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Definition of Families of L-functions

Peter Sarnak

The zoo of automorphic cusp forms 7 on GL(n) (n a natural number) over @Q corre-
spond bijectively to their standard L—functions L(s, ), and they constitute a countable
set containing species of different types.! For example, there are self-dual forms, ones
corresponding to finite Galois representations, ones corresponding to Hasse-Weil zeta
functions of varieties defined over @, etc. From a number of points of view (including the
nontrivial problem of effectively isolating special forms), one is led to study such L(s,7)’s
in families in which the 7’s have a similar flavor. Some applications actually demand the
understanding of the behavior of the L-functions as 7 varies over such a family. Other
applications involve questions about an individual L-function. In practice a “family” is
investigated as it arises. For example, the density Theorems of Bombieri -Vinogradov (see
[B],[V]) are concerned with showing that in a suitable sense most Dirichlet L-functions
have few violations of the Riemann Hypothesis and, as such, this is a powerful substitute
for the latter. Other examples are the GL(2) subconvexity results which can all be proved
by deforming the given form in a family (see [I-S] and [M-V] for an account). In the anal-
ogous function field setting the notion of a family of zeta functions is well defined, coming
from the notion of a family of varieties defined over some base. Here, too, the power of
deforming in a family in order to understand individual members is amply demonstrated
in the work of Deligne [D]. In the number field setting, there is no formal definition of a
family & of L-functions. My purpose here is to give a working definition, and these pages
can be viewed as an appendix to [K-S] and [I-S]. In [K-S] a symmetry type “G(S)” is
associated to various sets of L—functions that are special cases of what we define below.
The expectation is that all families have a symmetry associated with them and that these
determine, for example, the distributions low-lying zeros for the L-functions in the family.
We also give a universal algorithm as to how to compute the symmetry.

For the purpose of giving a general definition, we assume freely any standard conjec-
tures when convenient. While many of these conjectures are well out of reach, there are
numerous cases where they are known and where the discussion below is at least partially
provable.

'For simplicity we suppress the t-dependence identifying 7= with 7@ | |,



First some notation.

1) N(x) is the conductor of 7, it is the positive integer defined as the product to
appropriate powers of the primes v at which , is ramified (here 7 = ®mn,). It is the
integer appearing in the functional equation of the standard L-function L(s, ).

2) c(r) is the analytic conductor of 7 as defined in [I-S]. It is product of conductor
N(m) with an archmidean factor depending on 7. The analytic conductor measures the
“complexity” of an automorphic form much like a height function for rational points in
diophantine analysis. As in that setting, the set S(X) = {cuspidal n’s on GL(n) with
¢(r) < X} is finite (see Brumley [Br]). There is no doubt that a ”Weyl-Shanuel” type
asymptotic formula exists for S(X) and deriving such, starting with n = 2 would be of
interest.

3) e(w) is the root number of 7 that is the “sign” of functional equation.

4) For an automorphic cusp form 7 on G = GL(n) let H, be the smallest subgroup
of GL(n,C) associated with 7 such that the semisimple conjugacy classes corresponding
to almost all of the m,’s lie in H (and in which these become equidistributed with respect
to Haar measure on H intersect the unitary group, i.e., the “Sato -Tate” conjecture for
7). This group is defined in Langlands [L], it is only defined up to conjugacy, and it is
closely connected to the poles at s = 1 of L(s,, p) for an irreducible representation p of
LG. For example H, should be finite iff 7 corresponds to a Galois representation.

While it is problematic at the present time to give a geometric definition of a family
of automorphic forms, the philosophy of what should be true is based in part on the
geometric analogues. Hence, it is desirable that our definition capture these families, too.
Let R be a geometric family of smooth projective varieties V defined over a base space
space T, all being defined over Q. So for each ¢ in T outside a Zariski closed set, V; is
smooth and projective over Q. Fix the piece L(s,V, ;) of the Hasse-Weil zeta function
corresponding to the cohomology in dimension j. Each L(s,V;;) is expected to have
analytic continuation to the complex plane and to satisfy a functional equation (which we
normalize automorphically, s into 1 — s) and, hence, it should be of the form: L(s,n(t))
for an automorphic form 7 (t) on GL(m) (with m the dimension of the corresponding
cohomology group). We call such a family of automorphic forms n(t), ¢t in T, a geometric
family.

Another family is that of automorphic forms that arise from finite Galois represen-
tations, that is Artin L-functions. Functoriality asserts that each such L-function is an
L-function of an automorphic form on the corresponding GL(n). Choosing a set of such
Galois representations which are defined by some algebraic number theoretic constraint
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(such as the Dedekind zeta functions of extensions of a fixed degree) leads to families of
Artin L-functions.

