the
conformal glueing with another open disk takes place.)

Figure 3.7b. A possible crossing on the elliptic curve S2

for π(0, 1).

We choose a conformal equivalence of S1 and S2 that takes the loop around one of the

branch cuts to the class (0, 1). Figure 3.7a shows two open sets containing the branch points

(crosses) on the upper and lower branch of the covering. The cuts have been chosen as

indicated. The thick ellipse is one possible generators of the class (0, 1). Figure 3.7b shows

a generator for the class (1, 0). These choices fix, in particular, an isomorphism of the two

homology groups that allows us to use the same labels for pertinent subgroups of H1(S1)

and H1(S2). The results of our simulations are given in Table 3.7. Rather than measure the

probability π̂(0) that no homology class other than 0 occurs in the image directly, we have for

the purposes of the table simply defined it to 1 minus the sum of the probabilities measured.

In addition to those given in the table we measured the probabilities for (2,±1), (1,±2). Since

the classes (1,±2) and (2,±1) (taken together) appear in only 26 of the 210000 configurations

examined forS1 andonly 16of the 107900 examined forS2, this definition appeared admissible.

We observe that the probability for H is substantially, but not intolerably, higher for

S2 than for S1 and the probability for {0} substantially lower. The probabilities for S1 are

presumably closer to the truth because they are nearly equal, as universality and duality

demand. Moreover, simulations of S2 required the use of two devices introduced earlier:

conformal glueing of an open disk at infinity and branch points with 8 nearest neighbors



Conformal invariance in two­dimensional percolation 76

instead of 4. As we saw, both artifices have limitations (See §3.5 and §3.6.) that could cause
the discrepancy between the value of π̂(H) for S1 and S2, as well as the discrepancy of .024

between π̂(H) and π̂(0) that follows from it and our definitions. The values of the probabilities

for subgroups of rank one are, however, quite close and well within the statistical errors.

Table 3.7 Probabilities of the first few subgroups of the
homology group for the two elliptic curves S1 and S2

π̂(H) π̂(1, 0) π̂(0, 1) π̂(1, 1) π̂(1,−1) π̂(0)

S1 0.3101 0.1693 0.1686 0.0205 0.0209 0.3106

S2 0.3223 0.1700 0.1682 0.0206 0.0205 0.2983
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C.P. 6128A, Montréal, Québec
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