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Chapter II
CURVATURE PROPERTIES OF THE HODGE BUNDLES

Phillip Griffiths
Written by Loring Tu

We consider a polarized variation of Hodge structure ¢:S - I'\D,
which we think of locally as a variable polarized Hodge decomposition on
a fixed vector space:

H = @ ubd
p+g=n

P _ 0,0, oo P0-p
Fs - Hs, ® eHs ’
where s varies over the variety S. (To be strictly correct, s should be
in the universal covering §, for otherwise it may not be possible to have

the fixed vector space H. Locally the description just given is fine.) We

have
ouPrd ~
S C Hp+1’q 1 ® leq
gs ~ s S
and by conjugation,
aHPtq _
s ¢ gPdeyPlatt,
as S S
or in terms of filtrations,
orP
—S cF’
Js ~
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and
oFP _
s ¢ gP!
ds — 8

The differential ¢, of the period map assumes values in the horizontal

subspace .
, —1;q+1
by T(S) - ® Hom(5'd, HE 0t |

If v eT,(S) is a tangent vector, we write
B0 = B vy,
P

where

1,q+1

p.q P
vp € Hom(Hg"", Hg ),

and we write

~1 1 ’
v; € Hom(Hg e, Hg q>

for the adjoint of Vo
Since the variation of Hodge structure is polarized by the second bi-
linear relation, on the Hodge bundle HP'9 there is a Hermitian metric

given by
<> = FDPAQWLT)

making the Hodge bundle HP'9 into a Hermitian vector bundle.

§1. Connections and curvature

We recall here the curvature formulas for subbundles and quotient
bundles of a Hermitian vector bundle. These are worked out in Griffiths
and Harris [6, pp. 71-79]; however, because we use a different subscript
convention, we will sketch the computations below.

If E is a Hermitian vector bundle with connection D : GO(E) - @)

and ey,--, e, is a unitary frame for E, then the connection matrix 6

§
4
i
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relative to this frame is the matrix of l-forms given by

Dej = Eeijel .

The curvature matrix @ is the matrix of (1,1)-forms given by

j ij i
Since
D2ej = Edeij e — 291,'"921 ep
=3 deij e; + 20‘5 AGijeg
= z(dGij+6ikA6kj)ei freplacing € by i
and i by k],
we have

G =d9+0A0.
Given an exact sequence
0-S-E~-Q-0,

the second fundamental form
o @0(8) > al(Q)

is the composition of D| s followed by the projection to the quotient
bundle Q. Using the Hermitian metric we may identify the quotient
bundle Q with (S)'L and write E =S©Q. Let ey, -, e, be a unitary
frame for S and e

---,e_ a unitary frame for Q. Then the connection

r+1’ n

matrix for E is

0:

and the curvature matrix is
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d0.+0. A0 G Ao *
stYs Mg
®=d6+0A0 =
* d0Q+6QA0Q—aAtE

Therefore, if 6y and ®Q are the curvature matrices of S and Q

respectively, then

¢H) @ =8| +'Fao
and
2) ®Q=®[Q+0At?f.

Denote the metricon E by <, >. A connection D on E is the
metric connection if

(@) d<v,w>=<Dv,w> + <v,Dw>, and

(b) the (0,1)-partof D is 9.

If D=D"+D” is the decomposition of D into its (1,0)-part and
(0,1)-part, then the metric connections on the subbundle S and the

quotient bundle Q are

Dg = D'|g-0) + 9
and

D, = D’|, +(@+t5)

Q Q ’
PROPOSITION 3. Let D =D’+D” be the metric connection on a
Hermitian vector bundle E. If e is a holomorphic section of E , then
dd<e,e> = <D’%,D’e> - <@e,e> .

Proof. By comparing the types in Condition (a) of a metric connection, we
have

d<v,w> = <Dv,w> + <v,D"w>,

a< v,w>

<D*v,w> +<v,D'w>.

ox
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Therefore,

dd<e,e> = d<e,De>
=<D%e,De> +<e,D"'De>

=<De,De> +<e,Be> because ® = D”D’ for holomorphic
sections
=<De,De> -<Be,e> because ®=-0.

q.e.d.