The universal family of L-functions (of degree n) consists of all L(s,7) with 7 auto-
morphic and cuspidal on GL(n). In studying this family (or any family below), we always
use the analytic conductor ¢(m) to order (or to collect in finite sets) the members of the
family.

We first define families of automorphic cusp forms on GL(n) and then use these to
define families of L-functions. One expects that all “L-functions” are finite products of
these standard L-functions of cusp forms on GL(n) and so restricting to subsets of these
should not lose anything. Our definition of a family is made to include geometric families,
families defined through local harmonic analysis and also functoriality.

Definition 1: (Family of automorphic forms) A family < of automorphic forms is a
subset of the universal family gotten by imposing one or more of the following conditions.

I) (The degenerate case) < is 7, a single such form.

IT) (root numbers and central characters) Fix the central character x, or restrict to
self dual forms and then further to forms with a given sign e(7) of their root number.

III) (given H type) Fix H a semisimple algebraic subgroup of GL(n,C) and restrict
to m’s for which H, = H.

IV)(harmonic analysis constraints)

(i) Let S be a finite set of places of Q (which may include oo) and for v € S let B, be
an open (nice) subset of GL(n,Q,)*™?, the tempered dual of GL(n,Q,). . We restrict to
7’s for which 7, € B, for v € S and outside of S, 7, is unramified.

(ii) As in (i) except that outside of S there are no constraints on .

V)(geometric families) Fix a geometric family R of varieties V; defined over Q and
restrict 7 to be a w(t) corresponding to V,;, for ¢ in T, as described above.

VI)(Functorial transfers) If H is a reductive algebraic group defined over Q (or a
number field) and p a homomorphism of “H — G, with G = GL(n), then functorial
image of the automorphic forms on H give a family of forms in GL(n). This includes the
algebraically defined families of Artin L-functions.

Definition 2: (Family of L-functions) Fix n, ns, . . ., 7 positive integers and irreducible
finite dimensional representations pi, pa,. .., px of GL(n;) for j = 1,... % and families of
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automorphic forms §; on GL(n,), . .., GL(n). Define the family (S, ..., Sk, o1, - Pk
of L-functions to be the tensor product L-functions:

L(S,ﬂ'l,ﬂz,---,Wk,Pl,---,Pk)i = L(s, p1(m1) X pa(ma) X ... X px(mr))
as m; varies in each 3y respectively.

This gives a family of L-functions of degree n equal to (dim p;) X ... X (dim p;) and
these L-functions are conjecturally standard L-functions of automorphic forms on GL(n).
In general they need not correspond to cusp forms, but for simplicity in what follows I
assume that this is the case (or at least that if not that any common factor in all the
L-functions in the family is fixed, e.g., something like the Riemann Zeta function). Also,
in the definition of a family of L-functions, we also assume that < is infinite.

Discussion: At the very least, in studying such a family one needs to be able to
understand asymptotically the cardinalities of the sets

(1) S($,X) = {m in ¥ : ¢(7) < X}, as X goes to infinity.
Question 1:

Is | S(S, X) | asymptotic to aX® for some positive constants a and b depending on I7
(or perhaps in some singular cases one should allow powers of logX).

This is so in all cases I know (some are mentioned below), and I expect it is true in
general. If so, one would naturally call b the dimension of the family.

More generally for each m > 0 there should be a number ¢(m, ¥) such that as X goes
to infinity,

(2) > ax(m) ~| (S, X) | ¢(m, D),

TEY
e(m)<X

here ar(m) is the m-th coefficient of the Dirichlet series defining L(s,n). (Note this is
normalized so that a,(1) = 1).

The point of our definition is that the trace formula, and especially recent analytic
developments around it, allow us to compute the asymptotics in (1) and (2), for families
defined by conditions of type IV and some of type VI. As to those of type V the asymptotics
in (2) can be computed using arithmetic geometric methods (that is the monodromy group
of the family (see Katz [K] for an exposition). The families which are most problematic
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in terms of present technology, for determining the asymptotics in (1) and (2) are those
associated with number fields and Artin’s Galois representations. For example, counting
the family of Dedekind zeta functions of number fields of a fixed degree is problematic if
the degree is bigger than 5 (see below).

