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1. Introduction

Let G be a reductive, semi-simple Lie group, B C G a Borel subgroup and X =
G/ B the corresponding flag manifold. Let G be a connected real form that contains
a compact maximal torus T'; this means in particular that the complexified Lie
algebra t®rC =: b is a Cartan subalgebra corresponding to a Cartan subgroup H C
G. By a flag domain D we mean an open Gyp-orbit Go(zo) of G acting on X whose
isotropy group is compact. Flag manifolds and flag domains have over the years
played a central role in representation theory, both finite and infinite dimensional
([Sch2], [Sch3], [BE], [FHW] and the references cited therein). Recently they,
together with more general homogeneous complex manifolds Gg/L where L O T
and L is the compact centralizer of a circle S! C T, have appeared in Hodge theory
in the form of Mumford-Tate domains [GGK1]. For the case Gy = U(2,1), the
corresponding Mumford-Tate domains have also appeared in very interesting recent
work on arithmetic automorphic representation theory ([C1], [C2], [C3]). In the
recent exposition [GGK2] of aspects of that work, together with extensions of it,
certain constructions concerning the complex geometry of flag domains arose. These
constructions play a central role in the use of Penrose transforms ([BE], [EGW],
[C2]). In the exposition [GGKZ2], in special cases they were used under the term
correspondence spaces. In that work the general construction and properties of these
spaces, together with their relation to the cycle spaces [FHW] that have been in
use since the mid-to-late 1960’s ([Sch1] and [GS]), were discussed. The primary
purpose of the present paper is to give the formal definition and some properties of
the correspondence space W and to state and prove a result relating the complex
geometry of W to that of the cycle space U.

To give the informal statement of the result we first comment that both 'W
and U are used to relate the cohomology H*(D, L,) of homogeneous line bundles
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L,, — D to global, holomorphic objects. In the case of the correspondence space
'W the object is a holomorphic de Rham cohomology group, and it is therefore a
quotient of spaces of global holomorphic sections of vector bundles. In this case
there is the isomorphism [EGW]

(L.1) H*(D, L) = H* (TOW, 24(Ly)); ds)-

In the examples considered so far, there are canonical “harmonic” representatives
for classes on the RHS, so that in particular cohomology classes on the LHS can be
“evaluated” at points of W. For D a Mumford-Tate domain, W has an arithmetic
structure (think of CM points in a Shimura variety), and the main result of [GGK2]
concerns classes in H*(D, L,,) that take arithmetically defined values at arithmetic
points of W.

The “correspondence space” arises from the following consideration: The equiv-
alence classes of homogeneous complex structures on Go/T are indexed by W/Wg
where W, Wi are the Weyl groups of G, Gy respectively. We denote these by Dy,
w € W/Wp. The universality property of W gives diagrams

W
(1.2) V x
Dy, D

Using (1.1) applied to D,, and D, the existence of certain canonical classes on W
gives multiplication mappings

H? (I‘(Q’ (Ly));d ) - HY ( (Qr, (LL,)); d,r:)
which lead to Penrose transforms
HY(Dy, L) = HY (Duw, L))

One may think of this as an analogue of the maps on ordinary cohomology in
classical algebraic geometry induced by a cycle on W in a diagram (1.2) where the
objects are algebraic varieties.

In the case of the cycle space U there is always a map

HY(D,L,) — H°(U,F29)

where the FP'?— U are holomorphic vector bundles whose rank is hYZ,AP Nz, p(L,))-
There are condltlons under which this map is injective and a description of its image
(cf. [FHW], Theorem (3.4) and Corollary (3.5) below).

The main result of this paper is to relate the two global holomorphic objects
which realize H*(D, L,,). The result applies only in the case that D is non-classical,
meaning that it does not fibre holomorphically or anti-holomorphically over an
Hermitian symmetric domain. This is the primary case of interest in [C1], [C2],
[C3], [GGKZ2] as it is the situation where new geometric and arithmetic phenomena
occur. The result is the

THEOREM 1.1. In case D is non-classical there is a spectral sequence with

{EP,Q HO (u Fp,q)

ER3 = GrP HPH4(T(W, Q5(L,.)); dr)-
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For D non-classical we have U C G/K and there are maximal compact subva-
rieties Z,, C D, u € U given by the translates by g € G of Z = K/T where ¢Z C D.
Denoting by Nz,p the normal bundle of Z in D, the proof of the theorem will yield
the

COROLLARY 1.2. If H¥(Z,A"**INz,p(L,)) =0 for 0S k < g — 1, then

HY(T(W, Q8(L,)); dr) 2 ker{ H(D, F99) &5 HO(D, F19) }.

When the isomorphism (1.1) is used on the LHS this corollary is closely related
to the result in [WZ).

The original motivation for much of the work that this paper is drawing from
was concerned not with the H4(D, L,,) but rather with the automorphic cohomology
groups HY(T\D, L,) where I' C Gy is a discrete, co-compact and neat subgroup.
In section 4.1 we will show that the equation (1.1), and the results (1.1) and (1.2)
remain valid as stated when the spaces are factored by I'. The main new ingredient
used here is a result from [BHH)] which shows that the quotient space I'\U is Stein.

In section 4.2 we shall show that the de Rham cohomology

H* (D(W, 03(L,.)); d)

may be written as n-cohomology H*(n, OGw)_, for a Go-module OGw. The spec-
tral sequence (1.1) may then be interpreted as the Hochschild-Serre spectral se-
quence for n, C n where n, = nN ¢ for € the complexification of Lie algebra of the
maximal compact subgroup Ko of Gy.}

The differentials

dy: EP? — Eptma-rtl
are linear differential operators of degree r, and we shall give a result (Theorem
(4.4)) defining and computing their symbols. We shall also describe the character-
istic varieties in our two examples.

In section 4.3 we shall analyze the spectral sequence in the special case of the
two examples discussed in [GGK2]. This analysis will include determination of
the symbol sequence and characteristic varieties for the linear PDE systems whose
solutions are the Harish-Chandra module V., with infinitesimal character x,+,
where u + p is in the closure of the anti-dominant Weyl chamber. Of particular
interest here are the cases where y + p is singular, in which case V),1, is a limit of
discrete series. The PDE systems have quite a different character than when u+ p
is regular, as is not surprising due to the much greater intricacy of n-cohomology
in these cases.

This paper is a companion work to [GGK2], one which completes a definition
promised there and which relates the global holomorphic realization of cohomology
that was an essential ingredient in [GGKZ2] to the other one that has appeared
in the literature. The general context for this work is the relation between rep-
resentation theory and the geometry of complex homogeneous manifolds. This is
a vast and rich subject and we have chosen to refer to the references in some of |
our primary sources, specifically [Sch2], [Sch3], [BE] and [FHW], for excellent
expositions of the general theory and for guides to the literature. We also note
[Schl], where much of the connection between homogeneous complex manifolds
and representation theory had its origin.

1The subscript “c” for n. refers to “compact,” as n. is the direct sum of the negative root
spaces corresponding to the compact roots.
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' This paper is dedicated to Joe Harris on the occasion of his 600 birthday. The
: talk that the second author of this paper gave at Joe’s 60*® conference had the theme
; " that understanding in depth “elementary” examples that have a rich geometry is
both interesting in its own right and serves to suggest interesting general structures.
The examples presented in that talk were based on [GGK2] and are recalled briefly
in this paper. We feel that the theme mentioned above is very harmonious with
Joe’s approach to mathematics.