§2. The curvature of Hodge bundles

There are two metrics on the cohomology bundle }: the Hodge metric
<, > and the nondegenerate indefinite Hermitian form (-\~1)* Q( ,7),
which we will call the indefinite metric and denote by ( , );. On the

Hodge bundle HP'Q these two metrics differ by a sign
<, > =EDPC, )

So the curvature of HP:? is the same relative to either metric.

Let ¢ P, H/FP be the second fundamental form of FP in K
relative to the indefinite metric. By the horizontality of the Gauss-Manin
connection, !/lp induces a map: Fp/Fp+l 3—'p—1/3-'p , which we also
denote by l/lp . Thus the second fundamental form may be viewed as a

map of Hodge bundles
¢rp; HP.q ., WP-1.9+1

A section e of the Hodge bundle HP'Q is said to be quasi-horizontal if

t,lrpe:O.

PROPOSITION 4. Let < , > be the Hodge metric and ¢ and e’ two
C*™ sections of the Hodge bundle HP'9. The curvature formi ® of }P4

is given by

<@e,e”> = <YePe’>+ <t$p+1e,tgzp+1e'> .
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Proof. Since l/Ip is defined relative to the indefinite metric, we will

compute ®}(p,q relative to the indefinite metric. Consider the defining

exact sequences for the Hodge bundles:

O-»ffp-»}{»}(/ffpao
0 FoH LFp L }pa 0.

By the curvature formulas for subbundles and quotient bundles ((1) and (2)),

) = % Ag_ [because X is flat]
Fp p*¥p
_t7 t
Orpa = Vpr¥p t¥pia A Vo -

Therefore,

(8}(P.qe’e)i = ~Wpe, ¥pe); - (t‘;pﬂe: t');pﬂe)i .
In terms of the Hodge metric this formula is

(-1)P<Be,e> = ~(-LPI<y e pe > (-1)PF1< a8 Tpe>

P+

q.e.d.

A (1,1)-form

@ = \/—2—1- Zhij(z)dzil\dfj
is positive if (hij) is a positive definite Hermitian matrix. A matrix A
of (1,1)forms is positive if <Ae,e> is a positive (1,1)-form for every
vector e. The matrix A is negative if —A is positive. The notion of
positive or negative semidefiniteness is defined analogously. A Hermitian
vector bundle E is positive or negative according as i@E is positive or

negative.

COROLLARY 5. The Hodge bundles H%" are negative semidefinite.

PR -1

rween
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Proof. By the proposition

i<®}(0 n€€> = i<t$1e,t$1e> ,

which is a negative semidefinite (1,1)-form. q.e.d.

For the proof of the next proposition recall that a real-valued function
f is plurisubharmonic if its Levi form iddf is positive semidefinite. By
the maximum principle the only plurisubharmonic functions on a compact

manifold are the constants.

PROPOSITION 6. Over a compact base a holomorphic quasihorizontal

section of P9 is holomorphic and flat as a section of K.

Proof. Combining the Levi form formula (Proposition 3) with the curvature
formula (Proposition 4), we get

ey _ ’ ’ _ _ t t
dd<e,e> = <Dpe,Dpe> <¢rpe,¢pe> < thHe, l//p+1e> .

Because e is quasihorizontal,

) i09<e,e> = i<Dje,Dre> i< e e>.

This is positive semidefinite, since Dé has type (1,0) and tlzp 41 has
type (0,1). So <e,e> is plurisubharmonic and hence constant. It then

follows from () that D;)e =0 and tt/_pre =0. Since

Ve =Dpe+t/fpe =0

and
e =D‘I’)eitl/7p+1e =0,
e is flat and holomorphic as a section of J. q.e.d.

APPLICATION 7 (Theorem of the Fixed Part). Let {}(Z, XP9v,0,S} be

a polarized variation of Hodge structure over a compact base. If e isa
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-

global holomorphic flat section of X, then the (p,q)-components of e . rolee) = gugle) .

are also holomorphic and flat as sections of K. ,
Then O and 0" are isomorphic everywhere.