Symmetry type: A family S of L-functions as defined above has a symmetry type
G(S). It can be determined from the function field analogue when such exists. There
is also an algorithmic calculation which leads to a determination of the symmetry of the
family. That is for families as above one can determine the densities of low-lying zeros
for test functions whose support of their fourier transforms are small and these densities
distinguish between the expected universal symmetry types. In more detail, assume that
one has (2) above in the stronger form with a remainder of O(X®m") with b > 0 and
also the asymptotics of

1
— t(p%, Q)1 fi =lor2.
xZ(p, Jogp, asz - o0  fore=1lor

p<z

Then one can determine the density of low zeros of L(s,7) for w in & in restricted ranges
(asin [K-S}). As in that paper and for the irreducible families defined above, we expect that
there are only five types of symmetries G(S), these being SP, SO, SO (even), SO(odd)
and U. The densities computed above, even in the restricted ranges, suffice to distinguish
these five symmetries. Thus, as long as we can compute a little more than (1) and (2)
above, we have a predicted symmetry. It in turn predicts the fluctuations of many other
quantities associated with the family — for example, the moments (see [Ke-Sn]). All of
these predictions can be tested numerically as they have been in many special cases ([R]),
and certainly further such checking is needed if we are to believe in general that G(S)
is restricted universally as suggested above. It would complement nicely the high zero
universality for a given L(s, ) found in [R-S).

Some examples of where the above has or is being carried out are the following:

A) The first and most basic case is that of Artin L-functions corresponding to quadratic
extensions of Q. This can be realized by (III), (IV) or (VI) above. It has been investigated
from all points of view (see [K-S] and [R]) and the symmetry is symplectic. The next
case of this type is that of Dedekind zeta functions of cubic extensions. After division by
¢(s) this gives a family of GL(2) L-functions. Very recently A. Yang (thesis PU 2009)
has determined that its symmetry is also symplectic. Using the recent work of Bhargava
on counting number fields of degree 4 and 5, the corresponding families of Dedekind zeta
functions should also be approachable.



B) As far as families of type (IV) go, the paper [I-L-S] examines this for a number of
such families in GL(2). For example, using condition (II) to fix the central character to be
trivial and (IV)(i) with S simply oo and the open set all discrete series, yields the family
of holomorphic forms of any weight for PSL(2, Z). This has an SO symmetry and if we
further fix the epsilon factor we get an SO(even) and SO(odd) symmetry respectively.
The recent work Lapid and Mueller [L-M] when extended as in [Sa] will lead to the (1)
and (2) above for various large familes in GL(n) for any n. For example the symmetry
type and corresponding analysis for the universal unramified family — that is all cusp
forms f on GL(n) which are everywhere unramified — should emerge from these analytic
developments of the trace formula.

C) As for geometric families (V), one of the few cases where the corresponding au-
tomorphic forms are known to exist is that of families of elliptic curves over Q (due to
the work of Wiles, et al.). The symmetry of the universal such family of Hasse-Weil
L-functions, as well as numerous special families of elliptic curves are determined in the
thesis of S. J. Miller (see [M]) and also M. Young (see [Y]). They all have SO symmetries
or SO(even), SO(odd) symmetries if one restricts the epsilon factor. This should even
be true with a simple modification for families of elliptic curves over Q(t) which have
positive rank r, over Q(t). In this case, the generic member of the family has rank at
least r and the modification in question is that the low-lying zeros beyond these “forced”
T zeros obey the same laws as described by the SO symmetry, though the numerics in
this case are less convincing [M2)].

D) An example of a family that is formed out of condition (IV) and then the more
general combination as in Definition 2 via generalized tensor product L-functions is the
following: 7 varies over holomorphic forms weight & of full level for SL(2,Z) and =/
is a fixed every unramified form on GL(2). Form the family of degree 6 L-functions
L(s,sym?n x «/). This family arises in the computation of the variance of quantum
fluctuations on the modular surface ([L-S]). It is a self-dual family with root number
equal to 1. However, as has been shown in [D-M], it has, perhaps somewhat surprisingly,
an SO(even) symmetry rather than an SP symmetry. X. Li’s [L] recent proof of the first
case of subconvexity for a GL(3) form, that is for L(s, sym?r) in the ¢ aspect, uses a
deformation in the family L(s, sym?r x n/), where this time = is fixed and 7/ varies over
unramified GL(2) forms and also unitary Eisenstein series. The symmetry type for this
family can be computed easily.

One may speculate about an intrinsic definition of the symmetry G(S). That is in a
spectral interpretation of the zeros of L(s,n). The operators corresponding toeach 7 € &
should preserve a bilinear form defining the symmetry. Moreover, as we vary over m € &
ordered by their analytic conductors, these operators should become equidistributed in



the corresponding space of operators which enjoy the symmetry. For the (Paul) Cohen,
Connes, Meyer spectral interpretation, this is discussed in [P].
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