Notations.

e G is a reductive, semi-simple Lie group with Lie algebra g;

e H C G is a Cartan subgroup with Lie algebra b;

e B C G is a Borel subgroup with associated flag manifold X = G/B;
, e (g, with Lie algebra go, is a real form of G;
| e we assume that the real form Hy of H is a compact maximal torus T' C Go;
we shall use the notations Hg and T interchangeably;

e Ky C Gy is a maximal compact subgroup with T' C Kp and complexifica-

tion K C G;
; e & &t &, B, are respectively the roots, positive roots, compact roots and
1K non-compact roots of (g, h);
e W, Wy are the Weyl groups of (G, H), (Ko, T) respectively;
: e it is known that the homogeneous complex structures Dy, on Go/T are

parametrized by w € W/Wk; they are the open orbits of Go acting on X;
| e we shall denote by D one of the D,, and by Z = K/T = K/By, where
\ : Bg = KN B, is a maximal compact subvariety of D;
[ e the root space decomposition of g is denoted

: g:b@<a€e{9¢ga)

where g¢ is the a-root space;

e
: SRR

>

“ T e we have
' ' b=hodn
; | n= & g—ot;
‘ acdt
J _ o the Cartan decomposition of g is
, g=top;
we have
p=ptep”
n=nOp~
1 where pt = @ g% p = pfandn,= @ g%
? acdi, acdf
1 e the compact maximal torus is
T =t/L,
i where L is a lattice, and we denote by
i ' T cit
:, the weight lattice, which up to a factor of 2 is identified with Hom(L, Z);
1 e given a weight u there is a corresponding character x,, of T' which induces

e ‘ a homogeneous line bundle L, — Go/T;
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e L, — Go/T is made into a holomorphic line bundle over D in the usual
way; i.e., by extending it to a holomorphic character x,: H — C* and
then extending it to B-via the map B — H.

2. Correspondence and cycle spaces

Cycle spaces and correspondence spaces first arose from special cases of flag
domains D, cycle spaces initially in the context of Hodge theory and then repre-
sentation theory, correspondence spaces in the context of integral geometry and
Penrose-type transforms. Both the cycle spaces U and correspondence spaces W
considered here are open subsets in G-homogeneous projective algebraic varieties,
and the basic diagram relating D,'W and U is an open subset of a diagram of
G-homogeneous algebraic varieties. For later reference we now record this diagram:

G/H
|
(21 G/Bx
/
G/B G/K.

The space G/H is sometimes called the enhanced flag variety. Double homo-
geneous space fibrations in the lower part of the diagram are classical in integral
geometry [Ch]. We note the following general properties:

The fibres of G/Bx — G/B and of G/H — G/Bg

(2.2a) are contractible affine algebraic varieties;

The fibres of G/Bg — G/K are projective

(2.2b) algebraic varieties.

DiscussioN. (see [FHW] for detailed proofs): From
b=brg ®p~
where by = b N ¢ one may show that
exp: pT — B/Bxk
is a bi-holomorphic map. A similar argument works for
by =hont.
Finally, K/Bg is the flag variety for K.

The definition of the correspondence space derives from Matsuki duality be-
tween Gg-orbits 0, and K-orbits ok in the flag variety X ([FHW] and [Sch3]).
We recall that the pair (0¢,, 0x) are Matsuki dual if the intersection og, N0k con-
sists of exactly one Kjp-orbit. The relation “contained in the closure of” partially
orders the set of K-orbits as well as the set of Gg-orbits, and the duality

{Go-orbits in X} +— {K-orbits in X}

= o e ¢ £ T
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reverses the closure relationships. For xg € X such that Go(zo) = 0g, is open, or
equivalently K (zo) = 0k is compact, we set

We = {g € G:goxNog, #0 and is compact }9/H.

Here, { }° denotes the connected component of the identity. Since H C K this
definition makes sense and Wg C G/H is an open set.

THEOREM-DEFINITION 2.1. For an open Go-orbit W¢ is independent of zo.
We denote it by W and define it to be the correspondence space associated to
(Go, H).

We recall here our blanket assumption that D is non-classical; i.e., it does not
fibre holomorphically or anti-holomorphically over an Hermitian symmetric domain.

The property in the theorem is called universality. We will infer it from a
similar property for the cycle space U, to which we now turn. Set

Ug ={g € G:gok C og, }°/K.

We note that the term { }° is the same as for Wg; we have given this description
because the cycle spaces associated to D = Gp/T initially arose as

{9gZ:9€GandgZ C D},

which is the set of translates gZ of the maximal compact subvariety Z = Ko /T by
g € G such that gZ remains in D (cf. [Schl] and [GS]). The universality of W is
a consequence of

THEOREM (universality, [FHW]). For open Go-orbits, U is independent of
Zo-

The proof of this theorem is based on Matsuki duality.

Before turning to the basic diagram and the properties of W and U, we have
previously noted that the open Go-orbits D, are indexed by the elements w €
W/Wg. Equivalently, a complex structure D,, on Go/T is given by a choice ot
of positive roots, and two such Go-homogeneous complex structures Dy, Dy are
equivalent if w = w' mod Wg. Each D, has a distinguished point z, € Dy as
follows:

If o € G/B is the identity coset, then

Ty = WTQW " € Dy

Tt follows that D, = Go(z,) and the compact K-orbit Z, C D, given by the
duality theorem is Kx,, = wZw~! where Z = Ko/T C Go/T.

We will now describe the basic diagram for D. By the remark just given there
will be a corresponding basic diagram for each D,,. Letting {Zy,u € U} be the
family of maximal compact subvarieties Z, C D parametrized by U, we define the
incidence correspondence I C D x U by

J={(z,u) : z € Z,}.
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DEFINITION 2.2. The basic diagram is

(2.3) ™ J ul

The maps are those induced by the maps in (2.1), where we note the inclusion
JcC G/ Bg.

THEOREM 2.3.

(1) W is a Stein manifold;
(2) the fibres of W — D are contractible;
(3) the fibres of W — J are contractible.

PROOF. For Gg of Hermitian type, and recalling our assumption that D is
non-classical, this result largely follows from the results in [FHW]. Specifically, we
have that:

e U is Stein (([FHW], Corollary 6.3.3); and
e the fibres of 7': W — U are affine algebraic varieties.?

The latter statement follows by observing that (2.3) is an open subset of (2.1), and
W C G/H is the inverse image of U C G/K. A similar argument applies to W — J,
where a typical fibre is B/Bg. From [FHW], (6.23), in case Gp is of Hermitian
type the fibres J — D are contractible. This case covers the two examples discussed
below. The general case when Gy is not of Hermitian type is more complex and
will be discussed elsewhere. A

ExXAMPLE 2.4. U(2,1)% ((EGW], [C1], [C2] and [GGK2]).
e H is the standard Hermitian form on C® with matrix diag(1, 1, —1) and

U(2,1) = {g € GL(3,C) : ‘gHg =H}; )

e points p € P? are given by homogeneous column vectors p = *[p1, p2, p3]
and lines [ € P? by homogeneous row vectors [ = [l3,l2,l3];

e the unit ball B C P? is given by {p : ‘pHp < 0}; B® = P?\CI(B) is the
complement of the closed ball;

e the flag variety is described as the standard incidence correspondence
X ={(p0): {I,p) = 0} in P? x P2

2The fibre w'"l(uo) o K/H is the enhanced flag variety of Z = Zy,- It is a general result
[Bo] that the quotient by the Cartan subgroup H of the affine variety K is again an affine algebraic
variety. We note that K is reductive with center contained in H, so the quotient is the same as
one of a semi-simple complex linear group by a Cartan subgroup.