Proof. Let e = e +e, ;+-+e, be the decomposition of e with

! Proof. By parallel translation p, extends to a flat, possibly multivalued

ep ¢ P9, Since e is flat, .
section p of Hom(D, "), which is an isomorphism of vector spaces

0=Ve= (D;*"/’r) €, + (D;_H +'/'r+1)et+1 +oeee ! everywhere. The equivariance of the monodromy says precisely that this
section p is single-valued. By the theorem of the fixed part p has type

By comparing types
(0,0) everywhere, so it preserves the Hodge filtrations everywhere. q.e.d.

Yve =0. :
o APPLICATION 9 (Semi-simplicity). Deligne has proved that the monodromy

representation of a variation of Hodge structure over a quasiprojective base

is completely reducible over Q (Deligne [4, 4.2.6)]). To keep the presenta-

Similarly, since e is holomorphic,

” » t7+
= = +
0 =D (Dr £ ¢f+1)e1' * tion simple we will content ourselves with the following weaker statement.
so that .
2 ' THEOREM 9.1. Let = {}(Z, HP:9)V,Q, S} be a variation of Hodge struc-
Dle, = 0. ture over @ compact base, 1" the monodromy group, and HF the space of

invariant cohomology classes. Then the restriction of the bilinear form Q

. . . T,n—r ep:
Therefore, e, is a holomorphic flat section of X . By Proposition 6 to I is nondegenerate. It follows that if (HF)'L is the orthogonal com-

it is holomorphic and flat as a section of H. Next apply this argume‘nt to plement of ul' with respect to Q, then
e—e., which we now know to be a global holomorphic flat section of K. L
By induction all the (p,q)-components of e are holomorphic and flat as H-Hlo (HF)
sections of K. q.e.d.

as I'-modules.

For the next application, we note that if  and ) are two variations . . .
Proof. Let C:H > H be the Weil operator. We claim that if e = 2 ep is

of Hodge structures over the same base S, then 7,(S) acts on

, an invariant cohomology class, then so ate each Hodge component e_ and
Hom(HC, HC) by p

& o) -1 Ce. Let e(s) be the flat global section of the cohomology bundle H
,0) b o
g E o8 obtained by parallel translating e and let e(s) = X ep(s) be its Hodge

for ge 7,(S) and o¢ Hom(HC, H’C). decomposition. By the theorem of the fixed part, each ep(s) .is also flat.

Therefore, ep(s) can be obtained from p by parallel translation. Since

APPLICATION 8 (Rigidity Theorem). Let 0 and O be two variations e,(s) is a single-valued flat section, e is an invariant cohomology class.

. P
of Hodge structures over a compact base space S. Suppose U and 0 If yel’, then
agree at one point S, Vvia an isomorphism Bo: HC - Hé and suppose the

monodromy action is equivariant :
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yCe

1

YZ(V-DP e,

Ce.

This proves the claim. Since Q(CE,e) >0 for e #0, the bilinear form Q
is nondegenerate on HF.

Because I' preserves Q, the orthogonal complement (HF )l is also
invariant under I'. Let e eHl N (HF)l . Then Q(Ce€,e)=0. So e=0
and HF n (Hr‘)'L =1{0}. Since HP and (HF)J' have complementary

dimensions in H, we get the direct sum decomposition

H=-ulemh?!. g.e.d.

§3. Curvature of the Classifying Space

Let X be a Hermitian manifold. Denote by T, (X) the (1,0)-tangent
space at x in X. For a holomorphic tangent vector € in T,(X) we
define the holomorphic sectional curvature K(¢) as follows.

For the metric ds? = h(z)dzdZ on the unit disk A, the Gaussian

curvature is defined to be

In general, if X is a Hermitian manifold with metric ds)2( and f:A X

is a holomotphic map such that
*) f(0)=x and f,(d/92)y=¢,
then we set
K¢ = Gaussian curvature of f* ds?c at the origin in A .
The holomorphic sectional curvature K(¢) is defined to be

K(¢) = sup K,

[P

s ——
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where f ranges over all holomorphic maps f:A - X satisfying the

initial conditions (%).