3We use U(2, 1) rather than SU(2,1) because U(2,1) is the Mumford-Tate group of a generic
polarized Hodge structure with Hodge numbers h30 = 1, %! = 2 and having an action by

Q(vV=d) (cf. [GGK1)).
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There are three flag domains given as open orbits of U(2,1) acting on X and
which may be pictured as follows:

. /!
l B I p
g ' ]BQ l”

D DI D//

Here, D is non-classical and D', D" are classical. For example, (¥, V') — p' fibres
D’ over the ball with P! fibres.

The enhanced flag variety GL(3,C)/H is given by the set of projective frames,
defined as triples of points p,p’,p” € P? where pAp’ Ap” # 0.

The correspondence space is pictured by

e D

W= s WCIBC

7

where pp” is the line joining p and p”. The maps W — D, D', D" are given by
(p,pP) €D
p,o,p" = (P, P p)e D’
(»,pp")e D".

The cycle space U is pictured by

L

From the picture we see that U = B x B where B is the conjugate complex structure
on B and is isomorphic to the set of lines not meeting the closure of B. The
corresponding compact subvariety Z(p’, L) = P! is given by {(p,1)} C D in the
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picture

Z(p,>L) =

L

The incidence correspondence J = {(p,!),(p’, L)} C D x U is as pictured in the
above figure. The map W — J is given by

p, 0, p" —

The maps J — D, J = U are given by

7 AN

ISHO)

All of the properties in the basic diagram (2.3) may be readily verified from the
above pictures. The standard root diagram for U(2,1) is where the compact roots
are labelled [¢] and the Weyl chambers C, C’, C" correspond to the complex struc-
tures D, D', D”. Here, C is non-classical and C’, C" are classical.
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* L]
D! B C
P L]
C/
FIGURE 1

ExaMPLE 2.5. Sp(4) ((GGKZ2]).

-1
e Q is the alternating form on V = C* with matrix " -1 ;

e 0: V — V is a conjugation defined in the standard 1basis vy, V2, Vs, Vs DY
oV = ivg, ovg = tvz (and then ovg = ivg, ovg = in);

e H is the Hermitian form defined by H(u, v) = iQ(u,0v);

e H(v,ov) = 0 defines a real quadric hypersurface Qu C P? which we picture
as

Sp(4) = Aut,(V, Q) is a real form of Aut(V,Q);

a Lagrange flag is a flag (0) C Fy C Fp C F3 C V where dim F; =j and
with F, = Fi, F3 = Fi*, the L being with respect to @;

a Lagrange flag is given projectively by a pair (p, E) where p € P? and
E c P is a Lagrange line

T E

p

(think of p = [F1], E = [F2]);

a Lagrange frame is a basis fi, f2, f3, f4 for V for which Q(fi, f;) is the
above matrix @;

a Lagrange quadrilateral is a projective frame pi,p2,p3,Pa for P? where

p; = [ fi] for a Lagrange frame f1, f2, f3, fa.
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The flag variety X is the set of Lagrange flags. The enhanced flag variety is
the set of Lagrange quadrilaterals. We may picture a Lagrange quadrilateral as

P3 By D4
L ] ®
Ey3 Eyy
® [ ]
231 Ei2 D2

where the depicted lines F;; = p;p; are Lagrangian lines in P3. The diagonal lines
are not Lagrangian.

The correspondence space W is the set of Lagrange quadrilaterals positioned
relative to the real hyperquadric Qg as in the picture

p2 E12

The pictured Lagrangian lines Ej; are of three types

e Eyp lies “inside” (Jm, meaning that H < 0 on the corresponding La-
grangian 2-plane Ey, in V;

¢ Ej3 meets Qp in a real circle; as a consequence H has signature (1,1) on
E13; Ea4 has a similar property;

e FEj34 lies “outside” Qy, meaning that H > 0 on Eg4.

There are eight orbits of the four Lagrange flags in the above picture; thus we
have (p1, F12) and (pg, E1z) associated to Ej2. These orbits give eight complex
structures on Gg/T, of which four pairs are equivalent under the action of Wg.
The four types may be pictured as the orbits of

// W >0
Dy,’s = <0 >0
<0 Ly
D D’

D/I DIII
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The notations mean that H < 0, H > 0 on the first two, H has signature (1, 1) on
the second two, and on the two where H has signature (1,1) we have indicated the
sign of H on the marked points. Here, D and D' are non-classical and D", D" are
classical. ‘

The cycle space is pictured as

>0 E

o

\

<0 E

Here E, E' are Lagrangian lines on which ]H[l 5 <0, IH[I gz >0 respectively (think of
E as “inside” Qg and E’ as “outside”). The corresponding cycle Z (E,E')in D is

{(p,pp)}

r'y EI

Z(E,E") = ¢ E
p

where p € E and pt € E' is the unique point in E’ with Q(p, pt)=0.
The standard root diagram for Sp(4) is

w
C

Cl/ Cl

where the compact roots are marked [«] and the Weyl chambers corresponding
to the complex structures are as indicated. Here, C and ¢’ are non-classical and
C",C" are classical.

3. The comparison theorem
Let D = Go/T be a flag domain and
L,—D
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a holomorphic line bundle defined by a weight 1 € A. As will now be explained,
over each of the correspondence and cycle spaces there are global holomorphic
objects to which the sheaf cohomology groups H?(D, L,) map. In the case of W
the mapping is an isomorphism and the holomorphic object is a quotient of global
holomorphic sections of a holomorphic vector bundle. In the examples of interest
to us there will usually be distinguished representatives of equivalence classes in
the quotient space. In the case of the cycle space there are conditions under which
the mapping is injective and the image can be identified; the global holomorphic
object is sections of a bundle. The objective of this section is to relate these two
ways of realizing H9(D, L,,).

We begin by recalling the result from [EGW]. Let M, N be a complex mani-
folds and

T M—N
a holomorphic submersion. We identify holomorphic vector bundles and their
sheaves of sections. For F — N a holomorphic vector bundle we let
e 7 1F be the pullback to M of the sheaf F;
e 7*F be the pullback to M of the bundle F'.

We may think of 7~ F C 7*F as the sections of 7*F that are constant along the
fibres of M — N.

Next we let Q2 be the sheaf over M of relative holomorphic g-forms. We have

0— 70 = 0}, = QL >0,
and this defines a filtration F™Q}, with
0 =8, /FIQ%,.
In local coordinates (zf,y*) on M such that w(z%,y®) = (y*), F™Q}, are the

holomorphic differentials generated over Q%™ by terms dy** A--- A dy*=. Thus
FmQi, = image{r* QT @ Q%™ — Qf,}. From this description we see that we have

. +1
d: F™Q%, — F™Q%/",
and consequently there is an induced relative differential
de: QI — QT

Setting Q4 (F) = Q4 ®p,, 7*F, since the transition functions of 7* F may be taken
to involve only the y®’s, we may define

dr: QL(F) — QITH(F)

to obtain the complex (2 (F);dy). Using the holomorphic Poincaré lemma with
holomorphic dependence on parameters one has the resolution

(3.1) 0— 7 LF — QU(F) 25 QL(F) 2 Q2(F) = --- .