FacT 10 (Wu [12]). If (RiJTkE) is the curvature tensor relative to an

orthonormal frame near x and € =(£1) is a unit vector relative to the

same frame, then

_ _ izjekzl
K(¢) = ERijk@rf EIERES .
EXAMPLE 11. On the unit disk A the Poincar€ metric

ds? _ 2 _dzdz

T 1-1z|H?

has curvature K =-1. On the upper half-plane § ={w = u+ivlv >0},

which is conformally equivalent to A, the Poincaré metric is given by

2 _ 1 dwdw
ds[) T 2n v2

THE AHLFORS LEMMA. Let X be a Hermitian manifold and T, € T(X)
a holomorphic subbundle of the tangent bundle such that the holomorphic
sectional curvature K(£) < -1 for all nonzero vectors & in Ty,- Then

for any holomorphic map f:A » X such that £,(9/0z) € (Th)f(z) , we have

*r1a2 2
F(ds%) < ds? .

REMARK 12. The map f in the Ahlfors Lemma is an integral manifold

of Tj,. The assertion is that such a map is distance-decreasing.

Recall that for the classifying space D, we have

T(D) C P @ Hom(HP-9, HPT:q+T)
p 0
U

T,(D) C @ Hom(HP9, HP-1.a+1)
P
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Since each Hodge bundle HP'9 has a Hermitian metric, the tangent bundle

T(D) inherits a Hermitian metric by functoriality.

BAsic COMPUTATION 13 ([3] and [7]). The holomorphic sectional curva-
ture of the horizontal subbundle T,(D) is bounded above by a negative

constant:
K(¢€)<-A<O0 forall e T,(D) .

REMARK 14. This follows (nontrivially) from the curvature formula for

the Hodge bundles (Proposition 4). It is convenient to normalize so that
A=1.

As a consequence of this computation and the Ahlfors Lemma, the
classifying space D has all the function-theoretic properties of a bounded
domain relative to horizontal maps.

A special case of the distance-decreasing property of the period map

is the following.

PROPOSITION 15. Let ¢:A* 2 T'\D be a period map and & TA*STD =
oHom(FP, H/FP) its differential. Write ¢, = ®(pp- If e isa section

of ¥P, then
Js0p(2)e] < el

- r log

for some constant C.

Proof. Recall that the Poincaré metric on A* is

2 dredr +r’dfedd

" ey

5

By the distance-decreasing property of the period map,

Hence,

=/Z__1_
A -

rlog &

T T UNISPRRPSSR Sl
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wil s Vi mam

Therefore,

I(0p(07 30 ell < I(b)p (070 llell < ligh /6] fell

2 el d
: \/; rlog (1/1) e

APPLICATION 16 (Removable Singularity Theorem). Let Z be a sub-
variety of the algebraic variety S and ¢:S—~Z -»I'\D a variation of
Hodge structure such that the monodromy is locally finite around Z . Then

¢ extends to give an extended variation of Hodge structure ¢:S - '\D.
For a proof see Griffiths 5, p. 156].

APPLICATION 17 (Monodromy Theorem). Let ¢: A* S{TY\D be a

variation of Hodge structure over the punctured disk with

&, (generator of nl(A*)) =T.

Then all the eigenvalues of T are roots of unity.

The proof that follows is due to Borel. We will need to quote the
theorem of Kronecker that an algebraic integer all of whose conjugates

have absolute value 1 is a root of unity.

Proof. Since T can be represented as an integer matrix, the eigenvalues
of T are algebraic integers. By Kronecker’s theorem, it suffices to show
that their conjugates are all of absolute value 1.

Because the upper half-plane § is simply connected, the map ¢ can

be lifted as in the following commutative diagram
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Note that ¢(z+1) = Té(z). Let {z,} be a sequence of points in § and
po the base point in D. Denote by Px(x,y) the distance between the

points x and y on a Hermitian manifold X. Then
Pp(BE 1), (z,))
= pp(Th(z,), P(z,))

= pp(Te,Po, g,Pg) for some g eGR, because GR acts

transitively on D

-1 .
= ppley Tg,Pg:Pg) by the Gy -invariance of the metric on D.
R

On the other hand, by the distance-decreasing property of horizontal maps,

pD(¢;(Zﬂ+1)’ (i(zn)) s Py Eyzatl) = Imlz )
n

So if {z,} is chosen so that Im z, >0, then

pD((g;1 Tgn)poypo) i 0 as 1 o0,

Because D is a metric space,
lim ~1 T = .

It follows that g = lim g;1 Tg, is in the stabilizer H of Py- Because

n—oo

H is compact, the eigenvalues of g and hence of T all have absolute

value 1. q.e.d.

REMARK 18. A matrix T satisfying
(TN_I)k+1 =0

for some integers N and k is said to be quasi-unipotent. The least

such k is called the index of quasi-unipotency. An equivalent formula-

tion of the mono_dromy theorem is that T is quasi-unipotent. Schmid has

'

o v i

[ R
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shown that for a variation of Hodge structure of weight n over the punc-
tured disk A¥, the index of quasi-unipotency is at most n. See Schmid

111

REMARK 19. In the geometric case, the monodromy theorem is due to
Landman [10] and Katz [91.

§4. Algebraization and regular singular points

Let O= {}(Z, HP-9y,0Q,S} be a variation of Hodge structure over an

algebraic base S. A priori the Hodge bundles are only holomorphic
bundles. Of course, if the base is a smooth compact algebraic variety,
then by Serre’s GAGA principle, the Hodge bundles are also algebraic
bundles. It turns out that even when the base is noncompact, the Hodge
bundles can be given an algebraic structure which is uniquely character-
ized by a growth condition on its sections. The proof of this algebraiza-
tion theorem is based on a curvature computation which we will briefly
explain.

First, some notations and terminologies. Let S be an algebraic
variety, not necessarily compact. A smooth compactification of S is a
smooth compact variety S such that D =S - S is a divisor with normal
crossings. Thus the neighborhoods at infinity are punctured polycylinders
P* = (A"‘)kxAﬂ“k . Such a smooth compactification exists by Hironaka. We
let Mp* be the Poincar€ metric on P*. Recall that for a polarized Hodge
structure {HZ, HP'9,Q} a positive definite metric can be defined on HP'4

by setting
<P, = WPQEWT) -

n
The Hodge lengthof v in H, v = 21 vP:4 | is then
p:

1/2

Iv]l = (§n‘, <yP,yPsa >p)
p=1
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The algebraicity of the Hodge bundles is a consequence of the follow-

ing general theorem.

THEOREM 20. With the notations above, let E +S be a Hermitian vector
bundle whose curvature satisties
-C < <0e,e> <
7’p"‘ - <e,e> — CTIP*
locally at infinity. Then there exists a unique algebraic structure on E
whose algebraic sections e(s) are characterized by moderate growth,

that is,
le()ll = 0(s| ™)

for a local parameter s on S and for some positive integer a.

The point is that by the Ahlfors Lemma the curvatures of the Hodge
bundles satisfy the inequality of the theorem and so over an algebraic
base, HP'9 has the prescribed algebraic structure. To get an algebraic
structure with moderate growth on FP one first shows that the extension

class of
0—)?p+1—)3:p—>}‘(p’q -0

is algebraic. By induction we may assume FP*! algebraic. The alge-
braicity of FP then follows from that of HPA, P+l and the extension

class.

REMARK 21. When the variation of Hodge structure comes from geometry,
there is an a priori algebraic structure on the Hodge bundles HP:9, For
if m:X>8S isa family of polarized algebraic varieties, then HP'd can

be identified with the direct image sheaf

Hpa =~ RP, P
e

where QSPX/S = Apﬂflr/s is the sheaf of algebraic p-forms along the fiber.