Denoting by H*(M, Q% (F)) the hypercohomology of the complex (€25 (F), dr), from
(3.1) we have

(3.2) H*(M, 77 1F) 2 H* (M, Qo (F)).
We denote by '
B (M, 23 (F))s d)

the de Rham cohomology groups arising by taking the global holomorphic sections
of the complex (Q%(F);dx).
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- - o
PP ol

THEOREM 3.1. Assume that M is Stein and the the fibres of M — N are
‘ i contractible. Then

H*(N, F) 2 B* (D(M, % (F); dx).
DiscussioN. Using the spectral sequence .
B} = HY (HP(M,Q5(F))) = BPH1 (M, Q3(F))
and the assumption that M is Stein to have H? (M, Q3 (F)) = 0 for p > 0 gives
" (3.3) H*(M, 7" F) 2 H* (T(M, Q%(F)); dn).-
E} Next, in the situations with which we shall be concerned, the submersion M —

N will be locally over N a topological product. Then by the contractibility of the
fibres the direct image sheaves

Ri(n~ F) =0 for ¢ > 0.

g The Leray spectral sequence thus gives

: (3.4) HY(N,F)= HY(M,7'F);

| here the LHS is H4(N, Ro(n~1F)) = HI(N, F). Combining (3.3) and (3.4) gives

l the theorem. -

. NOTE 3.2. The second part of this argument is due to Buchdahl; cf. (14.2.3)
in [FHW].

' Using Theorem (2.3) we now apply this result to W Iy D and F = L, to have
b the

ottty b ey

COROLLARY 3.3. HY(D,L,) = HI(T(W,Q%(Ly)); dx)-

In this way, the coherent cohomology H(D, L) is realized by global, holomor-
phic data. As noted above, in examples considered in [GGKZ2] there are canonical
“harmonic” representatives of classes in the RHS of the corollary.

To state our main result we first define bundles

FPe U

; as follows: For u € U let Z, C D be the corresponding maximal compact subvariety.
Let F2? = R (0% (L,)). Then the fibre

Fpd = HY(Zu, AP Nz,\p(Lp))-
1 THEOREM 3.4. There exists a spectral sequence with

EP9 = HO(U, Fﬁ,q), and
ERg = Gr? HPH(T(W, Q5(L,)); dr).

Using (3.3) we have the following result that is implicit in [WZ].
COROLLARY 3.5. There exists a spectral sequence with

EP? = HOU, Fﬁ’q)

Epe = GrPHPY(D, L,,).

If HO(2, A% Nyyp(Ly)) = -+ = H'7H(Z, ANz p(Ly)) = 0, then
(3.5) HY(D, L,,) 2 ker{ HO(W, F%) < H(W, F;9) }.

s I}
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Thus under the vanishing condition in the corollary, the coherent cohomology
H9(D, L,) is, in a different way from (3.3), realized as a global, holomorphic object.

The differential d; is a linear, first order differential operator whose symbol will
be identified below following the proof of Theorem (3.4).

PROOF OF THEOREM (3.4). Referring to the basic diagram (3.3) we have on
‘W the exact sequence of relative differentials
(3.6) 0 maLl, -0l > 0.
This induces a filtration on €2, and hence one on the complex
F(Wv Q:r(Lli): d1r) .
This filtration then leads to a spectral sequence abutting to
H(T(W, 03(L,)); de).

We will identify the F;-term with that given in the statement of the theorem.
The first observation is that in this spectral sequence we have

ERIT(W, Q4 @ 3Ok (L))
do =dn,.
Thus

EP? >~ H9 (]_"(W, Q3 ®@myQL (Lu)); d'lra)
d; is induced by d,.

By [EGW] applied to W " J we have

EPd >~ He (J, QF (L#))
dy is induced by d;.

Since U is Stein, and the sheaves RZ QF (L,) are coherent, the Leray spectral

sequence applied to J ™% U and Q2 _(L,) gives
EP? = H°(U,RL, Q8 (L,))
dy is induced by d.

It remains to establish the identification

(3.7 R% OF (L) = Fpe.

This will be done by identifying the various tangent spaces at the reference point
(zo,u0) € J. For this we will identify locally free sheaves F' with vector bundles
and denote by F, the fibre at the point p. We then have the identifications
Ty D =n™;
Ty Z =n7;
Nz/Dgo =95
Ty U =p* @ p7;
T(zou0)] =g @ PpT @ p~
and Tz, ue)J maps to Tpo D = 0t = nf @ p* and Ty U = p* @ p~ by the evident
projections. .
It follows that
o Of

wpy(z0u0) — P
where the isomorphism is via the Cartan-Killing form. O

- g p+ = NZ/D,EO

oy
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The proof also allows us to identify the symbol o(d; ) of the differential operator
d1, as follows: Recall that

o(dy): FQI @ Ty U — Fud

Hyuo?

or using the definition of the F}

(3.8 o(dy): H(Z,L,) ® Ty U — HY(Z,Nz/p(L,)).
Using the identification Ty U 2 p* = p we have the inclusion
(3.9) p— H%(Z,Nzp)

given geometrically by considering X € p C g as a holomorphic vector field along
Z and then taking the normal part of X. Combining this with the evident map

H%(Z,L,) ® H(Z,Nz/p) = H(Z,Nz;p(L,))

gives the symbol map (3.8).
This assertion will be proved when we revisit the symbol issue in section 4.2
(cf. Theorem 4.4).

4. Variants and applications

4.1. Quotienting by a discrete group. Let I' C Gy be a discrete, co-
compact and neat subgroup. A principal motivation for [GGK2] was to understand
the geometric and arithmetic properties of the automorphic cohomology groups
HI(T\D, L), objects that had arisen many years ago but whose above mentioned
properties had to us remained largely mysterious until the works [C1], [C2], and
[C3]. In studying the automorphic cohomology groups it is important to be able
to take the quotient of the basic diagram (2.3) by I', which is then

\W

[

(4.1) /Mg \"

Here we note that the group Gy acts equivariantly on the diagram (2.3), and so the
above quotient diagram is well-defined. The basic result concerning it is

THEOREM 4.1. I\'W is Stein, and the fibres of m,mp and wy are contractible.

PROOF. We first note that because I' is assumed neat, any v of finite order is
the identity. Therefore, no v € T, v # e, has a fixed point acting on D or on U. For
D this is because the isotropy subgroup of Gy fixing any point « € D is compact.
For u € U, if v fixes u then it maps the compact subvariety Z, C D to itself, so
again v is of finite order. It follows that the fibres in (4.1) are biholomorphic to
those in the basic diagram (2.3).

The next, and crucial, step is the result in [BHH] (cf. also 6.3.3 in [FHW]) that
there exist strictly plurisubharmonic functions on U that are exhaustion functions
modulo Gg. As in the proof in loc. cit., this induces a strictly plurisubharmonic
exhaustion function of I'\U, which is therefore a Stein manifold. Then I'\'W — I'\U
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is a fibration over a Stein manifold with affine algebraic varieties as fibres, which
implies that T'\W is itself Stein. O

The proof of Theorem (3.4) then applies verbatim to give
42) H*(T\D, L) & H* (T(O\W, 24(L,.)); de).

The double appearance of the notation I' in the RHS is unfortunate, but we hope
that the meaning is clear. We also have a spectral sequence with

P4 _ g0 P,q
(4.3) El H (F\u) Fp. )
BP9 = GrPHPH(T\D, L).

4.2. n-cohomology interpretation. A familiar theme in the study of coho-
mology of homogeneous spaces and their quotients is to represent that cohomology
by Lie algebra cohomology. For flag domains one considers n-cohomology where
n is the direct sum of the negative root spaces. Even though W is not a homo-
geneous space for Go, we will show that the global de Rham cohomology groups
H*(T(W, Q2(Ly));dr) can be realized as n-cohomology for a certain Go-module
OGw. Using this interpretation we will then observe that our spectral sequence is
just the familiar Hochschild-Serre spectral sequence.