However, it can be shown that this a priori algebraic structure agrees with

[I———
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the algebraic structure with moderate growth given by the theorem (see

Cornalba and Griffiths [2]).

Regular singular points

To explain intuitively the theorem on regular singular points, we con-
sider a family of smooth projective varieties f:X - A*. Let (o(s)er(Xs)
be a smoothly varying collection of C™ k-forms on the fibers of the
family and c(sy) a k-cycle in XSO. Horizontally displace c(s) to
obtain k-cycles c(s) ¢ H (Xq, Z). Although c(s) is in general a multi-
valued section of U H (X, Z), over an angular sector A* it has single-

)

valued branches. The assertion of the theorem is that if the Hodge length
of w(s) has moderate growth, i.e.,

(sl = O(ls|™®) for some positive integer a,

then over any angular sector the period of w(s) relative to a single-valued

branch of c(s) also has moderate growth:

f ofs)

c(s)

= 0(ls|® .

4

To formalize this, we first make a few definitions.

DEFINITION 22. Let 7:E » A* be a Hermitian vector bundle. A holo-

morphic section e of E is said to be meromorphic at the origin if
fle@)ll = 0(Js| ™) for some positive integer a.
Such a section is also called a meromorphic sectionof E.

DEFINITION 23. Let n:E > A* be a holomorphic vector bundle with a
connection V, and let {vl, ++,v,} be a (possibly multivalued) flat frame
for E. The connection is said to have regular singular point at the origin

(relative to the flat frame {v,, -, vn} ) if on any angular sector the coeffi-
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cients of any meromorphic section e relative to the flat frame {vl,---,vn} :
have at most poles at the origin; in other words, if e(s) = Ebi(s) Vi, then

the by(s) are multi-valued meromorphic functions at the origin.

THEOREM 24. The Gauss-Manin connection of the cohomology bundle
7:H » A* of a polarized variation of Hodge structure @:{HZ,HP'Q,V,Q,A*i |

has a regular singular point at the origin.

The proof of this theorem depends on an estimate for the length of a

holomorphic flat section of =: H > A*. Here by a flat section we mean a
flat section with respeet to the Gauss-Manin connection V. If D is the
metric connection on } relative to the indefinite metric (- \/—_f)n Q ,7).
Then the Gauss-Manin connection is the (1,0)-part D° of D. Thus a
holomorphic flat section is also flat with respect to D (but not with
respect to the metric connection of the Hodge metric on ).

Recall that the metric connection Dp = DE’ + D'{, on the Hodge bundle

HP:4 is related to the metric connection D =D’+D” on H by

Dy +¥p=D l}(p,q

vt o
Dp’,“'m1 =D l]{p,q‘

- ——

PROPOSITION 25. On any angular sector of A* the Hodge length of a

holomorphic flat section e of X - A* satisfies ‘

cl(log éj)_k < Je)f? < 02(1og %I)k ‘

where C1 , C2, k are positive constants.

Proof. Let e= Eep be the Hodge decomposition of e, where ey is the

(p,n-p)-component. Because e is flat,

. _ b
Dpep = ~¥pi1per -
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Because e is holomorphic,
” _ +t N
Dpep =+ ¢'p—1 €p_1

Thus the radial derivative of the Hodge length is

it

d. 9
z <e,e> = % P <egep>

d
2Re = <D(5r)ep,ep>

it

dJ t d
-2Re <l/fp+1(5) €pr1:8p> < ¢p_1(5)ep_1,ep> .

By the Schwarz inequality,

<tpia(2)eprep! € Wpa(F)epal lepl

By the distance-decreasing property of the period map,

lepss !
ool < Tp
Therefore,

Cﬂep_*_l Il “ep" < .C“enz

d
[<bpa(F)eprep?| <

t log %— " rlog %—
So the radial derivative satisfies
\Q <e,e>
ot k
<e,e> . log-lr—

for some constant k. Integrating this inequality with respect to r yields

the desired estimate. g.e.d.

Y
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