The definition of OGw is as follows: From the basic diagrams (2.1), (2.3) we
obtain

Gw C G
lb
w < G/H
(4.4) lm l
w J <Cc G/Bk
- |
D < G/B

DEFINITION 4.2. Gw = f~*(W) is the open subset of G lying over W in the
diagram (4.4), and

O0Gw =T(Gw,0¢,,)
is the algebra of holomorphic functions on G'w.

As we shall discuss below, OGy is a somewhat strange object but it is not as
intractable as the definition might suggest. Since Gw C G is Go-invariant, OGw is
a Go-module and therefore n-cohomology with coefficients in OGw is well-defined.

In fact, since

D = Go(zp) C G/B
and .
W={geG:gK(zo) CD}/H
we have

GoWC'W, WK CW




346 ° M. GREEN AND P. GRIFFITHS

where K is acting on W on the right. Thus, Go and K act on OGw by

(gh)(w) = h(gw) g € Go,h € OGw,w € Gw
(hk)(w) = h(wk) ke K.

Because Gw C G is an open set; in fact it is {g € G : gK(zo) C D}, the Lie algebra
g, viewed as left invariant vector fields on G, acts on OGw on the left. When g
is viewed as right invariant vector fields it acts on OGw on the right. These two
actions commute, and we will use the right action of n to define H*(n, O0Gw). These
groups then have an action of Gy on the left and an action of H on the right.

THEOREM 4.3.
(1) There is the natural identification

H*(T(W,Q8(L,)); dr) = H*(n,0Gw) —p-

(2) The Hochschild-Serre spectral sequence associated to the sub-algebra n. C
n coincides with the spectral sequence given in Theorem (3.4).

PROOF. The notation ( ), on the RHS of the isomorphism above means the
following: The Cartan subgroup H acts on the right on Gw and therefore acts
on the complex (A*n* ® OGw,d) that computes Lie algebra cohomology. Then
H*(n,0Gw)—, is that part of H*(n, O0Gw) that transforms by the character Xpt
of H corresponding to the weight —u. This enters the picture because holomorphic
sections of 7*L,, — W are given by holomorphic functions on Gw that transform
by x, under the right action of H.

The proof of (1) in the above theorem is basically the observation from the
proof of Theorem (3.4), and using the identification (3.6), that we have the natural
identification of complexes

(4.5) T(W, Q% (Ly); dr) 2 (A°n* ® OGw; 8)—p.

Here “natural” means that the action of Gy on the LHS in (4.5) is given by the
Gp-module structure of OGw.

Turning to (2) in the theorem, here the basic observation is that when pulled
back to Gw, the exact sequence (3.6) is the dual to the restriction to Gw C G of
the exact sequence of homogeneous vector bundles over G/H given by the exact
sequence of H-modules

O0—=n.—n—=>p =0

From this we may infer (2) in the theorem. O

For later use we note that using the above identifications and p~* = p* via the
Cartan-Killing form,
(4.6) EP? = Hi(n,, APpT ® OGw)_p-
Using this interpretation we shall now compute the symbol o(d;) of
di: HO(UW,R%, Q2 (L)) — H°(U, RL, QLY (L))

U "TD

Following the notation from section 3 and the identification there of the fibre of
the vector bundle F2d — U and tangent space Ty, U at the reference point, and
identifying Z,, with Z to simplify the notation, the symbol o(d;) of the 1%t-order
linear differential operator is a map

o(di): HY(Z,A’Ng;p(L,)) ® p* = HI(Z, AP Nz/p(Ly))-
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THEOREM 4.4. With the identifications p* = p given by the Cartan-Killing
form and inclusion p — H°(Z, N. z/D) the symbol is given by

old))p®@X =pAX.

Here, on the LHS we have X € p and ¢ € HY(Z,A’Nz;p(L,)), and on the
RHS X is the corresponding normal vector field in H°(Z,Nz,p). The map is
Hq(Z, ApNz/D(L#))®HO(Z, NZ/D) — Hq(Z, Ap+1Nz/D(L“)) induced by ApNz/D®
Nz/D-—>Ap+1Nz/D. '

PrOOF. To compute the symbol on ¢ ® X, we take a section f of FP? defined
near ug with f(up) = 0 and whose linear part is ¢ ® X. Then by definition

o(d1)p ® X = (d1f)(uo)-

We shall give the computation when p = 0, ¢ = 1 as this will indicate how the
general case goes. Pulled back to Gw we may write

f= Z faw™®
aEQj

where the f, are holomorphic functions that vanish along the inverse image of Z,.
Then

dif = Z (faX_B)w_B Aw™% + Z fadzw™ .

acdt aedd
c
ped;,

The first term is the right action on f, by the left invariant vector field X_g. The
second term vanishes along the inverse image of Z,,,. As for the first term, under
the pairing

normal vector fields holomorphic functions 50
to Zy, vanishing along Z,,, Zo

when evaluated along Z,, the first term is the value along Z,, of
> faX paXp@uw®
{aeéj
ped],
where Xg @ w™* € pT ® n* and faX_3|Zo € Oz,. O

DiscussioN. The Go-module OGy is certainly not a Harish-Chandra, or HC,
module, but it does have an interesting structure, reflecting the fact that W is a
mixed algebro-geometric/complex analytic object, as we now explain.

The fibres of

w c G/H
]
U < G/K

are affine algebraic varieties isomorphic to the enhanced flag variety K/H. We
may smoothly and equivariantly compactify G/H so that each fibre g Yu),uvel,
is the complement of a divisor with normal crossings. Then we may consider the
Gy-invariant sub-algebra OG%g C OGw of functions that are rational along each




348 M. GREEN AND P. GRIFFITHS

fibre, and by truncating Laurent series we may write (‘)G‘;‘,t,g as the union of Gp-
submodules that are fibrewise K-finite acting on the right. Thus as a Go-module
over the Gg-module O(U) = I'(U, Oy ) we see that OGw has a reasonable structure.
As for the Go-module O(U), from [FHW] we see that U has the function-
theoretic characteristics of a bounded domain of holomorphy (contractible, Stein,
Kobayashi hyperbolic). In fact, for Go of Hermitian type, U = Q x Q where Q is
an Hermitian symmetric domain and where Gy acts diagonally. Again, O(U) is not
a HC-module but it seems to be a reasonable object to study. It will be further
discussed in a future work. Here we shall illustrate it in the case of SU(2,1).

EXAMPLE 4.5. We represent elements of G = SL(3,C) as
Z1 w1 Uy
g= |z w2 ux|=(2w,u).
Z3 Wz U3

Taking as Hermitian form H = diag(1,1,—1), Gw C G is defined by the con-

ditions
H{w) <0
H(z Aw) > 0.
The map Gw — W is given by

(2, w,u) \

the dashed line indicating that the line Zu lies in B¢. The space OGw is spanned
by the functions

i3,k l m n, p,4.,r b,.c
wiwiws (zaus — z3u2)" (23u1 — z1us) ™ (21U — 29u1)" 27 23 23U U UG

where
i’j)i+j + k’l’m,l+m+n’p1q1r,a)b)c 2 0‘
There are relations among the generators, such as

(Zzus — 23Ug

(z1ug — zou1) = Zou3 — Z3Us.
21U2 — 22Uy

4.3. Symbol maps for the two examples. In this section we shall discuss
the symbol sequence and characteristic variety for each of our two examples. Before
doing this we shall briefly explain the italicized terms.

In general, over a complex manifold M suppose we are given holomorphic vector
bundles E; —+ M and linear, 15 order differential operators P;: F; — E;y1 that
form a complex

(4.7)

{El-l—)léEz—l—Dz—)Eg—)---—-)E'm—)O,

Fi10F;=0.
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This general framework was the object of study of an extensive and rich theory
developed by Spencer and his collaborators in the 1960’s (cf. [BCG3), especially

Chapters IX and X). In that theory, one assumes that E; By F5 is involutive
with solution sheaf ©, and then one seeks to construct the remaining terms in
the above sequence that gives an exact sequence of sheaves which then provides
a “resolution” of ©. For each x € M and ¢ € T; M, the pointwise symbol maps
o(P;): B s @ TaM — Eiy1, give a complex, called the symbol sequence,

B . a(P1)(§) Es,

’

P,
ZM)E?),:E'_)"'——)EM,:E

whose cohomology is an important invariant of the situation (4.7). Also central to
the theory is the characteristic variety = C PT; M defined by

E={[¢ € PT*M : kero(P1)(§) #0}.
Roughly speaking one has
e = = PT*M means that the PDE system defining © is underdetermined,
e codim = = 1 means that the PDE system is determined;
e codimZ > 1 means that it is overdetermined,
¢ = = () mesans that the PDE is maximally overdetermined or holonomic.

In this latter case the sections of © over M are a finite dimensional vector space.
We observe that

RI whL, B RL QL (L) 2 RE 2 (L) — -+

is a complex of the type (4.7) whose symbol sequence and characteristic variety are
naturally associated to the spectral sequence (3.4). Although we do not know if the
first d; is involutive or what the characteristic variety is in general, we shall now
discuss the latter for our two examples.

In fact, to a general complex (4.7) there is naturally associated a spectral
sequence leading to a definition of “secondary characteristic varieties.” We suspect
this construction may appear in the literature; we shall give and illustrate it in the
situation studied here.

We will omit reference to the character 1 and denote by

FP9 = gheaf of holomorphic sections of F7? — U
= R1, Q% (D)
with stalks F29 for u € U. For m, C Oy, the maximal ideal, we define
mk ® Oy, F21
mk-{-l ®Ou_u Fg,q .

kap.g _
GroFpi =

This is a locally free coherent sheaf over U whose typical fibre is
S*p* ® H1(Z, N°Nz;p(L)).
Combining the above identification p* = p with the inclusion
p — H°(Z,Ngzp),
the cup-products give maps

S*p @ H1(Z, Ny, (L)) = S*'p® HY(Z,N"** Ng;p(L)).

Ngz/p
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The composition of these maps for k followed by k — 1 is zero, and thus we have
for each k a complex of sheaves

GrFF%e 5 QrF 1919 o ... 5 GrF T

where r = min(k, codimp Z) and where the maps are Oy-linear. For k=1 this is
just the symbol map. For k = 2 it is

d d
Gr2Foe 2 s Grlgle ——2 GriF 2.4

-
\\dz
-

-~
~

-~
Gr2F0e—t — GrlFlel —3 GrPF 2L,

Here we continue to denote by o1 (£) the natural maps induced by the usual symbol
01(€) when k = 1.
The maps in the fibres at u depend only on ¢ € T,;U. In a typical fibre we have

k=1 ¢oHY(Z L) 29, g (Z,Nz/p(L))
k=2  e@HY(z,L) -2 ¢@ HI(Z,Nyp(L) 1® | ga(2, ANz p(L))

T - 22(5)

~—

-~ -
—

=
£@) @ H9=1(Z, L) —— £ ® H1(Z, Nz/p(L)) — H*(Z,\*Ng/p(L)).

DEFINITION 4.6. The secondary symbol o2(€) is defined by the dotted arrow
above. The secondary characteristic variety =p is defined by

Ep = {¢: 01(§) = 0,02(§) = O}

The definition of o2(¢) is clearly related to the differential dp in our spectral
sequence. Recall that do is a linear differential operator of degree < 2 defined on
kerd;. We are not aware of how one may define the symbol of such an operator;
the above is one possible construction defined on decomposable elements £2) where
01(£) = 0; i.e,, £ € E. In the discussion below of Sp(4) we shall abuse notation
and denote by o(dz) the above construction extended in the special case (i) there
to not necessarily decomposable elements in p(@. This discussion is not meant to
be rigorous or definitive, but rather our interest is to illustrate interesting behavior
of Harish-Chandra modules associated to degenerate, or close to being degenerate
in the sense that u + p is near to a wall, discrete series and limits of such.

SU(2,1): As complex manifolds, we have Z = U(2)/T = SU(2)/Ts where Ts =
SU(2)NT. As homogeneous complex manifolds they are distinct and have different
sets of homogeneous vector bundles (cf. section ILA in [GGK?2] for a discussion
and illustration of this point). Here, for simplicity we shall use Z = SU(2) /Ts,%
and we denote by W & C? the standard representation of SU(2) with W) being
the n'® symmetric product. We then have

W = H°(0z(1)).

415 the case of Sp(4) discussed below, in order to be able to use weight considerations we
shall need to use the homogeneous complex manifold Z = U(2)/T.
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From [GGK2], (A.IV.F.6) we have the identification of holomorphic vector bundles
over Z
Nz/p = 0z(1) ®0z(1).
Setting
deg L, | 7= k,
we then have the following tables of the fibres of R, QF (L,) — U (here ¢ is the
y-axis and p is the x-axis, and W) =0 for j < 0):

e 9150 wo" | dwe-v | we-
’ 0 0 0
w@ o] 0
k=-2 0 |o0|wWO
0J]0]0
k=-1 olofo
. 0 0 0
= W | dwE+D | Jie+2)

Using the identification

p=H(Z Nzip)=WeoWw
*>p, as in Theorem (4.4),

we shall analyze the various cases.
k = —l — 2: The symbols are then

0 WO e (dW)-ewe-d
(i) (éw(‘-”') ® (ezaW) S WU
These may be identified as follows:
(i) PR (wow)— Plwe Plvw Pew® wuw eWw
(i) (PoP)® (wew) — Pluw' - P|w PP e W1,

It follows that (i) is injective unless w,w’ are linearly dependent, and by a Koszul-
type argument except in this case we have image (i) = kernel (ii). This gives the

CONCLUSION 4.7. For k £ —3 the characteristic variety Z is a quadric in P3;
hence codimE = 1. For £ non-characteristic the symbol sequence is exact.

k 2 0: The symbols are then maps
2
() wW® @ (@W) 5 @ WD,
2 2
() (@W®) @ (oW) —» Wk,
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They may be identified as follows:
() P® (wew') > Pwd Puw Pew®,wuw eW
(i) (PO P)® (wow)— Puw ~Pw P, P e Wkt gy o € W.

It follows that (i) is injective, unless of course w = w' = 0, and then the symbol
sequence is exact.

CONCLUSION 4.8. For k 2 0 the characteristic variety Z is empty, and the
symbol sequence is exact.

We observe that by (3.5) in the cases k £ —2 and k 2 0 the maps
HY(D,L,) <> H°(U, R}, 7pL,) k=-2
—H%D,L,) = H°(W,RY 7pL,) k20
are injective. For k £ —3 and &k 2 0 the image is just
ker{dy : HO(URS, whL,) — HO(U, R, O, (L))}

For k = —2 a very interesting special circumstance, to be discussed below, arises.
We also note that from the above conclusion we have that when £ 2 0

dim H°(D, L,) < oo.

REMARK 4.9. For a general D = Go/T we will have

(4.8) dim HY(D, L,) < o0 0L ¢<d=dimKy/T
provided that for Z = Ko/T and non-zero £ € p the map
(49) HY(Z, L) % H(Z, Nz/p(Lu)

is injective, where we are using the inclusion p — H°(Z,N z/ p). We note that
(4.8) is not true for D classical and ¢ = 0 (take any p such that p+pis dominant),
and it is not true for D non-classical and ¢ = d (take any px such that g+ p is
anti-dominant). In general, the LHS is known by the Borel-Weil-Bott theorem.
For the RHS there is a composition series for Nz,p whose line bundle factors are
the Lg where 8 € ®;_ is a positive non-compact root. Thus, at least in principal,
one might hope to analyze the map (4.9).5 We are not aware of any case of a
non-classical D where it fails to be injective for non-zero §.
We note finally that

LEMMA 4.10. If p is in the anti-dominant Weyl chamber and Nzyp — Z is
ample, then there is a filtration FPH (D, L,) such that for ¢ < d, the associated
graded has dim Gr* H(D, L,,) < 0.

Proor. The filtration
FPL, =7, ® L,
Oz
of L, leads to a spectral sequence abutting to H*(D, L,) and, using that F?L, /
FPtlL, = Sym? NE/D(L#), with Ei-terms given by
EPY = HPY9(Z,GrPL,) = HPT9(Z, Sym? Ng/D(L“)).

5As is evident from the works of Schmid (cf. the references in [Sch2]) and from part IV of
[FHW] the combinatorics of the extension data in the composition series are quite intricate.
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By the ampleness assumption
Ef’q =0 for 0s¢g<d, pZPO(“’)a

which gives the conclusion. O

The condition of ampleness is rare but does occur, especially in low dimensional
examples including the two discussed in this paper. We suspect that in fact (4.8)
is valid, but to be able to conclude this one needs N, FPHY(D, L,) = (0).

Returning to the general discussion of the symbol map for SU(2,1), in many
ways the most interesting is the case k = —2: Then we have for the symbol a map

(4.10) o(dy) - WO @ p*® — WO,

Calculations that are in progress for a separate work indicate that

The symbol map (4.8) is given by
o(d)P=%(PQ), Pey®

where Q € gt? is the Casimir operator.
Here we are writing g = p @ ¥ and thinking of p*@ c g+,
Representation-theoretic interpretation: :6 Referring to the root diagram

in Figure 1 where C is the positive Weyl chamber for the non-classical complex
structure on U(2,1)/T, for weights p such that for p = 2(3 ,cq- @) we have

(4.11) u+pe—C,

i.e., i+ p is anti-dominant, Schmid has shown that H*(D, L,) is the HC-module
Viu+p with infinitesimal character x,+,. Since

(4.11) = degL, £ -3
from the discussion above and the results of [Sch2] we have

LEMMA 4.11. For a weight u satisfying (4.11), the HC-module associated to
the discrete series representation with Harish-Chandra character © ., is realized
as the kernel of the linear, 15¢ order differential operator above whose characteristic
variety is a quadric in P3.

For the weight y = —p, so that L, [ , = Wz is the canonical bundle, H YD,L_,)
is the HC-module associated to the totally degenerate limit of discrete series (TDLDS)
(0,C) with infinitesimal character xo = 0 and corresponding to the non-classical
Weyl chamber C. We expect to then have the conclusion

CoNcLUSION 4.12. The HC-module associated to the TDLDS V} is the kernel
of the scalar, linear 2" order PDE given above whose symbol is (1/2)2 where Q is
the Casimir operator.

Sp(4): In discussing SU(2,1) we have been treating Z = U(2)/T as the homo-
geneous space SU(2)/Ts where Tg = SU(2) NT. For Sp(4) weight considerations

6These will be more extensively discussed in joint work in preparation with Matt Kerr which
is a sequel to [GGKZ2].

]
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require that we use the full U(2) symmetry group. In the weight diagram

262
°
ez — €1 E —i.' ei + ez
2e
[ ] [ 1
—-261 +
. + [o]e1—e2
—€1 — €2
+
°
-—262

we have labelled the positive roots for the Weyl chamber C' corresponding to our
non-classical complex structure D by +, and the compact roots by []. We denote
by Li,e,+kse, — D the U(2)-homogeneous line bundle given by the character of T
corresponding to the weight kje; + koez. We then set

e W =U(2)-module H%(Z, L, );

e § = U(2)-module A2W given by the character of U(2) with weight e; + e2;

. ,5") = U(2)-module Sym™ W ® &*.

Then we have as U(2)-modules

. HO(Z’ Lk181+k282) = ngfl—kz) (= 0if ky > k2);

o Hl(Z’ Lk161+k262) = ngf:‘;kl—m (= 0 if kg > k1 + 2);
e WMow™ = ) Wi(_’:,:'ﬂ_zi) if m <n.

From the root diagram we may infer that for the normal bundle Nz/p — Z we
have as U(2)-homogeneous vector bundles

— !
(4.13) Nz/p = Lz, @,N
0— Leyte; =+ N' = Lae, — 0.

Using this we see that as U(2)-modules

(4.14) HY(Z,Nz/p) = W o W ew”.

p

Here, we have the inclusion p — H %(Z,N. z/p) given by the terms over the bracket,
and there is one “extra” deformation of Z; i.e., not coming from moving Z by G,
corresponding to Wl(o). Since H'(Z, Nz;p) = 0, this extra infinitesimal deforma-
tion of Z C D is unobstructed (cf. Part IV in [FHW] for a general discussion of
this point).
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For the line bundle L, = Ly, e, +k,e, We bave
deg Lu = k;l - k2
wz = Le;—e, (= degwz = —2).

The following tables show where the non-zero groups HY(Z,AP Nz, p(Ly)) occur.
The specific 1(2)-modules can be identified using (4.12) and (4.13), and this will
be done in two cases of particular interest.

* | ok [ k| ok

0j0|0]|0]

k

A

—5:

Here, the term in the upper right-hand position is zero if k = —5. It may be checked
that

g+ p anti-dominant =k < —5.

Thus, the HC module associated to the discrete series have the above picture. The
spectral sequence degenerates at Ey, which is a general phenomenon.

x|+ |%|0
==% 5100
*|%x|0]0
k=3 070 *|=
*[0/01}0
k=2 0| %=
k= —1: 0ji0(0]|O
O x| *x|x*
k> 0: 010|010
el IR

The cases k < —5, which include the discrete series, and k 2 0 where the charac-
teristic variety = = @ and dim H%(D, L,) < oo, are similar to the SU(2,1) example
discussed above. Here we only analyze two particularly interesting cases:

1) L_, = L_ge,4e, corresponding to a TDLDS;
P 1Te2
(2) L_3¢,+e; corresponding to a non-degenerate limit of discrete series
(NDLDS).

In case (2) the picture for p = —3e; +e2 and p+pis

)

ut+p

The arrow means that the NDLDS is associated to a non-classical, anti-dominant
Weyl chamber; that is it is a non-holomorphic NDLDS.

.

o o R -y AT

]
1]
il
]
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Case (1): The picture here is

wh w0 | o
1 1
0 o |wiw®

We have as above
p= W oW ey
Dualizing the symbol map
W ept - wi
for d; : E? gt E? 2 at our reference point gives, using p = p*,

WD W p=w® o w?.

By consideration of weights we end up in the Wg,)-factor. This map is thus
H%(Z,0(1)) ® H%(Z,0(1)) — H°(Z,0(2)).
Unwinding the dualities, we see that the non-zero part of the symbol is a map
VeSStV — v
w w

u® g — ulg

where V' is a 2-dimensional vector space. This map is an isomorphism if, and only
if, ¢ € S*V* is a non-singular quadric. This gives the

CoNCLUSION 4.13. The characteristic variety Z C ]P(WO(Z) & W(Z;)) is the pro-

jectivization of (non-singular quadric in Wéz)) ow®.

This is a singular quadric in Pp*. Since d;: E;® — Ei"' is a determined linear
PDE system it is consistent that codim = = 1.

Turning to ds, since for a 1% order determined linear PDE P: E — E’ whose
characteristic variety is a hypersurface, the solutions that vanish to 274 order at a
point define a linear subspace

F, CE,®S*T:M

that projects onto E, in the sense that the natural map F, ® S?T,M — E, is
surjective as explained above, we may consider the symbol of dy as a map

o(d2): W © 5% - W,
Now by (4.12)
% = 5w o (WP e W) & 5'W 3.
By weight considerations, only Wéz) ®W£22), which contains the map id
Wé2), is going to map Wﬁll) to Will). Then by (4.12)

Wéz): Wéz) —

Hom(W®, W) = w® ¢ w®

Whew® =wDeow@ew®.

(4.15)
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Thus the only potentially non-zero piece of o(d2) arises from the term over the
brackets. In fact, since

p= W§2) 1<) Wﬁzz)
and
ge W = g2y
has rank one, taking for example g = 232 and z; € kerd; C V then
g®pe SVeSV*
maps to Hom(WSll) , Wﬁll)) by
p = az? + bz 20 + ¢z}
q®p — 2az] @ z1 + bz} @ 22
and 2o — 0 under ¢ ® p. Thus 25 € ker d so that we are led to the
CONCLUSION 4.14. Viewing the symbol as a map
Hom (Will), Will)) 5 S%,
from (4.15), the only non-zero part is a map
w2 eowd - wRew(.

This map is a constant ¢ times the identity.

We suspect, but have not proved, that ¢ # 0; i.e., the characteristic variety of d; is
non-trivial. The relation, if any, between the symbol o(dz) and the Casimir operator
is not yet understood by the authors. The case where ¢ = 0 will be commented on
at the end of this section.

Case (2): Here the picture is

WA TwQew2ew® WY o

0 0 0o |w®

This is derived from (4.12) and (4.13), and for the E>° and E' terms uses that
in the cohomology sequence

0— L_2e1 s N'® L_..252 ® L——2e1+e2 — L-—-el—eg —0

we have
HYZ,L_¢;—e,) — HY(Z, L_2¢,).
Using p & p*, for the symbol
(4.16) o(di): B @p — EP*
we have
Bop= ("R ew?) e (Whowd)
o (W£42) ow® g Wé")) ® ( Wew? e Wﬁ"}).
e ————” — "
By weight considerations, only the terms over the brackets can map to something
non-zero under dy. Thus the symbol map is

(W2 ow?) o (WRew®) » (WReow”) e w3

N\ —

e —

e
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where the terms over the single and double brackets correspond under the symbol
map and may be seen to be surjective. In fact, using from (4.12) that

WP 2w

the map over the double brackets is just contraction of Q1 € W_(_zz) with @5 € Wéz)
twisted by 2.
The map over the single brackets is of the general form

SPVRSV > (VRV)(VeV) s VAV RV — A2V ® 52V
together with
SV ® SV = A’V @ SV
where V is a 2-dimensional vector space. Together these two maps give
STVRS’W aVOA VRV > A VeVeV.

In coordinates and taking the above duality into account, the map is
(Z aijz{z;f> X (z bkzszI) — Z (Z aijbjk) z{zk.
1,3 ki, UL
There are three cases depending on the rank of Qs = Zk,l brizrz.
Rank Q2 = 2: Taking Q2 = z122, the above map on ¢; = Zi,j z 2} is

2?2 52l ®2

2?2 S5 en
* % * *
2125 2] @22+ 25 @ 21.

In this case there is no kernel contracting with Q2.
Rank @, = 1: Taking Q2 = 22 we have

21?2 2 221 Q2
2125 225 Q@ 71
252 = 0.

Now
p=wPow?

where (2 € Wé2) and Q1 € W£22) . Then
e (2 = z122 mapping to the kernel of the < part of d; is zero;
e Q> = 22 mapping to the kernel of the <~ part of d; is 232,
e Q2 = 0 mapping to the kernel of the —~ part of d; is all of Wg)

If now Qy = 22, then for Q; = a2}2 + bz 2} + cz3? the kernel of the \— part of dy
takes 232 to 2czz. So there is one further condition on @y, namely ¢ = 0, to have
a non-trivial kerd;. If Q2 = 0, then Q; contracts to zero with a codimension 2 2

subspace of Wg,) for any @);. Thus the characteristic variety has codimension 2.
Rank @, = 0: Then contracting with @Q; we always get a rank 2 kernel. But
Q2 = 0 is a codimension 3 condition.

CONCLUSION 4.15. The characteristic variety E of the symbol map (4.16) has
codim=E =
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This is consistent with d; = E>' — E}"! being an overdetermined PDE system.

Remarks concerning degenerate symbols: We begin with the general

OBSERVATION 4.16. Schmid’s result [Sch2] that H"(D,L,) =0 for r > d =
dim Z implies conditions on the differentials in the spectral sequence in Theorem
(3.4).

Specifically, no terms in ET"? can survive to ER? if p+ ¢ > d.
As we shall now discuss, this has implications for the symbol maps. For this
we make the following

CONVENTION. If P: E — F is a differential operator of order £ k whose
symbol mapping E ® S*T*M — F is zero, then P has order < k— 1. We define
the symbol of P: E — F to be the first non-zero map £ ® S'T*M — F.

Referring to the discussion below (4.14), if ¢ = 0 then dp is a differential
operator of order £ 1. If it is truly of order 1, then the symbol is a map

w2 ow? »w? ewd,
which by weight considerations must be zero. Thus, d; is a scalar operator
w® w8

which must be a multiple of the identity. We again suspect, but have not proved,
that if this situation does occur then the multiple is non-zero.
When we turn to case (ii), from (4.16) the mapping

dy: kerdy N EP — B3O

must be an isomorphism. By our convention above, the symbol o(dz) must be
non-zero. The various cases where ds is of actual order 2,1,0 can be analyzed using
weight considerations, but we shall not do so here.

We conclude with a remark about the case k < —5, where the picture is

k ok | k| ¥

0[{0]0]0

In this case we have an exact sequence
(4.17) 0 HY(D,L,) - B & gt &, g2t B3 0.

Now EP? = H°(U,RZ, Q% (L,)), and since U is a Stein manifold we believe it
follows that setting ©, = ker{d; : R} nhL, — RL Q'(L,)} we have over U the
exact sheaf sequence
N d
0— 0, — R: mpL, =4 Ry QY(L,)
4y RL Q2 (L) 2 RL Q3 (L) — 0.
Although we have not tried to analyze this, it seems interesting and reasonable that

this should be a Spencer resolution as in [BCG3|, Chapter X. In fact, this could
be a general phenomenon for the discrete series.
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